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Motif-based Graph Attentional Neural Network for Web Service
Recommendation

Guiling Wang, Jian Yu, Mo Nguyen, Yuqi Zhang, Sira Yongchareon, Yanbo
Han

• We report a Motif-based Graph Attention Network for service recom-
mendation (MGSR).

• The model aggregates high-order information of motif-based neighbours
into the embedding progress.

• The model identifies all the seven up-to-four-node motifs and generates
a motif adjacency matrix for each motif.

• The model simultaneously learns the weights of different nodes from
different motifs, and shares an attention network to calculate attention
scores between nodes within a motif-induced graph as well as between
nodes across different motif-induced graphs.
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Abstract

Deep Neural Networks (DNN) based collaborative filtering has been suc-
cessful in recommending services by effectively generalizing graph-structured
data. However, most existing approaches focus on first-order interactions.
Although recent approaches have utilized high-order connectivity, they still
limit themselves to simple interactions and ignore the pattern of structural
sub-graphs/motifs. In this study, we first explore the commonly used mo-
tifs in the Mashup-API interaction bipartite graph and propose a dedicated
algorithm to generate the motif adjacency matrix. We then propose a Motif-
based Graph Attention Network for service recommendation (MGSR) that
utilizes a motif-based attention mechanism to capture the high-order infor-
mation of various motifs, and a Collaborative Filtering model to generate
the recommendation prediction. We have conducted extensive experiments
on ProgrammableWeb dataset and our results demonstrate the superior per-
formance of our proposed framework over some state-of-the-art approaches.
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1. Introduction

With the rapid development of technologies such as cloud computing,
edge computing, and Internet of Things, the number of web-accessible com-
puting resources encapsulated as Web services and APIs (APIs in short) is
continuously increasing [1]. To facilitate efficient exploration and selection
of services, recommender systems, particularly Collaborative Filtering (CF)
based methods and models, have been successfully applied to recommend
suitable services to developers [2, 3, 4].

In recent years, Deep Neural Network (DNN) based models have outper-
formed traditional CF based method [5, 6, 2, 3, 4, 7, 8, 9]. However, most
approaches only deal with direct invocations between mashups and APIs,
disregarding high-order structures. The mashup-API invocation pairs are
treated as separate data instances, creating so-called information isolated is-
land and thus ignoring the inherent structure among invocations [10]. To
address this limitation, recent DNN-based CF models such as [11, 12, 13]
have leveraged high-order relations to tackle the cold-start problem of ser-
vice recommendation for new mashups. Nevertheless, such approaches have
not given attention to sub-graphs (or motifs) in the bipartite network.

By applying graph embedding to a graph that depicts the interactions
between mashups and APIs, we can acquire service embeddings and deploy
them to calculate the similarity between pairs of mashups and APIs. Sub-
sequently, their invocation probability can be determined via this similarity
measure. Graph embedding-based recommendation approaches exhibit bet-
ter performance compared with traditional recommender systems. While
traditional recommender systems learn the model parameters by analyzing
the graph topological features such as users’ co-interactions with frequently
used items [14] or global topological diffusion [15, 16], graph embedding-based
recommendation learns the embedding vectors and captures graph topolog-
ical features by embedding techniques [17]. To do the analysis of graph
topological features, some works utilize subgraphs [18], motifs [19, 20], and
neighborhood to extract the features embedding and perform recommenda-
tions. Recent works on graph embedding for recommendation [21, 22, 23]
have demonstrated the success of such approaches. Although several re-
cent works consider high-order relation or structures for service recommen-
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method has yet not been investigated in service recommendation.
In this paper, we first explore the common motifs in the Mashup-API bi-

partite graph and identify all the seven up-to-four-node motifs in an oriented
bipartite graph (defined in Section 3). Furthermore, we propose a method
to generate a motif adjacency matrix for each motif. Based on the gener-
ated motif adjacency matrices, we propose a motif-based graph attention
mechanism that aggregates high-order information in the motifs. We then
propose a Motif-based Graph Attention Network for service recommendation
(MGSR).

This paper has the following main contributions:

1. We identify and define the various connectivity structures as motifs in
oriented bipartite graphs and propose a dedicated algorithm to generate
the corresponding motif adjacency matrices.

2. We propose a motif-based graph attention mechanism to attach the
proposed motifs of connectivity structures.

3. We propose a Motif-based Graph Attention Network for Service Recom-
mendation (MGSR) that aggregates high-order information of motif-
based neighbours into the embedding progress for mashup-API recom-
mendation. To the best of our knowledge, it is the first time that a
motif-based graph attention network model is used in service recom-
mendation.

4. We have conducted extensive empirical studies on the ProgrammableWeb
dataset 1 and the results demonstrate the superior performance of
MGSR over some state-of-the-art frameworks.

The remainder of this paper is organized as follows. Section 2 presents the
related work; Section 3 describes definitions of motifs, the motif-based graph
convolution self-attention method, and presents the MGSR model; Section 4
demonstrates the experiments running with comparison results and further
analysis; and Section 5 concludes the paper.

1We downloaded the database from https://dev.maxmind.com/ in November 2020.
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2.1. Graph representation learning

One of the commonly used data structures is graph, which is applied
widely in many fields relating to computer science such as social media, bi-
ological protein-protein networks, molecular graph architecture, and their
recommender systems. Graphs grasp the relations or edges among nodes. In
[27], graphs are defined as the backbone of the countless systems that contain
the accessible relational information of all interactions. Furthermore, graph
takes a pivotal role in modern machine learning. There are many existing ap-
plications in different fields that leverage graph data to learn the embedding
features for forecasting and recommendation purposes. These applications
include predicting individuals’ roles in collaborative networks, offering rec-
ommendations in social media, classifying protein roles in biological relation-
ship graphs, and many more. In machine learning, how to embed the graph
structure into a model is a hot research field. Conventional machine learning
models use the graph statistical summary such as clustering coefficients [28],
kernel functions [29] to extract the graph-based information, and embed the
engineered features to calculate the neighbor’s architecture [30]. However,
such engineered features lack flexibility, specifically they might not adapt to
the training and design processes, leading to a time-consuming and costly
development process.

Therefore, a number of approaches that learn the representation through
encoding the graph structural information have appeared [31, 32]. Such ap-
proaches use a mapping that embeds nodes, subgraphs, or the whole graph
into a lower dimensional vector space. The objective is to optimize the map-
ping and reflect the original graph-based structure. After that, they use the
embeddings as the input for downstream machine learning tasks. The main
difference between the previous approaches and the representation learning
approach lies in how graph structural information is learned. While previous
approaches consider it as a reprocessing process that uses hand-engineered
statistics to draw out the structural information, the representation method
treats this problem as a machine learning task that applies a data-driven
framework to encode the graph-based information.

2.2. Network motifs and high-order Graph Neural Networks

Network motifs with high-order connectivity are presented as fundamen-
tal building blocks of networks that exhibit complex structural patterns [33].
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terns of motifs correlate with the perturbation’s robustness. On the other
hand, [35] considers motifs in temporal networks and states that each type
of motif presents different organization structures from different domains.

Existing works have studied the effectiveness of high-order connectivity
with different graph-based machine learning models [36, 37, 38, 39, 40, 41].
DeepGL [42] learns the inductive relational functions using motifs. [38]
studies the high-order network embeddings and approves the superior per-
formance of several motif-based matrix formulas for generating these embed-
dings.

[39] proposes a hierarchical motif convolution for graph classification by
identifying the task of sub-graphs. In addition, it designs a graph convolu-
tion framework for heterogeneous networks by leveraging connectivity based
on motifs. [37] also demonstrates that GCN-based models and the one-
dimension Weisfeiler-Lehman Isomorphism heuristic have similar deficiencies
as mentioned above. Therefore, they propose a high-order framework for
graph classification.

2.3. GNN and Motif-based Network in recommender systems

There are some existing works that utilize Graph Neural Network model
to address the recommendation problem [43, 44, 45]. Similar to Graph-
SAGE [46] learning feature representations through sampling and aggregat-
ing strategies, PinSAGE [45] uses a random walk mechanism to learn node
representations from chosen neighbor nodes and then integrate such high-
order representations with GCN framework for Web-scale recommender sys-
tems. [44] leverages the relationships of users and items to learn their rep-
resentations. Instead of such random walk-based methods, some works [47,
48, 49] have used motifs to capture the graph structural information. Partic-
ularly, a spectral motif convolution approach [47] is built for convolution fil-
ters. Motif-CNN [48] identifies several types of motifs to create the receptive
fields for the target node and then performs motif-based spatial convolution
operations to elicit the latent interaction features. Another work on graph
node classification [49] presents a motif-level self-attention model to learn
the weight of different motifs using differentiation. Luo [50] firstly present
a Motif-based Neural Network applying for the Reciprocal Recommenda-
tion on Online Dating application. This work defines motifs and utilizes a
random walk algorithm to sample neighbour users to learn the embedding
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a concatenation of their embedding feature vectors.
Our approach distinguishes itself from previous approaches [47, 48, 49, 50]

in several significant points. In contrast to all the existing approaches, we
identify all the motifs up to four nodes in an oriented bipartite graph. We
also propose an algorithm to generate the motif adjacency matrices and a
new motif-based graph attentional neural network designed for web service
recommendation. Our proposed attention mechanism allows for the simulta-
neous learning of unique node weights across multiple motifs. Additionally,
our approach differs from the existing works in that it specifically focuses on
oriented bipartite networks.

3. The MGSR model for web service recommendation

In this section, we first present the preliminaries and problem statement.
Then, we define the oriented bipartite graph, Mashup-API invocation graph,
motif adjacency matrix, and motif-based neighbor. Next, we propose algo-
rithms for generating motif adjacency matrices. We then define the motif-
based graph convolution layers with self-attention to learn the mashup and
API embeddings. Finally, we attach the motif-based graph attention network
to a collaborative filtering-based recommendation model.

3.1. Definitions and problem statement

In this subsection, the relevant definitions and the problem statement
are given. We then introduce seven motifs for service recommendation and
provide a proof sketch showing that these seven motifs comprise a complete
set of motifs with four nodes or less in a mashup-API invocation graph,
which is a type of oriented bipartite graph. For brevity, the frequently used
notations in this paper are summarized in Table 1.

Definition 1 (Bipartite graph[51]). A bipartite graph G = (U, V,E) is a
graph where all nodes in G are partitioned into two disjoint classes U and
V , i.e. U ∩ V = ∅, such that every edge has its terminal node in different
classes from its initial node: nodes in the same partition class must not be
adjacent.

Definition 2 (Directed graph[51]). A directed graph is an ordered pair G =
(V,E) where V is a set of nodes and E is a set of edges. Each edge is an
ordered node pair of an initial node and a terminal node. An edge is said to
be directed from the initial node to the terminal node.

6
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Symbol Description

G = (U, V,E) Mashup-API invocation graph (MAG)
M = {Mt} T motifs, t = 1, ..., T
A = {At} T motif adjacency matrices, t = 1, ..., T
NMt

i motif-based neighbors of node i for Mt

fm, fa initial input features of mashup m and API a
h projected node feature
eMt
ij importance of node i’s motif-based neighbor node j

αMt
ij weight coefficient of node i’s motif-based neighbor node j

hMt
i motif representation of hi in motif-induced graph

eMt
i importance of node i and its motif representation
βMt
i weight coefficient of node i and its motif representation

a weight vector for motif neighbor and motif representation
h′ final embedding output features

Definition 3 (Oriented graph[51]). An oriented graph G = (V,E) is a di-
rected graph such that none of its pairs of nodes is linked by more than one
edge and none of its edges has the same initial node and terminal node.

Next, we define oriented bipartite graphs and mashup-API invocation
graphs used in this paper.

Definition 4 (Oriented bipartite graphs). An oriented bipartite graph G =
(U, V,E) is a bipartite graph such that all edges’ initial nodes are in U and
all edges’ terminal nodes are in V , and none of its edges has the same initial
node and terminal node.

Definition 5 (Mashup-API invocation graph (MAG)). A Mashup-API In-
vocation Graph (MAG) is an oriented bipartite graph G = (U, V,E), where
U denotes the set of mashups, V denotes the set of APIs, and E = U × V
with eij ∈ E is an edge between U and V . If an API is invoked by a mashup
then the edge eij exists and is assigned a value rij ≥ 0, otherwise rij = 0. In
MAG, each edge represents a reference from a mashup to an API, so it is an
oriented bipartite graph.

7
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mendation problem as follows:

Problem Statement: Let a MAG G = (U, V,E) be a set of mashups (U),
a set of APIs (V ), and their historical invocation relationships (E), suppose
we have a target mashup ut and a set of APIs Vut which ut has invoked, the
goal is to recommend the top k APIs from V \Vut that should be most likely
to be invoked by ut.

As introduced in Section 2, motifs are fundamental building blocks of
networks with high-order connectivity. For the rest of this paper, we use
“motif” as shorthand for oriented bipartite graph motif. To exploit the
structural information in motifs, motif adjacency matrices are proposed as
in [52]:

Definition 6. A motif-induced graph’s adjacency matrix A, also known
as the motif adjacency matrix, is defined by its entries (i, j) which repre-
sent the number of instances that nodes i and j co-exist within the mo-
tif. According to Proposition 1, in the MAG, we define a set of T motifs
M = {M1, ...,Mt, ...,MT } (where T = 7), and then we build a set of T dif-
ferent motif adjacency matrices A = {A1, ..., At, ..., AT } where At is a motif
adjacency matrix corresponding to Mt. The entry of At is defined as (At)m,a,
the number of motif instances of type Mt that contains both mashup m and
API a.

Definition 7. Given a node i and a motif Mt, the motif-based neighbors
NMt

i of node i are defined as the set of nodes which connect with node i in
motif Mt.

To balance the importance of local structure and higher-order neighbor-
hood connection, we limit our considerations of motifs to those consisting of
no more than four nodes. In a MAG, this results in the following proposition
regarding the set of motifs:

Proposition 1. Provided an oriented bipartite mashup-API invocation graph
MAG G = (U, V,E), there are seven motifs in total, each containing up to
four nodes, and the entire set of motifs is {M1,M2,M3,M4,M5,M6,M7}.
The seven motifs are shown in Figure 1, where the circles indicate the mashup
node and the squares indicate the API node.

8
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M1 M2 M3 M4

M5 M6 M7

Figure 1: Motifs of two to four nodes in oriented bipartite MAG

Sketch of Proof. We define nu, nv as the number of mashups from U , the
number of APIs from V and calculate the maximum number of possible edges
as emax = nu × nv in which these mashups/APIs build an entire bipartite
graph. We calculate the minimum number of edges for a connected bipartite
graph as emin = nu + nv − 1. To build a motif with these mashups/APIs, we
can select any ne edges from the emax edges given ne ≥ emin.

Specifically, we enumerate all types of motifs as follows:
Motif type M1: nu = 1, nv = 1, emax = emin = 1, so there are

(
1
1

)
= 1

possible motifs.
Motif type M2: nu = 1, nv = 2, emax = emin = 2, so there are

(
2
2

)
= 1

possible motifs.
Motif type M3: nu = 2, nv = 1, emax = emin = 2, so there are

(
2
2

)
= 1

possible motifs.
Motif type M4: nu = 1, nv = 3, emax = emin = 3, so there are

(
3
3

)
= 1

possible motifs.
Motif type M5: nu = 3, nv = 1, emax = emin = 3, so there are

(
3
3

)
= 1

possible motifs.
Motif type M6: nu = 2, nv = 2, emax = 4, emin = 3, ne = 4, so there are(

4
4

)
= 1 possible motifs in case ne = 4.
Motif type M7: nu = 2, nv = 2, emax = 4, emin = 3, ne = 3, there are(

4
3

)
= 4 possible motifs in case ne = 3. From Figure 1 we can observe that the

four possible motifs are isomorphic, hence we only have one motif, denoted
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3.2. Motif adjacency matrices for MAG

Based on Definition 6 and 7, we generate motif adjacency matrices A by
finding all motif instances for a motifMt. ForM1, the motif adjacency matrix
is simply the adjacency matrix of the graph. For the other motifs, the process
of generating motif adjacency matrices is about finding the motif instances
in the graph. M2 to M5 are all tree-structured motifs, i.e. they are composed
of a single node of one type and multiple nodes of the other. Finding motif
instances for them is similar. Both M2 and M4 comprise a single mashup
node and multiple API nodes, so we need to choose multiple API nodes
from each mashup node’s neighbor set to form an instance together with the
mashup node. Similarly, M3 and M5 comprise multiple mashup nodes and a
single API node, so we need to choose multiple mashup nodes from the API
node’s neighbor set.

Finding motif instances for M6 and M7 is more complex. For M6, we
choose two API nodes from V and find the intersection of their neighbors,
i.e. a set of mashup nodes. Any two mashup nodes in this set and the
two chosen API nodes form a motif instance of M6. For M7, we choose two
API nodes from V and then find the intersection and symmetric difference
between the two API nodes’ neighbor sets. A motif instance of M7 is formed
by two API nodes, one node from the intersection of mashup nodes, and one
node from the symmetric difference of mashup nodes.

For motif M1, the motif adjacency matrix is the same as the adjacency
matrix of the graph so the algorithm is omitted here. For M2 to M7, their
motif adjacency matrix generation algorithms are very similar so we only
show the algorithm for M2. The intuition behind the algorithms for M2 to
M5 is that splitting all edges into groups by the type of nodes which is the
single node in the motif (e.g. mashup node in M2), then updating the motif
adjacency matrix for each combination of the elements in the group (for M2,
the combination consists of one mashup node and two API nodes).

Algorithm 1 describes the motif adjacency matrix generation process for
motif M2 in which all edges E, the number of nodes N in the graph, and
the graph’s adjacency matrix A are provided as input. The algorithm begins
with splitting all edges into groups. In each group Qi, all edges source from
the same mashup node i. We then generate a vector where the elements are
the node degrees minus one, i.e. deg(i)− 1. After that, we assign zero to the
counts for API nodes in d because only degrees for mashup nodes are used to

10
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Input: Edges E; number of nodes N ; number of mashup nodes NU ;
adjacency matrix A; neighbourhood function N

Output: Motif adjacency matrix M
1 d← {d1, ..., dN},where di = deg(i)− 1 for i ∈ U , dj = 0 for j ∈ V ;
2 D ← N ×N diagonal matrix built from d, where Dii = di ;
3 M ← D · A ;
4 for i ∈ U do
5 if |N (i)| > 1 then

6 for (j, k) ∈
(|N (i)|

2

)
pairs of APIs do

7 Add one to entry (j, k) in M ;
8 end

9 end

10 end
11 M ←M +MT ;

update the motif adjacency matrix. Next, we generate an upper triangular
matrix by multiplying the adjacency matrix A with a diagonal matrix built
from d. In each step of the outer loop, we first check whether the number
of edges in group Qi is greater than one since there have to be at least two
API nodes plus one mashup node to form an instance of M2. If so, it enters
the inner loop which adds one to the counts between every pair of API nodes
because any two API nodes can only coexist in one motif instance of M2. At
the end of this algorithm, we add matrix M ’s transpose matrix to itself to
form a symmetric matrix.

3.3. Motif-based graph convolution layers with self-attention

Inspired by GAT [53], we design the motif-based graph attentional layer
for the MGSR model. The attention mechanism learns the weights of dif-
ferent nodes from various motifs simultaneously. Moreover, the attention
network utilized to calculate the attention scores between nodes in a motif-
induced graph and between nodes in different motif-induced graphs is iden-
tical, as shown in Figure 2.

Firstly, we use the features of a set U of mashups, Fm = {fm|m ∈ U},
and a set V of APIs, Fa = {fa| a ∈ V }, as the input layer. Mashups and
APIs have different feature spaces, fm ∈ RDm , fa ∈ RDa . From the input

11
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feature space for each mashup/API. We denote the set of projected features’
vectors as Hm = {hm|m ∈ U} and Ha = {ha| a ∈ V }, where hm ∈ RD′

,
ha ∈ RD′

. Dm, Da, D
′ are the dimensions of input features of mashups and

APIs and projected features. To this end, in the initial step, we update the
mashups and APIs embedding features by a linear transformation weighted
by shared parameter matrix Wm ∈ RDm×D′

and Wa ∈ RDa×D′
applied for

all mashups and APIs respectively.

hi =

{
Wm · fi, i ∈ U

Wa · fi, i ∈ V
(1)

where fi and hi are the original and projected feature of node i, and hi ∈ RD′
.

An attention network att : RD′ ×RD′ → R is shared on different nodes
in the same motif-induced graph. att is performed to compute attention
coefficients between a node i and i’s motif-based neighbour:

eMt
ij = att(hi, hj) (2)

The reason behind sharing att is two-fold: on the one hand, the number of
parameters can be reduced; on the other hand, those basic features that are
not related to node position both in the graph and in the motif-induced graph
can be learned in this way. We only compute the attention weight eMt

ij for

nodes j ∈ NMt
i , where NMt

i is node i’s neighbour nodes in the motif-induced
graph for Mt. The attention score for the importance of node j to node i
should be normalized across all choices of j using the softmax function:

αMt
ij = softmaxj(e

Mt
ij ) =

exp(eMt
ij )

∑
k∈NMt

i
exp(eMt

ik )
(3)

We adopt a single-layer feedforward neural network parameterized by a weight
vector a ∈ R2D′

with the LeakyReLU activation function for the attention
network att. Different from GAT, a is shared among different motif-induced
graphs. Then the attention score of αMt

ij corresponding to Mt’s motif-induced
graph is expressed as:

αMt
ij = softmaxj(e

Mt
ij ) =

exp(LeakyReLU(aT[hi ∥ hj]))∑
k∈NMt

i
exp(LeakyReLU(aT[hi ∥ hk]))

(4)

12
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tively.
With αMt

ij calculated, the hidden embedding representation of hi in motif-
induced graph for Mt is:

hMt
i =

∑

j∈NMt
i

αMt
ij hi (5)

To represent the importance between nodes in different motifs, we com-
pute the attention coefficients between a node i and hMt

i , which is i’s hidden
embedding representation in motif-induced graph. When computing the at-
tention score of the above, the attention network att used is the same as the
attention network used to compute the attention scores between different
nodes in the same motif-induced graph:

eMt
i = att(hi, h

Mt
i ) (6)

The attention score for the importance of i’s hidden embedding repre-
sentation in Mt’s motif-induced graph is normalized across all choices of Mt

using the softmax function:

βMt
i = softmaxMj

(eMt
i ) =

exp(eMt
i )

∑T
j=1 exp(e

Mj

i )
(7)

Again a single-layer feedforward neural network parameterized by a weight
vector a ∈ R2D′

with the LeakyReLU activation function for att is adopted:

βMt
i = softmaxMj

(eMt
i ) =

exp(LeakyReLU(aT [hi ∥ hMt
i ])

∑T
j=1 exp(LeakyReLU(a

T [hi ∥ hMj

i ]))
(8)

Then the final output features for each node is obtained by applying a
nonlinearity σ (in our experiment, the ELU activation function is adopted):

h′
i = σ(

T∑

j=1

β
Mj

i hMt
i ) (9)

In order to stabilize the learning process, the multi-head attention mecha-
nism is performed by executingK independent attention networks and trans-
formation of Equation 9. Then the output features of the non-final layers are
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h′
i =

K

∥
k=1

σ(
T∑

j=1

β
Mj(k)
i hMt

i ) (10)

h′
i = σ(

1

K

K∑

k=1

T∑

j=1

β
Mj(k)
i hMt

i ) (11)

The combination process of such graph self-attention layer is demon-
strated in Figure 2. This process is used for both mashups and APIs. For
instance, Figure 2 shows the mashup hi and its motif-based neighbors. It
is worth noting that hi may have different neighbors in motif M1 and motif
M7. In Figure 2, αM1

i,j and αM7
i,j are the node-level attention weights between

hi and its motif-based neighbors connected in motif M1 and M7 according to
motif adjacency matrix A1 and A7. h

M1
i and hM7

i are the motif-based hidden
features for M1 and M7’s motif-induced graph. βM1

i and βM7
i are the atten-

tion score of the weight for the hidden features of node i in M1 and M7’s
motif-induced graph respectively. The output h′

i is generated by calculating
the weighted sum of hMt

i , where t is from 1 to T .
As a result, the output sets of features H ′

m and H ′
a are obtained from

the motif-based graph self-attention layers and contain the high-order graph
relation, which can be used as auxiliary information for predictive model in
the next subsection.

3.4. Motif-based graph attention collaborative filtering for service recommen-
dation (MGSR)

In this section, we aim to project the invocation between the pair of
mashup m and API a provided their latent representation h′

m and h′
a. The

prediction value R will be obtained by the dot product of h′
m and h′

a learning
through a stochastic gradient descent method.

We use the original invocation relationship between mashup and API as
the actual score and the dot product of h′

m and h′
a as the estimated score.

The quadratic loss function is used to continuously optimize h′
m and h′

a:

Loss =
∑

m∈U,a∈V
(rma − h′T

mh′
a)

2
+ λ(∥h′

m∥2 + ∥h′
a∥2) (12)
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Figure 2: Motif-based graph attention mechanism

where rma is the original invocation relationship between mashup and API,
λ is the L2 regularization coefficient.

Then h′
m and h′

a is normalized and dot-producted to calculate the predic-
tion value between m and a:

R = h′
m ⊙ h′

a (13)

The value of R ∈ [0, 1] indicates the likelihood of invocation between the
mashup and API.

4. Experimental results

We use the ProgrammableWeb dataset to evaluate our proposed model.
Our objective is to answer the following research questions:

• RQ1: How much does MGSR outperform the state-of-the-art graph-
based CF models?

• RQ2: How do different types of motifs influence the performance of the
proposed model?
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Datasets. InWeb API application, we use the dataset of ProgrammableWeb
which can be presented as a bipartite network to evaluate the performance of
the proposed model. The dataset consists of 17829 APIs and 6340 mashups,
and their invocation data. Specifically, if mashup m1 invokes API a5, then
their invocation link/edge has weight 1. We use the following steps for data
reprocessing: (a) removing all blank APIs and mashups resulted in obtain-
ing 5691 mashups and 1170 APIs; (b) using a portion of the mashup-API
invocations as the train set and the validation set, and using the rest as the
test set.

Baselines We compare our proposed MGSR with some state-of-the-art
approaches:

• AMF [54]: an attentional Matrix factorization with document context
and API co-invocation.

• NGCF [55]: a GCN-based collaborative filtering method that propa-
gates embeddings on the MAG to exploit the high-order connectivity
signal of mashups and users.

• HACF [56]: a High-order Data Augmentation Collaborative Filtering
method for service recommendation.

• GAT-CF [53]: a graph attention network based collaborative filtering
model.

• MISR [11]: a multiplex invocation-oriented service recommendation
model which leverages three types of invocations between services and
mashups and incorporates them into a DNN that can identify both
their explicit and implicit relationships.

4.2. Settings

Evaluation metrics. We use hit ratio (HR) and Normalized Discounted
Cumulative Gain (NDCG) to evaluate the performance of API recommenda-
tion. We select APIs that have not been utilized previously for each mashup
in the training dataset. After that, we sort them in ascending order according
to their estimated ratings and truncate the top-k ranked for the recommen-
dation list. The HR is calculated from the top-k recommendation list by
using the equation:
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k 2 3 4 5 6 7 8 9 10
AMF 0.4021 0.4152 0.4182 0.4262 0.4352 0.4521 0.4921 0.5201 0.5583
NGCF 0.4372 0.4552 0.5037 0.5537 0.6012 0.6252 0.6317 0.6677 0.6882
MISR 0.6494 0.6760 0.7023 0.7211 0.7286 0.7392 0.7392 0.7407 0.7441
HACF 0.6645 0.7190 0.7367 0.7483 0.7547 0.7603 0.7604 0.7606 0.7616
GAT-CF 0.5976 0.6951 0.7561 0.7805 0.8171 0.8293 0.8293 0.8293 0.8293
MGSR17 0.5976 0.6707 0.7561 0.7805 0.8171 0.8293 0.8415 0.8415 0.8415

Table 3: Baseline comparison over different k on NDCG metric
k 2 3 4 5 6 7 8 9 10
AMF 0.3321 0.3498 0.3694 0.3972 0.3999 0.4093 0.4109 0.4271 0.4306
NGCF 0.3521 0.3841 0.4393 0.4647 0.4678 0.4580 0.4603 0.4613 0.4647
MISR 0.5209 0.5050 0.5343 0.5301 0.5351 0.5433 0.5569 0.5568 0.5583
HACF 0.5626 0.5666 0.5627 0.5657 0.5711 0.5716 0.5718 0.5725 0.5726
GAT-CF 0.5255 0.5718 0.602 0.6108 0.6239 0.6272 0.6272 0.6197 0.6197
MGSR17 0.5255 0.5604 0.6009 0.6095 0.6229 0.6263 0.6319 0.6319 0.6264

HR@k =
Numberofhits@k

Nr

(14)

Where Nr is the number of recommended APIs. We then measure the
effectiveness of recommendation by using the Discounted Cumulative Gain
metric and determining the ranking of relevant APIs in the prediction list.
Specifically, the NDCG from rank 1 to k for the recommendation list is
obtained by the following equation:

NDCG@k =
k∑

i=1

2ri − 1

log2(i+ 1)
(15)

Hyper-parameters. All datasets are split into a train set, validation
set, and test set with ratios 60%, 20%, and 20% respectively. We use the
train set to train the proposed MGSR model and evaluate the HR and NDCG
on a test set. For the evaluation process, all the mashups in the test set have
a list of invoked APIs. For each mashup, all APIs in the test set are scored
with their estimated invocation value which is between 0 and 1. After that,
we sort them in ascending order according to their estimated ratings and
truncate the top-k for the recommendation list. We use k = 10 for our
experiments.

We implement MGSR based on Pytorch using Graph-tools to develop
the model. In order to ensure MGSR achieves the best performance, we use
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Figure 3: HR results of baselines and MGSR17.

Figure 4: NDCG results of baselines and MGSR17.

grid search to tune the hyperparameters. As a result, the suitable values of
hyperparameters obtained are learning rate, convergence epoch, hidden size,
drop out which are set at 0.005, 1000, 8, and 0.6 respectively.
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Figure 5: HR results of MGSR variants

Figure 6: NDCG results of MGSR variants.

4.3. Comparison results

For all the baselines and MGSR variants, we run the models until the
values of loss converge and obtain the best results of HR and NDCG. We cal-
culate HR and NDCG at k from 2 to 10. We perform 10-fold cross-validation,
use 9 folds for training and 1 for testing, and repeat the experiments 10 times
to report the average HR and NDCG.

Table 2 and Table 3 show the performance details of the baselines and
MGSR17, which obtains the best result among MGSR variants (see Subsec-
tion 4.4).

Overall, the results show that our proposed model MGSR17 obtains supe-
rior performance against existing works including AMF, NGCF, and MISR
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ofTable 4: HR results of variants of MGSR

Variant 2 3 4 5 6 7 8 9 10
GAT-CF 0.5976 0.6951 0.7561 0.7805 0.8171 0.8293 0.8293 0.8293 0.8293
MGSR12 0.5976 0.6829 0.7561 0.7805 0.8171 0.8293 0.8293 0.8415 0.8415
MGSR13 0.5976 0.6829 0.7561 0.7805 0.8171 0.8293 0.8293 0.8293 0.8293
MGSR14 0.5976 0.6829 0.7561 0.7805 0.8171 0.8293 0.8293 0.8415 0.8415
MGSR15 0.5976 0.6829 0.7561 0.7805 0.8171 0.8293 0.8293 0.8293 0.8293
MGSR16 0.5976 0.6829 0.7561 0.7805 0.8171 0.8293 0.8293 0.8293 0.8415
MGSR17 0.5976 0.6707 0.7561 0.7805 0.8171 0.8293 0.8415 0.8415 0.8415
MGSR123 0.5976 0.6951 0.7561 0.7805 0.8171 0.8293 0.8293 0.8293 0.8293
MGSR145 0.5976 0.6707 0.7561 0.7805 0.8171 0.8293 0.8293 0.8293 0.8293
MGSR167 0.5976 0.6829 0.7561 0.7805 0.8171 0.8293 0.8293 0.8293 0.8293
MGSR1234 0.5976 0.6829 0.7561 0.7805 0.8171 0.8293 0.8293 0.8415 0.8415
MGSR123456 0.5976 0.6829 0.7561 0.7805 0.8171 0.8293 0.8293 0.8293 0.8293
MGSR134567 0.5976 0.6707 0.7561 0.7805 0.8171 0.8293 0.8293 0.8293 0.8293

Table 5: NDCG results of variants of MGSR
Variant 2 3 4 5 6 7 8 9 10
GAT-CF 0.5255 0.5718 0.602 0.6108 0.6239 0.6272 0.6272 0.6197 0.6197
MGSR12 0.5255 0.5665 0.6017 0.6103 0.6238 0.6271 0.6271 0.6312 0.6312
MGSR13 0.5255 0.5665 0.6017 0.6103 0.6238 0.6271 0.6271 0.6196 0.6196
MGSR14 0.5255 0.5665 0.6017 0.6103 0.6238 0.6271 0.6271 0.6312 0.6312
MGSR15 0.5255 0.5665 0.6017 0.6103 0.6238 0.6271 0.6271 0.6196 0.6196
MGSR16 0.5255 0.5665 0.6017 0.6103 0.6238 0.6271 0.6271 0.6269 0.6269
MGSR17 0.5255 0.5604 0.6009 0.6095 0.6229 0.6263 0.6319 0.6319 0.6319
MGSR123 0.5255 0.5718 0.602 0.6108 0.6239 0.6272 0.6272 0.6197 0.6197
MGSR145 0.5255 0.5604 0.6009 0.6095 0.6229 0.6263 0.6263 0.6187 0.6187
MGSR167 0.5255 0.5665 0.6017 0.6103 0.6238 0.6271 0.6271 0.6311 0.6256
MGSR1234 0.5255 0.5665 0.6017 0.6103 0.6238 0.6271 0.6271 0.6312 0.6312
MGSR123456 0.5255 0.5657 0.6012 0.6099 0.6234 0.6267 0.6267 0.6195 0.6195
MGSR134567 0.5255 0.5604 0.6009 0.6095 0.6229 0.6263 0.6263 0.619 0.6152

which do not consider the high-order connectivity of the MAG. For later
approaches such as HACF and GAT-CF that attach mashup-API high-order
relations, MGSR does not outperform in all metrics but achieves the best
HR and NDCG in most of larger values of k, particularly with k from 5 to
10. Figure 3 and Figure 4 provide better visualization for such comparison.
From the figures, we can also see that the group of models that use high-order
connectivity performs much better than the ones that do not use it, which
demonstrates the benefit of attaching high-order information to predictive
models.

4.4. The influence of different types of motifs on the MGSR’s performance

In this subsection, we study the performance of each type of motif. Ta-
ble 4 and Table 5 show the details of HR and NDCG scores when applying
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vations can be made below:

• First, from the results, we can conclude that different combinations of
motifs could achieve different model performances.

• Second, the HR and NDCG scores are quite similar for small values of k,
while they are more distinct when k > 5. Particularly, for k = 2, there
is no difference among the models. All of the models obtain 0.5976 for
HR and 0.5255 for NDCG. At k = 3, we can see a significant increase
in the performance of MGSR variants compared with GAT-CF. As can
be seen in Figure 5, the HR value of variants that contain motifs M1,
M3, and M5 has smaller numbers. This fact is also true for NDCG in
Figure 6.

• Lastly, we notice that MGSR17 outperforms the other combinations of
motifs.

5. Conclusion and future work

Web services have gained momentum at a fast pace in the past decade
with a great number of APIs published on the Internet. These APIs have
become widely used in web and mobile applications. However, this booming
growth brought difficulties to select proper APIs for building mashups. A
great number of research works have been proposed for service recommen-
dation while the intrinsic relation in a graph structure has not been fully
considered.

Our work focuses on exploiting motifs in the mashup-API bipartite net-
work and the influence of graph structures on the embedding features of
services. The proposed MGSR model uses the motif-based graph attention
neural network architecture and attaches it to the CF-based model. The at-
tention network used for calculating the attention scores between the nodes in
a motif-induced graph and between nodes in different motif-induced graphs
is the same. The experimental results show that MGSR outperforms some
state-of-the-art service recommendation models. In the Future, we will ex-
plore whether more complex types of motifs and additional information (e.g.,
spatial and temporal information) can bring better performance to our model.
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