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Abstract

Derivative products are undoubtedly among the most important financial innova-

tions in modern history. Since the beginning of the 1970s, derivative markets have

seen an expansion in the variety and complexity of products. There is a degree of con-

sensus that derivatives bring significant benefits to the financial system. However,

if not properly understood and applied, they can bear significant risks. Therefore,

it is important to understand the use and properties of new derivative products.

Among different uses, a large body of theoretical and empirical literature recognises

derivatives for their informational role, contribution to price discovery, and risk man-

agement. This thesis aims to address these important functions with a focus on two

recently introduced derivative products on volatility and dairy.

The first product class we investigate are volatility exchange-traded notes (ETNs),

introduced in 2009. The most two successful volatility ETNs are the VXX and XIV.

Broadly, the VXX allows taking a long position in the US stock market volatility,

and the XIV a short position. Historically, the VXX delivers negative long-term

returns and, despite that, attracts a tremendous trading volume. This observation

might lead to the conclusion that trading in the VXX is dominated by noisy traders,

and thus the VXX prices poorly reflect information about volatility. The XIV has

a similar dynamic to the VXX but inverted. At times when the XIV increases, the

VXX decreases. Informed traders can either switch between these two products,

or stay in one market and take either a short or long position, depending on the

information they have about future volatility. Understanding which product is more

informative and at what times is an important question.

In the first essay, we investigate the informational leadership between the VXX

and XIV using high-frequency data and attempt to answer what the key determi-
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Abstract

nants of informational leadership are. Results show that the contribution to price

discovery between these two competing markets is time-varying. This time variation

is explained by three factors: trading costs, market liquidity, and market conditions.

These findings contribute to a better understanding of these relatively new products.

Time-variation in price leadership means that both ETNs can quickly react to new

information about the future value of volatility and reflect it in their prices.

The second product class we investigate are dairy futures and options introduced

by the New Zealand Stock Exchange (NZX) in 2010. Exports of dairy commodities

play an important role for the New Zealand economy, dominated by exports in

Whole Milk Powder (WMP). Currently, there are eight different dairy derivatives

traded on the NZX. Futures and options contracts on WMP are amongst the most

popular ones. WMP is one of the most volatile commodities globally. This high

volatility affects the decision-making of all supply chain participants, including dairy

processors and farmers. The high volatility of dairy commodities translates into a

high milk price risk for dairy farmers, which adversely affects the financial strength

of farmers and potentially stability of the New Zealand banking sector. Given the

importance of the dairy sector to the New Zealand economy, in the next two essays

we investigate the benefits these derivatives offer.

In the second essay, we investigate the information content of the dairy deriva-

tives market. We develop a dairy-implied volatility index, termed the DVIX, from

option prices on WMP futures. As for the properties of the DVIX, we document

the asymmetric return-implied volatility effect. Additionally, we find that the DVIX

contains significant information about future volatility, and outperforms the volatil-

ity forecast based on historical averages or the GARCH-type forecast. Overall, we

find that the relatively new dairy derivatives market contains important information

that can be used by market participants.

In the third essay, we evaluate WMP futures from a risk management perspective.

We develop a profit margin hedging strategy which aims to protect New Zealand

dairy farms from the downside risk of low liquid milk prices. We conduct the anal-

ysis both for a representative farm and for a sample of New Zealand farms. The
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results show that the profit margin hedging strategy decreases the risk, reduces the

likelihood of financial distress and improves the returns, even after controlling for

commissions and different levels of basis risk. This study demonstrates that WMP

futures are useful for a cross-hedging of milk price risk, despite the presence of the

basis risk. Overall, our finding means that WMP futures can benefit New Zealand

farms and improve the stability of the New Zealand banking sector, as high indebt-

edness of the dairy farm sector makes it vulnerable to low dairy prices.

All in all, our findings shed light on some properties and uses of relatively new

derivative products, which were introduced in the last ten years - volatility and dairy

derivatives. We document that both volatility ETNs can efficiently incorporate new

information about the future value of volatility. We find that dairy options gained

some level of informational efficiency, and information contained in their prices can

be used to obtain insights about dynamics of the physical market. Additionally, we

document that dairy futures are suitable for one of the most traditional purpose of

futures, that is protecting against unfavourable moves in the physical market.
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Chapter 1

Introduction

Over time, derivatives markets have experienced a large expansion. The global size of

the derivatives market, including OTC derivatives and exchange-traded derivatives,

in 2018 is about $688 trillion, whereas thirty years ago it did not exceed $1 trillion.1

The increased volume of participation partly can be attributed to the introduction

of new innovative products, which serve the changing needs of market participants.

Without doubt, derivatives bring a number of important benefits to the financial

system and its participants. Despite that, whenever a financial crisis or collapse of a

corporation occurs, derivatives are blamed for their misuse and sometimes described

as “time bombs, both for the parties that deal in them and the economic system”

(Buffett, 2002). Therefore, as new products are introduced regularly, it is important

to understand the properties and usefulness of these derivatives.

This thesis focuses on two recently introduced products. Firstly, we consider

volatility ETNs. Volatility trading has become very popular after the introduction

of volatility derivatives, and really took off after VIX ETNs were launched in 2009.

The two most liquid volatility ETNs are the S&P 500 VIX short-term futures ETN,

or the VXX, and the inverse VIX short-term futures ETN, or the XIV. Briefly,

the VXX gives long volatility exposure while the XIV short volatility exposure.

These products can be interesting to hedgers and speculators who want to bet on

the direction of the future value of the US short-term market volatility. Informed

investors can either switch between the VXX and XIV, based on their information

1The Bank of International Settlements statistics.
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about the future value of volatility, or trade in one market by switching between

long and short positions. An interesting fact about the VXX and XIV is that the

VXX historically demonstrates a steady loss, and the XIV a growth in value. Only

during turbulent times does this dynamic change. This negative performance of the

VXX might prompt questioning the information content of the VXX. Understanding

which product is the most informative about the future value of volatility and at

what times is an interesting question.

Secondly, we consider the NZX dairy derivatives. In 2010, the NZX launched its

first dairy derivatives - WMP futures. Since then it has expanded product offerings

to other dairy futures and options contracts; however, WMP futures remain the most

liquid contracts with the highest trading volume. The WMP futures are the most

liquid futures contracts and the WMP options are the most liquid options contracts

among dairy derivative products. The proliferation of WMP futures and options

is related to the importance of WMP to the New Zealand economy. In fact, New

Zealand exports about 95% of its dairy products and dairy exports are dominated by

WMP. An interesting fact about WMP traded in global markets is its high volatility.2

Given the increasing popularity of WMP options and futures markets, we aim to

investigate two questions. The first one is related to the information content of

this derivatives market, in particular, whether it contains useful information about

future volatility of the spot market. The second question is motivated by the high

volatility of dairy commodities and its effect on the financial situation of dairy

farms. High volatility of WMP translates to volatile payouts for liquid milk, and,

thus, has a direct impact on farms’ profitability. The absence of risk management

practices in such a risky business environment poses significant risks, not only to

farming businesses but to the financial stability of New Zealand overall. After the

introduction of dairy derivatives by the NZX, New Zealand dairy farms for the first

time received access to risk management tools. Given the increase in popularity of

WMP futures in recent years, it is timely to investigate benefits these contracts offer

to dairy farms.

2For example, the annual volatility of WMP futures between 2012 and 2018 is about 37%,
while soybeans, gold, cocoa, sugar, and crude oil have the annual volatility of 18%, 24%, 31%,
34%, and 35%, respectively.
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In Chapter 3, we perform a study on the intraday price discovery between the

VXX and XIV, using granular data with a one-second frequency. We find that,

according to several popular price discovery measures, informational leadership ex-

hibits strong time variation, meaning that both ETNs can effectively incorporate

relevant information about the future value of volatility. When we estimate the

determinants of the price leadership, we find that informed traders prefer to trans-

act in the market that has lower trading costs, and greater liquidity, measured by

trading volume or number of trades. We further document that, during market

downturns, the price discovery function of the VXX decreases, which we attribute

to an increased hedging demand, which is not only driven by information but also is

affected by an overreaction to extreme market conditions. The findings of the first

essay are important for volatility traders who want to trade on their information

about the direction of future US stock market volatility.

In Chapter 4, we continue to explore the informational role of derivative mar-

kets, but turn to dairy derivatives products. We investigate how informative WMP

options can be about the future volatility of WMP futures. To achieve this goal, we

examine the statistical properties and information content of option implied volatil-

ity for the dairy market. The measure of the implied volatility is represented by a

dairy volatility index that we construct and term it the DVIX. We investigate its

forecasting power of future volatility both in-sample and out-of-sample. We find

that the DVIX has a better predictive power than historical volatility. However, it

does not subsume all historical information, as a combination of volatility forecast

based on historical averages or the GARCH-type forecast and the DVIX has a bet-

ter forecasting power than the DVIX alone. Our findings have broad implications.

The ability to predict volatility of the dairy market is of great interest to investors

and all the supply chain participants, including dairy processors and farmers. High

volatility signals a high level of uncertainty that would require to determine appro-

priate hedging policies. The estimate of future volatility is also required for portfolio

managers who need to estimate a risk measure, such as Value-at-Risk. Additionally,

as we find that the volatility estimate based on historical data complements the

3
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DVIX, indicating that the WMP options market may not yet be fully information-

ally efficient. We suggest how to create the best composite forecast of volatility out

of a standard time-series volatility and the DVIX.

In Chapter 5, we investigate the effectiveness of WMP futures to protect the

net profit margin of NZ dairy producers, i.e., we focus on the risk-management

purpose of derivatives. We develop a profit margin hedging strategy, which aims

to protect NZ dairy farmers from downside risk. We perform the analysis both

for a representative farm and for individual farms. First, we find that the profit

margin hedging strategy can significantly decrease the risk without sacrificing the

returns. We find that the results hold even after introducing different levels of

commissions. By analysing the risk and return of discretionary cash, we account for

all cash expenses a farmer needs to cover during a farming season. Additionally, we

document that the adoption of profit margin hedging reduces the chances of financial

distress, measured as the likelihood to observe negative discretionary cash during

a given year. Another interesting result we find is an association between financial

leverage and hedging effectiveness. We find that generally farms with higher levels

of debt, sorted by the debt to asset ratio, have the highest percentage improvement

in the mean of discretionary cash. The findings of the third essay are of great

interest both for the NZ farmers and for the banking system of NZ. NZ farms have a

high dependence on debt provided by the banks. In comparison to farms in the EU

countries, farms in NZ have the second highest average debt to asset ratio, being

behind Denmark only (Loughrey et al., 2018). For example, in 2015 the median

debt to asset ratio in NZ was about 50%, while the median debt to asset ratio in

the EU countries is just above 20%. The implementation of profit margin hedging

can facilitate the improvement of the sustainability of the farming business, and, as

a result, reduce risk for the lending institutions.

Overall, the results of the three chapters shed light on the properties and uses of

two new derivative products - volatility and dairy derivatives. For volatility ETNs,

we find that both of the ETNs contribute to the process of price discovery, which is

time-varying. This is an important finding as it shows that both products are quick

4



Chapter 1. Introduction

to incorporate new information about the future value of volatility, at different

times. As for dairy derivatives, we document two main interesting findings. Firstly,

WMP options contain valuable information about the future short-term volatility

of WMP. This finding means that the WMP options market has reached some level

of informational efficiency, and incorporates some of the historical information and

private information of informed investors about the future dynamics of the spot

market. Secondly, WMP futures can be effectively used by primary milk producers

in hedging downside risk of the milk price. This use is particularly desirable, as

when the NZX launched its dairy derivatives, its motivation was to provide dairy

participants with a tool against high volatility of dairy products.
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Chapter 2

A Primer on the Derivatives Market and

Their Functions

2.1 Introduction

This chapter briefly discusses the original purpose of derivatives and their informa-

tional role in relation to volatility forecasting. These background materials form a

foundation for the rest of this thesis. We start the discussion by highlighting the

purpose of derivatives with references going back as far as antiquity. We then move

to the modern finance period and discuss some recent developments in futures, op-

tions and ETNs. In particular, we focus on relatively new derivatives markets, such

as the volatility derivatives market and the NZ dairy derivatives market. Next, we

elaborate on the informational role of derivatives markets and highlight how op-

tions markets can be useful in predicting future volatility. The chapter concludes by

connecting the discussed topics and formulating the research topics of the following

empirical chapters.

2.2 History of Derivative Markets

Modern financial textbooks often misrepresent historical facts related to derivative

markets. For example, Hull (2008) states that derivatives have become important

during the last 30 years, that is, since the 1980s. In fact, derivatives have a very

long history going back as far as antiquity. The Code of Hammurabi, which was
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created by Babylonian king Hammurabi around 1750 BC, probably makes the first

reference to derivatives which insure farmers against a poor harvest season:

“If any one owe a debt for a loan, and a storm prostrates the grain, or

the harvest fail, or the grain does not grow for lack of water; in that

year he need not give his creditor any grain, he washes his debt-tablet

in water and pays no rent for the year” (Whaley, 2006, p. 11).

The derivative contract implicitly involved here can be interpreted as a binary put

option between the farmer and the lender. The option expires worthless if the harvest

season is normal, and the farmer has a right not to pay interest if the harvest season

is poor.

Another example of an early derivative, namely a forward contract, which is

designed to secure a supply of wooden planks, dates back to the nineteenth century

BC. In this example a supplier of wood promises to deliver some wooden planks on

a future day:

“Thirty wooden [planks?], ten of 3.5 meters each, twenty of 4 meters

each, in the month Magrattum Akshak-shemi will give to Damqanum.

Before six witnesses (their names are listed). The year that the golden

throne of Sin of Warhum was made” (Weber, 2009, p. 434).

This evidence suggests that the first derivatives were traded over-the-counter (OTC),

directly between two parties and could be customised according to parties’ needs.

Trading had some level of regulation, involving the description of goods, dates and

a list of witnesses. Trading often took place in temples, which played not only

religious but also a commercial role at the time. This evidence also suggests that,

since ancient history, derivatives have played an important role in daily life and were

used to eliminate future uncertainties, i.e. for hedging purposes.

Not only were derivatives used for risk-reduction, but also for speculative pur-

poses. A great example of the presence of speculators in derivative markets is the

tulip mania in the 17th century in Europe. Tulips were introduced in Holland at

the end of the 16th century and the public became fascinated by them, especially

7



Chapter 2. A Primer on the Derivatives Market and Their Functions

the upper class. The prices reached a state of a bubble, as tulip bulbs were traded

at a price higher than a house at that time. Speculators didn’t even need to hold

on to tulip bulbs, as trading on tulip bulbs involved contracts for difference (Weber,

2009). Contracts for difference were created by merchants in Antwerp around 1540.

They were similar to the modern cash-settled futures contracts but didn’t possess

the same safeguard features as modern futures. They were settled by a single and

potentially large cash transaction at the settlement date. In 1637, spot prices of

tulip bulbs collapsed and many speculators defaulted on their obligations.

The first organised futures exchange emerged in Osaka, Japan in 1710, and was

officially acknowledged as a rice exchange in 1730. Trading on the Dojima Rice

Exchange was governed by rules similar to modern-day futures exchanges: traders

were members of the exchange, contracts were standardised, and a clearinghouse

stood between buyer and seller, reducing the risk of default. In the US, the first-

ever futures contracts were introduced in Chicago and were listed at the Chicago

Board of Trade (CBOT) in 1848. The underlying of the contracts were grains, such

as corn, oats, and wheat.

2.3 Development of Derivative Products

Since the first futures exchange was founded in Japan in the 18th century, nowadays

more than 75 modern exchanges exist worldwide. Options, futures and Exchange

Traded Products (ETPs) are traded on almost any variable. Underlying variables

can be standard assets such as commodities, stocks or currencies, or exotic variables,

such as weather, electricity or volatility.

Modern technologies replaced the traditional open-outcry trading pits to elec-

tronic financial markets. Before the era of electronic trading, all traders converged on

a trading floor and verbally communicated their bid and offer prices. Replacement

of floor-based open outcry systems with electronic trading brought increased speed

and lower transaction costs. The increased market accessibility fostered growth in

futures and options market participation. During the last twenty years, 1998-2017,

the total volume of futures and options contracts traded globally grew from 1,482

8
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million to 25 billion contracts.1

Recent innovations in derivatives are Exchange Traded Notes (ETNs), which

were introduced in 2006. ETNs are unsecured debt obligations issued by financial

institutions and are traded, like individual stocks, on a stock exchange. ETNs seek

to replicate the performance of some index or the inverse of the performance of

the index. Thus, they offer investors both long and short exposure to an index,

which otherwise could only be accessible through trading in futures, options, or

short positions in the index. Leveraged ETNs provide even more flexibility, as they

seek to provide investors with returns that are multiples of the underlying index.

The proliferation of derivatives can be partially attributed to the timely intro-

duction of new products to satisfy the changing needs of investors. An example

of those products would be volatility derivatives. Market participants have always

been looking for an asset class that is negatively correlated with equities. During

the recent Global Financial Crisis, it became apparent that commodities, which are

traditionally viewed as negatively correlated with equities, failed to deliver their ex-

pected diversification benefits (Berkowitz and DeLisle, 2018). In contrast, volatility,

which can be measured by the CBOE Volatility Index (VIX), is negatively corre-

lated with equity returns. The VIX was launched in 1993 by the Chicago Board

Options Exchange (CBOE) and is defined as the market’s estimate of the S&P 500

index’s volatility during the next 30-day period. However, it took almost a decade

before trading in volatility became possible. The CBOE launched VIX futures in

2004, followed by VIX options in 2006. In 2009, Barclays Bank issued the first VIX

ETNs with ticker symbols VXX and VXZ. Volatility ETNs gained huge popularity

among retail investors as they share similar trading characteristics with stocks, do

not have margin requirements, and need a significantly lower investment capital in

comparison to VIX futures. Moreover, some large institutional investors, such as

endowments and pension funds, are restricted to trade in futures and options but

are allowed to trade in ETPs. The two most successful volatility ETNs are the VXX

and the XIV.2

1https://fia.org/articles/total-2017-volume-252-billion-contracts-down-01-2016
2The XIV had $1.9 billion in assets before it lost 97% of its value in a single day on February

5, 2018. Shortly after that, trading in the XIV was terminated, as the issuer announced the early
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Another example of the timely introduction of new derivatives are the dairy

derivatives launched by the New Zealand Stock Exchange. Historically, the NZ

economy has had a strong reliance on the export of dairy products. In 2017, it con-

tributed $NZ14 billion to annual export, 38% of the total primary industry exports’

value.3 Dairy commodity prices are characterised by high volatility, and in October

2010 the NZX launched its first dairy derivative - a WMP futures contract, to help

all involved in the dairy supply chain to manage price risk. Later, it expanded its

product range with four more futures contracts and three options contracts. Since

its inception, the NZX dairy derivatives market has experienced a consistent increase

in volumes and participation. The majority of volume traded is in WMP futures

contracts. In November 2010, the first full month after trading began, there were

only 30 lots of WMP futures contracts traded. During 2017, the monthly average

trade volume grew to 16,732 lots. Across all eight derivatives, the average monthly

trading volume in 2017 amounted to 25,844 lots.

2.4 Information Content of Derivatives Markets

The view that informed investors might prefer to trade on their information in the

options markets, rather than in the stock market, has been supported by academics

since the work of Black (1975). The arguments include the leverage inherent to

options, as well as the ease of exploiting negative information about the stock’s

price by buying a put or selling a call option. Recent empirical work documents

the information leadership of the options market relative to their underlying. For

example, Chakravarty et al. (2004) document the price discovery role of the options

market. Pan and Poteshman (2006) find that the option volume, measured by a

put-call ratio, predicts future stock price movements, and Cremers and Weinbaum

(2010) show that the deviation from put-call parity is useful in predicting future

stock performance. These studies provide evidence that the options markets are a

venue for informed trading.

redemption of the notes, called acceleration.
3https://www.mpi.govt.nz/news-and-resources/open-data-and-forecasting/situation-and-

outlook-for-primary-industries-data/

10



Chapter 2. A Primer on the Derivatives Market and Their Functions

Not only have studies shown that options can be informative about the future

price of an underlying asset, but also that they can be used to predict its future

volatility (see, for example, Fleming, 1998; Frijns et al., 2010). The implied volatility

is the volatility of the underlying asset which equates the observed option price with

the theoretical option price. The implied volatility is often viewed as markets’

consensus estimate of future volatility of the underlying asset over the course of an

option’s time to expiration. Therefore, provided that the options market is efficient

and the pricing formula is correctly specified, implied volatility is often shown to be

a superior estimate of future volatility relative to time-series models.

Early literature often relied on the Black and Scholes (1973) model to extract

implied volatility. However, the Black-Scholes model does not hold exactly, and in

practice the implied volatility from an option written on a specific underlying asset

will depend on time to expiration and the strike price. To arrive at a point estimate

of implied volatility a standardised measure would be desirable. In 1993, the CBOE

introduced the Volatility Index (VIX) which has become the benchmark for equity

market volatility. The VIX, which later was renamed the VXO, is a combination of

eight near-the-money S&P 100 option implied volatilities and represents the implied

volatility with 22 trading days to maturity.

In more recent research, alternative measures of implied volatility have been

examined. A model-free option implied volatility has received considerable interest

from both practitioners and academics. As the name implies, it is derived from the

set of options’ prices without assuming any specific option pricing model. In 2003,

the CBOE modified the methodology of the volatility index calculation from using

Black-Scholes implied volatilities to a model-free approach. Calculation of the VXO

used near-the-money options only, while for VIX a wide range of strikes is required.

Additionally, the new VIX replaces the S&P 100 options with S&P 500 options.

The VIX has become a widely-watched index of expected future market volatility

over the next 30 calendar days. Later, the CBOE expanded the range of volatility

indexes to different underlyings, including commodity-related ETFs on crude oil,

gold, silver, gold miners and the energy sector.
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As we discussed earlier, options markets not only contain information about the

future returns on an underlying asset, but also can be used for predicting its fu-

ture volatility. The important question is whether the forecast based on implied

volatility outperforms the forecast based on historical data. A large body of em-

pirical literature, which uses Black-Scholes implied volatility, generally justifies the

forward-looking nature of implied volatility and shows that implied volatility has a

higher explanatory power than time-series models (historical volatility or GARCH

models). However, the conclusion about whether time-series models contain infor-

mation incremental to implied volatility differs across different markets. For exam-

ple, for options on currency, Jorion (1995) show that implied volatility subsumes

all information contained in estimators based on time-series models. In contrast,

Szakmary et al. (2003) find that for some agricultural commodities, such as cocoa,

feeder cattle and lean-hogs, the implied volatility forecast does not encompass the

historical forecast.

Similarly to Black-Scholes implied volatility, research which uses the model-free

approach to extract implied volatility concludes that implied volatility outperforms

estimators based on time-series models. For example, in the equity market, Carr

and Wu (2006) show that the VIX is an efficient predictor of the S&P 500 index

future realized volatility and encompasses the information contained in the GARCH

forecast. Moreover, some studies demonstrate that model-free implied volatility is a

superior estimate to Black-Scholes implied volatility, as it subsumes all information

contained in Black-Scholes implied volatility (see, for example, Jiang and Tian, 2005;

Wang et al., 2012).

With this background in mind, the next section connects the above mentioned

arguments and outlines the three essays of the thesis.

2.5 Outline of the Thesis

As we discussed in Section 2.3, derivative markets are dynamic and new products are

introduced frequently. It is important to understand the properties and usefulness

of these new derivatives. The overall aim of this thesis is to build an understanding
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of the use and properties of two innovative derivatives products, which are volatility

and dairy derivatives. As we argued in Section 2.4, options markets are a venue for

informed trading. In particular, implied volatility, which is extracted from option

prices, provides useful information about future volatility. Two volatility ETNs, the

VXX and XIV, allow market participants to speculate on the direction of future

US stock market’s volatility. It would be interesting to investigate which of these

two ETNs is more informative about future volatility and when. In Chapter 3 we

answer this question by using price discovery measures of Hasbrouck (1995) and

Lien and Shrestha (2014). In Section 2.4, we also discussed that implied volatility

forecast outperforms historical volatility forecasts. Motivated by these findings, in

Chapter 4, we focus on the NZX dairy derivatives market and construct a dairy

volatility index (termed DVIX). We investigate the returns-DVIX relationship and

then evaluate the predictive power of the DVIX in predicting subsequent realized

volatility of WMP futures. Additionally, we compare its information content rela-

tive to historical volatility and GARCH volatility. In Chapter 5, we continue the

exploration of the usefulness of the NZX dairy derivatives market, but we move

from its informational role to risk-management function. As we have pointed out in

Section 2.2, derivatives markets have been used for hedging even before standard-

ised stock exchanges emerged. Given the increase in popularity of WMP futures

in recent years, an interesting question would be to investigate the benefits these

contracts offer to NZ dairy farmers. In Chapter 5, we explore the effectiveness of

profit margin hedging with WMP futures within the New Zealand context.
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Chapter 3

Determinants of Intraday Price Discovery

in VIX Exchange Traded Notes1

3.1 Introduction

With the introduction of VIX derivatives in 2004, volatility, for the first time, became

a tradable product. However, it was not until the introduction of VIX Exchange

Traded Notes (ETNs) that trading in volatility really took off. These products,

first issued in 2009, have gained huge popularity among market participants, with

currently 19 VIX-related ETPs.2 Volatility ETNs allow market participants to take

direct, inverse or leveraged positions in S&P 500 volatility. Some ETPs monitor the

curvature of the VIX futures term structure and offer direct or inverse exposures

to short- or medium-term futures contracts on the VIX. The most popular direct

ETN is the iPath S&P 500 VIX Short-Term Futures ETN (VXX) and the most

popular inverse ETN is the VelocityShares Daily Inverse VIX Short Term ETN

(XIV). Despite the VXX losing about 99% of its value and undergoing four reverse

splits since inception, this ETN remains extremely popular, with an average trading

daily volume of 60 million contracts by the end of 2016. The XIV, on the other

hand, has gained more than 100% since inception and, by the end of 2016, had an

1This chapter is based on Fernandez-Perez, A., Frijns, B., Gafiatullina, I., & Tourani-Rad,
A. (2018). Determinants of intraday price discovery in VIX exchange traded notes. Journal of
Futures Markets, 38(5):535-548.

2An exchange-traded product (ETP) is a derivative security which is traded on an exchange.
ETPs are typically benchmarked to indices, stocks, commodities, or may be actively managed.
There are several different types of ETPs, including Exchange-traded funds (ETFs) and Exchange-
traded notes (ETNs).
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average daily trading volume of close to 30 million contracts.

The demand for the VXX could be due to either diversification benefits or spec-

ulation on future volatility changes. Changes in the VIX are negatively correlated

with changes in the S&P 500. Thus, adding volatility exposure to a portfolio can

potentially be a risk mitigation strategy during market turmoil (Signori et al., 2010).

However, several studies document that VIX ETNs do not provide an effective hedge

when held as a passive buy-and-hold investment.3 As a result, when used as a portfo-

lio insurance tool, investors might prefer to use the VXX for short-term, rather than

for long-term exposure. However, this kind of trading might be affected by overre-

actions to extreme market conditions, and thus impair the information content of

the VXX’s price.

The other reason for trading in VXX and XIV is speculation about future changes

in volatility, as the VXX and XIV can be used for betting on the direction of

volatility. The VXX increases at times when the XIV falls (and vice versa) and, thus,

informed investors might choose to transact in one or the other market, which might

result in the flow of information between these two volatility ETNs. If informed

traders are more likely to choose one particular market to transact in, then this

market dominates the price discovery process and tends to lead prices of the other

market. Given the tremendous trading volume in the VXX with exceptional negative

returns in the long-run, does that mean that it is dominated by noise traders, who

lower the contribution to price discovery for the VXX? Or maybe informed investors

switch trading strategies between the VXX and XIV according to changing market

conditions, which subsequently leads to time variation in price discovery between

the VXX and the XIV?

In this chapter, we are interested in the informational leadership between the

direct and inverse short-term volatility ETNs. First, we examine the informational

leadership between the direct and inverse short-term volatility ETNs. Second, we

examine key determinants of informational leadership. We investigate to what extent

the price discovery measures of Hasbrouck (1995) and Lien and Shrestha (2014)

3The long-term performances of VIX ETNs versus the VIX show substantial deviations pri-
marily due to the negative roll-over costs during contango markets, which is called “contango trap”
(Alexander and Korovilas, 2012a; Whaley, 2009).
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are influenced by spread and liquidity measures, and whether a change in market

conditions affects the ability of the VXX and XIV to incorporate new information.

Using high frequency data, our results show strong time variation in price discovery

between the VXX and XIV. This finding indicates that neither the VXX nor the XIV

is redundant from the perspective of price discovery and that informed traders opt to

switch between these two markets. We document that relative spread- and volume-

related metrics are significant determinants of price discovery. We further document

that price discovery of the VXX reduces on days with negative returns on the S&P

500 and on days when the level of the VIX increases. This suggests that during those

days informed investors choose to trade in the XIV, as the informational content of

the VXX might be affected by increasing hedging activity driven by overreaction to

the extreme market conditions.

While several prior studies have focused on volatility as an asset class and its

diversification benefits, only a few address the question of informational dominance

between the VIX and its derivatives, or between the different volatility products.

Shu and Zhang (2012) examine the lead-lag dynamics between the VIX and VIX

futures on a daily basis and conclude that VIX futures lead the VIX. Frijns et al.

(2016), using intraday data, find evidence of bi-directional causality between the

VIX and its futures, with VIX futures prices becoming more informative over time.

As for volatility ETPs, Bordonado et al. (2016) study the price discovery relationship

among direct, leveraged and inverse VIX ETPs employing 1-minute data and identify

the price discovery leader within each ETP category.4 Bollen et al. (2017) expand

the analysis of lead/lag relation for the pairs of VIX futures vs. VIX options, VIX

futures vs. the VXX and VIX futures vs. the VIX. Using intraday price movements,

they find that, for each pair, information about volatility originates in VIX futures,

the VXX and VIX futures, respectively, with increasing dominance of VIX futures

over time. However, none of the research to date has addressed the price discovery

4Bordonado et al. (2016) examine price discovery between three pairs of VIX ETPs and find
that, for the direct and indirect ETPs pairs, the older markets and with higher trading volumes
are the informational leaders. However, for the leveraged ETPs, the newer market and with lower
trading volume impounds information faster, which might be explained by the fact that one of the
ETNs in this pair is TVIX which stopped issuance on the 21st of February 2012. Since that time
the TVIX has had a significant premium over its indicative value, which might affect the results.
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process between different ETN categories, which might be attractive to informed

traders during different market conditions, and levels of volatility, and, thus, exhibit

switching pattern in informational efficiency.

This study contributes to the existing literature in several ways. First, we con-

tribute to the price discovery literature in volatility derivatives by providing an

empirical examination of which volatility ETN plays the dominant role in the mech-

anism of price discovery in the VIX. Second, our findings help to understand the

impact of classical determinants of price discovery as well as market conditions on

the efficient pricing of the volatility ETNs.

The remainder of this chapter is organised as follows: Section 3.2 provides back-

ground information on the VIX and the two most popular direct and inverse volatil-

ity ETNs. In Section 3.3, we describe the methodology adopted in this study. Section

3.4 explains the data and reports summary statistics. In Section 3.5, we present the

empirical results. Section 3.6 concludes.

3.2 Background

In this section, we review some of the relevant literature and discuss the pricing

methodology and properties of the VXX and XIV. We also show that, by design

of the underlying indices of these ETNs, there should exist a cointegrating relation

between the VXX and XIV with a cointegrating vector of (1,1)′.

3.2.1 Volatility Derivatives

The most common strategy for protecting equity portfolios during market downturns

is to use options on the S&P 500. The other strategy, which is documented to bring

significant diversification benefits, is to take a long position in implied volatility

(Dash and Moran, 2005; Daigler and Rossi, 2006). To allow for direct trading in

volatility, VIX futures were introduced in 2004 and VIX options in 2006. However,

trading in these VIX derivatives might be too sophisticated for retail investors,

and many institutions are restricted from trading in futures and options directly

(Whaley, 2013). Thus, the third generation of volatility products - VIX ETPs -
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were introduced in 2009. ETPs have an equity-like structure and can easily be

traded by both retail and institutional investors.

A number of studies consider the possibility of hedging portfolios with VIX

futures and VIX ETNs, and conclude that, for passive buy-and-hold investors, direct

VIX ETNs do not provide effective hedges. Husson and McCann (2011), Deng et al.

(2012), Alexander and Korovilas (2012a,b), DeLisle et al. (2014), among others,

attribute the poor long-term performance of VIX ETNs to the fact that most of

them do not provide the performance of the VIX but instead track the performance

of constant maturity futures indices. In turn, constant maturity futures indices suffer

from roll-over losses, which are associated with the term structure of the VIX futures

market, which is typically upward sloping. As an example, the reference index of

short-term futures notes measures the return to a portfolio of one- and two-month

VIX futures contracts, which are rebalanced daily to achieve an average maturity

of one month. Most of the time, VIX futures prices exhibit an upward-sloping term

structure and only during market instability change to a downward-sloping term

structure. The daily rebalancing implies selling a fraction of holdings in the one-

month futures contracts at a lower price than the price which was paid when it was

purchased as a two-month contract, and simultaneously buying a fraction of holdings

in the two-month futures contracts at a higher price. This strategy incurs a loss

in value of the underlying index and, as a result, the value of the direct short-term

futures notes, and in particular the VXX, shows a steady loss. Bahaji and Aberkane

(2016) go beyond the buy-and-hold strategy and show that uninformed rational risk-

averse agents can enhance the performance of their portfolios by dynamically taking

short or long positions in short- or mid-term VIX futures indices. Hence, an optimal

VIX futures investment strategy can be implemented by dynamically investing in

the VXX and XIV ETNs, which are close counterparts of constant short-term long

and short positions in VIX futures.

The conflicting evidence of poor long-term hedging performance, decreasing

prices of the VXX and enormous trading volume in this product naturally prompts

us to question the informational content of the VXX. As Alexander and Korovilas
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(2012b) point out, only during times of market instability does the VIX futures term

structure swing to backwardation and the VXX stops suffering from the negative

roll cost effects, thus becoming an effective diversifier/hedge. The XIV is almost a

mirror reflection of the VXX and experiences stable growth when the VIX falls, and

loses its value when the VIX goes up. Informed investors might be scared away from

investing in the VXX at times of low market volatility and might decide to trade

on the information about future value of volatility in the VXX market at times of

high market volatility. The opposite strategy should be exercised for the XIV. This

switching behaviour of investors between the VXX and XIV during different market

conditions and levels of volatility might lead to changes in price discovery between

the above-mentioned products.

3.2.2 Cointegrating relation between the VXX and XIV

In 2009, Barclays Bank issued the iPath S&P 500 VIX Short-Term Futures ETNs,

or the VXX.5 The VXX is benchmarked to the S&P 500 VIX Short-Term Futures

Index Total Return (TR), or SPVXSTR. The value of the SPVXSTR depends on

its value on the previous day and two return components. The first component

measures the return from a rolling long position in the first- and second-nearby VIX

futures contracts, which creates an average time to maturity of one month. The

second component of the index’s return includes interest accruals based on the 3-

month U.S. Treasury Bill rate. VXX’s performance is linked to the performance of

the SPVXSTR index minus an investor fee.

In 2010, Credit Suisse designed the VelocityShares Inverse VIX Short Term ETN

with ticker XIV. The XIV is benchmarked to the S&P 500 VIX Short-Term Futures

Index Excess Return (ER) with ticker SPVXSP, which measures the return only

from a rolling long position in the first- and second-nearby futures contracts. The

XIV’s performance is linked to the performance of the SPVXSP index minus an

investor fee.

The closing indicative value (CIV) of the ETN is designed to approximate the

5See prospectus of the VXX at http://www.ipathetn.com/US/16/en/details.app?

instrumentId=259118.
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economic value of this ETN. The CIV of each of the ETNs is calculated by the

issuers on a daily basis. The value on the inception date was $100. The CIV of

both VXX and XIV are based on the closing levels of the underlying indices but

have minor differences in their definitions. In Appendix 4.C, we present detailed

calculations which show that both CIVs include the U.S. three-month Treasury rate

return component and have either a direct or inverse relation with the return of the

rolling VIX futures position. Mathematically,

CIV V XX
t = CIV V XX

t−1 × (1 + TBRt + CDRt)× (1− feeRate

365
) (3.1)

CIV XIV
t = CIV XIV

t−1 × (1 + TBRt − CDRt)× (1− feeRate

365
), (3.2)

where CDRt is the Contract Daily Return, which is driven by the changes in VIX

futures prices, TBRt is the Treasury Bill Return, feeRate is the investor fee rate

which is equal to 0.89% and 1.35% per year for the VXX and XIV, respectively.

Comparing Equations (3.1) and (3.2) one can see that, though at the first sight the

VXX and the XIV are benchmarked to indices that differ by the return which might

be gained through investing in the three-month U.S. Treasury rate, it follows that

the CIVs of both of the series include it. This observation gives us grounds to argue

that the two ETNs are cointegrated with a cointegrating vector (1, 1)′.

The trading price of the ETNs may substantially differ from the stated principal

amount, intraday indicative value or CIV, due to the fact that the trading price

reflects the investor supply and demand for that ETN. Whaley (2013) and Bordon-

ado et al. (2016) evaluate the tracking performance of the most popular VIX ETPs

by comparing the daily returns of market prices with the daily returns of their re-

spective benchmarks and by comparing the observed market prices with the CIV.

They conclude that both the VXX and XIV closely, though not perfectly, track the

underlying benchmark indices and closing indicative values.
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3.3 Methodology

To quantify the process of price discovery, we use the Information Shares (IS) devel-

oped by Hasbrouck (1995). As an alternative measure of price discovery we consider

the Generalized Information Share (GIS) developed by Lien and Shrestha (2014).

Hasbrouck (1995) defines the price discovery process in terms of the variance of

the innovations to the common efficient price. IS measures each market’s relative

contribution to the variance of the efficient price. If innovations are contempora-

neously correlated, then the IS cannot be computed uniquely and is dependent on

the order of the individual asset’s price in the price vector. Hasbrouck (1995) sug-

gests using a Cholesky factorisation and applying different orders of the prices to

compute upper and lower bounds for the IS. Baillie et al. (2002) suggest the use of

the mean of the bounds as an ultimate measure of the market’s contribution to the

price discovery process.

The IS framework is based on the assumption that the system consists of n unit

root series and that there is a common stochastic component or efficient price that

is shared by all prices, i.e. there are (n − 1) cointegrating vectors. In our study,

we consider the system of two series Pt = (P1,t, P2,t)
′, a (2 × 1) vector of log prices

for the VXX and the XIV, respectively. The series have the following vector error

correction representation (Engle and Granger, 1987):

∆Pt = α(β′Pt−1 − E(β′Pt−1)) +
k∑

i=1

Γi∆Pt−i + et, (3.3)

where Γi is a (2 × 2) matrix, et is a (2 × 1) vector of the residuals. The VECM

includes two parts: the first part, α(β′Pt−1 − E(β′Pt−1)), represents the long-run

or equilibrium relation between the price series; the second part,
∑k

i=1 Γi∆Pt−i,

captures the short-run dynamics induced by market imperfections. Assuming that

the cointegrating vector is known, the VECM can be estimated by Ordinary Least

Squares. The E(β′Pt−1) term captures systematic differences in the prices, i.e. P1,t−

P2,t. In our case, this term mainly results from the indices having different values

at inception. This term can be estimated by the sample average prior to the other

21



Chapter 3. Determinants of Intraday Price Discovery in VIX Exchange Traded
Notes

parameters, corresponding to a “de-meaning” of the data.

It is assumed that there is a common stochastic component or efficient price

that is shared by all prices. That means that there is one cointegrating vector β′ =

(1,−β1), such that β′Pt ∼ I(0). Even though prices are non-stationary, the linear

combination P1,t − β1P2,t is stationary and has a moving average representation:

∆Pt = Ψ(L)et = et + Ψ1et−1 + Ψ2et−2 + ..., (3.4)

where Ψ(L) is a matrix polynomial in the lag operator, Ψ0 = I2, et = (e1,t, e2,t)
′

and et ∼ iid(0,Σ) is a zero-mean vector of serially uncorrelated disturbances with

covariance matrix Σ. Using the Beveridge-Nelson decomposition, we can present

the price levels as:

Pt = P0 + Ψ(1)
t∑

i=0

ei + Ψ∗(L)et, (3.5)

where P0 is a constant (2× 1) vector of initial values, Ψ(1) is the sum of the moving

average coefficients and Ψ∗(L) =
∑∞

k=0 Ψ∗k and Ψ∗k = −
∑∞

j=k+1 Ψ∗j . The requirement

that β′Pt is stationary implies that β′Ψ(1) = 0. The structure of β implies that two

rows of Ψ(1) are proportional to each other and can be expressed as

Ψ(1) =

 1

β−11

(ψ1 ψ2

)
=

 ψ1 ψ2

β−11 ψ1 β−11 ψ2

 , (3.6)

where ψ = (ψ1,ψ2) is a common row.

Hasbrouck (1995) considers the term Ψ(1)et as the component of the price change

that is permanently impounded into the asset price and presumably due to new

information. If Σ is diagonal (i.e. the market innovations are not contemporaneously

correlated), then the variance of the long-run impact consists of the sum of two

terms and each of them represents the contribution from a particular market to the

innovation to the random walk component of the price. In this case, the IS of series

i is defined as follows:

ISi =
(ψiσi)

2

ψΣψ′
,i = 1, 2. (3.7)

If Σ is non-diagonal there is no unique value for the IS, but triangularisation of the
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covariance matrix can help to determine lower and upper bounds of IS. In this case,

the formula is as follows:

ISi =
(ψF )2i
ψΣψ′

,i = 1,...,n, (3.8)

where F is the Cholesky factorisation of Σ such that FF ′ = Σ and F is a lower

triangular matrix. (ψF )i is the i-th element of ψF .

In practice, IS is computed from estimates of a VECM as in Equation (3.3).

Johansen (1991) shows that the matrix Ψ(1) can be computed using the following

formula:

Ψ(1) = β⊥(α′⊥Γ(1)β⊥)−1α′⊥, (3.9)

where β⊥ and α⊥ are orthogonal vectors satisfying β′β⊥ = 0 and α′α⊥ = 0, respec-

tively, and Γ(1) = In −
∑k−1

i=1 Γi.

Lien and Shrestha (2014) modify the IS proposed by Hasbrouck (1995) in two

respects. First, the GIS can be applied to calculate a unique measure instead of

upper and lower bounds for the IS. Second, it can be used in the situations where the

cointegrating vector does not have to be one-to-one. The key idea of their approach

lies in the diagonalisation of the correlation matrix instead of the covariance matrix,

which results in a unique measure independent of the ordering. The GIS of series i

is given by:

GISi =
(ψFM)2i
ψΣψ′

,i = 1,...,n, (3.10)

where FM = [GΛ−1/2GTV −1]−1, (ψFM)i is the ith element of ψFM ; Λ is a diagonal

matrix containing the eigenvalues of the innovation correlation matrix on the diag-

onal; G is a matrix with the columns represented by the corresponding eigenvectors

and V is a diagonal matrix containing the innovation standard deviations on the

diagonal.
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3.4 Data and Summary Statistics

We obtain intraday trade and quote data for the VXX and XIV from Thomson

Reuters Tick History (TRTH) database maintained by SIRCA (Securities Industry

Research Centre of Asia-Pacific) with millisecond precision. The starting date of the

sample is 3 January 2012 and the ending date is 31 December 2015. We do not start

the sample from the inception of the XIV to avoid any liquidity issues. To clean

the data, we follow the modified procedure by Barndorff-Nielsen et al. (2009). The

cleaning of quotes data is carried out in the following steps. First, we delete entries

with a time stamp outside the 9:35 am to 15:55 pm window when the exchange is

closed (we eliminate the first and last five minutes of the trading day). Second, we

delete entries with a bid or ask price equal to zero. Third, we delete entries with a

negative spread. Fourth, we delete entries for which the spread is more than fifty

times the median spread on that day. Fifth, we merge entries which correspond

to the same second, keeping only the last observation in the group with the same

second time stamp. The last step in our cleaning procedure is to delete entries for

which the mid-quote deviates by more than five median absolute deviations of the

day from a centered median (excluding an observation under consideration) of 50

observations.

Table 3.1 provides summary statistics for the mid-point of the bid and ask quotes.

Panel A reports summary statistics for the levels of the VXX and the XIV. The VXX

has positive skewness and displays excess kurtosis. The first-order autocorrelation

of the VXX is close to one and the Augmented Dickey-Fuller (ADF) test fails to

reject the presence of a unit root at conventional significance levels. The XIV has

positive skewness and negative excess kurtosis. The series are highly persistent and

the ADF test fails to reject the presence of a unit root. The log transformation

which is presented in Panel B smooths the data. The log of the VXX preserves

the positive skewness but now exhibits negative excess kurtosis and the ADF test

again demonstrates that the null hypothesis of a unit root cannot be rejected. The

logarithm values of the levels for the XIV have negative skewness and negative excess
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kurtosis. According to the ADF test statistic, we cannot reject the null of a unit

root at conventional significance levels showing that these series are non-stationary.

Therefore, the logarithm of the VXX and the XIV are I(1) processes. Panel C shows

the descriptive statistics for the first difference of the logarithmic values of the VXX

and the XIV. The ADF tests reject the null hypothesis of a unit root.

Table 3.1: Descriptive Statistics

Mean St. Dev. Skewness Kurtosis ρ(1) ADF

VXX 183.59 211.09 1.29 0.53 0.9999 -1.78
XIV 24.26 11.79 0.22 -0.97 0.9999 -1.65
log(VXX) 4.51 1.21 0.32 -1.33 0.9999 -0.92
log(XIV) 3.04 0.58 -0.63 -0.51 0.9999 -1.41
∆log(VXX) -1.18e-07 2.68e-04 63.62 82285 -0.022 -3854***
∆log(XIV) 0.26e-07 2.83e-04 -87.11 100326 -0.035 -3898***

Note: This table presents descriptive statistics on the mid quote of the VXX and the XIV
at 1-second frequency for the full sample. ρ(1) denotes the first-order autocorrelation.
The augmented Dickey-Fuller (ADF) statistics test the null hypothesis that an examined
series has a unit root. **, *** indicates significance at the 5% and 1% levels, respectively.

Figure 3.1 shows the 5-day moving averages of the daily volumes of the VXX

and XIV since the inception date of the ETN to the end of 2015.6 After one year

from inception, trading volume of the VXX started to grow and in December 2015

reached about 70 million shares per day, showing that this ETN gained acceptance

as a volatility trading vehicle. The XIV also gained significant growth within one

year after inception, though on a smaller scale. By the end of 2015, the average daily

volume reached 30 million shares, almost half of the volume of the VXX. Similarly

to the VXX, during big geopolitical events the trading volume in the XIV tends to

increase indicating that the traders change their outlook on the future direction of

volatility and take either long or short positions in volatility. Peak volumes occur in

times of market instability. These days are: 8 August 2011, when “Black Monday”

occurred as a response to the USA’s credit rating downgrade; mid May 2012 when

the event known as “Grexit” during the European debt crisis took place; 20 June

2013 with the Chinese banking liquidity crisis; 15 October 2014 turmoil sparked by

weak US economic data and fears over the health of the global economy; 21 and

6Inception dates for the VXX and XIV are January 29, 2009 and November 29, 2010 respec-
tively.
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24 August 2015 market sell-off triggered by China’s stock market crash. Figure 3.2

plots the daily log mid-quote of the VXX and XIV over time. The plot shows that

both time series seem to be a mirror reflection of each other.

Figure 3.1: Daily volumes for the VXX and XIV (in 1,000,000s)
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Note: This figure shows the daily trading volumes for the VXX and the XIV for the period
between January 29, 2009 and December 31, 2015.

Figure 3.2: Daily closing prices for the VXX and the XIV
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Note: This figure shows a daily log price history for the VXX and XIV from January 3,
2012 to December 31, 2015.
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3.5 Empirical results

3.5.1 Cointegration Test

Before estimating the VECM in Equation (3.3), we examine whether the price series

are cointegrated. For 92% percent of days the ADF tests show that the price series

of both the XIV and VXX are non-stationary. Though they are non-stationary, we

expect that they will not drift far apart from each other because they have similar

underlying indices with the difference that the performance of the XIV is reversed

to the underlying index. Thus, we expect the cointegrating vector to be close to

β = (1, 1)′. We sequentially use the Johansen Likelihood-Ratio test, to examine

whether there is one cointegrating vector. The null hypothesis that the number of

cointegrating vectors is at most zero is rejected at the 1% level for 94% of the days

in the sample. The next test indicates that there is at most one cointegrating vector

that cannot be rejected for about 99.5% of those days.7 The average cointegrating

relation is (1, 1.002)′ and the null hypothesis that the CE is equal to (1, 1)′ cannot

be rejected.

3.5.2 VECM and Daily Price Discovery Measures

To identify the lag length of the VECM that will be used to estimate the VECM

for every day in the sample, we use the multivariate version of Schwartz’s Bayesian

Information Criterion (SBIC). After calculating the optimal lag length for each day,

we calculate the average value, which is equal to 9. Thus, to compute the daily

measures of price discovery, we consider a VECM with a lag-length k = 9.8 Table

3.2 provides the results for the intraday VECM of order 9. The speed of adjustment

coefficients αV XX and αXIV from Equation (3.3) represent the speed of convergence

to the long-run equilibrium relationship between the VXX and XIV. Schwarz and

Szakmary (1994) are the first who proposed using the relative magnitude of the error

correction coefficients αV XX and αXIV to assess the contribution of each market to

7Based on the 1% level, we discard 6% of days from the analysis.
8Results do not change significantly when using different lags.
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the price formation process. They argue that the price discovery leader is the market

which initiates the mispricing β′Pt and the price discovery follower is the market

which responds to the disequilibrium. Thus, a smaller α (in absolute terms) indicates

a price discovery leadership. In our case, αV XX is smaller than αXIV in absolute

terms, thus suggesting that the VXX is the informational leader.

Table 3.2: VEC Model

∆VXXt ∆XIVt

EC termt-1 -0.019*** -0.036***
∆VXXt-1 -0.13*** -0.144***
∆VXXt-2 -0.087*** -0.099***
∆VXXt-3 -0.071*** -0.076***
∆VXXt-4 -0.055*** -0.065***
∆VXXt-5 -0.045*** -0.054***
∆VXXt-6 -0.037*** -0.045***
∆VXXt-7 -0.03*** -0.037***
∆VXXt-8 -0.022*** -0.029***
∆VXXt-9 -0.015*** -0.02***
∆XIVt-1 -0.115*** -0.155***
∆XIVt-2 -0.081*** -0.104***
∆XIVt-3 -0.063*** -0.081***
∆XIVt-4 -0.052*** -0.066***
∆XIVt-5 -0.043*** -0.055***
∆XIVt-6 -0.036*** -0.045***
∆XIVt-7 -0.029*** -0.037***
∆XIVt-8 -0.023*** -0.028***
∆XIVt-9 -0.015*** -0.019***
Adjusted R2(%) 1.81 3.16

[0.3, 4.83 ] [0.4, 7.01]
No. of Days 957 957

Note: This table reports the results for the intraday VEC model difined in Equation (3.3).
The VEC model is for estimated every day, and the average coefficients over the sample
period, as well as the average adjusted R2 are reported. 2.5th and 97.5th percentiles of
the average adjusted R2 are reported in square brackets. The *** is used to indicate
significance at the 1% level.

When we consider the dynamics of ∆V XX we find evidence of significant nega-

tive autocorrelation and that lagged changes in the XIV have a negative and signifi-

cant effect on current changes in the VXX. Similarly, we find evidence of significant

negative autocorrelation in ∆XIV and that lagged changes in the VXX have a nega-

tive and significant effect on the current change in the XIV. The average adjusted R2

for the intraday models of ∆V XX and ∆XIV are 1.81% and 3.16%, respectively.
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We use Equation (3.8) to calculate upper and lower bounds of the IS and sub-

sequently calculate mean value between the lower and upper bounds. To calculate

the GIS, we use Equation (3.10). Table 3.3 shows distributional properties of both

the IS and GIS. According to the IS, the price discovery contribution of the VXX is

52% and that of the XIV is 48%, suggesting that the XIV closely follows the VXX

in the price discovery leadership. The daily autocorrelation in the IS is 0.816, show-

ing strong persistence in the IS. The ADF test statistics are significant, suggesting

that the IS series are stationary. Similar to the IS, the GIS establishes the VXX

to be the price discovery leader. In comparison to the IS, the GIS is more volatile

and less persistent, with a standard deviation of 0.202 in comparison to 0.152 and

the autocorrelation coefficient drops to 0.77. The difference between 95th and 5th

percentiles is wider for the GIS and equals to 0.643 in comparison to 0.514 range

for the IS.

Table 3.3: Price Discovery Measures Descriptive Statistics

VXX XIV

IS GIS IS GIS

Mean 0.515 0.520 0.485 0.480
5% 0.278 0.212 0.208 0.145
Median 0.510 0.518 0.490 0.482
95% 0.792 0.855 0.722 0.788
Std. Dev. 0.152 0.202 0.152 0.202
Skewness 0.253 0.081 -0.253 -0.081
Kurtosis 2.801 2.202 2.801 2.202
ρ(1) 0.816 0.770 0.816 0.770
ADF -6.243*** -6.962*** -6.243*** -6.962***
No. of Obs. 957 957 957 957

Note: This table presents summary statistics of the ISs. ρ(1) denotes the first-order
autocorrelation coefficient; the augmented Dickey-Fuller (ADF) statistics test the null
hypothesis that an examined series has a unit root. *** is used to indicate significance at
the 1% level.

Figure 3.3 shows the 5-day moving averages computed from the VXX’s daily IS

and GIS. Both graphs exhibit high persistence in daily variation; however, there are

also two apparent jumps in the price discovery measures. These days are marked on

the graph and happened on 5 October 2012 and 8 November 2013 which coincide

with a 1 for 4 reverse split of the VXX. At first sight, the abrupt increase in the

29



Chapter 3. Determinants of Intraday Price Discovery in VIX Exchange Traded
Notes

VXX’s IS might be puzzling; however, analysis of the relative spread seems to explain

the finding. On days when a reverse split occurs the price of the VXX increases 4

times which leads to a decrease of a relative spread to a comparable magnitude.

Based on the extant literature (Fleming et al., 1996; Chakravarty et al., 2004), a

reduction in trading costs positively affects price discovery, as it makes it cheaper

for informed investors to trade on their information. In Section 3.5, we confirm that

a decrease in relative spread is associated with an increase in the IS. Hence, reverse

splits make the VXX cheaper to trade, which attracts more liquidity and, thus, also

informed traders.

Figure 3.3: Price Discovery Measures for the VXX
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Note: This figure depicts the evolution of the IS and GIS for the VXX between January
3, 2012 and December 31, 2015.

The strong time variation we observe in the process of price discovery between

two volatility ETNs is very different from those observed in stocks and stock op-

tion markets. Chakravarty et al. (2004) show that, for the period 1988-1993, the

contribution of option markets to price discovery is about 17%, on average, with

only a slight decrease over time. However, the significant time variation which we

document for volatility ETNs is not unique and might be found in other markets.
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Schlusche (2009) considers the relative price discovery between the DAX ETF and

DAX futures. Though, on average, the futures market is the price leader, the daily

measures of price discovery vary over time. Time variation in the price leadership

between the VXX and XIV means that neither the VXX nor XIV is the only ETN

which effectively can incorporate news about future value of volatility, but, rather,

the importance of one or another market changes over time.

3.5.3 Determinants of Price Discovery

Several studies have focused on the determinants of price discovery between the spot

and derivatives markets. Fleming et al. (1996) study the lead-lag relation between

a stock index, and options and futures contracts on this index. They conclude that

the leading market is the one which has the lowest trading cost because informed

traders seek to earn the highest profit through execution of their trading strategies.

Chakravarty et al. (2004), using stock and option data, show that informed trading

in the option market has a significant association with the relative effective bid-ask

spread, trading volume and stock volatility. In summary, the main price discovery

determinants between the spot and derivatives market are found to be trading costs,

market liquidity measures and volatility of the underlying security.

The area of price discovery between volatility products has emerged relatively

recently and only a few studies examine the possible determinants of the price dis-

covery process within this asset class. Thus, we investigate how the price discovery

measures of the VXX are affected by trading costs, by volume-related metrics and

by market conditions.

Frijns et al. (2016) are among the first to study the dynamic relation between the

VIX and VIX futures using intraday data. Using Granger causality tests, they find

that over the time the VIX futures have become more important in the pricing of

volatility and that this dominance is more pronounced on days when the stock mar-

ket experiences a significant decline and on days with high values of the VIX. Chen

and Tsai (2017) take a step further and apply classical measures of price discovery

to the VIX and its futures. In line with previous results, they find that VIX futures
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play a dominant role in the price discovery process and show that the contribution

increases with the increase in the futures basis, which is defined as the difference

between the VIX and VIX futures. Additionally, they find that VIX futures play

a more important role in the price discovery process on days with macroeconomic

news announcements related to the consumer price index. Traditional determinants

of price discovery, including the trading volume and bid-ask spread, are not found to

be the key determinants, which is not surprising as investors cannot directly trade

or replicate the VIX and thus no relative measures of liquidity and trading costs can

be computed.

To measure trading costs, we use the relative spread, which is defined as the

daily average value of the difference between ask and bid quotes relative to the

quote midpoint. The volume-related metrics include the total number of trades

and the trading volume, all calculated on a daily basis. As a measure of market

conditions, we consider the change in the VIX and the return on the S&P 500.

The level of the VIX is an easily observed variable, which, according to the pricing

formula, should influence the value of the volatility ETNs in opposite directions.

During times of high levels of fear, direct ETNs should benefit and increase in value

as during these times the futures curve swings from contango to backwardation. At

the same time, the inverse ETN should drop in value but has a potential to grow

when the market reverts to the normal state. It is important to note that while

trading in the VXX might be driven by either the demand for portfolio insurance or

speculation on future volatility spikes, trading in the XIV cannot hedge downward

movements in the stock market. In the case where investors have a good timing

ability about future volatility spikes, they can choose in which market to trade on

their information, but if trading in the VXX is driven by the necessity for portfolio

insurance, during increased market turbulence, one would expect a decrease in the

price discovery of the VXX.

To assess the influence of the discussed variables on changes in the price discovery
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measures, we run the following regression:

∆PDt = β0 + β1∆PDt−1 + β2∆Spreadt + β3∆V olumet

+β4∆MarketConditionst + et,

(3.11)

where ∆PDt is the daily change in price discovery of the VXX between days t− 1

and t, ∆Spreadt is a change in the ratio of effective spreads, ∆V olumet is a change

in the ratio of one of the volume-related metrics, ∆MarketConditionst is either

∆V IXt or ∆SPXt, which are a change in the VIX or the log return on the S&P 500

on day t.9 All the ratios are taken as the VXX value divided by the XIV. We control

for the persistence in the price discovery measure by including its lagged value.

Panels A and B of Table 3.4 report the regression results for the daily changes

in the IS and GIS, respectively. For the IS, all four model specifications provide a

good fit with the lowest adjusted R-square of 29.3% and all coefficients are statis-

tically significant at the 5% level or higher. In line with previous studies, the more

liquid market is the informational leader, which is indicated by the significant and

positive coefficient for the relative number of trades and the trading volume, and

the significant and negative coefficient for the ratio of the relative spreads. This

finding implies that, at times when trading costs in the VXX increase relative to

the XIV, the IS of the VXX drops. Additionally, an increase in trading in the VXX

(measured either by trades volume or trades number), or a decrease in trading in

the XIV is associated with an increase of the IS of the VXX.

The change in the VIX has a negative association with the change in the IS of

the VXX, while the change in the returns on the S&P 500 has a positive association.

This indicates that market downturns, characterised by a decrease in the S&P 500

or an increase in the VIX, are associated with a decrease of the informativeness of

the VXX, and an increase in the informativeness of the XIV. These results could

be explained by the increased hedging demand for the VXX during times of high

levels of fear, which is not driven by information, but expresses a reaction of market

9We additionally run a model including a dummy variable controlling for the reverse splits of
the VXX. Results stay nearly the same as reported, confirming that abrupt changes in the IS and
GIS on days with reverse splits can be explained by the decrease in relative spread.
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Table 3.4: Determinants of PD measures

Panel A: Determinants of IS

Model 1 Model 2 Model 3 Model 4

Intercept 0.000 0.000 0.000 0.000
(0.093) (-0.057) (0.119) (-0.024)

∆ISt-1 -0.452*** -0.450*** -0.451*** -0.448***
(-13.109) (-12.958) (-13.096) (-12.954)

∆Spreadt -0.202*** -0.195*** -0.191*** -0.184***
(-8.908) (-8.760) (-8.622) (-8.524)

∆Trades Volumet 0.009*** 0.009***
(2.579) (2.624)

∆Trades Numbert 0.010*** 0.010***
(2.780) (2.857)

∆VIXt -0.007*** -0.006**
(-2.663) (-2.484)

∆SPXt 1.041*** 0.987***
(2.794) (2.658)

Adjusted R2 (%) 29.4 29.3 29.63 29.57
No. of Obs. 912 912 912 912

Panel B: Determinants of GIS

Intercept 0.000 0.000 0.001 0.000
( -0.008) (-0.121) (0.013) (-0.094)

∆GISt-1 -0.462*** -0.459*** -0.461*** -0.458***
(-12.283) (-12.210) (-12.300) (-12.232)

∆Spreadt -0.277*** -0.270*** -0.263*** -0.257***
(-8.148) (-8.158) (-7.679) (-7.739)

∆Trades Volumet 0.012** 0.012**
(2.459) (2.488)

∆Trades Numbert 0.013*** 0.013***
(2.613) (2.684)

∆VIXt -0.007* -0.007
(-1.680) (-1.543)

∆SPXt 1.181** 1.124*
(1.963) (1.860)

Adjusted R2 (%) 28.57 28.57 28.68 28.69
No. of Obs. 912 912 912 912

Note: This table reports regression results of the daily changes in the PD measures of the
VXX on various variables described in Equation (3.11). Robust t-statistics is reported in
parenthesis and ***, ** and * are used to indicate significance at the 1%, 5% and 10%
respectively.

participants to the deterioration of the market conditions. Prior studies have doc-

umented the strong negative relation between changes in the VIX and returns on

the S&P 500 index (e.g. Whaley, 2009), and, indeed, for our sample the correlation

between those two variables is -0.83. This can explain that while the return on the
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S&P 500 index has a positive association with the informativeness on the VXX, the

change in the VIX has a negative association.

As for the daily changes in the GIS, the results are of a similar kind, with the

lowest adjusted R-squared of 28.57%. In summary, we confirm that informed traders

prefer to trade in the more liquid market and the one with the lowest transaction

costs. Additionally, during market turmoils, the informational leadership of the

VXX subsides.

3.6 Conclusions

In this study, we examine the intraday price discovery relation between the VIX

short-term futures ETN and inverse VIX short term futures ETN. Using the ap-

proaches of Hasbrouck (1995) and Lien and Shrestha (2014), we first conduct the

unit root test, cointegration analysis and build the VECM. The Johansen approach

suggest that the two series are cointegrated, thus a long-run equilibrium relation-

ship exists. We find that both the information share and the generalized information

share are subject to substantial time variation with the latter being more volatile.

We conduct a times series regression between the daily changes in the price discovery

measures and several possible determinants. We find that price leadership is associ-

ated with relative trading costs, relative trading volume and number of trades. The

informativeness of the VXX tends to increase, on average, when the relative number

of trades (or the trading volume) in the VXX is high and when the XIV number of

trades (or the trading volume) is low, when the effective bid-ask spread in the VXX

narrows and in the XIV widens. We further document that the informativeness of

the VXX market decreases on days when expected future market volatility increases

and on days with negative returns in the stock market. This finding suggest that

during market downturns informed investors use the XIV to trade on their infor-

mation, expressing mean-reversion expectations on future volatility, while a trading

activity in the VXX market is more driven by an increased hedging demand.
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3.A Appendix: Calculation of the CIV for the

VXX and XIV

The total (SPVXSTR) and excess (SPVXSP) return versions of the indices are

calculated by the following formulas:

IndexTRt = IndexTRt−1 × (1 + CDRt + TBRt) (3.12)

IndexERt = IndexERt−1 × (1 + CDRt), (3.13)

where CDRt is the Contract Daily Return and TBRt is the Treasury Bill Return

earned on the notional value of the position. The CDRt and the TBRt are given

by the formulas:

CDRt =
TDWOt

TDWIt−1
− 1 (3.14)

TBRt =
[ 1

1− 91
360
× TBARt−1

]Deltat
91 − 1, (3.15)

where TDWOt is the Total Dollar Weight Obtained on t and TDWIt−1 is the Total

Dollar Weight Invested on t− 1, as determined by the following formulas:

TDWOt =
2∑

i=1

CRWi,t−1 ∗DCRPi,t (3.16)

TDWIt−1 =
2∑

i=1

CRWi,t−1 ∗DCRPi,t−1, (3.17)

where CRWi,t is the Contract Roll Weight of the ith VIX Futures Contract on date

t and DCRPi,t is the Daily Contract Reference Price of the ith VIX Futures Con-

tract on date t. Deltat is the number of calendar days between the current and

previous business day and TBARt−1 is the most recent weekly high discount rate

for 91-day US Treasury bills effective on the preceding business day. Inspection

of Equations (3.16) and (3.17) shows that Contract Daily Return is driven only by

the changes in the VIX futures prices and is not dependent on changes in the weights.
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At the start of the roll period, all weight is allocated to the first-nearby contract.

Then, on each subsequent business day a fraction of the first-nearby VIX futures

holding is sold and an equal notional amount of the second-nearby VIX futures is

bought. The initial position in the first-nearby contract is progressively rolled to the

second-nearby futures contract during the course of the month, until the following

roll period starts when the old second-nearby VIX futures contract becomes the new

first-nearby VIX futures contract. After that the process repeats.

The closing indicative value is linked to the performance of the underlying index

minus an investor fee. On any calendar date the CIV for the VXX is calculated

based on the following equations:

CIV V XX
t = CIV V XX

t−1 ×DIFt − Feet (3.18)

DIFt =
IndexTRt

IndexTRt−1
(3.19)

Feet =
feeRate

365
× CIV V XX

t−1 ×DIFt, (3.20)

where CIV V XX
t is the closing indicative value of the VXX on any given calendar

day t, DIFt is the daily index factor, IndexTRt is the closing level of the index,

feeRate is the investor fee rate which is equal to 0.89% per year.

Combining Equations (3.12), (3.18), (3.19) and (3.20), we arrive at the final

formula for the CIV for the VXX:

CIV V XX
t = CIV V XX

t−1 × (1 + TBRt + CDRt)× (1− feeRate

365
).

The closing indicative value for the series of the XIV is equal to:

CIV XIV
t = CIV XIV

t−1 ×DETNPt −DIFt (3.21)

DETNPt = 1 + TBRt +DIPt × (−1) (3.22)

DIFt = CIV XIV
t−1 ×DETNPt ×

feeRate

365
(3.23)

DIPt =
IndexERt

IndexERt−1
− 1, (3.24)

where DETNPt is the daily ETN performance, DIFt is the daily investor fee, DIPt
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is the daily index performance, feeRate is equal to 1.35% for the inverse ETN. The

daily index performance is adjusted by the leverage amount -1.

Combining Equations (3.13) and (3.21)-(3.24) the CIV for the XIV series is equal

to:

CIV XIV
t = CIV XIV

t−1 × (1 + TBRt − CDRt)× (1− feeRate

365
).
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Chapter 4

Properties and the Predictive Power of Im-

plied Volatility in the Dairy Market

4.1 Introduction

New Zealand (NZ) is the world’s largest exporter of dairy commodities, representing

approximately one third of international dairy trade each year. Almost half of global

Whole Milk Powder (WMP) exports are sourced from NZ, making dairy products

one of the most important agricultural commodities for NZ.1 Dairy products are also

known to display high levels of price volatility. For instance, Figure 4.1 shows that

the price of NZ milk powder exhibits considerable fluctuations over time, suggesting

high volatility. This high volatility can have a significant impact on the ability

of NZ dairy farmers to manage their operations and service debt, and can have

serious consequences for the health of NZ’s most influential agricultural sector. In

this chapter, we estimate the implied volatility of WMP and examine its predictive

power for future realized volatility of WMP futures.

Milk powder is one of the most volatile commodities globally.2 Though it is

known that historical volatility is a good predictor of future volatility, in this study

1In 2017 dairy products contributed $NZ14.6 billion to annual exports. The
top three dairy export products are: whole milk powder (36%), butter (19%),
cheese (13%) https://www.mpi.govt.nz/news-and-resources/open-data-and-forecasting/

situation-and-outlook-for-primary-industries-data/
2Figure A1 depicts volatility of different commodities and the S&P 500. For the period between

December 2011 and January 2018 the annualized standard deviation of weekly returns for WMP
futures is 37.1%, while for the S&P 500, CRB Crude Oil, Gold, Cocoa and Sugar Indices it is equal
to 12%, 34.5%, 23.9%, 31.3% and 33.6%, respectively.
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Figure 4.1: WMP GDT Auction Prices
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Note: This figure shows GDT auction weighted average price for all contracts of the WMP
for the period between September 1, 2009 and September 5, 2017. The price is in USD
per metric tonne.

we aim to improve this forecast. Ample evidence suggests that volatility forecasts

based on option implied volatility outperforms those that use historical information

(see Jorion, 1995; Szakmary et al., 2003; Fleming, 1998; Blair et al., 2001; Triantafyl-

lou et al., 2015, among others). Implied volatility is obtained by inverting an option

pricing formula and is often interpreted as the expected volatility over the life of an

option. Implied volatility is generally considered to be a superior predictor of fu-

ture volatility due to the ability of market participants to effectively incorporate all

publicly available information as well as any additional information that is relevant

for predicting volatility into security prices. By construction, implied volatility is a

forward-looking measure, as opposed to historical volatility which relies on historical

data. Over the last three decades, extensive research for financial and non-financial

products has examined the information content of implied volatility (for an overview,

see Poon and Granger, 2003; Gonzalez-Perez, 2015). It has been shown empirically

that implied volatility produces superior forecasts of future volatility across different
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asset classes. For example, Giot (2003) finds that past squared returns (i.e. GARCH

effects) provide no significant volatility information in addition to the lagged implied

volatility for cocoa and sugar futures. Triantafyllou et al. (2015) compute the im-

plied variance for US wheat, corn and soybean futures. They find that, for corn

and wheat, option-implied variance outperforms historical volatility in forecasting

volatility, while, for soybeans, both historical and implied variance are significant

determinants of future realized variance.

This chapter provides a comprehensive analysis of the information contained in

the NZ dairy option market in predicting subsequent realized volatility and our

contribution is threefold. First, we construct a dairy volatility index (DVIX) and

analyse its statistical properties. The DVIX is a 22-trading day at-the-money im-

plied volatility index constructed from four call and four put options. We find a

significant negative and asymmetric relationship between one-day lagged returns

and the changes in the DVIX. It means that, at times when returns are positive

(negative), the DVIX drops (rises) the next day. Additionally, the next day change

in the DVIX is larger when returns are positive, rather than negative. Second, we

assess the in-sample forecasting performance of the DVIX in a GARCH-type frame-

work. The results strongly suggest that the DVIX has a high information content

regarding conditional variance and that the historical information further improves

the model’s fit. Third, we conduct an out-of-sample evaluation of the forecast perfor-

mance of implied volatility, where we consider 1-, 5-, 10- and 22-day ahead forecast

horizons. The predictive power of implied volatility is assessed against four alter-

native time-series forecasts: historical volatility realized during the past 30 trading

days and three different GARCH-type forecasts. We find that the DVIX provides

substantial information about future realized volatility, although it is not an unbi-

ased estimate of future volatility. We also document that a combination of historical

volatility and the DVIX provides the best forecast accuracy for all forecast horizons.

Results of Clark and West (2007) test suggest that the inclusion of the DVIX in

the predictive regressions improves the out-of-sample performance of all considered

time-series forecasters.
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To our knowledge, we are the first to construct and examine the predictive power

of implied volatility for the NZ dairy market. The construction of the DVIX allows

us to visualise the volatility of an important NZ dairy product and highlights the

potential need for risk management tools for farmers and manufacturers. The results

of this chapter are particularly important for decision makers in the financial and

agricultural sectors who require a volatility estimate as an input for pricing and risk

management.

The remainder of this chapter is structured as follows: Section 4.2 provides an

overview on the measures of volatility and highlights the importance of implied

volatility as a predictor of future volatility. Section 4.3 presents the data and the

methodology of the DVIX construction. Section 4.4 explores the statistical proper-

ties of the DVIX and conducts in- and out-of-sample forecasting tests. Section 4.5

summarises the main results of the chapter.

4.2 Literature Review

4.2.1 Historical Versus Forward-Looking Volatility

There are two main types of volatility which are used to describe fluctuations of

an asset’s price. The first one is historical, or backward-looking volatility, and the

second one is implied or forward-looking volatility.

The simplest measure of historical volatility is the standard deviation of a set

of past observations. A more sophisticated type of time-series models is presented

by ARCH (Autoregressive Conditional Heteroscedasticity) and GARCH (General-

ized ARCH) models introduced by Engle (1982) and Bollerslev (1986), respectively.

GARCH models have been developed to account for “stylised facts” documented in

financial return series, such as volatility clustering (absolute or squared returns dis-

play a positive autocorrelation over several days), excess kurtosis (the distribution

of returns displays heavy tails) and leverage effects (negative stock market returns

are associated with changes in volatility that are much larger than those associated

with positive returns of similar size). In these models, the variance of residuals is
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not constant and the next period variance is conditional on information this period.

The implied volatility of an asset can be obtained from the market prices of

options written on that asset. Option implied volatility is interpreted as the market’s

expectation about the volatility of an asset over the life of the option. The first

volatility index (VIX) was introduced by the CBOE in 1993 and was computed

using the implied volatilities from eight near-the-money options written on the S&P

100. In 2003, the CBOE, together with Goldman Sachs, revised their methodology.

They incorporated out-of-the-money put and call options over a wide range of strike

prices and replaced the S&P 100 options with S&P 500 options. The VIX gained

market acceptance and later the CBOE expanded its range of volatility indexes for

different stock indexes, interest rates, currency futures, ETFs and single stocks.3

VIX-type indexes on commodity assets that trade as ETFs include crude oil, gold,

silver and energy. In the context of our chapter, the most interesting is the existence

of the volatility indexes on agricultural commodities. In June 2011, the CBOE began

disseminating volatility benchmarks based on CME Group corn and soybean option

prices. In July 2012, the CBOE started disseminating volatility benchmark based

on CME Group wheat options. The corn, soybean and wheat volatility indexes are

based on the same updated methodology developed by the CBOE for the U.S. equity

based VIX.

Shortly after its introduction, the VIX became a benchmark of expected short-

term market volatility and is known as the “investor fear gauge” due to its property

of spiking at times of market turmoil (Whaley, 2009). Another empirical observation

is that the return-VIX relation is asymmetric, meaning that negative stock market

moves are associated with much larger moves in the VIX than those associated with

positive stock market moves of similar size (Fleming et al., 1995; Whaley, 2009).4

3The full list of all volatility indexes is available at http://www.cboe.com/products/vix-

index-volatility/volatility-indexes.
4Traditionally, there are two hypotheses which explain negative and asymmetric return-

volatility relation. First, Black (1976) and Christie (1982) develop the leverage hypothesis, which
argues that when the stock price of a firm declines, the firm’s debt-to-equity ratio increases, which
makes the firm riskier and increases the volatility of its equity as a result. Second, Campbell and
Hentschel (1992) and French et al. (1987) propose the volatility feedback hypothesis. If volatil-
ity is priced, an anticipated increase in volatility would raise the required rate of return, which
leads to a current stock price decline. Contrary to these fundamental arguments, Hibbert et al.
(2008) propose a behavioral approach, which relies on concepts of representativeness, affect, and
extrapolation bias.
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Padungsaksawasdi and Daigler (2014) examine the return-VIX relation between

the commodity ETF price changes (gold and oil) and their associated volatility

indexes and document several interesting results. First, they find that co-movement

between the price changes of commodity ETFs and their respective VIX changes

are much weaker than documented for stock indexes. Second, they find a positive

contemporaneous return-VIX relation for gold. They explain it by relating to a “safe-

haven” feature of gold during financial turmoil (gold exhibits positive response to

negative macroeconomic news). The results highlight differences of the return-VIX

relation among different asset classes.5

4.2.2 Forecasting of Volatility

The widely-used approach to forecasting volatility is to use time-series models (his-

torical volatility or GARCH models) or to use implied volatilities from options (for

an overview of models used in volatility forecasting see Poon and Granger, 2003).

While some empirical studies document that GARCH models produce good volatil-

ity forecasts over short periods (Andersen and Bollerslev, 1998), there is little evi-

dence to suggest that GARCH models outperform option-implied forecasts of future

volatility. Empirical evidence largely shows that implied volatility produces supe-

rior forecasts of future volatility across different asset classes. For example, Jorion

(1995) examines currency markets and shows that option-implied forecasts outper-

form Moving Average and GARCH models. Fleming (1998) uses S&P 100 options to

compute implied volatilities and shows that the predictive power of implied volatil-

ity is superior to GARCH(1, 1) and historical volatility.6 Blair et al. (2001) follow

Fleming et al. (1995) and use the VIX as a more accurate measure of implied market

volatility from S&P 100 options. They compare the out-of-sample accuracy of four

different volatility forecasts for 1, 5, 10 and 20 days ahead. The four models are

the historic volatility, the daily-frequency ARCH forecast, the intraday volatility

5Baur and Dimpfl (2018) find a positive (inverted) asymmetric effect in agricultural commodi-
ties (softs, grains and livestock), energy commodities and metals (industrial and precious metals)
with a tendency to weaken and converge towards an equity-like effect.

6The call (put) implied volatility is estimated from all call (put) option transactions within a
10-min window centered around the stock market close via an averaging technique. Fleming (1998)
chooses Fleming and Whaley (1994) modified binomial model as an option pricing model.
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calculated from 5-min and overnight returns and the implied volatility index, VIX.

Results show that the VIX contains all the relevant forecasting information for the

forecast horizons of 1, 5, 10 and 20 days ahead.

Another strand of research considers implied volatilities from options written on

non-financial assets. Giot (2003) focuses on implied volatilities for agricultural com-

modities (cocoa, coffee, and sugar futures contracts). In-sample analysis shows that

past squared returns (i.e., GARCH effects) provide no volatility information in ad-

dition to the lagged implied volatility for the cocoa futures contracts. Triantafyllou

et al. (2015) compute model-free implied variance for US wheat, corn and soybean

futures markets. Along with macroeconomic data they use historical 2-month real-

ized variance, model-free implied variance, model-free implied skewness to explain

2-month ahead realized variance. They find that for corn and wheat past realized

variance does not predict future realized variance, while for soybeans both historical

and implied variance are significant determinants of future variance. Szakmary et al.

(2003) examine a variety of asset classes, such as futures options on equity indexes,

currencies, crude oil, short- and long-term interest rates, agricultural commodities,

livestock, metals, refined petroleum products, and natural gas. They find that re-

gardless of how historical measures of volatility are modelled (simple 30-day moving

average or GARCH), implied volatility outperforms historical volatility in predicting

future realized volatility. Manfredo and Sanders (2004) examine the performance of

implied volatility derived from live cattle options to forecast one-week volatility of

live cattle futures prices. They find that implied volatility outperforms alternative

forecasters and that it has improved its forecasting quality over time.

4.3 Data and the Dairy Volatility Index Calcula-

tion

In this section we describe the NZX dairy derivatives market, as well as the data

used to construct the DVIX. After discussing the methodology used to construct

the DVIX, we present some summary statistics.
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4.3.1 Background

In 2010, several exchanges around the world launched dairy derivatives to help the

industry hedge against dairy price volatility. In May 2010, the Chicago Mercantile

Exchange was the first to launch International Skimmed Milk Powder futures and

options contracts with physical delivery points located around the world. In the

same month, the Frankfurt-based Eurex launched trading in cash-settled futures on

Skimmed Milk Powder and Butter. The NZX launched its first derivative in the

agricultural asset class, a Whole Milk Powder (WMP) futures contract, in October

2010. It was followed by Skim Milk Powder (SMP) and Anhydrous Milk Fat (AMF)

futures in February 2011. In November 2011, NZX launched WMP options con-

tracts and in December 2014 added Butter (BTR) futures to its derivative product

offering. Then followed Milk Price (MKP) futures and options, launched in May

2016 and June 2016, respectively. The most recent dairy derivatives are SMP Op-

tion contracts, launched in December 2017. The NZX futures contracts are quoted

in US dollars, with one contract representing one tonne of product. NZX Dairy

futures contracts are cash-settled rather than physically delivered. One WMP op-

tions contract represents the right to buy or sell one WMP futures contract and is

also quoted in US dollars. Table A1 summarises contracts specifications of all eight

currently available NZX dairy derivatives.

Figure 4.2 depicts aggregated trading volume for each month for all available

dairy derivatives traded at the NZX. It shows that the most actively traded dairy

derivatives are WMP futures, and the least traded are recently launched MKP op-

tions. Across all eight dairy derivatives, the NZX recorded a trading volume of

nearly 26,000 lots as of December 2017, where trading in WMP futures accounts

for nearly 79%. Since inception, WMP futures experienced a growth in the trading

volume and in December 2017 it amounted to about 20,000 lots. WMP options are

less actively traded. The first trade occurred in June 2014, which is nearly two and

a half years after their launch, and in December 2017 the trading volume amounted

to about 1,000 lots.
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Figure 4.2: NZX Dairy Derivatives Volume
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Note: This figure shows the monthly trading volume for all NZX Dairy Derivatives for the
period between October 8, 2010 and December 29, 2017.

4.3.2 Data

We use daily data on the NZX WMP futures and options contracts which we obtain

from the NZX Research Centre7. One of its services, AGRI DATA database, contains

7https://companyresearch.nzx.com/crust/services.php
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information about four sets of variables: trading levels and trading prices on the NZX

futures and options; Global Dairy Trade (GDT) auction prices;8 NZ milk production

statistics; pastoral growth index for regions in NZ and on a national level. We

collect option and futures daily settlement prices which we use to construct the

dairy volatility index. The sample period starts on 30 November 2011 (the first

day WMP options were traded on the NZX) and ends 8 January 2018. As a proxy

for the risk-free rate, we collect USD Overnight Index Swap (OIS) rates for various

maturities available from DataStream (we use a US risk-free rate as the WMP

futures and options are settled in US dollars). The estimation period of in-sample

and out-of-sample analysis includes the period from 5 January 2015 to 8 January

2018.9

4.3.3 Dairy Implied Volatility Computation

We compute the DVIX by closely following the methodology applied to the origi-

nal CBOE VIX.10 To construct the DVIX we need three types of information: 1)

an option valuation model; 2) the values of the model’s determinants (except for

volatility); 3) an observed option price. For a given option price, inverting the pric-

ing model yields the implied volatility of that option. We construct the DVIX from

eight options, four calls and four puts, written on the WMP futures. The DVIX is

constructed in a way that it is at-the-money and has a constant 30 calendar days

(22 trading days) to expiration.11 To achieve the at-the-money implied volatility

we combine in- and out-of the money options, and to achieve a constant time to

expiry we combine the first and second nearby options. As option prices can be

8GDT is the NZ-based spot market for various dairy products. The NZX WMP futures settle
against the GDT spot prices.

9As subsequent analysis will show, the DVIX values are virtually constant during the years
2011 to 2014, which is largely due to a lack of liquidity in the market. The first trade in WMP
options occurred in June 2014. During the period 2011-2014, 21,235 lots were trades; while during
2015-2017, 108,173 lots were traded. Hence, we perform the in- and out-of-sample evaluation
starting from 2015 onwards.

10The new approach to calculate the VIX requires the availability of many out-of-the-money
options across a full range of strike prices. For the WMP options there are only a few contracts that
are actively quoted and traded. Thus we choose to follow the original CBOE VIX methodology
which relies on only eight near-the-money options at the two nearest maturities.

11Thus, our approach is similar to Whaley (1993); however, other time horizons could be con-
sidered (for example, two- or three-month time horizons).
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very volatile when approaching the expiration date, we use options which have at

least eight trading days prior to expiration. To address the early exercise feature of

American-style options we use quadratic approximation of American option values

proposed by Barone-Adesi and Whaley (1987), which is explained in Appendix 4.B.

A detailed explanation of the construction of the DVIX is provided in Appendix

4.C.

Figure 4.3 plots the DVIX over time. We notice a considerable drop in the

DVIX value between 17 August 2016 and 23 August 2016 - a trading week from

Wednesday to Tuesday (5 trading days). The value plummeted from nearly 40%

to 14.5% and reached its minimum of 7.5% on Tuesday. This rapid drop in the

DVIX is likely to be caused by the positive news on the price of the WMP, which

jumped 18.9% in the GDT auction.12 Average dairy prices increased by 12.7%. The

highest value of 78% and 78.9% is achieved on 7 and 8 September 2015. Although we

cannot identify any relevant news in NZ for this day, during that time in mainland

Europe farmers protested against falling dairy and meat prices, which may have

generated some uncertainty about global milk prices.13 From Figure 4.3 we observe

that the DVIX has little variation in the beginning of the sample period, which is

due to the low activity in WMP options, and fluctuates around the value of 49%.

Thus, we exclude the period from 30 November 2011 till 31 December 2014 for

further analysis. Another interesting observation is a downward trend, indicating

a decreasing value of the DVIX. For subsequent analysis it is important to check

the stationarity of the DVIX. The daily DVIX level shows a high persistence with a

first-order autocorrelation of 0.815. For example, the US Equity VIX shows a first-

order autocorrelation of 0.866 during the same time period, indicating similarity

between two volatility indices. The Augmented Dickey-Fuller test rejects the null

hypothesis on non-stationarity at 1% level. This finding supports the stylised fact

that volatility in the dairy market is a persistent but mean-reverting process.

We calculate summary statistics for daily DVIX changes over the period 5 Jan-

12http://www.nzherald.co.nz/business/news/article.cfm?c_id=3&objectid=11694758
13http://money.cnn.com/2015/09/07/news/economy/europe-milk-prices-protest/

index.html https://www.theguardian.com/environment/2015/sep/07/farmers-clash-

police-brussels-milk-meat-prices-protest
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Figure 4.3: Dairy VIX
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Note: This figure plots the DVIX levels in percentages during the period from 30 November
2011 through 8 January 2018.

uary 2015 to 8 January 2018 and for three sub-periods. The choice of the sub-periods

is dictated by the observation on the WMP options volume from Figure 4.2. One

can notice a drop in the WMP options volume during the period December 2015 till

November 2016. Table 4.1 presents the summary statistics. The mean daily change

and the standard deviation remain relatively stable for the three sub-periods. The

daily change in the DVIX exhibits positive excess kurtosis, meaning that distribu-

tion has fatter tails than a Normal distribution. Skewness varies from negative to

positive values, showing that the DVIX has a tendency to both abrupt decreases

and increases. The first-order autocorrelation ranges from -0.093 to -0.159. We can

conclude that statistical properties of the DVIX exhibit some variation, not signif-

icant, however, and we can consider the whole period, starting at 5 January 2015,

for the subsequent analysis.
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Table 4.1: Descriptive Statistics

2015/01/05
2018/01/08

2015/01/05
2015/11/30

2015/12/03
2016/10/03

2016/10/10
2018/01/08

Mean (×10) -0.004 -0.005 -0.004 -0.004
Median (×10) -0.004 -0.002 -0.002 -0.004
Max 0.316 0.279 0.316 0.173
Min -0.338 -0.338 -0.250 -0.230
St. Dev. 0.046 0.058 0.040 0.040
Skewness -0.318 -0.489 1.316 -0.870
Kurtosis 15.511 11.076 27.452 10.238
ρ(1) -0.123** -0.111 -0.093 -0.159**
ρ(2) -0.110** -0.176** -0.006 -0.073
ρ(3) -0.075** -0.115 0.060 -0.099
No. of Obs. 749 230 203 316

Note: This table reports descriptive statistics on the daily DVIX level changes for the full
sample and for three sub-samples. ** indicates significance at 5% level.

4.4 The Information Content of Implied Volatil-

ity

In this section we test for the presence of seasonal patterns, and examine the in-

tertemporal relationship between WMP futures returns and the DVIX. We also in-

vestigate whether the DVIX contains information for future WMP futures volatility

in- and out-of-sample.

4.4.1 Statistical Properties of the DVIX

We start by examining whether there are seasonalities in the DVIX. There is quite

some evidence on seasonalities in financial time series. For instance, the day-of-the-

week effect in the US stock market was first documented by Cross (1973), according

to which the mean return between close of Friday and close of Monday is negative.

As for the volatility index, Fleming et al. (1995) investigate patterns in the VIX and

find that the VIX declines throughout the week. To test the day-of-the-week effect

in the DVIX, we estimate the following regression:

V IXt = α + β1D1,t + β2D2,t + β4D4,t + β5D5,t + εt, (4.1)
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where Di,t is a dummy variable for each day of the week (D1,t for Monday,..., D5,t for

Friday). To avoid multicollinearity, we exclude the dummy variable for Wednesday.

In Table 4.2, we report the results for the regression as well as Newey-West adjusted

t-statistics in parentheses. We do not find any day-of-the-week effects, as all the

coefficients on dummy variables are insignificant at any conventional significance

level.

Table 4.2: Calendar Anomalies in the Dairy VIX

Day-of-the-Week Effects Month-of-the-Year Effects

const 0.3664*** (27.733) const 0.412*** (9.210)
Monday 0.0011 (0.205) Feb -0.011 (-0.195)
Tuesday -0.0032 (-0.064) Mar 0.002 (0.053)
Thursday -0.0022 (-1.060) Apr -0.084 (-1.600)
Friday -0.0058 (-1.259) May -0.061 (-1.214)
R2(adj.) -0.0047 Jun -0.076 (-1.585)

Jul -0.069 (-1.221)
Aug -0.021 (-0.376)
Sept -0.060 (-0.866)
Oct -0.060 (-0.967)
Nov -0.077 (-1.315)
Dec -0.054 (-0.735)
R2(adj.) 0.089

Note: This table presents parameter estimates for the regression of the DVIX on day-of-
the-week and month-of-the-year dummy variables. ***, **, * is used to indicate signifi-
cance at the 1%, 5% and 10% levels.

The second interesting pattern to investigate is a month-of-the-year seasonality.

Shadbolt and Apparao (2016) notice that milk production in New Zealand is cyclical

and driven by the availability of pasture, which, to a large extent, is determined by

rainfall. The milking season starts in August and ends in May. The milk produc-

tion curve is the lowest during June and July (“winter milk”), and the end of the

season, April and May. As a response to such variation, processing plants make

long-life products, such as powders, cheeses and whey products at the peak of the

production curve. Since the supply of milk may affect the DVIX, we investigate

monthly patterns in the DVIX. To analyse the month-of-the-year effect we consider

the following regression:

V IXt = α +
12∑
i=2

βiDi,t + εt, (4.2)
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whereDi,t is a dummy variable for each month of the year. To avoid multicollinearity,

we exclude the dummy variable for January. Results are presented in Table 4.2.

We find that during April, May, June and July the regression coefficients have

the smallest values (meaning lower values of the DVIX); however, they were not

statistically significant. Therefore, there is no evidence of seasonalities in the DVIX.

Next, we want to run a predictive regression for the DVIX. In this test we want

to asses whether the past historical information is informative for future values of

the DVIX. We run several regressions with the most general specification of the

following form:

DV IXt = α0 + α1DV IXt−1 + α2DV IXt−2 + α3DV IXt−3+

α4DV IXt−4 + α5DV IXt−5 + β1HISTVt−1 + εt,

(4.3)

where HISTV is the sample standard deviation of nearby futures returns over the

previous 30 days. We include up to five lags of DVIX values, to consider the whole

week. In the first model, we only use historical volatility as a predictor of the DVIX

(α1,...,α5 = 0). Next, we include only the lagged DVIXs to explain current value of

the DVIX (β1 = 0). Lastly, we include both the historical volatility and the lagged

values of the DVIX. We report the results in Table 4.3. When we only use lagged

historical volatility to predict the next day DVIX, we find that historical volatility is

a significant determinant with the adjusted R2 equal to 17.9%. The second models

reveals that the DVIX is a persistent process with one-day lagged DVIX being

positively associated with the next day DVIX, with the explanatory power being

80.6%. When we include both historical volatility and the lagged values of DVIX,

the significance of historical volatility drops out, and R2 remains almost unchanged

at 80.7%. Thus we find no evidence that the previous day historical volatility affects

the current value of the DVIX, when we control for the lagged values of the DVIX,

meaning that the DVIX subsumes information contained in historical volatility.

Lastly, we analyse co-movements of the DVIX with WMP futures returns. Padungsak-

sawasdi and Daigler (2014) examine the return-volatility relation for the commodity

returns, gold and oil. They find that commodity markets behave differently from the
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Table 4.3: DVIX Predictive Regression

α0 α1 α2 α3 α4 α5 β1 R2(adj.)

0.282*** 0.278*** 0.179
(11.207) (3.459)
0.026*** 0.789*** 0.022 -0.005 0.048 0.064 0.806
(3.207) (13.454) (0.292) (-0.064) (1.016) (1.104)

0.026*** 0.787*** 0.020 -0.007 0.062 0.052 0.015 0.807
(3.190) (14.063) (0.288) (-0.079) (1.000) (1.085) (1.038)

Note: This table reports regressions results of Equation (4.3).

stock market, which has the negative and asymmetric return-volatility relation. Fol-

lowing Fleming et al. (1995), Frijns et al. (2010) and Padungsaksawasdi and Daigler

(2014) we estimate the following specification:

∆DV IXt = α0 + α1Rt−2 + α2Rt−1 + α3Rt + α4Rt+1 + α5Rt+2+

β1|Rt−2|+ β2|Rt−1|+ β3|Rt|+ β4|Rt+1|+ β5|Rt+2|+ εt,

(4.4)

where ∆DV IXt is the change in the DVIX from day t− 1 to t, Rt−2, Rt−1 are two-

and one-day lagged returns, Rt+1, Rt+2 are one- and two-day lead returns and Rt is a

contemporaneous return. Return is based on the price of the nearby futures contract,

F , and daily return is defined as Rt ≡ ln(Ft) − ln(Ft−1). We use daily log returns

of the nearby futures, which have at least eight trading days prior to expiration.

We compute daily futures returns always using two consecutive prices of the same

contract, to avoid any effect which might result from rollover. The model aims to

capture the intertemporal relationship between return and implied volatility and

incorporates the possible asymmetric reaction of volatility to positive and negative

moves in the WMP futures. The sum of αi + βi measures the asymmetry of the

return-DVIX relationship. Table 4.4 reports the results. The results show that

there is no contemporaneous relationship between return and the DVIX, but there

is significant negative coefficient for the one-day lagged return and the DVIX. The

absolute return variable on a one-day lagged return also turns out to be significant

and negative, indicating the asymmetric effect in the return-volatility relation. The

impact on the change in DVIX when the return is positive is equal to α2+β2, or -0.4,

whereas when the return is negative the impact is equal to α2 − β2, or -0.042. This
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means that, if today the price of the WMP futures goes up, the next day the DVIX

exhibits a decrease in value, while a drop in the WMP futures price is associated

with an increase in the next-day option’s implied volatility by a much smaller value.

This finding supports the asymmetric effect between the return-volatility relation

for the dairy market. We confirm the finding of Padungsaksawasdi and Daigler

(2014) that for the commodity markets the degree of comovements between returns

and associated volatility indexes is much weaker than for the stock markets. The

adjusted R2 for the WMP market is just 2.9%, while for the stock markets the

adjusted R2 is at least 50%.14

Table 4.4: Intertemporal Relationship between Daily DVIX Changes and WMP
Futures Returns

Intercept 0.001 (0.303)
Rt−2 0.033 (0.322)
Rt−1 -0.221** (-2.090)
Rt 0.156 (1.020)
Rt+1 -0.176 (-1.570)
Rt+2 0.036 (0.346)
|Rt−2| 0.005 (0.043)
|Rt−1| -0.179* (-1.647)
|Rt| 0.058 (0.366)
|Rt+1| 0.138 (1.130)
|Rt+2| -0.115 (-1.016)
R2(adj.) 0.029

Note: This table reports the estimation results for the regressions described by Equation
(4.4). ***, **, * is used to indicate significance at the 1%, 5% and 10% levels.

4.4.2 In-sample Volatility Forecasts

Empirical evidence suggests that, for several financial and non-financial assets, op-

tion implied volatility contains all relevant (including historical) information about

future volatility. In this section, we evaluate three models which aim to asses whether

the DVIX contains information about future volatility of the WMP futures.

Our in-sample models are similar to the models by Kroner et al. (1995) and Giot

(2003), Blair et al. (2001). To compare the in-sample performance of several models

14Padungsaksawasdi and Daigler (2014) consider the period from August 2008 through March
2012 and report that for the S&P 500 - VIX pair the adjusted R2 is 72.17%. Similarly, Fleming
et al. (1995) consider the period from January 1986 through December 1992 and report the adjusted
R2 of 57.21%.
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which use historical information from futures and implied volatilities, we employ

GARCH-type models. We first specify the dynamics of the returns:

rt = µ+ εt,

εt|Ft−1 ∼ N(0, ht),

where µ is an average return, Ft−1 is the information set at time t− 1 and εt is the

error term at time t, which has a conditional Normal distribution with zero mean and

variance ht. We consider three specifications to model the variance equation. The

first specification is a standard GARCH(1, 1) model and is defined by the following

equation:

ht = ω + α1ε
2
t−1 + α2ht−1. (4.5)

In Equation (4.5) the conditional variance ia a function of a constant term, the

squared error term from the last period and the last period conditional variance.

The second specification is an augmented GARCH(1, 1) model with the DVIX,

which we call the GARCH(1,1)-DVIX. It is defined by Equation (4.6) and uses both

historical information and forward-looking information from the option market:

ht = ω + α1ε
2
t−1 + α2ht−1 + β1DV IX

2
t−1, (4.6)

whereDV IXt−1 is the daily implied volatility computed from theDV IX asDV IX/
√

252.

The third model ignores historical information and uses only information from

the option market, that is we impose the restrictions α1 = α2 = 0 in the augmented

GARCH(1,1) model. We refer to this as the GARCH(0, 0) - DVIX model and it is

defined by Equation (4.7):

ht = ω + β1DV IX
2
t−1. (4.7)

We estimate the parameters of the models by maximising the log-likelihood func-

tions, with the constraints ω ≥ 0, α1 ≥ 0, α2 ≥ 0, β1 ≥ 0, which ensure the non-
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negativity of the conditional variance process. We report the results in Table 4.5.

In the GARCH(1, 1) specification the coefficient α2 is close to 1, which is consis-

tent with the documented persistence of volatility. Including the DV IXt−1 in the

variance equation leads to the decrease in the value of α2, as the DV IXt−1 takes

into account a part of the GARCH effect. The GARCH(1, 1)-DVIX model has

the highest log-likelihood of 1920.97, then follows the GARCH(0, 0)-DVIX with the

log-likelihood of 1891.8 and the log-likelihood of GARCH(1, 1) is 1885.76. To test

for the added value of the implied volatility we use the likelihood ratio (LR) test,

calculated as twice the difference between the log-likelihoods. For the GARCH(1,

1) versus the GARCH(1, 1)-DVIX, results suggest that we can reject the null hy-

pothesis of β1 = 0 at the 1% level (the LR statistics is 35.21), suggesting that the

augmented GARCH(1, 1)-DVIX model outperforms the GARCH(1, 1). Next, we

compare the models GARCH(1, 1)-DVIX and GARCH(0, 0)-DVIX, the test statis-

tic is equal to 29.17, thus we reject the null hypothesis that the past information

does not add significant variance information at the 1% level. The estimation re-

sults show that the augmented GARCH(1, 1)-DVIX model performs significantly

better than the standard GARCH(1, 1), but the DVIX alone does not subsume all

information relevant for predicting future variance.

4.4.3 Out-of-sample Volatility Forecasts

After assessing the in-sample forecast performance of several models, we move to

the out-of-sample forecasting assessment. The predictive performance of the DVIX

is evaluated against four alternative predictors of volatility, the GARCH, EGARCH,

GJR-GARCH (later referred to as GARCH-type models) and historical volatility.

To obtain GARCH-type volatility forecast over the T -period horizon we simply find

the average of T individual forecasts at horizons 1, 2,...,T , annualize it and then take

a square root (see Kroner et al., 1995; Jorion, 1995):

GARCHVt,t+T =

√√√√252

T

T∑
j=1

ĥj. (4.8)
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Table 4.5: In-sample Estimation of GARCH and DVIX Specifications

GARCH(1, 1) GARCH(1, 1) - DVIX DVIX
coeff t-stat coeff t-stat coeff t-stat

ω (×105) 0.206 (0.747) -1.963*** (-3.897) 7.116 (1.333)
α1 0.014 (1.545) -0.013 (-1.506)
α2 0.980*** (81.243) 0.591*** (7.249)
β1 0.346*** (5.245) 0.617*** (4.286)
LL 1885.76 1920.97 1891.8
LR− stat 70.42*** 58.34***

Note: This table reports the estimation results for the in-sample analysis for the period
from 5 January 2015 to 8 January 2018. t-statistics are robust following White (1982)
and presented in parentheses. *** is used to indicate significance at the 1% level. In
addition we report the log-likelihood of each model (LL) and the likelihood ratio (LR)
test statistic. LR-stat is calculated as twice the difference between the log-likelihood of
the long (GARCH(1,1)-DVIX) and the short models (GARCH(1,1) and DVIX). Three
specifications look as follows:

rt = µ+ εt,

εt|Ft−1 ∼ N(0, ht),

ht = ω + α1ε
2
t−1 + α2ht−1,

ht = ω + α1ε
2
t−1 + α2ht−1 + β1DV IX

2
t−1,

ht = ω + β1DV IX
2
t−1.

Another alternative of a time-series model for the volatility is a simple historical

average, estimated for example over a 30-day window15, for each day t (see Szakmary

et al., 2003):

HISTVt =

√√√√252

30

30∑
j=1

R2
t−j+1. (4.9)

Volatility is an unobservable variable and should be estimated. To proxy for actual

ex-post volatility at each date t during the next T trading days, we use a set of daily

squared returns according to the following equation:

RVt,t+T =

√√√√252

T

T∑
j=1

R2
t+j. (4.10)

The realized volatility during the interval T is expressed in annual terms.

15Changing the estimation window for 20 or 60 trading days does not significantly affect the
results.
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GARCH-type specifications are estimated for daily futures returns from 1 De-

cember 2011 to 5 January 2015 and the forecasts for the conditional variance are

made for the next T = 22 days, 10 days, 5 days and 1 day, using estimated param-

eters. The data are then rolled forward one day, keeping the estimation window of

the same size by discarding the last observation from the previous estimation.

Following existing literature (Szakmary et al., 2003; Egelkraut and Garcia, 2006;

Brittain et al., 2011) we address three different questions related to the bias and

information content of the different volatility forecasts. First, we want to investigate

whether any of the forecasts defined previously is an unbiased forecast of future

realized volatility. To answer this question we estimate a univariate regression of

the form:

RVt,t+T = α + βXt + εt,t+T , (4.11)

where Xt is either a time-series forecast of volatility, such as HISTVt, or a more

sophisticated GARCH-type volatility, or the DV IXt volatility forecast. If Xt is an

unbiased estimate of future realized volatility, then in Equation (4.11) the intercept

should be zero and the slope coefficients should be one. We use a Wald test to test

the joint hypothesis H0 : α = 0 and β = 1.

Panel A of Table 4.6 reports the results for unbiasedness tests. For each five

models, reported in the first five columns, we present the regression coefficients

along with t-statistics, where the standard errors of the estimates are adjusted for

serial correlation and heteroscedasticity using the Newey-West (1987) procedure. We

discuss unbiasedness of the forecasters only for the forecast horizon of T = 22, as

the DVIX is the 22 trading days implied volatility of the WMP futures expressed as

an annual number. We find that all slope coefficients are smaller than one, ranging

from 0.423 for HISTV to 0.725 for DVIX. The intercept is significantly different

from zero for HISTV and EGARCHV. A χ2 test statistics with p-values in brackets

strongly rejects the joint hypothesis α = 0andβ = 1 for all the models except for the

estimate which is produced by the standard GARCH model. The results suggest

that HISTV, EGARCHV, GJR-GARCHV and DVIX are biased estimates of the
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future realized volatility.

Table 4.6: Out-of-Sample Estimation of Forecasting Regressions

Parameter Model

H
IS
T
V

G
A
R
C
H
V

E
G
A
R
C
H
V

G
J
R
-G

A
R
C
H

D
V
IX

H
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V
+
D
V
IX

G
A
R
C
H
V
+
D
V
IX

E
G
A
R
C
H
V
+
D
V
IX

G
J
R
-G

A
R
C
H

+
D
V
IX

Panel A: Forecast for T = 22

const 0.169*** 0.060 0.133*** 0.084 0.031 0.013 -0.023 -0.004 0.002
(3.897) (0.708) (2.081) (0.909) (0.555) (0.225) (-0.293) (-0.067) (0.032)

TSV 0.423*** 0.714*** 0.451*** 0.621*** 0.262* 0.281 0.183 0.169
(2.998) (2.859) (2.811) (2.317) (1.897) (1.061) (1.077) (0.571)

DV IX 0.725*** 0.559*** 0.618*** 0.640*** 0.645***
(4.315) (3.264) (3.215) (3.411) (3.024)

R2(adj.) 0.157 0.110 0.090 0.104 0.210 0.258 0.222 0.221 0.214
χ2 10.837*** 3.728 22.121*** 5.859*** 12.054***

(0.004) (0.155) (0.000) (0.053) (0.002)

Panel B: Forecast for T = 10

const 0.140*** 0.039 0.119* 0.057 0.014 -0.001 -0.035 -0.003 -0.015
(3.694) (0.540) (1.850) (0.774) (0.308) (-0.021) (-0.562) (-0.045) (-0.241)

TSV 0.373*** 0.647*** 0.376*** 0.571*** 0.224* 0.269 0.084 0.177
(2.912) (2.972) (2.144) (2.627) (1.802) (1.147) (0.487) (0.710)

DV IX 0.651*** 0.506*** 0.542*** 0.613*** 0.564***
(4.716) (3.676) (3.427) (4.033) (3.191)

R2(adj.) 0.095 0.076 0.041 0.072 0.134 0.161 0.142 0.134 0.137

Panel C: Forecast for T = 5

const 0.128*** 0.011 0.083 0.039 0.007 -0.006 -0.047 -0.015 -0.022
(3.187) (0.161) (1.333) (0.632) (0.157) (-0.126) (-0.732) (-0.250) (-0.385)

TSV 0.386*** 0.597*** 0.356** 0.494*** 0.204* 0.308 0.118 0.183
(2.708) (2.772) (1.975) (2.638) (1.678) (1.279) (0.668) (0.780)

DV IX 0.546*** 0.414*** 0.419*** 0.495*** 0.456***
(3.944) (2.848) (2.599) (3.447) (2.428)

R2(adj.) 0.059 0.052 0.027 0.043 0.073 0.090 0.082 0.074 0.076

Panel D: Forecast for T = 1

const 0.074** -0.003 0.059 0.046 -0.011 -0.022 -0.053 -0.029 -0.018
(2.374) (-0.049) (1.058) (0.862) (-0.287) (-0.521) (-0.886) (-0.537) (-0.349)

TSV 0.263** 0.475** 0.271 0.316* 0.166 0.242 0.091 0.041
(2.236) ( 2.294) (1.593) (1.906) (1.353) (0.980) (0.505) (0.218)

DV IX 0.447*** 0.339** 0.344** 0.408*** 0.426***
(3.726) (2.520) (2.177) (2.788) (2.722)

R2(adj.) 0.015 0.014 0.006 0.007 0.021 0.025 0.023 0.020 0.020

Note: This table presents the out-of-sample estimation results of Equations (4.11) and (4.12) for
the period from 5 January 2015 to 8 January 2018. GARCH-type models are estimated using daily
returns from December 2011 to January 2015 and then rolling forward by one observation. We use
the Newey and West (1987) correction to adjust the coefficient standard errors to account for the
the heteroscedastic and autocorrelated error structure. ***, **, * is used to indicate significance
at the 1%, 5%, 10% levels respectively.

Although unbiasedness is a desired property, a bias of a known form does not

affect a predictive power of a forecaster. In our next question, we want to com-

pare the predictive power of the various forecasters for different horizons. For that,

we again estimate regressions of the realized volatility against the various forecast-

ers, described by Equation (4.11), and compare the R2. For example, if the DVIX
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forecasts the future realized volatility better than time-series forecasts, then the R2

from the corresponding regression needs to be the highest. First five columns of

Table 4.6 present estimation results for all the models and for the different forecast

horizons. Results imply that all five different volatility measures contain important

information about future volatility, as all slope coefficients are positive and signifi-

cant. Comparing the explanatory power for the different forecast horizons reveals an

interesting pattern. The degree of predictability offered by different volatility mea-

sures decreases as we decrease the forecast horizon from 22 to 1 trading day (from

the highest of 21% to 0.6%). We attribute it to the fact that the realized volatility

expressed by Equation (4.10) for short horizons might be a noisy proxy for the true

volatility, as the prices of futures contracts which we use to calculate daily returns

often remain unchanged for the two consecutive days, thus yielding zero returns.

We find that the DVIX outperforms all alternative forecasters for all the forecast

horizons, supported by the highest adjusted R2 value. The HISTV shows the second

best result in forecasting the subsequent realized volatility. At the 22-day horizon,

the adjusted R2 coefficient is equal to 21.0% for the model which includes the DVIX

as a forecast for future realized volatility in comparison to 15.7% for the model with

the HISTV. At the 10-day horizon, the difference in the adjusted R2 is 13.4% vs.

9.5%. At the 5-day horizon, the R2 is 7.3% vs. 5.9% and at the 1-day horizon 2.1%

vs. 1.5%. The GARCH-type forecasters do not produce better forecast than HISTV

or DVIX at any of the horizons.

In the third question we want to assess whether the DVIX efficiently impounds

all information about future realized volatility, including what is represented by

time-series forecasts. To answer this question, we need to consider the results from

the encompassing regressions involving the DVIX and either the HISTV or GARCH-

type forecasts:

RVt,t+T = α + β1TSVt + β2DV IXt + εt,t+T . (4.12)

If the DVIX is an informationally efficient predictor of the subsequent realized

volatility and the time-series forecasts contain no information beyond what is al-
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ready included in the DVIX, then we should expect β1 in Equation (4.12) to be

insignificant. If both β1 and β2 are significant, then the time-series forecast comple-

ments the DVIX. The estimation results for four different forecast horizons and four

models are reported in columns six through nine of Table 4.6. At the 22-day hori-

zon we find that the DVIX efficiently impounds all information when the alternative

volatility forecast is modelled with GARCHV, EGARCHV or GJR-GARCHV esti-

mate, indicated by the insignificant β1 coefficients. However, when the alternative

volatility forecast is modelled with HISTV, we find that the approaches complement

each other. When we look at the shorter horizons, we again find that the DVIX effi-

ciently impounds all information when the alternative volatility forecast is modelled

with the GARCH-type models. However, HISTV offers some additional informa-

tion which is not captured by the DVIX alone. We also notice that the model which

includes both HISTV forecast and the DVIX produces the highest adjusted R2, rep-

resenting the best combination of the time-series and implied volatility estimates for

predicting subsequent realized volatility. For the 22-day horizon, movements in the

DVIX alone can explain 21.0% of the variability in subsequent realized volatility,

while the combination of the DVIX and HISTV can explain 25.8%, suggesting that

the HISTV forecast offers some additional information which is not captured by the

DVIX.

Previous results show that the combination of two volatility forecasts (a time-

series forecast with the DVIX) has a better predictive power, measured by the

adjusted R2, than a time-series forecast alone. Following Rapach et al. (2010) we

compare the mean squared prediction error (MSPE) for the predictive regression

with one forecaster against a combination of two volatility forecasters. We construct

the out-of-sample R2 statistic, R2
OS, which measures the reduction in MSPE for a

long model relative to a parsimonious model. R2
OS is defined as follows:

R2
OS = 1−

∑q
i=1(σi − σ̂

large
i )2∑q

i=1(σi − σ̂
parsimonious
i )2

, (4.13)

where σ is realized volatility and σ̂parsimonious (σ̂large) is a forecast of σ constructed

by using a time-series forecast (a time-series forecast and the DVIX), q is a num-
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ber of data points in the out-of-sample forecast. As in Clark and West (2007) we

generate out-of-sample forecasts of the realized volatility using an expanding esti-

mation window. More specifically, we divide the total sample from 5 January 2015

to 8 January 2018 into two equal sub-samples, an in-sample portion of the first m

observations and an out-of-sample portion of the last q observations. We construct

a forecast using only the data available up to the time at which the forecast is made.

To form initial out-of-sample forecasts, we use regression coefficients from Equations

(4.11) and (4.12), estimated on the evaluation period of m observations, the next

out-of-sample forecast uses regression estimates based on m + 1 observations. The

last out-of-sample forecast is based on m + q − 1 observations. When R2
OS > 0, a

long model forecast outperforms a parsimonious forecast. We conduct a Clark and

West (2007) test to find out whether a long model has a significantly lower MSPE

than the parsimonious model. The statistic of Clark and West (2007) is an adjusted

version of the Diebold and Mariano (1995) and West (1996) statistic, and can be

used for comparing forecasts from nested models. The null hypothesis of the test is

that there is no difference in the accuracy of two forecasts (equal MSPE). Under the

alternative, MSPE from a larger model is less than that of a parsimonious model.

Table 4.7 shows the results for four different forecasting horizons. Almost each en-

try of Table 4.7 is positive and statistically significant, which means that combining

the DVIX with a time-series forecaster improves an accuracy of realized volatil-

ity forecasting. We also notice that the statistical significance of the R2
OS statistic

falls as we shorten the forecasting horizon. This finding is intuitive, as the DVIX

is a 22-trading days estimate of future volatility, and its forecasting performance

deteriorates on lower forecasting horizons.

4.5 Conclusions

In this chapter, we evaluate the ability of option implied volatility to forecast fu-

ture realized volatility in New Zealand’s largest goods export sector - the dairy

sector. To conduct both in- and out-of-sample analyses, we use data for the most

actively traded NZX Dairy Derivative - WMP futures and options contracts. We
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Table 4.7: R2
OS statistics

Parsimonious vs Long Model Forecast Horizon

T = 22 T = 10 T = 5 T = 1
HISTV vs. HISTV+DVIX 0.266*** 0.180*** 0.099*** 0.010**

(3.282) (3.806) (3.826) (2.293)
GARCHV vs. GARCHV+DVIX 0.331*** 0.242*** 0.143*** 0.028***

(4.410) (4.997) (4.969) (3.462)
EGARCHV vs. EGARCHV+DVIX 0.352*** 0.272*** 0.166*** 0.040***

(5.002) (5.636) (5.524) (4.218)
GJR-GARCH vs. GJR-GARCH + DVIX 0.284*** 0.237*** 0.120*** -0.147

(3.787) (3.386) (2.593) (-2.216)

Note: This table reports R2
OS statistic. Statistical significance for the R2

OS is based on
the p-value for the Clark and West (2007) statistic. Clark and West (2007) test statistic
is presented in parentheses. The statistic corresponds to a one-sided test of the null
hypothesis that there is no difference in the accuracy of two forecasts (equal MSPEs).
Under the alternative, MSPE from a long model is less than that of a parsimonious model.
We use the Newey and West (1987) standard error estimate to control for autocorrelation.
***, **, * is used to indicate significance at the 1%, 5% and 10% levels.

compare two approaches in a volatility forecasting exercise - time-series models and

the market-based forecast recovered from the option market. The time-series pre-

dictors include the historical volatility and GARCH-type forecasts. To construct

the dairy implied volatility index, we closely follow the CBOE VIX methodology.

Before investigating the forecasting performance of the DVIX, we assess its time se-

ries properties, seasonalities and the relation between the DVIX and WMP futures

returns.

The analysis of the intraweek pattern does not reveal any day-of-the-week effect

in the DVIX. Similarly, investigation of seasonalities at the monthly level does not

reveal any month-of-the-year effect. When analysing the degree of comovement

between the changes in the WMP futures prices and the changes in the DVIX,

we find that an increase (decrease) in the implied volatility at time t is associated

with a decline (increase) in the WMP futures returns at time t − 1, suggesting

an inverse one day lagged return-DVIX relationship. Further investigation shows

that this relationship is asymmetric. Positive moves in the WMP futures prices are

associated with larger absolute changes in the DVIX than negative moves in the

WMP futures prices.

Next, we compare the in-sample performance of three different models designed
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for predicting conditional future variance: a standard GARCH model which only

uses historical information, a GARCH model which uses both historical information

and implied volatility, and a model which uses the information of the DVIX only.

The results strongly suggest that the DVIX has a high information content regarding

conditional variance and that the inclusion of historical information further improves

the model’s fit.

Finally, we perform the out-of-sample forecast of the future realized volatility

using the DVIX and the other alternative volatility forecasts. The forecast horizons

range from 22 trading days to 1 day. We find that the DVIX provides substantial

information about future realized volatility and beats alternative forecasters, while

being a biased estimate of future realized volatility. We also document that the

combination of historical information and the DVIX provides the best forecast ac-

curacy for all forecast horizons, meaning that the historical volatility forecast and

the DVIX complement each other.

To our knowledge, we are the first to construct and examine the predictive power

of implied volatility for the NZ dairy sector. The results of our chapter are partic-

ularly important for decision makers in the financial and agricultural sectors who

require the estimate of volatility for pricing and risk management purposes. By

constructing the implied volatility index we have created a measure of volatility in

the dairy sector. The DVIX quantifies volatility and, by comparing its current level

with some historical values, one can gauge the behaviour of the NZ dairy market.
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4.A Appendix: Figures and Tables

Figure A1: Volatility in Commodity and Other Asset Prices (in a percentage)
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Note: This figure shows annualized volatility of WMP Futures, S&P 500, CRB Crude Oil,
Gold, Cocoa and Sugar Indices for the period between December 5, 2011 and January 8,
2018. Volatility is measured as the standard deviation of weekly returns over preceding 2
years.
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Table A1: NZX Dairy Derivatives Products

Contract/
Commodity

Contract
Size

Terminal Price/
Settlement
Method

First Traded Contract Month

Whole Milk
Powder (WMP)
Futures*

1 metric
tonne

Cash settled
against Global-
DairyTrade
WMP prices

October 8, 2010
*November 30,
2011

18 months are
available for
trading
*12 months are
available for
trading

Skim Milk
Powder (SMP)
Futures*

1 metric
tonne

Cash settled
against Global-
DairyTrade
SMP prices

February 18,
2011
*December 4,
2017

18 months are
available for
trading
*12 months are
available for
trading

Anhydrous Milk
Fat (AMF)
Futures

1 metric
tonne

Cash settled
against Global-
DairyTrade
AMF prices

February 18,
2011

18 months are
available for
trading

Butter (BTR)
Futures

1 metric
tonne

Cash settled
against Global-
DairyTrade
Butter prices

December 12,
2014

18 months are
available for
trading

Milk Price
(MKP)
Futures*

6,000
kilograms
of milk
solids

Cash settled
against
Fonterra’s
Farmgate Milk
Price

May 26, 2016
*June 28, 2016

Every
September such
that up to 5
calendar years
are available for
trading

Note: This table summarises all currently available dairy derivatives at the NZX. *denotes
options are also available, and their specifications.

4.B Appendix: Approximation of American Op-

tion Values by Barone-Adesi and Whaley and

Its Inversion

Let F denote the current futures price, T is the time to expiration of the futures

contract, σ is volatility and X is the strike price of an American option on futures.
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Let c denote the value of a European call option (Black and Scholes, 1973). Accord-

ing to Barone-Adesi and Whaley (1987), the value C of an American futures call

option is approximated by Equations (4.14) - (4.20)

C =

 c(F, T,X) + A2

[
F
F ∗

]q2
, F < F ∗

F −X, F > F ∗
(4.14)

c(F, T,X) = Fe−rTN(d1)−Xe−rTN(d2) (4.15)

d1 =
ln( F

X
) + 0.5σ2T

σ
√
T

(4.16)

d2 = d1 − σ
√
T (4.17)

A2 =
[F ∗
q2

]
{1− e−rTN [d1(F

∗)]} (4.18)

q2 =
1

2

[
1 +

√
1 +

8r

σ2(1− e−rT )

]
. (4.19)

The critical value F ∗ is defined as a solution of

F ∗ −X = c(F ∗) + A2(F
∗). (4.20)

The approximation formulas for an American futures put option are similar and are

described by the following set of Equations 4.21 - 4.27:

P =

 p(F, T,X) + A1

[
F

F ∗∗

]q1
, F > F ∗

X − F, F ≤ F ∗
(4.21)

p(F, T,X) = Xe−rTN(−d2)− Fe−rTN(−d1) (4.22)

d1 =
ln( F

X
) + 0.5σ2T

σ
√
T

(4.23)

d2 = d1 − σ
√
T (4.24)

A1 = −
[F ∗∗
q1

]
{1− e−rTN [−d1(F ∗∗)]} (4.25)

q1 =
1

2

[
1−

√
1 +

8r

σ2(1− e−rT )

]
. (4.26)
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The critical value F ∗∗ is determined by solving

X − F ∗∗ = p(F ∗∗) + A1(F
∗∗). (4.27)

In our paper we are interested in extracting implied volatility and for that we

use numerical methods, as there is no closed-form inverse solution of Barone-Adesi

and Whaley (1987) formula. Each iterative step initiated to find implied volatility

involves another iterative procedure, which solves Equation (4.20) for the critical

price F ∗. Thus we have two nested iterative procedures.

4.C Appendix: Calculation of the Dairy VIX

The Chicago Board of Options Exchange (CBOE) introduced the CBOE Volatility

Index (VIX) in 1993, which later was renamed the VXO. The VXO is constructed

from the Black and Scholes (1973) option implied volatilities of the eight near-the-

money, nearby, and second nearby options on the S&P 100 index. The VXO is

based on trading days, meaning that instead of directly using the calendar implied

volatility, the implied volatility is transformed to a trading-day basis in the following

manner:

σt = σc

(√Nc√
Nt

)
, (4.28)

where σt (σc) is the trading-day (calendar-day) implied volatility rate and Nt (Nc)

is the number of trading (calendar) days to option expiration, computed as:

Nt = Nc − 2× int(Nc/7). (4.29)

In constructing the DVIX we closely follow the methodology described in Wha-

ley (1993). Because options on WMP futures are American style, to extract implied

volatilities we use the option pricing approximation of Barone-Adesi and Whaley

(1987), which is detailed in Appendix 4.B. Next, we apply the trading-day adjust-

ment using Equations 4.28 and 4.29. The construction of the Dairy VIX is based

on the eight near-the-money, nearby, and second nearby options on WMP futures
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contracts. We denote the option strike price just below the current underlying fu-

tures price, Fi, as X i
d, and the strike price just above the current settlement futures

price as X i
u, where i corresponds to maturity i ∈ 1, 2. We can arrange the implied

volatilities of the nearby and second nearby options in the following array:

Nearby Conrtact Second Nearby Conrtact

Call Put Call Put

X1
d (< F1) σ

X1
d

c σ
X1

d
p X2

d (< F2) σ
X2

d
c σ

X2
d

p

X1
u (≥ F1) σ

X1
u

c σ
X1

u
p X2

u (≥ F2) σ
X2

u
c σ

X2
u

p

The next step is to average the put and call implied volatilities in each of the four

categories of options (at each of the four strike prices), that is:

σX1
d = (σ

X1
d

c + σ
X1

d
p )/2

σX1
u = (σX1

u
c + σX1

u
p )/2

σX2
d = (σ

X2
d

c + σ
X2

d
p )/2

σX2
u = (σX2

u
c + σX2

u
p )/2.

Next, interpolate between the two near-the-money average implied volatilities to

obtain at-the-money implied volatilities. More specifically:

σ1 = σX1
d

(X1
u − F1

X1
u −X1

d

)
+ σX1

u

( F1 −X1
d

X1
u −X1

d

)
σ2 = σX2

d

(X2
u − F2

X2
u −X2

d

)
+ σX2

u

( F2 −X1
d

X2
u −X2

d

)
.

Lastly, interpolate between the nearby and second nearby implied volatilities to

create a 22 trading days implied volatility as follows:

DV IX = σ1

( Nt2 − 22

Nt2 −Nt1

)
+ σ2

( 22−Nt1

Nt2 −Nt1

)
,

where Nt1 and Nt2 are the number of trading days to expiration of the nearby and

second nearby contract, respectively.
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Chapter 5

Profit Margin Hedging in the New Zealand

Dairy Farming Industry

5.1 Introduction

New Zealand (NZ) is the eighth largest milk-producing country in the world, ex-

porting about 95% of its dairy production.1 The dairy sector is the largest goods

export sector of NZ, with an average annual export revenue of NZD 13.2 billion over

the past five years to 2017 (Ballingall and Pambudi, 2017). In 2017, Whole Milk

Powder (WMP) accounted for 36% of total dairy export revenue, the highest pro-

portion amongst all dairy products.2 The dairy farming sector is the second most

profitable farming sector in NZ (Ballingall and Pambudi, 2017), however, recent

milk payouts received by dairy farms have shown considerable variations. The dairy

sector in NZ is free from government interventions, i.e. the government does not

provide any price support mechanisms or subsidies and, hence, farms are exposed

to shocks in global milk prices.3 For most farms, the milk price per season is set

by Fonterra, a farmer-owned cooperative, which controls about 80% of the NZ milk

supply. The price of milk per season depends on five reference commodities which

are WMP, Skim Milk Powder (SMP), and their by-products (butter, Anhydrous

Milk Fat (AMF) and Buttermilk Powder (BMP)). Amongst those five commodities,

1https://www.dcanz.com/about-the-nz-dairy-industry/
2https://www.mpi.govt.nz/news-and-resources/open-data-and-forecasting/

situation-and-outlook-for-primary-industries-data/
3The only programme in existence is called the Income Equalization Scheme which was designed

to smooth out taxable income and hence reduce the tax obligations.
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WMP plays the most important role, as historically its contribution to the price of

milk is about 62%.4 In Figure 5.1, we show milk and WMP prices per season in

NZD, where the WMP price is weighted by production during a season (Fonterra,

2017). As can be seen from the graph, during the 2014-2015 season, the dairy sector

experienced a downturn and the milk price dropped by 48%. The next season it

further declined by 11% to 3.9 NZD per kg of milksolids. This extreme volatility

of milk prices led to a decline in operating profits of many dairy farms.5 During

the 2015-2016 season, total cash expenses exceeded dairy cash income, resulting in

negative profit margins for dairy producers (DairyNZ, 2017). Such an inherently

risky operating environment poses at least two problems. The first concerns the

sustainability of farming businesses and the second is the inability of farms to ser-

vice their debts. The Reserve Bank of NZ underlines the second problem in its

financial stability report, stating that the dairy sector’s indebtedness is one of the

top three most important domestic risks to NZ’s financial system (RBNZ, 2018).

Given the obvious importance of protecting the financial position of dairy farms,

reducing milk price risk should be a key focus of financial institutions and farms.

Traditional literature on hedging (e.g. Stein, 1961; Johnson, 1960) sets its ob-

jective to minimize the variability of returns. For a producer of an agricultural

commodity, this approach generally dictates routinely taking short positions in fu-

tures contracts to achieve a minimum-variance hedge ratio. However, Collins (1997)

argues that hedging should be used to avoid bankruptcy, rather than to minimize the

variability of returns. In the so called “profit margin hedging” strategy, a producer

hedges for production only when a futures price is above expected variable and/or

fixed costs, or more generally is above a target, which can deliver a predetermined

fixed margin. Thus, the objective of profit margin hedging is to assure profitable

production by locking in favourable prices in futures markets when they appear.

While the protection against downside price risk for a future cash sale is the main

concern of profit margin hedging, the debate on whether profit margin hedging can

4https://www.fonterra.com/nz/en/investors/farmgate-milk-prices/milk-price-

methodology.html
5According to NZ media, during this downturn mental health workers saw increased suicide

rates, domestic violence, alcohol and drug use amongst farmers.
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Figure 5.1: Milk and WMP prices per season in NZD $/kg
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be used to enhance margins still goes on. Conceptually, in efficient markets future

price changes are unpredictable and, thus, hedging in futures markets should not

generate speculative profits. Nevertheless, some empirical evidence suggests that

profit margin hedging can generate an increase in farms’ average returns. Kenyon

and Clay (1987), for instance, find that profit margin hedging for hog producers

increases average returns and reduces return variance. Yoon and Brorsen (2005)

argue that multiyear rollover hedging6 can lead to increased expected returns if fu-

tures prices follow a mean reverting process. Kim et al. (2010) develop theoretical

arguments that justify the profit margin hedging strategy over continuous hedging

or selling at harvest. They show that when futures prices are mean reverting, profit

margin hedging has a higher expected profit over alternative strategies.7

In this chapter, we examine the performance of a profit margin hedging strategy

for NZ dairy farms. We implement this strategy for six seasons covering 2011 to

6Multiyear rollover hedging is similar to profit margin hedging with the difference that the
former considers the possibility to lock in favourable prices for multiple years, instead of a single
period.

7Their derivation is based on a static one-period model without basis and yield risk.
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2017. A target value of a milk payout which avoids a financial failure is called a

break-even milk price (BEMP). BEMP defines what level of milk income is required

to meet farm working expenses, taxes, interest and rent payments, and drawings.

We develop a profit margin hedging strategy where the expected milk production is

hedged whenever the price is above the BEMP. To construct this strategy, we use

WMP futures contracts, which are the most liquid dairy derivatives traded on the NZ

stock exchange (NZX). In the first part of our analysis, we apply the profit margin

hedging strategy to a representative farm. Specifically, we compare the strategy’s

impact on risk and return of the farm’s monthly revenue, relative to a no-hedging

strategy of cash sales and to continuous hedging. In the second part of the analysis,

we implement the strategy to a unique sample of real farm data, obtained from the

DairyBase database, which contains NZ dairy farms financial and physical data. We

measure the benefits of the profit margin hedging strategy by analysing the change

in discretionary cash. Low discretionary cash signals liquidity/solvency problems,

and we define an occurrence of a negative discretionary cash position as financial

distress.

Both parts of the analysis demonstrate significant benefits of profit margin hedg-

ing, and the results do not substantially change after the incorporation of basis risk.

When we apply the profit margin hedging strategy to a representative farm, we

find that, even after accounting for brokerage fees, the strategy increases the farm’s

average payout, and reduces its volatility and semivariance. Of the three strategies,

profit margin hedging delivers the highest average farm payout, followed by continu-

ous hedging, and not hedging. Paired differences tests confirm that the average price

of the profit margin hedging strategy is significantly different from continuous hedg-

ing and not hedging. We also find that the profit margin hedging strategy delivers

a greater decrease in semivariance relative to the continuous hedging scenario.

When we apply the strategy to a sample of real farm data, after accounting for a

high level of brokerage fee, we find that the mean value of discretionary cash increases

by 36%, volatility reduces by 35% and downside risk, measured by semivariance,

reduces by 74%. We find that the largest improvement in discretionary cash, by
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62%, occurs for the highly leveraged farms. Additionally, we show that profit margin

hedging reduces the probability of financial distress during any year by more than

half, from 35% to 16%. To estimate the economic effect of the profit margin hedging

strategy, we scale profits generated by this strategy across the sample of farms to all

NZ dairy farms. We estimate that the strategy could have generated an additional

NZD 0.49 billion annually, about 3.7% of the yearly dairy export revenue. Our

findings suggest that profit margin hedging can increase the sustainability of the

farm businesses by decreasing the chances of their financial distress.

Our study has two important implications. First, our findings show that the

WMP futures are not redundant and highlight the usefulness of the futures market

to dairy producers. Second, the findings suggest that the futures market allows

farms to lock in favourable prices and thus futures contracts could be used by farms

or by financial and government institutions aiming at providing risk management

services to farms. Our findings are an important reminder of the benefits of hedging.

This study is positioned within two streams of literature, cross hedging and

selective hedging. Cross hedging means that we hedge exposure to milk price by not

trading in milk price futures, but instead in WMP futures. Historically, the WMP

price contributes to the price of milk with a weight of around 62%, which makes

the correlation between milk price and WMP high, motivating us to explore cross

hedging techniques.8 In addition, it relates to the literature on selective hedging in

the sense that an agent enters a futures position only when prices are favourable.

We concentrate our study on hedging output prices only, while some studies develop

risk management strategies for hedging both input and output prices (Peterson and

Leuthold, 1987; Kim et al., 2009).

The remainder of this chapter is organized as follows: Section 5.2 reviews the

literature on dairy farm risk management, profit margin hedging, and explains the

structure of the NZ dairy market. Section 5.3 starts by detailing how profit margin

hedging is applied to NZ dairy farms and then proceeds with the empirical analysis.

First, it examines the predictability of the WMP futures to determine whether profit

margin hedging could be used to increase expected returns for dairy farms. Second,

8The correlation between yearly returns in milk price and WMP price is 0.96.
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it presents the empirical results for a representative dairy farm. Third, it expands

the strategy to the individual farms. We present concluding comments in Section

5.4.

5.2 Literature Review

5.2.1 Dairy Farm Risk Management

Previous research on dairy farm risk management has primarily focused on the US

and mainly deals with managing the risk of output prices. However, some studies

concentrate on hedging farms’ input costs. Bosch and Johnson (1992) consider the

variability in feed prices and crop yields as the main risk for net returns of dairy

farms and find that hedging and crop insurance lower expected net returns but

reduce risk. Maynard et al. (2005) focus on output price variation and evaluate

hedging effectiveness of futures and put options in minimizing downside price risk.

They estimate minimum semivariance futures and options hedge ratios and find

that, when futures are used, the semivariance of the net price received for milk is

reduced by 24 - 59% depending on the region.

A few studies analyse the effects of various risk management strategies for dairy

farms through the use of Monte Carlo simulations. Manfredo and Richards (2007)

evaluate the effect of various risk management strategies on the financial perfor-

mance of a representative US dairy cooperative and its members. They document

that placing a hedge when futures prices are greater than the variable costs of

milk production results in a reduction of semivariance of milk revenue by 27%, but

increases the standard deviation by 8%. Neyhard et al. (2013) incorporate an indi-

vidual’s debt position and analyse the performance of futures and options contracts

as hedges for a dairy farm with three different levels of debt. They simulate both

milk and feed prices, and implement different risk management techniques aimed at

meeting all expense and debt obligations of the farm. They find that, in the case

where both milk and feed are hedged with futures, the net farm income standard

deviation decreases by 5.6%, 6.8% and 7.8% for low, average and high debt levels,
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respectively.

Another strand of literature aims to identify the factors that explain the adoption

of risk management tools by farms. In an expected utility framework, Turvey and

Baker (1989) show that the capital structure of a farm is an important variable

determining the amount of commodity hedged. Empirical work by Wolf and Widmar

(2014) supports this finding. Wolf and Widmar (2014) collect survey data of dairy

farms in the US and estimate a multinomial logit model on forward pricing adoption

of milk or feed. They find that managers of larger herds, with more education and

higher solvency risk, are more likely to use both feed and milk forward pricing

methods. Among the reasons that dairy farm managers provide for not using any

forward pricing tools are lack of knowledge, reliance on cooperative to adopt forward

pricing, costs, basis risk, and lack of time to manage finances.

In sum, the research on dairy farm risk management suggests that a reduction of

volatility or semivariance of milk revenue can be achieved through the use of deriva-

tives. However, in reality a lack of understanding of hedging techniques, among

other reasons, prevents farms from an active use of forward pricing tools.

In contrast to the US, milk price risk management in NZ is a relatively new

topic. In 2010, the NZX introduced WMP futures, followed by SMP and AMF

futures, WMP options and butter futures in December 2014. In 2016, the NZX

developed milk price futures and options contracts. Although NZ has an existing

dairy derivative market, only one academic study has tested the effectiveness of

dairy derivatives as hedgers (Koeman and Bia lkowski, 2015). They estimate the

static minimum-variance hedge ratio through a regression model and control for the

possibility of cointegration between spot and futures WMP prices. They use data

from October 2010 to March 2013 and find that the optimal hedge ratio is equal to 0.6

and that the variability of a hedged portfolio can be reduced by 70%. Their paper is

different from the current study in several aspects. Koeman and Bia lkowski (2015)

find the optimal hedge ratio as the slope coefficient in the regression of changes

in spot prices on changes in futures prices. This classical approach evaluates the

ability of WMP futures to minimize the variance of the hedged portfolio, where the
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effectiveness is measured by the R-squared. Their analysis is beneficial to producers

of WMP. In contrast, we design a strategy specifically for dairy farms and measure a

direct impact from hedging in WMP futures on farm revenue. We acknowledge that

sustainability of farming business depends on the ability to receive milk payouts

which are above break-even prices. We estimate how the WMP futures market can

improve the level of cash that is available for drawings, debt repayments, capital

development, and purchases. Additionally, we extend the analysis to actual farm-

level data, where we incorporate individual farms’ cash expenses and production

data.

In this chapter, we aim to expand our knowledge about the usefulness of WMP

futures for NZ dairy farms when we apply a selective hedging technique, namely

profit margin hedging. This strategy allows dairy farms to protect themselves from

financial distress and opens a possibility to increased profits. Kim et al. (2010) have

shown, theoretically, that, if futures prices follow a mean-reverting process, then a

hedging rule of selling futures above the long-run mean leads to an increase in profits

relative to continuous hedging and not hedging. We test this theory by examining

the time-series properties of WMP futures to see whether we can expect increased

profits in Subsection 5.3.2, but first we explain profit margin hedging in more detail.

5.2.2 Profit Margin Hedging

We start this subsection with an example that explains how profit margin hedging

works. Suppose at time t a producer decides to hedge WMP to be sold at t + 1

because there is a risk that the price could fall below the break-even WMP price.

Assume that the break-even price is USD 3,000, there is no basis risk and no trans-

action costs. We plot a hypothetical price of t + 1 futures in Figure 5.2. Because

the producer wants to sell WMP above USD 3,000, every day he compares the t+ 1

futures price with the break-even price. On a given day the price of the futures

contract is USD 3,030, the first time above the break-even price, and the producer

sells one futures contract at USD 3,030. To offset the position the producer can

buy the contract back, or wait till the expiration; we assume that he waits till the
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expiration. Since the contract is cash settled, she does not need to worry about de-

livery. At t+ 1, the price of the futures is USD 2,230, and thus the producer makes

a profit of USD 800 on the futures contract. The WMP spot price is also equal to

USD 2,230 (i.e. zero basis), and the net sell price is made up of the spot price and

the gain on futures, totalling to USD 3,030. By adopting the profit margin hedging

strategy, the producer has created price certainty ahead of time, and knows that

she can meet her financial obligations. Next, we review specific approaches which

have been examined in the literature dedicated to profit margin hedging strategies

for different agricultural commodities.

Figure 5.2: Profit Margin Hedging Example
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Note: The Figure illustrates how a producer can hedge a production of WMP above the
break-even price.

Martin and Hope (1984) define an approach where a proportion of the crop is

hedged at a base target set at production costs, and the rest is hedged if the futures

price moves up or down by the predetermined level relative to a base target. Wood

et al. (1989) explore profitable margin opportunities for cotton producers with an

objective of locking in futures prices above total production costs. They find that

cash sales at harvest generally provide lower profit margins than margins attained

with futures contracts. Kenyon and Clay (1987) adapt a slightly different trigger
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of futures market activity for hog producers where a hedge is placed if the current

futures price is above production costs plus a predetermined fixed margin. They

document that, when hedging at low expected profit margins, the strategy does not

yield an increased profit, but at several higher levels of expected profit margin, the

strategy increases average profit and decreases its variance. Schroeder and Hayenga

(1988) choose a similar approach for cattle feedlot producers and again find that

hedging with futures can increase average returns and reduce variance compared to

cash-market returns. Kim et al. (2009) use a local polynomial forecasting technique

to predict cash prices and adopt hedging only when the forecasted cash profit margin

is negative. They consider both a one-to-one and risk-minimizing hedge ratio. They

show that such selective hedging dominates continuous and unhedged strategies in

terms of mean and variance. Kim et al. (2010) implement a profit margin hedging

strategy for wheat, corn and soybeans, respectively. They document that only

in the case of soybeans, the strategy generates a significant increase in returns in

comparison to continuous hedging and selling at harvest.

To summarize, there is no precise rule in profit margin hedging for choosing a

target price and a hedge ratio. Some studies choose to cover only a part of production

costs, some full production costs, and others extra positive profit margin. If futures

prices are above a target, more commonly, producers sell futures contracts in a

one-to-one ratio to spot market, but sometimes a risk-minimizing hedge is adopted.

5.2.3 The New Zealand Dairy Market

To further understand the dairy market in NZ, we briefly explain the role of Fonterra,

Global Dairy Trade (GDT) events and the NZX dairy derivatives market. The

Fonterra co-operative was formed in 2001 from a merger of the country’s two largest

dairy co-operatives, Kiwi Co-operative Dairies and New Zealand Dairy Group, with

the New Zealand Dairy Board. Upon its creation, Fonterra collected approximately

96% of NZ’s milk production. As of today, Fonterra still has a dominant position in

the dairy product markets and collects about 80% of milk production, 95% of which

is exported in the form of dairy ingredients, which makes Fonterra the world’s largest
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dairy exporter. Fonterra is owned by around 10,000 dairy farmers, whose proportion

of ownership depends on the volume of milk they supply to Fonterra. Fonterra buys

raw milk from its farmer shareholders at a rate per kilogram of milk solids, which is

called the Farmgate Milk Price. The Farmgate Milk Price is calculated in accordance

with the Farmgate Milk Price Manual. In broad terms, the Farmgate Milk Price is

the theoretical price that Fonterra would derive if it converted all milk into the ‘Ref-

erence Commodity Products’, which are WMP, SMP and their by-products (butter,

BMP, and AMF). This theoretical price is adjusted for costs, such as those which

would be incurred to transport raw milk to Fonterra’s NZ factories, produce these

same commodities in an efficient way, freight them to the point of export from NZ

and make a market return on investment. The prices for the ’Reference Commodity

Products’ are USD prices achieved by Fonterra on the twice-monthly GDT events

platform, converted to NZD at Fonterra’s actual average monthly foreign-exchange

conversion rate. The GDT events trading platform was formed in 2008 to facilitate

the global trading of dairy products. It connects sellers and buyers from over 80

countries, who during an online auction process discover reference prices for globally

traded dairy ingredients. GDT offers six different forward contracts. Contract 1 is

for shipment in one month, Contract 2 for shipment in two month and so forth.

The NZX launched its first dairy derivative - WMP futures - in 2010, shortly

after the introduction of the GDT platform. WMP futures are cash settled to an

average of the two winning prices for WMP, Contract 2, determined in GDT events

in the same month. The futures trading terminates on the day before the second

GDT event of the month. The NZX later added SMP, AMF and BMP futures and

options. The most recent contracts are milk price futures and options, which are

cash settled against Fonterra’s farmgate milk price and were launched in 2016.
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5.3 Profit Margin Hedging Strategy

5.3.1 Specifications of the Profit Margin Hedging Strategy

for NZ Dairy Farms

In this section, we detail the steps in a profit margin hedging strategy, which are: an

objective, decision rule to determine the time when a position in the futures market

should be established, and the role of brokerage fees and basis risk. We also describe

how we implement each of these steps for the case of a representative NZ dairy farm.

The objective of profit margin hedging is to lock in favourable prices when they

occur in futures markets. We define prices as favourable if, after adjusting for basis

risk and fees, they are higher than the target price which we set to the NZ break-even

milk price (BEMP) reported in the Dairy NZ Economic Surveys (DairyNZ, 2017).

This approach in selecting a target price aims to guarantee the economic viability

of the farm’s business. BEMP indicates how much milk income is required to meet

farm working expenses, interest, rent, tax and drawings. Table 5.1 reports BEMPs

for the seasons 2011 - 2017 for owner-operated farms. The data shown in Table 5.1

are the averages for groups of farms that closely match the average regional herd

size, hectares and milksolids production, as described in the New Zealand Dairy

Statistics for a particular year (DairyNZ, 2017). Because for hedging milk prices

we use WMP futures, we need to convert BEMP to break-even WMP prices. To

do so, we collect annual farmgate milk prices in NZD, weighted-average USD prices

of WMP and average USD:NZD conversion rates from Fonterra’s Farmgate Milk

Price Statements for the seasons 2009-2017 (Fonterra, 2017). We use these data

to identify the relation between milk prices and WMP, and then use the estimated

parameters to find break-even WMP prices. A linear regression of weighted-average

NZD prices of WMP on farmgate milk prices yields the relation:

MilkNZD
t = −0.733 + 1.578WMPNZD

t , R2 = 0.97, (5.1)

(−1.540) (14.544)
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where t runs through eight seasons from 2009 to 2017 (the data frequency is annual)

and t-statistics are presented in parentheses. We use the BEMPs reported in Table

5.1 as an input for the left-hand side of Equation (5.1) and solve it for break-even

WMP prices in NZD. The last step is to convert NZD prices back to USD. Results

are reported in Table 5.2. This method gives us an estimate of the break-even

WMP price given the BEMP. Ideally, we would incorporate prices of the other

four Reference Commodities (SMP, Butter, AMF and BMP). The WMP break-

even price is calculated for a representative farm and indicates how much WMP

income is required to meet farm working expenses, interest, rent, tax and drawings.

It accounts for livestock and other dairy cash income received in the season. The

WMP break-even price increases as farm working expenses, interest, rent, tax and

drawings increase, and livestock and other cash income decrease.

Table 5.1: New Zealand Break-even Milk Price (NZ$ per kg MS)

2011-12 2012-13 2013-14 2014-15 2015-16 2016-17

Farm working expenses 3.95 4.13 4.33 4.07 3.64 3.73
Interest and rent 1.31 1.39 1.29 1.36 1.36 1.35
Tax 0.32 0.25 0.38 0.21 0.05 0.1
Drawings 0.57 0.65 0.77 0.69 0.49 0.51
Total cash expenses 6.14 6.42 6.77 6.33 5.53 5.7
Livestock & other dairy cash 0.4 0.44 0.42 0.56 0.6 0.53
Break-even milk price 5.74 5.98 6.35 5.77 4.93 5.17

Note: This table reports total cash expenses and break-even milk price for the represen-
tative farm between 2011 and 2017.

Table 5.2: Break-even WMP Prices

Season Break-Even Milk Price Break-Even WMP Price
NZD/kg MS USD/kg MS

2011-2012 5.74 3.160
2012-2013 5.98 3.397
2013-2014 6.35 3.629
2014-2015 5.77 3.248
2015-2016 4.93 2.541
2016-2017 5.17 2.590

Note: This table reports the break-even WMP price given the break-even milk price.
WMP prices are obtained from the equation MilkNZD

t = −0.733 + 1.578WMPNZD
t and

then converted to USD.

In the simulations, we assume that a dairy farm receives payments each month.
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To fix a date, we choose the next day after the first GDT event each month, which

usually happens to be the first Wednesday of each month. We assume that a farm

enters into a short hedge for a contract which expires the same month as the payment

is due. Additionally, we assume that there is a one month lag between milk collection

and payment. For example, for milk collected in June, a farm would have received

payment at the beginning of July (next day after the first GDT event in July), and

it also would have been looking to hedge its June production by entering a short

position in July WMP futures contracts.

The next point we want to address is a decision rule that triggers a transaction

in futures and its timing. The net price received for milk sales is the value which

consists of spot sales of milk, gain/loss in futures contracts minus transaction costs.

The final price received by a farm equals the first Wednesday spot price of WMP

plus any net gain or loss from the futures trade minus transaction costs. The net

price received by a producer using short hedging is defined as:

NP = S1 + F0 − F1 − C, (5.2)

where S1 is the WMP spot price, F0 and F1 are the opening and the closing futures

price, and C is the futures transaction costs. We introduce a transaction cost at

three different levels of 30, 50 and 70 USD per contract (round-trip transaction),

which is comparable to the indicative fees charged by NZ brokerage firms.9 The

net price also can be expressed as NP = F0 + B1 − C, where B1 is the closing

basis (B1 = S1 − F1). Because the closing basis is uncertain at the time the hedge

is placed, a farm can only form expectations about the net price received. After

defining the expected net price received, we can formulate the decision rule and its

timing: a producer places a short hedge any time after the contract is available for

trading, provided that the net price is at least as high as the target price. Because

WMP futures for each calendar month are available 18 months into the future, dairy

farms can hedge their production 18 months before monthly payments are received,

if it is profitable to do so. Once hedges are placed they are not lifted until the cash

9https://www.omf.co.nz/legal/omf-disclosure-statement
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sale of milk.

Lastly, we want to emphasize the role of basis risk. Basis risk is the risk of

experiencing the realized closing basis different from the expected one. If a farm

follows a decision rule described earlier and enters the position in the futures market,

the expected profit margin (EPM), the realized profit margin (RPM) and their

difference can be defined as follows:

EPM = (F0 +Bexp
1 − C)− target

RPM = (F0 +Breal
1 − C)− target

RPM − EMP = Breal
1 −Bexp

1 ,

If RPM is greater or equal to zero, that means that a farm can cover all cash expenses

(farm working expenses, interest and rent, tax and drawings) from milk sales and

the objective of profit margin hedging is achieved. In the case where EPM is zero

(net price just enough to cover cash expenses) and Breal
1 is less than Bexp

1 , then RPM

is smaller than all cash expenses. Thus, in the case when the realized basis is lower

than expected, the farm might receive less than the target price for the WMP sale,

making profit margin hedging unable to secure a positive cash flow requirement.

The net price depends on the expected closing basis, and thus we need to make

some assumptions about it. Kim et al. (2010) consider two scenarios of incorporating

expected basis in hedging decisions. The first is to assume no basis risk, that is,

to assume that the actual closing basis is known at the time of the decision. The

second is to model an expected closing basis as a five-year moving average. Hatchett

et al. (2010) conduct a study in which they try to find the best length of moving

average to use. They find that different moving average lengths have similar forecast

accuracy. However, if a structural break occurs, a previous year’s basis should be

used as a forecast. The main difference between our study and theirs is that they

analyse commodities which are harvested once a year, while we need to forecast a

basis monthly. Because of the limited data available, we choose to forecast the basis

as a moving average of past historical monthly values available up to the hedging

decision time. Thus, in a perfect foresight basis scenario, a farm opens a trade
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in WMP futures if the sum of the futures price and the actual closing basis less

brokerage fee is greater or equal to a target price. In the second scenario, instead of

an actual closing basis, he uses an estimated closing basis.

After having outlined the details of the profit margin hedging implementation,

we now introduce various risk measures, which we use to assess hedging performance.

We use the standard deviation and semivariance (standard deviation considers both

positive and negative deviations from a mean as risk, while semivariance focuses on

downside risk). Semivariance is the expected value of the squared negative deviations

of possible outcomes from target returns. The semivariance is defined as

SV (X,T ) = E{min(X − T, 0)2}, (5.3)

where T is the target price and X is a random variable. In subsection 5.3.3, we will

apply Equation (5.3) to realized NP s with the target as the WMP break-even price.

In subsection 5.3.4, we use Equation (5.3) to calculate semivariance of discretionary

cash below zero. We report semivariance as the square root of the semivariance

measure defined by Equation 5.3. The square root is taken in order to express the

semivariance in dollar units.

For each risk measure (RM), we follow Conlon and Cotter (2013) and define

hedging effectiveness as:

HERM = 1− RM(NPh)

RM(Ps)
, (5.4)

where NPh is the net price received by a producer if he chooses to hedge and Ps is

the price received in the case of no-hedge.

As mentioned in the introduction, the primary objective of hedging is not to

make money but to minimize risk. In an efficient market, new information is rapidly

incorporated into futures prices. Because new information arrives randomly to the

market, price changes should be unpredictable, leaving no possibility for speculative

profits. Nevertheless, the question of whether profit margin hedging can increase

expected returns is debatable. Kim et al. (2010) posit theoretical arguments that

would justify profit margin hedging over continuous hedging or selling at harvest.

86



Chapter 5. Profit Margin Hedging in the New Zealand Dairy Farming Industry

They show that when futures prices are mean reverting, profit margin hedging has a

higher expected profit over alternative strategies. In the next subsection, we resort

to a standard test - variance ratio test - to examine mean reversion in WMP futures.

5.3.2 Mean reversion in WMP Futures

In our study, we use WMP futures contracts, which are based on the Fonterra

product, Regular NZ, Contract 2, that is the GDT auction prices of a WMP contract

with a delivery in two months. We obtain data from the Agri Data database,

which is a part of the NZX Research Centre. The NZX launched WMP futures

on October 8, 2010, and, therefore, we consider the sample period from October 8,

2010 to January 3, 2018. To test the random walk hypothesis, we use the second

nearby contracts, which are the most active contracts10 and use weekly observations

referring to Wednesday. We consider Wednesdays’ observations because GDT events

usually happen on Tuesdays at 12:00 UTC, and information about a change in WMP

prices is incorporated during the next trading session which is Wednesday in NZ.

We define continuously compounded returns as rt ≡ log(Pt)− log(Pt−1), and make

sure that returns are always taken for a contract expiring in the same month. For

example, on the 27th October 2010 the second nearby futures was the November

contract, but in a week’s time, on 3rd November 2010 the second nearby futures

contract is the December contract. To calculate the return between 27th October

and 3rd November, we take prices of the November contract only.

Panel A of Table 5.3 presents descriptive statistics of weekly returns on the

WMP futures. Returns are negatively skewed and have excess kurtosis. Moreover,

the Jarque-Bera test rejects normality at the 1% level. These findings are in line

with prior research on futures prices of other agricultural commodities, which find

that futures price changes are not well approximated by a log-normal distribution

and often leptokurtic (see Hudson et al., 1987; Yang and Brorsen, 1994; Khalifa

et al., 2011, among others). We use the Engle ARCH test to establish the presence

of conditional heteroskedasticity in returns. The results indicate that we can reject

10During our sample period, traded volume in the nearby contract is equal to 69,997 contracts,
while the second nearby contract is 110,000 contracts.

87



Chapter 5. Profit Margin Hedging in the New Zealand Dairy Farming Industry

the null hypothesis of no conditional heteroskedasticity and conclude that there are

significant ARCH effects in the return series.

Table 5.3: WMP Futures: Summary Statistics and Autocorrelation for Weekly Re-
turns

Panel A: Summary Statistics

Sample Size Mean SD Skewness Kurtosis Jarque-Bera Engle ARCH

372 -0.003 0.047 -0.04 8.37 447.44*** 29.02***

Panel B: Autocorrelation

ρ1 ρ2 ρ3 ρ4 ρ5 LBQ5 LBQ10

0.13** 0.24*** 0.01 0.06 -0.11** 32.36*** 45.67***

Note: This table presents summary statistics, autocorrelation coefficients and Ljung-Box
Q-test for WMP weekly returns. ***, ** indicates significance at the 1% and 5% levels,
respectively.

To establish the random walk nature of WMP futures prices we first check for

serial correlation. Under the random walk hypothesis, returns of the time series must

be uncorrelated at all leads and lags. Panel B of Table 5.3 reports autocorrelation

and the Ljung-Box Q-statistic for weekly WMP futures returns. Results show that

the first, second and fifth order autocorrelation coefficients of 13%, 24% and -11%

are significant at the 5% level. Moreover, the Ljung-Box Q-statistic with five (ten)

lags has a value of 32.36 (45.67), which is significant at the 1% level. These findings

indicate that we can reject the random walk hypothesis, which means that future

price changes can be forecasted using the past price changes.

Next, we follow Lee et al. (2000), Smith and Rogers (2006), Kim et al. (2010),

among others and perform the Variance Ratio Test of Lo and MacKinlay (1988).

The idea behind the test is that if the natural logarithm of a price series is a random

walk, then the variance of q-period returns should equal q times the variance of one-

period returns:

V R(q) =
σ2(q)

qσ2(1)
.

The sampling distribution of V R(q) under the null hypothesis of uncorrelated

return innovations in the presence of general heteroskedasticity is provided in Ap-

pendix 5.A. Under the null hypothesis, the Z-statistic is asymptotically standard
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normal. We perform the variance ratio test for return horizons of 2, 4, 8 and 16

weeks. Table 5.4 shows the variance ratios and test statistics. Results show that

the Z-statistic is significantly different from 1 at the 1% level for return horizons

of 2, 4 and 8 weeks, meaning the rejection of the random walk hypothesis for the

WMP futures prices. The reported Z-statistics are adjusted for heteroskedasticity,

which means the rejections of the random walk hypothesis are not due to a changing

variance.

Table 5.4: Variance Ratio Test for Futures Prices

Return Horizon (q-weeks) V R(q) Z-statistic

2 1.14 2.50***
4 1.45 3.74***
8 1.52 2.62***
16 1.14 0.46

Note: Under the random walk null hypothesis the variance ratio V R(q) is one and Z-
statistics have a standard normal distribution. *** indicates significance at the 1% level.

The test of Lo and MacKinlay (1988) focuses on the hypothesis that an individual

variance ratio for some q is one; however, the null hypothesis requires the variance

ratio to be one for any q. The multivariate variance ratio test of Chow and Denning

(1993) addresses this issue. The ZV -statistic takes the maximum value among

different Z-statistics and asymptotically follows the studentized maximum modulus

distribution. From Table 5.4, we deduce that the ZV -statistic is 3.74, rejecting of

the null hypothesis V R(q) = 1 for all q at the 5% level (the studentized maximum

modulus distribution with 20 degrees of freedom at the 5% level is 3.64). The results

of the variance ratio test provide further evidence that the random walk hypothesis

can be rejected for the WMP futures prices.

Given the results of predictability of WMP futures prices, based on Kim et al.

(2010), we expect that profit margin hedging not only reduces risk of the low milk

revenue, but also enhances average milk payout. In the next section we present

the findings of the simulations for a representative farm and a sample of individual

farms.
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5.3.3 Results for a Representative Farm

In this section, we simplify the setting of the farm’s operations and assume a situa-

tion where a representative farm sells one tonne of WMP monthly over six seasons

2011 - 2017, which totals 72 months. Because the underlying asset of a single WMP

futures is one tonne of WMP, such simplification means that if a farm chooses to

hedge, it sells one futures contract. As discussed in Subsection 5.3.1, for profit mar-

gin hedging we set a target price to WMP break-even prices realized during the

years 2011-2017. For each season, the target is different and defined in Table 5.2.

We model two scenarios to account for basis risk: we assume a perfect foresight on

the closing basis (no basis risk) or make a forecast of the closing basis as the average

realized basis available at the decision time. The strategy is selective in a sense that

a farm only hedges when futures prices are favourable. This scenario only arises

when the net price is greater or equal to the target.

We conduct simulations to compare the profit margin hedging strategy with con-

tinuous hedging and no hedging strategies. To make the continuous hedging strategy

comparable to the profit margin hedging strategy, we set up a rule where a farm

hedges the entire position in the cash market, i.e. one tonne of WMP. We choose

the hedging horizon to be 15 months, because it is equal to the average hedging

horizon in the profit margin hedging strategy, as shown in the next paragraph.

In Table 5.5, we show the effect of hedging on risk and return of the payout

to a farm, measured in WMP prices (USD per one tonne). The results show the

superiority of profit margin hedging versus continuous hedging. If fees are zero,

continuous hedging leads to an increase in the mean payout by 7.3%, while profit

margin hedging increases the mean by 14.1%. An effect on the standard devia-

tion of the payout is similar, a reduction by 28.9% and 31%, but a reduction in

semivariance clearly demonstrates the difference. While profit margin hedging sets

its objective to select the WMP futures prices which can deliver the dairy revenue

above the total cash expenses, continuous hedging dictates to mechanically enter

the futures market without any consideration of the WMP futures price. Results

show that continuous hedging reduces semivariance by 57%, while profit margin
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hedging completely eliminates the downside risk. In Table 5.6, we conduct a paired

t-test to assess whether an increase in means of monthly WMP prices between each

pair of strategies is statistically different from zero. In the continuous hedge vs. no

hedge pair (Panel A), the t-ratio is between 1.7 and 1.2, meaning that the price

difference is not statistically different from zero at the 5% level. At the same time,

in the profit margin hedge vs. continuous hedge pair (Panel C), the profit margin

hedging average price is statistically higher than the price of continuous price at

any conventional significance level. Based on these findings, we conclude that profit

margin hedging leads to a higher mean value of the payout and lower downside risk

in comparison to continuous hedging. In the subsection 5.3.4, where we perform the

analysis for a sample of farm-level data, we concentrate on profit margin hedging

only, based on the findings for the representative farm data.

Table 5.5: Alternative Hedging Strategies, Prices are in US$/MT

Risk/Return Characteristics of monthly WMP Prices Effectiveness of Hedging

Panel A: No Basis Risk

Strategy Mean St Dev Semivariance CV Mean St Dev Semivariance CV

No Hedge 3,250 1,032 410 0.32
Routine Hedge No Fee 3,488 734 176 0.21 7.3% 28.9% 57.0% 33.7%
Routine Hedge Low Fee 3,458 734 190 0.21 6.4% 28.9% 53.7% 33.2%
Routine Hedge Mid Fee 3,438 734 199 0.21 5.8% 28.9% 51.5% 32.8%
Routine Hedge High Fee 3,418 734 208 0.21 5.2% 28.9% 49.2% 32.4%
PM Hedge No Fee 3,708 712 0 0.19 14.1% 31.0% 100.0% 39.5%
PM Hedge Low Fee 3,686 713 0 0.19 13.4% 30.9% 100.0% 39.1%
PM Hedge Mid Fee 3,668 713 0 0.19 12.9% 30.9% 100.0% 38.8%
PM Hedge High Fee 3,659 712 0 0.19 12.6% 31.0% 100.0% 38.7%

Panel B: Basis Risk

Strategy Mean St Dev Semivariance CV Mean St Dev Semivariance CV

No Hedge 3,250 1,032 410 0.32
Routine Hedge No Fee 3,473 796 176 0.23 6.9% 22.8% 57.0% 27.8%
Routine Hedge Low Fee 3,443 796 190 0.23 5.9% 22.8% 53.7% 27.1%
Routine Hedge Mid Fee 3,423 796 199 0.23 5.3% 22.8% 51.5% 26.7%
Routine Hedge High Fee 3,403 796 208 0.23 4.7% 22.8% 49.2% 26.3%
PM Hedge No Fee 3,709 717 8 0.19 14.1% 30.5% 98.0% 39.1%
PM Hedge Low Fee 3,679 717 14 0.19 13.2% 30.5% 96.5% 38.6%
PM Hedge Mid Fee 3,659 717 19 0.20 12.6% 30.5% 95.4% 38.3%
PM Hedge High Fee 3,639 717 24 0.20 12.0% 30.5% 94.2% 37.9%

Note: This table presents the mean, standard deviation and semivariance of monthly
WMP prices for cash sales, always hedge and profit margin hedging strategies. Panel A
reports the results without basis risk and Panel B with basis risk.

Now, we discuss the results of the profit margin hedging strategy in more de-

tail. Simulations show that the decision rule was satisfied 72 out of 72 months, and

the short position was opened on average 15.5 (15.3) months before the payout is
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Table 5.6: Paired Differences t-Ratios of Average Prices

No Basis Risk Basis Risk

Panel A: Routine Hedge vs. No Hedge

No Fee Low Fee Mid Fee High Fee No Fee Low Fee Mid Fee High Fee

Mean 238 208 188 168 Mean 238 208 188 168
SD 1222 1222 1222 1222 SD 1222 1222 1222 1222
t-ratio 1.7 1.4 1.3 1.2 t-ratio 1.7 1.4 1.3 1.2

Panel B: Profit Margin Hedge vs. No Hedge

Mean 458 436 418 409 Mean 459 429 409 389
SD 1294 1284 1282 1273 SD 1290 1290 1290 1290
t-ratio 3.0*** 2.9*** 2.8*** 2.7*** t-ratio 3.0*** 2.8*** 2.7*** 2.3***

Panel C: Profit Margin vs. Routine Hedge

Mean 221 228 230 242 Mean 222 222 222 222
SD 353 363 362 360 SD 354 354 354 354
t-ratio 5.3*** 5.3*** 5.4*** 5.7*** t-ratio 5.3*** 5.3*** 5.3*** 5.3***

Note: This table presents paired differences of the expected price between always hedge
and cash sales, profit margin hedging and cash sales, profit margin and always hedge for
three different levels of fees. Under the null hypothesis t-statistic follows t-distribution
with 71 degrees of freedom. The *** indicates significance at the 1% level.

due, in the case of no basis risk and basis risk scenarios, respectively. The results

show that irrespective of how basis risk is modelled, profit margin hedging always

increases returns and decreases risk. In the case of no basis risk and zero brokerage

commission, the average price during 6 seasons is improved by 14.1%. The incor-

poration of brokerage commissions (USD 30, USD 50, USD 70) reduces the mean

WMP price, but still results in an improved mean in comparison to the no hedge

scenario. Implementation of profit margin hedging allows a substantial reduction in

the volatility of prices, demonstrated by a decrease in the standard deviation of 31%.

The coefficient of variation (CV ) measures the ratio of standard deviation relative

to returns. The strategy with the smallest CV is preferred. Results show that profit

margin hedging provides the best risk-return trade-off. The semivariance, a measure

of downside risk below the target, also strengthens the benefits of hedging. Because

hedging was triggered for each month, in the case of no-basis risk the semivariance

is reduced to zero, and when basis risk is taken into account, the semivariance is

slightly above zero. To assess whether an increase in means of monthly WMP prices

between two strategies is statistically different from zero, we conduct a paired t-test.

From Table 5.6 Panel B, we can see that t-ratios range between 2.3 to 3, meaning

that for each pair the price difference is significant at conventional levels.
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In Table 5.7, we aggregate the resulting monthly payouts into average milk prices

for each of the six seasons. We achieve this by averaging 12 payouts from July to June

(we assume that milk collected in June is paid in July) for each season, converting

the WMP USD averages to NZD and then converting it to the relevant milk price

using Equation (5.1), which was used to convert BEMPs to break-even WMP prices.

The main conclusion we draw is that profit margin hedging allows the representative

farm to avert the turbulent times in the NZ dairy industry which occurred during

seasons 2014-2015 and 2015-2016, when milk prices were lower than BEMPs. For

example, the BEMP during the 2014-2015 season was NZD 5.77 per kgMS, which is

higher than the milk cash price of NZD 4.46. However, in the no-basis risk, no fees

scenario, the milk price with profit margin hedging is NZD 8.69. Thus, our findings

demonstrate that profit margin hedging has the potential to support the financial

viability of dairy business, without sacrificing average returns. The representative

farm would have earned, on average, NZD 0.98 and 0.87 per kgMS in the case of

no-basis risk, zero and high fees, respectively.

Table 5.7: Milk Price Per Season

Season BEMP Cash Sale Hedge No Fee Hedge Low Fee Hedge Mid Fee Hedge High Fee

Panel A: No Basis Risk

2011-2012 5.74 6.08 6.61 6.55 6.51 6.47
2012-2013 5.98 6.88 6.79 6.73 6.70 6.66
2013-2014 6.35 8.36 6.48 6.51 6.48 6.56
2014-2015 5.77 4.46 8.69 8.63 8.59 8.55
2015-2016 4.93 3.99 7.42 7.36 7.31 7.27
2016-2017 5.17 5.99 5.64 5.57 5.52 5.49

Average 5.66 5.96 6.94 6.89 6.85 6.83

Panel B: Basis Risk

2011-2012 5.74 6.08 6.61 6.55 6.51 6.47
2012-2013 5.98 6.88 6.78 6.72 6.68 6.64
2013-2014 6.35 8.36 6.53 6.48 6.44 6.40
2014-2015 5.77 4.46 8.69 8.63 8.59 8.55
2015-2016 4.93 3.99 7.42 7.36 7.31 7.27
2016-2017 5.17 5.99 5.60 5.53 5.49 5.44

Average 5.66 5.96 6.94 6.88 6.84 6.79

Note: This table presents the estimated price of milk per season with and without profit
margin hedging. The price of milk is calculated as an average WMP price per season and
then converted to milk price using Equation (5.1).
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5.3.4 Results for Individual Dairy Farms

Individual farms may have BEMPs different from a representative farm as produc-

tion costs, debt structure, and cash flow requirements vary across individual farms.

The advantage of profit margin hedging is that it can be tailored to the specific needs

of a farm, based on its unique cash flow requirements. In this section, we test our

hedging strategy at the farm level. We begin by discussing the data, implementation

of the strategy, followed by the results.

The DairyBase database was established by DairyNZ in 2005 and contains NZ

dairy farms’ financial and physical data. Participation is voluntary, meaning that

farms may not report their information in all years. Our dataset contains owner-

operator farm data from the Waikato and Marlborough-Canterbury regions for six

seasons between 2011 and 2017. We choose these regions because they are the biggest

regions of the North and South Islands of NZ, respectively, measured by the number

of herds. For the 2016-2017 season, the Waikato region makes up 31.5% of all owner-

operator farms and Marlborough-Canterbury makes up 11.4% (DairyNZ, 2017). For

the six season period, there are 608 farms that reported financial information for

at least one of the seasons. However, only 50 farms consistently reported for all

six seasons. If we remove the 2011-2012 season, we almost double the number to

92 farms. This motivates us to conduct further analysis using only data for the

five seasons from 2012 to 2017. To assess how representative the selected farms

are, we compare several profitability statistics and physical characteristics of the

regional data from DairyNZ Economic Surveys to the averages of the sample. We

find that the selected farms have slightly larger herds and milksolids production per

cow; however, farm working expenses and operating profits are very close to regional

averages. For the hedging analysis, profitability statistics are more important than

physical characteristics, and thus, we conclude that the selected sample is a good

representation of the regional data.

To implement the strategy, we need to define the break-even WMP prices and

the quantity of produced milksolids for the cross-section of farms for each of the five

seasons. We resort to ex-post analysis, that is, we find the break-even prices and
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output from realized data.11 For example, to find the break-even WMP price and

output for the season 2012-2013 for a specific farm, we use information reported

by the farm for the 2012-2013 season. This approach allows us to concentrate only

on price uncertainty, keeping output fixed. The DairyBase database reports total

milksolids produced for a season, but does not specify the production for each month

during the season. We assume that for each farm the distribution of milk production

during a season is the same as the national average, provided by the Agri Data

database.12 To calculate monthly production for each farm, we extract monthly NZ

milk production data from the Agri Data database for the seasons between 2012

and 2017 and find the fraction of each month’s production relative to the total of

the season. We then find averages for each month across five seasons and use them

to distribute individual farm milk production across a season.13 We also assume

that futures are completely divisible, that is, a farm can sell any number of futures

contracts.

Similar to the analysis in the previous section, we consider scenarios with no, low,

medium and high levels of brokerage fees: USD 0, USD 30, USD 50, and USD 70

per contract per round-trip transaction, respectively. The average annual milksolids

production per farm is 216 tonnes, which translates into NZD 6,480, NZD 10,800 and

NZD 15,120 annual brokerage expense for a farm. To assess the effect of hedging,

we analyse the change in discretionary cash for each farm with and without a hedge.

Discretionary cash is what is left after farm working expenses, rent, interest, and tax

are paid and net income from non-dairy farming activities is added. Discretionary

cash is available for drawings, debt repayments, capital development, and purchases.

We define an occurrence of negative discretionary cash during a season as financial

distress. To calculate the value of discretionary cash after the implementation of a

11We can infer the break-even prices only from the ex-post analysis for the following reasons: in
case we set the break-even price for a new season, for example, to the same as in a previous season,
but a farm decides to expand, for example, his farm working expenses, when, the discretionary
cash in the new season is likely to be negative. For the profit margin hedging strategy to work, a
farm needs to prepare a budget before the start of the season and control the spending according
to the prepared budget.

12The Agri Data database is a part of the NZX Research Centre database.
13For example, to find the fraction for January, for each of the five seasons we divide NZ total

production for January by NZ total production during that season. Then we find the fraction for
January as the average of January’s fractions across five seasons. We use the obtained fractions
for each month to distribute the total production of each farm across months.
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profit margin hedge for a given farm, and for a given season, we add the profit/loss

from profit margin hedging during the season to the discretionary cash realized

during that season. WMP futures are priced in USD and, therefore, we need to

convert a profit/loss to NZD. We use the annual average USD:NZD conversion rates

from Fonterra’s Farmgate Milk Price Statements.14

5.3.4.1 The Effect of Profit Margin Hedging

To assess the effect of profit margin hedging on the average discretionary cash over

the 2012-2017 seasons, we start with a visual assessment of its distribution and

compare it to the no hedge case. In Figures 5.3 and 5.4, we plot the empirical

cumulative distribution functions (CDFs) as well as kernel density estimations for

the average discretionary cash in NZD for the no hedge and profit margin hedging

strategies, respectively. Four observations about the CDF plots deserve to be noted.

First, the graphs show that the CDF for the no hedge lies to the left of the CDFs

for profit margin hedging. This means that for each fixed value of discretionary

cash, the probability to observe a value smaller than that is higher in the case

without hedging. For example, the probability to observe discretionary cash below

or equal to NZD 200,000 is equal to 55% under profit margin hedging and 72% for

the no hedge case. Second, no hedge has more negative outcomes and less positive

outcomes. Third, fees do not outweigh the benefits of hedging. Fourth, basis risk

does not substantially affect the results. Similar conclusions can be drawn from

the density estimate graphs, which are presented in the bottom panels of Figures

5.3 and 5.4. First, with profit margin hedging, the distribution moves to the right,

indicating an increase in the mean of discretionary cash. Second, the basis risk does

not substantially change the results, and lastly, fees do not qualitatively change the

conclusions about the benefits of hedging.

After this preliminary assessment of the differences between two alternatives, we

14As a robustness check, we use forex spot rates to convert profits/losses from monthly futures
settlements. We obtained the exchange rates from Datastream. We find that this approach does
not impair, but in fact improves the results. We attribute the finding to the fact that during
2014-2015 and 2015-2016 seasons, Fonterra’s average exchange rate was 1% and 6% lower than
the spot rates. While during 2012-2013, 2013-2014 and 2016-2017 seasons Fonterra locked better
exchange rates than spot rates, 2014-2015 and 2015-2016 are the most important seasons, as the
gains from hedging during these seasons were the biggest. Results are available upon request.
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Figure 5.3: Kernel Density Estimation and Cumulative Distribution Function of
Discretionary Cash without Basis Risk
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Note: The x-axis of the plots shows the mean value of discretionary cash over 2012-
2017 seasons in NZD. The y-axis of the bottom graph shows the probability F (x) =
P (Discretionary Cash ≤ x).

perform a Kolmogorov-Smirnov (K-S) test to compare the two alternatives. In Table

5.8, we show the results for no hedge versus profit margin hedging with different

levels of commissions. The null hypothesis of K-S is that the two data sets are drawn

from the same distribution. The results show that, irrespective of fees and basis risk,

we reject the null hypothesis that discretionary cash for no hedging strategy and

profit margin hedging is from the same distribution. Therefore, we conclude that

the observed shifts in distributions between the no hedge and profit margin hedging

strategies in Figures 5.3 and 5.4 are statistically significant.

5.3.4.2 The Effect of Profit Margin Hedging on Risk and Return of

Discretionary Cash

As a next step we calculate the mean, volatility and semivariance of discretionary

cash for each farm with and without profit margin hedging. Mean, volatility and

semivariance values are calculated for discretionary cash during five seasons and,
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Figure 5.4: Kernel Density Estimation and Cumulative Distribution Function of
Discretionary Cash without Basis Risk
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Note: The x-axis of the plots shows the mean value of discretionary cash over 2012-
2017 seasons in NZD. The y-axis of the bottom graph shows the probability F (x) =
P (Discretionary Cash ≤ x).

Table 5.8: Kolmogorov-Smirnov Test for Discretionary Cash with and without Profit
Margin Hedging

No hedge vs. No hedge vs. No hedge vs. No hedge vs.
hedge no fee hedge low fee hedge mid fee hedge high fee

Panel A: No Basis Risk

K-S statistic 0.239*** 0.228*** 0.228*** 0.217***
p-value 0.010 0.016 0.016 0.026

Panel B: Basis Risk

K-S statistic 0.239*** 0.228*** 0.217*** 0.217***
p-value 0.010 0.016 0.026 0.026

Note: This table presents the results of the Kolmogorov-Smirnov test which measures the
difference between two cumulative distribution functions. The null hypothesis is that two
samples are drawn from the same distribution. *** indicates significance at the 1% level.

thus, represent annual values. We present the results in Tables 5.9 and 5.10 where we

group individual farms into quintiles based on the volatility (Panel A), semivariance

(Panel B), and mean (Panel C) of discretionary cash without hedge. When we

group individual farms into quintiles, we show the average of the individual farm’s
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volatility, semivariance and mean of discretionary cash. As an example, in the first

row and the first column of Panel A of Table 5.9 we show the average volatility

of discretionary cash without hedge among farms with the smallest 20% volatility

(i.e. low quintile) of discretionary cash without hedge. The average volatility of

discretionary cash for the low quintile of individual farms is equal to NZD 109,309

per year. In the following rows we show how volatility of discretionary cash changes

for the same group of farms if the profit margin hedging strategy is used. In the

last column, we present the average volatility of discretionary cash for all individual

farms grouped together.
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Table 5.9: Hedging Effectiveness for Individual Farms in the No Basis Risk Scenario

Quintiles Low 2 3 4 High All Low 2 3 4 High All

Panel A: Volatility of Discretionary Cash Reduction in Volatility of Discretionary Cash

No hedge 109,309 180,562 255,860 410,700 678,701 328,482
Hedge no fee 86,362 135,074 194,525 244,391 403,944 213,561 21%** 25%*** 24%*** 40%*** 40%*** 35%***
Hedge low fee 85,818 134,620 193,803 243,709 402,909 212,872 21%** 25%*** 24%*** 41%*** 41%*** 35%***
Hedge mid fee 85,614 133,993 193,284 243,366 402,300 212,412 22%** 26%*** 24%*** 41%*** 41%*** 35%***
Hedge high fee 85,415 133,570 192,442 242,379 401,942 211,857 22%** 26%*** 25%*** 41%*** 41%*** 36%***

Panel B: Semivariance of Discretionary Cash Reduction in Semivariance of Discretionary Cash

No hedge 745 27,739 80,066 135,241 316,757 113,124
Hedge no fee 2,474 7,726 14,968 24,073 76,406 25,209 -232% 72%*** 81%*** 82%*** 76%*** 78%***
Hedge low fee 2,631 7,726 16,221 24,491 81,314 26,814 -253% 72%*** 80%*** 82%*** 74%*** 76%***
Hedge mid fee 2,736 8,559 16,726 25,172 85,272 28,048 -267% 69%*** 79%*** 81%*** 73%*** 75%***
Hedge high fee 2,785 9,650 17,492 25,841 88,076 29,131 -274% 65%*** 78%*** 81%*** 72%*** 74%***

Panel C: Mean of Discretionary Cash Increase in Mean of Discretionary Cash

No hedge - 28,953 71,274 116,562 188,264 443,343 159,165
Hedge no fee 48,298 128,875 178,067 259,654 550,718 234,566 267%*** 81%*** 53%*** 38%*** 24%*** 47%***
Hedge low fee 43,640 124,296 171,479 252,082 536,296 226,959 251%*** 74%*** 47%*** 34%*** 21%*** 43%***
Hedge mid fee 40,646 120,442 167,796 247,478 526,718 221,987 240%*** 69%*** 44%*** 31%*** 19%*** 39%***
Hedge high fee 38,355 116,930 163,134 243,027 517,152 217,068 232%*** 64%*** 40%*** 29%*** 17%*** 36%***

Note: This table presents the effect of hedging on individual farms in the no basis risk scenario. We group farms into quintiles of annual volatility,
semivariance and mean of discretionary cash for unhedged position. We use a paired t-test to compare the difference in means of volatility, semivariance
and mean of discretionary cash between no hedge and profit margin hedging strategies. **, *** indicates significance at the 5% and 1% levels, respectively.
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We first discuss the results for the no basis risk scenario which are presented in

Table 5.9. Panel A shows that the volatility of yearly discretionary cash is reduced

by between 21% to 40%, with a mean value of 35% for the whole sample, ignoring

fees. Volatilities of discretionary cash with hedge and different fees are very similar,

as the fees expense is fairly constant for each season, and hence only slightly affects

the volatility of discretionary cash. We conduct a paired t-test to find out if, on

average, profit margin hedging leads to an improvement in volatility within each

quintile and for the whole sample. We find that the average differences in means are

statistically different from zero at the 5% level. Panel B of Table 5.9 presents the

semivariance of discretionary cash. We measure semivariance relative to a threshold

of zero. Discretionary cash below zero means that milk sales do not cover all farm

working expenses, rent, interest, and taxes, and therefore the farm does not have

any cash to make withdrawals, debt repayments or capital developments. We find

that for the quintiles two to high the semivariance is reduced by 72% to 82%, with

an average of 78%, and, only for the low group, we observe an increase in the

semivariance. Intuitively, a profit margin hedge with a target price equal to break-

even price, discretionary cash should always be positive. However, as our study uses

a cross-hedge, the dynamics of the milk price are not fully explained by the WMP

price and so there remains some risk of receiving a milk payout below BEMP. We find

that commissions increase the semivariance and reduce the hedging effectiveness, on

average by 2%, 3%, and 4% (moving from low to high fees). A paired t-test shows

that the average differences in means of the semivariance between profit margin

hedging and no hedging are statistically different from zero at the 5% level in all

quintiles, except for the low quintile. Therefore, we conclude that the reduction

in the semivariance of discretionary cash is significant at the 5% level. Panel C of

Table 5.9 shows the effect of profit margin hedging on the mean of discretionary

cash. We can see that without hedging the mean of discretionary cash for the low

group is NZD -$28,953. After the hedge is in place, the mean goes up by 267% to

NZD 48,298. Fees reduce the mean by roughly NZD 5,000, NZD 8,000 and NZD

10,000 (moving from low to high fees), respectively. For other quintiles, the mean
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increases by 81%, 53%, 38% and 24% (moving from second to high quintile) in the

case of no fees, and by 64%, 40%, 29% and 17% in the case of high fees. This

shows that the highest percentage increase in the mean occurs for the low group

and effectiveness decreases as percentile group increases. These results further show

that profit margin hedging delivers the strongest benefits for the most vulnerable

group of farms. The increase for the whole sample ranges between 36% and 47%,

depending on the level of fees. A paired t-test shows that, on average, profit margin

hedging leads to an increase in the mean of discretionary cash within each quintile

and for the whole sample.

Table 5.10 presents the results when a farm does not know the value of the closing

basis in advance and has to predict it. When we compare Tables 5.9 and 5.10, we

find that a change in basis risk expectations does not change the results. In fact, the

numbers are very similar, which means that the basis risk in WMP futures does not

diminish the value of hedging. A paired t-test gives similar results to a no basis risk

case, i.e. we find that the average difference between profit margin hedging mean,

variance and semivariance of discretionary cash and no hedging mean, variance and

semivariance of discretionary cash are statistically different from zero at the 5% level

in all quintiles, except for the low quintile for semivariance of discretionary cash.
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Table 5.10: Hedging Effectiveness for Individual Farms in the Basis Risk Scenario

Quintiles Low 2 3 4 High All Low 2 3 4 High All

Panel A: Volatility of Discretionary Cash Reduction in Volatility of Discretionary Cash

No hedge 109,309 180,562 255,860 410,700 678,701 328,482
Hedge no fee 86,745 134,938 194,599 245,513 404,170 213,895 21%** 25%*** 24%*** 40%*** 40%*** 35%***
Hedge low fee 86,041 134,491 192,713 243,972 403,901 212,936 21%** 26%*** 25%*** 41%*** 40%*** 35%***
Hedge mid fee 85,550 133,941 192,237 243,616 403,462 212,473 22%** 26%*** 25%*** 41%*** 41%*** 35%***
Hedge high fee 85,477 133,619 192,201 242,770 402,349 211,993 22%** 26%*** 25%*** 41%*** 41%*** 35%***

Panel B: Semivariance of Discretionary Cash Reduction in Semivariance of Discretionary Cash

No hedge 745 27,739 80,066 135,241 316,757 113,124
Hedge no fee 2,474 7,902 15,582 23,536 77,835 25,515 -232% 72%*** 81%*** 83%*** 75% *** 77%***
Hedge low fee 2,631 7,902 16,109 23,185 81,816 26,674 -253% 72%*** 80%*** 83%*** 74%*** 76%***
Hedge mid fee 2,736 8,568 16,748 22,799 85,849 27,709 -267% 69%*** 79%*** 83%*** 73%*** 76%***
Hedge high fee 2,841 9,479 17,946 24,006 89,050 29,040 -281% 66%*** 78%*** 82%*** 72%*** 74%***

Panel C: Mean of Discretionary Cash Increase in Mean of Discretionary Cash

No hedge - 28,953 71,274 116,562 188,264 443,343 159,165
Hedge no fee 48,262 127,609 177,336 259,662 550,587 234,142 267%*** 79%*** 52%*** 38%*** 24%*** 47%***
Hedge low fee 44,081 124,150 170,933 251,764 536,120 226,816 252%*** 74%*** 47%*** 34%*** 21%*** 43%***
Hedge mid fee 40,965 121,041 166,471 246,894 526,369 221,725 241%*** 70%*** 43%*** 31%*** 19%*** 39%***
Hedge high fee 37,890 117,464 163,539 241,599 516,814 216,807 231%*** 65%*** 40%*** 28%*** 17%*** 36%***

Note: This table presents the effect of hedging on individual farms in the scenario with basis risk. We group farms into quintiles of annual volatility,
semivariance and mean of discretionary cash flow for unhedged position. We use a paired t-test to compare the difference in means of volatility, semivariance
and mean of discretionary cash between no hedge and profit margin hedging strategies. **, *** indicates significance at the 5% and 1% levels, respectively.
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5.3.4.3 The Economic Effect of Profit Margin Hedging

The previous analysis is based on data of 92 farms, which make up 1.09% of the milk

production across NZ. To assess the economic effect of profit margin hedging for the

NZ economy, we want to know what the dollar value that the profit margin hedging

strategy could have generated over the 2012-2017 seasons if it were adopted by all

NZ dairy farms. Our approach is to scale up the profit/loss generated by hedging

during each season for 92 farms where the scaling factor is the milk produced by the

92 farms relative to the total milk produced in NZ during each season. Specifically,

for each season, we calculate the total profit/loss from the futures position across all

farms in the sample and scale it to the profit/loss of all NZ farms by the proportion

of milk production in the sample to the total milk production of NZ. Then, we take

the average across all five seasons. We find that profit margin hedging could have

generated NZD 0.49, NZD 0.54 or NZD 0.58 billion average per year (moving from

high to low commission), with perfect knowledge of the basis, or NZD 0.49, NZD

0.53, NZD 0.58 billion average per year without knowledge of the basis. Given that

the average yearly dairy export revenue is NZD 13.2 billion, the average gain of NZD

0.49 billion translates to 3.74% (0.49/13.2) of the yearly dairy export revenue.

5.3.4.4 The Effect of Leverage

Literature shows that capital structure plays an important role in explaining the

adoption of futures by farms (e.g. Turvey and Baker, 1989; Shapiro and Brorsen,

1988; Wolf and Widmar, 2014). Low-leveraged farms are less likely to hedge, as

they are financially more secure. Based on this literature, we want to address two

questions. The first is whether the level of leverage affects the level of volatility,

semivariance and mean of discretionary cash. The second is whether there is a

relation between leverage and hedging effectiveness.

To address the first question, we sort farms into quintiles by their leverage ratio

and calculate the mean volatility, semivariance and mean of discretionary cash in

each quintile group. We use a two-sample t-test between high and low quintiles

to find whether the differences are significant. Tables 5.11 and 5.12 show that the
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difference in mean semivariance between the high-minus-low leverage ratio quintiles

is NZD 113,434 (t-stat 6.42) and the difference in mean of discretionary cash is -NZD

112,941 (t-stat -2.29). We find that the difference in volatility is not statistically

significant. We find that after implementing the profit margin hedging strategy, the

difference remains significant for the semivariance, but not for the mean. For the

no fees hedge, an increase in the mean for the high leverage quintile is 66%, while

for the low leverage it is 23%. This finding indicates that hedging reduces the gap

between the mean of discretionary cash of different quintile groups.
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Table 5.11: Effect of Hedging on Discretionary Cash for Individual Farms Grouped by Leverage without Basis Risk

Quintiles Low 2 3 4 High All High - Low t-stat Low 2 3 4 High All

Debt to Asset 31% 41% 52% 64% 90% 47% 31% 41% 52% 64% 90% 47%

Panel A: Volatility of Discretionary Cash Reduction in Volatility of Discretionary Cash

No hedge 217,762 324,713 302,947 487,880 315,956 328,482 98,194 1.73
Hedge no fee 169,658 178,898 216,106 270,959 233,516 213,561 63,857 1.32 22%*** 45%*** 29%*** 44%*** 26%*** 35%***
Hedge low fee 169,110 178,352 215,799 269,880 232,555 212,872 63,445 1.31 22%*** 45%*** 29%*** 45%*** 26%*** 35%***
Hedge mid fee 168,939 177,717 215,305 269,488 231,943 212,412 63,003 1.30 22%*** 45%*** 29%*** 45%*** 27%*** 35%***
Hedge high fee 168,679 177,242 214,962 268,277 231,436 211,857 62,757 1.29 23%*** 45%*** 29%*** 45%*** 27%*** 36%***

Panel B: Semivariance of Discretionary Cash Reduction in Semivariance of Discretionary Cash

No hedge 10,525 105,606 103,565 227,062 123,959 113,124 113,434*** 6.42
Hedge no fee 2,009 15,508 24,718 54,658 30,168 25,209 28,158** 2.53 81%** 85%*** 76%*** 76%*** 76%*** 78%***
Hedge low fee 2,148 16,310 26,217 58,916 31,581 26,814 29,433** 2.56 80%** 85%*** 75%*** 74%*** 75%*** 76%***
Hedge mid fee 2,145 17,057 26,857 62,590 32,765 28,048 30,620** 2.61 80%** 84%*** 74%*** 72%*** 74%*** 75%***
Hedge high fee 2,239 17,805 27,879 64,816 34,133 29,131 31,893** 2.67 79%** 83%*** 73%*** 71%*** 72%*** 74%***

Panel C: Mean of Discretionary Cash Increase in Mean of Discretionary Cash

No hedge 228,204 170,924 155,504 124,535 115,263 159,165 -112,941** - 2.29
Hedge no fee 281,252 237,935 222,602 239,509 191,339 234,566 -89,912 - 1.53 23%*** 39%*** 43%*** 92%*** 66%*** 47%***
Hedge low fee 275,489 230,758 215,498 228,820 183,924 226,959 -91,565 - 1.61 21%*** 35%*** 39%*** 84%*** 60%*** 43%***
Hedge mid fee 271,456 226,326 210,996 221,797 179,001 221,987 -92,454 - 1.64 19%*** 32%*** 36%*** 78%*** 55%*** 39%***
Hedge high fee 267,453 221,852 206,364 215,429 173,846 217,068 -93,606 - 1.69 17%*** 30%*** 33%*** 73%*** 51%*** 36%***

Note: This table presents the effect of hedging on individual farms in the scenario with no basis risk. We group farms into quintiles of average leverage
ratio. We use a paired t-test to compare the difference in means of volatility, semivariance and mean of discretionary cash between no hedge and profit
margin hedging strategies. We use a two-sample t-test to compare the difference in means of volatility, semivariance and mean of discretionary cash
between high and low quintile of leverage ratio. **, *** indicates significance at the 5% and 1% levels, respectively.
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Table 5.12: Effect of Hedging on Discretionary Cash for Individual Farms Grouped by Leverage with the Basis Risk

Quintiles Low 2 3 4 High All High - Low t-stat Low 2 3 4 High All

Debt to Asset 31% 41% 52% 64% 90% 47% 31% 41% 52% 64% 90% 47%

Panel A: Volatility of Discretionary Cash Flow Reduction in Volatility of Discretionary Cash

No hedge 217,762 324,713 302,947 487,880 315,956 328,482 98,194 1.73
Hedge no fee 169,851 179,358 216,306 271,999 233,325 213,895 63,474 1.31 22%*** 45%*** 29%*** 44%*** 26%*** 35%***
Hedge low fee 169,325 178,468 215,722 270,254 232,258 212,936 62,933 1.30 22%*** 45%*** 29%*** 45%*** 26%*** 35%***
Hedge mid fee 169,003 178,272 215,426 269,536 231,487 212,473 62,484 1.29 22%*** 45%*** 29%*** 45%*** 27%*** 35%***
Hedge high fee 168,784 177,654 215,427 268,386 231,054 211,993 62,270 1.28 22%*** 45%*** 29%*** 45%*** 27%*** 35%***

Panel B: Semivariance of Discretionary Cash Flow Reduction in Semivariance of Discretionary Cash

No hedge 10,525 105,606 103,565 227,062 123,959 113,124 113,434*** 6.42
Hedge no fee 2,026 15,452 25,520 56,090 29,565 25,515 27,539** 2.47 81%** 85%*** 75%*** 75%*** 76%*** 77%***
Hedge low fee 2,161 16,357 26,068 59,001 30,909 26,674 28,748** 2.48 79%** 85%*** 75%*** 74%*** 75%*** 76%***
Hedge mid fee 2,259 17,108 26,893 61,587 31,878 27,709 29,618** 2.50 79%** 84%*** 74%*** 73%*** 74%*** 76%***
Hedge high fee 2,359 17,892 27,967 64,769 33,450 29,040 31,091** 2.58 78%** 83%*** 73%*** 71%*** 73%*** 74%***

Panel C: Mean of Discretionary Cash Flow Increase in Mean of Discretionary Cash

No hedge 228,204 170,924 155,504 124,535 115,263 159,165 -112,941** -2.29
Hedge no fee 281,076 237,609 221,868 238,619 191,309 234,142 - 89,767 -1.52 23%*** 39%*** 43%*** 92%*** 66%*** 47%***
Hedge low fee 275,097 230,385 215,907 228,239 184,140 226,816 - 90,957 -1.60 21%*** 35%*** 39%*** 83%*** 60%*** 43%***
Hedge mid fee 271,496 225,705 210,851 220,935 179,231 221,725 - 92,265 -1.64 19%*** 32%*** 36%*** 77%*** 55%*** 39%***
Hedge high fee 267,359 221,278 205,991 214,704 174,256 216,807 - 93,103 -1.68 17%*** 29%*** 32%*** 72%*** 51%*** 36%***

Note: This table presents the effect of hedging on individual farms in the scenario with basis risk. We group farms into quintiles of average leverage ratio.
We use a paired t-test to compare the difference in means of volatility, semivariance and mean of discretionary cash between no hedge and profit margin
hedging strategies. We use a two-sample t-test to compare the difference in means of volatility, semivariance and mean of discretionary cash between high
and low quintile of leverage ratio. **, *** indicates significance at the 5% and 1% levels, respectively.
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As for the second question, we want to assess whether we can establish a relation

between the level of leverage and hedging effectiveness. From Panels A and C of

Table 5.11, we conclude that farms with low debt to asset ratios benefit the least

from hedging, as the reduction in volatility and increase in the mean of discretionary

cash is the smallest in comparison to other quintiles. Another observation is that

for the fourth and highest quintiles, the improvement in the mean of discretionary

cash is the strongest. We conclude the same from Table 5.12, which groups data

into quintiles of the debt to asset ratio in the case of profit margin hedging with

basis risk. From Table 5.11, we find that highly leveraged farms in the fourth and

highest quintiles (i.e. farms with debt to asset ratios between 52% and 90%), have

the biggest increase in the mean of discretionary cash by 92% and 66% (average of

79%) without fees, respectively, and by 73% and 51% (average of 62%) with high

fees. Farms with low debt to asset ratios, i.e. below 31%, experience the smallest

improvement in mean discretionary cash by 23% without fees and by 17% with

high fees. These farms also experience the smallest reduction in volatility by about

22%. A paired t-test indicates that the improvements in the mean of volatility,

semivariance and mean of discretionary cash are significant at the 5% level.

Based on our results, we conclude that the level of leverage is an important

variable for farms, that adopt the hedging strategy. While we find that profit margin

hedging decreases risk and increases returns for farms at all levels of leverage, farms

with low leverage are the least advantaged by hedging, while farms with high leverage

benefit most.

5.3.4.5 Probability of Financial Distress

Table 5.13 presents a simple measure which allows us to evaluate the effect of profit

margin hedging on the probability of financial distress during a given year. We de-

fine financial distress as the inability to cover farm working expenses, interest, rent

and tax payments from dairy cash income. Quantitatively this is measured by the

occurrence of negative discretionary cash. If a farm chooses not to hedge, 159 out of

460 observations (92 farms during 5 seasons) are characterized by negative discre-
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tionary cash, i.e. a proportion of 34.6%. If profit margin hedging is implemented,

the number of observations with negative discretionary cash decreases by more than

double, to 63, which is 13.7% of the total sample. Depending on the magnitude of

fees, this proportion increases to 14.8, 15.4 and 16.3 for the low, mid and high fees

scenarios, respectively. The results do not substantially change after incorporating

basis risk.

Table 5.13: Frequency of Negative Discretionary Cash Occurrence

No Basis Risk Basis Risk

No hedge 34.6% 34.6%
Hedge no fee 13.7% 13.9%
Hedge low fee 14.8% 14.8%
Hedge mid fee 15.4% 15.4%
Hedge high fee 16.3% 16.5%

Note: This table presents the frequency of negative discretionary cash among 92 farms
during five seasons 2012-2017, totalling to 460 observations.

Overall, the results of this subsection demonstrate that our profit margin hedging

strategy decreases risk and improves returns for a sample of NZ dairy farms. We

also find that WMP futures do not bear high basis risk, and when we model different

scenarios of basis risk we find qualitatively similar results.

5.4 Conclusion

In this study, we examine the effectiveness of profit margin hedging for NZ dairy

farms. We demonstrate how the WMP futures can be used to protect farms from

price risk. We base our results on historical data available for the period 2011 to

2017. We start by showing that prices of WMP futures do not follow a random

walk. According to Kim et al. (2010) this result means that profit margin hedging

can also be used as a tool to increase the average milk price.

In the first part of the analysis, we evaluate profit margin hedging from the

perspective of a representative farm. We compare the risk and return of the average

monthly payout expressed in WMP price between profit margin hedging, no hedging

and continuous hedging strategies. We find that profit margin hedging delivers the
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highest average payout and lowest semivariance. We further find that depending

on fees and basis risk, the expected return is increased by between 12% to 14.1%,

the variance is reduced between 30.5% to 31.0%, and that almost all downside risk

is eliminated. We find that profit margin hedging shows especially reliable results

in reducing the downside risk, thus helping us to maintain the financial viability of

dairy farm operations.

In the second part of the analysis, we implement profit margin hedging, using

actual data, for a sample of individual farms. The results show that in the case

of no basis risk and zero fees, the mean value of annual discretionary cash for all

farms is increased by 47%, volatility is reduced by 35% and downside risk, measured

by semivariance, is reduced by 78%. Although the introduction of fees reduces

the increase in returns and reduction in risk, profit margin hedging still offers a

significant improvement over no hedging. We find that highly leveraged farms, which

have debt to asset ratios above 52%, see the largest increase in mean discretionary

cash by 79% without fees and by 62% with high fees. Additionally, we show that

profit margin hedging reduces the probability of financial distress during a given

year by more than half, from 35% to 16%. To estimate the economic effect of the

profit margin hedging strategy, we scale up the profit generated by this strategy

across the sample of farms to all NZ dairy farms. We estimate that the strategy

could have generated NZD 0.49 billion yearly average over a five year period, which

is 3.7% of the yearly dairy export revenue.

This study has several important implications. We document that WMP fu-

tures offer significant benefits for NZ dairy farms. We demonstrate that profit

margin hedging enhances the sustainability of the farming business, by reducing un-

certainty about future profit. Reduced certainty about profit can negatively impact

investment and production planning decisions, restrict access to capital and threaten

solvency. High indebtedness of the NZ dairy farm sector makes it vulnerable to low

dairy prices, and the results of our study can be of interest for policy-makers who

are concerned with financial stability.

67
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5.A Appendix: Variance Ratio Test

Let pt denote the log price process and let a sample consist of nq + 1 observations,

where p0 and pnk are the first and the last observations and q is any integer greater

than one. Lo and MacKinlay (1988) show that the variance ratio statistic of q-period

returns can be calculated as:

V R(q) =
σ2(q)

σ2
,

where σ2(q) is an unbiased estimator of 1/q of the variance of the q-period returns

and σ2 is an unbiased estimator of the variance of the one-period returns and defined

by:

σ2(q) =
1

m

nq∑
k=q

(pk − pk−q − qµ)2

σ2 =
1

nq − 1

nq∑
k=1

(pk − pk−1 − µ)2

µ =
1

nq
(pnq − p0)

m ≡ q(nq − q + 1)(1− q

nq
).

A test statistic Z(q) is adjusted for heteroscedasticity in returns and defined by:

Z(q) =

√
nq(V R(q)− 1)

√
θ

a∼ N(0,1),

where θ is asymptotic variance of variance ratio V R(q):

θ ≡ 4

q−1∑
k=1

(
1− k

q

)2
δk

δk =
nq
∑nq

j=k+1(pj − pj−1 − µ)2(pj−k − pj−k−1 − µ)2[∑nq
j=1(pj − pj−1 − µ)2

]2 .

Z(q) is asymptotically normally distributed with mean zero and standard deviation

of one.

Chow and Denning (1993) derived the multivariate variance ratio test where the

null hypothesis is that V R(qi) equals one for all i = 1,...,l. The test statistic is
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defined by:

ZV = max
1≤i≤l
|Z(qi)|,

which asymptotically follows the studentised maximum modulus distribution under

the random walk null hypothesis.
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Concluding Remarks

In the last fifty years, derivatives markets saw unprecedented growth. While the

US stock exchanges continue to attract the majority of trading volume, exchanges

worldwide also demonstrate an expansion in the variety and complexity of offered

derivatives. This variety of products, further fostered by decreased costs and in-

creased speed of trading, allows different market participants to use derivatives for

their benefits. However, as new products are launched frequently, it is important

to evaluate the usefulness and properties of these products. This thesis focuses on

relatively new derivatives, which were introduced in the last ten years: volatility

and dairy derivatives. In the first essay, we investigate the informational leadership

between the two most liquid volatility ETNs - the VXX and XIV. We find that a

price leadership in these two competing markets is time-varying and tends to fluctu-

ate from one market to the other. The results suggest that informed traders prefer

to trade in the more liquid market and with the lowest transaction costs. The other

interesting finding is that the informativeness of the VXX decreases on days when

the “the market’s fear gauge” (VIX) increases and on days with negative returns in

the S&P 500. In the second essay, we investigate the informational content of the

WMP options market. We construct the dairy implied volatility index (the DVIX)

using prices of options and futures on WMP. In brief, we find that the DVIX contains

useful information about future realized volatility. However, the market is not yet

fully informationally efficient, as forecasts based on historical price data complement

the DVIX in forecasting future realized volatility. In the third essay, we investigate
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the role of WMP futures from a risk-management perspective. We develop a profit

margin hedging strategy, with the purpose of protecting the financial position of

dairy farms from financial distress. To analyse the effect of the hedging strategy

on risk and return of dairy farms, we employ data of the representative farm and a

sample of individual farms. In brief, we find that the profit margin hedging strategy

leads to a decreased level of risk and increased returns. The results are robust to

the presence of basis risk and to different levels of transaction fees. We also show

that the developed strategy outperforms the routine hedging, which assumes selling

futures contracts regardless of their price relative to the break-even price of milk.

Although this thesis makes several important contributions, there are some av-

enues for extending the research questions considered in this thesis. The first ques-

tion relates to the collapse of the XIV. Trading in the XIV was terminated in Febru-

ary 2018. It is interesting to see how it affected the information content of other

inverse volatility ETFs. Three candidates, which have similar objective to XIV,

could be considered: the ProShares Short VIX Short-Term Futures ETF (SVXY),

the REX VolMAXX Short VIX Futures Strategy ETF (VMIN) and VelocityShares

Daily Inverse VIX Medium-Term ETN (ZIV). In regards to dairy derivatives, the

third empirical chapter concentrates on output price risk only, but an extension

would be to incorporate input cost price risk. The NZ farming system is predomi-

nantly grass-based but still partially relies on purchased supplementary feeds, such

as wheat, barley, and palm kernel. As of 2018, the NZX does not offer feed futures,

so derivatives contracts from other stock exchanges could be considered.

In general, as the development of financial markets is not expected to slow down,

it is important to evaluate new research questions about properties and uses of new

derivative products and apply new methods and techniques to traditional questions.

It can help not only point out potential risks, but can bring benefits to market

participants. Benefits start with more informed speculating/hedging strategies and

extend to the use of derivative products to infer useful information later applied to

underlying assets.
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