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Abstract 
 

Mobile devices offer many new avenues for computer vision and in particular mobile 

augmented reality applications that have not been feasible with desktop computers.  The 

motivation for this research is to improve mobile augmented reality applications so that 

natural features, instead of fiducial markers or pure location knowledge, can be used as 

anchor points for virtual mobile augmented reality models within the constraints imposed 

by current mobile technologies. This research focuses on the feasibility of GPU-based 

image analysis on current smart phone platforms.  In particular it develops new GPU 

accelerated natural feature algorithms for object detection and tracking techniques on 

mobiles.  The thesis introduces ColourFAST features which contain a compact feature 

vector of colour change values and an orientation for each feature point.    The feature 

algorithms presented in this thesis process information in “real time”, with the objective on 

high data throughputs, whilst still maintaining suitable accuracy and correctness.  It 

compares these new algorithms with well-known existing techniques as well as against 

their modified GPU-based equivalents.  The research also develops a new GPU-based 

feature discovery algorithm for finding more feature points on an object, forming a cluster, 

which can be collectively used to track the object and improve tracking accuracy.  It looks 

at clustering algorithms for tracking multiple objects and implements an elementary GPU-

based object recognition algorithm using the generated ColourFAST feature data. 
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Chapter 1  

Introduction 
 

Mobile technology is virtually ubiquitous and rapidly evolving, giving rise to many new 

and exciting application domains through the convergence of computing and 

communication technologies.  Next generation devices are capable of capturing high 

quality images and video with their embedded camera, contain rapidly improving central 

processing units (CPU) and usually contain a dedicated Graphics Processing Unit (GPU) 

for high quality graphics and rendering capabilities.  They also contain many other 

properties such as an internal global positioning system (GPS), accelerometer and digital 

compass receivers.  These combined capabilities could lay foundations for new and 

interesting mobile augmented reality (MAR) applications which would be a valuable asset 

to both personal and commercial interests.  Mobile augmented reality is a young and 

vibrant research field with an active research community but still has many interesting 

avenues yet to be explored.  There are plenty of commercial applications which over the 

last couple of years have employed this technology and it continues to grow.  At the start 

of this thesis there were several pioneering groups worldwide working with mobile 

augmented reality such as Graz University, the University of Canterbury’s Hit Lab and 

Google.  The first two groups and others have primarily employed fiduciary markers which 

have limited the applicability of their results and other groups, such as Google, have 

utilized server based object recognition off device for their algorithms which incurs 

communication overhead.   

 

Augmented reality has the potential to play a significant role in enhancing the mobile and 

wearable computing paradigm [1].  It has brought a new dimension to augmented reality 

and poses many research questions, as mobile devices have quite distinct limitations and 

capabilities from desktop computers.  Modern mobile devices can provide location 

tracking, compass direction, a variety of network connectivity options, camera and video 

capabilities, together with powerful processing and graphics rendering.  Mobile devices 

can use their camera for image recognition and visual tag identification, which has been 

utilized in several recent research projects [2-4].  However, one of the main problems with 
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such approaches to mobile augmented reality is the requirement for a model or 

instrumentation of the environment through markers.  Both of these conditions severely 

constrain the applicability of augmented reality to predetermined environments.  There is a 

growing awareness of the importance of mobile augmented reality research and its ability 

to fundamentally change the way information is used and organised [5].  Mobile 

augmented reality is considered one of the five technologies that will “change everything” 

[6]. 

 

Mobile devices often have access to location-based and directional information.  While a 

GPS has satisfactory accuracy and performance in open spaces its quality deteriorates 

significantly in urban environments.  A mobile vision-based localization component can 

provide both accurate localization and robustness [7].  This enables a new class of 

augmented reality applications which use the phone camera to initiate search queries about 

objects in visual proximity to the user [8].  If the absolute location and orientation of a 

camera is known, along with the properties of the lens, it is theoretically possible to 

determine exactly what parts of the scene are viewed by the camera [9], although much 

research still needs to be undertaken to make this approach practical. 

 

There is a lot of research underway investigating the possibilities of augmented reality 

however a lot of it is for commercial use and closed source.  ARToolKit and its extended 

version ARToolkitPlus are open-source software C-libraries available to developers for 

building augmented reality applications that render 3D object models overlaid on physical 

world fiducial markers [10].  They have also been ported to Symbian, Android and iPhone 

systems to support mobile augmented reality, but are now no longer being updated. Their 

successor Studierstube Tracker targets mobile phones as well as PCs but is closed source 

and not available for download without a commercial license [11].  There has also been 

some work with mobile augmented reality and location-based services, Layar is a 

commercial product for smart phones and claims to be the world’s first mobile augmented 

reality browser [12].  Other research that is underway includes natural feature tracking on 

mobiles, where instead of fiducial markers,  the camera is used to detect and track naturally 

occurring scene features such as colour, texture, corners and edges of objects in the view of 

the camera [13].  Similar research has been utilized to try to recognize landmarks, the main 
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idea being that the user will capture the image of the landmark or building, and the system 

will analyze, identify and inform the user of the name of the captured landmark together 

with its related information [14]. 

 

There are many applications for MAR that can be exploited which include location-based 

games, improved navigation and image recognition tools as well as other artistic and 

performance endeavors.  More research into MAR may even assist disabled and vision 

impaired people with navigation by the incorporation of voice and sound feedback in the 

software.  There are also benefits for more commercial interests, including the travel and 

tourism sector, advertising, education, law enforcement agencies, and telecommunication 

providers.  

 

This project investigates how to feasibly process images captured on a mobile device at 

high frame rates, using the embedded GPU for the purpose of improving the speed of 

computer vision algorithms on smart phone devices.  Performance of current vision 

algorithms on mobiles has been quite poor, so this work has followed the trend in high 

performance computing applications which has shifted numerically intensive CPU based 

computing toward the GPU.  It looks at the development of new algorithms which work 

more efficiently on mobiles and GPU.  In particular it investigates using the GPU to 

improve feature point detection and tracking of real world entities on current mobile 

devices.  This research hopes to aid in the improvement of mobile augmented reality 

applications by using naturally occurring feature points calculated on objects or structures 

rather than markers or location information which the majority of mobile augmented 

reality applications already use.  Many of the existing computer vision applications for 

feature detection and tracking were originally developed for CPU use as they require 

frequent conditionals, which can be disadvantageous when developing GPU based 

applications.  This work looked at how these algorithms can be optimized for GPU use.  

Many developments and changes to the algorithms ended up resulting in new algorithms 

especially on the feature detection and tracking side of the project.  
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A big part of this thesis involved becoming familiarized with several of the smart device 

platforms available at the beginning of the thesis, including iPhone, Blackberry, Windows 

Mobile, Symbian^3 and Android, which each have their own programming language and 

development tools.  Writing small programs to test camera capabilities and rendering 

through a graphics pipeline was very important.  It is difficult to simulate a real GPU 

pipeline, so the GPU on the mobile devices were directly used to test the algorithms 

developed in this thesis. Performing GPU processing on a real mobile device offered 

numerous challenges over simulated applications such as MATLAB.  These include the 

presence of noise in images, being constrained by the overhead of image retrieval from the 

device camera, and limited GPU API support.  OpenCV [15] is considered the de facto 

standard for computer vision algorithms and has highly optimized performance.  Desktop 

versions even contain GPU accelerated computer vision algorithms, but to date mobile 

versions only have CPU implementations.  This work investigated using OpenCV on 

mobiles, which was used as a performance comparison to the GPU accelerated algorithms 

implemented here.  

 

The main work began by testing the feasibility of GPU programming on mobile devices by 

creating an optimized GPU pipelined version of Canny edge detection.  GPU-Canny was 

implemented on several mobile platforms and devices using OpenGL ES 2.0 and GLSL 

shader language for the GPU parts of the algorithm.  Canny was a suitable test as it is a 

popular computer vision algorithm which demonstrates many problems associated with 

implementing image processing algorithms on a GPU.  This is because of its large amounts 

of conditionally executed code, texture transfers for each frame captured and dependent 

texture reads.  As such it is not considered an ideal candidate for implementation on a 

GPU.  Several programmable shaders for the different steps of the algorithm were used and 

a number of modifications were made to remove thresholds and conditional code from 

Canny.  This resulted in a distinct algorithm to the original version of Canny.  Several 

differing mobile devices were tested to determine whether GPU-Canny was able to 

outperform its OpenCV CPU counterpart in terms of frame rate output.  The results 

showed a positive trend towards using a GPU to perform some computer vision on “new” 

devices especially those released after 2010.  This work was published in the proceedings 

of the Image Vision Computing New Zealand 2011 (IVCNZ), conference [16]. 
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The work then looked at the main algorithms for feature detection and tracking and how 

GPU-based processing could be used to modify and improve them.  A GPU based version 

of FAST feature detection was implemented and showed a huge speedup compared to the 

OpenCV version.  Because FAST is typically applied on a greyscale input image and gives 

not many details about the actual feature point itself, questions arose how this could be 

enhanced without affecting performance too much.  ColourFAST was created, which 

although inspired by FAST and sharing some similarities, is a different algorithm which 

improves on FAST using several modifications and obtains richer information about the 

feature point.  ColourFAST creates a four component compact feature vector which 

includes three channel colour changes such as RGB or YUV formats as well as a direction 

for the feature point.  ColourFAST showed little to no performance penalty in terms of 

frame rates compared to the GPU version of FAST implemented in this project. 

 

Once feature points were generated in the scene, the feature vectors that come along with 

each point were then tested to see if they are unique enough to track across multiple 

frames.  A GPU-based version of Lucas-Kanade was implemented and tested on some 

mobile devices and used to track ColourFAST feature points.  It was tested against the 

OpenCV implementation of Lucas-Kanade which used “Good Features to Track” [17] for 

determining feature points in the scene.  The GPU version demonstrated a significant 

speedup compared to the OpenCV version.  The tracking accuracy results were a little 

disappointing as Lucas-Kanade usually is just used on greyscale input images.  

ColourFAST feature search was implemented to do a search for the best feature match 

within a predetermined tracking window around where the point has been estimated to 

have moved.  Because of the high frame rates generated by ColourFAST, it was found that 

the algorithm could run feature detection inside the tracking windows on every frame.  

This allows the tracked points to update their feature vectors allowing for gradual changes 

in lighting, scale and rotations when tracking across frames.  The algorithm resulted in 

several advantages over Lucas Kanade in both the GPU and the OpenCV version, 

including an increase in frame rates and tracking accuracy.  More sophisticated CPU side 

algorithms were also used to grow and shrink the search window and to also predict where 

the window should be placed by calculating velocity for the points over three consecutive 
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frames.  The work involving ColourFAST feature detection and tracking was published 

and presented was published in the proceedings of the Image Vision Computing New 

Zealand 2013 (IVCNZ), conference [18]. 

  

Tracking in the thesis with a single feature point was found to work well, however objects 

can contain multiple feature points which all move in the same direction.  Combining these 

points to form a cluster gives an overall movement for the object being tracked, where 

points that are getting good matches count more toward the average movement than 

weaker matched points.  This results in even better tracking accuracy, but also gave other 

advantages such as allowing some points to be lost for a while or allowing the object to be 

partially occluded but still being tracked.  The work covers a new GPU-based algorithm 

which can be used to discover more feature points from a starting point.  The feature 

discovery algorithm follows the contours of an object, progressively adding strong feature 

points.  It uses a special feature discovery point which uses a Haar descriptor to follow the 

ridges and valleys of ColourFAST features around an object.  These features are clustered 

together to give average movement for the object being tracked.  The scene may also 

contain multiple objects which are moving in different directions, so cluster analysis 

algorithms were investigated which are able to determine which points belong to a certain 

cluster.  Point movements were used to determine clusters, with points moving similar 

directions placed into the same cluster.  Two of the main clustering algorithms, K-Means 

and DBSCAN, were implemented, tested and compared on mobile devices to detect 

multiple objects.  The clustering of feature points demonstrated great tracking of multiple 

objects in a scene with the ability to split and merge clusters as needed.   

 

Finally, as a proof of concept the ColourFAST feature point values are used in a simple 

object recognition algorithm.  A couple of different implementations were tested, with the 

second implementation giving better than expected results.  Object recognition worked 

using two GPU shader passes.  It bound multiple known objects with many of their 

associated ColourFAST feature point values as a big input texture.  The algorithm uses the 

feature points being tracked on screen and looks up the information in the input texture to 

obtain the best matches for each object in which the application should try to match.  The 

developed algorithm was tested on a small data set of common logos and showed 
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surprising matching accuracy on live camera video sequences even after various 

movements and loss of feature points.  Matching was done using multiple feature points 

using only the four component compact feature vector given from ColourFAST for each 

point being tracked.  It also showed remarkable speed for match times only impeding the 

throughput of the pipeline by mere milliseconds.  More work is being undertaken 

enhancing the algorithm for more advanced object recognition. 

 

This thesis also devised several standardized tests which are used for frame rate 

throughputs and accuracy tests for the each of the developed algorithms.  The algorithms 

were tested on mobiles using video frames captured from the mobile device camera.  The 

algorithms are not tested offline nor tested on pre-recorded image sequences as this thesis 

primarily investigates how well the algorithms perform in “real life” conditions using the 

images obtained from the camera.  The tests developed for this thesis are as follows: 

• Office environment controlled lighting test.  The setup of this test was done in a 

standard office environment in good lighting conditions that didn’t change, except 

any small light changes from the windows of the office.  This location was 

primarily the focus for testing frame rates of the algorithms developed in the thesis 

including GPU Canny Edge Detection vs OpenCV Canny (Chapter 4), 

ColourFAST full frame features vs OpenCV FAST vs GPU FAST (Chapter 5), 

GPU Lucas Kanade vs OpenCV Lucas Kanade vs ColourFAST feature tracker 

(Chapter 6), ColourFAST tracking with clustering (Chapter 7), and ColourFAST 

logo recognition (Chapter 8).  Frame rate tests were developed to test the speed of 

the algorithms using visual information from camera of the office environment.  

The tests usually involved several devices that had fully charged batteries and were 

in their default factory.  This ensures that no unnecessary background applications 

were taking up CPU or GPU resources.  The tests were run on each device at a 

fixed resolution for 5 minutes with averaged frame rates reported every 5 seconds, 

with the test repeated for each algorithm.  The readings are taken as frames per 

second and included the capture rate from the device, time required to copy 

captured image to the texture and all the pipelined shader passes required for use in 

the algorithm.  This environment was also used for millisecond timing tests.   

Similar in setup to the frame rate throughput tests with the only difference being 
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that only the algorithm or parts of the algorithm is timed in milliseconds and does 

not include the other tasks like device camera capture and texturing.  This was 

usually done to time steps in the shader pipeline so that bottlenecks could be found 

in the algorithm and improvements made to make each shader programme more 

efficient in terms of processing speed 

• Clustering scene test:  This test was held in an office environment with controlled 

lighting conditions.  It involved having the device look at an LCD display at a 

distance of 30cm.  The LCD screen displayed three different colour rectangles 

which moved about in random directions and accelerations.  This test was devised 

to determine how well feature points would track within a cluster, thus giving all 

feature points within the cluster an average predicted movement.  Twelve feature 

points are placed on the corners of each square.  Each test is run for one minute for 

both clustered and non-clustered feature points and then recording how many 

features are lost at the end of each test.  This test is repeated fifty times for both 

clustered and non-clustered tests. 

• Common logo scene test:  This experiment was held in an office environment in 

controlled lighting conditions.  It involved having the mobile device view an LCD 

screen which displayed one of 50 common logos.  The test then involved cycling 

through each logos and moving the device into four different positions facing the 

screen.  These included starting at a fixed initial position of keeping the device 

30cm away from the screen, then zooming closer to the screen, moving back from 

screen, panning left.  The device was moved to each position consecutively without 

restarting the test to also demonstrating tracking of logos.  This test was especially 

used to determine whether ColourFAST feature points can be used for object 

recognition (Chapter 8).   The logos scene test was also used to test GPU feature 

discovery algorithm which found features along the contours of the logos (Chapter 

7).  Finally, the test was also used to determine how much feature fluctuation 

occurs over time using both ColourFAST feature descriptors with the FAST 

intensity values.  It involved taking a reading of values on the first placement of a 

feature point and reporting average fluctuation of values every second whilst the 

device was moving to each of its four positions in this test (Chapter 5). 
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• Uncontrolled environment, pedestrian scene test:  This devised a randomized 

experiment of tracking pedestrians from several observation points.  It was done so 

to test the algorithms in a more uncontrolled lighting environment with unpredicted 

movements and background changes.  This scene was the used to compare 

successful tracking of ColourFAST feature tracking with OpenCV Lucas-Kanade 

(Chapter 6).  It involved placing a single feature point on 200 passing pedestrians 

tracking algorithm and recording how long the tracker successfully followed a 

feature during a 10 second period.  This window of time was determined as 

appropriate as that is how long the pedestrians took to pass by the observation point 

and keeping the targets within view of the camera.  Because of the high frame rates 

this equated to a pedestrian target being tracked over 200-450 image frames 

depending on the device.  To avoid any lighting or location bias, each tracker was 

switched every five tests and the testing was changed to a new observation location 

every 40 tests.  The fact that pedestrians were chosen is not important, as they were 

just used as a medium for tracking ColourFAST features and were ideal due to the 

random nature and colour of each pedestrian.  This environment was also used to 

test feature fluctuation of ColourFAST feature descriptors with the FAST intensity 

value between a reading on the first placement of a feature point to the end of each 

tracking target obtaining averaged results of frames elapsed every second (Chapter 

5). 

 

Although the algorithms developed in this thesis were designed and implemented on 

mobile platforms, they would also work well on more powerful computer platforms.  Since 

the developed algorithms are pipeline based, CUDA or OpenCL implementations would 

also be possible.  However the main objective of this thesis was purely focused on mobile 

platforms, so only OpenGL ES 2.0 shader implementations of the algorithms in this thesis 

are developed as that is the only option for GPU processing on most mobile devices.  

Specifically, this research began asking the following research questions: 

• Is the embedded GPU and software architecture suitable for developing GPU-based 

computer vision applications on current mobile devices? 

• How can existing or newly developed algorithms use the GPU to aid in detecting 

and tracking features of interest from a mobile device camera in real time? 
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• Can the new natural feature detection and tracking algorithms developed in this 

paper be fast and accurate enough to be used for mobile augmented reality 

applications? 

 

This thesis demonstrates an affirmative answer to the first research question, and claims 

that a mixture of existing algorithms and some new algorithms specifically designed for 

GPU pipelines can successfully detect and track features answers the second question.   It 

is believed that this work supports an affirmative answer to the third research question.   

 

Chapter 2 covers the literature and background topics needed to understand the thesis. 

Chapters 3 and 4 are based on work done on the author’s conference proceedings paper 

titled “GPU-Based Image Analysis on Mobile Devices” presented at IVCNZ 2011.  They 

discuss using a GPU to perform image processing on a variety of mobile devices through a 

programmable shader implementation of Canny edge detection.  Chapters 5 and 6 are 

based on the author’s conference proceedings paper titled “ColourFAST GPU-based 

Feature Point Detection and Tracking on Mobile Devices” which was presented at IVCNZ 

2013.  They cover using the GPU to perform feature detection and tracking.  Chapter 7 

covers feature discovery where more features are found from an existing feature by 

following the contour of an object resulting in a cluster of features which can improve 

tracking.  It also discusses cluster analysis algorithms for feature points so that multiple 

objects can be tracked.  Chapter 8 provides a brief overview of simple object recognition 

from feature point clusters using the compact feature vector of each, which are generated 

from the ColourFAST feature detection pipeline.  Finally, Chapter 9 wraps up the project 

and gives an overview of the findings and conclusions.  The full pipeline and how the parts 

of the project relate are shown in Figure 1-1.  
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Figure 1-1: Full ColourFAST GPU pipeline. Shows the separate parts of the project and 
how they all relate. Shaders are in yellow, bound input and output textures are in white 

and important uniform values are in grey. 
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Chapter 2  

Literature Review 
 

This section covers the literature review of the thesis and essential background knowledge 

of topics surrounding it.  These topics were some of the more important background 

aspects for this research and were investigated over the entire duration of this work.  It first 

covers augmented reality and smartphone platforms which is the application focus of this 

thesis, essentially how this thesis can improve mobile augmented reality applications.  

Computer vision applications and some popular feature detection, description and tracking 

algorithms are then briefly discussed as these are later used for comparison against my own 

implementations.  Then GPUs and GPU-based processing is covered, how the OpenGL ES 

2.0 pipeline works and advantages of using the GPU to do computationally expensive 

algorithms which is a common topic across the entire thesis, and especially used in Chapter 

3 and Chapter 5.  The use of newly created GPU-based computer vision algorithms for 

feature detection and tracking is essentially the backbone of this work.  Clustering 

algorithms are then looked at which are used in the algorithm in Chapter 7.  Some of the 

main existing commercial computer vision and augmented reality applications for mobiles 

are then discussed as well as location based services which is investigated in the object 

recognition part of the project to narrow down feature matches depending on the location 

of the user which is briefly touched on in Chapter 8. 

 

 

: Augmented Reality  2.1
Augmented reality (or mixed reality) is a powerful user interface technology that combines 

the user’s environment, which might be obtained through a camera’s video stream, with 

computer generated entities concurrently rendered on a display in a mixed form.  

Augmented reality on devices requires highly accurate and fast six degrees of freedom 

(6DOF) tracking in three-dimensional space (Figure 2-2), with the ability to move in three 

perpendicular axes forward/backward, up/down and left/right translations combined with 

rotation about three perpendicular axes (pitch, yaw, roll).  In contrast to virtual reality 

which completely replaces the physical world, augmented reality blends the physical and 
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virtual worlds within an actual environment and registers 3D  graphical information or 

models to real world locations, rendering the result to a display in real-time [19, 20].  

Milgrims reality-virtuality continuum [21] shows where augmented reality lies in relation 

to the real and purely virtual environments (Figure 2-1).  Augmented Reality is gaining 

importance in industrial applications, for developing, production and servicing as well as 

for mobile applications resulting in mobile augmented reality [22]. 

 

Figure 2-1: Milgrams reality-virtuality continuum [21] 

 

 

Figure 2-2: 6DOF motion of a device in three-dimensional space.  

 

The first example of augmented reality was used in 1965, Ivan Sutherland described his 

vision for the Ultimate Display, with the goal of creating a system that can generate 

artificial stimulus and give a human the impression that the experience is actually real [23].  

Sutherland designed and built the first optical head mounted display (HMD) that was used 

to project computer-generated imagery over the physical world [24].  While there are some 

important uses for Augmented Reality in fixed locations, the ability to move around freely 

and operate anywhere in any environment is important [25].  A pioneering piece of work in 

mobile augmented reality was the Touring Machine, the first example of a mobile outdoor 

augmented reality system [26].  Using technology that was small and light enough to be 

worn, a whole new area of mobile augmented reality research was created. 
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: Mobile Smartphone Platforms Overview 2.2
A mobile phone is a handheld electronic device that uses two-way radio 

telecommunication over a cellular network of base stations.  A smartphone is a more 

advanced version of a mobile phone, with features going beyond just making and receiving 

telephone calls and messages.  They are often thought of as handheld mini-computers, and 

can be perceived to be tangible embodiments of pervasive computing [27].  In recent times, 

there has been rapid progression in smart phones, with advances in high-capacity graphics, 

abundant memory, multiple high resolution cameras, high resolution displays, GPS-

positioning, gyroscopes and accelerometers, making the smart phone a necessary item for 

many consumers and businesses.  Access to mobile networks is now available to 90% of 

the world population and 80% of the population living in rural areas [28].  There is an 

estimated 5.3 billion mobile phone cellular subscriptions worldwide with a rising 

percentage of them being in the smart-phone category, high performance devices are 

becoming more a regular household item [29].  Just in the 3rd quarter of 2013 alone, smart 

phone sales reached over 250 million units sold worldwide with Android devices 

accounting for 72.6% of the market share [30]. 

 

During the course of this thesis there were several competing smart phone platforms 

available to consumers on the market.  The most popular smartphones today are Android 

and iPhone devices however some of the other platforms that are now less popular are 

Symbian, Blackberry, Meego and Windows Phone. 

 

Symbian is an open source operating system and platform designed specifically for 

embedded devices and is programmed in C++ [31].  It was originally developed by 

Symbian Ltd, but now owned and being maintained by Nokia since December 2008.  The 

Symbian operating system previously used a Symbian-specific C++ version for application 

development along with Carbide.c++ integrated development environment for native 

application development, but from 2010, Symbian switched to using standard C++ 

with Qt as the SDK, which can be used with either Qt Creator or Carbide.  Applications 

for the Symbian operating system can also be developed with JavaME, Python and Ruby 

languages as well as web widgets using HTML, CSS, JavaScript and XML.  On 11th 

February 2011, Nokia announced a partnership with Microsoft which would see it adopt 
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Windows Phone 7 for smartphones, reducing the number of devices running Symbian over 

the coming two years [32].  Nokia has now ceased to support the Symbian operating 

system, instead shift its focus towards collaboration with the Windows Phone operating 

system [33]. 

 

BlackBerry OS is a mobile operating system, developed by Research In Motion(RIM) for 

its BlackBerry line of smartphone devices [34].  The first BlackBerry device was 

introduced in 1999 as a two-way pager in Munich, Germany.  In 2002, the more commonly 

known smartphone BlackBerry was released.  Because the BlackBerry operating system is 

proprietary, no significant information about its architecture is made public.  The newer 

devices support BlackBerry 10, which is the successor to the older Blackberry OS, and is 

programmed natively in C++.  BlackBerry OS allows developers to write software for the 

device which is executed on the Java Virtual Machine (JVM) using Java ME and the 

available BlackBerry API, however the newest version BlackBerry 10 allows Android 

runtime support. 

 

Meego is an open-source Linux based mobile operating system project which brings 

together the Moblin project, headed up by Intel, and Maemo, by Nokia, into a single open 

source activity and is hosted by the Linux Foundation.  According to Intel, MeeGo was 

developed because Microsoft did not offer comprehensive Windows 7 support for the 

Atom Processor [35].  MeeGo is programmed in C++ and is intended to run on a variety of 

hardware platforms including handhelds, in-car devices, netbooks and televisions.  These 

platforms share the MeeGo core, with different “User Experience” (UX) layers for each 

type of device.  The officially endorsed way to develop MeeGo applications is to use the 

Qt framework and Qt Creator as the development environment, but writing GTK 

applications is also supported in practice [36].  Like Symbian, Nokia has announced that it 

is walking away from the operating system to focus on Windows Phone [33]. 

 

Windows Phone is a mobile operating system developed by Microsoft and is the successor 

to its Windows Mobile platform [37].  The Windows Mobile platform was originally 

designed for enterprise users with Windows CE and Windows Mobile 6/6.5, with a suite of 
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business applications like Mobile Office and Outlook.  Microsoft changed its approach to 

the consumer market when Windows Phone 7 was released in October 2010 and is a 

complete overhaul from the previous Windows Mobile platforms.  Windows Phone 

applications are developed using the C# programming language.  On October 29, 2012, 

Microsoft released Windows Phone 8, a new generation of the operating system. Windows 

Phone 8 replaces its previously Windows CE-based architecture with one based on the 

Windows NT kernel with many components shared with Windows 8, allowing applications 

to be easily ported between the two platforms. 

 

 iPhone is a device that is designed and manufactured by Apple Inc.  First introduced in 

January 2007, there have now been several generations of the device.  It runs the iOS 

operating system which is currently at version 7.  Development of iPhone applications are 

written in Objective-C, an object-oriented derivative of the C language.  The application 

environment is called Cocoa, and contains a suite of object-oriented software libraries, as 

well as a runtime and integrated development environment [38].  The application-

framework iOS is called the Cocoa Touch framework and can be broken down into several 

layers.   

• Core OS layer contains the kernel, file system, networking infrastructure, security, 

power management, and device drivers.  

 

• Core Services layer provides services such as string manipulation, collection 

management, networking, URL utilities, contact management and preferences.  This 

layer also provides services for the hardware, such as GPS, compass, accelerometer 

and gyroscope.   

 

• Media layer depends on the Core Services layer and provides graphical and 

multimedia services to the Cocoa Touch layer, it includes Core Graphics, OpenGL 

ES and AVFoundation frameworks for allowing camera and video playback.   

 

• The Cocoa Touch layer directly supports applications based on iOS.   
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The Cocoa Touch layer and the Core Services layer each have an Objective-C framework 

that is especially important for developing applications for iOS which are the UIKit and 

Foundation frameworks.   

• UIKit, provides the components an application displays in its user interface and 

defines the structure for application behaviour, including event handling and 

drawing.   

 

• Foundation framework defines the basic behaviour of objects, establishes 

mechanisms for their management, primitive data types, collections and OS services. 

 

Android is an open-source software stack developed by Google for mobile phones and 

tablets which includes an operating system, middleware and applications.  The core 

operating system is written in C with some C++, and is based on a modified version of 

the Linux kernel.  Applications are written in the Java language using the Android SDK 

and are executed on the Dalvik Virtual Machine which features JIT compilation [39].  The 

architecture of the Android operating system can be broken down into 5 major component 

layers:   

• Applications, consists of a set of core applications including an email client, SMS 

program, calendar, maps, browser, contacts which are written using the Java 

programming language.   

• The Application Framework provides access to device hardware, access location 

information and runs background services.  It contains a set of underlying services 

and systems, including Views that can be used to build GUI applications, Content 

Providers that enable applications to access or share data between applications, 

Resource Manager providing access to non-code resources such as localized 

strings, graphics, and layout files, Notification Manager that enables all 

applications to display custom alerts in the status bar, and Activity Manager that 

manages the lifecycle of applications and provides common navigation. 

• Libraries, include a set of C/C++ libraries used by various components of the 

Android system.  These capabilities are exposed to developers through the Android 

application framework. Some of the core libraries include the System C 
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library which is a BSD-derived implementation of the standard C system library, 

Media libraries to support playback and recording of audio and video formats, as 

well as static image files, Surface Manager to access the display subsystem and 

composite 2D and 3D graphic layers from multiple applications, 

LibWebCore engine which powers both the Android browser and an embeddable 

web view, SGL engine for underlying 2D graphics, 3D libraries based on OpenGL 

ES APIs which use either hardware 3D acceleration if available or the highly 

optimized 3D software rasterizer, FreeType for bitmap and vector font rendering, 

and SQLite which is a powerful and lightweight relational database engine 

available to all applications. 

• Android Runtime, which includes a set of core libraries that provides most of the 

functionality available in the core libraries of the Java programming language.  

Every Android application runs in its own process, with its own instance of the 

Dalvik virtual machine.  Dalvik has been written so that a device can run multiple 

VMs efficiently. The Dalvik Virtual Machine executes files in the Dalvik 

Executable (.dex) format which is optimized for a minimal memory footprint.  The 

virtual machine is register-based, and runs classes compiled by a Java language 

compiler that have been transformed into the .dex format by the included "dx" tool.  

The Dalvik virtual machine relies on the Linux kernel for underlying functionality 

such as threading and low-level memory management. 

• Linux Kernel, for core system services such as security, memory management, 

process management, network stack, and driver model. The kernel also acts as an 

abstraction layer between the hardware and the rest of the software stack. 

 

 

: Computer Vision: 2.3
The field of Computer Vision is concerned with the acquisition, processing and analysis of 

images. It often involves image restoration, object recognition, motion estimation and 

scene reconstruction in real time.  It involves the transformation of data from a still or 

video camera into either a decision or a new representation, this transformation is always 

done to satisfy a particular goal, including detection, segmentation, localization and 
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recognition of certain objects in images [40].  Computer vision can be considered a form of 

image analysis, taking a 2D image and converting it into a mathematical description [41].  

It studies and describes the processes implemented in software and hardware behind 

artificial vision systems.  Computer Vision can be considered the inverse of computer 

graphics.  Computer graphics can be considered image synthesis in that it often produces 

image data from three-dimensional models of the scene, whereas computer vision often 

produces three dimensional models from image data [42]. 

 

On mobile platforms computer vision application development has been limited.  

However, over the last few years with the development of the smartphone, mobiles have 

significantly improved especially with the embedded camera, GPU and CPU technology.  

Mobile gaming has become popular as well as mobile augmented reality all of which drive 

the ever increasing demand for more powerful processing capabilities.  Mobile computer 

vision algorithms are usually used through the OpenCV library [15], which is an open 

source library ported to most computer operating systems and made available on all the 

popular mobile platforms.  

 

2.3.1: Fiducial Markers 
Many real-time computer vision algorithms for recognition of generic objects have fairly 

substantial processing requirements which might not be available on mobile devices as 

they only have limited processing power, so more restricted recognition algorithms are 

often instead used.  The simplest object recognition systems rely on fiduciary markers 

which are simple two dimensional patterns and are often manually applied to physical 

objects in a scene so that they can be recognized in images of the scene and to help solve 

the correspondence problem, automatically finding features in different camera images that 

belong to the same object [43].  They also can be used as two-dimensional bar codes for 

providing object information, as reference points where three dimensional augmented 

reality models should be positioned in relation to the marker, and for pose estimation 

where the position and orientation of the camera relative to the scene is estimated [44].  By 

placing fiduciary markers at known locations in the scene, the relative scale in the 

produced image may be determined by comparison of the locations of the markers in the 
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scene.  Mostly fiducial markers are black and white images with clearly distinguishable 

contours that are easily separated from the background due to their high contrast. 

 

 

Figure 2-3: Example types of fiducial markers. ARToolkit/Studierstube tracker markers, 
QRCode  and Shot Code 

 

Square based fiducial markers can be recognized in a greyscale image by applying a 

threshold, determining the connected components or contours and then extracting the 

corners of the marker (or the center of the marker for the circular Shot Code marker).  

Once the corners of the maker have been identified additional information usually encoded 

in black and white are extracted to identify the specific marker or obtain its code. 

 

2.3.2: Feature Detection 
Instead of using markers for computer vision based applications, it may be more 

convenient to detect naturally occurring points of interest in a scene.  Feature Detection 

refers to methods that aim to compute abstractions of image information and make 

decisions as to whether or not there is an image feature of a given type in the image.  There 

is no universal or exact definition of what constitutes a feature, and the exact definition 

often depends on the problem or the type of application [49].  A feature is defined as an 

"interesting" part of an image, and is used as a starting point for many computer vision 

algorithms.  Features could be a combination of extracted edges, corners, shapes or patches 

of colour. 
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2.3.3: Image Convolutions 
Convolutions are the basis of many transformations that are done in computer vision and 

are especially used for techniques such as blurring images and edge detection.  

Convolutions are performed on every pixel in an input image, what a particular 

convolution does is determined by the form of the convolution kernel being used on the 

image.  The kernel is essentially just a fixed size array of numerical coefficients along with 

an anchor point in that array which is generally in the centre.  The resulting output of the 

convolution at a particular point is calculated by placing the kernel anchor on top of a pixel 

in the input image with the rest of the kernel overlaying its corresponding neighbouring 

pixels.  Each of the values in the kernel is multiplied with their overlaid input image 

values, with their results added together into one sum.  The current pixel in the output 

image is then set to this sum [45].  When convolutions come to the border of an image, 

parts of the kernel not corresponding to the input image are either clamped to zero, 

wrapped to the other side of the image or have the pixels on the border replicated. 
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Figure 2-4: Example convolution kernels for a simple box blur (left), 5x5 Gaussian 
smoothing (center), and two 3x3 kernels for vertical and horizontal Sobel operators 

(right).  

 

Image processing convolutions can be expressed in the form of an equation.  Suppose the 

image intensity (possibly within one channel) at pixel coordinate x,y is I(x,y), the kernel is 

G(i,j) and the size of the square kernel is M (where 0≤i<M and 0≤j<M).  If the anchor 
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point in the kernel is to be located at (a,b), then the convolution H(x,y) is defined by the 

expression: 

𝐻(𝑥,𝑦) =  � �  
𝑀−1

𝑗=0
 

𝑀−1

𝑖=0
𝐼(𝑥 + 𝑖 − 𝑎 , 𝑦 + 𝑗 −  𝑏) 𝐺(𝑖, 𝑗) 

 

2.3.4: Canny Edge Detection 
Edge detection is one of the key research works in image processing which aim at 

identifying points in an image at which the image brightness changes sharply or has 

discontinuities.  There are a few techniques for edge detection the first being the Roberts 

cross operator proposed by Lawrence Roberts in 1963 [46].  The Sobel operator can be 

also used for edge detection algorithms [47].  Technically Sobel is a discrete differentiation 

operator, it calculates the gradient of the image intensity at each point, giving the direction 

of the largest possible increase from dark to light and the rate of change in that direction.  

The results show how sudden or smoothly the image changes, therefore indicating whether 

pixels represent edges, and how each edge is oriented.  At each point in the image, the 

result of the Sobel operator is either the corresponding gradient vector or the normal of this 

vector.  Edge detection using the Sobel operator is based on convolving an input image 

with a two small 3x3 integer valued matrix filters (Figure 2-4) for both horizontal and 

vertical directions, and is therefore relatively inexpensive in terms of computations. 

 

Canny edge detection is a multistage algorithm developed by John Canny in 1986, which 

detects edges of objects in an image scene in a very robust manner and is now one of the 

most commonly used image processing tools [48].  An edge can be characterized by an 

abrupt change in intensity indicating a boundary between two regions of an image [49].  

John Canny’s aim was to discover the optimal edge detection algorithm, which marks as 

many edges in the image as possible, has good localization, minimal response time and 

noise reduction so that it doesn’t allow noise to create false edges.  Starting with a 

greyscale input image, the algorithm is run in 4 separate steps to produce an image whose 

pixels with non-zero intensity represent the edges in the original image. 

• Noise Reduction - It is inevitable that all images taken from a camera will contain a 

certain amount of noise.  To prevent this noise creating false edges, the noise must be 
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reduced.  The raw image is convolved with a Gaussian filter. The result is a 

slightly blurred version of the original image which is not affected by a single noisy 

pixel to any significant degree. 

 

• Finding the intensity gradient of the image - Given estimates of the image gradients, 

a search is then carried out to determine if the gradient magnitude assumes a local 

maximum in the gradient direction.  At each pixel in the blurred image, four filters 

are used to detect horizontal, vertical and diagonal edges.  An edge detector operator 

such as Sobel is typically used and returns a value for the first derivative in the 

horizontal direction 𝐺𝑥 and the vertical direction 𝐺𝑦.  From this the gradient length L 

and direction 𝜃 can be determined with the following equations: 

𝐿 =  �𝐺𝑥2 + 𝐺𝑦2 𝜃 = arctan2(𝐺𝑥 ,𝐺𝑦)  

 

The edge direction angle is rounded to one of four angles representing vertical, 

horizontal or one of two diagonals.  

 

• Non-maximum suppression - At each pixel non-maximum suppression is applied to 

each gradient length value L by comparing its value with values at each of the two 

opposite neighbouring pixels in either direction.  If its value is smaller than the value 

at either of those two pixels then the pixel is discarded as not a potential edge pixel 

(value set to 0 as the neighbouring pixel has a greater change in intensity so it will 

better represent an edge). This results in thin lines for the edges. 

  

• Tracing edges through the image and hysteresis thresholding - intensity gradients 

which are large are more likely to correspond to edges than if they are small.  It is in 

most cases impossible to specify a threshold at which a given intensity gradient 

switches from corresponding to an edge into not doing so.  Therefore Canny uses 

hysteresiss thresholding which requires a low and high threshold value with a 
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upper:lower ratio between 2:1 and 3:1.  Making the assumption that important edges 

should be along continuous curves in the image allows us to follow a faint section of 

a given line and to discard a few noisy pixels that do not constitute a line but have 

produced large gradients.  At each pixel if the value of the gradient is greater than the 

upper threshold, then it is accepted as a strong edge pixel, however if the gradient 

value is less than the lower threshold then it is not considered an edge pixel and is 

discarded.   If a pixels gradient value is between the upper and lower thresholds, then 

it is referred to as a weak edge pixel and is only accepted if it is connected to a strong 

edge pixel.  

 

2.3.5: FAST 
Corners are commonly used in computer vision systems as feature points in an image and 

later used to track and map objects.  There are many corner detection algorithms which 

exist including, Moravec [50], Harris-Stephens [51], Wang-Brady [52], and SUSAN 

corner detection [53].  FAST (Features from accelerated segment test) is a corner detection 

method originally developed by Edward Rosten and Tom Drummond [54]. The most 

promising advantage of FAST corner detector is its computational efficiency, as the 

acronym in its name suggests, it is faster than many other well-known feature extraction 

methods.   

 

FAST calculates corners by taking 16 pixels in a Bresenham circle of radius 3 around the 

centre pixel p where at least N (usually chosen to be 12) pixels should each have an 

intensity differing from p above some threshold for that pixel to be considered a corner 

feature (see Figure 2-5).  Once corner points have been calculated non-maximum 

suppression is used around the neighbourhood of each potential corner to remove adjacent 

neighbour feature points, typically the strongest feature point is taken (the one that has the 

greatest intensity difference between it and its N neighbours).  There has been several 

improvements made to FAST including using a machine learning approach discussed in 

[55] as well as FAST-ER (FAST: Enhanced Repeatability) which uses simulated annealing 

[56]. 
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Figure 2-5: Shows the 16 pixel Bresenham circle around a possible FAST feature point p 
[54] 

 

2.3.6: SIFT 
Scale-invariant feature transform (SIFT) is an algorithm in computer vision used to detect 

and describe local features in images, it was published by Daniel Lowe in 1999 [57].  SIFT 

has applications in object recognition, robotic mapping and navigation, image stitching, 3D 

modelling, gesture recognition and video tracking.  SIFT combines key point localization 

and feature description.  It can also be used for defining descriptive image patches.  For 

any object in an image, key points of interest in the object can be extracted to provide a 

feature description.  This description is extracted from a training image, which can be 

stored in a database alongside features from other reference images, it can be used later to 

identify the object when attempting to locate the object in a scene containing many other 

objects. To perform reliable recognition, it is important that the features extracted from the 

training image are detectable even under changes in image scale, image rotation,  noise, 

illumination, clutter and partial occlusion [58].   

 

To detect an object in a scene using SIFT first Gaussian filters are applied, and then scale-

space minima and maxima in the Difference of Gaussian (DoG) are calculated to locate its 

key points.  Difference of Gaussian (DoG) is a greyscale image enhancement algorithm 

that involves the subtraction of a blurred version of an original greyscale image from 

another, less blurred version of the original [59].  Because DoG can be computationally 

expensive, key points are estimated and gradient orientations and magnitudes around the 
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key point are calculated forming a histogram of orientations. Key points in the new image 

are used to create object features in the scene and are individually compared to existing 

features in the database, finding candidate matches based on the Euclidean distance of their 

feature vectors.  From the full set of matches, subsets of key points that agree on the object 

and its location, scale, and orientation in the new image are identified to filter out good 

matches. The determination of consistent clusters is performed rapidly by using an 

efficient hash table implementation of the generalized Hough transform.  Each cluster of 3 

or more features that agree on an object and its pose is then subject to further detailed 

model verification and subsequently outliers are discarded.  Finally the probability that a 

particular set of features indicates the presence of an object is computed, given the 

accuracy of fit and number of probable false matches.  Object matches that pass all these 

tests can be correctly identified as a known object. 

 

2.3.7: SURF 
SURF (Speeded Up Robust Features) is a robust scale and rotation invariant feature point 

detector and descriptor, and is partly inspired by the SIFT descriptor.  It was first presented 

in [60], and can be used in computer vision tasks like object recognition or 3D 

reconstruction.  SURF approximates or even outperforms SIFT and other previously 

proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be 

computed and compared much faster [61].  SURF is based on sums of 2D Haar 

wavelet responses and makes an efficient use of integral images.  It uses an integer 

approximation to the determinant of Hessian blob detector, which can be computed 

extremely quickly with an integral image. For features, it uses the sum of the Haar wavelet 

response around the point of interest. Again, these can be computed with the aid of the 

integral image.   

 

2.3.8: Lucas Kanade 
Feature descriptions can be extracted from sequential frames taken from a moving scene to 

recognize previously identified features and so perform motion tracking.  However, feature 

descriptions algorithms can often be computationally expensive to calculate, so an optical 

flow algorithm such as Lucas-Kanade [62] or its variant Kanade-Lucas-Tomasi 

(collectively known as the KLT feature tracker) [63] is often used for tracking once feature 

http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Object_recognition
http://en.wikipedia.org/wiki/3D_reconstruction
http://en.wikipedia.org/wiki/3D_reconstruction
http://en.wikipedia.org/wiki/Haar-like_features
http://en.wikipedia.org/wiki/Haar-like_features
http://en.wikipedia.org/wiki/Integral_image
http://en.wikipedia.org/wiki/Blob_detection#The_determinant_of_the_Hessian
http://en.wikipedia.org/wiki/Blob_detection
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points have been initially found.  The Lucas-Kanade algorithm solves the optical flow 

equation 𝜕𝜕
𝜕𝜕
ṽx + 𝜕𝜕

𝜕𝜕
ṽ𝑦 =  −𝜕𝜕

𝜕𝜕
  for a greyscale image with intensity I to find the movement 

ṽ of a feature between frames.  It presumes that all the pixels in a small patch of an image 

have the same movement.  This results in an overdetermined system of equations for the 

movement, which can be solved via least squares to find v.  Typically the patch is taken to 

be the neighbourhood around a corner feature point so that both 𝜕𝜕
𝜕𝜕

 and 𝜕𝜕
𝜕𝜕

 are significant 

compared to noise in the image.  KLT feature tracker is faster than traditional techniques 

and examines far fewer potential matches between the images.  An additional stage of 

verifying that features are tracked correctly is discussed in [17].  An affine transformation 

is fit between the image of the currently tracked feature and its image from a non-

consecutive previous frame.  If the affine compensated image is too dissimilar the feature 

is dropped. 

 

Lucas-Kanade is considered a local differential optical flow technique in which movement 

of pixels across image frames is confined to a local patch.  When used to track multiple 

features, the flow for each feature is determined separately from the other features in the 

image.  A popular global differential optical flow technique used for tacking is the Horn–

Schunck [64] algorithm which assumes that brightness patterns within an image vary 

smoothly everywhere. Local differential techniques bare known to have robustness under 

noise, whilst global techniques are able to produce dense optical flow fields.  There has 

been work combining both local and global approaches using Lucas-Kanade and Horn-

Schunck respectively as demonstrated in [65] and [66].  There are other algorithms that can 

be used to track features such as the kernel based or particle filter-based trackers such as 

Kalman and others described in [67], [68] and including a colour based particle filtering 

described in [69].   However the work in this research is purely compared with Lucas-

Kanade as that is possibly the most popular and best performing algorithm for feature 

tracking. 

 

 



   38 | P a g e  
 

: General Purpose Computing on the GPU: 2.4
A Graphics Processing Unit (GPU) is a piece of dedicated hardware which is 

predominantly used to render graphical 3D scenes with either a fixed or programmable 

pipeline [70].  General purpose computing on a graphics processing unit (GPGPU) is the 

technique of using a GPU to perform computation in applications traditionally handled by 

the central processing unit (CPU).  It is made possible by the addition of programmable 

stages to the rendering pipeline which allows software developers to use stream processing 

on non-graphics data.  Instead of using the GPU for rendering a graphical scene, if it has a 

programmable pipeline, it can be used to perform calculations that would usually require a 

lot more central processing unit (CPU) time, taking advantage of data parallelization that is 

inherent with the graphics processing unit architecture.  Current GPUs contain hundreds of 

compute cores and support thousands of light-weight threads, which hide memory latency 

and provide massive throughput for parallel computations [71].   

 

Unlike GPUs, CPUs have little hardware support for thread synchronization, which 

therefore must be emulated in software, so the cost of synchronization could be several 

orders of magnitude higher for CPUs, reducing application performance [72].   Because of 

the multi-billion dollar video game market being the pressure cooker for GPU evolution, 

the GPU has become an extremely fast and flexible processor.  They offer 

programmability, precision and power which makes them an attractive platform for general 

purpose computation capable of very high computation and data throughput [73].  There 

are many applications in which GPGPU has been used, including in high performance 

computer clusters, grid computing, physical based simulations, physics engines, fast 

fourier transforms, audio and video signal processing, weather forecasting, medical 

imaging, cryptography, cryptanalysis and intrusion detection, as well as computer vision. 

 

2.4.1: GPU programming and Shaders: 
GPU programming can be used to efficiently execute computer vision algorithms on 

mobile devices by using a graphics API intended for limited devices, such as OpenGL ES 

2.0 or Direct X9, with the use of a programmable shader pipeline, where mathematical 

parts of algorithms and operations can be done with small programs called shaders.  A 
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shader is a simple program which contains a set of software instructions that describe the 

traits of either a vertex or a pixel and are primarily used to calculate rendering effects on 

graphics hardware in the GPU programmable rendering pipeline.  Two of the main shader 

languages are the OpenGL Shading Language, or GLSL and High Level Shader Language 

(HLSL) [74] [75]. Open GL ES 2.0 and GLSL is supported on many smart phone devices 

with an embedded GPU, including iPhone and Android, whereas the Windows Mobile 

range instead uses Direct X9 and HLSL for graphics and GPU programming.   

 

From version 2.0 OpenGL ES supports programmable shaders, so parts of an application 

can be written in GLSL and executed directly in the GPU pipeline.  The graphics pipeline 

typically accepts some representation of a three-dimensional scene as an input and results 

in a 2D raster image as output.  Previously, graphical rendering was used in a fixed 

function pipeline, which performs lighting and texture mapping in a hard-coded manner.  

This meant that applications had to rely on fixed functions to produce a scene, with the 

only control being via configurations.  Shaders provide a programmable alternative to this 

approach by allowing developers to create custom vertex and pixel (also called fragment) 

calculations that can be implemented more concisely with far better performance than the 

fixed functional pipeline [76].  The graphics pipeline is well suited to the rendering process 

because it allows the GPU to function as a stream processor since all vertices and 

fragments can be thought of as independent. This allows all stages of the pipeline to be 

used simultaneously for different vertices or fragments as they work their way through the 

pipe.  In addition to pipelining vertices and fragments, their independence allows graphics 

processors to use parallel processing units to process multiple vertices or fragments in a 

single stage of the pipeline at the same time.  

 

In the OpenGL ES 2.0 Pipeline Structure, the CPU sends the compiled shader 

language program and geometry data to the graphics processing unit.  The GLSL shader 

code is usually compiled at runtime.  The vertex shader is then used to provide vertex 

positions and colours for the following stages of the pipeline and can be used for 

computing lighting effects and generating or transforming texture coordinates.  The vertex 

shader is used for translation and rotation of input geometry as well as perspective 

projection.  Clipping, Perspective Division and Viewport transformations are done to 
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coordinates in the primitive assembly stage.  The Rasterizer is then used to convert 

primitives, which can be points, lines, or triangles into a set of two-dimensional fragments, 

which are processed by the fragment shader.  The Fragment Shader is called once for each 

primitive fragment (pixel).  The main task of the Fragment Shader is to provide colour 

values for each output fragment.  Typically, the Fragment Shader does a texture lookup 

and implements additional lighting based on the lighting parameters the Vertex Shader 

computed previously.  Further fragment operations may then be performed including depth 

and stencil buffer operations and dithering.  The graphic pipeline uses these steps in order 

to transform three dimensional and/or two dimensional data into a useful two dimensional 

pixel matrix or Frame Buffer [77] [78].   

 

 
 

Figure 2-6: Comparison of graphics pipelines, fixed functional pipeline (left) with OpenGL 
ES 2.0 Pipeline which instead uses programmable shaders to render customized vertex and 

pixel calculations [79]. 

 

As with all shaders branching is discouraged as it carries a performance penalty, 

particularly when it involves dynamic flow control on a condition computed within each 

shader, although the shader compiler may be able to compile out static flow control and 

unroll loops computed on compile-time constant conditions or uniform variables. The 

reason for this is that GPU don’t have the branch-prediction circuitry that is common in 

CPU, and many GPU execute shader instances in parallel in lock-step, so one instance 

caught inside a condition with a substantial amount of computation can delay all the other 
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instances from progressing. The same holds for dependent texture reads, where the shader 

itself computes texture coordinates rather than directly using unmodified texture 

coordinates passed into the shader.  The graphics hardware cannot then prefetch texel data 

before the shader executes to reduce memory access latency.  Unfortunately, many 

computer vision algorithms require dependent texture reads when implemented on a GPU. 

Another issue that must be considered is the latency in creating and transferring textures. 

Ideally, all texture data for a GPU should be loaded during initialization and preferably not 

changed while the shaders execute, to reduce the dataflow between memory and the GPU. 

However, for real-time image analysis to be feasible on a GPU image data captured from 

the camera should preferably be loaded into a preallocated texture at least 30 frames per 

second (fps), quite contrary to GPU recommended practices.  This can be partially 

compensated for by reducing the image resolution or changing its format from RGB vector 

float values to integer or compressed.  There are performance benchmarks for the GPU 

commonly found in mobile devices [80]. However, the benchmarks typically only compare 

the performance for graphics rendering throughput, not for other tasks such as image 

processing, so do not significantly test the implications of effects such as frequent texture 

reloading and dependent texture reads 

 

OpenGL ES 2.0 allows byte, unsigned byte, short, unsigned short, float, and fixed data 

types for vertex shader attributes, but vertex shaders always expect attributes to be float so 

all other types are converted, resulting in a compromise between bandwidth/storage and 

conversion costs. It requires that a GPU must allow at least two texture units to be 

available to fragment shaders, which is not an issue for many image processing algorithms, 

although most GPU support eight texture units.  Textures might not be available to vertex 

shaders and there are often tight limits on the number of vertex attributes and varying 

variables that can be used (16 and 8 respectively in the case of the PowerVR SGX series of 

GPU). 
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Unlike the full version, OpenGL ES uses precision hints for all shader values: 

• lowp for 10 bit values between −2 and 1.999 with a precision of 1/256 (which for 

graphics rendering is mainly used for colours and reading from low precision 

textures such as normals from a normal map) 

• mediump for 16 bit values between -65520 and 65520 consisting of a sign bit, 5 

exponent bits, and 10 mantissa bits (which can be useful for reducing storage 

requirements), 

• highp for 32 bit (mostly adhering to the IEEE754 standard).  

 

Furthermore, the GPU on a mobile device is most likely to be a scalar rather than vector 

processor.  This means that there is typically no advantage vectorizing highp operations, as 

each highp component will be computed sequentially, although lowp and mediump values 

can be processed in parallel.  It is also common for GPU on mobiles to use tile-based 

deferred rendering, where the framebuffer is divided into tiles and commands get buffered 

and processed together as a single operation for each tile. This helps the GPU to more 

effectively cache framebuffer values and allows it to discard some fragments before they 

get processed by a fragment shader (for this to work correctly fragment shaders should 

themselves avoid discarding fragments). 

 

Some computer vision algorithms require several stages and cannot be efficiently 

calculated via a single pass through the graphics rendering pipeline.  Instead a multi-pass 

rendering technique can be used to pass data through the pipeline multiple times, storing 

the results of each render pass in buffers and using them to affect the rendering during later 

passes.  As information is fed through the pipeline during each pass, pixels and vertex data 

may be processed by different vertex and fragment shaders.  Between OpenGL ES 2.0 

render passes, output information from the shader can only be held in a single attached 

texture, whereas multiple input textures can be bound.  Textures can be accessed internally 

on the GPU through uniform sampler2D variables.  Internally these textures contain four 

floating points RGBA channel values to store data.  However information stored in the 

textures only has the value range between 0-1 so values stored in them for the next render 

pass need to be encoded to be within that range.   
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2.4.2 GPU based feature descriptors 
Some of the computer vision algorithms discussed in this literature review have been 

implemented using GPU and shader technology including SIFT [81, 82], which has shown 

to be up to 100 times faster than a pure CPU implementation of SIFT while maintaining 

robust performance, and Canny edge detection [83] which has shown up to be 50 times 

faster than its CPU based implementation.  SURF has also been implemented and 

optimized for the GPU in [84].  GPU-based KLT feature tracking combined with a GPU 

SIFT extractor has been implemented in [85] showing a substantial reduction in processing 

time on video frames.  GPGPU techniques are also used in [86], the work implemented a 

SLAM (Simultaneous localization and mapping) [87] framework that could be 

implemented on massively parallel platforms and address the monocular SLAM problem. 

It takes camera tracking and 3D reconstruction from image sequences to achieve a high 

level of accuracy at towards real time processing speed.  More GPU-based features are 

presented in [88] which uses a modified Fast Radial Blob Detector algorithm to detect and 

track multiple visual targets at sea.  It demonstrated good feature repeatability, however 

was slower than FAST by a factor of four.  It did have other advantages over FAST such as 

computing a value for feature strength, calculating a scale value and making the algorithm 

more resilient to image noise by using a Gaussian blur.    

 

However especially at the start of this thesis there was little computer vision work done 

using mobile GPUs which have more restricted capabilities.  The mobiles used for 

implementing and testing in this thesis only supported GLSL version 1.0 so the internal 

functions that usually can be used are limited compared to later GLSL versions.  Although 

SIFT is a computationally expensive algorithm, there has been work to streamline the 

feature detection and descriptor matching process so the algorithms can be ported to a 

mobile device with the introduction of PhonySIFT which has shown some relatively 

successful and interesting results [89].   SURF has been shown to be computationally faster 

than SIFT, however it is still too slow to support emerging applications such as mobile 

augmented reality on mobile devices [90].  However [90] has shown success in adapting 

SURF to mobile devices boasting a 6-8x speedup with their dual techniques, tiled SURF 

and gradient moment based orientation assignment.  SURF also has been modified for 

mobile GPU in [91] which they titled uSURF-ES and claimed to be multiple times faster 

than the CPU variant on the same device.  It proved the feasibility of modern mobile 
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graphics accelerators for GPGPU tasks, especially for the detection phase in natural feature 

tracking used in augmented reality applications.   However even on mid-range devices 

such as the Samsung Galaxy S2 the average runtime is 117 milliseconds for feature 

extraction using uSURF-ES which equates to under 10 frames per second and was done on 

a data set of still images of size 512x384, well under the resolution of the 800x480 display.  

These times also did not include initial image loading and keypoint detection with 

OpenCV as well as downloading the resulting descriptors from video memory.   

 

The mobile GPU based feature algorithms show varying improvement over CPU based 

counterparts, however they still may not be fully suited for high frame rate applications 

such as mobile augmented reality.  So this thesis instead looks at alternative solutions for 

feature detection, tracking and recognition as discussed in Chapters 5-8.  

 

 

: Cluster Analysis 2.5
Cluster Analysis or clustering divides data into groups (clusters) that are meaningful where 

objects in the same cluster are more similar to each other than objects in other clusters [92] 

[93].  Clustering is widely used in many fields including psychology, statistical data 

analysis, machine learning, pattern recognition and image analysis.  Cluster analysis itself 

is not one specific algorithm, but the general task to be solved.  It can be achieved by 

various algorithms that differ significantly in their notion of what constitutes a cluster and 

how to efficiently find them.  Popular notions of clusters include groups with small 

distances among the cluster members, dense areas of the data space, intervals or particular 

statistical distributions. Cluster analysis is not an automatic task, but an iterative process of 

knowledge discovery or interactive multi-objective optimization that involves trial and 

error.  It will often be necessary to modify data preprocessing and model parameters until 

the result achieves the desired properties.  

 

The notion of a cluster cannot be precisely defined, as a result there are over 100 published 

clustering algorithms [94].  There is no objectively “correct” clustering algorithm and is 
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really just determined from the eye of the beholder.  The most appropriate clustering 

algorithm for a particular problem often needs to be chosen experimentally. Different 

researchers employ different cluster models, for each of these models different cluster 

algorithms can be given. Typical cluster models include connectivity models, centroid 

models, density models and distribution models although there are many others.  For this 

work research was undertaken using centroid and density models which tested the most 

popular algorithm for each which are k-means clustering and DBSCAN respectively.  

Clustering of feature points can be used for motion segmentation, which is a means of 

separating one or more moving objects in an image from a static background.  There are 

various motion segmentation algorithms as discussed  in [95] and [96]  which include 

Generalized Principal Analysis (GPCA), Local Space Affinity (LSA), Multi-Stage 

Learning (MSL) and Random Sample Consensus (RANSAC). 

 

2.5.1: DBSCAN  
Density Based Spatial Clustering of Applications with Noise (DBSCAN) [97] as its name 

suggests is a density based model for clustering points, which defines clusters as connected 

dense regions in the data space and objects in sparse areas are considered to be noise [98].  

It is one of the most common and most cited clustering algorithms in scientific literature.   

DBSCAN’s definition of a cluster is based on the notion of density reachability.  The 

algorithm works by taking a data set of points and two predetermined values epsilon (ε) 

distance and the minimum number of points (m) required to make a cluster.  For each 

“unvisited point” the algorithms retrieves all other points within the ε-neighbourhood, if 

the number of points within that neighbourhood is less than m then that point is marked as 

noise.  If the number of points is greater or equal to m then a new cluster is formed with the 

point and its neighbours if those points are not already part of a cluster.  For each 

neighbour the algorithm checks further neighbours within the ε-neighbourhood and above 

the m threshold.  It also adds them to the cluster if they are not yet visited by the algorithm 

nor part of an existing cluster.  
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Figure 2-7: An example of two clusters being split with the DBSCAN algorithm. It also 
shows outlier points as noise which was either bigger than ε-distance or less than m 

neighbours.  

 

The advantage of using DBSCAN is that it does not require one to specify the number of 

clusters in the data that it should create as opposed to k-means.  It also has a notion of 

noise and can find arbitrarily shaped clusters as well as being designed for use with 

databases that can accelerate region queries.  It has a disadvantage though for not being 

able to cluster data sets well with large differences in densities, since m and ε cannot be 

chosen to suit all clusters.  The DBSCAN algorithm has also been parallelized so that it 

could be made suitable for GPU and heterogeneous architectures [99]. 

 

2.5.2: K-means Clustering 
K-means clustering [100] is a centroid model based clustering algorithm, meaning clusters 

are represented by a central vector which may not necessarily be part of the data set.  K-

means aims to separate points into k number of clusters in which each observation belongs 

to the cluster with the nearest central mean [101].  The algorithm works by initially taking 

k number of random points which each become part of their own cluster, it then adds each 

other point to the appropriate cluster depending on which of the k-number of random 

points chosen has the minimal distance between the two points.  Once partitioned a mean 

centroid value (m) is then calculated using the points in each cluster.  Every point is then 

put into a cluster depending on which of the m values it is closest to.  This process is 
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repeated until a either a maximum amount of iterations has been executed or until complete 

convergence has been achieved (every point no longer switches cluster).     

 

The main disadvantage with k-means is that prior knowledge is needed for how many 

clusters the data is to be split which is equal to k therefore also forcing the split.  Another 

disadvantage is that the problem is computationally difficult (NP-hard) and can be very 

slow to achieve convergence, potentially taking exponential time to complete, however the 

average case running time of k-means is polynomial [102, 103]. 

 

: Location Based Services 2.6
A location-based service (LBS) is an information or entertainment service, accessible with 

mobile devices through the mobile network or satellite receiver and utilizing the ability to 

make use of the geographical position of the mobile device [104].  Location providers, 

such as GPS, can provide mobile devices with latitude, longitude and altitude data to assist 

with navigation, surveying or having its position tracked.  With the advent of smartphones 

and other sophisticated technologies for users to interact with Web-based services, 

Location-Based Services have seen a surge in popularity [105].  There are several 

alternative technologies, or location providers that might be available for obtaining 

location information: 

 

Cell ID or GSM localization, finds the location of a mobile device in relation to its 

connected cell sites.  It relies on various means of multilateration based on the signal 

strength to nearby antenna masts serving the mobile device.  The geographical position of 

the device is found through various techniques like Time Difference of Arrival (TDOA) or 

Enhanced Observed Time Difference (E-OTD) of signals emitted from the device to three 

or more receiving cell antennas. 

 

Satellites, where the mobile device is equipped with a special receiver that uses time 

signals from a system of satellites, for example the Global Positioning System (GPS), 

which is a system of 24 satellites maintained by the US Department of Defence.  Devices 



   48 | P a g e  
 

with a GPS receiver can freely obtain fairly accurate location information, depending on 

how many satellites are visible and ionosphere conditions.  The GPS receiver calculates its 

position using time delays of signals received from at least four visible satellites.  GPS can 

suffer from multipath effects where satellite signals reflect off buildings and canyon walls, 

and getting an initial fix on satellites can be time consuming. 

 

Positioning beacons, where local-range technologies such as Bluetooth, WLAN, infrared 

or RFID and Near Field Communication technologies can be used to match devices to 

nearby services.  This application allows a person to access information based on their 

surroundings and could be suitable for use indoors inside closed premises where GPS or 

GSM may not work well. 

 

Indoor positioning, can be used to obtain device location inside a building.  Signals sent 

by GPS satellites are relatively weak and these signals cannot penetrate the structure of 

most buildings.  This makes positioning within a building very difficult, if not impossible.  

With the help of A-GPS, a position can be estimated to be within general proximity of the 

building, but would never be able to take the next step to achieve accurate indoor 

positioning using these methods.  Qubulus [106] is an indoor positioning system that was 

tested out near the start of this thesis, the developers claim up to 1 meter in accuracy, 

however in practice it can be anywhere between 5-15 meters especially around metallic 

structures.  It works by taking fingerprints of the building at fixed positions which records 

unique radio signatures.  Once the building is mapped a device can then pick up on these 

signatures and give approximations to its position in the building by comparing the radio 

signature to previously mapped signatures.  

 

Obtaining location based information was tested on various mobile devices midway 

through the thesis to determine how accurate the information is.  This was done as location 

information can be used as anchor points for mobile augmented reality.  
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: Existing Computer Vision and MAR Applications: 2.7
There are various commercial and open source applications for both augmented reality and 

mobile augmented reality which are available to most of the major device platforms and 

range from mobile augmented reality games, virtual tape measuring, star and constellation 

mapping, car locators, free public Wi-Fi finders, and applications which act as a virtual 

travel guides which brings up Wikipedia information on tourist sites through the mobile 

camera.  There are also more advanced applications under development that use facial 

recognition technology to identify a person’s face and pull up online profile and contact 

information [107] [108].  Even corporations are using mobile augmented reality to help 

their customers, such as IKEA which offer an augmented reality application as a portable 

planner for interiors, but with the customer’s own home as the background, it allows 

customers to print a fiducial marker that corresponds to a furniture item that they are 

interested in buying, place the marker in the room where they think it should go, then view 

the room using their mobile phone or webcam to see how the item fits in with its new 

surroundings [109].  Revenue generated from mobile phone augmented reality applications 

has been forecast to reach over $5 billion by 2016 [110].   

 

One of the most popular mobile augmented reality applications is Layar which is a 

commercial application for smart phones founded in 2009 and claims to be the world’s first 

mobile augmented reality browser.  Layar is one of the leading providers of the underlying 

software that make augmented reality possible [111].  Layar makes use of the mobile 

device’s embedded camera, accelerometer, GPS and compass together to identify the 

user’s location and field of view.  It works by using the mobile device’s known location to 

obtain information about geo-located points of interest via REST web services.  It then 

overlays virtual information about those points of interest and their distance from the user 

over the camera view, adding an additional layer of digital information to the field of view.  

Layers are maintained and developed by third parties using a free API [112].  Because GPS 

can be inaccurate in urban environments, this thesis could complement location based 

mobile augmented reality by providing basic feature detection and mapping for points of 

interest (eg building structures and landmarks) in the users range to give more accurate 

tracking.   

 



   50 | P a g e  
 

Junaio which is developed by Munich-based company metaio GmbH and first released in 

November 2009 [113].  It provides an API for developers and content providers to generate 

mobile augmented reality experiences for end-users.  Like Layar it can use location data as 

a source for performing augmented reality but also uses closed-source computer vision 

algorithms to render augmented models onto predetermined images.  It allows users to 

input a source image in which it uses as a marker and calculates feature points and 

direction information with it.  Then the user is able to assign and attach a 3D model to the 

image, scaling and orientating it as necessary. 

 

Google Goggles is a downloadable image recognition application created by Google Inc 

[114].  It is used for searches based on pictures taken by handheld devices allowing users 

to learn about such items without needing the more usual text-based search. With Goggles, 

the user snaps a picture which is then transmitted across the cellular network to Google's 

servers.  Google's computers tell the phone what they have recognized in the photo, 

corresponding information about the recognized object is then returned back to the device 

in a matter of seconds [115].  So far Google Goggles can be used to identify various 

landmarks as well as identify product barcodes or labels that allow users to search for 

similar products and prices, and save codes for future reference.  The system will also 

recognize printed text, using optical character recognition (OCR) to produce a text 

snippet, and in some cases even translate the snippet into another language.  Google is 

currently working to make the system able to recognize different plants and leaves, which 

can aid curious persons to avoid toxic plants as well as helping botanists and 

environmentalists searching for rare species.  Google also have released Google Glass, 

which is a wearable computer with an optical head-mounted display for augmented reality 

[116].  Google Glass displays information in a smartphone-like hands-free format that can 

communicate with the Internet via natural language voice commands [117].   

 

This thesis differs from these technologies as it aims to purely use smart phones and also 

keeping the computational processing of the majority of computer vision tasks on board 

the device rather than offloading it to a server like Google Goggles.  Although these 

algorithms have been ported to smart phones, they would also be of benefit to other 

camera-equipped devices with an on board GPU.  
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 Significance for Mobile Augmented Reality 2.8
The feature algorithms mentioned and referenced in this literature can be considered good 

algorithms for computer vision and in particular augmented reality applications.  However, 

there is an issue for mobile devices as frame rates drop down critically below 24 frames 

per second as given in the 24p standard, which is the emerging standard for digital 

production for smooth animation [118].  To achieve better frame rates the literature drop 

the resolution well below current mobile resolutions, and many of the GPU 

implementations have been done on more powerful computers whereas mobile 

implementations are much rarer.    Furthermore, a mobile device GPU is much more 

limited in capabilities compared to their more powerful desktop counterparts.  GPU 

programming is much more of a challenge on a mobile device as it is much harder to 

debug errors in the shader programs and a higher level GPU library such as CUDA was not 

available on most mobile devices at time of writing.   

 

To achieve suitable mobile augmented reality without the need for fiducial markers and 

instead use natural features for attaching augmented models requires new approaches for 

current mobile devices.  The computationally intensive feature descriptors SIFT and SURF 

are take too long to calculate and process, and real world scenes are affected by conditions 

such as lighting which change the values of the descriptors after several frames.  Optical 

flow algorithms such as Lucas-Kanade are good, but still fall a little short of great 

performance on mobile devices in terms of frame rate and features being tracked can suffer 

from drift.  FAST feature points can be calculated very quickly, and as the evidence in 

Chapter 5 shows, can be implemented on mobile devices using the GPU to achieve a 

suitable frame rate.  However FAST doesn’t give much information about the point itself, 

therefore making it unsuitable for object recognition or tracking.  FAST typically only uses 

image intensity values and does not give other information such as a feature orientation 

that descriptors like SIFT and SURF provide. 

 

This work aims to attack these problems by creating GPU-based feature algorithms whose 

values can be used for mobile augmented reality applications.  It investigates how the 

features can be used for detection, tracking and recognition of objects through the mobile 

device camera.  The thesis looks at how a simple feature descriptor can be easily calculated 
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via a GPU pipeline and used for feature detection and tracking.  It looks to incorporate 

colour values into the descriptor instead of pure intensity values and aims to update feature 

values on every processed camera frame so that drift of features is minimized. 
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Chapter 3  

GPU Based Canny Edge Detection 
 

This chapter is based on my first paper presented in December 2011 [16], which is joint 

work with my supervisor, Dr Andrew Ensor.  It was presented and published in the Image 

Vision Computing New Zealand 2011 conference proceedings.  This chapter investigates 

techniques for achieving real-time Canny edge detection through the processing of frames 

from a mobile device camera by utilizing the embedded graphical processing unit.  Frames 

are processed through the OpenGL ES 2.0 pipeline using programmable shaders and multi-

pass rendering.  Although the algorithm is based on Canny, it is heavily optimized so that it 

runs on the GPU, so several original changes and improvements have been made to the 

algorithm including the removal of conditionals and having no arbitrary accept/reject 

thresholds on edges.  OpenGL ES 2.0 was chosen as it is the main platform for GPU 

processing on mobiles.  Issues and limitations of image processing on mobile devices are 

also discussed as well as ways to get around these limitations.   

 

This work was undertaken to evaluate the suitability of GPUs for image processing 

especially on mobile devices and to compare it to using CPU image processing.  This 

application also served as a template for other mobile GPU-based image processing 

algorithms as it gives a working example of multi pass rendering and programmable 

shaders which at the time of the creation of this paper, there was little to no content made 

freely available.  This code was made open source once the proceedings of the conference 

were published and has been acquired by several universities worldwide including; 

University of Applied Sciences in Berlin, Yale University, Technical University of Cluj-

Napoca,  University College London and several US based software companies including 

Sunset Lake Software and Boopsie.  It was also used by a fellow post graduate student at 

AUT as a template for GPU-based face detection.  The GPU shader code for this algorithm 

can be found in Appendix A: Canny Edge Detection Shaders. 
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: Image Analysis on Mobile Devices 3.1
Mobile phone technology is commonplace and rapidly evolving, giving rise to new and 

exciting application domains through the convergence of communication, camera and 

computing technologies.  Many of these applications, such as those for mobile augmented 

reality, use the device camera for image recognition or visual tag identification, for 

example [2-4, 10]. Mobile devices have quite distinct capabilities and limitations from 

desktop computers, so many of the usual approaches for application development must be 

reworked to be made suitable for deployment to actual mobile devices. For instance, the 

procedure for capturing images varies from device to device, and the quality, contrast, 

resolution and rates of image capture can be substantially different.  The central processing 

unit capabilities of many devices is a significant inhibiting factor for some applications, as 

can be the network communication bandwidth, latency, and network transmission cost, as 

well as demands on the finite battery charge.  However, mobile computational capabilities 

and memory specifications are rapidly evolving making more processor intensive 

applications possible that were considered infeasible five years ago.  It is now common for 

newer smart phones to include a high resolution camera and display as well as powerful 

CPU and GPU technology.  However they still fall short and contain many limitations 

compared to traditional desktop computers. 

 

Images can be obtained by an application from a mobile camera by taking a photograph 

snapshot. However, this can be a notoriously slow process, requiring between 520 ms and 

8 s for some N-series devices [119].  Instead, it is far preferable to obtain preview frames 

from the video. On Java ME supported mobiles the commonly available Multimedia API 

provides access to video data. However, device implementations of this API usually 

require that the video capture be stopped to obtain and then separately decode the video 

segment (typically in 3GPP format) in order to obtain any frames. Some platforms, such as 

Android, allow both RGB and greyscale preview frames to be captured (with typical rates 

for a 640×480 image of 26 frames per second on a Google Nexus One and 30 frames per 

second on an HTC Desire HD), whereas others, such as iOS, only return RGB frames by 

default (with typical rates of 29 frames per second on an Apple iPhone 4) which can then 

be converted by software to greyscale if necessary for further analysis. 
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Once captured there are two (non-exclusive) choices for processing an image:  

• Off-device utilizing the network capabilities of the mobile, either a localized 

network technology such as Bluetooth or Wi-Fi, or a cellular network to off-load 

the image processing to a more powerful machine. 

• On-device utilizing the computing capabilities of the mobile to itself perform the 

processing via the CPU or GPU. 

 

For instance, the Shoot & Copy application [120] utilizes Bluetooth to pass a captured 

image to a Bluetooth server for identification and contextual information about the image.  

The Touch Projector application [121] passes video and touch events via Wi-Fi to a 

computer connected to a projector. However, off-device processing has some significant 

disadvantages. Although many devices support Bluetooth 2.0 with enhanced data rates 

providing a theoretical data transfer rate of 2.1 Mbps, it was found that in practice on most 

devices the rate was closer to 430 kbps upload and 950 kbps download, which can result in 

significant communication latency when transmitting image frames. Wi-Fi improves the 

bandwidth and reduces latency but it has somewhat less support on older mobile devices 

and can be quite demanding on the battery. Whereas both Bluetooth and Wi-Fi are only 

suitable for localized processing solutions, utilizing a cellular network with a persistent but 

mostly idle TCP connection to a processing server can provide a more suitable off-device 

solution. However, this too can result in significant network-specific bandwidth limitations 

(a 3G network has typical speeds of 150 kbps upload and 2 Mbps download), latencies, 

and usage charges. The eventual availability of LTE promises to reduce this issue with 50 

Mbps upload, 100 Mbps download, and round trip latencies reduced to around 10 ms. 

 

With the evolving specifications of mobile devices there is a growing list of literature and 

applications that choose to perform image processing on-device. On-device processing was 

used by [7] for edge-based tracking of the camera pose by a tablet PC in an outdoor 

environment. PhoneGuide [122] performed object recognition computations on a mobile 

phone. SURF was implemented on a Nokia N95 to match camera images against a 

database of location-tagged images [8] providing image matches in 2.8 seconds. Variants 

of SIFT and Ferns algorithms were used in [13], and [123] tested them on an Asus P552W 

with a 624 MHz Marvell PXA 930 CPU with the algorithms processing a 240 × 320 frame 
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in 40 ms. Studierstube ES [124] is a marker tracking API that is a successor to 

ARToolKitPlus and available for Windows CE, Symbian, and iOS, but it is closed source. 

Junaio [113] is a free augmented reality browser for iOS and Android platforms that 

utilizes image tracking to display objects from a location based channel (showing points of 

interest in surroundings) or a Junaio GLUE channel (attaching virtual 3D models to up to 

seven visible markers).  Most other mobile applications, such as Google Goggles [114] for 

Android and iOS have entirely web based pattern matching, so no image analysis is 

performed on the device. From version 2.2 the popular OpenCV API [15] has been 

available for Android and Maemo/Meego platforms, and it also can be built for iOS.  

Nvidia has contributed (non-mobile) GPU implementations of some computer vision 

algorithms, and has contributed optimizations for the Android CPU implementation.  

 

It is now commonplace for desktop and high performance computing applications to use 

GPU for processing beyond only graphics rendering, particularly for tasks that are highly 

parallel and have high arithmetic intensity, for which GPU are well suited.  As most 

computer vision algorithms take an array of pixel data as input and output a variable-length 

representation of the image (the reverse of graphics rendering for which GPU were 

originally designed) their implementation on GPU has somewhat lagged behind some other 

fields.  Some examples of computer vision algorithms implemented on GPU can be found 

in [125], [126], and [81]. However, mobile devices containing programmable GPU only 

became widely available in 2009 with the use of the PowerVR SGX535 processor, so to 

date there has been very little literature available on mobile-specific GPU implemented 

algorithms.  Recent articles and potential power savings by utilizing GPU rather than CPU 

on mobiles are discussed in [127]. In particular, [128] implements a Harris corner detection 

on a OMAP ZOOM Mobile Development Kit equipped with a PowerVR SGX 530 GPU 

using four render passes (greyscale conversion, gradient calculations, Gaussian filtering 

and corner strength calculation, and local maxima), reporting 6.5fps for a 640 × 480 video 

image. 
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: Canny Shader Implementation 3.2
Canny edge detection [48] is one of the most commonly used image processing algorithms, 

and it illustrates many of the issues associated with implementing image processing 

algorithms on GPU. It has a texture transfer for each frame captured, a large amount of 

conditionally executed code, and dependent texture reads. As such it might not be 

considered an ideal candidate for implementation on a GPU.  Canny edge detection was 

implemented in [83] using CUDA on a Tesla C1060 GPU with 240 1.3 GHz cores. The 

GPU implementation achieved a speedup factor of 50 times over a conventional 

implementation on a 2 GHz Intel Xeon E5520 CPU, although both these GPU and CPU 

were far more powerful than the processors currently found in mobile devices.   

 

In this work a purely GPU-based implementation of the Canny edge detection algorithm 

was created and its performance tested across a range of popular mobile devices that 

support OpenGL ES 2.0 using the camera on each device.  The purpose was to determine 

whether it is yet advantageous to utilize the GPU in these devices for image analysis 

instead of the usual approach of having the processing performed entirely by the CPU. To 

achieve this the algorithm was implemented in GLSL via a total of five render passes using 

four distinct fragment shaders all having mediump precision.  In effect, the entire Canny 

edge detection algorithm is implemented without any conditional statements whatsoever, 

ideal for a GPU shader-based implementation on OpenGL ES. The entire pipeline is 

discussed in the next subsections and illustrated below in Figure 3-1. 
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Figure 3-1:GPU-based Canny edge detection pipeline.  Shaders are shown in yellow and 
the important input/output textures are in white.  

 

3.2.1: CPU side setup 
For each of the mobile platforms tested, the camera callbacks are used to obtain frames 

from video using the camera preview at a fast rate rather than taking actual camera capture 

snaphots which take a long time to process.  Depending on the device, the video frame 

could be one of several different image formats but typically held in a byte array which is 

wrapped up in a direct native buffer.  For every step of the Canny shader pipeline a four 

component RGBA output texture is setup and attached to a FrameBuffer object which 

holds the output for each shader pass in its four channels.  The output texture from one step 

serves as the input for the next shader through the entire pipeline.  For each step the 

associated frame buffer is bound, so that shader output fragments are rendered to the bound 

frame buffer rather than to the display.  Between render passes values in the output texture 

need to be encoded between 0 and 1 inside the shader as is required by OpenGL ES 2.0.  

These are later decoded in the next shader to extract the correct information and for use in 

necessary calculations.  The last step in the pipeline renders to the display to demonstrate 

the visual output of Canny, so no frame buffer is bound. 
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3.2.2: Gaussian Smoothing Steps 
Once a camera preview frame has been taken from the camera it is fed into the shader 

pipeline as a texture.  Some of the devices only gave RGB image format frames, so a 

preliminary shader is used to convert into a single channelled greyscale image if needed.  

To remove any noise in the image, Gaussian smoothing is first applied to the greyscale 

texture using either a 3 × 3 or a 5 × 5 convolution kernel.  Since a Gaussian kernel is 

separable it can be applied as two one-dimensional convolutions so the Gaussian 

smoothing is performed in two passes, trading the overhead of a second render pass against 

the lower number of texture reads. Even for a 3 × 3 kernel using two render passes rather 

than one was found to benefit performance on actual devices. 

 

3.2.3: Sobel XY Steps 
The gradient vector is calculated and its direction is classified. First the nine smoothed 

pixel intensities are obtained in the neighbourhood of a pixel, and used by the Sobel X and 

Y operators to obtain the gradient vector. Then IF statements are avoided by multiplying 

the gradient vector by a 2×2 1
16

-turn rotation matrix and then its angle relative to horizontal 

is doubled so that it falls into one of four quadrants.  A combination of step and sign 

functions is then used to classify the resulting vector as one of the eight primary directions 

(Δx,Δy) with Δx and Δy each being either −1, 0, or 1.  These eight directions correspond to 

the four directions in the usual Canny edge detection algorithm along with their opposite 

directions.  The shader then outputs the length of the gradient vector and the vector 

(Δx,Δy).  This approach to classifying the direction was found to take as little as half the 

time of several alternative approaches developed in the thesis that utilized conditional 

statements. 

 

3.2.4: Non-Maximal Suppression & Double Threshold Steps 
Non-maximal suppression and the double threshold are applied together. Non-maximal 

suppression is achieved by obtaining the length of the gradient vector from the previous 

pass for the pixel with the length of the gradient vector for the two neighbouring pixels in 

directions (Δx,Δy) and (−Δx,−Δy). The length at the pixel is simply multiplied by a step 

function that returns either 0.0 or 1.0 depending whether its length is greater than the 
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maximum of the two neighbouring lengths.  For the double threshold a GLSL smoothstep 

operation is used with the two thresholds to output an edge strength measurement for the 

pixel between 0.0 (reject) and 1.0 (accept as a strong pixel). 

 

3.2.5: Weak and Strong Pixel Tests 
The final shader handles the weak pixels differently from Canny’s original algorithm. 

Rather than simply accepting a pixel as a weak pixel if one of its neighbouring eight pixels 

is a strong pixel, more information is available since the previous render pass has provided 

an edge strength measurement for each pixel. This shader obtains the nine edge strength 

measurements in the neighbourhood of a pixel, and takes a linear combination of the edge 

strength measurement at the pixel with a step function that accepts a weak pixel if the sum 

of the nine edge strength measurements is at least 2.0. This avoids the usual IF statement 

with eight OR conditions, greatly increasing performance of this render pass and giving a 

small improvement in the weak pixel criterion.  Once this shader has completed, the final 

texture is rendered to the display showing edges in black as demonstrated in the screen 

shot in Figure 3-2.  
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Figure 3-2: Screenshots of Auckland skyline which shows original RGB output image (top) 
and GPU-based Canny edge detection (below) 
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Chapter 4  

Performance Comparison of Canny Edge Detection 

on Mobile Platforms 
 

This chapter is based on results from [16] and the previous chapter.  It discusses 

performance of graphical processing units on a range of devices measured through a 

programmable shader implementation of Canny edge detection.  This GPU-based 

implementation of Canny edge detection is compared to the OpenCV CPU-based version 

of Canny.  The devices used in this paper were current at the time of this research. 

 

 

 Mobile Performance Results  4.1
The GPU version of the Canny edge detection described in section 3.2 was implemented 

on the following devices, chosen as they were all released within the same year and 

commonplace at the time of this writing. 

• Google Nexus One, released January 2010, operating system Android 2.3, CPU 1 

GHz Qualcomm QSD8250 Snapdragon, GPU Adreno 200, memory 512 MB RAM, 

camera 5 megapixel, video 720 × 480 at minimum 20 fps. 

• Apple iPhone 4, released June 2010, operating system iOS 4.3.5, CPU Apple A4 

ARM Cortex A8, GPU PowerVR SGX 535, memory 512 MB RAM, camera 5 

megapixel, video 720p (1280 × 720) at 30 fps. 

• Samsung Galaxy S, released June 2010, operating system Android 2.3, CPU 1 GHz 

Samsung Hummingbird S5PC110 ARM Cortex A8, GPU PowerVR SGX 540 with  

128  MB  GPU  cache,  memory  512  MB  RAM, camera 5 megapixel, video 720p 

at 30 fps. 

• Nokia N8, released September 2010, operating system Symbianˆ3, CPU 680 MHz 

Samsung K5W4G2GACA- AL54 ARM 11, GPU Broadcom BCM2727, memory 

256 MB RAM, camera 12 megapixel, video 720p at 25 fps. 
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• HTC Desire HD, released October 2010, operating system Android 2.3, CPU 1 

GHz  Qualcomm MSM8255 Snapdragon, GPU Adreno 205, memory 768 MB 

RAM, camera 8 megapixel, video 720p at 30 fps. 

• Google Nexus S, released December 2010, operating system Android 2.3, CPU 1 

GHz Samsung Hummingbird S5PC110 ARM Cortex A8, GPU PowerVR SGX 

540, memory 512 MB RAM, camera  5  megapixel,  video 800 × 480 at 30 fps (not 

720p). 

 

The Android devices directly supported obtaining the video preview in YUV format, and 

the Y component could be used as input as a greyscale image without the requirement for 

any preliminary processing. However, the iOS and Symbianˆ3 devices only supported 

obtaining the preview in RGB, so they required an additional preliminary render pass to 

convert the RGB image to greyscale. An additional point worth mentioning for the iPhone 

is that any pending OpenGL ES commands must be flushed before the application is put 

into the background, otherwise the application gets terminated by the operating system. 

 

Table 4-1 shows average times and standard deviation in milliseconds for each of the 

render passes for some of the devices.  The algorithm was left to run for five minutes with 

average millisecond times captured and reported every five seconds. Depending on device 

frame rates, sample sizes were anywhere between 2000 – 5000 readings.  Testing was also 

done on a fully charged battery and using mobile devices under the default factory settings 

to make sure no extra background applications were taking up CPU or GPU resources.   To 

obtain these times the OpenGL ES glFinish command was used to flush any queued 

rendering commands and wait until they have finished.  Note this removes the ability of the 

GPU to commence further commands, so although useful for comparing the times required 

for each render pass, their sum only gives an upper bound on the total algorithm time.  The 

two Gaussian smoothing render passes were timed using a 3 × 3 convolution kernel. Using 

instead a Gaussian 5 × 5 kernel was found to add between an extra 3 ms (for iPhone 4 and 

Desire HD) and an extra 10ms (Nexus One) to each of the two Gaussian render passes, but 

did not have any visibly noticeable effect on the edge detection results.  The calculation of 

the gradient vector is the most burdensome render pass, explained by the nine texture reads 
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it performs and relatively complex computation used to classify its direction.  This number 

of texture reads is also performed in the weak pixels render pass, whereas the other two 

render passes only require three texture reads.  The table also gives the time required to 

copy captured image data to the texture, which is an important quantity for real-time 

processing of images captured from the device camera, and dictated by the GPU memory 

bandwidth. A 640 × 480 (VGA, non-power-of-two) image was used, a common resolution 

available for video preview on all the devices, although most supported greater resolutions 

as well. No texture compression was used which would introduce conversion latency but 

assist texture data to better fit on the memory bus and in a texture cache.  

 

Operation Nexus One iPhone 4 Desire HD 

Greyscale n/a 8.9 ± 3.0 n/a 

Gaussian X 29.9 ± 4.9 12.2 ± 0.8 11.1 ± 3.3 

Gaussian Y 29.0 ± 4.5 12.0 ± 0.1 11.2 ± 3.7 

Gradient 138.2 ± 3.9 60.2 ± 0.4 22.5 ± 1.4 

Non-max Supression 50.1 ± 6.0 25.1 ± 2.7 11.2 ± 1.8 

Weak Pixel Test 78.8 ± 2.5 28.9 ± 4.4 19.7 ± 1.0 

Reload texture 86.6 ± 12.8 36.8 ± 4.3 5.2 ± 4.8 

 
Table 4-1: Average render pass and image reloading texture times with standard deviation 

in milliseconds. 

 

The results in Table 4-2 show the actual overall average frame rates and standard deviation 

that were achieved in practice on each device.  The experimental setup used the same 

approach as defined in the first experiment.  As the OpenGL ES glTexImage2D command 

used to update a texture with new image data blocks until all the texture data has been 

transferred, for efficiency the (non-blocking) render pass commands were performed 

before glTexImage2D was called to set the texture with an image capture for the next set of 

render passes, this was found to help increase frame rates. To provide some comparison 

with the CPU performance on each device, an OpenCV version of Canny edge detection 

was also timed (unlike the iOS build of OpenCV, the Android version currently has an 

optimized platform-specific build available). No specific Symbianˆ3 release of OpenCV 

was available during testing. As the OpenCV edge detection relies on the performance of 

the CPU, wherever practical any applications running in the background on the device 
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were stopped. On the Android devices it  was  found  that  the  burden  on  the CPU 

associated with obtaining an image capture could be significantly reduced by using a 

native camera capture API rather than the default Android API, hence the two sets of CPU 

results reported. 

 

Device CPU + Android Camera CPU + Native Camera GPU Shaders 

Nexus One 7.5 ± 1.8 9.7 ± 0.7 3.9 ± 0.2 

iPhone 4 n/a 7.4 ± 0.4 7.6 ± 0.0 

Galaxy S 9.1 ± 0.5 14.8 ± 0.1 11.3 ± 0.2 

Nokia N8 n/a n/a 14.5 ± 0.1 

Desire HD 7.1 ± 1.3 10.7 ± 0.8 15.4 ± 0.2 

Nexus S 8.2 ± 0.9 15.5 ± 0.8 8.9 ± 0.4 

 
Table 4-2: Average frame rates and standard deviation for image capture and Canny edge 

detection in frames per second (fps) 

 

 

 Results Discussion 4.2
Perhaps the most interesting conclusion that can be drawn from the results in this chapter is 

the great variation in the ability of different GPU in the mobile market for performing 

image processing.  The Nexus One with an Adreno 200 GPU displayed quite poor 

performance, due to the time to transfer texture data and its slower execution of shader 

code. However, the Desire HD with the newer Adreno 205 GPU provided surprisingly 

good results, receiving at least a 50% performance benefit by offloading edge detection to 

the GPU rather than CPU. Both these devices use Snapdragon CPU which were seen to 

execute OpenCV code slower than their competing Hummingbird CPU, found on the 

Galaxy S and Nexus S. For these two devices the benefit of running the edge detection on 

the GPU is less definitive, although doing so would free up the CPU for other processor-

intensive tasks that might be required by an application. The GPU results for the N8 with 

its Broadcom GPU were encouraging as its processor hardware is common across 

Symbianˆ3 devices of the era, whereas the GPU results for the iPhone 4 are not surprising, 

it uses an older PowerVR SGX535 rather than the newer PowerVR SGX540 found in the 
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Galaxy S and Nexus S. It should be reiterated that the iPhone CPU results were taken using 

an OpenCV build that was not optimized for that platform. 

 

It is worthwhile to compare the frame rates with some of the OpenGL ES rendering 

benchmarks that are available. For instance, [80] reports comparative benchmark results 

for Nexus One (819), iPhone 4 (1361), Galaxy S (2561), Desire HD (2377), and Nexus  S  

(2880).  These  results  do  depart somewhat from the GPU fps results in this chapter, 

indicating differences between benchmarking GPU for typical graphics rendering versus 

performing an image processing algorithm such as Canny edge detection. 

 

The general pattern in the GPU ability for image processing appears to have reached a 

tipping point during the 2010 release period of the investigated devices, with some devices 

clearly being able to benefit from offloading processing to the GPU. As GPU continue to 

rapidly evolve, with the release of Adreno 220 and PowerVR SGX543, along with new 

GPU such as the Mali and the Tegra 2 for mobile devices available on devices in 2011, this 

benefit is only continuing to increase.  For instance, modest performance improvements are 

observed in the Sony Ericsson Xperia Arc, released in April 2011 with same CPU and 

GPU as the Desire HD, with the CPU+Android Camera tests achieving 10.0±1fps and 

GPU shaders achieving 17.5 ±0.1fps.  More impressive are the results for the Samsung 

Galaxy  S2,  first  released  in  May  2011  with  a  1.5  GHz Snapdragon S3 CPU and 

Mali-400 GPU.  Its CPU+Android Camera tests achieved 14.2 ± 0.7fps, which were 

dwarfed by the GPU shader results of 33.8 ± 3.6fps.  Since the writing of this paper even 

more powerful devices have proven that using the GPU for image analysis is beneficial for 

performance frame rates.  For example testing this GPU-based Canny edge detection 

implementation on the latest Samsung Galaxy S4 phone model with a PowerVR SGX 

544MP3 GPU, boasts a frame rate of 20.6 ± 2.3 fps on the full resolution (1920x1080) 

high definition display and achieving 58.4 ± 2.6 fps on 640x480 images.  This severely 

outmatched its OpenCV CPU based counterpart by a factor of up to 4 times the average 

framerate.    
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Chapter 5  

GPU-based Feature point detection  
 

This chapter is joint with my supervisor Dr Andrew Ensor and discusses a real-time feature 

point detection algorithm which we have called ColourFAST [18] which was presented 

and published in the Image Vision Computing New Zealand 2013 conference proceedings.  

ColourFAST extracts vector-based feature strength and direction measures from the colour 

channels of any pixel in an image.  The algorithm has a pipeline design which is optimized 

for GPU processors.  Results of the algorithms are provided for an implementation on 

mobile devices developed using programmable shaders.  Its performance demonstrates 

several improvements over conventional FAST which is good for mobiles but doesn’t give 

much information describing the feature point which is detected.  The work in [16] has 

shown mobile GPU to be advantageous to image analysis in regards to processing speed.  

This work was focused on quick processing of feature points for improving object 

detection, tracking and recognition on mobile devices without affecting accuracy.  These 

detected features are relatively unique and are processed very quickly through the pipeline.  

These characteristics combined play an important factor for mobile augmented reality 

applications.  The GPU shader code for this algorithm can be found in Appendix B: 

ColourFAST Feature Detection Shaders 

 

 

 Feature Detection and Description 5.1
The term feature is used to refer to some region or point within an image that is 

considered distinctive in some way, such as an edge, corner or blob. Features are 

widely used for image segmentation, matching, image stitching, motion tracking, object 

recognition, and 3D scene reconstruction. Popular feature detection algorithms include 

Canny edge detection [48], Shi-Tomasi corner detection [17], SUSAN corner detection 

[53], and Laplacian of Gaussian for blob detection.  Features from Accelerated Segment 

Test (FAST) [55], [56] is a particularly efficient and simple corner detection algorithm for 

a greyscale image.  FAST uses the idea of taking 16 pixels in a Bresenham circle of radius 

three around the pixel being tested, where at least 12 of these should have an intensity 
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differing from the centre pixel above some threshold for the pixel be considered a 

corner feature. 

 

Features are also often accompanied by feature descriptions (also called feature vectors), 

which are numbers that help describe the distinctive characteristics of a feature, assisting in 

the identification of the feature in later frames or against sought objects.  Popular  feature  

descriptions  include  Scale Invariant  Feature  Transform [129] ,  Histogram  of  Oriented  

Gradients  (HOG) [130],  and  Speeded  Up  Robust  Features (SURF) [60].  Feature 

descriptions can be extracted from sequential frames taken from a moving scene to 

recognize previously identified features and so perform motion tracking.  However, feature 

descriptions can often be computationally expensive to calculate, so an optical flow 

algorithm such as Lucas-Kanade [62] or its variant Kanade-Lucas-Tomasi [63] is often 

used for tracking once feature points have been initially found.  Tracked features can often 

be used for mobile augmented reality applications as demonstrated in [131], which 

comments that much work still needs to be undertaken to make good real time solutions 

possible. 

 

Graphical Processing Units (GPU) have become popular for many image processing tasks 

due to their excellent performance  with  highly  parallel  floating  point  calculations  [81], 

[132]. Of particular interest in this research is the role of the GPU for image processing on 

mobile devices, particularly for the extraction of features and their tracking for mobile 

augmented reality applications, although this work is relevant for any system with GPU 

hardware acceleration. Mobile devices place numerous challenges on computer vision 

algorithms, they have varying camera capture qualities and resolutions, different 

processing capabilities, and many vision algorithms that perform well on desktop 

workstations suffer from unacceptably low frame rates on mobile devices. This helps 

explain why there are still no widely used standardized test videos for mobile platforms 

against which to compare algorithms. Previous work undertaken with GPU-based image 

processing on mobiles devices was discussed in [127], [128]. In particular, [16] 

demonstrated that mobile devices reached a tipping point in 2010, where mobile GPUs 

started to demonstrate superiority  over their CPU counterparts for performing some image 
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processing tasks. As mobile devices still had little high-level support for GPU 

programming, this work directly utilizes programmable shaders. 

 

However, most feature point detection and tracking algorithms are designed for the CPU 

and their performance particularly on mobile devices results in unacceptably low frame 

rates. The workaround in the past has been to either offload much of the image processing 

to a networked server [133], introduce fiducial markers into the scene [134], or use 

predetermined templates [89].  The goal of this work was to develop robust feature 

detection and tracking algorithms that could provide high frame rates without the need for 

fiducial markers.  This work introduces ColourFAST, a variant of the FAST corner 

detection algorithm that is specifically designed for GPU pipelines, and which provides a 

very compact and easily calculated feature description from colour information.  Colour 

has been used in feature descriptors before in [135], which computes SIFT descriptors in 

each colour channel independently, boasting a 8-10% improvement compared to pure 

intensity-based SIFT.  Colour has also been added to SIFT in [136] and [137] supporting 

similar results that including colour into feature descriptors is an advantage.  However the 

coloured SIFT descriptors are too big and the algorithm too intensive to be able to process 

and calculate multiple features on mobile device images at a “near real time” speed.  

ColourFAST uses a compact feature vector as shown in Chapter 6, with a tracking 

algorithm implemented on mobile devices using GPU programmable shaders.  The feature 

description is also suitable for other uses such as object recognition as discussed in Chapter 

8. 

 

 

: GPU FAST implementation 5.2
This work implemented and optimized FAST feature detection to be made suitable for 

mobile GPUs.  Similar to reasons discussed in Chapter 3, it was done to determine if GPU 

based processing of features outperforms CPU based processing such as that used in the 

OpenCV implementation of FAST.  The general approach of the FAST corner detection 

algorithm was redesigned for implementation on a GPU, and progressively evolved via 

testing to better utilize the architecture of GPU pipelines such as eliminating conditionals.  
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The algorithm was implemented with two render passes and two different fragment 

shaders.   The steps in the pipeline are described below and shown in  

Figure 5-1 and a screenshot of the application running in Figure 5-7. 

 

Figure 5-1: GPU FAST pipeline implementation.  Shows shaders in yellow and 
input/output textures in white. 

 

The first shader took the greyscale images from the camera preview as an input texture.  

As shown in Figure 5-3, camera preview capture uses the YUV NV21 colour space format, 

with the Y component holding intensity values for each pixel.  The Y-values are extracted 

from the rest of the data before being put into an input texture for the first shader.  The first 

shader then performs the Bresenham circle calculation, taking the 16 neighbouring pixels 

surrounding the pixel currently being processed.  The pixel becomes a FAST feature 

contender if the absolute intensity difference between it and 12 out of 16 neighbouring 

pixels are above some threshold.  This is done in the shader using a combination of step 

functions instead of conditional statements.  If the pixel is considered a FAST feature then 

one of the four RGBA output components is set to 1.0 and another component is used to 

store the value for feature strength measurement.  Feature strength is calculated by taking 

the average of the absolute sum of all the differences between the pixel being processed 

and its Bresenham neighbours.   

 

The second shader pass takes in the output texture from the Bresenham shader pass as its 

input texture and performs a non-maximal suppression.  Each point being processed in the 

pipeline performs eight more texture lookups from its neighbours directly around it, 

creating a 3x3 pixel grid of feature strength values.  If the current texture being processed 



   71 | P a g e  
 

has higher feature strength than its neighbours, then it becomes a FAST feature point, 

otherwise it is discarded to allow the neighbour with the higher feature strength to instead 

be the feature.  The resulting feature points are then drawn overlaid onto the original 

camera image and rendered to the display.  

 

 

: ColourFAST Feature Point Detection Implementation  5.3
After testing FAST, several disadvantages of the algorithm were noted.  The first being 

that only features with a large change in intensity were detected, even if the colours were 

completely different such as the corner of a dark red object on a dark blue background.  

Secondly the presence of noise and the use of thresholds in the image to determine valid 

feature points resulted in features “appearing” and “disappearing”.  To counteract these 

disadvantages, colour was added to the calculations by binding UV camera values into 

another texture and passing it into the pipeline.  Colour channels provided valuable 

information about feature points which could be utilized with little added computation by 

exploiting the single instruction multiple data (SIMD) nature of GPUs.  Change across 

pixels also gave an orientation for the feature, so a direction calculation was added to the 

shader.  This combined with the Bresenham colour values for feature points gave a more 

unique and compact descriptor to each of the features than purely a single intensity value 

which FAST typically uses.  To reduce noise a 3x3 smoothing step was added as extra 

shader passes.  It was decided that the minimum 12 requirement of neighbours should be 

removed to allow all features of interest and not just corners, this also meant that features 

stayed in place over frames and didn’t phase in and out.  Removing the intensity difference 

threshold was found useful when implementing GPU Canny edge detection from Chapter 

3, so this implementation also removed the FAST intensity threshold.  This allows the host 

application to control thresholds if desired, making the threshold not an integral part of the 

algorithm.  After some number modelling, it was shown that using the smoothing step in 

the pipeline allowed the number of texture lookups in the Bresenham circle to be reduced 

by half.  These combined changes led to the algorithm ColourFAST feature detection to be 

termed for this thesis.  The full pipeline is shown below in Figure 5-2. 
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Figure 5-2: GPU ColourFAST feature detection pipeline. Shaders are shown in yellow and 
the input/output textures are in white.  The shader shown with the dotted border is optional 

if a direction vector in all 3 components is desired. 

 

 

5.3.1: CPU Side Setup and Android Camera Capture 
The CPU side of the algorithm and setup of the pipeline is similar to section 3.2.1.  Only 

devices on the Android platform were used, however with minor changes in the setup, this 

algorithm will work on any OpenGL ES supported devices.  ColourFAST takes a coloured 

image frame as input.  On Android devices images are often made available in the NV21 

format, a YUV colour space format where the 8-bit Y samples are followed by an 

interleaved VU plane containing 8-bit 2x2 sub-sampling.  A Y value is stored for every 

pixel, followed by a U value for each 2×2 square block of pixels, and finally a V value for 

each 2×2 block.  Corresponding Y, U and V values are shown using the same colour in the 

diagram in Figure 5-3.   
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Figure 5-3: YUV colour space using the NV21 format for a 6x4 pixel texture and their 
positions in a byte stream [138]. 

 

As is common in GPU image processing the camera image was loaded as read-only 

textures after splitting the data, the first texture which contains the Y values and the second 

containing the interleaved VU values, ready for use by the programmable shaders.  

Because of the large size of the data being obtained from the camera preview it is best to 

preallocate memory using a buffered array instead of letting the camera callback constantly 

create a new array every frame.  However care needs to be taken as since this is done in a 

separate thread, the buffer may still be in use from the thread passing information into the 

pipeline.  After some testing it was found that using three pre allocated buffers for the 

camera capture with some synchronization worked well.  These get cycled by the program 

to be optimal in ensuring a smooth run through the pipeline avoiding contention and 

allowing the camera capture thread to populate buffers while the previous buffer is still 

being used in the shader pipeline.  

 

5.3.2: Colour Conversion 
On the GPU a preliminary render pass is performed, taking a texture for the Y values and 

another for the interleaved VU values, and outputting a single texture with either YUV 

values or RGB values for each pixel in the image.  This avoids the rest of the pipeline 

having to look up two textures when a shader wants to access the original colour values for 
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each pixel, it  also ensures less calculations later as pixel information can be calculated 

using single vectors. The conversion to RGB colour space has little effect on the overall 

performance of the algorithm but no noticeable advantage was found in practice using 

either colour space over the other.  RGB colour information can be taken from a YUV 

information using the following formula: 

�
𝑅
𝐺
𝐵
� = �

Y + V ∗  1.402 − 0.701   
Y − U ∗ 0.344 − V ∗ 0.714 + 0.529  

Y + U ∗ 1.772 − 0.886
� 

 

5.3.3: Smoothing 
Unlike FAST, the ColourFAST feature point algorithm performs a smoothing (blur) via a 

3×3 convolution kernel on each of the colour channels.  Smoothing is relatively uncommon 

in feature point detection algorithms but this work found that it gave unexpected benefits 

with improvement in feature point detection.  Using a Gaussian smoothing kernel has been 

used before in [88] and ensures that the features are more resilient to image noise.  Since a 

Gaussian kernel is separable it can be applied as two one-dimensional convolutions in the 

X direction  and then the Y direction  of the image,  trading the overhead of having an 

additional render pass for three less texture reads and fewer calculations. This was found to 

provide a small performance benefit on actual devices.  In practice, a slightly modified 

smoothing kernel is applied to give a smoother distribution across the 65 pixels used in 

feature point calculations as shown: 

�
0.09 0.12 0.09
0.12 0.16 0.12
0.09 0.12 0.09

� = �
0.3
0.4
0.3

� ·  (0.3  0.4  0.3) 

 

5.3.4: Half Bresenham and Feature Strength Calculation 
 The next render pass is similar to FAST in that it calculates feature point values by taking 

a pixel and subtracting it from the average of the neighbouring pixels around it in the 

Bresenham circle to give the change in intensity.  However, in ColourFAST this 

calculation is performed in each colour channel rather than on a greyscale image.  It also 

does not use a threshold which is common in FAST to filter out just corners opting instead 

to generate all features. Unlike FAST which uses 16 neighbouring pixels, this algorithm 
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halves the number of texture lookups using only 8 neighbouring pixels as illustrated in 

Figure 5-4.  Because of the smoothing performed earlier in the pipeline the pixels being 

looked up in the modified Bresenham circle are actually blended with their eight 

neighbouring pixels.  This gives a total of 65 pixels used in the feature calculation, shown 

in Figure 5-5, as opposed to the 17 in the conventional FAST approach. Yet this approach 

only uses a total of 15 texture lookups overall (including those required for the smoothing), 

two less than that required by FAST.  Some initial testing showed this made ColourFAST 

more robust than FAST in the presence of noise.  The formula below shows how the three 

channel feature point values (FR, FG, FB) are calculated from colour of the current pixel P 

less the average colour of its eight half-Bresenham neighbours N. 

�
𝐹𝑅
𝐹𝐺
𝐹𝐵
� =  �

𝑃𝑅
𝑃𝐺
𝑃𝐵
� −  ��

𝑁𝑖,𝑅
𝑁𝑖,𝐺
𝑁𝑖,𝐵

�
𝑛=8

𝑖=0

×  
1
8

  

 

Figure 5-4: Bresenham circle (left) used by FAST and half-Bresenham circle (right) used 
by ColourFAST. 

 

Once  the  feature  point  values  are  calculated  for  a  pixel the  three  colour  channel  

values  can  be  weighted  to  also give  an  overall  (scalar)  feature  strength  value.  The U 

and V changes for feature point calculations were found to be significantly less than the Y 

changes.  Empirical  weighting values  with  a multiplier  of  2 for  Y  values  and  7 for  

each of the U and V values were found to give good results in practice.  If RGB colour 

space was instead used, then a weighting of 2 for each component gives good results.  The 

weighting factors were passed as uniform values to the programmable shader so they could 

be altered whenever feature points in particular channels were of interest.  Although the 
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scalar feature strength values are convenient for finding strong features, typically corners, 

the three feature point values considered together as a vector were found to provide richer 

and more useful information about features. 

 

 

Figure 5-5: Actual neighbourhood pixel contributions to ColourFAST. 

 

5.3.5 Feature Direction Calculation  
Another render pass also takes the output from the smoothing and calculates a vector 

orientation for features, either as 𝑋𝑑𝑑𝑑 and 𝑌𝑑𝑑𝑑 components or an angle direction θ = 

arctan2(𝑋𝑑𝑑𝑑 ,𝑌𝑑𝑑𝑑).  The orientation can be combined with the three YUV/RGB feature 

point values as a compact feature description to help identify a feature, or else determine 

the rotation of a feature relative to the camera.  The orientation is calculated by first taking 

the vector sum of the eight RGB changes in the half-Bresenham circle around a pixel as 

shown in Figure 5-6, subtracting pixels below the centre pixel from the corresponding 

pixels above to calculate ∆𝑌, and the right pixels minus the corresponding left pixels for 

∆𝑋.  Before this calculation is performed and assuming a distance of 1 unit from the centre 

pixel to each neighbour, a simple Pythagoras equation is used to calculate two constants to 

multiply each RGB value in the X and Y directions.  This creates a vector for each of the 

three colour components, which are then combined together into a single 𝑋𝑑𝑑𝑑, 𝑌𝑑𝑑𝑑 vector 

by taking the dot product with the vector formed from the feature point description values 

F (so colour components with stronger changes have their orientations weighted more 

heavily).  This is then divided by the length of the feature point description to keep the 
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information between 0 and 1 so that it can be passed out of the shader in the output texture. 

The formula for the 𝑋𝑑𝑑𝑑, 𝑌𝑑𝑑𝑑 vector is shown below: 

𝑋𝑑𝑑𝑑 =  
�
𝐹𝑅
𝐹𝐺
𝐹𝐵

�∙�
∆𝑋𝑅
∆𝑋𝐺
∆𝑋𝐵

�

��
𝐹𝑅
𝐹𝐺
𝐹𝐵

��
      𝑌𝑑𝑑𝑑 =  

�
𝐹𝑅
𝐹𝐺
𝐹𝐵

�∙�
∆𝑌𝑅
∆𝑌𝐺
∆𝑌𝐵

�

��
𝐹𝑅
𝐹𝐺
𝐹𝐵

��
       𝜃 =  atan2(𝑋𝑑𝑑𝑑,𝑌𝑑𝑑𝑑) 

 

 

Figure 5-6: Shows texture for feature direction vector calculations giving ∆𝑋 and ∆𝑌in 
each colour space channel 

 

Instead of using 𝑋𝑑𝑑𝑑 and 𝑌𝑑𝑑𝑑direction vector components it  is  also  possible  to  just  use  

the single θ value, this has the advantage that a feature description then only has four 

components, YUV/RGB feature point values and a single feature change angle,  which  can  

fit  into  a  single  four-component texture.  This also means that this step can be combined 

with the half Bresenham and feature strength render pass discussed in the previous section 

to avoid a drop in performance.  Another option was to perform this render pass twice, 

once for  the  𝑋𝑑𝑑𝑑 and  once  for  𝑌𝑑𝑑𝑑 to  give  direction  vectors in  each  of  the  three  

colour  channels,  however  the  overall vector orientation combined over all channels was 

found to be sufficient to determine the rotation of features relative to the camera.  The 

following formulas show the calculation of 𝑋𝑑𝑑𝑑, 𝑌𝑑𝑑𝑑 and then using them to create a single 

direction measure θ for the feature descriptor. 
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 ColourFAST Results and Comparison to FAST 5.4
One advantage  ColourFAST  has over most contemporary feature detection algorithms 

such as FAST is the use of colour instead of greyscale, using three colour channels in 

either the native camera format YUV or the RGB colour space. This allows the extraction 

of features that are distinguished by a change in colour but not necessarily a large change 

in overall intensity. The shader calculations are all done using vector SIMD calculations, 

for which GPU are optimised so little or no performance penalty is incurred. The three 

feature point values combined with optional feature orientation give a compact feature 

description which can be efficiently recalculated each frame, enabling tracking of features 

over time or with changing lighting conditions, which can be difficult with scalar-based 

feature values,  particularly  when  there  are  other  features nearby.  Another significant 

difference with ColourFAST is that no threshold  is  used  to  ensure  that  a  point  is  a  

corner  rather than some type of edge. Thus, ColourFAST can be used for identifying 

features in any non-uniform region, not only those that lie at corners.  For instance, the 

features of edges can be followed to find the contour of objects, giving a cluster of points 

which can be used to better identify and track an object.  

 

Testing was performed on two devices, the Samsung Galaxy S2 model I9100 with the 

ARM Mali-400 MP4 GPU, and the Samsung Galaxy S4 model GT-I9505 with the Adreno 

320 GPU. The devices were programmed with Android 2.3 and 4.2 respectively and both 

used the Open GL ES 2.0 pipeline with GLSL version 1.0 GPU shader language.  OpenCV 

version 2.4.1 was used for the CPU implementation.  It is important to note that the 

ColourFAST algorithm is designed for any device with pipeline hardware acceleration, and 

on many (non-mobile) platforms could instead be implemented via OpenCL or CUDA. 

 

Table 5-1 compares the average frame rates for Android implementations of FAST and 

ColourFAST on both the Samsung Galaxy S2 and S4 across a range of available image 

resolutions.  Each algorithm test for each device and resolution was run on the device for 

five minutes with average frame rates recorded every five seconds giving a sample size 

between 5000 – 20,000 readings depending on the device, resolution set and algorithm.  

The readings were also taken from fully charged mobile devices set in their default factory 

settings.  In practice, the camera resolution might first be scaled down before feature 
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detection is undertaken. The stated results are the sustained frame rates for the entire 

pipeline, including camera capture and all processing for feature detection each frame.  

The usual CPU-based OpenCV implementation of FAST on Android using greyscale 

images was tested along with a modified version optimised specifically for GPU pipelines, 

replacing all conditional statements by combinations of step functions.  Neither included 

the additional step where the greatest FAST feature value in a neighbourhood is typically 

sought as the feature point, which would lower the frame rates if included.  A GPU 

implementation of ColourFAST was tested on the same Android devices. As might be 

expected the GPU implementations outperformed the CPU-based OpenCV 

implementation.  Although the ColourFAST algorithm extracts richer information from 

features than the FAST algorithm it does have comparable performance, in fact being 

surprisingly faster on the Galaxy S2, and only marginally slower on the Galaxy S4 with 

HD resolution images. Figure 5-7 demonstrates ColourFAST feature values (in three 

colour channels with orientation held in the alpha channel) for an outdoor scene. 

 

Device and Resolution FAST (OpenCV) FAST (GPU) ColourFAST (GPU) 

Galaxy S2 (640x480) 25.1 30.5 39.8 

Galaxy S2 (800x480) 20.6 25.5 32.4 

Galaxy S4 (640x480) 21.3 53.7 51.4 

Galaxy S4 (1920x1080) 8.3 23.3 21.3 

 
Table 5-1: Average feature point throughput comparisons in frames per second (fps) 
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Figure 5-7: Outdoor scene with GPU FAST (upper) with features shown in green versus 
ColourFAST (lower) feature values evaluated at each pixel. 

 

 

Another interesting comparison between ColourFAST and FAST are how they can be used 

to distinguish corners from edges.  Modelling was done to see which algorithm can 

produce more distinct features, assuming that there is no threshold used for both algorithms 

and only a single channel used for calculations.  The tables in Figure 5-8 to Figure 5-12 

show five different situations of FAST (left of tables) vs ColourFAST (right of tables).  It 

models a single channel white object on a black background.  The different corners 

modelled are shown in grey and their calculated pixel values populated in the table.   FAST 

is known for its ability to distinguish corners from edges, however ColourFAST has shown 

to have a higher corner to edge ratio in all but one of the examples modelled here.  Another 
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interesting observation is the outer rim features in ColourFAST (shown on the table with 

blue numbering) which occur as a result of the smoothing step, these features are weaker 

but with opposite values to the inner rim of feature points (with high values shown as red 

numbering) and also resulting in opposing direction vectors.  This creates a valley in 

between the ridges with very low feature point values and used later in the thesis in 

Chapter 7 in which a GPU-based algorithm for feature discovery is developed.  This 

algorithm is used to navigate the contour of the object by following the channel between 

opposing features and extracting more feature points along the way creating a cluster of 

feature points for the object which is then used for improved tracking.  It is important to 

note that the ColourFAST corner is detected slightly in from the true corner of the real 

world image and thus used as the high value in the corner to edge calculation. 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

0.0 0.0 0.1 0.2 0.4 0.5 0.6 0.6 0.6 

0.0 0.0 0.0 1.0 2.0 3.0 3.0 3.0 3.0 0.0 0.0 0.2 0.5 0.9 1.2 1.4 1.4 1.4 

0.0 0.0 1.0 2.0 3.0 4.0 5.0 5.0 5.0 0.1 0.2 0.6 1.0 1.6 2.0 2.4 2.5 2.6 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.0 0.2 0.5 1.0 0.7 0.3 0.0 0.5 0.8 1.0 

0.0 2.0 3.0 4.0 -11.0 -10.0 -9.0 -7.0 -7.0 0.4 0.9 1.6 0.3 -1.3 -2.6 -1.9 -1.4 -1.0 

0.0 3.0 4.0 5.0 -10.0 -9.0 -8.0 -5.0 -5.0 0.5 1.2 2.0 0.0 -2.6 -4.6 -3.8 -3.1 -2.6 

0.0 3.0 5.0 6.0 -9.0 -8.0 -6.0 -3.0 -3.0 0.6 1.4 2.4 0.5 -1.9 -3.8 -2.8 -2.0 -1.4 

0.0 3.0 5.0 7.0 -7.0 -5.0 -3.0 0.0 0.0 0.6 1.4 2.5 0.8 -1.4 -3.1 -2.0 -1.2 -0.6 

0.0 3.0 5.0 7.0 -7.0 -5.0 -3.0 0.0 0.0 0.6 1.4 2.6 1.0 -1.0 -2.6 -1.4 -0.6 0.0 

0.0 3.0 5.0 7.0 -7.0 -5.0 -3.0 0.0 0.0  0.6 1.4 2.6 1.0 -1.0 -2.6 -1.4 -0.6 0.0 

0.0 3.0 5.0 7.0 -7.0 -5.0 -3.0 0.0 0.0  0.6 1.4 2.6 1.0 -1.0 -2.6 -1.4 -0.6 0.0 

 
Figure 5-8: FAST vs ColourFAST feature strengths at a 90 degree corner. Corner to edge 

ratios are 1.57:1 and 1.77:1 respectively.   
 

0.0 0.0 0.5 1.0 1.5 1.5 1.5 1.5 1.5 

 

0.0 0.1 0.3 0.6 0.8 1.0 1.0 1.0 1.0 

0.0 0.5 1.0 2.0 3.0 4.0 4.0 4.0 4.0 0.1 0.3 0.6 1.0 1.5 1.8 2.0 2.0 2.0 

0.5 1.0 2.0 3.0 4.0 5.0 6.0 6.0 6.0 0.3 0.6 0.6 0.7 0.8 1.3 1.6 1.8 1.8 

1.0 2.0 3.0 -4.0 -3.0 -2.0 -0.5 0.0 0.0 0.6 1.0 0.7 -0.3 -1.1 -1.0 -0.4 -0.1 0.0 

1.5 3.0 4.0 -3.0 -10.0 -9.0 -7.0 -6.0 -6.0 0.8 1.5 0.8 -1.1 -3.0 -3.2 -2.5 -2.0 -1.8 

1.5 4.0 5.0 -2.0 -9.0 -7.5 -5.5 -4.0 -4.0 1.0 1.8 1.3 -1.0 -3.2 -3.7 -2.9 -2.3 -2.0 

1.5 4.0 6.0 -0.5 -7.0 -5.5 -3.0 -1.5 -1.5 1.0 2.0 1.6 -0.4 -2.5 -2.9 -2.0 -1.3 -1.0 

1.5 4.0 6.0 0.0 -6.0 -4.0 -1.5 0.0 0.0 1.0 2.0 1.8 -0.1 -2.0 -2.3 -1.3 -0.6 -0.3 

1.5 4.0 6.0 0.0 -6.0 -4.0 -1.5 0.0 0.0 1.0 2.0 1.8 0.0 -1.8 -2.0 -1.0 -0.3 0.0 

1.5 4.0 6.0 0.0 -6.0 -4.0 -1.5 0.0 0.0  1.0 2.0 1.8 0.0 -1.8 -2.0 -1.0 -0.3 0.0 

1.5 4.0 6.0 0.0 -6.0 -4.0 -1.5 0.0 0.0  1.0 2.0 1.8 0.0 -1.8 -2.0 -1.0 -0.3 0.0 

 
Figure 5-9: FAST vs ColourFAST feature strengths at soft 90 degree corner. Corner to 

edge ratios are 1.66:1 and 1.85:1 respectively.   
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0.0 0.0 2.0 4.0 6.0 7.0 -7.0 -7.0 -5.0 0.1 0.3 1.1 1.9 2.3 1.0 -1.2 -2.6 -2.5 

0.0 1.0 3.0 5.0 6.0 -8.0 -7.0 -5.0 -3.0 0.2 0.7 1.5 1.7 0.6 -1.6 -2.7 -2.6 -1.5 

0.0 2.0 4.0 5.0 -9.0 -8.0 -6.0 -3.0 0.0 0.4 1.0 2.0 0.9 -1.3 -3.3 -2.9 -1.7 -0.7 

0.0 3.0 4.0 6.0 -9.0 -7.0 -5.0 0.0 0.0 0.5 1.3 2.2 0.4 -2.0 -3.5 -2.3 -1.1 -0.2 

0.0 3.0 5.0 6.0 -8.0 -6.0 -3.0 0.0 0.0 0.6 1.4 2.4 0.6 -1.5 -3.1 -1.7 -0.7 0.0 

0.0 3.0 5.0 7.0 -7.0 -5.0 -3.0 0.0 0.0 0.6 1.4 2.5 0.9 -1.2 -2.7 -1.5 -0.6 0.0 

0.0 3.0 5.0 7.0 -7.0 -5.0 -3.0 0.0 0.0 0.6 1.4 2.6 1.0 -1.0 -2.6 -1.4 -0.6 0.0 

0.0 3.0 5.0 7.0 -7.0 -5.0 -3.0 0.0 0.0  0.6 1.4 2.6 1.0 -1.0 -2.6 -1.4 -0.6 0.0 

0.0 3.0 5.0 7.0 -7.0 -5.0 -3.0 0.0 0.0  0.6 1.4 2.6 1.0 -1.0 -2.6 -1.4 -0.6 0.0 

 
Figure 5-10: FAST vs ColourFAST feature strengths at a 135 degree corner.  Corner to 

edge ratios are 1.28:1 and 1.35:1 respectively.   
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Figure 5-11: FAST vs ColourFAST feature strengths at a 45 degree corner.  Corner to 

edge ratios are 1.86:1 and 1.82:1 respectively.   
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Figure 5-12: Fast vs ColourFAST feature strengths at the end of a pixel thin line.  Corner 

to edge ratios are 1.17:1 and 1.28:1 respectively.   
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Chapter 6  

GPU-based Feature Tracking 
 

This chapter is also based on [18] which is joint work with my supervisor Dr. Andrew 

Ensor.  It was presented and published in the Image Vision Computing New Zealand 2013 

conference proceedings.   Effort was invested in this thesis to implement efficient feature 

tracking, particularly devising a GPU-optimized implementation of the Lucas-Kanade 

optical flow algorithm. Given the high frame rates at which ColourFAST features can be 

extracted from a frame it seems natural to ask whether the compact descriptions that are 

produced might be sufficient to perform feature tracking by searching for a nearest-

matching feature in successive frames.  The algorithm is GPU-pipeline designed and 

implemented with programmable shaders on mobile platforms.  The ColourFAST feature 

search was compared to the OpenCV CPU-based version of Lucas-Kanade as well as my 

own GPU-based version demonstrating improvements in both frame rate throughput and 

tracking accuracy in real world scenes. The GPU shader code for this algorithm can be 

found in Appendix B: ColourFAST Feature Detection Shaders. 

 

There is a small amount of literature that discusses implementing tracking on mobile 

devices.  In particular [89], feature tracking is achieved using either a simplified SIFT or a 

simplified FERNS [139] together with a patch tracker algorithm which tracked 15 frames 

per second using a known image set not actual real time camera footage which incurs a 

substantial overhead on mobile devices.  Their testing was run on the highest performance 

benchmarked mobile on the market at the time of publication, the Asus P552W, which has 

a Marvell PXA930 SOC.  The resolution of images tested was at a scaled down effective 

resolution of 160x120 pixels.  This thesis instead tests on devices that are three to five 

years more recent and using actual camera footage with resolutions between 16-72 times 

larger than that of the Asus P552W.  More recently “real time” feature tracking has been 

achieved on mobiles in [140] using their TLD (tracking-learning-detection) algorithm.  

TLD uses learning-based approaches for detecting and tracks features in a small selectable 

region using Lucas-Kanade tracking.  It overlays an augmented bounding box over the 

tracked region and appears to show good tracking accuracy even with changes of scale and 
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rotation.  It has now been developed into an open source framework for Android called 

OpenTLD.   

 

: GPU-based Lucas Kanade implementation 6.1
Lucas-Kanade is a well-known optical flow algorithm that can be used to track features.  

This was investigated to see how it could be used to track our ColourFAST feature points.  

Considerable time was invested looking at the OpenCV source code, which was used to 

create a GPU-optimized version of Lucas Kanade.  However this was a complicated task 

and required several changes to the algorithm, notably reducing branching in the code and 

combining calculations to be vector based to take full potential of the GPU.  This was 

achieved with five GPU shader passes as illustrated in Figure 6-1. 

 

The OpenCV implementation of Lucas-Kanade is heavily optimized and has had several 

improvements over the original version of Lucas-Kanade, it is primarily based on 

improvements suggested in the papers [17, 141].  It requires two single channel greyscale 

images for the current frame image as well as the previous frame.  With these 2 image 

snapshots it creates a further seven output images, the first four using X and Y Sobel 

operations on the previous and current input frames (SNx,SNy,SPx,SPy).  The next three 

output images use the current frame to compute second derivative Sobels in the X, Y and 

XY directions (Dxx,Dyy,Dxy).  Similar to the discussion in Section 3.2.2, to reduce the 

number of multiplications and texture lookups, these matrix operations were separated into 

horizontal and vertical components with the expense of another render pass. The first four 

shader passes work in two pairs both horizontally and vertically and calculate these seven 

output image values from the two greyscale input textures.  These result in 2 output 

textures for these four shader passes with seven out of eight RGBA channels storing the 

output images needed for the next step, the previous greyscale input image is used to fill 

the 8th channel so that the next shader only needs to bind three input textures instead of 

four.   

 

The 5th shader pass takes the resulting output values generated from the previous four steps 

as well as the previous and current image snapshots from the camera.  This shader then 
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performs the rest of the Lucas-Kanade operations and calculates the number of movement 

for each of the points which it stores in the output texture.  Because of the amount of 

texture lookups that are required, only a 7x7 tracking window was used with no 

pyramiding, however this was found to be sufficient for tracking accuracy and in particular 

keeping high frame rates.  Because of the complexity of this shader, some devices (for 

example even the newer Adenro GPU on the Samsung S4) were unable to compile the 

shader code, so instead the shader had to be either split or have the number of texture 

lookups further reduced, resulting in a smaller tracking window.  However both these 

approaches reduce frame rates and tracking accuracy respectively.  These difficulties 

confirmed that a GPU shader implementation of Lucas-Kanade may not be suitable for 

current mobiles.  

 

 

Figure 6-1: Lucas-Kanade GPU pipeline. Shaders are shown in yellow and the important 
input/output textures are in white. 

  

 

: ColourFAST Feature Search implementation 6.2
Since Lucas-Kanade isn’t well suited for a mobile GPU implementation, instead simpler 

approaches were sought so that the number of operations and texture lookups could be 

reduced therefore increasing frame rates, preferably without compromising tracking 

accuracy.  Given the high frame rates of ColourFAST and the compact feature vector that 

it produces the question arose whether these features were unique enough to track.  
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ColourFAST feature search was developed which essentially searches for the nearest 

matching feature description within a rectangular tracking window near where the point 

was in the previous frame.  The center of the search window can be set by the CPU host 

application depending on prior knowledge of any ColourFAST feature points and their 

expected locations in future frames.  If a close match is not found then the application can 

decide whether to move or resize the window before repeating the search.  By default the 

search window is taken to be a square (2m + 1) × (2m + 1) pixel  window  around  the  

expected next location of each feature point, assuming the point will not move more than m 

pixels beyond that expected between consecutive frames.  For testing points placed on the 

screen by the user, this sets the search area window around the point that was selected.  

This quad is passed through the pipeline and initially the actual point that is chosen is the 

pixel in the search window with the greatest feature strength (highest total value in the 

colour channels), allowing the tracking point to lock onto the best feature in the search 

window to track initially.  Once this is determined, the four component feature values for 

that pixel are instead used to track the feature point.  Essentially the GPU pipeline is 

responsible for calculating the feature values, determining best match within the tracking 

window, outputting the updated feature values and determining how much the point has 

moved from the previous frame.  The CPU host application is responsible for maintaining 

where the points are on the screen and where to move the tracking window.  In this 

implementation the movements for each point over the last three frames were used to give 

a smoothed velocity for the point, this was used to assist predicting where the tracking 

window should be moved to next.  ColourFAST feature search was achieved using three 

shader passes and is discussed in the following subsections and shown in Figure 6-2.   
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Figure 6-2: GPU ColourFAST feature search pipeline. Shaders are shown in yellow and 
the important input/output textures are in white.  Sought feature point is passed in as a 

uniform vec4 shown above in grey. 

 

6.2.1 Feature Point Difference Calculation 
The first shader pass takes in the four channel feature point, which includes the 

ColourFAST colour changes and orientation from the previous frame, for the sought 

feature point as a (uniform) four-component vector. It also binds the output texture 

generated from the ColourFAST feature detection pipeline (Figure 5-2) as its input texture.  

It uses the feature description for each pixel in the search window, stored as textures, to 

calculate an L2-norm (Euclidean) distance between each pixel’s feature description and that 

of the sought feature point, with the expectation that the nearest matching feature 

description is the sought feature.   When a new feature point is initially placed in a search 

area, the sought feature can be set to be the feature with the biggest feature strength.  This 

gives the best feature in the area to initially track, which then can be used to track the 

actual feature description and direction in the next successive frames.  Care had to be taken 

when calculating direction values as a feature point with a value just above 0 should be 

considered to be a close match to an angle just below 2π. 

 

6.2.2: Two-Step Hierarchical Approach 
The second and third shader passes simply perform the search in a manner suitable for 

exploiting GPU parallelization. This is accomplished with a two-step hierarchical 

approach. Firstly the second shader operates on a one-dimensional column of pixels in the 
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middle of the search window, and each pixel in this column looks across at its row to find 

the least L2 distance, setting its output to indicate the offset to the pixel in its row 

containing that value and how close the match is. The third render pass simply repeats this 

by operating on the centre pixel of the window and finding the nearest feature match in its 

column. All the neighbours in the column are compared so that on completion the centre 

pixel will hold which location in the grid the nearest match has been found. This is 

illustrated in Figure 6-3.  The search can then be repeated in the next image frame using 

the updated feature location. While the feature matching  is  being  compared  in  these  

two  render  passes,  a small epsilon value is multiplied by the distance away from the 

centre pixel and subtracted from the feature value for that pixel in order to slightly bias 

pixels toward the centre of the window. The idea of this is that the further a pixel is away 

from the expected feature location, the less likely it is the sought feature. 

 

 

Figure 6-3 Two pass feature description search 

 

6.2.3 Feature Blending 
Due to possible changing conditions in the scene such as lighting or scale and rotation 

changes of tracked objects across camera frames, one question arose is how to update the 

feature vector values so that it remains a good model of the tracked object avoiding 

“drifting” of feature points.  One solution to this problem can be found in [142] which 

demonstrates that the naïve approach to simply updating a template for features with new 

values every frame is not suitable.  Each time the template is updated, small errors are 

introduced in the location of the template.  With each update these errors accumulate and 

cause the drift of features over time.  Their solution was to introduce a threshold in which 
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the second gradient descent of the feature does not diverge too far from the first.  If it does 

there must be a problem so the template is not updated. 

 

In this work, once the feature point and tracking parts of the pipeline have been completed, 

a final render pass simply draws the feature point to the display.  On the CPU side, the 

previous point position is read with two components of the pixel used to determine how far 

the feature point has moved. Once this offset is added to the point’s previous position the 

new feature point description is read from the ColourFAST feature detection output texture 

and blended with the sought point using a 1:40 ratio for the feature point values. This is 

done so that the sought feature description is gradually evolved over time to account for 

changing features, such as due to lighting adjustments.  Also this was found to be very 

useful when the feature was lost temporarily, as only a fraction of it gets blended with the 

feature being tracked.  This approach to updating feature values or templates differs from 

the one proposed in [142].  A similar approach is done with the feature orientation 

component, it is blended with the feature point’s previous orientation at a ratio of 1:20, a 

smaller ratio is used so that the features can more quickly adapt to rotations.   

 

 Results and Comparison with Lucas-Kanade 6.3
For testing the ColourFAST feature search algorithm was compared to the OpenCV and 

the programmable shader version of the Lucas-Kanade.  Three main tests were performed 

to determine how fast each algorithm ran in terms of frame rates and their accuracy of 

tracking as well as how much the feature values change over time. 

 

6.3.1: Frame rate throughput tests 
The first test was done to see how fast ColourFAST feature search is in comparison to the 

two Lucas-Kanade implementations.  Although both were modified primarily for 

performance they were expected to successfully track any chosen corners on a specific test 

image and pedestrians moving in a street scene under real lighting conditions.  A 7 × 7 

pixel tracking window (instead of the recommended default of 15) with no pyramiding was 

found to be sufficiently accurate for Lucas-Kanade, and a 21 × 21 search window was used 
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for the ColourFAST feature search.  The test used “out of the box” devices still in the 

factory condition so that no extra user installed applications are taking up processor time.  

Each algorithm was run for 5 minutes while plugged into a power source to maintain high 

battery level, with the results averaged to give the overall frame rates, so over 300 samples 

were taken.  

Device and 

 Resolution 

Lucas-Kanade 

(OpenCV) 

Lucas-Kanade  

(GPU) 

ColourFAST  feature 

search (GPU) 

Galaxy S2 (640x480) 18.4 25.1 32.5 

Galaxy S2 (800x480) 12.6 17.4 26.5 

Galaxy S4 (640x480) 12.3 40.4 45.6 

Galaxy S4 (1920x1080) 4.2 17.6 19.6 

 
Table 6-1: Average feature tracking throughput comparisons measured in frames per 

second (fps) 

 

As Table 6-1 shows, both the ColourFAST feature search and the GPU implementation of 

Lucas-Kanade significantly outperformed the OpenCV implementation in terms of frame 

rates.  The GPU implementations were found to be more stable and consistent in terms of 

frame rate, running with only a few frames per second variation over time, whereas the 

OpenCV implementation had large fluctuations in frame rates, likely due to the CPU time 

being shared with other background tasks.  Using  the  GPU  to  do  image  processing  

frees  up  the  CPU to perform those tasks whilst keeping a relatively consistent image 

processing performance.  Between the two GPU tracking implementations, the 

ColourFAST feature match algorithm demonstrated between approximately 10% and 50% 

improvements in frame rates despite the Lucas-Kanade implementation only using a small 

tracking window and no pyramiding to assist its frame rate performance. 

 

6.3.2: Tracking accuracy tests 
The tracking accuracy of the feature search was compared with the OpenCV 

implementation of Lucas-Kanade by a randomized  experiment  tracking  a  single  feature  

point  placed on 200 pedestrians with each tracking algorithm, recording how long the 

tracker successfully followed a feature during a 10 second camera capture  (250-450  
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frames total depending  on the  device).  To mix things up and to avoid any lighting or 

location bias, each tracker was switched every five tests and the testing was changed to a 

new observation location every 40 tests. There are specialized pedestrian tracking 

algorithms that already exist, the ColourFAST algorithm is not trying to compete with 

them as it is purely a feature point tracking algorithm. 

 

Figure 6-4:  Boxplot of successful feature tracking time for up to 10 seconds motion. 

 

The results are shown in Figure 6-4, where a 15 × 15 tracking window was used for Lucas-

Kanade along with Good Features to Track [17] to assist its accuracy and obtain the best 

point to track within a local region where the user selected.  Even though one could make 

the argument to increase the tracking window further, this would result in too much of a 

performance drop possibly dropping below 10fps.  The tests were all done on the full 

screen display Samsung Galaxy S2 as this device gave good performance results on both 

CPU and GPU versions of the algorithm.  The results demonstrate that overall 

ColourFAST may be slightly more accurate, although it should be noted on particularly 

strong corners Lucas-Kanade was seen to have more stable tracking, whereas ColourFAST 

was more accurate with weaker features or when a feature got temporarily occluded.  The 

GPU implementation of Lucas-Kanade was not tested in this as a 15x15 tracking window 

required too many operations for the GPU to execute, further enforcing the idea that the 

algorithm is unsuitable for the limited mobile GPU.  Figure 6-5 shows a screenshot of the 

0 2 4 6 8 10 12
Seconds 

ColourFAST search
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feature search tracking in action, with features selected on a pedestrian head, foot and 

handbag, to  illustrate  the  ability  to  track  a  variety  of  ColourFAST features. 

 

 

Figure 6-5: Pedestrian Tracking screenshot shows enlarged tracking boxes with 
ColourFAST feature values in the RGBA channels. 

 

Just  using  the  feature  point  values  in  the  three  colour channels as a compact vector 

for tracking was found to work very  well  in  terms  of  performance  and  accuracy.  

However the tracking accuracy was improved further when the feature orientation was 

included.  Using just a single angle component for the orientation meant that the entire 

feature vector could be held in a single output texture with negligible drop in performance.  

Lucas-Kanade worked effectively tracking corners that are clearly distinguishable in 

greyscale images, but much less so with edges or with changes in colour (as would be 

expected).  The ColourFAST feature search showed surprising success at tracking not only 

corners but also features chosen along edges, especially when the feature orientation was 

taken into consideration.  Of course, along a straight uniform edge ColourFAST tracking 

suffers from the aperture problem, so that only the component of motion perpendicular to 

the edge is determinable. However, the feature orientation does provide some tracking 

capabilities along curved edges and straight textured edges.  Other disadvantages found 

with the Lucas- Kanade implementation were that if the feature were lost in one frame, for 

example if it got occluded, then the feature point would typically be lost in all future 

frames, and there was a gradual drift from the feature points over time.  ColourFAST 
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feature search approach would often find and snap back to the feature point again if it had 

only been lost for a few frames.  

 

Using the high definition display of the S4 (set at 1920x1080) caused initial problems for 

all the trackers including the ColourFAST feature search, as the search areas are very small 

in comparison to the scene resolution. Increasing the search window did help at a small 

cost of performance, but an alternative approach was to use a  preliminary shader to scale 

down  the  texture  before it went through the pipeline and another to scale up the results at 

the end of the pipeline.  Another approach which proved particularly effective was the use 

of velocity for each feature point to suitably centre the search area in the next frame.  The 

velocity was estimated based on a weighted sum of the feature point movement across 

three frames using the formula below where ∆𝑋𝑡 and ∆𝑌𝑡 are the actual movement of a 

feature point in the X and Y direction in the frame t which was used to predict how far the 

tracking window should be moved in the next frame.    

 

∆𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.5 ∗ ∆𝑋𝑡 + 0.333 ∗ ∆𝑋𝑡−1 + 0.167 ∗ ∆𝑋𝑡−2 

∆𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.5 ∗ ∆𝑌𝑡 + 0.333 ∗ ∆𝑌𝑡−1 + 0.167 ∗ ∆𝑌𝑡−2 

 

Another option is to have multiple feature points on the object to form a cluster, then using 

a weighting where good matches are ranked more than poorer matches between frames.  

An overall weighted average movement for an object can be used to track to give even 

better tracking accuracy, which is discussed more in Chapter 7.  

 

6.3.3: Feature value repeatability tests 
As discussed in [142] feature descriptors calculated at one point in time may not be a good 

model for the feature being tracked in later frames.  This can cause drifting of feature 

points over time due to environmental conditions such as lighting or background changes.  

Calculating a descriptor such as SIFT or SURF periodically is too computationally 

expensive and would affect the smooth running operation of the tracker.  Since 
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ColourFAST give a compact feature vector that can easily calculated every frame, it is 

blended with previous feature values to counteract the drift and evolution of feature values 

over time.  To show the importance of updating the feature values two tests were devised 

which compare ColourFAST feature values with FAST intensity values.   The tests took 

place in two environments.  The first test was set up in the controlled lighting office 

environment and used 50 well known commercial logos also performed in Chapter 8.  

These logos were static in nature and had no change in background.  The second test was 

the pedestrian scene as performed in the previous section.  This test was used to see how 

the feature value will change in an uncontrolled environment where the target moves 

across a dynamic background.  In both tests, a feature point was placed on the logo or 

pedestrian and tracked over time with the initial FAST value and ColourFAST descriptor 

noted.  Every second, the percentage change of the feature values in the current frame with 

the initial reading, was recorded for both algorithms while the object was being tracked.  

Tracking was performed with ColourFAST feature search and with two extra GPU shader 

passes to read intensity values for FAST from a greyscale image held in the same region as 

the ColourFAST descriptor. 

 

For the first test each logo was cycled through and had a single feature point placed on it. 

The logo was kept stationary however the device was moved around and placed in four 

locations as determined by the logo scene test used in the previous section.  Recordings 

were taken at 10-12 seconds in each position using the same initial value placed on the 

logo at the beginning of the test.  Each logo was successfully tracked for over 40 seconds 

with the percentage of feature fluctuation recorded from the initial reading at time zero to 

the readings taken during the 40 seconds.   

 

The graph in Figure 6-6 shows a histogram for the combined feature fluctuations over time 

for all of the 50 logos over the 40 second period.  This equated to 2332 readings for each 

algorithm.  A t-test was conducted on both the FAST and ColourFAST algorithms to 

compare the percentage change of feature value fluctuation over time.  There was a 

significant difference in feature fluctuation for ColourFAST feature descriptors (mean = 

7.41, standard deviation = 5.51) and FAST intensity values (mean = 17.27, standard 

deviation = 13.11; t (3130) = -33.46, p < 0.05, two-tailed).  In reality a t-test isn’t typically 
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used on non-independent samples, but does show here a substantial difference in feature 

value fluctuation over time between the two algorithms.   

 

 

Figure 6-6: Graph showing the frequency of fluctuation of FAST vs ColourFAST feature 
values for controlled environment logo test.  

 

The second test recorded the same information as the first test but used the pedestrian 

scene.  This was done to see how the feature values in both FAST and ColourFAST 

fluctuate in an uncontrolled environment.  The experiment was done on 100 passing 

pedestrians with the percentage change of feature fluctuation recorded every second that 

the tracker followed the pedestrian.  Each pedestrian was tracked at varying times up to 15 

seconds and recordings were immediately stopped if the tracker lost the pedestrian.  This 

equated to 1379 readings for each algorithm.  The histogram for the combined feature 

fluctuations over time is shown in Figure 6-7.  Once again a t-test was conducted on both 

the FAST and ColourFAST algorithms but this time for the pedestrian scene.  In this 

situation both algorithms showed a close similarity in feature fluctuation for ColourFAST 
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feature descriptors (mean = 17.18, standard deviation = 12.6) and FAST intensity values 

(mean = 17.02, standard deviation = 14.24; t (2716) = 31.57, p = 0.75, two-tailed). 

 

 

Figure 6-7: Graph showing the frequency of fluctuation of FAST vs ColourFAST feature 
values for uncontrolled environment, pedestrian scene. 

 

Not surprisingly the feature values for ColourFAST varied more in the pedestrian test from 

the original value than in the logo test as tracking pedestrians is a lot more complex than 

tracking a feature point on a static image.  In the case of the pedestrian test its variation 

was not found to be statistically different from the FAST variations. What is surprising is 

that FAST showed similar results across two tests meaning the dynamic scene did not 

affect it mush as it did with ColourFAST.  This may be because the pedestrians were 

moving across different coloured backgrounds but they still may maintain a similar 

intensity causing the greater variation of the ColourFAST descriptor.  These results 

confirm the importance of maintaining a suitable model or template for tracking that needs 

to constantly updated.  ColourFAST uses the feature blending algorithm discussed earlier 

in section 6.2.3 to keep descriptor information updated every frame.  Table 6-2 summarizes 
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the results of the two tests and shows the mean and standard deviation of feature 

fluctuation percentage of the values from the initial reading to the end of each tracking 

target. 

 

Algorithm Office Scene, Logo Test Outdoor Scene, Pedestrian Test 

ColourFAST 7.4% ± 5.5 17.2% ± 12.6 

FAST 17.3% ± 13.1 17.0 % ± 14.2 

 

Table 6-2: Mean and standard deviation of the percentage of fluctuation of feature values 
for FAST vs ColourFAST. 
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Chapter 7  

Cluster Analysis & GPU-based Feature Discovery 
 

This chapter describes techniques for finding multiple feature points on objects from a 

single feature point.  Instead of tracking an object with a single feature point, more points 

could be discovered on the same object giving a cluster of feature points.  More feature 

points are found using a new feature discovery algorithm which uses a special discovery 

point, progressively following the contour of the object and recorning new features as it 

explores.  It uses Haar-like features to follow the ridges and valleys created around objects 

from the ColourFAST feature detection pipeline.   Once multiple feature points are found 

on an object, their movements can be used to calculate a weighted average of overall 

movement for the actual object therefore greatly improving tracking accuracy.  This also 

gives the benefit of allowing the object to be partially occluded as long as some of the 

points still track a portion the object successfully.  An object in this chapter is described as 

something where the multiple feature points detected on it are on the same contour and are 

all moving in the same direction.  It also discusses how these clusters of points can be 

broken off and grouped together if it is determined that two or more objects are found with 

movements in different directions.  The GPU shader code for the GPU-based feature 

discovery is in Appendix D: Feature Discovery Shader 

 

: GPU Feature Discovery Implementation 7.1
As discussed in the previous chapter, ColourFAST features were found to be suitable to 

track an object.  However, there are still problems with the tracker in certain situations, 

such as if a neighbourhood of features has similar feature descriptions, or trying to track 

features on a straight edge which could suffer from the aperture problem.  Instead of 

tracking a single feature point on the object this work investigated how multiple feature 

points could be discovered from a single point by following the feature contours generated 

from the ColourFAST feature detection algorithm.  ColourFAST smooths an image and 

generates features for each pixel in a scene, including edges, and results in a distinctive 

valley between feature shapes of different intensity and colour changes.  This work used 

this information to create a special “feature discovery point” that can trace around an 
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object and create more feature points as it navigates around the contour of the object until a 

desired number of feature points have been extracted.  If the number of feature points hits a 

maximum, the feature discovery algorithm replaces weaker features that it previously 

found with newly found stronger features. 

 

Figure 7-1: GPU feature discovery pipeline. Shows input and output textures in white and 
the GPU shader in yellow.  

 

The feature discovery algorithm is implemented using both the CPU and GPU. The 

algorithm can be initiated from any feature point. The CPU keeps track of where the 

feature discovery point is and uses the weighted average movements from the other 

ColourFAST features in the cluster to correct movement.  On the GPU side of the 

algorithm, feature discovery is implemented with a single shader, it binds the output 

texture from the ColourFAST feature detection pipeline as an input texture as shown in 

Figure 7-1.  Because of the unique ridges and valley that are generated around the contour 

of an object, a Haar-like detector [143] is used to lock the feature discovery point on the 

contour of the object by using the inner and outer ridges of feature points and following the 

valley around the object.  After some modelling a six component (1,2,1,-1,-2,-1) 

combination of Haar masks was found to give the best results for keeping the feature 

discovery point on the contour.  The Haar mask combination is applied five times in the 

shader across ten pixels moving up to two pixels on each side of the ridges and valley.  The 

highest absolute value given from the five Haar masks is used to clamp the discovery point 

onto the maximum feature strength in the inner ridge of feature points on the object.  

Figure 7-2, models the five Haar masks being placed over six ColourFAST single channel 

feature values generated on a white and black edge.     Once the algorithm has clamped 

onto the feature point, a vector is calculated to give the direction of the feature and the 

discovery point is then moved perpendicular to the feature direction where the feature 

strength is calculated, and stored in the output texture along with the X and Y direction 
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movements of the feature discovery point.  This allows the point to travel around the 

contours of an object and allowing the CPU side of the algorithm to put more ColourFAST 

feature points on the object or replace a weaker feature with it.   Four screenshots taken at 

various times show the algorithm discovering points as it moves around the contour of the 

object is shown in Figure 7-3. 

 

0 0.6 1.4 2.6 1 -1 -2.6 -1.4 -0.6 0 

0 0.6 1.4 2.6 1 -1 -2.6 -1.4 -0.6 0 

0 0.6 1.4 2.6 1 -1 -2.6 -1.4 -0.6 0 

 

Figure 7-2: Six component combination of Haar masks applied five times on the contour of 
the object. The mask is shifted left and right up to two pixels.  The values in the table are 
single channel ColourFAST features which were generated from a white and black edge. 

 

Having a cluster of feature points on the object which gives weighted movements for all 

the feature points in the cluster is shown in Section 7.3 to improve accurate tracking.  The 

feature discovery point worked well as long as the camera is kept relatively steady, 

especially for when only a few feature points are in the cluster.  This occurs because the 

feature discovery point is only capable of following the contour determined from the Haar 

descriptor which uses ten pixel fragments in its calculation allowing the point to clamp 

onto the strongest feature up or down, up to two pixels relative to the direction of the 

feature.  On the CPU side the feature discovery point is moved on screen relative to the 

other points in its cluster.  As the number of points in the cluster increases, the feature 

discovery point is able to better follow the contours of the object.   
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Figure 7-3: GPU feature discovery screenshots.  Shows the discovery point finding 
suitable ColourFAST features until a maximum number of features has been found.  The 
algorithm then replaces weaker features with stronger ones which are usually found on 

corners. 

 

 

: Point Clustering 7.2
Feature points in the same cluster can give a combined weighted average for the movement 

of an object.  Weighted averages are calculated by taking a measure of how close a feature 

point matches its previous value, so features that are tracking correctly over multiple 

frames get weighted more towards the overall movement of an object than features which 

may have moved slightly off its intended position or have been occluded this frame, this is 

also combined with the velocity calculation in section 6.3.2 to give average smoothed 

movement over 3 frames.  The overall movement is used to move the tracking window for 

each feature point in the cluster, but still allow each feature to correct its movement to the 

best feature match within the tracking window.  This is demonstrated Figure 7-4 which 

shows three feature points and their movements between frames, where the average 

smoothed movement for the cluster is (𝑈𝑡𝑎𝑎,𝑉𝑡𝑎𝑎) and each point’s offset movement within 

the tracking window as (𝑋𝑝𝑖,𝑌𝑝𝑖).   
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Figure 7-4: Average smoothed cluster movement of tracking windows (𝑈𝑡𝑎𝑎,𝑉𝑡𝑎𝑎) 
calculated from previous movements, with individual feature point movements(𝑋𝑝𝑖,𝑌𝑝𝑖) 

within the window giving the best feature match. 

  

The smoothed cluster movement (𝑈𝑡𝑎𝑣,𝑉𝑡𝑎𝑎) can be calculated first taking the position of 

point i for i=1,2,…..,n in frame by (𝑥𝑖𝑖,𝑦𝑖𝑖) and its movement from frame t-1 to frame t by: 

(𝑢𝑖𝑖, 𝑣𝑖𝑖) =  (𝑥𝑖𝑖 −  𝑥𝑖 𝑡−1,𝑦𝑖𝑖 −  𝑦𝑖 𝑡−1) 

Then the cluster position in frame t is given by:  
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The smoothed clustered movement over three frames from t-2 to t using a weighted 

average: 

(𝑈𝑡𝑎𝑎,𝑉𝑡𝑎𝑎)  =  
1
2

(𝑈𝑡,𝑉𝑡) +  
1
3

(𝑈𝑡−1,𝑉𝑡−1) +  
1
6

(𝑈𝑡−2,𝑉𝑡−2) 

 

If several feature points are exhibiting a significant change of movement compared to the 

other features in the cluster, then there may be two or more individual objects in the scene 

that are moving in different directions.  The tracking feature points should be split 

according to the directions.  Several cluster analysis algorithms were investigated, however 

it seemed that either density or centroid based models were appropriate for this work to 

achieve good clustering.  The most popular algorithms for each model were chosen, 

DBSCAN and K-Means clustering and were implemented on the CPU side of the project.  

Although it is possible to optimize the algorithms for the GPU [99, 144, 145], this was 

avoided in this project because the information that is needed to cluster is already on the 

CPU side of the project as well as the nature of the algorithms which require several 

conditionals and loops makes porting it to a GPU less beneficial. 

 

Initially all feature points that are being tracked belong to one cluster assuming that only 

one object is being tracked.  To determine whether the cluster of feature points lie on more 

than one object moving in different directions a variance formula is used for both 

clustering implementations.  Similar to the formula in section 6.3.2, the actual movements 

of the points (not the average cluster movement) is used to create a smoothed velocity 

movement for each tracking point over three consecutive frames.  The variance of 

movement of the feature points is given by:  

(𝑣𝑣𝑣𝑣𝑡,𝑣𝑣𝑣𝑣𝑡) =  
1
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If the sum 𝑣𝑣𝑣𝑣𝑡 +  𝑣𝑣𝑣𝑣𝑡 is greater than some upper bound threshold then the clustering 

algorithm is run resulting in several separate clusters of feature points.  This can be 

repeated to further split clusters as the scene changes.  Similarly if the average movement 



   104 | P a g e  
 

of points in a cluster are similar to movements in another cluster, then the two clusters can 

merge into one.   

 

Figure 7-5: Screen shots of DBSCAN.  The coloured borders shown around the feature 
points are drawn by the application to show points in the same cluster.  The top screen 

shot shows still rectangles and their feature points all in one cluster.  The bottom screen 
shot shows rectangles moving in different directions therefore becoming three separate 

clusters.  

 

In both DBSCAN and K-Means clustering implementations clusters were determined by 

using point movements over three frames rather than point screen positions and taking L1-

norm distances between the movements to determine whether or not points belong in the 

same cluster or not.  Because the K-means algorithm needs to know the value of K (the 

number of clusters that should be produced), K was chosen to be 2.  If the variance in any 

of the produced clusters was high, then K-Means can be repeated on that cluster to split it 

into further clusters.  
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: Results and Testing 7.3
Both clustering implementations showed comparable accuracy for splitting feature points 

into clusters, so it was hard to determine which worked best.  Timing of the algorithms 

involved placing a total of 50 feature points on the screen and timing how long the 

algorithms took to cluster the points, which was done on the Samsung Galaxy S2 and 

Galaxy S4 devices with preview frame resolutions set to match the screen resolution on 

both.  For this test the points were re-clustered every frame and the results averaged after 

several seconds.  K-means was set to K=2 with no further splitting of the two clusters for 

this frame.  

 

The results in Table 7-1 show that K-Means runs slightly faster than DBSCAN in this 

implementation, however the times would increase more if there are more than two objects 

moving in the scene as the K-Means algorithm has to be repeated on the resulting clusters.  

The Galaxy S2 showed faster clustering rates overall, perhaps because of the overhead of 

the CPU on the S4 extracting such high resolution images (1920x1080) from the camera as 

well as processing other background tasks.    DBSCAN was chosen in this thesis as it has 

the advantage of splitting into any number of clusters, and includes the detection of 

“noisy” features, with little cost to speed.  

 

Clustering Algorithm Galaxy S2 Times  Galaxy S4 Times 

K-Means 2.1 ± 0.5 3.65 ± 0.8 

DBSCAN 3.45 ± 0.75 5.77 ± 1.3 

 
Table 7-1: Average clustering times and standard deviation for 50 feature points in 

milliseconds on two devices.  

 

A single ColourFAST feature point was demonstrated to track very well in Chapter 6, so 

testing was done to determine whether the average movement for a cluster of points 

collectively track better than feature points on their own.  The testing was also to give a 

general idea on how well the points can cluster and merge together to track multiple 

objects moving in different directions.  The test involved setting up a Java program and 
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placing three different coloured rectangles (different colours were chosen after every 10 

tests) on screen with four feature points on each.  These rectangles move about the screen 

in different directions and speeds.  They bounce off the edges and each other at random 

angles and can randomly increase and decrease in speed.  Initially when the rectangles are 

stable, all points belong to the same cluster, however once the test application starts, the 

clustering algorithm is able to determine that the feature points actually belong to three 

different objects from their differing movements and uses the average weighted 

movements for each point in a cluster to determine the overall movement for the object.  

Testing was done on two mounted devices, the Samsung Galaxy S2 (set at full screen 

resolution 800x480) and the Galaxy S4 (set at 1280x720) as shown in Figure 7-6 with 

screenshots from the device in Figure 7-5.  The tests were run for one minute each and 

repeated 50 times for both clustered and non-clustered movements and noting down how 

many feature points out of the 12 were lost.    

 

 

Figure 7-6: Setup for tracking accuracy using clusters test. 

 

As Table 7-2 shows, using the clustering algorithm dropped the performance on both 

devices slightly less than 2fps on average.  However this small drop in performance is 

compensated by the accuracy of tracking objects using clustered movements as shown in 

the graph in Figure 7-7. 
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Phone Clustered Frame Rates Non-Clustered Frame Rates 

Galaxy S2 20.2 ± 1.7 22.1 ± 2.1 

Galaxy S4 24.7 ± 1.2 26.5 ± 1.4 

 
Table 7-2: Average frame rates and standard deviation for tracking 12 feature points, 

comparing clustering with non-clustering in frames per second (fps) 

 

 

Figure 7-7: Graph shows tracking accuracy for clustered and non-clustered points.  It 
gives the number of tests that passed only losing a specified number of points.   

 

 

: Future Work 7.4
Work is still continuing on the feature discovery algorithm.  At the moment feature 

discovery finds features progressively over camera preview frames, only moving a small 

distance between each frame.  This can cause problems especially when there are only few 

feature points currently being tracked on the object as the discovery point moves relative to 

them.  This means a sudden movement of the camera causing one of the ColourFAST 

points getting tracked to come off, can then cause the discovery point to also come off the 
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contour of the object more easily.  Having more points in the cluster allows a more 

smoothed movement.  One idea to improve this algorithm is to use a separate thread which 

processes a still frame while the rest of the feature detection and tracking pipeline continue 

processing frames from the camera.  As the feature discovery algorithm finds new features, 

it could notify the tracking part of the pipeline as more features are found and they could 

be updated to the moving frame relative to the feature points on the still frame.  

Periodically a new still frame could be taken from the tracking part of the pipeline so it 

isn’t outdated for too long. 

 

Clustering of feature points worked well for tracking multiple objects, however in this 

work the algorithms were CPU based as movements are already held on the Android CPU 

side of this application.  Future work will involve investigating using the GPU instead to 

do the bulk of the clustering calculations for the DBSCAN algorithm and comparing its 

performance with CPU implementations.  DBSCAN has been parallelized before in [99].  

Very recently DBSCAN has been ported to desktop GPU in [146], albeit there seems to be 

no mobile GPU versions of the algorithm which exist at the time of this writing.   
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Chapter 8  

GPU-based Object Recognition 
 

Using the compact feature vector which is created from ColourFAST feature points works 

well for tracking especially once combined with clustering to create an overall movement 

for an object.  Although the main objective of this thesis was purely doing natural feature 

point detection and tracking on mobile GPUs, the question arose whether or not the 

compact feature vector created from ColourFAST for feature points could also be used for 

quick and elementary object recognition using only the four-component feature vectors for 

each of the feature points generated from the ColourFAST feature detection algorithm.  

The GPU shader code for version 2 of the GPU-based object recognition algorithms are 

found in Appendix E: ColourFAST Object Recognition Shaders. 

 

 

: Object Recognition and Feature Descriptions 8.1
Object recognition is a complex task in computer vision which detects and identifies 

objects within an image or video sequence.  Object recognition differs from object 

detection; object detection is mainly focused on finding an arbitrary object in the scene, 

whereas recognition aims to exactly identify what the object is.  Humans are adept at 

recognizing multiple objects even when they exhibit differing viewpoints, scale, rotation, 

partial obstruction and under various lighting and shaded conditions.  However this task is 

still a challenge for computer vision systems and many approaches to the task have been 

implemented.   

 

Object recognition is an entire discipline in itself and is a combination of multiple 

algorithms which work together to detect and recognize an object.  Many object 

recognition techniques use feature descriptions, which calculate a unique vector of values 

to identify or describe a feature point.  The work in this chapter only investigates the 

potential for whether feature descriptors generated from ColourFAST could be used for 
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object recognition.  In this chapter an object recognition algorithm is developed 

specifically for ColourFAST feature points.  However, this thesis has not compared this 

new algorithm with other recognition algorithms as the primary focus is on the compact 

feature descriptor.  More sophisticated object recognition algorithms such as those using 

neural networks could be adapted to use ColourFAST instead of techniques such as SIFT 

and Lucas Kanade. 

 

Objects can be identified by comparing the features found in an image to features 

descriptions of previously known objects, held in a database.  SIFT [57] and SURF [60] 

are two common feature detector and descriptor algorithms.  SURF is known to be 

computationally faster than SIFT [61], however if speed is not essential then SIFT 

outperforms SURF in terms of accuracy [147].  There are many variations and similar 

algorithms to SIFT and SURF including PCA-SIFT (Principal Component Analysis – 

Scale Invariant Feature Transform) [148], GLOH (Gradient Location and Orientation 

Histogram) [149] and HOG (Histogram of Oriented Gradients) [130].  Feature descriptions 

are typically very large in these object recognition algorithms, for example SURF uses a 

64-component feature description whereas SIFT typically uses 128 components. PCA-

SIFT in [148] has reduced the SIFT descriptor to a 36-component feature using principal 

component analysis [150], increasing its matching speeds.  It claims to have a more 

distinctive feature vector leading to significant improvements in matching accuracy for 

controlled and real-world conditions.  Both SURF and SIFT have also been modified for 

mobile device platforms in the past by further reducing the descriptors and using other 

modifications [89, 90], however these are CPU based.   To speed up detection [89] uses a 

simplified 36 component SIFT descriptor alongside FAST for feature detection.   

 

 

: GPU-based Object Recognition version 1 8.2
Since ColourFAST generates a four component feature vector, the question arose whether 

it can be useful for recognizing simple objects.  This part of the research undertook a 

feasibility study using a cluster of tracked feature points which gets matched to feature 

points for predetermined objects.  It was not compared to the other known object detection 
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algorithms for performance nor accuracy.  It was done to see if ColourFAST features could 

be used for rudimentary recognition and ways they could be incorporated into a more 

sophisticated recognition algorithm.   

 

Matching was done with a single shader pass and binding the following five input textures: 

1. Output texture from the ColourFAST feature detection pipeline which contains the 

four channel feature vector values. 

2. Output texture from the ColourFAST feature search pipeline, this gives how much 

a point has moved (where the best match is) within the tracking window. 

3. Texture created on CPU side which has the previous positions (x,y) for each 

tracking point on the screen encoded between zero and one. 

4. Texture created on CPU side which contains all objects and their features that can 

be matched.  The two dimensional texture is created with height equal to the 

number of objects that are getting matched against and width is the maximum 

number of features in any of the objects.  Each row holds a single object, with its 

associated features in each of columns in the texture. If an object has less features 

than the maximum amount number of features for objects, then padded zero values 

are instead placed into the texture.  See Figure 8-1. 

5. Single column texture created on CPU side which has the number of features for 

each object in the above object texture.  The height of this texture matches the 

height of the texture 4. See Figure 8-1. 

 

 

 

 

 

 



   112 | P a g e  
 

O1 = 5  O1f1(r,g,b,a) O1f2(r,g,b,a) O1f3(r,g,b,a) O1f4(r,g,b,a) O1f5(r,g,b,a) padding 

O2 = 4  O2f1(r,g,b,a) O2f2(r,g,b,a) O2f3(r,g,b,a) O2f4(r,g,b,a) padding padding 

O3 = 2  O3f1(r,g,b,a) O3f2(r,g,b,a) padding padding padding padding 

.  . . . . . . 

.  . . . . . . 

.  . . . . . . 

.  . . . . . . 

Om = n  Omf1(r,g,b,a) Omf2(r,g,b,a) . . . Omfn(r,g,b,a) 

 
Figure 8-1: Two textures generated on the CPU side to hold and describe objects that 

could be matched.  The left texture gives the number of features held in each object. The 
right texture holds each objects feature point values. 

 

On the CPU side the textures are bound so that each of the old position values (texture 3) 

for the tracking points on screen are in separate fragments.  Inside the shader this value is 

used to first get an updated value for the ColourFAST feature vector by using the previous 

position value to look up how much the point has moved (from texture 2), these values are 

encoded between 0 and 1 in the texture as required in OpenGL ES 2.0.  The size of the 

tracking window is passed in as a uniform float so that the values in texture 2 can be 

decoded to give the pixel movement to the best match.  The movement values are then 

added to the previous position values and used to obtain the current ColourFAST feature 

vector (from texture 1).  This value is then matched against each feature vector values for 

each of the possible objects.  The shader is passed two more uniform floats which specify 

the number of candidate objects being matched against and the maximum number of 

features for each of those objects.  This is used to convert between texture coordinates and 

rows and columns in the candidate object texture.  The shader code simply moves across 

each of the potential objects that are being matched (in texture 4) and calculates L2 norm 

distances between the target feature point vector and a potential match feature vector.  The 

number of times it needs to move across depends on the number of feature points the 

potential matching object has (held in texture 5).  The two best matching values and the 

distance value, which specifies how close of a match they are, are encoded and placed in 

the four components of the output texture.  The object recognition pipeline with the 

important uniform inputs and bound input and output textures are shown below in Figure 

8-2. 
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Figure 8-2: GPU-based object recognition pipeline.  Shows five input textures being fed 
into the pipeline with the output texture storing the best object matches for the features 

being tracked on screen. 

 

On the CPU side the texture is read and decoded, giving the best two matching feature 

values for each point and a value for how close of a match they were.  These are then all 

tallied up to give the best matching objects overall and how close of a match they are to the 

object being tracked. 
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: GPU Based Object Recognition Version 2 8.3
Performing some initial tests from the GPU based object recognition discussed in the 

previous section showed some success, but the match accuracy of objects being recognized 

was lower than expected.  After some modelling a new approach was implemented that 

instead uses two different shader passes overviewed below in Figure 8-3. 

 

Figure 8-3: GPU Object Recognition Pipeline. Shows two shaders in yellow, with some 
important uniform values passed in grey.  In white are the three input textures being fed 
into the pipeline, and also the output texture storing values for the best match for each 

object. 

 

The first shader takes three input textures, two of them the same as the previous version of 

this algorithm (which were textures 4 and 5, See Figure 8-1), the first holding each match 

candidate object and its feature point values (referred now as texture 1) and the other 

holding the number of features in each candidate object (referred now as texture 2).   The 

third texture is created and populated with feature point values being tracked on the CPU 

side (texture 3).  This gives a big advantage over the previous version of the algorithm as it 

uses feature values which have been blended over successive frames, meaning that if some 

of the feature points get lost for a frame or two, they don’t affect the match criteria as 

much.  Previously only the current feature value for this frame was used, so it also had to 

be looked up to find where it has moved.  This means that only three bound input textures 

are used instead of five.  The width of the texture is equal to the number of tracked feature 

points that are being matched and the height is equal to the amount of candidate objects 
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that are to be matched against.  The rendered quad coordinates inputted into the shader 

matches the size of this texture.  The idea is that features on screen should find the best 

matches for features in every object, thus giving an estimate how well each of the features 

match each candidate object which is held on every row.   

 

Inside the shader each tracked feature fragment looks up its own ColourFAST feature point 

values from texture 3.  It then searches for the best feature match for the object candidate 

in the row that it is trying to match with by performing a GLSL distance calculation (L2-

norm) between its own feature value and each of the feature values held in the candidate 

object (using textures 1 and 2).  The coordinates to extract each feature point from the 

candidate object texture are calculated using the maxFeatures uniform value giving the s-

coordinate, the t-coordinate just matches the t-coordinate of the current shader.  Each 

feature fragment stores the best match value (minimum distance) for a single feature for 

that candidate object.  Each row in the inputted quad represents a different candidate object 

that the algorithm is trying to match.  The output texture holds values for best feature 

matches for each feature point being tracked on screen in the columns and for each object 

candidate being matched held in the rows of the texture.  See Figure 8-4. 

 

The second shader pass binds the output texture from the first shader as its input.  The 

rendered quad is set to the height of the amount of candidate objects being matched and 

width set to one.  Each fragment in the quad holds a sum of the feature values matched 

against the candidate object held in the same row as it from the previous render pass.  

Before the value of each feature is read and added to the sum a square root of the value 

multiplied by two is taken so that bad matches are pushed out further and good matches are 

distributed more.  The sum of these values then gets encoded between 0 (perfect match) 

and 1 (bad match) by dividing the result sum by the number of feature points being tracked 

which is passed in as a uniform float value.  The output texture then holds the encoded 

feature sum for each candidate object, with the lowest values being the best match for the 

feature points being tracked.  Once rendered on the CPU side, the application keeps track 

of the top five matches by using the values held in output texture of the object recognition 

pipeline.  See Figure 8-4. 
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 O1f1 O1f2 - - - O1fn  O1Sum(f1~fn)  
O2f1 O2f2 - - - O2fn O2Sum(f1~fn) 

- - - - - - - 

- - - - - - - 

- - - - - - - 

- - - - - - - 

- - - - - - - 

Onf1 Onf2 - - - Onfn OnSum(f1~fn) 

 

Figure 8-4: Object recognition shader output textures.  Left shows the output texture of the 
first shader, holding best feature matches (minimum distance) between each of the feature 
points being tracked f and each candidate object O.  Right holds the output texture for the 

second shader holding sums of each feature point match for each candidate object. 

 

 

: Results and testing 8.4
Initial testing showed that the second implementation of the object recognition algorithm 

proved to be a lot better than the first implementation.  Testing was performed on the 

Samsung galaxy S4 only, as the input textures bound from the CPU used FloatBuffers 

which are unsupported on the S2 device used in testing in the other chapters.  Two tests 

were performed on the second version of the GPU based object recognition algorithm, 

testing both match accuracy and match speeds, as discussed in the following subsections.    

 

8.4.1: Match Accuracy test 
As discussed earlier SIFT and SURF show great matching accuracies even under small 

changes of lighting, partial occlusion, scale and rotations.  This work was not intended to 

produce a viable alternative to any of the existing feature description algorithms for object 

recognition, but only as a starting point for further investigation into whether ColourFAST 

feature points can be adapted for object recognition using new and quick GPU algorithms.  

No added information is added to the ColourFAST feature descriptor in this 

implementation, instead matching is done only using the four channels, comparing the 
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points being tracked to the multiple feature points for each previously recognized object in 

the data set.   

 

Many of the standardized data sets for object recognition use still images or video.  Using 

extracted video frames for mobile is difficult as many formats are still unsupported or need 

certain codecs.  This work aimed to also test the algorithm on real life conditions, taking 

the limitations of the device camera on live feed into consideration such as camera capture 

frame rate and noise in the image.  A small data set was made containing fifty different 

common logos which were downloaded from the internet.  Each logo was cycled through 

and carefully had a number of typical features picked on it or had the feature discovery 

algorithm from Chapter 7 run on them to find features along the contours of the logo.  This 

was done on a still frame going through the pipeline and then saving each object to a data 

file.  This gave 50 candidate objects which the algorithm can match against.  Once the 

application starts up, the data file is read, each object and associated four component 

ColourFAST features are then saved into a texture which is fed into the first shader from 

section 8.3.   

 

Logo recognition has been done before in [151] using a string matching technique and 

separating the logo from the foreground of video frames of a football game.  It did 

however have a high false positive detection rate of finding many non-logo regions in 

some areas of the video.  Logo recognition has also been done using SIFT descriptors as 

demonstrated in both [152] and [153].  The work in [153] used vehicle logos on cars as a 

data set and was able to achieve a 91% recognition success rate on, however the times that 

it took to calculate both detection and recognition of the logo was 1400 milliseconds.  

Mobile logo detection has been achieved in [154] which runs SIFT on the first camera 

frame in order to locate the logo location and then by using an online calibration of colour 

within the SIFT detected area to detect and tract the logo in subsequent frames.  Mobile 

logo recognition has also been done in [155] using a combination of SURF keypoint 

detector, FREAK (Fast Retina Keypoint) [156] descriptor calculator and a background 

subtraction method to achieve a very high 97% recognition success rate.  However the 

recognition of a logo takes an average execution time of 1.7 seconds on ordinary single 

core smart phones.  It appears so far that mobile logo recognition has only been achieved 
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with CPU based algorithms. This work looks to utilize the GPU to achieve a much faster 

“real time” recognition rate whist still maintaining suitable match accuracy. 

 

 

The test involved cycling through the same logos in four different scenarios and trying to 

match them with the object candidates held in the texture and outputting the top five 

matches to the device screen.  The objects were just displayed on a typical LCD desktop 

display with the mobile device aimed at straight at it.  The object recognition part of the 

pipeline is only run once an observe button is pressed.  The four scenarios were run 

consecutively on each logo:   

• The first involved placing feature points intuitively on the logo, so some of the 

points were in different positions from the object candidates, to measure the 

robustness of the object recognition to having some different feature points.   

• The second test involved unfreezing the frame so live camera frames are passed 

through the pipeline instead whilst still maintaining the camera stationary (except 

for minor hand movements), and attempting to recognize the object after a 20 

seconds of tracking.  This was done to measure the robustness of object recognition 

during tracking.   

• The third test directly followed the second test and involved moving away from the 

object by approximately a factor of two while still tracking the object, to measure 

robustness to object scale, waiting another 20 seconds before performing the object 

recognition again.   

• The last test involved zooming in slightly but panning left or right of the display 45 

degrees, waiting another 20 seconds and performing object recognition again.  This 

was done to measure the robustness of object recognition to skew.   

The waiting 20 second waiting periods were done to allow the features to settle and to 

remove any doubt that objects are only being recognized from new values in the test and 

not because of the feature blending with previous values.  This allows enough time to pass 

between tests so that any portion of the feature value from the previous test has effectively 

been removed.  Figure 8-5 gives example screenshots of the tests undertaken and shows 
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the object being tracked and then matched as the correct first pick decided from the object 

recognition algorithm and the logos used in the data set shown Figure 8-6.   

 

It is important to reiterate that these tests were done back to back leaving the features 

where they are across tests as they are being tracked.  Therefore the feature points for 

objects being recognized in the fourth test are the same as the features in the first test, 

meaning they have been tracked for over 60 seconds in duration over the four condition 

tests and any movements between tests.  A failed test was decided by not having the object 

recognized in the top five picks.   Out of 50 objects, the algorithm picked 23 perfect 

matches which were the first pick across all four tests.  Only 1 object failed all four tests by 

not being in the top five picks.  None of the other objects failed more than one test being a 

mixture of first-fifth picks.  Out of all 200 tests there were 156 correct first place picks.  

The picks for each scenario is shown below in the graph in Figure 8-7. 
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Figure 8-5: Object recognition testing screenshots.  Shows the top five candidate object 
picks for three of the tests.  Top shows steady frame at the same distance that the features 
are held for candidates. Left-bottom shows zoomed out test and right-bottom shows test 
which is panned to the right by 45 degrees.  This object being tracked is a perfect match 

being put first choice by the algorithm in all three tests.   
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Figure 8-6: Logo dataset used for object matching.  Perfect matches in red (all four tests 
identified the object as its first pick), good matches in blue (mostly first choices but some 
between second and fifth choice), average matches that failed one test in yellow, and in 

black the logo that terribly failed all four tests. 
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Figure 8-7: Object Recognition match accuracy for four consecutive tests. 

 

Matching was done using features in the RGB colour space and performed in the same 

office condition over two days however there may have been changes in lighting from the 

window which affected the result.  The YUV colour space could have instead been used, as 

changes in intensity in the scene only affect the Y component whereas it affects all three 

components in the RGB colour space.  This could perhaps improve matching results 

further if lighting was an issue.  

 

8.4.2: Match Speed Test 
Matching accuracy was higher than expected however the real advantage of performing 

GPU based object recognition on ColourFAST features was expected to be the speed of 

matching.  Speed was tested on output frame resolution 1280x720 on the Samsung Galaxy 

S4.  The test involved comparing frame rates of the entire GPU ColourFAST detection and 

tracking pipeline with and without the object recognition render passes constantly running 

on every frame.  Matching accuracy was ignored for this test, instead a number of random 
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points were placed on screen and given random ColourFAST values every frame.  This 

prevents potential caching on the GPU so that a more fair and accurate reading can be 

calculated.  The algorithm uses these randomized values to match against the same 50 

candidate objects used in the match accuracy tests.  The application was run for a few 

minutes for each test, with frame rates recorded and averaged as shown in Table 8-1.  

Average object recognition speeds are calculated by subtracting the frame rates of the 

pipeline with object recognition running from the rates of the pipeline without object 

recognition running and shown below in Table 8-2.   

 

ColourFAST pipeline 5 features 10 features 20 features 50 features 

Without Object Rec 38.41 ± 0.7 32.98 ± 1.0 23.04 ± 1.0 11.42 ± 0.5 

With Object Rec 33.56 ± 1.0 29.52 ± 1.1 20.33 ± 0.8 10.67 ± 0.5 

 
Table 8-1: Average pipeline throughput and standard deviation measured in frames per 
second (fps), with object recognition enabled and disabled, for a number of randomized 

feature points.    

 

ColourFAST Pipeline 5 features 10 features 20 features 50 features 

Object Recognition Speed 3.76 3.56 5.78 6.12 

 
Table 8-2: Average object recognition speeds for a number of feature points measured in 

milliseconds. 

 

The GPU based object recognition algorithm shows remarkable speed being able to match 

each of the 50 feature point to a data set of 50 objects in only few hundred microseconds.  

Due to the parallel nature of the GPU algorithm, the GPU appears to be underutilized by 

having only a few features on screen, this shows the reason why processing 10 features has 

comparable time to processing 5 features in this test.  

 

The 50 objects stored in the candidate match texture have their feature points stored as four 

float values.  This means that if an average object to match stored has 20 feature points, the 

50 object texture is only of size 16KB.  The GPU can easily store this texture in its Level 2 

(L2) cache which on the Galaxy S4 is of size 2MB.  This means that 5000 candidate 
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objects could be stored in the cache using 1.6MB of space and would still result in 

extremely fast match speeds.  To save even more cache memory the values could be stored 

as bytes, since the rest of the ColourFAST pipeline already stores values as bytes, therefore 

reducing the size of cache memory by a factor of four.  

 

 

: Future Work 8.5
GPU based object recognition using ColourFAST features appears to be promising in 

terms of speed and has shown good matching accuracy.  However this work was just the 

gateway in what still needs to be explored.  To compete with SIFT and SURF, this 

algorithm needs to improve accuracy further although its performance is already 

substantially better.  Matching can be improved by increasing the size of ColourFAST 

feature vectors to contain more than four components.  One way could be to combine 

actual colour space values for the pixel with the ColourFAST feature values creating a 7 

component feature descriptor.  Furthermore, four small grids could be smoothed on each 

quadrant of the feature direction and its orthogonal vector to create more feature descriptor 

components.  SIFT uses a more advanced version of this approach, however perhaps the 

more simplistic way investigated here could also work without significantly slowing the 

matching speed.  Feature point matching could also include relative position between 

expected feature points and their values, further enhancing match accuracy, so including a 

spatial component to the feature points. 

 

Using a four component feature vector worked well for matching simple logos, however an 

increase in the number of feature components could result in recognizing more advanced 

objects such as landmarks or structures.  This work will investigate taking advantage of the 

unique capabilities of mobile devices by utilizing the built in compass and GPS receiver.  

Using the directional information combined with location data, the application could obtain 

localized candidate matches within the area of the mobile device, reducing the number of 

potential objects that need to be compared during recognition.  There could be hundreds of 

thousands of landmark objects in an online database with associated geographic 

coordinates.  The device could periodically retrieve feature sets for landmark objects 
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within its vicinity and direction the camera is facing via the cellular network or Wi-Fi.  

This could improve location based mobile augmented reality applications by pin pointing 

exactly where the landmark of interest is.  GPS often loses accuracy in urban environments 

due to multipath effects, so having a quick matching system for structures or landmarks 

would be of benefit. 

 

Other improvements that are currently being investigated include matching under differing 

lighting conditions.  Using an extra shader pass to perform histogram equalization on the 

image from the camera could aid in matching by reducing the effects of light and 

shadowing.  Greater changes in scale need to be investigated as well as adding rotation 

invariance.  The directions for each of the feature points in a cluster for an object could be 

combined to give an overall direction measure for the object.  When matching candidate 

objects, its overall direction measure can be matched to the object being tracked and 

relative directions for features could instead be compared.   
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Chapter 9  

Conclusion 
 

The technological evolution of mobile devices has rapidly increased over the last few 

years, especially with the advent of the smart phone.  Now the GPU, CPU and camera 

capabilities of mobiles have greatly improved, opening the door to many interesting 

computer vision and mobile augmented reality applications that were not feasible only 

several years earlier.  The GPU is now especially suitable for real time image analysis, 

feature detection, feature recognition and tracking, easily outperforming its CPU 

counterparts on many image processing algorithms.  Most current mobile devices support 

OpenGL ES 2.0 and GLSL programmable shaders which can be used to create GPU based 

applications.   

 

Canny edge detection is a common image analysis algorithm and it illustrates many of the 

issues associated with implementing image processing algorithms on GPU.  Canny was 

implemented and optimized to be made suitable for GPUs in Chapter 3.  The new 

implementation of Canny took advantage of the parallel nature of the GPU by using the 

programmable shader pipeline with multipass rendering techniques.  The developed 

algorithm was performed on real time video frames from the embedded camera and tested 

on a wide range of different device platforms.  As demonstrated in Chapter 4, the GPU-

based implementation of Canny edge detection showed its superiority, in terms of frame 

rate, over OpenCV’s CPU implementation on devices released in 2011 and later. 

 

GPU-based image processing was then used for implementing FAST feature detection on 

real time video frames from the device camera in Chapter 5.  FAST was optimized to be 

made suitable for the GPU pipeline and demonstrated a significant speed advantage over 

OpenCV’s implementation.  After numerous modifications to FAST, including the use of 

colour, smoothing of the image, and removal of thresholds, the ColourFAST feature 

detection algorithm was created.  ColourFAST made several improvements over FAST 

features, including the production of a four channel compact feature vector which included 
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colour changes as well as an orientation for the feature.  Taking advantage of the SIMD 

nature of GPU allows valuable information about feature points to be calculated and 

utilized with very little performance penalty.   ColourFAST was comparable to FAST in 

terms of performance frame rates and in some cases actually performed slightly better. 

 

A GPU-based feature search algorithm was then implemented in Chapter 6, which was 

used to track ColourFAST features.  ColourFAST feature tracking finds the best feature 

match across camera frames by rendering a small search window around where each 

feature is predicted to be based on its movements across three previous frames.  This gives 

a movement from the centre of the search window to where the best matching point is.  

The movement values are then added to the feature point position and used in the next 

frame to centre the search window.  The movement of windows is controlled by the host 

application, so velocity and acceleration of features are also taken into consideration to 

perform effective tracking.  The ColourFAST feature tracker was compared to a GPU-

based implementation of Lucas-Kanade and showed an improvement in tracking accuracy 

and an increase in frame rates.  It also showed several other improvements including the 

feature being able to be occluded for a few frames, and also allowing the feature to adapt 

quickly to gradual changes in the environment, such as rotations, scale, and changing 

lighting conditions by the gradual blending of new features values with existing features. 

 

A new GPU based feature discovery algorithm was implemented in Chapter 7, allowing 

more features to be found from a single feature point.  It exploits the nature of 

ColourFAST feature points around object contours, having a distinctive ridge-valley 

pattern to feature point strengths.  This pattern was exploited via a Haar mask to stay 

accurately locked onto the contour while moving along the object.  The feature discovery 

algorithm produced a group of features, called a cluster that can collectively track an object 

using an average weighted movement calculated from the individual movements of 

features.  The weightings in the overall object movement are computed so that features 

which consistently obtain good matches add more to the movement than the features with 

weaker matches.    The application was then modified to allow the tracking of multiple 

objects which may be moving in different directions, separating features into several 

clusters, using the DBSCAN clustering analysis algorithm.  The clusters of features are 
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used to track only their associated objects.  The application can also merge clusters into 

one if the objects are moving in the same direction.  

 

Finally a new GPU based object recognition algorithm was also implemented Chapter 8.  

Previously known objects and their ColourFAST feature values are stored in a big texture.  

The algorithm uses a cluster of points being tracked on screen to match against the objects 

held in the texture and output the best candidate matches for the object being tracked.  The 

algorithm only uses the four component ColourFAST feature descriptor for matching each 

feature point.  The GPU based object recognition algorithm worked really well on simple 

objects, such as logos, giving high match accuracies. However these tests didn’t take 

rotation invariance, changes in lighting and large changes in scale into consideration.  The 

real power of the algorithm was demonstrated by its matching speed, showing remarkable 

performance compared to existing object recognition algorithms, essentially creating a 

feasible real time recognition algorithm.  This is just preliminary work, but serves as a 

promising investigation into using ColourFAST features for more advanced object 

recognition which is currently being undertaken.  Future work is investigating using 

location information to retrieve small subsets of candidate objects via the cellular network 

from a vast online database of known landmark objects and exploiting the relative spatial 

positions of the feature points.  

 

The feature algorithms implemented in this thesis were designed for the mobile GPU 

OpenGL ES pipeline.  However they can also be of benefit to any device with a camera 

and GPU, they could be ported to CUDA or OpenCL platforms.  The feature algorithms 

were developed with the main objective of improving processing speed, without 

significantly compromising accuracy and correctness of features.  Combined together the 

algorithms could be used to create some interesting applications, especially for mobile 

augmented reality where high tracking accuracy of generated features combined with 

speed is essential.  They could be used to remove the need for fiducial markers and could 

also be combined with location based mobile augmented reality applications to improve 

the geographic accuracy where landmarks or structures are situated.  They also could play 

a significant role in other object detection and recognition applications, augmented 

virtuality games, and navigation.   
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Appendix A: Canny Edge Detection Shaders 
 
 
/* 
 gaussblur55_f.txt fragment shader performs a one-dimensional 5x1 Gaussian blur, 
 This is done twice both horizontally and vertically so that a 5x5 Gauss is 
 performed on the input image.  
*/ 
precision mediump float; 
varying vec2 vTexCoord; 
uniform sampler2D inputImage; 
uniform vec2 pixelStep; 
 
void main() 
{ 
 float sum = 0.0625*texture2D(inputImage, vTexCoord - (pixelStep + pixelStep)).r 
    + 0.25*texture2D(inputImage, vTexCoord - pixelStep).r 
    + 0.375*texture2D(inputImage, vTexCoord).r 
    + 0.25*texture2D(inputImage, vTexCoord + pixelStep).r 
    + 0.0625*texture2D(inputImage, vTexCoord + (pixelStep + pixelStep)).r; 
 gl_FragColor = vec4(sum); 
} 
 
 
 
 
 
/* 
 gaussblur33_f.txt fragment shader performs a one-dimensional 3x1 Gaussian blur, 
 This is done twice both horizontally and vertically so that a 3x3 Gauss is 
 performed on the input image.  
*/ 
precision mediump float; 
 
varying vec2 vTexCoord; 
uniform sampler2D inputImage; 
uniform vec2 pixelStep; 
 
void main() 
{ 
 float thisV = texture2D(inputImage, vTexCoord).r; 
 float sum = 0.25*(texture2D(inputImage, vTexCoord - pixelStep).r 
    + thisV+thisV + texture2D(inputImage, vTexCoord + pixelStep).r); 
 gl_FragColor = vec4(sum); 
} 
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/* 
sobel_f.txt fragment shader performs a gradient vector calculation and classification 

*/ 
precision mediump float; 
varying vec2 vTexCoord; 
uniform sampler2D inputImage; 
uniform vec2 pixelStep; 
const mat2 ROTATION_MATRIX = mat2(0.92388,0.38268,-0.38268,0.92388); // 22.5 degree rotation 
void main()  
{ 
 float a11 = texture2D(inputImage, vTexCoord - pixelStep).r; 
 float a12 = texture2D(inputImage, vec2(vTexCoord.s, vTexCoord.t - pixelStep.t)).r; 

float a13 = texture2D(inputImage, vec2(vTexCoord.s + pixelStep.s, vTexCoord.t -  
   pixelStep.t)).r; 

  
 float a21 = texture2D(inputImage, vec2(vTexCoord.s - pixelStep.s, vTexCoord.t)).r; 
 float a22 = texture2D(inputImage, vTexCoord).r; 
 float a23 = texture2D(inputImage, vec2(vTexCoord.s + pixelStep.s, vTexCoord.t)).r; 
  
 float a31 = texture2D(inputImage, vec2(vTexCoord.s - pixelStep.s, vTexCoord.t +   
    pixelStep.t)).r; 
 float a32 = texture2D(inputImage, vec2(vTexCoord.s, vTexCoord.t + pixelStep.t)).r; 
 float a33 = texture2D(inputImage, vTexCoord + pixelStep).r; 
  
 vec2 sobel = vec2((a13+a23+a23+a33)-(a11+a21+a21+a31), (a31+a32+a32+a33)-   
   (a11+a12+a12+a13)); 
  vec2 sobelAbs = abs(sobel); 

//rotate sobel vector by 22.5 degrees, then double its angle so it falls  
// into one of four quadrants 

    vec2 rotatedSobel = ROTATION_MATRIX*sobel; 
     vec2 quadrantSobel = vec2(rotatedSobel.x*rotatedSobel.x-rotatedSobel.y*rotatedSobel.y, 
         2.0*rotatedSobel.x*rotatedSobel.y); 
  
 vec2 neighDir = vec2(step(-1.5, sign(quadrantSobel.x)+sign(quadrantSobel.y)), 
     step(0.0, -quadrantSobel.x)-step(0.0,quadrantSobel.x)*step(0.0,-quadrantSobel.y)); 
  

gl_FragColor.r = (sobelAbs.x+sobelAbs.y)*0.125; 
 gl_FragColor.gb = neighDir * 0.5 + vec2(0.5); 
 gl_FragColor.a = 0.0;  
} 

 

 

/* 
 nonmaxsuppress_f.txt fragment shader performs non-maximal suppression  

 and double threshold 
*/ 
precision mediump float; 
varying vec2 vTexCoord; 
uniform sampler2D inputImage; 
uniform vec2 pixelStep; 
uniform vec2 threshold; 
 
void main() 
{ 
 vec4 texCoord = texture2D(inputImage, vTexCoord); 
 vec2 neighDir = texCoord.gb * 2.0 - vec2(1.0);  
 //Obtain neighbours up and down of directions 
 vec4 n1 = texture2D(inputImage, vTexCoord + (neighDir * pixelStep)); 
 vec4 n2 = texture2D(inputImage, vTexCoord - (neighDir * pixelStep)); 
 float edgeStrength = texCoord.r * step(max(n1.r,n2.r),texCoord.r); 
 gl_FragColor = vec4(smoothstep(threshold.s,threshold.t,edgeStrength),0.0,0.0,0.0); 
} 
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/* 
weakpixeltest_f.txt fragment shader performs modified weak pixel test 

*/ 
precision mediump float; 
varying vec2 vTexCoord; 
uniform sampler2D inputImage; 
uniform vec2 pixelStep; 
void main()  
{  
 float edgeStrength = texture2D(inputImage, vTexCoord).r; 
 float a11 = texture2D(inputImage, vTexCoord - pixelStep).r; 
 float a12 = texture2D(inputImage, vec2(vTexCoord.s, vTexCoord.t - pixelStep.t)).r; 

float a13 = texture2D(inputImage, vec2(vTexCoord.s + pixelStep.s, vTexCoord.t -   
  pixelStep.t)).r; 

 float a21 = texture2D(inputImage, vec2(vTexCoord.s - pixelStep.s, vTexCoord.t)).r; 
 float a23 = texture2D(inputImage, vec2(vTexCoord.s + pixelStep.s, vTexCoord.t)).r; 
 float a31 = texture2D(inputImage, vec2(vTexCoord.s - pixelStep.s, vTexCoord.t +   
   pixelStep.t)).r; 
 float a32 = texture2D(inputImage, vec2(vTexCoord.s, vTexCoord.t + pixelStep.t)).r; 
 float a33 = texture2D(inputImage, vTexCoord + pixelStep).r; 
 //Only accept as an edge pixel if neighbour strengths reach above 2.0  
 float strongPixel = step(2.0,edgeStrength+a11+a12+a13+a21+a23+a31+a32+a33); 

gl_FragColor = vec4(1.0 - (strongPixel+(edgeStrength-strongPixel)    
   * step(0.49,abs(edgeStrength-0.5)))); 
} 
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Appendix B: ColourFAST Feature Detection Shaders 
 
/* 
 cameratoyuv_f.txt Converts the two textures from the CPU camera to one YUV texture   
*/ 
precision mediump float; 
varying vec2 vTexCoord; 
uniform sampler2D yTexture; 
uniform sampler2D uvTexture; 
void main()  
{  
 float y = texture2D(yTexture, vTexCoord).r;    
 float u = texture2D(uvTexture, vTexCoord).a;    
 float v = texture2D(uvTexture, vTexCoord).r;   
 gl_FragColor = vec4(v,y,u,0.0);                            
} 
 
 
 
 
 
/* 
 cameratoyuv_f.txt Converts the two textures from the CPU camera to one RGB texture   
*/ 
precision mediump float; 
varying vec2 vTexCoord; 
uniform sampler2D yTexture; 
uniform sampler2D uvTexture; 
 
void main() {  
 
 float y = texture2D(yTexture, vTexCoord).r;    
 float u = texture2D(uvTexture, vTexCoord).a;   
 float v = texture2D(uvTexture, vTexCoord).r;   
 //convert to RGB 
 gl_FragColor.r = y + v * 1.402 - 0.701; 
 gl_FragColor.g = y- u*0.34414 - v*0.71414 + 0.52914; 
 gl_FragColor.b = y + u*1.772 - 0.886; 
 gl_FragColor.a = 1.0;      
} 
 

 

/*  

smooth_f.txt fragment shader performs a one-dimensional 3x1 smoothing operation 
meant to be performed twice as two separable operations so that a 3x3 smoothing is done 
on the input texture. 

*/ 
precision highp float; 
varying vec2 vTexCoord; 
uniform sampler2D inputTexture; 
uniform vec2 pixelStep;   
 
void main() 
{ 
 vec3 thisPixel = texture2D(inputTexture, vTexCoord).rgb; 
 vec3 sum = 0.25*(texture2D(inputTexture, vTexCoord - pixelStep).rgb +  
   thisPixel + thisPixel + texture2D(sTexture, vTexCoord + pixelStep).rgb); 
 gl_FragColor = vec4(sum.r,sum.g,sum.b, thisPixel.a); 
}  
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/* 
 colourfast_f.txt calculates 4 component feature descriptor using RGB or YUV ColourFAST 
 values and a direction for each feature 
*/ 
precision highp float; 
varying vec2 vTexCoord; 
uniform sampler2D inputTexture; 
uniform vec2 pixelStep; 
const float PITwo = 6.2832; 
const float PI = 3.1416; 
uniform vec2 powerup;  //used for empirical weightings of RGB or YUV components  
 
void main()  
{  
    //calculated to avoid more operations later 
 float t3 = 3.0 * pixelStep.t; 
 float s3 = 3.0 * pixelStep.s; 
  
 vec3 centerTex = texture2D(sTexture, vTexCoord).rgb; //YUV in that order 
  
 //lookup Colour for 8 neighbours in half-Bresenham around center pixel 
 vec3 nB = texture2D(inputTexture, vec2(vTexCoord.s + pixelStep.s, vTexCoord.t + t3)).rgb;     
 vec3 nA = texture2D(inputTexture, vec2(vTexCoord.s + s3, vTexCoord.t + pixelStep.t)).rgb;   
 vec3 nH = texture2D(inputTexture, vec2(vTexCoord.s + s3, vTexCoord.t - pixelStep.t)).rgb;  
 vec3 nG = texture2D(inputTexture, vec2(vTexCoord.s + pixelStep.s, vTexCoord.t - t3)).rgb;      
 vec3 nF = texture2D(inputTexture, vec2(vTexCoord.s - pixelStep.s, vTexCoord.t - t3)).rgb;   
 vec3 nE = texture2D(inputTexture, vec2(vTexCoord.s - s3, vTexCoord.t - pixelStep.t)).rgb;    
 vec3 nD = texture2D(inputTexture, vec2(vTexCoord.s - s3, vTexCoord.t + pixelStep.t)).rgb;    
 vec3 nC = texture2D(inputTexture, vec2(vTexCoord.s - pixelStep.s, vTexCoord.t + t3)).rgb;  
  
    //calculate ColourFAST value 
 vec3 yuvDiff = ((nA + nB + nC + nD + nE + nF + nG + nH) * 0.125) - centerTex; 
  
 //calculate direction of colour change 
  vec3 dirX = (nA*0.94868) + (nB*0.316227) - (nC*0.316227) - (nD*0.94868) - (nE*0.94868)  
        - (nF*0.316227) + (nG*0.316227) + (nH*0.94868); 
         
 vec3 dirY = (nA*0.316227) + (nB*0.94868) + (nC*0.94868) + (nD*0.316227) - (nE*0.316227) 
        - (nF*0.94868) - (nG*0.94868) - (nH*0.316227); 
  
 vec3 yuvDiffAbs = abs(yuvDiff); 
 float componentLength = length(yuvDiff); 
 //take dot product so that features heavy in one channel count more toward angle 
 float avgX = dot(yuvDiffAbs,dirX)/componentLength; 
 float avgY = dot(yuvDiffAbs,dirY)/componentLength; 
 float angle = atan(avgY,avgX); 
 //store for YUV and colour change, encode so values between 0-1. 
 gl_FragColor.r = ((yuvDiff.r*powerup.s+1.0)*0.5); //  V 
 gl_FragColor.g = ((yuvDiff.g*powerup.t+1.0)*0.5); //  Y 
 gl_FragColor.b=  ((yuvDiff.b*powerup.s+1.0)*0.5); //  U 
 gl_FragColor.a = (angle+PI)/PITwo; 
}  
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Appendix C: ColourFAST Feature Tracking  Shaders 
 
/* 
 colourfast_compare_f.txt used to compare an input ColourFAST feature 
 point from the previous frame, with this point 
*/ 
precision mediump float; 
varying vec2 vTexCoord; 
uniform sampler2D inputTexture; 
//ColourFAST point that is to be compared with this pixel 
uniform vec4 previousColour; 
//weight of angle AND also used to distinguish 
//whether to use absolute comparison or not 
uniform float angleWeight; 
 
 
void main()  
{  
 //look up this pixels ColourFAST feature vector 
 vec3 thisC = texture2D(inputTexture, vTexCoord).rgb*2.0 - vec3(1.0,1.0,1.0); 
 float thisAngle = texture2D(inputTexture, vTexCoord).a; 
  
 //Take the absolute value of texture if angleWeight is 0 Which happens 
 //when point first placed on screen, so it can snap to the maximum value 
 //to non bias a white corner on a black background and vice versa 
 thisC = thisC*step(0.1,angleWeight) + (1.0-step(0.1,angleWeight))*abs(thisC); 
  
 //encoded between 0-1, for angles -PI -> + PI, take the difference in angle 
 float angleDiff = abs(thisAngle - previousColour.a); 
 //decode the ColourFAST colour components 

vec3 comparedColour = vec3(previousColour.r,previousColour.g,previousColour.b)*2.0 -  
   vec3(1.0,1.0,1.0); 
//angle calculation if angleDiff is 0 or 1 (close),  
//else if angleDiff is 0.5 (far,opposite direction) 

 //Encode between 0-1, where 1 is good match, let all other values <0 clamp to 0 (bad match) 
 float diff = 1.0 - (distance(thisC,comparedColour)  + ((1.0-2.0*abs(angleDiff-  
   0.5))*angleWeight))*0.5;  

//start this fragment pointing to itself as the best match 0.5,0.5.  Where a value of 1,1 
//in the RG output means move half window width and height to locate best match at    

 //bottom right edge of search window and the value 0,0 is the top left.  
 gl_FragColor = vec4(0.5,0.5,diff,diff);  
}  
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/* 
 featuresearch_f.txt intended to be performed twice as a two step hierachial  
 approach to finding a feature point.  The Blue component of the texture holds the 
 value of the best match whereas the RG hold XY movement to where the best match 
 is withing the 20x20 search window..  
*/ 
precision highp float; 
varying vec2 vTexCoord; 
uniform sampler2D inputTexture; 
uniform vec2 pixelStep; 
void main()   
{  
 //small value to weight pixels more toward middle of search window 
 float epsilon = -0.004; 
    
 vec4 thisFrag = texture2D(inputTexture, vTexCoord); 
 //Done for a 20x20 search window centered on thisFrag pixelStep ST coordinates 
 //are is 1.0,0.0 for first pass and 0.0,1.0 for second pass 
 vec4 direction = vec4(sign(pixelStep.s),sign(pixelStep.t),0.0,0.0); 
 vec4 n1 = texture2D(inputTexture, vTexCoord - pixelStep) - 0.05*direction; 
 vec4 p1 = texture2D(inputTexture, vTexCoord + pixelStep) + 0.05*direction; 
 vec4 n2 = texture2D(inputTexture, vTexCoord - (2.0*pixelStep))- 0.1*direction; 
 vec4 p2 = texture2D(inputTexture, vTexCoord + (2.0*pixelStep)) + 0.1*direction; 
 vec4 n3 = texture2D(inputTexture, vTexCoord - (3.0*pixelStep)) - 0.15*direction; 
 vec4 p3 = texture2D(inputTexture, vTexCoord + (3.0*pixelStep)) + 0.15*direction; 
 vec4 n4 = texture2D(inputTexture, vTexCoord - (4.0*pixelStep)) - 0.2*direction; 
 vec4 p4 = texture2D(inputTexture, vTexCoord + (4.0*pixelStep)) + 0.2*direction; 
 vec4 n5 = texture2D(inputTexture, vTexCoord - (5.0*pixelStep))- 0.25*direction; 
 vec4 p5 = texture2D(inputTexture, vTexCoord + (5.0*pixelStep)) + 0.25*direction; 
 vec4 n6 = texture2D(inputTexture, vTexCoord - (6.0*pixelStep)) - 0.3*direction; 
 vec4 p6 = texture2D(inputTexture, vTexCoord + (6.0*pixelStep)) + 0.3*direction; 
 vec4 n7 = texture2D(inputTexture, vTexCoord - (7.0*pixelStep)) - 0.35*direction; 
 vec4 p7 = texture2D(inputTexture, vTexCoord + (7.0*pixelStep))+ 0.35*direction; 
     vec4 n8 = texture2D(inputTexture, vTexCoord - (8.0*pixelStep)) - 0.4*direction; 
 vec4 p8 = texture2D(inputTexture, vTexCoord + (8.0*pixelStep)) + 0.4*direction; 
 vec4 n9 = texture2D(inputTexture, vTexCoord - (9.0*pixelStep)) - 0.45*direction; 
 vec4 p9 = texture2D(inputTexture, vTexCoord + (9.0*pixelStep)) + 0.45*direction; 
 vec4 n10 = texture2D(inputTexture, vTexCoord - (10.0*pixelStep)) - 0.5*direction; 
 vec4 p10 = texture2D(inputTexture, vTexCoord + (10.0*pixelStep)) + 0.5*direction; 
 //if neighbouring value is better match than this vale then delta is positive  
 //and take newthisFrag to be that neighbour, in the end newthisFrag will have  
 //the position of the best match and the value of the best match 
 float delta = (n1.b - thisFrag.b) + epsilon;      
 vec4 newthisFrag = step(0.0,delta)*n1+(1.0-step(0.0,delta))*thisFrag; 
  
 delta = (p1.b - newthisFrag.b) + epsilon; 
   newthisFrag = step(0.0,delta)*p1+(1.0-step(0.0,delta))*newthisFrag; 
  
 delta = (n2.b - newthisFrag.b) + 2.0*epsilon; 
 newthisFrag = step(0.0,delta)*n2+(1.0-step(0.0,delta))*newthisFrag; 
  
 delta = ( p2.b - newthisFrag.b) + 2.0*epsilon; 
 newthisFrag = step(0.0,delta)*p2+(1.0-step(0.0,delta))*newthisFrag; 
  
 delta = (n3.b - newthisFrag.b) + 3.0*epsilon; 
 newthisFrag = step(0.0,delta)*n3+(1.0-step(0.0,delta))*newthisFrag; 
  
 delta = (p3.b - newthisFrag.b) + 3.0*epsilon;     
 newthisFrag = step(0.0,delta)*p3+(1.0-step(0.0,delta))*newthisFrag; 
  
 delta = (n4.b - newthisFrag.b) + 4.0*epsilon;  
 newthisFrag = step(0.0,delta)*n4+(1.0-step(0.0,delta))*newthisFrag; 
  
 delta = (p4.b - newthisFrag.b) + 4.0*epsilon; 
 newthisFrag = step(0.0,delta)*p4+(1.0-step(0.0,delta))*newthisFrag; 
  
 delta = (n5.b - newthisFrag.b) + 5.0*epsilon; 
 newthisFrag = step(0.0,delta)*n5+(1.0-step(0.0,delta))*newthisFrag; 
  
 delta = (p5.b - newthisFrag.b) + 5.0*epsilon; 
 newthisFrag = step(0.0,delta)*p5+(1.0-step(0.0,delta))*newthisFrag; 
  
 delta = (n6.b - newthisFrag.b) + 6.0*epsilon; 
 newthisFrag = step(0.0,delta)*n6+(1.0-step(0.0,delta))*newthisFrag; 
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 delta = (p6.b - newthisFrag.b) + 6.0*epsilon; 
 newthisFrag = step(0.0,delta)*p6+(1.0-step(0.0,delta))*newthisFrag; 
  
 delta = (n7.b - newthisFrag.b) + 7.0*epsilon; 
 newthisFrag = step(0.0,delta)*n7+(1.0-step(0.0,delta))*newthisFrag; 
  
 delta = (p7.b - newthisFrag.b) + 7.0*epsilon; 
 newthisFrag = step(0.0,delta)*p7+(1.0-step(0.0,delta))*newthisFrag; 
  
 delta = (n8.b - newthisFrag.b) + 8.0*epsilon; 
 newthisFrag = step(0.0,delta)*n8+(1.0-step(0.0,delta))*newthisFrag; 
   
 delta = (p8.b - newthisFrag.b) + 8.0*epsilon; 
 newthisFrag = step(0.0,delta)*p8+(1.0-step(0.0,delta))*newthisFrag; 
  
 delta = (n9.b - newthisFrag.b) + 9.0*epsilon; 
 newthisFrag = step(0.0,delta)*n9+(1.0-step(0.0,delta))*newthisFrag; 
  
 delta = (p9.b - newthisFrag.b) + 9.0*epsilon; 
 newthisFrag = step(0.0,delta)*p9+(1.0-step(0.0,delta))*newthisFrag; 
  
 delta = (n10.b - newthisFrag.b) + 10.0*epsilon; 
 newthisFrag = step(0.0,delta)*n10+(1.0-step(0.0,delta))*newthisFrag; 
  
 delta = (p10.b - newthisFrag.b) + 10.0*epsilon; 
 newthisFrag = step(0.0,delta)*p10+(1.0-step(0.0,delta))*newthisFrag; 
  
 gl_FragColor = vec4(newthisFrag.r, newthisFrag.g ,newthisFrag.b,newthisFrag.a);      
} 
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Appendix D: Feature Discovery Shader 
 
/*  
 feature_finder_f.txt uses a combination of Haar masks along direction of the feature and 
 is used to move a special feature discovery point that is used on the CPU side to locate 
 more features along the contour of an object.  
*/  
precision highp float; 
varying vec2 vTexCoord; 
uniform sampler2D inTexture; 
uniform vec2 pixelStep; 
const float PITwo = 6.2832; 
const float PI = 3.1416; 
 
void main()    
{ //decode angle.. the calculate X and Y direction movements 
 float angle = texture2D(inTexture, vTexCoord).a * PITwo - PI; 
 vec2 directionXY = vec2(cos(angle),sin(angle)); 
 vec2 dirXYTexCoords =  directionXY*pixelStep;  
 
 //calculate the lengths of each neighbour across 10 pixels in direction of this 

//feature point, used so discovery point follows ridge and valley of features  
 float an = length(texture2D(inTexture, vTexCoord+6.0*dirXYTexCoords).rgb*2.0 -  
    vec3(1.0,1.0,1.0));  
 float a0 = length(texture2D(inTexture, vTexCoord+5.0*dirXYTexCoords).rgb*2.0 -  
    vec3(1.0,1.0,1.0)); 
 float a1 = length(texture2D(inTexture, vTexCoord+4.0*dirXYTexCoords).rgb*2.0 -  
    vec3(1.0,1.0,1.0)); 
 float a2 = length(texture2D(inTexture, vTexCoord+3.0*dirXYTexCoords).rgb*2.0 -  
    vec3(1.0,1.0,1.0)); 
 float a3 = length(texture2D(inTexture, vTexCoord+2.0*dirXYTexCoords).rgb*2.0 -  
    vec3(1.0,1.0,1.0)); 
 float a4 = length(texture2D(inTexture, vTexCoord+dirXYTexCoords).rgb*2.0 -  
    vec3(1.0,1.0,1.0)); 
 float a5 = length(texture2D(inTexture, vTexCoord).rgb*2.0-vec3(1.0,1.0,1.0)); 
 float a6 = length(texture2D(inTexture, vTexCoord-dirXYTexCoords).rgb*2.0-   
    vec3(1.0,1.0,1.0)); 
 float a7 = length(texture2D(inTexture, vTexCoord-2.0*dirXYTexCoords).rgb*2.0-  
    vec3(1.0,1.0,1.0)); 
 float a8 = length(texture2D(inTexture, vTexCoord-3.0*dirXYTexCoords).rgb*2.0-  
    vec3(1.0,1.0,1.0)); 
  

//Do Haar mask combinations 
 float upMove2 = (a4+2.0*a3+a2)-(a1+2.0*a0+an); 
 float upMove = (a5+2.0*a4+a3)-(a1+2.0*a1+a0); 
 float stayMove = (a6+2.0*a5+a4)-(a3+2.0*a2+a1);   
 float downMove = (a7+2.0*a6+a5)-(a4+2.0*a3+a2); 
 float downMove2 = (a8+2.0*a7+a6)-(a5+2.0*a4+a3); 
 //obtain the maximum value for Haar masks 
 float maxPoint = max(max(max(upMove,upMove2),max(downMove,downMove2)),stayMove); 
 
 //Move either up 1 or 2, down 1 or 2 or stay. Depending on which was the maximum  
 vec2 clampedMove = 2.0 * dirXYTexCoords * step(maxPoint, upMove2)  +  
     dirXYTexCoords * step(maxPoint, upMove) 
     - dirXYTexCoords * step(maxPoint, downMove) - 2.0 *  
     dirXYTexCoords * step(maxPoint, downMove2); 
   
 //Look right to the angle and move 
 vec2 movement = directionXY.ts*vec2(2.0,-2.0);  
 vec2 movementInTexCoords = movement*pixelStep; 
  
 //Need to add the clamp to the movements so CPU knows that it clamped 
 float strength = length(texture2D(inTexture, vTexCoord + clampedMove +   
     movementInTexCoords).rgb * 2.0 - vec3(1.0,1.0,1.0)); 
 
 vec2 movementEncoded = ((clampedMove/pixelStep + movement) +     
      vec2(4.0,4.0))*vec2(0.125,0.125); 
  
 //encoded between 0-1 for length of 3 channel vector (srt 3) 
 gl_FragColor = vec4(movementEncoded.s,movementEncoded.t,strength*0.5773,strength*0.5773); 
  
}    
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Appendix E: ColourFAST Object Recognition Shaders 
 
/* 
 or_mindistances_f.txt - this shader is performed for each point being tracked on screen 

and is used to find the best matching feature point for each object by iterating through 
each feature held in the object being compared to the features on screen. 

*/ 
precision mediump float; 
varying vec2 vTexCoord; 
//texture for the features being tracked on screen 
uniform sampler2D blendedFeaturesTexture; 
//texture that holds the number of features in the object being compared 
uniform sampler2D numberOfFeaturesTexture; 
//texture the holds each object in rows and its feature points in columns  
uniform sampler2D objectInputTexture; 
//holds the maximum amount of features for an object 
uniform int maxNumberOfFeatures; 
 
 
void main()  
{  
 vec4 featurePoint = texture2D(blendedFeaturesTexture, vec2(vTexCoord.s,0.5)); 
 float numberOfFeatures = float(maxNumberOfFeatures)*texture2D(numberOfFeaturesTexture,  
   vec2(0.5, vTexCoord.t)).r; 
 float stepBetweenFeatures  = 1.0/float(maxNumberOfFeatures); 
  
 int featureNumber = 0; 
 float minDistance = 10.0; 
 vec2 featureTexels = vTexCoord; 
 vec3 objectColour = vec3(1.0,1.0,1.0); 
 float angleDiff = 0.0; 
 float compare = 0.0; 
 //decode this feature point 
 vec3 outputColour = featurePoint.rgb *2.0 - vec3(1.0,1.0,1.0);  
   
 //find the best match (minimum distance value) in the object input texture 
 while(float(featureNumber) < numberOfFeatures) 
 { 
   
   featureTexels = vec2(stepBetweenFeatures * float(featureNumber) + 0.004,  
    vTexCoord.t); 
   float ang = texture2D(objectInputTexture, featureTexels).a; 
   //decode the object being compared feature point 
   objectColour = texture2D(objectInputTexture, featureTexels).rgb * 2.0 -   
     vec3(1.0,1.0,1.0);  
   //calculate differences in angle   
   angleDiff = abs(featurePoint.a - ang); 
   //compare featurepoint on screen with the feature in this object texture 

 compare = distance(objectColour,outputColour) +  (1.0-2.0*  
  abs(angleDiff-0.5))*0.25; 

   minDistance = min(minDistance,compare); 
   featureNumber++; 
 } 
 gl_FragColor = vec4(minDistance*0.288,minDistance,1.0,1.0); 
}  
 
  



   139 | P a g e  
 

/* 
 or_distancesums_f.txt iterates through each feature point for the object 
 being compared and summing the best feature matches from the previous shader. 
 It then takes a sqrt of 2.0 x sum so that good matches are spread out more  
 and bad matches are maxed out to 1.0.  
*/ 
precision mediump float; 
varying vec2 vTexCoord; 
uniform sampler2D inputTexture; 
//Take in the amount of points being tracked on screen 
uniform int pointListSize; 
 
void main()  
{  
 int featureNumber=0; 
 float distanceSumSq = 0.0; 
 float stepBetweenPoints = 1.0/float(pointListSize); 
 float minDist = 0.0; 
 //loop for each feature point in this object and sum 
 while(featureNumber < pointListSize) 
 { 
  minDist = texture2D(inputTexture, vec2(float(featureNumber) *  
     stepBetweenPoints + 0.004,vTexCoord.t)).r; 
  distanceSumSq += minDist; 
  featureNumber++; 
 } 
 gl_FragColor = vec4((sqrt(2.0*distanceSumSq))/float(pointListSize),1.0, 1.0 1.0);   
}   
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