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Abstract 

Electricity is one of the valuables and widely used forms of energy. However, with the 

fast-paced technological development in the electrical and electronics market, the 

electricity demand is on a constant rise. To tackle energy and sustainability issues, two 

paths can be followed by the world community. Either new generation plants to be 

established with an expense of millions of dollars or to explore the existing system by 

integrating innovative techniques that can lead to energy efficiency and conservation. The 

latter one is a more viable solution, and the research community is extensively working 

to propose and develop innovative techniques towards energy efficiency and 

conservation. In this context, energy monitoring is one of the key techniques that play a 

significant role in the field of sustainable energy. 

Load disaggregation is one of these promising energy monitoring techniques, where a 

non-intrusive1 load disaggregation technique commonly referred to as non-intrusive load 

monitoring (NILM) is widely adopted to provide individual load profiles to the 

stakeholders. Appliance-level energy monitoring is not only beneficial for the consumers 

in terms of having valuable information regarding the operation status of their loads and 

corresponding consumption but also benefit the system operators, policymakers, and 

manufacturers in terms of analyzing the network’s energy flow, creating policies/tariffs, 

and manufacturing of smart appliances, respectively.  

This research work contributes to the existing research and development of non-invasive 

load disaggregation systems, by proposing and developing a robust event-based non-

intrusive load disaggregation approach for low sampling data granularity. As a way 

forward, this research work contributes to different aspects of a NILM system. For NILM 

event detection, three new low complexity and computationally fast algorithms based on 

statistical parameters are proposed and validated on real-world datasets. In terms of 

electrical load features, a set of nine distinct load features based on statistical, 

geometrical, and power features is proposed. The extracted load features are further 

investigated in terms of significance using different feature selection methodologies and 

the extracted results are validated in the context of classification performance. For load 

classification, this research work investigated different supervised machine learning 

models2 towards an optimal learning model for the given conditions. In addition to 

 
1 The terminologies of non-invasive and non-intrusive are used interchangeably in this thesis. 
2 In the context of machine learning, the terminologies of model, technique, classifier, and algorithm are used interchangeably in this 

thesis. 
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standalone machine learning models, this research also presents a combinatorial learning 

model, i.e., ensemble learning, for load classification in the context of the NILM. Further, 

a comprehensive comparative evaluation of these techniques is also part of this thesis.  

The entire digital simulations and corresponding analysis presented in this research work 

are based on real-world electricity datasets, originating from different geographical 

regions, i.e., New Zealand and the United States of America. Based on the low data 

granularity of the employed databases, three different appliances/circuits, i.e., air 

conditioning unit, electric vehicle charging, and water heating are successfully 

disaggregated using the proposed non-intrusive load disaggregation approach. Moreover, 

a proof of concept in terms of real-world deployment, i.e., the application of the proposed 

non-intrusive load disaggregation, is also proposed and validated in this research work.  

Due to low data granularity nature, this research work is more relevant for the existing 

metering infrastructure. Therefore, the proposed methodologies and corresponding 

simulation studies presented in this research work will significantly contribute to the 

existing state of the art on low sampling NILM systems particularly in terms of event 

detection, electrical load features, and learning model selection. The study presented in 

this thesis will also facilitate future research in terms of real-world deployment of NILM 

systems and its broader applications. Concisely, this research work based on a non-

invasive load disaggregation approach is a way forward for energy efficient systems.  
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Chapter 1 Introduction 

This chapter presents a brief overview of the rationale of this research work along with 

the corresponding scope and significance. A detailed overview of the contribution is also 

presented in this chapter.  

1.1 Rationale of the Study 

The world has witnessed a tremendous transformation in the last few decades regarding 

every aspect of human life. Electricity which plays a key role in modern life has also gone 

through rapid changes in terms of technologies. Unlike a few decades ago, today’s 

electricity flow is neither unidirectional nor centrally produced in large power plants. 

With the growing emergence of prosumers3 and microgrids, the amount of electricity not 

produced by large traditional power plants is ever increasing. Moreover, the renewable 

generation, commonly known as distributed renewable energy sources (DRES), including 

but not limited to photovoltaic (PV), wind turbine (WT), geothermal, and biomass have 

also seen solid growth in the recent years. In this context, according to a recent report of 

the International Energy Agency, renewables will account for over 40% of total 

generation by the year 20404. On the other side, some of the issues of renewables like PV 

and WT lie in their intermittent nature and being widely spread over large areas. It is then 

critical to be able to effectively manage the energy flow together with ensuring grid 

sustainability, i.e., to maintain an equilibrium between demand and supply. To address 

the challenges of DRES and maintain the said equilibrium, a concept of a smart grid (SG) 

system comes into existence. It is an updated electrical grid system based on digital or 

analog information and communication systems. Unlike the traditional grid system, a 

smart grid is a bi-directional energy flow system which collects and acts on the 

information regarding the behavior of the suppliers and the consumers in an automated 

way to increase the efficiency, reliability, and sustainability of the production and 

distribution of electricity [1].  

One of the promising aspects of the smart grid is the transformation of consumers from 

passive5 to active6 consumers. Now the consumers can play a key role in improving the 

overall efficiency of the system [2], however, it is not realistic to expect consumers to 

play an effective role towards a sustainable system until and unless they are provided with 

the direct feedback; refers to real-time appliance-level consumption information [3]. In 

 
3 Customers who generate their own electricity, and can also utilise electric vehicle, battery storage etc. 
4 https://www.iea.org/reports/world-energy-outlook-2018/renewables#abstract 
5 Passive consumers do not actively participate in grid operations; just plug in their appliances and billed accordingly. 
6 Active consumers can monitor and control their electricity as per the market trends.  

https://www.iea.org/reports/world-energy-outlook-2018/renewables#abstract
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terms of direct feedback, consumers can not only effectively monitor their electricity 

usage but also significantly contribute to saving energy [3, 4]. In the said perspective 

regarding energy saving and the successful deployment of smart grid systems, effective 

energy monitoring is inevitable. Effective monitoring of energy usage not only 

contributes to grid stability but also leads to many promising applications in the context 

of energy efficiency and conservation. Figure 1 depicts the overall rationale of this study 

in the context of energy deficiency dilemma and its possible solutions (shaded by dark 

colors) and the factors (shaded by light colors) associated with it. 

 

Figure 1  Rationale of the Study 

As seen in Figure 1, establishing new powerplants requires high capital cost and 

substantial time to build, moreover, environmental constraints like carbon emission, in 

case of fossil-fuel based generation, are also associated with it. All these constraints limit 

the viability of establishing new generation plants for both developed and undeveloped 

societies. On the other side, adopting the smart grid concept towards sustainability is a 

more viable and attractive alternative, offering numerous promising solutions for both 

sides, i.e., generation and demand, as highlighted in Figure 1. On generation side, smart 

grid technologies effectively enable the integration of renewables, prosumers, and 

microgrids. Concurrently, on the demand side, the smart grid empowers the consumers 

by providing innovative tools that facilitate the consumers to interact and act more 

efficiently in terms of their energy usage. In the given context and from the larger 

perspective of sustainability, one of the key tools provided by the smart grid is the 

effective and interactive way of energy monitoring. 

1.2 Scope and Significance 

Based on the presented rationale, the scope of this research work is to investigate and 

develop a state-of-the-art approach that can facilitate effective energy monitoring. The 
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proposed approach must target the low data granularity to attain as much as possible 

compatibility with the existing metering infrastructure and further comprises attributes 

like robustness, low complexity, scalability, and cost-effectiveness. The developed 

approach will significantly facilitate the existing system in terms of energy efficiency and 

conservation. Consequently, avoid a large amount of investment in establishing new 

generation plants. This also leads to address the environmental concerns due to carbon 

emission in the case of establishing non-renewable generation plants. 

Furthermore, the outcome of this research work in the form of low complexity and robust 

non-intrusive load disaggregation approach will not only be beneficial for the consumers 

in terms of having valuable information regarding the operation status of their loads and 

corresponding consumption but also benefit the system operators, policymakers, and 

manufacturers in terms of analyzing the network’s energy flow, creating policies, and 

manufacturing of advanced appliances, respectively. 

1.3 Contributions 

To advance the existing state of the art on non-invasive load disaggregation, this PhD 

research work has the following key attributes and contributions. 

▪ This research work is based on low sampling data granularity making it more 

viable for the existing metering infrastructure. 

▪ To realize real-world applications and deployment, the entire research work has 

been carried out on real-world electricity datasets. 

▪ For robustness, the proposed methodology has been employed on diverse 

load datasets based on different geographic regions, i.e., New Zealand and 

the United States of America. 

▪ Three distinct low-complexity and computationally fast event detection 

algorithms are proposed and validated on both real-world datasets. 

▪ A set of nine distinct electrical load features is proposed and evaluated. 

▪ The given load feature set is further evaluated in terms of feature space 

and individual feature significance using feature reduction and feature 

selection methodologies, respectively. 

▪  Towards effective load classification, diverse supervised machine learning 

techniques are investigated towards an optimal classifier under given conditions. 

▪ In addition to standalone learning model configuration, the ensemble 

learning technique is also explored for load classification and a 

comprehensive comparative analysis is presented. 
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▪ Three different appliances/circuits having high potential towards real-world 

energy efficiency applications are successfully disaggregated using the proposed 

non-invasive load disaggregation approach. 

▪ The proposed methodologies are extensively evaluated using well-known 

performance metrics as well as a newly introduced metric, i.e., the Kappa index, 

in the context of non-invasive load disaggregation.  

▪ In terms of actionable feedback, a real-world application is proposed and 

validated using a case study. 

Further, different research articles have been published, accepted, or submitted as part of 

this PhD research work. The details of the said articles are as follow. 

Journal Articles 

▪ A. U. Rehman, T. T. Lie, B. Vallès, and S. R. Tito, "Event-Detection Algorithms 

for Low Sampling Nonintrusive Load Monitoring Systems Based on Low 

Complexity Statistical Features," IEEE Transactions on Instrumentation and 

Measurement, vol. 69, no. 3, pp. 751-759, 2020. 

▪ DOI: 10.1109/TIM.2019.2904351 

▪ A. U. Rehman, T. T. Lie, B. Vallès, and S. R. Tito, "Non-Intrusive Load 

Monitoring of Residential Water-Heating Circuit Using Ensemble Machine 

Learning Techniques," Inventions, vol. 5, no. 4, p. 57, 2020. 

▪ DOI: https://doi.org/10.3390/inventions5040057 

▪ A. U. Rehman, T. T. Lie, B. Vallès, and S. R. Tito, "Non-Invasive Load-Shed 

Authentication Model for Demand Response Applications Assisted by Event-
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Chapter 2 Research Design 

This chapter presents a comprehensive research design of this study. It is comprised of 

the literature review, research gap analysis, research objectives, proposed methodology, 

and performance evaluation criteria. A brief overview of the employed real-world load 

datasets is also presented in this chapter. 

Figure 2 depicts the overall research flow of this PhD study, where each part is discussed 

in detail in the following sections.  

 

Figure 2  PhD Research Study Flow 

2.1 Literature Review 

This section presents a comprehensive review of the existing state of the art on energy 

monitoring techniques along with the corresponding advantages and disadvantages. 

2.1.1 Energy Monitoring 

Due to the integration of information and communication technologies (ICT), today’s 

power system is more advanced and smarter providing numerous promising solutions in 

terms of energy efficiency and conservation. But towards energy efficiency and 

conservation, effective management of energy is the key and for that energy monitoring 

is inevitable. Energy monitoring is a process that gathers consumers’ consumption data, 

either by software or hardware means, analyses it, and then provides useful insight back 

to the consumers. Effective energy monitoring is one of the key solutions to energy 

efficient systems and can be performed either at the aggregated or segregated level. In 

terms of aggregated energy monitoring, advanced metering infrastructure (AMI) is one 

of the examples consisting of smart meters, ICT systems and database management 

systems, which plays a key role in terms of facilitating the concerned stakeholders to 

monitor the power consumption profiles and ultimately lead to efficient energy 

management [5].  

In the context of segregated level energy monitoring, numerous approaches are available 

in the existing literature but a widely used approach is commonly referred to as load 

disaggregation, energy disaggregation, or power disaggregation [6]. It is a method where 
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the aggregated load profile is converted into the segregated load profiles of households’ 

appliances. In the existing literature, a variety of load disaggregation methodologies is 

available that can be broadly classified as hardware and software-based methods [3, 7]. 

A broad categorization of energy monitoring techniques is depicted in Figure 3 [8]. The 

scope of this research work revolves around segregated energy monitoring particularly 

non-invasive (software) techniques as highlighted in Figure 3 (in blue). Therefore, the 

details regarding different categories of segregated energy monitoring are briefly 

discussed in the following sections. 

 

Figure 3  Energy Monitoring Techniques  
The portion in blue highlights the scope of this thesis. 

2.1.2 Intrusive Load Monitoring and Smart Appliances 

In the context of hardware-based methods, distributed sensing is a technique where 

discrete measurement sensors are used to monitor and report the energy consumption 

pattern of the individual appliances/circuits. Due to its invasive nature, it is also referred 

to as intrusive load monitoring (ILM). This technique is relatively simple to deploy, even 

the recent introduction of energy monitoring plug-in devices does not require any 

installation. These devices are ready-to-use and only need to be plugged in between an 

electric wall socket and the appliance’s plug. But due to multiple numbers of sensors, 

reliability issues may exist [9] and in the context of the smart grid, a significant number 

of sensors need to be deployed which leads ILM to be cost-prohibitive in terms of capital 

and labor expenses [7].  
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Smart appliances also lie in the context of hardware-based load disaggregation. Smart 

appliances are those appliances that have integrated capabilities to monitor and report 

their power consumption [10] but these appliances are not widely in use due to their high 

market prices and interoperability issues [11]. 

2.1.3 Non-Intrusive Load Monitoring 

Software methods provide an alternative and attractive solution to load disaggregation, 

where a frequently used approach is referred to as single point sensing technique, as 

shown in Figure 3. This technique uses only a single metering device, typically the main 

entry metering sensor, to monitor the aggregated load data and later different software 

methodologies are employed to disaggregate the monitored load data into individual 

appliances/circuit profiles. Due to its non-invasive nature, this technique is commonly 

referred to as non-intrusive load monitoring (NILM), non-intrusive appliance load 

monitoring (NALM) [12] or non-intrusive appliance load monitoring (NIALM) [13]. The 

concept of NILM was first introduced by Hart [14, 15] and refined over the years by the 

research community. NILM is one of the widely used techniques where the state of the 

operation of individual appliances/circuits is determined by the analysis of aggregated 

load data measured at a single metering point, typically the main power entry point of a 

building [16]. Consider a time-series power load curve monitored at a single metering 

point weighted as an algebraic sum of I number of appliances’ power load, as shown in 

(1). 

 Pagg(t)= ∑ Pi(t)+n(t) 
I

i=1

                                              (1) 

                                                   

Pagg(t) and Pi(t) represent the total aggregated power and ith appliance power at time t, 

respectively. Moreover, i=1, 2, 3, …, I and n(t) represents noise including measurement 

errors, baseloads, and loads not under consideration. The task of non-intrusive load 

disaggregation, i.e., NILM, is to estimate the state of the individual appliance power load, 

Pi(t), with the only information of aggregated power load, Pagg(t). A traditional NILM 

system consists of three main components, namely: data acquisition, feature extraction, 

and classification. Each component can be further categorized as depicted in Figure 4 [3] 

and further discussed in the following subsections. 
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Figure 4  Traditional NILM Framework 

2.1.3.1 Data Acquisition 

Data acquisition is a pre-requisite stage of any NILM system where the aggregated load 

data is monitored and stored from a single metering point. This information can be 

acquired in the form of different variables such as power, current, voltage, and measured 

using different measurement devices at different sampling frequencies. Data acquisition 

granularity is a key factor that not only significantly influences the later stages of NILM 

in terms of selection of tools and analysis techniques but also determines the type and 

number of appliances to be precisely classified [4]. Based on the granularity of the 

monitored data, NILM algorithms in the available literature can be broadly categorized 

as high sampling rate (frequency ≥ 50 Hz) and low sampling rate (frequency ≤ 1 Hz) [17] 

as shown in Figure 4. 

The research community has acquired electricity data at numerous sampling rates and 

publicly released these datasets allowing the researchers to evaluate their proposed NILM 

methodologies. Some of the well-known and widely used NILM datasets are Reference 

Energy Disaggregation Dataset (REDD) [18], the Almanac of Minutely Power datasets 

(AMPds) [19], Pecan Street Inc. Dataport [20], Electricity Consumption & Occupancy 

(ECO) [21], and GREEN Grid [22]. Table 1 presents a detailed comparative study of the 

available energy disaggregation datasets in terms of different attributes including data 

acquisition granularity. 

2.1.3.2 Load Features 

Each appliance is unique in terms of its consumption pattern. The explicit attribute of an 

appliance is known as its feature or also referred to as the signature of the appliance. The 

available literature on load features can be broadly categorized into steady-state features  
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Table 1 Comparison of Energy Disaggregation Datasets

 
7 Smart refers to UMass Smart* Home Data Set 

Dataset Resolution Number of 

Buildings/Houses 

Duration Features Location  Link 

REDD [18] 1 Hz, 15 

kHz 

6 ~2 weeks p, i, and 

v 

United States of 

America 

 http://redd.csail.mit.edu/ 

AMPds [19] 1 minute 1 2 years p, q, s, i, 

and v 

Canada  http://ampds.org/ 

UK-DALE [23] 6 sec, 16 

kHz 

5 3-51 months p, i , and 

v 

United Kingdom  https://ukerc.rl.ac.uk/DC/cgi-

bin/edc_search.pl/?WantComp=138 

DRED [24] 1 Hz 1 2 months p Netherland  http://www.st.ewi.tudelft.nl/akshay/dred/ 

Dataport [20] 1 minute ~1000 2011-ongoing p United States of 

America 

 https://www.pecanstreet.org/dataport/ 

GREEND [25] 1 Hz 9 1 year p Italy & Austria  https://www.monergy-project.eu/?page_id=380 

ECO [21] 1 Hz 6 8 months p and q Switzerland   https://www.vs.inf.ethz.ch/res/show.html?what=eco-data 

PLAID [26] 30 kHz 56 Summer-2013 i and v United States of 

America 

 http://plaidplug.com/ 

REFIT [27] 8 seconds 20 2013-2015 p United Kingdom  https://pureportal.strath.ac.uk/en/datasets/refit-electrical-load-

measurements-cleaned 

GREEN Grid [22] 1 minute ~45 2014-2018 p New Zealand  http://reshare.ukdataservice.ac.uk/853334/ 

BLUED [28] 12 kHz 1 7 days i and v United States of 

America 

 http://portoalegre.andrew.cmu.edu:88/BLUED/ 

SustDataED [29] 12.8 kHz 1 10 days i and v Portugal  https://aveiro.m-iti.org/data/ 

iAWE [30] 1 Hz 1 73 days p, f, ϕ, i, 

and v 

India  http://energy.iiitd.edu.in/Datasets.aspx 

COMBED [31] 30 seconds - 1 month p, i, and 

e 

India  https://combed.github.io/ 

Smart-Grid Smart-

City Customer Trial 

Data [32] 

30 minutes - 2010-2014 - Australia  https://data.gov.au/dataset/ds-dga-4e21dea3-9b87-4610-94c7-

15a8a77907ef/details  

Smart7 [33] 1 Hz 3 3 months p and s United States of 

America 

 http://lass.cs.umass.edu/projects/smart/ 

Note: i, v, p, q, s, f, e, and ϕ, and represents current, voltage, real power, reactive power, apparent power, frequency, energy, and phase respectively 

http://redd.csail.mit.edu/
http://ampds.org/
https://ukerc.rl.ac.uk/DC/cgi-bin/edc_search.pl/?WantComp=138
https://ukerc.rl.ac.uk/DC/cgi-bin/edc_search.pl/?WantComp=138
http://www.st.ewi.tudelft.nl/akshay/dred/
https://www.pecanstreet.org/dataport/
https://www.monergy-project.eu/?page_id=380
https://www.vs.inf.ethz.ch/res/show.html?what=eco-data
http://plaidplug.com/
https://pureportal.strath.ac.uk/en/datasets/refit-electrical-load-measurements-cleaned
https://pureportal.strath.ac.uk/en/datasets/refit-electrical-load-measurements-cleaned
http://reshare.ukdataservice.ac.uk/853334/
http://portoalegre.andrew.cmu.edu:88/BLUED/
https://aveiro.m-iti.org/data/
http://energy.iiitd.edu.in/Datasets.aspx
https://combed.github.io/
https://data.gov.au/dataset/ds-dga-4e21dea3-9b87-4610-94c7-15a8a77907ef/details
https://data.gov.au/dataset/ds-dga-4e21dea3-9b87-4610-94c7-15a8a77907ef/details
http://lass.cs.umass.edu/projects/smart/
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and transient8 features [3], as depicted in Figure 5. Both refer to identifying the changes 

in the operational characteristics of the appliance when it modulates from one operational 

state to another. But both features, i.e., steady-state and transient, differ in what data they 

are focusing on, referring to the granularity of data acquisition, the corresponding 

association is shown in Figure 5. 

 

Figure 5  Relationship between Data Acquisition and Features in NILM Domain 

Steady-state features like active and reactive power are more related to the appliances’ 

power characteristics when it changes state. The extraction of these features does not 

require high-end metering devices and can be easily extracted from the RMS values of 

current and voltage [34]. On the other side, the transient features depict the appliances’ 

features in terms of shape, duration, size, and harmonics at its transients [3]. To extract 

such features, high-end metering devices are required that lead to costly hardware to be 

installed at customers’ premises because the existing smart meters are not capable of 

reaching the desired high sampling rates. 

It is evident from the existing literature that a single feature does not perform well for all 

types of appliances’ recognition hence use of multiple features is indeed promising. In 

this context, numerous features are proposed based on conventional parameters, i.e., 

voltage (V), current (I), and power (P), and non-conventional parameters, e.g., 

occupancy, dwelling, and weather information. The most widely employed features 

within the NILM domain are active (P) and reactive (Q) power [35-37]. Other commonly 

used features are based on waveforms [38], V-I trajectories9 [39, 40], and harmonics [41].  

Tabatabaei et al. [37] present a comprehensive review to identify the learning algorithms 

and features used in the NILM domain. Further discussion on features extraction in the 

NILM domain and a detailed graphical depiction in terms of a semantic network of the 

corresponding features can be found in [37]. Table 2 presents an overview of the recent 

research on feature extraction in the non-intrusive load disaggregation domain. 

 
8 The short-term momentary fluctuations associated with any state transition in signal before settling into a steady state value is known 
as transient.  
9 V-I trajectory is a graphical depiction of the instantaneous voltage and current in the voltage-current plane. 
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Table 2 Recent Research on Features in NILM Domain 

Research Work Load Features Categorization 

Azaza and Wallin [42] Active and reactive power variation, current waveform, voltage-current 

trajectory, harmonics, over/undershoot power amplitude, rise/fall time, 

settling time. 

Sadeghianpourhamami et al. 

[43] 

P-Q plane, wavelets, P-Q plane and macroscopic transient, P-Q plane 

and wavelets, P-Q plane and macroscopic transient and harmonics, shape 

features, P-Q plane and harmonics, raw waveforms, real power only, 

nonactive current, spectral envelop, low-frequency P, I, and V based 

features, combinational features.  

Zeifmann and Roth [44] Change of real power, change of real and reactive power, change of real 

and reactive power and the additional macroscopic features, harmonic and 

Fourier transform, beyond wavelet transform and geometrical shape. 

Zoha et al. [3] 

Esa et al. [13] 

Power change, time and frequency domain V-I features, V-I trajectory, 

Voltage noise, transient power, start-up current waveform, voltage noise. 

Klemenjak and 

Goldsborough [45] 

Power change, V-I features, V-I trajectory, harmonics, transient state 

features (shape, size, and duration of transient). 

2.1.3.3 Classification 

Load classification in non-intrusive load disaggregation comprises numerous pattern 

recognition algorithms that are used to identify an appliance specific state based on the 

extracted features as shown in Figure 4. The recent advancement in artificial intelligence 

(AI) and computational resources enable the researchers to perform load classification 

with more precision. Within AI, machine learning algorithms evolved significantly in the 

last two decades and established themselves as an imperative method in research as well 

as real-world application development [46]. These algorithms can be broadly categorized 

into supervised and unsupervised algorithms. Supervised learning requires a training 

phase where both the aggregated and ground-truth10, also referred to as label, data are 

required for training purposes [3]. Contrary, the unsupervised learning does not require 

appliances’ ground-truth data for training purposes. Hence, the force that drives the 

selection of supervised or unsupervised algorithms is the availability of ground-truth data 

of individual load elements, which can be collected through the sub-metering of the 

individual load elements. Figure 6 presents a generalized framework of the aforesaid 

machine learning models. 

 
10 Ground-truth refers to the actual items, occur in reality. 
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Figure 6  Machine Learning Models Framework 

Recently, machine learning algorithms are extensively adopted in the domain of energy 

systems. In this context, Pérez-Ortizare et al. [47] present a comprehensive review of 

different classification problems and machine learning algorithms in renewable energy 

applications. Further, Lorena et al. [48] investigate different supervised machine learning 

algorithms towards an optimal classifier in potential distribution modeling. In the context 

of non-intrusive load disaggregation, supervised machine learning models [3, 49-51] are 

more frequently used as compared to any other AI-based methodologies, e.g.,  

optimization [52-55], deep learning [56, 57]. A comprehensive comparative evaluation 

of different supervised machine learning algorithms in the context of low-sampling non-

intrusive load disaggregation has been presented in [58]. 

2.2 Research Gap Analysis 

With the worldwide deployment of smart meter infrastructure, intelligent power systems, 

and increasing awareness of energy efficiency and conservation, the research community 

has ignited renewed interest in the NILM domain. Consequently, extensive research 

within the NILM domain has been carried out, however, it is still an open research area 

having gaps that need to be addressed. To address the shortcomings of the existing 

research literature and contribute to the further advancement of non-intrusive load 

disaggregation, a comprehensive critical research gap analysis of the existing NILM 

literature has been carried out. The performed gap analysis aims at defining more viable 

and relevant research objectives for this study. It is worth noting that the following 
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research gap analysis does not intend to undermine the existing literature but 

acknowledges the existing work as a foundation towards further research developments. 

Since the early concept of NILM, numerous techniques have been proposed and 

developed to enhance the performance of the NILM system. Comprehensive reviews of 

the proposed NILM in different contexts are presented in [3, 13, 34, 44, 45, 59-62]. Based 

on the existing literature trends, this research gap analysis is divided and conferred into 

two main categories in the context of the NILM system namely, the working principle 

and data granularity. 

2.2.1 Working Principle 

Early NILM research was more focused on the disaggregation of high consumption loads 

[63-65] whilst currently, the trend is to disaggregate a higher number of appliances [4] 

with more precision. However, in terms of working principle, the existing literature 

regarding NILM systems can be broadly classified into two main categories namely, 

event-based and non-event based NILM systems [7, 66, 67]. The event-based NILM 

system relies on event11 detection by using different edge12 detection algorithms on the 

acquired aggregated load data. Later-on features are captured from the extracted events, 

that are further classified into respective appliance operation states using different pattern 

recognition techniques. Contrary, a non-event based NILM system does not rely on 

detecting appliance-state transitions (events) using edge detection algorithms before the 

classification stage. Rather, all the samples of the acquired aggregated load data are 

considered for inference.  

One of the pioneering work in load disaggregation by Hart [15] in the early 90s was based 

on identifying appliances by their respective turning On/Off transitions by considering 

power consumption changes (events) both in the active and reactive power of the signal. 

To date, numerous event detection algorithms have been proposed and developed with 

diversity in terms of input variables, data granularity, and techniques. Most of the existing 

work is based on appliance consumed power [50, 68-73] as an input variable with some 

exception, e.g., the authors of [41, 74] employed current harmonics as an input feature to 

detect the events. Meziane et al. [67] also employed a current signal with the phenomenon 

of the sliding window. De Baets et al. [75] also performed event detection by taking active 

power as input feature but in the frequency domain instead of the time domain. Girmay 

 
11 In this context, event refers to appliance-state transition. 
12 An edge is defined as an abrupt change in terms of jumps, steps or shifts in the mean level of a time series or signal that is under 

consideration.  
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and Camarda [69] proposed a time-frequency based event detection using a goodness-of-

fit Chi-squared test. Jin et al. [72] also proposed an event detector based on goodness-of-

fit tests and performed a benchmark analysis with a conventional generalized likelihood 

ratio detector. Further, Wild et al. [41] proposed a new unsupervised event detection 

approach that is based on kernel Fisher discriminant analysis. 

On the other side, work related to the hidden Markov model (HMM) [76] is an example 

of non-event based NILM systems. In this domain, Kolter and Jaakkola [77] considered 

an extension of HMM: additive factorial hidden Markov model (AFHMM), towards 

energy disaggregation. Kim et al. [78] also targeted the NILM using variants of the 

factorial hidden Markov model (FHMM) and concluded that the conditional FHMM 

model outperforms the other unsupervised disaggregation methods. These models are 

powerful, work offline, and can be supervised or unsupervised but they are not scalable 

and the complexity of these models increases exponentially with an increase in the 

number of appliances [42, 79]. In this context, Kim et al. [80] present a detailed discussion 

about the constraints associated with HMM and its variants and proposed an alternative 

in terms of advanced deep learning approach, i.e., long short-term memory recurrent 

neural network (LSTM-RNN).  

In the context of the working principle of the NILM system, Table 3 summarizes both 

methodologies, i.e., event-based and non-event based NILM systems [7].  

Table 3 Comparison between Event and Non-Event Based NILM Systems 

Event-Based NILM System Non-Event Based NILM System 

Computationally more efficient as inference is 

carried out only on the detected events. 

It does not rely on event detection hence inference 

is carried out on all samples, consequently, 

computational requirement increases. 

False detection or misdetection of events may lead 

to errors. 

Wrong estimation errors for a given sample can be 

corrected. 

Based on the literature review, it is concluded that the event-based NILM is not only 

computationally more efficient compared to non-event based NILM but also more viable 

for the existing infrastructure in terms of computational cost and scalability. Therefore, 

this research work intends to contribute to the existing state of the art on event-based 

NILM systems by proposing computationally efficient event detection algorithms that 

will further facilitate the event-based non-intrusive load disaggregation approach. 

2.2.2 Data Granularity 

As discussed earlier for non-intrusive load disaggregation, the data granularity is of high 

significance because it drives the use of tools and analysis techniques. In this context, the 
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existing NILM literature can be categorized as, low sampling rate NILM (≤ 1 Hz or ≥ 1 

second) and high sampling rate NILM (≥ 50 Hz or ≤ 0.02 seconds) [17] systems. In 

connection with the working principle, all high sampling rate data are generally analyzed 

using event-based techniques whereas low sampling data are analyzed using both event-

based and non-event based techniques [68]. Low sampling rate data lead to macroscopic13 

(steady-state) features whereas high sampling rate data lead to microscopic14 (transient) 

features [38], as graphically shown in Figure 5.   

Many of the researchers agree that to attain a high accuracy of disaggregation, the 

microscopic features should be utilized [44]. Subsequently, most of the available 

literature is focusing on a high sampling rate NILM system [81]. For example, Anderson 

et al. [66] proposed a framework and evaluation metrics for event detection in the NILM 

domain using one week of aggregated voltage and current measurements sampled at a 

rate of 12 kHz. Meziane et al. [67] proposed a high accuracy event detector for the NILM 

system at a sampling frequency of 10 kHz. Furthermore, Gupta et al. [82] utilized a data 

acquisition system in the range of 36-500 kHz. The study claimed that the signature was 

both distinctive for a given appliance and variable enough to distinguish between similar 

devices in a household with a reported accuracy of up to 93.8% [82].  

Besides the advantages and disadvantages associated with low and high sampling rate 

data acquisition, there is also a trade-off that exists. For example, a high sampling rate 

allows the extraction of transient features in addition to power features subsequently 

yielding not only better energy disaggregation [60] but also enabling more appliances 

recognition [4]. For high sampling data acquisition, the aforesaid improvements come at 

a price of high cost and complexity due to high-end, costly, and dedicated measurement 

devices that need to be installed at consumers’ premises. Moreover, on social grounds, a 

high sampling rate also raises consumers’ privacy concerns as their activities can be easily 

detected [83]. On the other side, the low sampling rate data acquisition fits well into the 

existing smart meter capabilities consequently avoiding the installation of high-end and 

costly metering devices. But this comes at the cost of a complicated disaggregation 

process because most of the information of the waveform is lost due to capturing the data 

at the low sampling frequency [17]. Further, at a low sampling rate, low consumption 

loads are difficult to detect. However, the high consumption load elements are detectable 

with reasonable precision. So far, a computationally efficient low sampling data 

 
13 Macroscopic features mostly refer to the power changes. 
14 Microscopic features mostly refer to the harmonics and signal waveforms. 
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acquisition based non-intrusive load disaggregation, i.e., NILM system, is a challenging 

and open research topic [3, 44].  

As per detailed literature review and current research trends in the context of non-

intrusive load disaggregation, it is noted that most of the NILM research is inclined 

towards high data granularity [52], subsequently, less research has been carried out in the 

domain of low sampling NILM system. To address the said research gap, this research 

work aims to exclusively focus on a non-intrusive load disaggregation approach based on 

low data granularity. Focussing on low data granularity based NILM system will not only 

contribute to the existing literature by addressing the research gap but also enable the 

deployment of the NILM system in real-world energy efficiency applications.   

2.2.3 Research Objectives 

Based on the presented research gap analysis, two aspects of the non-intrusive load 

disaggregation literature have been identified, i.e., the working principle and data 

granularity, that need to be further addressed. For the identified research gaps, this 

research work aims to contribute as follows, 

▪ Working Principle: To contribute to the existing state of the art on event-based 

NILM system by proposing and developing computationally efficient event 

detection algorithms that further facilitate the development of event-based non-

intrusive load disaggregation methodologies. 

▪ Data Granularity: To address the shortcoming of the existing literature regarding 

low sampling NILM research by proposing and developing a non-intrusive load 

disaggregation method that is solely based on low data granularity. 

▪ To realize the real-world potential, incorporate and validate the proposed 

NILM approach in the context of energy efficiency applications. 

The aforesaid research objectives are well aligned with the rationale of this study 

presented in Chapter 1. As besides contributing to the existing state of the art on 

computationally efficient non-invasive load disaggregation, this research work and its 

broader real-world (prospective) applications will contribute significantly to the energy 

efficiency and conservation programs. 

2.3 Evaluation and Approval 

Evaluation is a key component to be considered before plunging into designing and 

simulation studies. In this phase, a careful assessment of the extracted research gaps and 
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corresponding research objectives of this study are carried out in terms of their relevance, 

feasibility, and reliability in the broader context of energy efficiency and conservation.  

It is important to evaluate whether the findings of the research gap analysis are relevant 

or not and whether it will solve any of the existing or future issues. Furthermore, it is also 

evaluated whether the methodology proposed to address the findings of the research gap 

analysis is viable enough for the existing system or not. Assessment of these conditions 

not only provides a base to opt/optimize a suitable design methodology but also provides 

an in-depth analysis of the rationale and significance of this research. 

In the given context, evaluation is carried out by all the concerned academics and industry 

stakeholders including but not limited to Auckland University of Technology (AUT) 

supervisory team, PhD thesis proposal defense (AUT-PGR915) examination team, and 

Genesis Energy Limited team. After a successful process of AUT-PGR9 and evaluation, 

a confirmation approval of this PhD research work has been granted. In this context, an 

official letter regarding confirmation of candidature can be found in the appendix A.1 of 

this thesis. 

2.4 Proposed Methodology 

Based on the finding of the research gap analysis and the objectives of this study, this 

research work focusses on low sampling event-based non-invasive load disaggregation, 

i.e., NILM, system. Figure 7 presents a basic framework for an event-based NILM system 

employed in this study along with the techniques to be used at each stage, where in-depth 

discussion regarding the proposed or adopted algorithms and techniques will be presented 

in the later chapters of this thesis. As shown in Figure 7, an event-based NILM framework 

starts with aggregated load data acquisition (at a single metering point) followed by data 

pre-processing, event detection, and load feature extraction. Load identification based on 

the extracted load features is carried out at the classification stage. The proposed 

methodology is further employed to validate its effectiveness in real-world energy 

efficiency applications. 

 
15 PGR9 (Post Graduate Report 9), is a report/presentation that need to be successfully submitted/presented within the first year of 

PhD studies for confirmation of PhD candidature at AUT. 
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Figure 7  Proposed Event-Based Non-Invasive Load Disaggregation Approach 

2.4.1 Load Databases 

In terms of load data acquisition, the presented research work is entirely based on low 

data granularity, sampled at 1/60 Hz, i.e., 1-minute measurement interval. In the context 

of low sampling, it is worth noting that this research work is focussing on a data 

granularity that is 60 times lower than the data granularity of 1 Hz, which is generally 

used in the context of low sampling NILM system, also seen in Table 1. Further, to realize 

the real-world applications of non-intrusive load disaggregation, this research work is 

based on real-world load measurements that are acquired from real-world load databases 

from diverse geographic regions. Figure 8 presents the diverse geographic regions of 

electricity load databases employed in this research work. 

 

Figure 8  Geographic Regions of Employed Load Databases 
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As shown in Figure 8, the load databases employed in this research work namely, 

Dataport16 and NZ GREEN Grid17 are from the United States of America (USA) and New 

Zealand (NZ), respectively. Both databases rely on low data granularity of 1/60 Hz, i.e., 

a 1-minute sampling rate, and are comprised of aggregated as well as segregated load 

data. 

Dataport [20] is the world's largest18 energy disaggregation research database [84], owned 

and operated by Pecan Street Inc.19, a research institution located in the USA. Dataport 

comprises electricity consumption profiles of nearly 1000 households in the USA. Each 

household contains both aggregated and individual appliance level power profile at a data 

granularity of 1/60 Hz. For commercial purposes, individuals and organizations can 

access Dataport contents by acquiring a license offered by Pecan Street. On the other side, 

for non-commercial educational purposes, Pecan Street offers free data access to current 

university faculty, staff, and students20.  

The second database employed within the scope of this research work is a recently 

released21 electricity dataset, namely NZ GREEN Grid Data [22]. This dataset comprises 

real-world load measurement of 45 NZ households, as part of the Renewable Energy and 

the Smart Grid (NZ GREEN Grid) project, a collaboration among the University of 

Canterbury and the University of Otago, New Zealand. For each household, the NZ 

GREEN Grid research database includes 1-minute mean electricity power, in watt, for 

aggregated (total incoming power) and individual power circuits, making it the first 

research database of its kind for New Zealand. 

The proposed methodologies in this thesis are evaluated on both load databases. 

Moreover, for further robust assessment, it is ensured that load data are acquired from at 

least two different households of each database. The given criteria provide a robust 

assessment of the proposed methodologies in diverse and independent environments. This 

is also necessary for the classification stage to assess how well the employed classifiers 

generalize in an unseen and diverse environment. Therefore, within the scope of this 

thesis, data are acquired from two and five households of Pecan Street’s Dataport and NZ 

GREEN Grid database, respectively. Further in terms of data acquisition duration, load 

data of up to 30 days are acquired and employed for digital simulation purposes. Details 

 
16 https://www.pecanstreet.org/dataport/ 
17 http://reshare.ukdataservice.ac.uk/853334/ 
18 https://www.pecanstreet.org/work/energy/ 
19 https://www.pecanstreet.org/ 
20 https://www.pecanstreet.org/dataport/access/ 
21 NZ GREEN Grid project releases database for public use. Link: https://www.otago.ac.nz/news/news/releases/otago695264.html 

https://www.pecanstreet.org/dataport/
http://reshare.ukdataservice.ac.uk/853334/
https://www.pecanstreet.org/work/energy/
https://www.pecanstreet.org/
https://www.pecanstreet.org/dataport/access/
https://www.otago.ac.nz/news/news/releases/otago695264.html
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of the employed households are given below, where further details in terms of data 

acquisition timeframe, number of days, and the number of data samples will be presented 

in the respective sections later in this thesis. 

▪ Dataport, Pecan Street Inc. 

▪ Household ID 26 

▪ Household ID 3036 

▪ NZ GREEN Grid Database  

▪ Household ID rf_01 

▪ Household ID rf_02 

▪ Household ID rf_31 

▪ Household ID rf_36 

▪ Household ID rf_42 

Moreover, the selection of the given households is based on the explicit 

availability/installation of the individual appliances/circuits that are under consideration 

for inference purposes within the scope of this research work. For example, for Dataport 

this research work targets the inference of electric vehicle charging and air conditioning 

unit, where for the NZ GREEN Grid database the inference of water heating is of primary 

focus. Further details regarding the selection of the aforesaid load elements can be found 

in the following chapters of this thesis. 

2.4.2 Performance Evaluation Metrics 

Performance metrics play a key role in the context of evaluating different methodologies. 

In the non-intrusive load disaggregation domain, there is no coherent way to evaluate the 

performance of the algorithm due to the diversity of performance metrics used by the 

research community to evaluate their methodologies, consequently, there is no 

standardized NILM performance metrics [34, 85]. Hence, in this research work, a set of 

diverse, well-known, and widely used performance metrics is employed for evaluation 

purposes. In the given context, the performance metrics namely, true positive (TP), false 

positive (FP), false negative (FN), precision, recall, f-score, and accuracy are adopted. 

All these performance metrics are defined and mathematically given as following [34, 55, 

85, 86]. 

The terminologies of true positive, false positive, and false negative are explained in the 

form of a confusion matrix [55] and summarized in Table 4 [85]. 
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Table 4 Confusion Matrix 

 Ground-truth 

Positive Negative 

Prediction 
Positive True Positive False Positive 

Negative False Negative True Negative 

Precision is a measure defined as the ratio of truly detected items and all detected items, 

in other words, how many selected items are relevant. It is given in (2). 

Precision = 
True Positive

True Positive + False Positive
                                    (2) 

                                          

The recall is a measure of item detection that occurred in reality or in other words how 

many relevant items are selected. It is mathematically given as in (3). 

Recall = 
True Positive

True Positive + False Negative
                                    (3) 

                                            

F-score is defined as the harmonic mean of precision and recall and is mathematically 

given as in (4). 

F-Score = (
Precision

-1
 + Recall

-1

2
)

-1

=2 × 
Recall × Precision

Recall + Precision
                 (4) 

                       

Accuracy is a measure defined as the fraction of predictions the algorithm identified 

correctly and is given as in (5). 

Accuracy = 
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
       (5) 

In addition to the aforesaid performance metrics, another performance metric employed 

for evaluation purposes is the Kappa index that is computed using both accuracy and 

expected accuracy, mathematically given as in (6) [87]. 

Kappa Index = 
Accuracy - Expected Accuracy

1 - Expected Accuracy
                                         (6) 

The expected accuracy is defined as the accuracy that any random classifier would be 

expected to achieve based on the confusion matrix, given in Table 4. Expected accuracy 

is mathematically defined as in (7) [87]. 

Expected Accuracy = 
(TP+FN)(TP+FP)+(TN+FN)(TN+FP)

(TP+TN+FP+FN)
2

                     (7) 
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As per definition, given in (6), Kappa Index < Accuracy, however, due to its inter-rater 

reliability; the degree of agreement among two or more raters, the Kappa index is a more 

robust measure to evaluate machine learning model performance. Moreover, the Kappa 

index of one machine learning model is directly comparable to the Kappa index of another 

machine learning model, being employed for a similar classification task. Landis and 

Koch [88] assigned labels in terms of agreement strength to different ranges of the Kappa 

values, presented in Table 5. It is evident from Table 5 that the higher the Kappa index 

value the better the agreement, where generally the Kappa index greater than 0.40 is 

desirable [87]. 

Table 5 Kappa Index Range and Corresponding Labels 

Kappa Index Range Labels 

Less than 0 Poor 

0 – 0.20 Slight 

0.21 – 0.40 Fair 

0.41 – 0.60 Moderate 

0.61 – 0.80 Substantial 

0.81 – 1.0 Almost Perfect 

The details presented in Table 5 are also used as a performance benchmark for the 

classification stage within the scope of this research work.                                                                                               

2.5 Concluding Remarks 

This Chapter presented a detailed research design of this PhD study starting with a 

literature review, followed by a comprehensive research gap analysis and research 

objectives. This Chapter also briefly discussed the proposed research methodology along 

with the details of the employed real-world load databases. Further different performance 

metrics to be employed for the evaluation purposes within this research work are also 

discussed in this Chapter. The details and analysis presented in this Chapter provide a 

groundwork for the modeling and simulations of the complete load disaggregation system 

towards successful non-invasive inference of distinct load elements.  

Further, as evident from Figure 7, the proposed research is built-on different sub-blocks 

that include data pre-processing, event detection, feature engineering, load classification, 

and real-world applications. In this context, the following Chapters of this thesis will 

elaborate on all the details of the aforesaid sub-blocks of the proposed research work. As 

data acquisition is followed by data pre-processing and event detection, hence Chapter 3 

presents the comprehensive details of employed techniques, proposed algorithms, digital 

simulations, and corresponding results and analysis in terms of data pre-processing and 

event detection.  
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Chapter 3 Data Pre-processing and Event Detection 

This chapter starts with the description of the data pre-processing technique, followed by 

the comprehensive details of the working principle, simulation studies, and corresponding 

results and analysis of the newly proposed event detection algorithms.  

In this Chapter, the presented details in terms of working principles, simulation studies, 

and corresponding results and analysis regarding the proposed event detection algorithms 

are primarily based on [49, 89-91]. The said manuscripts have been published as follows: 

1. A. U. Rehman, T. T. Lie, B. Vallès, and S. R. Tito, "Event-Detection Algorithms 

for Low Sampling Nonintrusive Load Monitoring Systems Based on Low 

Complexity Statistical Features," IEEE Transactions on Instrumentation and 

Measurement, vol. 69, no. 3, pp. 751-759, 2020. 

▪ DOI: 10.1109/TIM.2019.2904351 

2. A. U. Rehman, T. T. Lie, B. Vallès, and S. R. Tito, "Non-Intrusive Load 

Monitoring of Residential Water-Heating Circuit Using Ensemble Machine 

Learning Techniques," Inventions, vol. 5, no. 4, p. 57, 2020. 

▪ DOI: https://doi.org/10.3390/inventions5040057 

3. A. U. Rehman, T. T. Lie, B. Vallès, and S. R. Tito, "Low Complexity Non-

Intrusive Load Disaggregation of Air Conditioning Unit and Electric Vehicle 

Charging," in 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), 

2019, pp. 2607-2612. 

▪ DOI: 10.1109/ISGT-Asia.2019.8881113 

4. A. U. Rehman, T. T. Lie, B. Vallès, and S. R. Tito, "Low Complexity Event 

Detection Algorithm for Non- Intrusive Load Monitoring Systems," in 2018 IEEE 

Innovative Smart Grid Technologies - Asia (ISGT Asia), 2018, pp. 746-751. 

▪ DOI: 10.1109/ISGT-Asia.2018.8467919 

3.1 Data Pre-processing  

As discussed in Chapter 2, this research work is based on the load measurements from 

diverse real-world load databases, consequently, measurement noise including impulses 

and ripples are inevitable. Therefore, pre-processing of the acquired load data is a pre-

requisite for further simulations in terms of event detection. As an example, Figure 9 [22] 

graphically depicts a snapshot of the ground-truth power measurement profile of an 

appliance, i.e., fridge, from the NZ GREEN Grid database, where the phenomenon of 

impulses and ripples arising in real-world measurement can be seen. In this case, the 

https://doi.org/10.1109/TIM.2019.2904351
https://doi.org/10.3390/inventions5040057
https://doi.org/10.1109/ISGT-Asia.2019.8881113
https://doi.org/10.1109/ISGT-Asia.2018.8467919
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impulses and ripples are due to the fridge’s motor starting and load characteristics/voltage 

fluctuation, respectively. For event detection, these measurement noises 

(impulses/ripples) in power signals can lead to false detection and need to be addressed 

using data processing algorithms before the event detection phase.  

 

Figure 9  Impulse and Ripple Phenomenon 

To address the aforesaid real-world measurement noises, this research work adopted a 

technique of median filtering. It is a nonlinear digital filtering technique used for signal 

noise removal. Median filtering has the capability to preserve the edges while eliminating 

the undesirable attributes of the signal. The said property of the median filtering technique 

makes it a more viable data pre-processing option for event detection in the context of 

non-intrusive load disaggregation, subsequently, it is extensively adopted by the research 

community in the NILM domain [67, 69, 71, 92]. A detailed working principle along with 

a graphical illustration of the median filtering phenomenon is presented in [92].  

Figure 10 presents the simulation results of the employed median filtering technique in 

this research work for the data presented in Figure 9. It is evident from the presented 

results in Figure 10 that the median filtering technique successfully preserves the desired 

edges (for further processing in the context of event detection) while eliminating the 

undesirable attributes of the power signal. 
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Figure 10  Outcome of Median Filtering Technique 

3.2 Event Detection 

In the context of event-based non-intrusive load disaggregation, this research work 

adopted the extended definition of an event by [41], i.e., an event is a portion of a signal 

envelop that deviates from the previous steady-state and lasts until the next steady-state 

has been reached [41]. A graphical depiction of events (turn-on and turn-off) with 

corresponding attributes is presented in Figure 11 for the same data as presented in 

Figures 9 and 10. 

 

Figure 11  Graphical Depiction of Events 
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The purpose of the event detection algorithms is to accurately identify all the events 

(whether it relates to turning-on or turning-off of an appliance/circuit as shown in Figure 

11) within the aggregate load profile. Numerous event detection algorithms are available 

in the existing NILM literature, discussed in Section 2.2.1, however, to contribute further 

to the existing state of the art on event detection algorithms for the NILM system, this 

research work proposes three new event detection algorithms. 

3.2.1 Proposed Event Detection Algorithms 

As discussed earlier: Section 2.2.1, numerous event detection algorithms are proposed by 

the research community using diverse input features, data granularity, and techniques. 

However, there are attributes, such as ease of implementation, computational efficiency, 

and robustness, that need to be further researched in the context of NILM event detection. 

Therefore, in this research work three different event detection algorithms, focusing on 

the mentioned attributes, are proposed. To encompass these attributes, the proposed 

algorithms are based on single input feature, iterative process, and straightforward 

statistical measures. These properties of the proposed event detection algorithms make 

them computationally efficient, simple to implement, and adaptable to diverse data.  

Hence, for event detection within the aggregated pre-processed load profile, the proposed 

algorithms use a single input feature, i.e., real power, and iteratively track different 

statistical values, i.e., mean (𝜇), variance (𝜎2), and mean absolute deviation (MAD).  

Therefore, the algorithms are named as the mean sliding window (MSW) [89], variance 

sliding window (VSM) [90], and mean absolute deviation sliding window (MAD-SW) 

[90], respectively. It is worth noting that with the mentioned attributes, the proposed event 

detection algorithms not only advance the existing state of the art on NILM event 

detection but also significantly contribute to the low complexity and computationally 

efficient event-based NILM systems. 

The basic working principle of all three proposed event detection algorithms are based on 

the same phenomenon, i.e., there must be a variation in the statistical values of the load 

data after each event as compared to the previous steady-state statistical values (can be 

visualized from Figure 11). To keep track of these statistical variations, a concept of 

sliding window, having width 'ω', is employed that runs over the pre-processed 

aggregated power profile curve and track different statistical variations to detect different 

events within the aggregated load data. Figure 12 graphically depicts the working 

principle of the proposed event detection algorithms based on the sliding window concept 

for tracking different statistical parameters of aggregated load data. 
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Figure 12  Algorithms’ Working Principle Based on Sliding Window Concept  
Different color rectangles represent sliding windows that track the statistical features of the given power profile. 

In terms of outcome, all three proposed event detection algorithms not only detect the 

events within the aggregated load profile but also identify the starting and ending time 

indices of each detected event. 

3.2.1.1 MSW Algorithm 

The MSW algorithm is based on the sliding window concept as discussed earlier and 

tracks the mean value of the aggregated load and takes the difference of the consecutive 

mean values to identify whether an event has occurred or not.  

Suppose x represents the pre-processed aggregated load data, the mean value is 

mathematically given as in (8). 

μ
x
 = 

1

n
∑ xi

n

i=1

                                                       (8) 

                                                          

A detailed description of the MSW algorithm for the event detection within pre-processed 

aggregated load data based on the mean value, given in (8), is presented in Table 6 [49, 

89].  

Table 6 MSW Algorithm Description 

Input Pre-processed Aggregated Load Data 

Output Starting and Ending Time Indices of Detected Events 

1. Select sliding window width 'ω' 

2. Compute iteratively the mean values 'μ
x
' of the input data using (8) 

3. Determine the difference among the consecutive means values 

4. Select a threshold value 'δ' for event detection 

5. Compare the results of step 3 with 'δ' to compute a thresholding signal indicating steady-state 

and transient portions 

6. Identify the edges using derivation function and extract the starting and ending time indices 

7. Post-processing for final approval of the starting and ending time indices and delay correction 

for ending time indices due to sliding window width. 

  

0             t               t+1          t+2           t+3          t+4          t+5     …  t+i 

Power 

Time 

ω 

Aggregated Load Profile ω 

ω 
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3.2.1.2 VSW and MAD-SW Algorithms 

The VSW and MAD-SW algorithms also rely on the sliding window concept but here the 

sliding window tracks the variance and mean absolute deviation, respectively, of the 

power signal to detect the events within the aggregate load profile. The corresponding 

two statistical features are given in (9) and (10), respectively. 

σ2 = 
1

n
∑ |xi-μx

|
2

n

i=1

                                                          (9) 

                                                 

MAD = 
1

n
∑ |xi-μx

|
n

i=1

                                                         (10) 

                                                 

Both algorithms take the pre-processed aggregated load data as an input and provide an 

output in the form of the starting and ending time indices of each detected event. The 

detailed working principle of the VSW and MAD-SW algorithms is presented in Figure 

13 [90]. 

 

Figure 13  Working Principle of VSW and MAD-SW 

The proposed event detection algorithms, within this research work, are not only simple 

to implement but also comprise low complexity and faster computation, as built on simple 

statistical features and iterative processes, respectively. 

Yes 
≤ 𝛿 

Input Data Window Width Selection ′𝜔′ 

Initialization & Iterative Computation  

𝜎2 MAD 

No 

Event Starting Time 

Computing Threshold Signal 

Signal=0 Signal=1 

Detecting Edges 

Event Ending Time 

Post-Processing Output 



46 

 

3.2.2 Event Detection Simulations and Evaluation 

Comprehensive simulations are carried out in terms of testing, evaluations, and validation 

of the proposed event detection algorithms. For the said purposes, MATLAB is used as a 

simulation toolkit. All simulations are carried out on real-world load measurements and 

to further validate the robustness, the proposed algorithms are independently tested on 

two different electricity load databases having a diverse set of attributes, i.e., geographical 

location, availability of appliances/circuits, and installation configuration. Figure 14 

presents the flow of simulation study carried out for event detection.  

 

Figure 14  Event Detection Simulation Flow 

It is worth noting that the starting time indices of the detected events are considered for 

evaluation purposes because it is the starting time of a given event which initiates that 

particular event, whether it is a turn-on or turn-off event, as shown in Figure 11. Further, 

for evaluation and validation purposes, events detected by the proposed algorithms will 

be considered as true events if and only if the starting time indices of the detected events 

exactly match with the starting time indices of the ground-truth events, available in both 

databases employed in this research work.  

3.2.2.1 Dataport  

To evaluate and validate the performance of the proposed algorithms, real-world load 

measurements (aggregated and appliance ground-truth) for 15 days have been acquired 

from the Dataport database. Further, two different load elements, i.e., electric vehicle 

(EV) charging and air conditioning unit (AC), have been selected for non-intrusive load 

classification. Under the given conditions, EV and AC are selected due to their 

characteristics, i.e., they are not only high consumption load elements but also shiftable-

interruptible [93] load elements. These attributes make EV and AC as high potential load 
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Data Pre-processing 

Dataport NZ GREEN 

Grid  
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elements from the perspective of flexibility control and energy saving. Moreover, for the 

given low data granularity of the employed database, these high consumption load 

elements are more viable options for non-intrusive inference [4, 17].  

Table 7 presents the details of different attributes of the Dataport database associated with 

digital simulations of the proposed event detection algorithms, i.e., MSW, VSW, and 

MAD-SW. 

Table 7 Event Detection Simulation Attributes for Dataport 

Dataport, Pecan Street Inc. 

Data Granularity 1/60 Hz, i.e., 1-minute sampling 

Data (Household) ID 26 

Data Acquisition Timeframe June 18, 2014 – July 02, 2014 

Total Number of Data Samples 21600 

Ground-truth Events  334 

Pre-processing Technique Median Filtering 

Window Width ′𝜔′ 6 samples 

Threshold Value 250 W 

3.2.2.1.1 MSW Algorithm 

As per the attributes presented in Table 7, comprehensive simulations for the MSW 

algorithm are carried out according to the strategy shown in Figure 14 and the working 

principle presented in Table 6. As per the simulation results, a total of 323 events are 

detected within the input load data. A portion (for visual clarity of event detection results) 

of the extracted results in terms of the starting and ending time indices of the detected 

events by the MSW algorithm is depicted in Figure 15. 

 

Figure 15  Event Detection Results by MSW Algorithm  
Green and red vertical lines are used for the visual representation of event detection outcomes, i.e., starting and 

ending time indices, respectively. 

Turn-off Events Turn-on Events 
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As evident from Figure 15, the MSW algorithm not only successfully detected the events 

within the aggregated load data but also identified the starting (represented by green 

vertical lines in Figure 15) and ending (represented by red vertical lines in Figure 15) time 

indices of each detected event. To further validate the detected events by the MSW 

algorithm, it is benchmarked against the ground-truth of the load elements, i.e., EV and 

AC; the corresponding results are presented in Figure 16. 

 

Figure 16  MSW Algorithm Results Validation  

As seen in Figure 16, the MSW algorithm successfully detected the turning-on and 

turning-off events of the load elements under consideration. A complete overview of the 

MSW performance evaluation, for the simulation attributes presented in Table 7, is 

presented in Table 8 in terms of different performance metrics. 

Table 8 MSW Algorithm Performance Results 

Total Detected Events 323 

True Positive 286 

False Positive 37 

False Negative 47 

Precision 88.54 % 

Recall 85.88 % 

As seen in Table 8, for the given simulation attributes (Table 7) particularly 𝜔=6, MSW 

algorithm attained promising results, i.e., > 85%, in terms of both precision and recall 

performance metrics. It is worth noting that the proposed event detection algorithms are 

built on the concept of the sliding window, making the window width 'ω' a key input 

parameter of the proposed algorithms that may substantially influence the performance 

of the proposed algorithms. Hence to investigate the influence of window width, a 
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comprehensive sensitivity analysis in terms of ω has been carried out. The presented 

sensitivity analysis not only underlines the influence of ω but also investigate the optimal 

value of ω, under given conditions, for future simulation studies in terms of load feature 

extraction and load classification. Based on the performed sensitivity study, Table 9 

presents the MSW algorithm performance results for different values of window width 

'ω', where the rest of the simulation attributes are kept constant as presented in Table 7.  

Table 9 MSW Sensitivity Study Results 

  Window Width 

 Number of Samples 2 3 4 5 6 7 8 9 

M
S

W
 

Total Detected Events 423 384 370 341 323 312 303 272 

True Positive 162 194 221 268 286 276 238 162 

False Positive 261 190 149 73 37 36 65 110 

False Negative 171 139 112 65 47 57 95 171 

Precision (%) 38.29 50.52 59.73 78.59 88.54 88.46 78.54 59.55 

Recall (%) 48.64 58.25 66.36 80.48 85.88 82.88 71.47 48.64 

As evident from the results presented in Table 9, by initially increasing the window width 

'ω', the numbers of false positive decreases, subsequently, true positive increases that lead 

to an increase in precision performance metric. Similarly, the numbers of false negative 

decreases initially leading to an increase in recall performance metric. But as seen from 

the presented results after a certain value of window width, i.e., ω=6, the numbers of false 

positive and false negative detections start ascending. Consequently, a descending trend 

is followed by the precision and recall performance metrics, respectively. The presented 

analysis and performance trend of the MSW algorithm in terms of precision and recall 

performance metrics against different window width can be seen in Figure 17. 

 
Figure 17  MSW Algorithm Performance Trend for Different Window Width 'ω' 
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Based on the extracted results presented in Table 9 and Figure 17, it is concluded that for 

the given conditions, the optimal window width for accurate event detection by MSW 

algorithm is 6 samples, i.e., ω=6, also highlighted in Figure 17. 

3.2.2.1.2 VSW Algorithm 

Comprehensive simulation studies have been carried out for the VSW algorithm 

according to the algorithm’s working principle and event detection simulation strategy 

presented in Figure 13 and Figure 14, respectively. The simulation attributes are kept the 

same as presented in Table 7. For the given attributes, a total of 324 events were detected 

by the VSW algorithm. A portion of the extracted results in terms of detected events and 

corresponding starting and ending time indices by the VSW algorithm is presented in 

Figure 18. For validation purposes, Figure 18 also presents the comparison of the detected 

events with ground-truth events of the desired load elements, i.e., EV and AC. 

 

Figure 18  VSW Algorithm Event Detection Results 
The blue line represents the pre-processed aggregated load data profile, where purple and orange color shaded areas 

represent the ground-truth profile of EV and AC, respectively. In terms of event detection, the green and red vertical 

lines represent the starting and ending time indices of the detected events by the VSW algorithm. 

It is evident from the presented results in Figure 18 that most of the ground-truth events 

are detected precisely by VSW albeit with some false detections. Figure 18 also depicts 

one of the false detections in the form of a close-up visual, highlighted by the shaded area. 

For further detailed analysis, a portion of the extracted results is presented in Table 10 in 

the form of the starting time indices comparison between events detected by the VSM 

algorithm and ground-truth events. 
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Table 10  Comparison of Detected Events by VSW and Ground-truth Events 

  Starting Time Indices of the Events 

Sequence of  

Detected Events 
Detected by VSW Algorithm 

Ground-truth 

AC EV 

1 16 16 - 

2 54 54 - 

3 96 95 - 

14 1101 1101 - 

15 1135 1135 - 

16 1185 - 1185 

17 1238 1238 - 

18 1272 1272 - 

19 1281 - 1281 

20 1298 - 1298 

21 1318 1317 - 

- Not Detected 3715 - 

- Not Detected 4153 - 

97 6210 6210 - 

98 6234 - 6234 

99 6247 - 6246 

100 6502 - 6502 

101 6615 - 6614 

102 6643 6643 - 

103 6686 6686 - 

- Not Detected 9780 - 

147 9837 - 9836 

148 9879 9878 - 

149 9923 9922 - 

150 9949 - 9949 

- Not Detected - 10020 

207 13968 13968 - 

208 14030 14030 - 

209 14083 14083 - 

261 16945 Actual Event did not Occur 

262 16970 Actual Event did not Occur 

321 21058 - 21058 

322 21083 - 21083 

323 21103 21103 - 

324 21160 - 21159 

As evident from the presented results, most of the ground-truth events are precisely 

detected albeit with some false and misdetection, as shown in Table 10. For example, EV 

and AC trigger events (ground-truth) at time indices 10020 and 9780 respectively, but the 

VSW algorithm completely missed these events leading to false negatives, i.e., 

misdetections. Further, the VSW algorithm detects events at time indices 16945 and 

16970, but no ground-truth event occurred at the said time indices thereby leading to false 

positive, i.e., false detection. Further as discussed earlier detected events will be 

considered as true (events) detection if and only if the starting time of the detected events 

exactly match with the starting time of the ground-truth events. Hence, the events detected 

at time indices 96, 1318, 6247, …, are not considered as true events, i.e., true positive, 

due to the delay of a 1-time index. As seen in Table 10, this marginal delay variation may 

substantially decrease the number of true detections, consequently, degrades the event 
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detection performance. To address this issue, another parameter namely, delay tolerance, 

is introduced. However, this will be further discussed in section 3.2.2.222 and section 

4.3.123 of this thesis along with a comprehensive sensitivity analysis to investigate the 

influence of delay tolerance factor on the performance of the proposed event detection 

algorithms. 

Table 11 presents the overall performance results of the VSW algorithm, for the 

simulation attributes presented in Table 7, in terms of TP, FN, FP, precision, and recall. 

Table 11  VSW Algorithm Performance Results 

Total Detected Events 324 

True Positive 261 

False Positive 63 

False Negative 70 

Precision 80.55 % 

Recall 78.85 % 

As seen in Table 11, the VSW performance in terms of precision and recall is lagging 

compared to the MSW algorithm performance, as presented in Table 8. However, it is 

worth noting that both algorithms are different in terms of methodology where the 

presented simulation results are based on the same sliding window width, i.e., ω=6. And 

it is already established that ω=6 is an optimal window width for the MSW algorithm, as 

shown in Table 9, but for VSW it may vary. Therefore, similarly to the sensitivity analysis 

performed for the MSW algorithm, comprehensive simulations are carried out to identify 

the optimal ω value that facilitates the VSW event detection performance. In this context, 

Table 12 presents the VSW algorithm performance results for different values of sliding 

window width where the other attributes of simulations are kept constant as presented in 

Table 7.  

Table 12  VSW Sensitivity Study Results  

  Window Width 

 Number of Samples 2 3 4 5 6 7 8 9 

V
S

W
 

Total Detected Events 378 361 346 331 324 315 298 282 

True Positive 298 309 306 283 261 245 231 217 

False Positive 80 52 40 48 63 70 67 65 

False Negative 34 23 25 48 70 86 100 114 

Precision (%) 78.83 85.59 88.43 85.49 80.55 77.77 77.51 76.95 

Recall (%) 89.75 93.07 92.44 85.49 78.85 74.01 69.78 65.55 

As evident from the results presented in Table 12, the VSW algorithm achieved the best 

performance at 𝜔=4. Further in terms of overall performance concerning ω, the VSW 

algorithm follows a similar phenomenon as observed for the MSW algorithm. Initially 

 
22 For NZ GREEEN Grid Database 
23 For Pecan Street’s Dataport Database 
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the algorithm performance increase with an increase in window width due to decrease in 

false negative and false positive detections but after a certain value, here ω=4, the 

performance starts degrading with an increase in window width due to the consistent rise 

in the numbers of FN and FP detection (as seen in Table 12). The following performance 

trend of the VSW algorithm for different window width 'ω' can be seen in Figure 19.  

 

Figure 19  VSW Performance Trend for Different Window Width ′𝜔′ 

Based on the presented sensitivity analysis, it is concluded that the VSW algorithm 

performs best at a sliding window width of 4 samples (also highlighted in Figure 19) by 

achieving the performance results of 88.43% and 92.44% in terms of precision and recall 

performance metrics, respectively. 

3.2.2.1.3 MAD-SW Algorithm 

Similarly, to the MSW and VSW algorithms, comprehensive simulations are carried out 

for the MAD-SW algorithm as per the attributes presented in Table 7. For said simulation 

attributes, the MAD-SW algorithm detected a total of 343 events within the input 

aggregated load data. A portion of the said event detection results is shown in Figure 20, 

where the reference frame, i.e., time indices frame, is kept the same as presented for the 

VSW algorithm’s results in Figure 18. Keeping the same reference frame for the graphical 

representation of the event detection result facilitates an in-depth comparison of different 

algorithms' performance. For example, likewise to the VSW algorithm most of the desired 

events are accurately detected by the MAD-SW algorithm, however, some variations in 

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

2 3 4 5 6 7 8 9

P
er

ce
n

ta
ge

Window Width @ VSW Algorithm

Precision Recall

O
p

ti
m

al
 V

al
u

e



54 

 

terms of false detections are noted in the case of MAD-SW algorithm, highlighted by 

close-up in Figure 20, compared to Figure 18.  

 

Figure 20  MAD-SW Algorithm Event Detection Results  
The blue line represents the pre-processed aggregated load data profile, where purple and orange color shaded areas 

represent the ground-truth profile of EV and AC, respectively. In terms of event detection, the green and red vertical 

lines represent the starting and ending time indices of the detected events by the MAD-SW algorithm. 

Overall, similarly to the MSW and VSW algorithm results presented in Figure 16 and 

Figure 18, respectively, it is also evident from the results presented in Figure 20 that the 

MAD-SW algorithm also detected the ground-truth events while successfully avoiding 

the detection of most of the low to mid (undesired) consumption peaks. This is anticipated 

and desired due to the pre-selected simulations’ attributes and the granularity of the 

acquired load data [90, 94].  

Similarly, to the VSW algorithm, Table 13 presents the validation of MAD-SW algorithm 

performance by highlighting the starting time indices of a portion of the detected events 

by the MAD-SW algorithm and its comparison with the ground-truth events of the load 

elements under consideration, i.e., EV and AC. From the presented results in Table 13, it 

is also evident that most of the individual appliances’ ground-truth events within the 

aggregated load data are accurately detected albeit with some false and misdetection. 

Further, some events are not classified as true events just because of a marginal variation 

in the detected and ground-truth event starting time indices, e.g., the event detected by 

MAD-SW at time index 20170. 
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Table 13  Comparison of Detected Events by MAD-SW and Ground-truth Events 

 Starting Time Indices of the Events 

Sequence of  

Detected Events 
Detected by MAD-SW Algorithm 

Ground-truth 

AC EV 

1 16 16 - 

2 54 54 - 

3 95 95 - 

20 1298 - 1298 

21 1317 1317 - 

22 1326 1326 - 

23 1392 1392 - 

24 1432 1432 - 

76 4874 - 4874 

77 4916 - 4916 

78 5117 - 5117 

79 5218 5218 - 

- Not Detected 5361 - 

- Not Detected 6800 - 

149 9774 - 9774 

150 9780 9780 - 

151 9836 - 9836 

152 9878 9878 - 

216 13968 13968 - 

217 14011 - 14011 

218 14030 14030 - 

219 14083 14083 - 

220 14119 - 14119 

317 19960 - 19960 

318 19989 - 19989 

319 20015 - 20014 

320 20115 Actual Event did not Occur 

321 20170 20171 - 

322 20251 20251 - 

338 21058 - 21058 

339 21083 - 21083 

340 21103 21103 - 

341 21125 Actual Event did not Occur 

342 21159 - 21159 

343 21174 Actual Event did not Occur 

For the given simulation parameters, i.e., Table 7, the overall performance of the MAD-

SW algorithm is presented in Table 14. 

Table 14  MAD-SW Algorithm Performance Results 

Total Detected Events 343 

True Positive 300 

False Positive 43 

False Negative 32 

Precision 87.46 % 

Recall 90.36 % 

Similarly, to the MSW and the VSW algorithms, a comprehensive sensitivity study for 

the MAD-SW algorithm in terms of window width is also carried out to investigate an 

optimal window width for the MAD-SW algorithm under given conditions. Table 15 

presents the performance results of the MAD-SW algorithm at different window width. 
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Table 15  MAD-SW Sensitivity Study Results 

  Window Width 

 Number of Samples 2 3 4 5 6 7 8 9 

M
A

D
-S

W
 

Total Detected Events 407 391 370 352 343 333 323 319 

True Positive 264 271 285 290 300 292 271 248 

False Positive 143 120 85 62 43 41 52 71 

False Negative 68 61 47 42 32 39 60 83 

Precision (%) 64.86 69.30 77.02 82.38 87.46 87.68 83.90 77.74 

Recall (%) 79.51 81.62 85.84 87.34 90.36 88.21 81.87 74.92 

From the presented result, a similar phenomenon and trend are noted for the MAD-SW 

algorithm as observed for the MSW and the VSW algorithms. This can be further 

validated from the graphical representation shown in Figure 21. 

 

Figure 21  MAD-SW Performance Trend at Different Window Width ′𝜔′ 

From the presented sensitivity results, it is concluded that the MAD-SW algorithm 

performs best at ω=6 (highlighted in Figure 21) with precision and recall values of 87.46 

and 90.36 percent, respectively.   

3.2.2.1.4 Inter-Algorithm Comparison 

All three proposed event detection algorithms are individually evaluated on a real-world 

database: Pecan Street’s Dataport. A sensitivity analysis in terms of window width 'ω' 

has been carried out to investigate the optimal value for each algorithm that yields the 

best event detection performance. This section presents a comprehensive inter-algorithm 

comparative analysis to investigate which algorithm performs best under the given 

conditions. For the inter-algorithm comparative analysis, f-score, given in (4), is used 

because it takes both precision and recall performance metrics into account. Table 16 
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presents the proposed algorithms’ performance results in terms of the f-score measure at 

different window width. 

Table 16  Inter-Algorithm Comparison 

 Window Width 

Number of Samples 2 3 4 5 6 7 8 9 

MSW F-Score (%) 42.85 54.11 62.87 79.52 87.19 85.58 74.84 53.55 

VSW F-Score (%) 83.94 89.17 90.39 85.49 79.69 75.85 73.44 70.79 

MAD-SW F-Score (%) 71.44 74.96 81.19 84.79 88.88 87.95 82.87 76.30 

As observed earlier, each algorithm performs best at a specific value of window width, 

which is also evident from the presented results in terms of the f-score measure. VSM 

algorithm attained the f-score of 90.39% at ω=4, where MAD-SW and MSW algorithms 

achieved the best performance at ω=6, i.e., f-score of 88.88 and 87.19 percent, 

respectively. It is evident that at respective optimal window width, each event detection 

algorithm performs well by attaining the minimum f-score performance of > 87%. In 

terms of inter-algorithm performance at corresponding optimal window width, the MSW 

algorithm performance is lagging compared to the VSW and the MAD-SW algorithms, 

however, the performance variation is marginal. 

To further analyze the event detection performance of the proposed algorithms for the 

complete set of window width values, i.e., ω=2, 3, 4, …, 8, 9, box plot representation is 

employed for evaluation purposes. Figure 22 presents the f-score performance results of 

all three proposed event detection algorithms, in the form of a box plot, for the entire set 

of window width values.  

 

Figure 22  Inter-Algorithm Comparison in terms of F-Score 
The red horizontal lines and corresponding numeric values represent the median f-score performance. 

68.85 

81.81 82.03 
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Based on the presented results and corresponding analysis, it is concluded that the sliding 

window used to track different statistical features for identifying the events has a 

significant influence on the overall performance of the event detection. The window width 

is linked with the number of total events detected subsequently influencing the number 

of true positive, false positive, and false negative detections. Hence an optimal selection 

of window width 'ω' is a key to the best performance of the proposed algorithms and it 

varies with the algorithm. 

3.2.2.2 NZ GREEN Grid 

To further validate the performance of the proposed event detection algorithms and 

evaluate its robustness, another real-world electricity load database: NZ GREEN Grid, 

having diverse individual circuits has been employed. In this context, the MAD-SW 

algorithm is selected to be further tested on NZ GREEN Grid, as the MAD-SW yields 

slightly more robust/stable performance compared to the VSW, as seen in Figure 22. 

Simulation studies are carried out as per strategy presented in Figure 14, however, to 

further validate the effectiveness of the proposed event detection algorithm, the input 

sample size has been doubled compared to the sample size of previous simulations 

performed for Dataport. Therefore, a real-world household with 30 days of load data has 

been selected for the simulation studies. The input data have been comprised of days from 

different months of the year to accommodate the diversity of the different seasons and 

corresponding consumption patterns. Table 17 [91] presents different attributes of the 

MAD-SW algorithm simulations for the NZ GREEN Grid database. 

Table 17  NZ GREEN Grid Event Detection Simulation Attributes 

NZ GREEN Grid Database 

Data Granularity 1/60 Hz, i.e., 1-minute sampling 

Data (Household) ID rf_01 

Data Acquisition Timeframe 2014: Mar. 11-15 | Apr.11-13 | May. 12-13  

Jun. 12-15 | Jul. 14-15 | Aug. 11-15  

Sep. 11-14 | Oct. 11-15 

Total Number of Days 30 

Total Number of Data Samples 43200 

Pre-processing Technique Median Filtering 

Threshold Value 150 W 

As evident from the event detection simulations for the Dataport database, the proposed 

algorithms perform best at a certain optimal value of the sliding window width. Hence, 

to identify the optimal window width for the given condition, i.e., Table 17, a 

comprehensive sensitivity analysis is carried out. Table 18 [91] presents the results of the 

said sensitivity study in terms of different performance metrics, i.e., precision, recall, and 

f-score, given in (2)-(4), respectively.  
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Table 18  MAD-SW Sensitivity Analysis in terms of ω for NZ GREEN Grid 

MAD-SW Algorithm | NZ GREEN Grid Database 

 Window Width ′𝝎′ 

Number of Samples 2 3 4 5 6 

Total Detected Events 3651 3367 2853 2412 2005 

True Positive 3058 3016 2495 2042 1639 

False Positive 593 351 358 370 366 

False Negative 651 698 1224 1684 2093 

Precision (%) 83.76 89.58 87.45 84.66 81.75 

Recall (%) 82.45 81.21 67.09 54.80 43.92 

F-Score (%) 83.10 85.19 75.93 66.54 57.14 

It is noted from the presented results that for the NZ GREEN Grid database the MAD-

SW algorithm follows the same phenomenon and trend in terms of window width 

sensitivity as observed for Dataport database, discussed in section 3.2.2.1.1 and section 

3.2.2.1.2. To visualize the corresponding performance trend, Figure 23 graphically 

depicts the corresponding results, particularly precision, recall, and f-score. It is evident 

from the results presented in Table 18 and Figure 23 that the MAD-SW algorithm 

performs the best at window width of 3, yielding the results of 89.58, 81.21, and 85.19 

percent in terms of precision, recall, and f-score, respectively.  

 
 Figure 23  MAD-SW Sensitivity Analysis in terms of ω for NZ GREEN Grid 

It is worth noting that all the event detection simulation results presented so far are based 

on the definition that an event is considered to be true if and only if the starting time index 

of the detected and ground-truth event exactly matches (discussed earlier in section 3.2.2). 

But it is also noted in the simulation results, i.e., Table 10 and Table 13, and discussed in 

section 3.2.2.1.2, that some detected events by the proposed algorithms were not 

considered as true events due to a marginal variation in the starting time indices of 

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

2 3 4 5 6

P
er

ce
n

ta
ge

Window Width 

Precision Recall F-Score

O
p

ti
m

al
 V

al
u

e



60 

 

detected and ground-truth events. Figure 24 graphically depicts the said marginal 

variation phenomenon that arises in real-world load measurements for further 

understanding and visualization. 

 

Figure 24  Delay Tolerance Phenomenon 
NZ GREEN Grid Household ID. rf_01: The blue continuous line presents the aggregated load profile, where the 

shaded area in purple color represents the ground-truth of the water heating circuit. The vertical lines in green and red 

represent the starting and ending time indices of the detected events by the MAD-SW algorithm. 

To accommodate this time delay variation, as shown in Figure 24, a delay tolerance 

parameter '∆τ' is introduced as a post-processing step to facilitate the performance of the 

proposed algorithms. ∆τ is defined as a condition that must be fulfilled by each detected 

event to be considered as a true event, mathematically given as in (11).  

|tg − td| ≤  ∆τ                                                         (11) 

where tg and  td are the starting time indices of the ground-truth and detected event by the 

proposed algorithms, respectively. To investigate the influence of ∆τ on the performance 

of the proposed algorithms, a sensitivity analysis is further extended in terms of ∆τ. Based 

on the corresponding simulations, Table 19 [91] presents the performance results of the 

MAD-SW algorithm with the incorporation of delay tolerance factor. It is also worth 

noting that for the sensitivity simulations in terms of ∆τ, the window width is kept 

constant at ω=3 due to the best performance of the MAD-SW algorithm at the given 

value, as presented in Table 18 and Figure 23.           

                 

Time Index: 13178 

Actual Ground-truth Event 

Time Index: 13179  

Event Detected within 

the aggregated load 

data by the MAD-SW ∆𝜏 
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Table 19  MAD-SW Sensitivity Analysis in terms of ∆τ for NZ GREEN Grid 

Window Width 3 

Total Detected Events 3367 

Delay Tolerance 0 1 2 3 4 

True Positive 3016 3208 3253 3286 3307 

False Positive 351 159 114 81 60 

False Negative 698 386 228 123 69 

Precision (%) 89.58 95.28 96.61 97.59 98.22 

Recall (%) 81.21 89.26 93.45 96.39 97.96 

F-Score (%) 85.19 92.17 95.01 96.99 98.09 

It is evident from the presented results in Table 19 that the incorporation of delay 

tolerance significantly facilitates true positive detection. This is anticipated as per the 

definition of delay tolerance, given as in (11). It is further noted that with an increase in 

the variation margin, i.e., delay tolerance value, a consistent rise in true positive detection 

and decline in false positive and false negative detection have been recorded, that yields 

to a persistent increase in algorithms overall performance in terms of precision and recall, 

respectively.  

The results presented in Table 19 are further graphically depicted in Figure 25 to visualize 

the performance trend of the MAD-SW algorithm with the incorporation of the delay 

tolerance '∆τ' factor. 

 

Figure 25  MAD-SW Sensitivity Analysis in terms of ∆τ for NZ GREEN Grid 

From the presented results, it is determined that ∆τ facilitates event detection performance 

and is directly proportional to the performance [67]. In terms of optimal ∆τ value 

selection, a trade-off exists between event detection performance and energy 

consumption estimation (as an application) at later stages. As high delay tolerance 
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increases event detection performance, but the higher delay tolerance will also impact the 

energy estimation, as higher the ∆τ value the higher is the error in the estimated and actual 

energy consumption. Therefore, ∆τ=2 was chosen as the optimal value, as it is evident 

from the results presented in Table 19 that for ∆τ>2, the event detection performance 

improvement is marginal. Hence, for the selected optimal parameters, i.e., ∆τ=2 and ω=3, 

the MAD-SW algorithm achieved the best performance result of 96.61, 93.45, 95.01 

percent in terms of precision, recall, and f-score, respectively.  

3.3 Concluding Remarks 

This Chapter presented the detailed description of data pre-processing and event detection 

in terms of techniques, working principles of the proposed algorithms, simulations, and 

corresponding performance evaluations. In terms of event detection, the newly proposed 

event detection algorithms are evaluated and validated on distinct real-world electricity 

load databases having diverse load elements. From the presented results and 

corresponding analysis, it is concluded that the proposed event detection algorithms 

perform well and yield promising performance results.  

Besides contributing to the existing state of the art on event detection, it is also anticipated 

that the proposed algorithms will further facilitate the research community to lead towards 

more robust and efficient event-based NILM systems particularly low data granularity 

based non-intrusive load disaggregation systems.  

Event detection is a pre-requisite for feature extraction within the context of event-based 

non-invasive load inference approach, as presented in Figure 7. The extracted events need 

to be further processed to extract the load features, which acts as an input to load 

classification stage. Consequently, the following chapter, i.e., Chapter 4, is primarily 

based on the outcomes of this chapter, i.e., Chapter 3, towards further simulation in the 

context of feature engineering and load classification. 
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Chapter 4 Feature Engineering and Load Classification 

This chapter discusses the details of feature engineering and loads classification in the 

context of the non-intrusive load disaggregation. A detailed overview of feature 

extraction methodology and feature selection techniques adopted in this research work is 

presented. Further discussion on load classification in terms of supervised machine 

learning models and ensemble learning models are also part of this Chapter.  

The details regarding methodologies, results, and corresponding analysis presented in this 

chapter are mainly based on [49, 58, 91]. The said research manuscripts have been 

published or submitted (explicitly mentioned where necessary) as follows: 

1. A. U. Rehman, T. T. Lie, B. Vallès, and S. R. Tito, "Non-Intrusive Load 

Monitoring of Residential Water-Heating Circuit Using Ensemble Machine 

Learning Techniques," Inventions, vol. 5, no. 4, p. 57, 2020. 

▪ DOI: https://doi.org/10.3390/inventions5040057 

2. A. U. Rehman, T. T. Lie, B. Vallès, and S. R. Tito, "Low Complexity Non-

Intrusive Load Disaggregation of Air Conditioning Unit and Electric Vehicle 

Charging," in 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), 

2019, pp. 2607-2612. 

▪ DOI: 10.1109/ISGT-Asia.2019.8881113 

3. A. U. Rehman, T. T. Lie, B. Vallès, and S. R. Tito, "Comparative Evaluation of 

Machine Learning Algorithms and Feature Space for Non-Invasive Load 

Disaggregation", Journal of Modern Power Systems and Clean Energy 

(Submitted: Under Revision) 

4.1 Introduction 

This section presents a brief introduction to feature engineering and load classification 

techniques that are employed for the proposed research methodologies, presented later in 

this Chapter. 

4.1.1 Feature Engineering 

Due to exponential growth in electronic sensors deployment in real-world applications, 

the data dimensionality increases exponentially leading to the phenomenon of “curse of 

dimensionality” [95], coined by R. E. Bellman. The said phenomenon refers to the 

exponential data growth that ultimately leads to high data sparsity and excessive surges 

in the computational cost of a model. Feature engineering is a key area where different 

https://doi.org/10.3390/inventions5040057
https://doi.org/10.1109/ISGT-Asia.2019.8881113
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techniques are employed to cope up with the curse of dimensionality. Feature engineering 

is a process to transform the raw data into more refined data, commonly referred to as 

features, that better represent the given problem to the models, subsequently improving 

models’ performance. There are numerous ways to pursue the feature engineering process 

but based on the existing literature it can be broadly categorized into three, i.e., feature 

extraction, feature reduction, and feature selection. 

Feature extraction is a technique where raw data are transformed into refined information. 

Feature selection is a process of selecting the most relevant subset of features within a 

given set of features. Feature reduction, on the other side, refers to the smart grouping of 

the refined data (features) to reduce the dimensionality of the feature space.  

Both feature selection and feature reduction enable the feature dimensionality reduction 

but in different ways. Feature selection reduces feature space by eliminating irrelevant 

features from the set of extracted features, where feature reduction yields the same 

outcome but in terms of a combinatorial process where the actual features are modified. 

Feature selection has an advantage that the most significant features are selected without 

altering the actual information [96]. Therefore feature selection techniques are widely 

adopted by the research community to reduce feature space dimensionality, either to 

enhance classification models’ accuracy or reduce computation time [97].  

Based on the existing literature, feature selection techniques can be broadly categorized 

into three, i.e., filter method, wrapper method, and embedded method. The filter method, 

a learning model agnostic approach, is mainly based on numerous statistical assessments 

to identify the significance of the features. Contrary, the wrapper method is a model-

dependent approach, based on a feedback method that employs a specific learning model 

and relies on its performance to evaluate the significance of the feature set [98]. The 

embedded method tends to optimize the performance of the learning model by extracting 

and utilizing the relative significance of each feature. A detailed discussion on the 

aforesaid feature selection techniques is presented in [96-99]. Figure 26 presents a 

semantic network of feature engineering and related well-known and widely used 

techniques. 

4.1.2 Load Classification  

The recent advancements in computational capabilities enable artificial intelligence to 

play a key role in many domains including non-invasive load disaggregation, i.e., NILM.  
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Figure 26  Feature Engineering Semantic Network 

Machine learning is one of the artificial intelligence techniques that is widely used for 

load classification in the NILM domain. In the said context, eight well-known supervised 

machine learning models, namely support vector machine (SVM), logistic regression 

(LR), decision trees (DT), random forest (RF), k-nearest neighbors (k-NN), Naïve Bayes 

(NB), Gaussian process (GP), and multi-layer perceptron (MLP) artificial neural network, 

are employed for classification purposes in this research work. The aforesaid classifiers 

are selected due to their diverse attributes, i.e., different working principles, and varied 

strengths and weaknesses. Consequently, providing an opportunity to evaluate a diverse 

set of learning models and identify an optimal one for the given problem. A brief 

description of each employed learning model is presented below [58]. 

4.1.2.1 Support Vector Machine 

A support vector machine is a well-known supervised machine learning model, relying 

on a ‘margin’ concept, i.e., two data classes separated by a hyperplane [100]. Based on 

its accurate and robust technique, SVM is widely used by the research community and 

considered a must-try machine learning model [101]. SVM has not only good 

generalization capabilities in a wide range of applications but also has tolerance to 

irrelevant attributes and provides good performance for smaller training data sets [100, 

101]. Most importantly, for non-invasive load disaggregation SVM is widely adopted and 

has established itself as a prominent learning model [3, 34, 37, 50, 102]. 
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4.1.2.2 Logistic Regression 

Logistic regression relies on the statistical models where a logistic curve is fitted to the 

dataset [48]. LR establishes a logit variable comprised of the natural log of the likelihoods 

of the class occurring or not. Later, the maximum likelihood estimation algorithm is used 

to estimate the probabilities [48]. It is also worth noting that despite its name, the LR 

model is used for classification purposes and has established itself on numerous real-

world problems. 

4.1.2.3 Decision Trees 

Decision trees rely on a recursive hierarchical structure comprised of nodes and branches. 

Branches represent the decision rules, where internal and leaf nodes represent features 

(attributes) and outcomes, respectively. DT is a powerful classification model that is 

simple to understand and interpret.  

4.1.2.4 Random Forest 

Random forest is a combinatorial form of DT models and relies on the prediction of the 

said DT combinations. In this context, several DT models are trained, later each DT model 

votes for its preferred class, and the class with a greater number of votes is taken as a final 

prediction. RF models have been successfully deployed in a wide range of applications. 

RF models are faster to train and do not overfit irrespective of the number of trees being 

employed in combination [48].  

4.1.2.5 k-Nearest Neighbors 

k-nearest neighbors take the entire training data into account and classify new data 

according to the class of the majority of its k-number of nearest neighbors [48]. To obtain 

the nearest neighbors for each data point the algorithm measure the distance between the 

data points, generally Euclidean distance [48].  

4.1.2.6 Naïve Bayes 

Naïve Bayes is a probabilistic learning model established on Bayes theorem for 

conditional probabilities.  It develops and optimizes a function, given that all the attributes 

in a database are independent. Generally, the maximum likelihood algorithm is used for 

the NB model’s training [48]. NB demonstrates low train and prediction times and has 

been successfully deployed in complex practical applications [48]. 

4.1.2.7 Gaussian Process 

The Gaussian process classifier is a supervised learning model designed to solve 

regression and classification problems. It relies on Laplace approximation and estimates 
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the conditional probabilities from the given sample. A detailed discussion on the GP 

classifier is presented in [103, 104]. GP classifier is successfully employed in a wide 

range of applications including but not limited to remote sensing image classification 

[103], electroencephalogram signals classification [105], and appearance-based gender 

classification [106]. 

4.1.2.8 Multi-Layer Perceptron 

A multi-layer perceptron is a supervised learning algorithm that uses a dataset for training 

to learn a function [107]. The multi-layer perceptron algorithm employs backpropagation 

technique for training purposes [107]. The MLP comprises at least three nodes, i.e., the 

input layer, hidden layer, and output layer. Any random classification problem can be 

learned even with one hidden layer, given that the hidden layer comprises enough units, 

further details can be found in [107, 108]. 

Further details of aforesaid supervised machine learning models are presented in [48, 100, 

109, 110], where Table 20 [58] summarizes the strengths and weaknesses of the employed 

machine learning models. 

Table 20  Classifiers Strengths and Weaknesses 

 Strength Weakness References 

SVM Insensitive to data dimensionality, 

offers good generalization ability, 

versatile in terms of kernel 

selection  

High algorithm complexity and 

memory requirements, rely on 

model parameters, poor 

interpretability 

[100, 101, 107, 

109] 

LR Parametric model, the capability to 

handle nonlinearity  

Multicollinearity issues, required a 

large sample size 

[109, 111] 

DT Good generalization capability, 

noise robustness, computationally 

faster, easy to interpret 

Greedy construction process, 

overfitting issues, error propagation 

issue, prone to data dimensionality 

[48, 100, 109, 

111] 

RF Computationally fast, noise 

robustness, no parameter tuning, 

no over-fitting 

The increasing number of trees slow 

down the model 

[48, 109, 112] 

k-NN Suitable for multi-model classes, 

simplicity 

Rely on k-value tuning, prone to 

noise and irrelevant features, data 

dimensionality issue, high memory 

requirement, poor interpretability 

[48, 100, 109, 

111] 

NB No parameters tuning, robust to 

missing values, computationally 

faster, requires low memory 

Prone to data dimensionality [48, 100, 109] 

GP Probabilistic approach, good 

performance in practice 

High computational cost [113, 114] 

MLP Non-parametric, robust to noise 

and irrelevant features 

Require large training time, rely on 

input parameters, hard to interpret 

[48, 109, 111, 

115] 

4.2 Research Methodologies 

This section presents the details of the employed research methodologies in terms of 

feature engineering and load classification.  
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4.2.1 Feature Extraction and Reduction 

As discussed in chapter 3, all proposed event detection algorithms provide output in the 

form of starting and ending time indices of the transient portion of the signal referred to 

as an event (as shown in Figure 11). The consecutive starting and ending time indices are 

linked together to extract the desired transient portions of the signal (events). These events 

are simply an indication of a variation within the aggregated load profile triggered by 

different individual appliances/circuits at different time indices within the aggregated 

load profile. These detected events do not enable the identification of any appliance 

explicit state, whether a specific appliance is turned-on or turned-off. In this context, 

different load features are extracted for each detected event that corresponds to the unique 

consumption pattern of the appliance explicit state. Later, these features are used as an 

input to the learning models to classify the explicit state of the specific appliance within 

the aggregated load profile.  

The extracted load features within the scope of this research work are mainly based on 

statistical, geometrical, and power features. Initially, a feature set ℱ [49] comprising five 

distinct load features for each detected event is proposed, given in (12). 

ℱ = {𝜏𝑤𝑖𝑑𝑡ℎ, 𝑃𝑝2𝑝, 𝜎,  𝜎2, 𝜇}                                        (12) 

                                           

where 𝜏𝑤𝑖𝑑𝑡ℎ, 𝑃𝑝2𝑝, 𝜎, 𝜎2, and 𝜇 represent width, peak to peak power magnitude, standard 

deviation, variance, and mean value of the detected events, and mathematically given as 

in (13)-(15), (9), and (8), respectively. 

𝜏𝑤𝑖𝑑𝑡ℎ =  𝜏𝐸𝑣𝑒𝑛𝑡_𝐸𝑛𝑑_𝑇𝑖𝑚𝑒𝐼𝑛𝑑𝑒𝑥 − 𝜏𝐸𝑣𝑒𝑛𝑡_𝑆𝑡𝑎𝑟𝑡_𝑇𝑖𝑚𝑒𝐼𝑛𝑑𝑒𝑥                   (13)                                     

𝑃𝑝2𝑝 =  𝑃𝐸𝑣𝑒𝑛𝑡_𝐸𝑛𝑑_𝑃𝑜𝑤𝑒𝑟 −  𝑃𝐸𝑣𝑒𝑛𝑡_𝑆𝑡𝑎𝑟𝑡_𝑃𝑜𝑤𝑒𝑟                         (14)                                                     

𝜎 = √
1

𝑛
∑ |𝒙𝑖 − 𝜇𝑥|2

𝑛

𝑖=1
                                              (15) 

                                               

To facilitate the learning model in terms of classification performance and computational 

efficiency, feature space of ℱ is reduced using a combinatorial process and a new set of 

reduced number of features, having all the information of ℱ, is proposed, i.e., feature set 

𝔉 [58], and given in (16).  

𝔉 = {𝒮Ɛ, 𝐶𝐷𝑖𝑠𝑝., 𝐶𝑣𝑎𝑟.}                                                   (16) 

where 𝒮Ɛ, 𝐶𝐷𝑖𝑠𝑝., and 𝐶𝑣𝑎𝑟. represent different geometrical and statistical properties of the 
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detected events, i.e., slope, coefficient of dispersion, and coefficient of variation, 

mathematically given in (17)-(19), respectively. 

𝒮Ɛ =
𝑃𝑝2𝑝

𝜏𝑤𝑖𝑑𝑡ℎ
=  

𝑃𝐸𝑣𝑒𝑛𝑡_𝐸𝑛𝑑_𝑃𝑜𝑤𝑒𝑟 −  𝑃𝐸𝑣𝑒𝑛𝑡_𝑆𝑡𝑎𝑟𝑡_𝑃𝑜𝑤𝑒𝑟

𝜏𝐸𝑣𝑒𝑛𝑡_𝐸𝑛𝑑_𝑇𝑖𝑚𝑒𝐼𝑛𝑑𝑒𝑥 − 𝜏𝐸𝑣𝑒𝑛𝑡_𝑆𝑡𝑎𝑟𝑡_𝑇𝑖𝑚𝑒𝐼𝑛𝑑𝑒𝑥
                      (17) 

 

𝐶𝐷𝑖𝑠𝑝. =
𝜎2

𝜇𝑥
=  

1
𝑛

∑ |𝒙𝑖 − 𝜇𝑥|2𝑛
𝑖=1

1
𝑛

∑ 𝒙𝑖
𝑛
𝑖=1

                                              (18) 

                                                                                                                                                                           

𝐶𝑉𝑎𝑟. =
𝜎

𝜇𝑥
=  

√1
𝑛

∑ |𝒙𝑖 − 𝜇𝑥|2𝑛
𝑖=1

1
𝑛

∑ 𝒙𝑖
𝑛
𝑖=1

                                            (19) 

                                           

This research work also employed an extended feature set Ƒєӿ₸. for different simulations 

and evaluation purposes, discussed in the later sections of this chapter. The extended 

feature set, Ƒєӿ₸., comprises nine distinct load features and is given as in (20). 

Ƒєӿ₸. = {𝜏𝑤𝑖𝑑𝑡ℎ, 𝑃𝑝2𝑝, 𝜎, 𝜎2, 𝜇, 𝒮Ɛ, ʍ, 𝐶𝐷𝑖𝑠𝑝., 𝐶𝑣𝑎𝑟.}                         (20) 

where ʍ represents the median absolute deviation value of the transient portion, i.e., 

event, and is given in (21). 

ʍ = 𝑚𝑒𝑑𝑖𝑎𝑛[𝑎𝑏𝑠. (𝒙 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝒙))]                                (21) 

4.2.2 Feature Selection 

As discussed, feature selection techniques play a key role to facilitate the machine 

learning models in terms of computational efficiency and performance. However, opting 

for a specific technique among the filter, wrapper, and embedded method for feature 

selection is a crucial task. Within the scope of this research work, the feature selection is 

primarily intended to facilitate the learning models, hence in the given context, opting 

criteria are devised for overall feature selection (block) comprising of three key attributes: 

computational efficiency, robustness, and learning model performance.  

In terms of computational efficiency, as discussed in Section 4.1.1, among all three 

feature selection methodologies, filter method is the only approach that is classifier 

agnostic and primarily relies on statistical assessments to identify features’ intrinsic 

properties: significance. This property of filter method makes it more computationally 

efficient approach compared to classifier dependent approach (wrapper method) [99]. 

Moreover, filter method also established itself as a promising feature selection approach 
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for numerous datasets [97]. Hence, filter method is opted as one of the feature selection 

techniques for the feature selection (block), employed in this research work. 

In terms of learning model performance, both wrapper and embedded methods have 

learning models’ interaction. However, the wrapper method depends on a certain 

classifier’s performance for feature significance, consequently, it is probable that the 

corresponding feature significance results may not be relevant if a different classifier is 

employed for classification [116]. Hence, within the scope of this research work, towards 

feature selection, wrapper method is not a viable option as eight diverse learning 

models/classifiers are employed for classification purposes. Moreover, the wrapper 

method is also criticized for its higher computational demands [97-99, 116]. Hence to 

accommodate classifier interaction within the intended feature selection (block), the 

embedded method is opted due to its capabilities to inherit the advantages of both filter 

method and wrapper method, i.e., computationally efficient and classifier interaction [99].  

For the given problem, the selection of two diverse feature selection techniques: filter 

method (classifier-agnostic) and embedded method (classifier interaction), leads to a 

robust feature selection block that will not only strengthen the feature selection analysis 

but also significantly facilitate the learning model in terms of performance and 

computational requirements.  

Further in the context of the filter and embedded methods, the techniques of univariate 

selection and feature importance have been employed, respectively. Univariate selection 

is performed using the SelectKBest module of Scikit-Learn24 [107], where the feature 

importance technique is performed using the ExtraTreesClassifier of Scikit-Learn. It is 

also worth noting that within the SelectKBest module, two different variants of 

assessment, i.e., f_classif and mutual_info_classif, are employed for evaluating the 

features’ significance. The f_classif computes the analysis of variance (ANOVA) f-value 

among the features and output vectors, where the mutual_info_classif estimates the 

mutual information (dependencies) among the features and the output vectors. 

4.2.3 Learning Models 

In the context of NILM, most of the existing research employs either a single or two 

learning models for load classification purposes. In this context, some of the learning 

models are frequently explored with enhancements in terms of optimal tuning and 

 
24 Scikit-Learn, commonly referred to as sklearn, is a machine learning library for Python programming language. https://scikit-

learn.org/stable/ 

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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classification performance. However, the selection of learning model is neither a case of 

“one size fits all” nor it is about the supremacy of a single model for a given problem. 

Subsequently, this research work employs eight diverse and independent machine 

learning models, discussed in Section 4.1.2. Employing diverse learning models not only 

facilitates the investigation of optimal/compatible learning model for the given problem 

but also smartly evades the supremacy of a single learning model over the others.  

Further, the existing NILM research primarily relies on standalone/independent learning 

models for load classification and as mentioned that “one size fit all” is not a case, 

consequently, the performance of standalone learning models varies from case to case. 

To address these performance variations of standalone learning model, this research work 

explores an ensemble learning methodology (explicitly discussed in the respective section 

later in this thesis) to balance the performance of different standalone learning models. 

The presented methodology of employing diverse standalone and ensemble machine 

learning models significantly contributes to the existing state of the art on low sampling 

NILM systems. As the presented comprehensive evaluation and corresponding 

comparative analysis of all the employed learning models are carried out on a data 

granularity of 1/60 Hz, which is 60 times lower sampling rate compared to the 1 Hz, 

which is mostly used in the context of low sampling NILM systems. Moreover, for 

simulation purposes, the details of the hyperparameters25 of the employed learning 

models are presented in the Appendix A.2 of this thesis. 

4.2.4 Learning Models Evaluation 

Model evaluation is a key step in the machine learning domain and referred to as a process 

to estimate the generalization accuracy of the given model on unseen testing data. 

Therefore, before employing a learning model on a real-world diverse and independent 

set of training and testing load data, it is important to evaluate and validate the 

performance of the given learning model. In this context, cross-validation is one of the 

well-known techniques that evaluate the effectiveness of the given model, i.e., how well 

the model generalizes to an independent and unseen testing data. The cross-validation 

approach can be further broadly classified into holdout validation and k-fold cross-

validation approaches. 

The holdout validation method, also referred to as the train/test split method is an 

approach where the data is split into subsets of training and testing data, subsequently 

 
25 Hyperparameters are those parameters that are not learnt directly within the estimators. 
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utilized for training and testing of the learning model, respectively. The ratio of training 

and testing can vary but as per the existing literature, generally, it is kept at 70:30. On the 

other side, in the k-fold cross-validation approach, the data is split into k number of folds. 

The model is trained on k-1 folds and the remaining 1-fold is used for testing purposes. 

The process repeats itself until each k-fold serves as a testing set. The outcome is in the 

form of a mean value of evaluation metrics at each iteration. Figure 27 graphically depicts 

the basic working principle of the holdout and k-fold cross-validation approaches. In this 

research work, all the employed learning models for load classification are evaluated 

using a cross-validation approach. 

 

Figure 27  Working Principle of Cross-Validation Approaches 
For the given k-fold cross-validation depiction, 10 folds are considered, i.e., k=10 

4.3 Simulations and Results 

Based on the presented methodologies, Figure 28 presents a generalized simulation 

framework adopted in this research work for non-invasive load disaggregation: NILM. 

 

Figure 28  Generalized Employed Simulation Flow 
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It is worth noting that in this research work, data pre-processing, event detection, and 

feature extraction are carried out using MATLAB, as a simulation toolkit. Further, feature 

selection and load classification simulations are performed using Scikit-Learn [107]. The 

following sub-sections present the details of the simulation studies carried out based on 

each employed real-world load database within the scope of this research work. 

4.3.1 Dataport 

According to the flow presented in Figure 28, comprehensive simulations are carried out 

on two real-world households’ data acquired from Pecan Street’s Dataport database. The 

presented simulations and corresponding results regarding feature extraction and load 

classification are based on events detected by the MSW algorithm with 𝜔=6 and further 

incorporation of the delay tolerance factor. A detailed discussion regarding event 

detection simulations is already presented in section 3.2.2.1. Further, detailed sensitivity 

analysis results in terms of delay tolerance for Pecan Street’s Dataport is presented in 

Appendix A.3 of this thesis. Table 21 presents the details of the parameters employed for 

event detection simulations in this section. 

Table 21  Event Detection Simulation Parameters 

Dataport, Pecan Street Inc. 

Data Granularity 1/60 Hz, i.e., 1-minute sampling 

Event Detection Algorithm Mean Sliding Window (MSW) 

Pre-processing Technique Median Filtering 

Window Width 'ω' 6 samples 

Threshold Value 'δ' 250 W 

Delay Tolerance '∆τ' 1-time index 

Based on the presented parameters in Table 21, comprehensive simulations are carried 

out and the extracted event detection results for diverse input data in terms of different 

performance metrics are presented in Table 22. Details of different households and the 

corresponding load data acquisition are also presented in Table 22.  

Table 22  Event Detection Results for Different Households of Dataport 

 Dataport, Pecan Street Inc. Household IDs 

 Training Data Testing Data 

 ID. 26 ID. 26 ID. 3036 

Data Acquisition Timeframe June 18 - July 02, 2014 August 01 - 04, 2014 June 18 - 21, 2014 

Number of Days 15 4 4 

Number of Samples 21600 5760 5760 

Total Detected Events 323 99 231 

True Positive 313 96 219 

False Positive 10 3 12 

False Negative 17 2 16 

Precision (%) 96.90 96.97 94.80 

Recall (%) 94.84 97.95 93.19 

F-Score (%) 95.86 97.46 93.99 
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It is observed from the results presented in Table 22, particularly for Training Data ID. 

26 (highlighted in brown color), that the overall performance of the event detection 

algorithm improves significantly as compared to the results presented in Table 826. This 

performance improvement is facilitated by the incorporation of the delay tolerance factor 

that increases the numbers of true positive, from 286 to 313, subsequently, decreases the 

numbers of false positive and false negative detection, respectively. The same 

phenomenon of improvement in event detection performance, facilitated by a delay 

tolerance factor, is also observed for the NZ GREEN Grid data, as shown in Table 19. 

Further, the data presented with a caption of training and testing data in Table 22, 

correspond to data used for the training and testing purposes of the employed classifier. 

It is seen in Table 22 that household ID. 26 is used for both training and testing purposes 

of the classifier, but it is worth noting that the testing data acquisition timeframe is 

different than the one used for training purposes, consequently, regardless of the same 

household, the testing data is completely unseen for the training phase of the employed 

classifier. Further, for testing purposes, another household, i.e., ID. 3036, is also 

employed to validate the robustness of the proposed approach.  

For the given load data in Table 22, five distinct load features based on the feature set ℱ, 

given in (12), are extracted for each detected event. Table 2327 [49] presents the extracted 

load features along with the corresponding time-indices of the detected events within the 

aggregated load profile of the Training Data ID. 26.  

Table 23  Extracted Load Features ′ℱ′ for Dataport ID 26 

Detected Event  

Time-Indices 

Extracted Load Features 

𝜏𝑤𝑖𝑑𝑡ℎ  𝑃𝑝𝑒𝑎𝑘 𝑡𝑜 𝑝𝑒𝑎𝑘 𝜎 𝜎2 𝜇 

16 2 1.836 1.055 1.114 3.051 

55 1 -0.832 0.588 0.346 1.56 

6780 3 3.37 1.583 2.507 5.802 

6797 5 -4.892 1.950 3.803 4.162 

21021 3 3.429 1.626 2.646 2.838 

21045 2 3.039 1.531 2.346 6.093 

21058 2 -2.852 1.543 2.381 4.998 

21083 2 3.041 1.753 3.076 6.645 

21103 2 -2.525 1.377 1.896 5.309 

21160 3 -1.164 0.495 0.245 1.864 

Later the extracted features are used as an input to the classification models. To validate 

the effectiveness of the proposed non-intrusive load inference approach on a real-world 

load dataset: Dataport, the k-nearest neighbor algorithm is employed as a learning model 

 
26 Simulation results presented in Table 8 and portion (highlighted in brown) of Table 22 correspond to the same load data. 
27 Table 23 present a portion of the extracted results in terms of feature extraction. 
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for load classification. The k-NN being a supervised learning model needs to be fed with 

the extracted features along with the corresponding labels28 for training purposes, as 

shown in Figure 6. 

For the given problem, the k-NN model is first evaluated using a cross-validation 

approach to validate its effectiveness for unseen testing data. For said purposes, holdout 

and k-fold cross-validation approaches are adopted, as discussed in section 4.2.4, and 

simulations are carried out on 15 days of load data, acquired from household ID. 26, given 

as training data in Table 22. Table 24 presents the corresponding evaluation results of the 

k-NN algorithm, where the nearest neighbor count value is taken as 5. 

Table 24  k-NN Evaluation Based on Cross-Validation Approach 

 Training Data ID. 26 

 Holdout Validation k-Fold Cross-Validation 

Attributes Training Set = 70% | Testing Set = 30% k = 10 

Accuracy (%) 89.36 90.39 

As seen in Table 24 the k-NN model attained promising generalization accuracy of > 89% 

for the unseen testing data. To move forward, the given learning model is trained on the 

entire set of load data, i.e., Training Data ID. 26, and the trained model is further tested 

rigorously on a diverse and unseen set of real-world load data, i.e, Testing Data ID. 26 

and 3036, given in Table 22. In this context, Table 25 presents the k-NN performance in 

terms of individual load element inference, i.e., EV and AC. It is worth noting that the 

results presented in Table 25 are based on the nearest neighbor count value of 5, i.e., k=5.  

Table 25  Appliance-Level Classification Results of Dataport 

   Training Data ID. 26 

   Precision (%) Recall (%) F-Score (%) 

T
es

ti
n

g
 D

at
a ID. 26 

AC Turn-off 98 98 98 

AC Turn-on 95 98 96 

EV Turn-on 80 67 73 

EV Turn-off 80 80 80 

ID. 3036 

AC Turn-off 91 95 93 

AC Turn-on 97 90 93 

EV Turn-on 75 75 75 

EV Turn-off 50 75 60 

As evident from the individual load classification results that k-NN generalizes well for 

the completely unseen testing data. But it is also observed that for EV inference, the 

results are not promising comparatively to AC inference, particularly for testing data ID. 

3036. This is expected due to the diversity of the testing household and more importantly 

 
28 Labels are assigned to the features of each detected event. Labels information are extracted from the individual appliances’ ground-

truth profile that are available in the load databases being used in this research work. 
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the random selection of k-value, i.e., k=5, for the k-NN algorithm. It is worth noting that 

for the k-NN algorithm the choice of k-value, i.e., the number of nearest neighbors, is of 

utmost significance in terms of algorithm’s performance, as the optimal k-value reduces 

the noise effect on classification performance, discussed in Table 20. Therefore, to 

improve the k-NN based inference performance, parameter tuning in terms of k-value 

need to be carried out. 

In the existing literature, the research community adopted different ways of selecting k-

values, e.g., opting odd k-value to avoid confusion between two data classes, or opting 

k=sqrt(n), where sqrt and n refers to the square root function and the number of data 

samples, respectively. Despite the numerous proposed ways, the optimal k-value always 

varies and depends on the dataset under consideration. The best approach is to try 

different values and check which k-value provides the best performance for the given 

data. In this context, the elbow method29 is one of the most widely used methodologies 

to identify the optimal k-value for the k-NN algorithm. Therefore, in this research work, 

simulations based on the elbow method are carried out to identify the optimal k-value for 

each testing data ID, under consideration. The elbow method simulation results in the 

form of the k-value vs. misclassification error rate for testing data IDs. 26 and 3036 are 

presented in Figures 29 and 30, respectively.  

 

Figure 29  Optimal k-value Selection for Testing Data ID. 26 
Close-up represents the optimal k-value (highlighted in light brown color) having a minimum misclassification error 

rate. 

 
29 Elbow method is a heuristic technique used to determine the optimal k-value by fitting the model with a range of k-values and plot 

the misclassification error rate as a function of the k-value.  
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Figure 30  Optimal k-value Selection for Testing Data ID. 3036 
Close-up represents different k-values having a minimum misclassification error rate, where the one highlighted in 

light brown color is the optimal k-value. 

Based on the minimum misclassification error rate, the k-values of 3 and 2 are selected 

for the testing data IDs. 26 and 3036, respectively (also highlighted in the corresponding 

figures). To underline the influence of k-value, simulations for individual load elements 

inference are carried out again while incorporating the extracted optimal k-values. Based 

on the performed simulations, Table 26 presents the appliance level classification results 

of the k-NN classifier in combination with optimal k-values. To validate the performance 

improvement due to optimal k-values, Table 26 also represents the classification results 

presented in Table 25 for ease of comparison, where all the presented results are in 

percentages.  

Table 26  Optimal k-value Based Inference Results Validation 

   k-Nearest Neighbors Algorithm 

   Training Data ID. 26 

   k=5 Optimal k-value     Performance 

Improvement in F    P R F P R F 

T
es

ti
n

g
 D

at
a ID. 26 

AC Turn-off 98 98 98 100 98 99 1 % 

AC Turn-on 95 98 96 98 98 98 2 % 

EV Turn-on 80 67 73 83 83 83 10 % 

EV Turn-off 80 80 80 83 100 91 11 % 

ID. 3036 

AC Turn-off 91 95 93 96 95 96 3 % 

AC Turn-on 97 90 93 96 97 97 4 % 

EV Turn-on 75 75 75 100 75 86 11 % 

EV Turn-off 50 75 60 60 75 67 7 % 

P, R, and F represent Precision, Recall, and F-Score, respectively, and all the presented results are in percentage. 
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As evident from Table 26, with an optimal k-value, the k-NN model achieved a 

performance improvement of up to 11% (highlighted in brown) in terms of f-score30 

measure. It is established from the presented results that the k-value plays a key role in 

the k-NN algorithm and can significantly improve the performance, if an optimal/best k-

value is selected. 

For further in-depth analysis of the classification performance of the k-NN algorithm in 

terms of individual load elements’ status prediction, i.e., turning-on and turning-off of EV 

charging and AC unit, Figure 31 depicts date-wise prediction results. It is evident from 

the presented results that during the four days, almost all the individual load elements 

operation states are precisely predicted by the k-NN algorithm except three instances that 

were misidentified by the k-NN classifier (highlighted in Figure 31). In terms of 

misclassification, it is seen in Figure 31 that AC turn-on and turn-off ground-truths are 

misidentified as EV turn-on and turn-off, respectively, further one ground-truth instance 

of EV turn-on is misclassified as AC turn-on by the k-NN algorithm. It is worth noting 

that the results presented in Figure 31 are based on testing household ID. 26 with an 

optimal k-value. 

From the presented results and analysis, it is evident that the overall proposed non-

intrusive load inference approach not only works well but also attained promising results 

in the context of low sampling real-world measurements. To further validate the 

effectiveness and robustness, the proposed non-intrusive load disaggregation approach is 

also tested on another real-world low sampling database: NZ GREEN Grid. Moreover, 

extended simulation studies are carried out in terms of different feature engineering 

techniques and machine learning algorithms. The extended simulations based on NZ 

GREEN Grid will further strengthen the presented analysis. 

4.3.2 NZ GREEN Grid 

Detailed discussion regarding event detection for the NZ GREEN Grid database has 

already been presented in chapter 3 of this thesis. This section mainly focusses on 

simulations studies related to feature engineering and load classification with further 

extended analysis in terms of feature space dimensionality and learning models’ 

comparative evaluation. An ensemble learning approach is also presented in the NILM 

context. 

 
30 The f-score is selected for performance comparison because it considers both precision and recall performance metrics to 

calculate the score. 
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Figure 31  Comparison of Ground-truth and Predicted Load Element Status 
Date-wise inference results for Pecan Street-Dataport’s Testing Data ID. 26 based on k-nearest neighbors algorithm 

with an optimal k-value, i.e., k=3. 

Similarly to Pecan Street’s Dataport, the low data granularity (1/60 Hz) nature of NZ 

GREEN Grid also restricts the load inference (with reasonable accuracy) to high 

consumption load elements [81]. Therefore, within the NZ GREEN Grid database, the 

primary focus is the non-intrusive load inference of the water heating circuit. Besides data 

granularity31, the availability of a limited number of circuits in each household of the NZ 

 
31 Number of appliances precisely identified is directly proportional to the data granularity, i.e., high sampling rate data acquisition 

leads to a greater number of appliance/circuit disaggregation and vice-versa. 
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GREEN Grid also restricts the inference to a single load element, i.e., water heating 

circuit. However, the non-invasive inference of single load element, i.e., water heating 

circuit, is not only justified based on the aforesaid constraints, but it is also of utmost 

significance for the given database as well as in the larger perspective, as water heating 

is not only the significant load element of the given database but also, in general, it is one 

of the major load elements in the residential sector [117-119]. Furthermore, it is a 

flexible/interruptible load [120] having high potential towards many real-world energy 

efficiency applications, e.g., demand response [119, 121], power regulations [118], and 

peak shifting and frequency response [122]. Hence inference of only water heating 

circuits, being the focus of this research work, is not only more viable in the context of 

the given load database having low data granularity [4, 17] but would also accelerate the 

research and development of many real-world energy efficiency applications. 

In the context of the NZ GREEN Grid database, five different real-world households are 

selected for simulation purposes, given that, all the selected households have dedicated 

water heating circuit installation, other circuits’ configuration may vary32. For example, 

within the selected households for simulation purposes, household ID rf_42 has a single 

circuit configured for laundry and freezer having a circuit label of “Laundry & 

Freezer$4128”. In contrast, household ID rf_36 has two dedicated circuits for the said 

having the circuit labels of “Washing Machine$4146” and “Kitchen Appliances$4145”. 

Similarly, household ID rf_42 has a load circuit labelled as “Lighting (inc heat 

lamps)$4129” where household ID rf_36 has a load circuit labelled as “Lighting$4149”, 

which potentially implies that the latter has no heat lamps. Further details regarding 

different circuits and their installation configuration can be found in  [123]. 

Table 27 presents the different attributes of the acquired load data, including but not 

limited to household IDs, data acquisition timeframe, and the number of acquired 

samples. Table 27 also presents the event detection results in terms of total number of 

detected events for each household under consideration. It is worth noting that the event 

detection results presented in Table 27 are based on the MAD-SW algorithm at optimal 

input parameters, i.e., ∆τ=2 and ω=3, where the corresponding details of the event 

detection simulations and sensitivity analysis of the said input parameters have already 

been discussed and presented in chapter 3 of this thesis. 

 

 
32 The availability of individual circuits varies in different households, even in case of the same circuit, different households have 

diverse installation configuration. 
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Table 27  NZ GREEN Grid Household Attributes and Event Detection Results 

 NZ GREEN Grid Database Household IDs. 

 rf_01 rf_02 rf_31 rf_36 rf_42 

Data Acquisition 

Timeframe 

Sep. 01-07, 

2014 

May. 11-30, 

2014 

Jul. 01-10, 

2014 

Sep. 01-07, 

2016 

Jun. 21-27, 

2017 

Jan. 07-13, 

2017 

Number of Days 7 20 10 7 7 7 

Number of Samples 10080 28800 14400 10080 10080 10080 

Detected Events 808 1504 898  166 390 60 

Data presented in brown color is used for the training purposes of the employed machine learning models where the rest of the 

presented load data is used for testing purposes. 

4.3.2.1 Classifiers and Feature Space Evaluation 

According to the methodology presented in Figure 28, five distinct load features, i.e., ℱ, 

are extracted for each detected event of different households, presented in Table 27. To 

further investigate the influence of feature space dimensionality on classification 

performance, a reduced feature set, 𝔉, given in (16), having three distinct load features is 

also employed for the given load data, i.e., Table 27. Both load feature sets, i.e., ℱ and 𝔉, 

are independently used as an input for the training and testing purposes of the employed 

machine learning algorithms to predict the water heating circuit status. Figure 32 depicts 

the detailed flow of the simulations carried out for the said purposes. 

 

Figure 32  Non-Intrusive Load Disaggregation Simulation Flow 

In terms of load classification, supervised machine learning algorithms discussed in 

section 4.1.2, namely, support vector machine, decision trees, random forest, logistic 

regression, k-nearest neighbors, Gaussian process, Naïve Bayes, and multi-layer 

perceptron, are independently tested and evaluated in combination with ℱ and 𝔉, as an 
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input features, as shown in Figure 32. The employed classifiers are trained on 20 days of 

load data of household ID. rf_02, having data acquisition timeframe of May. 11-30, 2014, 

as presented in Table 27. Later, the trained models are rigorously tested on the same 

household as well as on different households. It is worth noting that all the testing data 

are completely unseen for the trained models, even in the case of the same household as 

the data acquisition timeframe is different. Furthermore, in the context of NZ GREEN 

Grid data, the performance evaluation is carried out at three different levels, namely 

circuit-level, household-level, and classifier-level evaluation, as shown in Figure 32. 

Based on the employed machine learning models, comprehensive simulations are carried 

out in combination with ℱ, as an input feature. Tables 28 [58] presents the circuit-level 

classification performance of the employed classifiers for all the testing households under 

consideration. As evident from the detailed performance results presented in Table 28 all 

the employed learning algorithms generalize well for the diverse and unseen real-world 

testing data. At the circuit-level evaluation, it is observed that household ID. rf_02 

achieved the best overall classification performance along with the most accurate water 

heating inference compared to other testing households, by all the employed classifiers. 

It is expected, even though the testing load data is completely unseen at the training phase, 

but the household is the same, i.e., ID. rf_02. Consequently, similar attributes like 

occupancy, size, circuits’ nature, installation configuration, and usage pattern make the 

prediction less complex. On the other side, due to variation in aforesaid household 

attributes the least overall and water heating circuit classification performance is recorded 

for household ID. rf_36 and ID. rf_01, respectively. Furthermore, for household ID. 

rf_31, the water heating inference performance is recorded as 0% consistently by all the 

employed learning models, but it is worth noting that the corresponding water heating 

inference performance is due to the absence of the ground-truth activity of water heating 

circuit during the given data acquisition timeframe, i.e., Sep. 01-07, 2016, for the 

household ID. rf_31, which is accurately predicted by all the employed classifiers. 

Further, it is also evident from the results in Table 28 that for the given conditions the 

MLP classifier based on neural networks concept outperforms other employed classifiers 

both at the circuit-level and overall inference, i.e., weighted average. The MLP classifier 

is followed by the SVM, LR, and GP classifiers with marginal variations in terms of 

performance. Further, under the given conditions, the decision trees algorithm lags in 

performance compared to other employed classifiers. 



83 

 

Table 28  Circuit-level Classifiers’ Performance in Combination with ℱ 

 

 Feature Set, 𝓕 

 SVM LR DT RF k-NN GP MLP NB 

Testing ID Circuit Status P R F P R F P R F P R F P R F P R F P R F P R F 

rf_01 

WH Circuit Turn-Off 37 63 47 36 65 46 30 63 40 24 54 33 35 61 44 39 63 48 38 58 46 33 72 46 

WH Circuit Turn-On 24 76 37 32 78 46 24 65 35 28 64 38 29 78 42 32 75 44 32 58 42 32 78 46 

Misc. Circuit Turn-On 93 70 80 95 73 83 92 67 78 93 73 82 95 69 80 90 74 81 92 80 86 96 67 79 

Misc. Circuit Turn-Off 92 73 81 93 81 87 93 76 83 91 72 80 92 81 86 93 79 85 92 84 88 87 77 81 

Weighted Average 84 71 75 86 76 79 83 71 75 83 71 75 85 74 78 83 75 78 84 79 81 83 72 75 

rf_02 

WH Circuit Turn-Off 98 96 97 94 96 95 96 96 96 98 97 97 98 97 97 98 95 96 98 95 96 93 96 95 

WH Circuit Turn-On 94 96 95 93 96 95 92 92 92 92 96 94 92 96 94 94 97 96 94 95 94 94 96 95 

Misc. Circuit Turn-On 98 96 97 97 96 97 95 95 95 98 95 96 98 95 96 98 96 97 97 96 96 97 96 97 

Misc. Circuit Turn-Off 97 99 98 97 96 97 97 98 98 98 99 98 98 99 98 97 99 98 97 99 98 98 96 97 

Weighted Average 97 97 97 96 96 96 96 96 96 97 97 97 97 97 97 97 97 97 96 96 96 96 96 96 

rf_31 

WH Circuit Turn-Off 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

WH Circuit Turn-On 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Misc. Circuit Turn-On 100 80 89 100 80 89 100 82 90 100 80 89 100 81 89 100 80 89 100 81 90 100 80 89 

Misc. Circuit Turn-Off 100 69 82 100 71 83 100 57 73 100 66 79 100 64 78 100 67 80 100 74 85 100 67 80 

Weighted Average 100 76 86 100 77 87 100 73 84 100 75 85 100 75 85 100 75 86 100 79 88 100 75 86 

rf_36 

WH Circuit Turn-Off 78 67 72 84 80 82 71 74 73 75 79 77 78 64 73 83 73 78 84 78 81 83 82 83 

WH Circuit Turn-On 64 84 73 71 84 77 44 39 41 68 80 73 69 82 75 67 83 74 77 80 78 71 84 77 

Misc. Circuit Turn-On 76 56 65 70 65 72 44 49 47 75 61 67 77 62 69 76 58 66 79 76 77 80 62 70 

Misc. Circuit Turn-Off 69 76 72 79 84 81 70 67 69 76 71 73 70 79 74 74 83 78 78 84 81 77 82 79 

Weighted Average 72 71 70 79 78 78 57 57 57 73 73 73 74 73 73 75 74 74 79 79 79 78 77 77 

rf_42 

WH Circuit Turn-Off 83 100 91 83 100 91 50 100 67 50 100 67 50 100 67 83 100 91 83 100 91 62 100 77 

WH Circuit Turn-On 62 100 77 62 100 77 38 60 46 50 80 62 50 100 67 62 100 77 83 100 91 62 100 77 

Misc. Circuit Turn-On 92 88 90 100 88 94 91 80 85 95 84 89 100 80 89 100 88 94 100 96 98 100 84 91 

Misc. Circuit Turn-Off 100 88 94 100 96 98 100 80 89 100 80 89 100 80 89 100 96 98 100 96 98 96 88 92 

Weighted Average 92 90 90 95 93 94 87 80 82 90 83 85 92 83 85 95 93 94 97 97 97 92 88 89 

P, R, F represent precision, recall, and f-score performance metrics, respectively, and all the presented results are in percentage. 

WH: Water Heating | Misc.: Miscellaneous  
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To visually analyse the results presented in Table 28, Figures 33 and 34 present the least 

and best circuit-level inference performance attained by the employed classifiers for 

diverse testing households, i.e., rf_01 and rf_42, respectively. The presented graphical 

depictions are in the form of a normalized confusion matrix. The confusion matrix is used 

to evaluate the learning models’ performance by visualizing the comparison of ground-

truth and predicted labels. In Figures 33 and 34, the rows and columns of the confusion 

matrix represent the predicted labels by the employed learning models and ground-truth 

labels, respectively. 

 

Figure 33  Circuit-Level Inference Results for Household ID. rf_01  
(a) MLP, (b) DT, (c) k-NN, (d) SVM, (e) NB, (f) GP, (g) RF, and (h) LR 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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The symbols, i.e., WHOFF, WHON, Misc.ON, and Misc.OFF, in Figures 33 and 34 represent 

the circuit operation status as, water heating circuit turn-off, water heating circuit turn-

on, miscellaneous circuit turn-on, and miscellaneous circuit turn-off, respectively. The 

vertical color bars in Figures 33 and 34 represent the performance scale (normalized), 

where the darker color represents the best performance and vice versa.  

 

Figure 34  Circuit-Level Inference Results for Household ID. rf_42 
(a) MLP, (b) DT, (c) k-NN, (d) SVM, (e) NB, (f) GP, (g) RF, and (h) LR 

For household-level evaluation, the performance metrics of accuracy and Kappa index 

have been employed in this research work. In this context, Table 29 presents the 

performance results of all the employed learning models for each testing household within 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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the scope of this research work. It is worth noting that all the performance results 

presented in Table 29 are in percentage and based on input feature set, ℱ. 

Table 29  Household-level Classifiers’ Performance in Combination with ℱ 

 SVM LR DT RF k-NN GP MLP NB  

rf_01 71.28 76.36 70.54 70.66 74.38 75.49 78.96 72.40 

A
cc

u
ra

cy
 

rf_02 96.99 95.87 95.54 96.77 96.65 96.99 96.32 96.10 

rf_31 75.90 76.50 73.49 74.69 74.69 75.30 78.91 75.30 

rf_36 70.76 78.20 57.43 72.82 72.82 74.10 79.23 77.43 

rf_42 90 93.33 80 83.33 83.33 93.33 96.66 88.33 

rf_01 58.42 65.01 57.31 57.13 62.35 63.37 67.77 59.65 

K
a

p
p

a
 I

n
d

ex
 

rf_02 95.91 94.40 93.94 95.61 95.46 95.91 95 94.71 

rf_31 58.36 59.25 54.43 56.59 56.46 57.47 62.65 57.47 

rf_36 61.03 70.93 43.21 63.72 63.77 65.48 72.31 69.90 

rf_42 84.87 89.91 70.73 75.60 76 89.91 94.87 82.64 

Bold numbers represent the best performance for the given household and all the presented results are in percentage. 

It is also evident from the household-level performance results presented in Table 29 that 

the multi-layer perceptron classifier outperforms the other employed classifiers for most 

of the individual testing households, highlighted in bold in Table 29. Further, similarly to 

the precision, recall, and f-score performance metrics, presented in Table 28, the accuracy 

and Kappa index performance of all the employed classifiers, presented in Table 29, also 

varies with each testing household. It is anticipated due to the independent, diverse, and 

unseen set of household data employed for the classifiers’ testing purposes. Further, as 

discussed earlier, the diverse circuit installation configuration in the employed 

households also contributes to the aforesaid variation in classification performance. All 

these factors yield a diverse set of consumption patterns associated with each testing 

household, subsequently not only making it harder to accurately predict but also lead to 

a variation in classifiers’ prediction performance. However, it is worth noting that 

regardless of the aforesaid factors, all the employed classifiers attained the desirable 

Kappa index performance, i.e., >40% [87] for all the testing households under 

consideration.  

In addition to circuit-level and household-level evaluation, a classifier-level evaluation 

based on the entire set of testing households under consideration is also carried out in 

terms of Kappa index and accuracy performance metrics. Figure 35 presents the 

corresponding results in the form of a boxplot representing the complete distribution of 

classifiers’ performance in terms of maximum, minimum, median, and interquartile range 

values. It is seen in Figure 35 that, the MLP classifier has a clear edge over the other 

employed classifiers. On the downside, decision trees classifier shows lesser accuracy 

performance comparatively to the other employed classifiers under the given conditions. 
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However, it is established from Table 29 and evident from Figure 35b that in terms of the 

Kappa index performance measure, all the employed classifiers including the DT 

classifier attained the desired classification performance of >40%. Furthermore, it is also 

worth noting that most of the attained performances by all the employed classifiers lie in 

the substantial region as seen in Figure 35b. 

 

 

Figure 35  Overall Classifiers’ Performance in Combination with ℱ 
(a) Accuracy (b) Kappa Index, all the presented results are based on the entire set of testing households. The red 

horizontal lines represent the median values where the horizontal dotted line in green represents the minimum Kappa 

index (normalized) attained by the employed classifiers, under the given conditions. The regions presented on the 

right side of Figure 35b are based on the description presented in Table 5. 
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4.3.2.1.1 Reduced Feature Space Simulations 

For the NZ GREEN Grid database, in addition to ℱ as input feature set, further 

simulations are also carried out to investigate the influence of features space 

dimensionality in the context of classification performance. For the said purpose, all the 

employed classifiers are further evaluated in combination with 𝔉, given in (16). All the 

load data regarding training and testing of the classifiers and the simulation methodology 

are kept the same as presented in Table 27 and Figure 32, respectively. The corresponding 

circuit-level inference results are presented in Table 30, in terms of precision, recall, and 

f-score performance metrics. 

From the results presented in Table 30, it is evident that irrespective of reducing feature 

space dimensionality, all the employed classifiers generalize well for the unseen diverse 

and independent testing data and achieved promising circuit-level classification 

performance. Even in some cases, a significant improvement has been recorded compared 

to the results presented in Table 28. For example, in the case of household ID 36, the DT 

model yields a 12% improvement in the weighted average circuit-level performance. This 

is expected as some of the employed learning models are susceptible to dimensionality 

issue, as discussed in Table 20.  

Further analysis of the results presented in Table 30 shows that the overall performance 

trend in terms of the individual testing households and circuit-level performance variation 

is almost similar to the ones observed and discussed for classifiers’ performance in 

combination with ℱ, presented in Table 28. For example, in terms of water heating circuit 

inference, similarly to the results presented in Table 28, the testing household ID. rf_31 

accommodate zero inference performance by all employed classifiers in combination with 

𝔉, however, the said zero inference result is accurate compared to the water heating 

ground-truth activity, as there were none for the given 7-days (testing) data acquisition. 

The corresponding rf_31’s water heating inference results, presented in Table 28 (for ℱ) 

and Table 30 (for 𝔉), also validates the generalization capability of the employed learning 

models and corresponding approach. As the employed learning models precisely predicts 

no water heating circuit activity in the absence of ground-truth activity, even for a diverse 

and unseen testing household data. 
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Table 30  Circuit-level Classifiers’ Performance in Combination with 𝔉 

 Feature Set,  𝕱 

 SVM LR DT RF k-NN GP MLP NB 

Testing ID Circuit Status P R F P R F P R F P R F P R F P R F P R F P R F 

rf_01 

WH Circuit Turn-Off 41 35 38 44 35 39 25 54 34 32 54 40 34 40 37 40 33 37 40 32 35 30 32 31 

WH Circuit Turn-On 35 40 38 41 38 40 22 51 31 27 62 38 34 60 44 32 36 34 36 33 34 26 31 28 

Misc. Circuit Turn-On 90 88 89 90 91 91 90 72 80 92 74 82 93 82 87 90 88 89 89 90 90 89 86 87 

Misc. Circuit Turn-Off 89 92 91 90 93 91 90 73 81 92 81 86 90 87 88 89 92 91 89 92 91 89 88 88 

Weighted Average 83 83 83 83 84 84 81 70 74 83 75 78 83 80 81 82 82 82 82 83 83 80 79 80 

rf_02 

WH Circuit Turn-Off 99 90 94 99 88 93 96 95 95 98 95 96 99 95 97 95 86 90 94 85 89 88 85 87 

WH Circuit Turn-On 93 88 90 93 87 90 94 89 92 93 94 93 91 94 92 92 87 89 90 87 88 87 82 85 

Misc. Circuit Turn-On 93 96 94 92 96 94 94 96 95 96 96 96 96 95 95 92 95 94 92 94 93 90 93 91 

Misc. Circuit Turn-Off 94 100 97 93 99 96 97 97 97 97 99 98 97 99 98 92 97 95 91 96 94 91 93 92 

Weighted Average 95 94 94 94 94 94 95 95 95 96 96 96 96 96 96 93 93 93 92 92 92 89 89 89 

rf_31 

WH Circuit Turn-Off 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

WH Circuit Turn-On 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Misc. Circuit Turn-On 100 81 90 100 81 90 100 81 90 100 82 90 100 81 90 100 81 90 100 82 90 100 83 91 

Misc. Circuit Turn-Off 100 76 86 100 76 86 100 60 75 100 64 78 100 72 84 100 72 84 100 72 84 100 74 85 

Weighted Average 100 80 89 100 80 89 100 74 85 100 76 86 100 78 88 100 78 88 100 79 88 100 80 89 

rf_36 

WH Circuit Turn-Off 85 73 79 85 73 79 70 73 72 76 74 75 78 68 73 85 75 80 86 71 78 85 82 83 

WH Circuit Turn-On 78 76 77 80 73 76 68 71 69 68 80 73 74 80 77 79 76 77 80 72 76 81 80 80 

Misc. Circuit Turn-On 76 79 77 75 82 78 69 66 68 75 62 68 78 71 74 76 80 78 74 82 78 80 81 80 

Misc. Circuit Turn-Off 75 86 80 75 86 80 69 66 68 72 74 73 70 79 74 76 86 81 73 87 80 81 84 82 

Weighted Average 79 78 78 79 78 78 69 69 69 73 73 72 75 75 75 79 79 79 78 78 78 82 82 82 

rf_42 

WH Circuit Turn-Off 71 100 83 71 100 83 38 100 56 50 80 62 56 100 71 71 100 83 71 100 83 56 100 71 

WH Circuit Turn-On 83 100 91 83 100 91 56 100 71 50 80 62 57 80 67 83 100 91 83 100 91 71 100 83 

Misc. Circuit Turn-On 100 96 98 100 96 98 100 84 91 95 84 89 96 88 92 100 96 98 100 96 98 100 92 96 

Misc. Circuit Turn-Off 100 92 96 100 92 96 100 68 81 95 84 89 100 84 91 100 92 96 100 92 96 100 84 91 

Weighted Average 96 95 95 96 95 95 91 80 82 88 83 85 91 87 88 96 95 95 96 95 95 94 90 91 

P, R, F represent precision, recall, and f-score performance metrics respectively and all the presented results are in percentage. 

WH: Water Heating | Misc.: Miscellaneous 
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The employed classifiers in combination with 𝔉 are also evaluated at household-level, 

and for the said purpose the performance metrics of accuracy and Kappa index have been 

employed. Corresponding performance results of all the employed classifiers in 

combination with 𝔉 for each household, within the scope of this research work, are 

presented in Table 31. 

Table 31  Household-level Classifiers’ Performance in Combination with 𝔉 

 SVM LR DT RF k-NN GP MLP NB  

rf_01 82.67 84.28 69.80 74.75 79.57 82.17 83.16 79.33 

A
cc

u
ra

cy
 

rf_02 94.43 93.76 95.10 96.10 95.87 92.65 91.64 89.30 

rf_31 79.51 79.51 74.09 75.90 78.31 78.31 78.91 80.12 

rf_36 78.20 78.20 69.23 72.56 74.61 78.97 77.69 81.53 

rf_42 95 95 80 83.33 86.66 95 95 90 

rf_01 72.00 74.32 55.63 62.23 68.22 71.16 72.48 66.94 

K
a

p
p

a
 I

n
d

ex
 

rf_02 92.40 91.48 93.32 94.69 94.39 89.96 88.60 85.42 

rf_31 63.58 63.58 55.44 57.96 61.73 61.73 62.53 64.29 

rf_36 70.96 70.96 58.94 63.40 66.17 71.98 70.28 75.38 

rf_42 92.37 92.37 71.65 75.20 80.16 92.37 92.37 85.12 

Bold numbers represent the best performance for the given household and all the presented results are in percentage. 

It is evident from the presented results in Table 31 that irrespective of the reduced feature 

set, 𝔉, as an input to the employed classifiers, not only all the employed classifiers yield 

promising performance but also accommodate improvement in most of the cases 

(comparing Table 29 and Table 31). Moreover, from the results presented in Table 31, it 

is also observed that no single learning model has a clear edge over the others for all the 

given testing households (best performance highlighted in bold). Except for the Naïve 

Bayes classifier that relatively outperforms the others for two testing households, i.e., 

IDs. rf_31 and rf_36. For testing households’ IDs. 01 and 02, logistic regression and 

random forest attained the best performance, respectively. Furthermore, for testing 

household ID. 42, support vector machine, logistic regression, Gaussian process, and 

multi-layer perceptron classifiers attained the same classification performance 

(highlighted in bold in Table 31). Moreover, for 𝔉 being an input feature set the DT 

performance improves, however, compared to the other employed classifiers it is still at 

the downside in terms of overall classification performance. 

For 𝔉 as an input feature set, a classifier-level evaluation based on the entire set of testing 

households is also carried out in terms of accuracy and Kappa index. Figure 36 presents 

the corresponding results in the form of the boxplot.  
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Figure 36  Overall Classifiers’ Performance in Combination with 𝔉 
(a) Accuracy (b) Kappa Index, all the presented results are based on the entire set of testing households. The red 

horizontal lines represent the median values where the horizontal dotted line in green represents the minimum Kappa 

index (normalized) attained by the employed classifiers, under the given conditions. The regions presented on the 

right side of Figure 36b are based on the description presented in Table 5. 

4.3.2.1.2 Comparative Analysis 

To underline the influence of feature space dimensionality, a comparative performance 

evaluation of the employed classifiers in combination with both feature sets, i.e., ℱ and 

𝔉, is carried out. In this context, comparing the results of Figures 35b and 36b, it is noted 

that the least Kappa index performance recorded by any employed classifier (highlighted 

by a green dotted line) in combination with ℱ and 𝔉 is 43.21 and 55.44 percent, 
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respectively. This corresponds to around 12% of performance improvement in terms of 

the Kappa index, in case of reduced feature space.  

To further underline the significance of feature space dimensionality based on the entire 

set of testing households, comparative analysis in terms of overall mean accuracy 

performance is carried out. Figure 37 presents the corresponding results in the form of a 

scatter plot. It shows that most of the employed learning models in combination with 𝔉, 

compared to ℱ, attained better classification accuracy. For example, in the case of the 

SVM, a performance improvement of up to 4.98% is achieved with the reduced feature 

set, 𝔉, compared to ℱ. It is also anticipated that feature space reduction may facilitate the 

learning models in terms of computational complexity.  

 

Figure 37  Feature Space Dimensionality vs. Classification Performance 
The presented results are in the form of classifiers’ mean accuracy performance based on the entire set of testing 

households, where ℱ and 𝔉 represent the original and reduced feature sets, comprising of five and three distinct load 

features, respectively. 

4.3.2.2 Feature Selection Simulations 

As observed in the previous section, reduced feature space dimensionality facilitates 

classification performance. In this context to further underline the significance of the load 

features in the context of classification performance, comprehensive simulations are 

carried out in terms of feature selection methodologies. The said will further strengthen 

the already presented analysis in terms of feature space dimensionality influence. The 

simulation flow adopted for the NZ GREEN Grid database, presented in Figure 32, is 

modified by incorporating the feature selection block, as discussed in 4.2.2, and is 

graphically depicted in Figure 38. 

70

72

74

76

78

80

82

84

86

88

90

SVM LR DT RF k-NN GP MLP NB

M
ea

n
 A

cc
u

ra
cy

 P
er

fo
rm

an
ce

 (
%

)

Machine Learning Models 

F_Org. F_Red.𝔉 

 

ℱ 



93 

 

  

Figure 38  Feature Selection Based Non-Intrusive Load Inference Approach 

As shown in Figure 38 and discussed in section 4.2.2, this research work adopted filter 

and embedded methods to investigate the most significant load features for the given 

problem. However, before plunging into feature selection simulations, it is worth noting 

that based on the results presented in section 4.3.2.1, particularly comparing Table 29 and 

Table 31, it is concluded that for the given problem the feature space dimensionality 

significantly facilitates the classification performance for testing households that are 

different, i.e., rf_01, rf_31, rf_36, and rf_42, than the one used for training purposes, i.e., 

rf_02. As feature selection also aims to reduce the feature space dimensionality, therefore 

the simulations regarding feature selection will be mainly focussed on different testing 

households. The given selection of different testing households will further facilitate the 

analysis in terms of robustness due to the diversity factor of given testing households.  

For feature selection simulations, an extended load feature set, Ƒєӿ₸., given as in (20), is 

extracted for all employed household data, presented in Table 27. A portion of the results 

in terms of extracted load features, based on Ƒєӿ₸., for a single household of the NZ 

GREEN Grid database is presented in Table 32. 
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Table 32  Extracted Load Features ′Ƒєӿ₸.′                                          

Load Features; NZ GREEN Grid Household ID rf_31 

𝝉𝒘𝒊𝒅𝒕𝒉  𝑷𝒑𝟐𝒑 𝝈  𝝈𝟐      𝝁 𝓢Ɛ ʍ 𝑪𝑫𝒊𝒔𝒑. 𝑪𝒗𝒂𝒓. 

1 0.3459 0.2446 0.0598 0.5015 0.3459 0.1729 0.1193 0.4877 

1 0.3839 0.2715 0.0737 0.6626 0.383 0.1919 0.1112 0.4097 

1 0.2803 0.1982 0.0393 0.4046 0.2803 0.1401 0.0971 0.4900 

2 0.7394 0.3704 0.1372 0.7416 0.3697 0.3309 0.1850 0.4994 

1 -0.349 0.2468 0.0609 0.8080 -0.349 0.1745 0.0753 0.3054 

5 -0.272 0.6817 0.4647 1.6341 -0.054 0.6269 0.2843 0.4171 

2 -1.714 0.8619 0.7429 2.0695 -0.857 0.6999 0.3589 0.4164 

1 0.3661 0.2589 0.0670 1.4481 0.3661 0.1830 0.0462 0.1787 

4 1.6134 0.6473 0.4191 2.4657 0.4033 0.5355 0.1699 0.2625 

1 -1.333 0.9431 0.8895 2.5893 -1.333 0.6669 0.3435 0.3642 

1 -0.361 0.2555 0.0653 1.3749 -0.361 0.1807 0.0475 0.1858 

1 0.3901 0.2758 0.0760 1.3484 0.3901 0.1950 0.0564 0.2045 

For each household under consideration, all nine distinct load features are evaluated using 

three different features selection techniques. The corresponding feature significance 

results are presented in the form of features significance score, defined as, the higher the 

score is the more significant is the feature and vice versa.  

Tables 33 and 34 present the extracted results in the form of feature significance score 

based on the f_classif and mutual_info_classif assessments, respectively. It is worth 

noting that both assessments lie in the domain of the filter methods. 

Table 33  Features’ Significance Score Based on f_classif Assessment 

 f_classif Assessment (Univariate Selection) 

Load Features rf_01 rf_31 rf_36 rf_42 

𝝉𝒘𝒊𝒅𝒕𝒉 7.718722 2.661572 4.413996 8.987654 

𝑷𝒑𝟐𝒑 606.369197 222.908601 725.423027 158.846285 

𝝈 24.099148 6.542112 93.511944 33.361798 

𝝈𝟐 10.587415 3.499536 92.787630 52.573450 

𝝁 0.528617 11.276213 1.891491 0.064895 

𝓢Ɛ 1399.447835 349.476223 755.473290 98.476328 

ʍ 22.084736 4.250438 45.677716 12.129802 

𝑪𝑫𝒊𝒔𝒑. 29.983604 3.237820 69.143266 61.318300 

𝑪𝒗𝒂𝒓. 7.151683 0.747307 46.206877 4.661424 

 

Table 34  Features’ Significance Score Based on mutual_info_classif Assessment 

 mutual_info_classif Assessment (Univariate Selection) 

Load Features rf_01 rf_31 rf_36 rf_42 

𝝉𝒘𝒊𝒅𝒕𝒉 0.002936 0.078914 0.026197 0.167469 

𝑷𝒑𝟐𝒑 0.788226 0.650095 0.956332 1.130461 

𝝈 0.067005 0.084969 0.215084 0.364605 

𝝈𝟐 0.066411 0.080955 0.214801 0.357021 

𝝁 0.037242 0.043241 0.105265 0.089102 

𝓢Ɛ 0.757102 0.650095 0.962622 0.935332 

ʍ 0.076684 0.051269 0.149710 0.067260 

𝑪𝑫𝒊𝒔𝒑. 0.043894 0.060418 0.217210 0.454361 

𝑪𝒗𝒂𝒓. 0.019504 0.067087 0.185740 0.171535 
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Besides the filter method, features evaluation is also carried out using the embedded 

method, i.e., features importance technique based on ExtraTreesClassifier. Table 35 

presents the features significance score of each load feature for all the four diverse testing 

households based on feature importance assessment. 

Table 35  Features’ Significance Score Based on Feature Importance Assessment 

 Feature Importance Assessment 

Load Features rf_01 rf_31 rf_36 rf_42 

𝝉𝒘𝒊𝒅𝒕𝒉 0.016924 0.005606 0.027754 0.025618 

𝑷𝒑𝟐𝒑 0.235405 0.327899 0.260014 0.287648 

𝝈 0.055907 0.020943 0.127056 0.114359 

𝝈𝟐 0.054942 0.022241 0.095723 0.058623 

𝝁 0.045531 0.033672 0.060553 0.013738 

𝓢Ɛ 0.466498 0.507645 0.244609 0.380297 

ʍ 0.048149 0.023126 0.064355 0.037655 

𝑪𝑫𝒊𝒔𝒑. 0.036820 0.035223 0.068357 0.064050 

𝑪𝒗𝒂𝒓. 0.039823 0.023645 0.051579 0.018014 

From the results presented in Tables 33-35, it is evident that irrespective of the employed 

feature selection methodology, the load features based on geometrical and power features, 

i.e., 𝒮Ɛ and 𝑃𝑝2𝑝, emerge as the most significant load features for all the testing 

households, under the given conditions. The third most significant rank within Ƒєӿ₸. is 

equally shared by  𝐶𝐷𝑖𝑠𝑝. and 𝜎, each having the frequency of 5 out of 1233 instances. 

Further, statistical features like 𝜇 and ʍ also emerged as the third most significant load 

feature by the filter method, however, each having the frequency of only 1 out of 12 

instances. In this context, to better visualize the results presented in Tables 33-35, Table 

36 highlights the features significance rank for all the testing households by different 

feature selection methodology. The columns of Table 36 present the corresponding load 

features’ significance rank in the descending order. 

Table 36  Load Features’ Significance Ranking for all Testing Households 

Filter Method Embedded Method 

Ranking f_classif mutual_info_classif feature importance 

rf_01 rf_31 rf_36 rf_42 rf_01 rf_31 rf_36 rf_42 rf_01 rf_31 rf_36 rf_42 

𝒮Ɛ 𝒮Ɛ 𝒮Ɛ 𝑃𝑝2𝑝 𝑃𝑝2𝑝 𝑃𝑝2𝑝 𝒮Ɛ 𝑃𝑝2𝑝 𝒮Ɛ 𝒮Ɛ 𝑃𝑝2𝑝 𝒮Ɛ 1st 

𝑃𝑝2𝑝 𝑃𝑝2𝑝 𝑃𝑝2𝑝 𝒮Ɛ 𝒮Ɛ 𝒮Ɛ 𝑃𝑝2𝑝 𝒮Ɛ 𝑃𝑝2𝑝 𝑃𝑝2𝑝 𝒮Ɛ 𝑃𝑝2𝑝 2nd 

𝐶𝐷𝑖𝑠𝑝. 𝜇 𝜎 𝐶𝐷𝑖𝑠𝑝. ʍ 𝜎 𝐶𝐷𝑖𝑠𝑝. 𝐶𝐷𝑖𝑠𝑝. 𝜎 𝐶𝐷𝑖𝑠𝑝. 𝜎 𝜎 3rd 

𝜎 𝜎 𝜎2 𝜎2 𝜎 𝜎2 𝜎 𝜎 𝜎2 𝜇 𝜎2 𝐶𝐷𝑖𝑠𝑝. 4th 

ʍ ʍ 𝐶𝐷𝑖𝑠𝑝. 𝜎 𝜎2 𝜏𝑤𝑖𝑑𝑡ℎ 𝜎2 𝜎2 ʍ 𝐶𝑣𝑎𝑟. 𝐶𝐷𝑖𝑠𝑝. 𝜎2 5th 

𝜎2 𝜎2 𝐶𝑣𝑎𝑟. ʍ 𝐶𝐷𝑖𝑠𝑝. 𝐶𝑣𝑎𝑟. 𝐶𝑣𝑎𝑟. 𝐶𝑣𝑎𝑟. 𝜇 ʍ ʍ ʍ 6th 

𝜏𝑤𝑖𝑑𝑡ℎ 𝐶𝐷𝑖𝑠𝑝. ʍ 𝜏𝑤𝑖𝑑𝑡ℎ 𝜇 𝐶𝐷𝑖𝑠𝑝. ʍ 𝜏𝑤𝑖𝑑𝑡ℎ 𝐶𝑣𝑎𝑟. 𝜎2 𝜇 𝜏𝑤𝑖𝑑𝑡ℎ 7th 

𝐶𝑣𝑎𝑟. 𝜏𝑤𝑖𝑑𝑡ℎ 𝜏𝑤𝑖𝑑𝑡ℎ 𝐶𝑣𝑎𝑟. 𝐶𝑣𝑎𝑟. ʍ 𝜇 𝜇 𝐶𝐷𝑖𝑠𝑝. 𝜎 𝐶𝑣𝑎𝑟. 𝐶𝑣𝑎𝑟. 8th 

𝜇 𝐶𝑣𝑎𝑟. 𝜇 𝜇 𝜏𝑤𝑖𝑑𝑡ℎ 𝜇 𝜏𝑤𝑖𝑑𝑡ℎ ʍ 𝜏𝑤𝑖𝑑𝑡ℎ 𝜏𝑤𝑖𝑑𝑡ℎ 𝜏𝑤𝑖𝑑𝑡ℎ 𝜇 9th 

 
33 Each feature has the evaluation frequency of 12 during the entire feature selection simulations, e.g., each feature corresponding to 

4 households and evaluated by 3 assessment techniques (4×3=12). 
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Table 36 provides extra ease compared to Tables 33-35 in terms of identifying the 

significance rank of the given load features for each testing household. From the given 

results, it is seen that 𝒮Ɛ and 𝑃𝑝2𝑝 are unanimously ranked as the top two most significant 

loads features for all the households. On the other side, the load features, i.e., mean, and 

transient width, are frequently identified as the least significant load features under the 

given conditions. It is also observed that the extracted load features vary in significance 

rank among different testing households. It is anticipated due to the diverse set of testing 

households and associated diverse factors, i.e., independent circuits, installation 

configurations, and consumption patterns, etc. Even for the same testing household, the 

given load features are ranked differently by different feature selection assessments. This 

is also expected due to the different working principles of the employed feature selection 

methodologies, i.e., classifier-agnostic and classifier-interaction.  

Based on the feature selection simulations and corresponding analysis, it is concluded 

that among all nine distinct load features for the given testing households, the top three 

load features are  𝑃𝑝2𝑝, 𝒮Ɛ, and 𝐶𝐷𝑖𝑠𝑝. or 𝜎. Consequently, a new feature set Ƒ𝐹𝑆, given in 

(22), is formulated based on the analysis of the extracted feature selection results. It is 

worth noting that the newly formulated feature selection based feature set, Ƒ𝐹𝑆, comprises 

two distinct load feature based on the aforesaid top-ranked features while keeping the 

possible redundancy among the given load features at the minimum level.                                                              

Ƒ𝐹𝑆 = {𝒮Ɛ, 𝐶𝐷𝑖𝑠𝑝.}                                                  (22)                                                              

To further investigate the significance of the newly formulated feature set, Ƒ𝐹𝑆, the given 

results in (22) are validated in terms of classification performance. For the said purpose, 

Ƒ𝐹𝑆 is independently employed as an input to the classifiers besides Ƒєӿ₸. as per 

simulations methodology depicted in Figure 38. Table 37 presents the details of the 

household IDs linked with training and testing of the learning models. Table 37 also 

presents the details of input features to the classifiers. 

Table 37  Feature Selection Simulation Data 

 Training Data  Testing Data 

 rf_02 rf_01 rf_31 rf_36 rf_42 

Data Acquisition 

Timeframe 

May. 11-30, 

2014 

Sep. 01-07, 

2014 

Sep. 01-07, 

2016 

Jun. 21-27, 

2017 

Jan. 07-13, 

2017 

Number of Days 20 7 7 7 7 

Total Detected Events 1504 808 166 390 60 

Classifier Input 
Ƒєӿ₸. 1504×9 808×9 166×9 390×9 60×9 

Ƒ𝐹𝑆 1504×2 808×2 166×2 390×2 60×2 
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Based on the analysis presented in section 4.3.2.1, three learning models that attained the 

best and least classification performance compared to other employed models are 

employed to validate the results of feature selection methodologies. The employed 

learning models are multi-layer perceptron, Naïve Bayes, and decision trees. All three 

classifiers are independently evaluated in combination with Ƒєӿ₸. and Ƒ𝐹𝑆, as an input 

features, in terms of accuracy performance metric. Table 38 presents the corresponding 

simulation results in terms of classifiers’ accuracy performance, in percentage. For further 

validation of the feature selection based results, Table 38 also presents an extended 

comparative performance analysis of the employed classifiers in combination with ℱ34 

and 𝔉35 along with Ƒєӿ₸. and Ƒ𝐹𝑆. It is also worth noting that while analyzing the 

classification performance results presented in Table 38, the feature space dimensionality 

perspective must be considered, i.e., feature space dimensionality is directly proportional 

to the model’s complexity and computation demands. And under given conditions, the 

feature sets, i.e., Ƒ𝐹𝑆, 𝔉, ℱ, and Ƒєӿ₸. are comprised of two, three, five, and nine load 

features, respectively. 

Table 38  Classifiers’ Accuracy Performance Based on Feature Selection Methods 

 Accuracy Performance Metric (%) 

 Multi-Layer Perceptron Decision Trees Naïve Bayes 

 Ƒєӿ₸. Ƒ𝐹𝑆 𝔉 ℱ Ƒєӿ₸. Ƒ𝐹𝑆 𝔉 ℱ Ƒєӿ₸. Ƒ𝐹𝑆 𝔉 ℱ 

rf_01 79.24 83.41 83.16 78.96 71.41 71.28 69.80 70.54 77.35 80.94 79.33 72.40 

rf_31 77.10 78.91 78.91 78.91 75.90 71.68 74.09 73.49 76.50 78.91 80.12 75.30 

rf_36 78.20 77.17 77.69 79.23 70.76 74.87 69.23 57.43 79.23 80.76 81.53 77.43 

rf_42 95 95 95 96.66 78.33 80 80 80 86.66 91.66 90 88.33 

In terms of Ƒєӿ₸. and Ƒ𝐹𝑆 (highlighted in brown color), it is evident from the results 

presented in Table 38 that for most of the cases feature selection methodology facilitates 

the classifiers’ performance. For example, for all testing households the NB classifier in 

combination with Ƒ𝐹𝑆 performs better than the NB in combination with Ƒєӿ₸.. Likewise, 

in combination with Ƒ𝐹𝑆, the classification performance of the MLP and DT classifiers 

also improves for different households. In a few cases, the MLP and DT classifiers 

perform better in combination with Ƒєӿ₸., however, it is also observed that the 

performance is either equivalent or having a marginal variation. But in the larger 

perspective of models’ accuracy, complexity, and computational needs, Ƒ𝐹𝑆, as an input 

feature has an edge over the Ƒєӿ₸.. Further in the said larger perspective, it is also evident 

from the presented results in Table 38 that the employed classifiers with feature selection 

 
34 Based on the results presented in Table 29. 
35 Based on the results presented in Table 31. 
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perform better compared to the given classifiers in combination with ℱ and 𝔉, which 

further underline the significance of the feature selection methodologies.  

Based on the presented simulations and corresponding results, it is concluded that 

irrespective of having smaller numbers of load features, Ƒ𝐹𝑆, as an input feature to the 

classifiers, yields relatively better performance. This further establishes that classification 

performance is dependent on the relevance or significance of the input features rather than 

the number of input features. 

4.3.2.3 Ensemble Learning Approach 

As evident from Table 38 that each employed machine learning algorithm in combination 

with a given input feature performs differently for different testing data. For example, for 

testing data rf_42 the MLP classifier outperforms the others, while for testing household 

rf_36 the NB classifier has an edge over the other classifiers. It is anticipated due to the 

diverse nature of the employed classifiers, hence, to balance the performance of different 

classifiers for the given testing households, the concept of the ensemble learning is also 

investigated besides standalone learning models in the context of the proposed low-

sampling event-based non-invasive load disaggregation approach. The ensemble learning 

refers to a combinatorial form of independent learning models, built to solve a given 

computational problem. The ensemble learning models are mostly used to enhance the 

classification performance and considered as a reliable approach in the said context [124]. 

However, it is also probable that the ensemble model does not lead to any improvement 

in terms of classification performance compared to the performance of the best learning 

model within the given ensemble model [125].  

In the existing literature, numerous ensemble techniques are proposed, however, within 

the scope of this research work (based on diverse learning models having independent 

outcomes), a voting-based ensemble model with a majority voting concept is adopted. As 

voting based ensemble model with the majority voting concept is the optimal combination 

rule for the classifiers having independent outcomes [125]. In principle, a voting classifier 

merges diverse learning models and the final prediction is based on the voting system, 

i.e., hard vote or soft vote [107]. Hard voting and soft voting refer to the majority voting 

and average predicted probabilities, respectively. Figure 39 graphically illustrates a 

general framework of a voting classifier. 
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Figure 39  Voting Classifier Framework 

In this research work, the voting-based ensemble learning model is built on a combination 

of three independent and diverse learning models namely, multi-layer perceptron, 

decision trees, and Naïve Bayes. It is worth noting that the members of the employed 

ensemble model are selected not only for their diversity but also for their corresponding 

classification performance, under the given conditions, as discussed thoroughly in section 

4.3.2.1. It is expected that the said combination of standalone learning model, in the form 

of ensemble learning, will facilitate the classification performance by balancing the 

performance of the given machine learning models. For evaluation purposes, the 

proposed majority voting based ensemble model is rigorously tested in combination with 

all the extracted feature sets within the scope of this research work, i.e., ℱ, 𝔉, Ƒєӿ₸., and 

Ƒ𝐹𝑆 given in (12), (16), (20), and (22) respectively. The said evaluation also provides an 

insight into the significance of the input features in the context of ensemble learning.  

According to the methodology presented in Figure 39, comprehensive digital simulations 

are carried out on different testing data. The corresponding ensemble learning 

performance results are presented in Table 39 along with an extended comparison with 

the classification performance of respective members, i.e., the MLP, NB, and DT, on 

which the given ensemble learner is built. The extended comparative performance results 

are highlighted in brown color in Table 39, where all the results are in percentage. 
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Table 39  Ensemble Model Performance Comparison 

 Accuracy Performance Metric (%) 

 Ensemble Model MLP DT NB 

 Ƒєӿ₸. Ƒ𝐹𝑆 𝔉 ℱ Ƒ𝐹𝑆 

rf_01 78.21 81.18 81.31 76.11 83.41 71.28 80.94 

rf_31 77.71 79.51 78.31 75.90 78.91 71.68 78.91 

rf_36 78.46 81.28 79.23 77.94 77.17 74.87 80.76 

rf_42 93.33 93.33 93.33 93.33 95 80 91.66 

For feature set, Ƒ𝐹𝑆, as an input to the classifier, it is evident from the results presented in 

Table 39 (highlighted in brown color) that the employed ensemble learning model 

achieved better classification performance for two testing households, i.e., IDs. rf_31 and 

rf_36, compared to the performance of all its respective members. On the other side, for 

testing household IDs. rf_01 and rf_42, the ensemble model attained better performance 

compared to most of its respective members, i.e., DT and NB, but lags in performance 

compared to the best performing member, i.e., MLP. This is not unexpected, as discussed 

earlier that there is no guarantee that ensemble models always lead to an improvement in 

terms of classification performance compared to the performance of the best learning 

model within the given ensemble [125]. However, in terms of overall mean accuracy 

performance (extracted from the results highlighted in brown in Table 39) based on the 

entire set of testing households, the proposed ensemble learner leads with a result of 

83.82% compared to 83.62, 74.45, and 83.06 percent for MLP, DT, and NB models, 

respectively.  

Further in terms of intra-ensemble model comparison, i.e., in combination with different 

input features, it is evident from the results presented in Table 39 that irrespective of less 

number of input features, the ensemble model in combination with Ƒ𝐹𝑆, facilitates the 

overall classification performance, except for testing household rf_01 where the ensemble 

model in combination with Ƒ𝐹𝑆 lags in performance compared to the best performance 

but that is also marginal, i.e., 0.13% only.  

The presented intra-ensemble comparative analysis can be further visualized in Figure 40 

in the form of a scatter plot representing the accuracy performance of the employed 

ensemble learning model in combination with different input feature sets, i.e., ℱ, 𝔉, Ƒєӿ₸., 

and Ƒ𝐹𝑆. 
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Figure 40  Intra-Ensemble Model Classification Performance 

Based on the results presented in Figure 40 and the overall model’s complexity and 

computational demand associated with the input feature space dimensionality, it would 

be fair to conclude that ensemble learner with feature selection has an edge over the given 

ensemble model without feature selection. Further, in terms of ensemble vs standalone 

configuration, it is evident from the analysis of the results that the ensemble model 

manages the classification performance improvement even in the presence of low 

performing member, i.e., the DT model, for the given problem. However, it is also worth 

noting that this improvement comes at a price of high complexity and computational 

demands due to the ensemble learning approach. 

4.4 Concluding Remarks 

This chapter presented a complete flow of the proposed low sampling event-based non-

intrusive load disaggregation approach, where comprehensive simulations are carried out 

on real-world load measurements acquired from the diverse load databases from different 

geographical regions. Based on the presented simulation studies and the corresponding 

analysis of the results, it is established that the proposed non-invasive approach works 

well and attained promising results in terms of load inference.  

The research work presented in this chapter contributes to the existing state of the art on 

NILM in terms of feature space dimensionality and classification models, both in 

standalone and ensemble configuration. It is also expected that the presented analysis will 

significantly facilitate future research in the aforesaid domains, particularly in the domain 

of low sampling non-intrusive load inference approaches.  
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The proposed non-invasive load inference approach presented in this research work has 

a solid potential in real-life deployment towards energy-efficient systems. In this context, 

to validate the significance of the given research, a proof of concept in the form of real-

world energy efficiency application is presented in the following chapter, i.e., Chapter 5.     
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Chapter 5 Non-Intrusive Load Disaggregation Applications 

This Chapter presents a brief outlook of the potential real-world applications assisted by 

non-invasive load disaggregation. Moreover, based on the presented research work a 

proof of concept is presented and validated in this Chapter. 

The details presented in this chapter regarding the NILM assisted real-world application 

framework and corresponding case study are mainly based on [126]. The said research 

manuscript has been published as follows: 

▪ A. U. Rehman, T. T. Lie, B. Vallès, and S. R. Tito, "Non-Invasive Load-Shed 

Authentication Model for Demand Response Applications Assisted by Event-

Based Non-Intruisve Load Monitoring", Energy and AI, p. 100055, 2021. 

▪ DOI: https://doi.org/10.1016/j.egyai.2021.100055  

5.1 State of the Art on Applications 

Despite the availability of a range of research in the domain of non-intrusive load 

disaggregation and corresponding aspects, still, the existing literature is lagging in terms 

of its applications in the broader context of existing power grid systems [34]. This leads 

to the lack of actionable feedback regarding non-invasive load disaggregation 

applications in general and more specifically in a real-world scenario36. Recently, the 

research community came forward to address this shortcoming, e.g., Hernández et al. [60] 

briefly discuss the applications of non-intrusive load monitoring in the context of energy 

management and ambient assisted living. Zhuang et al. [62] also present an overview of 

the business applications of non-intrusive load monitoring.  

Further, in the context of NILM actionable feedback, the authors of [8] recently presents 

a comprehensive review of the existing state of the art; exploring a wide-range of 

promising NILM applications including load scheduling, health monitoring, fault 

detection, demand response, and energy auditing. From the system perspective, the study 

[8] broadly classified the existing literature on NILM application into four categories 

namely, consumer-based applications, utility/policy-based applications, manufacturer-

based applications, and miscellaneous applications. Figure 41 [8] graphically highlights 

numerous real-world applications of non-intrusive load disaggregation in the context of 

each aforesaid category.  

 
36 In the context of NILM, most of the existing research targets inference of a greater number of appliances, consequently utilizing 
high data granularity acquisition systems. However, in the real-world scenario, the existing metering infrastructure does not support 

high sampling data acquisition. 

https://doi.org/10.1016/j.egyai.2021.100055
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Figure 41  Categorization of NILM Applications  

The potential real-world applications of the non-intrusive load disaggregation presented 

in Figure 41 are further elaborated in Table 40 [8], which presents a summary of the 

promising applications along with the corresponding aspects, i.e., respective study, 

application categories, and targeted appliances. It is evident from the existing literature 

that the incorporation of non-intrusive load disaggregation in real-world applications can 

play an active role in energy efficient systems [4]. However, it requires further research 

to be carried out to realize the real potential of non-intrusive load disaggregation 

particularly in the context of real-world deployment. 

5.2 Proof of Concept 

Rather than focusing on high data granularity towards inference of a greater number of 

appliances, this research work is primarily based on low data granularity, targeting the 

inference of high consumption, most importantly the flexible/interruptible 

appliances/circuits. This makes the presented research work more compatible and viable 

to be incorporated in real-world scenarios towards energy efficient systems. In this 

context, to further validate the effectiveness of the proposed non-intrusive load 

disaggregation approach in real-world deployment, a proof of concept in terms of non-

invasive load-shed authentication framework for demand response (DR) program is 

presented. Towards effective DR programs, the proposed NILM assisted load-shed 

authentication model could facilitate both stakeholders, i.e., consumers and utility 

providers.  
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Table 40  State of the art on Non-Intrusive Load Disaggregation Applications 

 

  

 

Study Category Targeted Applications Targeted Appliances/Circuits 

Lin and Tsai [11] Consumer, Utility, Policy Load scheduling, home energy management 

system (HEMS) 

Major household appliances 

Batra et al. [127] Consumer Malfunction or misconfiguration detection 

and provision of actionable feedback 

Heating ventilation and air conditioning (HVAC), Refrigerators 

Nation et al. [128] Consumer Fault detection Water disposal system 

Berges et al. [129] Consumer, Utility, Policy Energy audit Household appliances 

Liu et al. [130] Consumer, Utility Appliance scheduling Air conditioner 

Donnal et al. [131] Consumer, Utility Energy box platform; enables energy 

monitoring and control 

Appliances like, air compressor, heating, shop equipment 

Adabi et al. [132] Consumer, Utility, Policy Enabling energy management systems (EMS) Vacuum cleaner, microwave, and leaf blower 

Luo et al. [133] Consumer Personalized recommendation system (PRS) Household appliances 

He at al. [134] Utility, Policy Demand response (DR) Circuit breaker level loads, e.g., HVAC, electric heat devices, EV 

charger & strip level loads, e.g., display devices (television, 

projector), resistive loads, etc. 

Batra et al. [135] Utility, Manufacturer, Miscellaneous  Predicting household properties HVAC features are used as indicative of household properties 

Alcala et al. [136] Consumer, Miscellaneous Health monitoring Kettle (as an indicator of household occupants’ routine) 

Alcala et al. [137] Consumer, Miscellaneous Homecare monitoring system BLUED [28] and PLAID [26] datasets are used to evaluate the 

performance of event detector and classifiers respectively. 
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5.2.1 Demand Response Program  

Demand response is a key element of modern days power grid systems, particularly in 

the presence of increasing numbers of distributed renewable energy sources, where it 

plays a vital role in terms of improving grid reliability [138]. Demand response refers to 

approaches that alter the consumers' energy consumption either by reducing, shedding, or 

shifting loads to maintain an equilibrium between power supply and demand. Han and 

Piette [139] present a comprehensive overview of demand response programs and 

categories it into two main types: incentive-based DR and time-based rates DR. The 

former refers to the programs where the consumers get preferential tariff rates for a non-

DR time due to altering their energy consumption patterns in times of system 

contingencies. The latter is built on rising price signals and the corresponding reduction 

of consumers’ energy consumption [139]. The two types of DR can be further split into 

numerous categories, summarized in Figure 42 with further details in [139]. 

 

Figure 42 Demand Response Categories 

The controlling strategies are the key factors towards the effective deployment of demand 

response programs. In this context, Piette et al. [138] classified the DR control into three 

categories: manual, semi-automated, and automated DR programs. Manual DR, here 

referred to as user-assisted demand response (UDR), is a technique where individual loads 

are controlled physically by the consumer, based on the received DR instructions. Semi-

automated DR refers to an approach where a preprogrammed DR strategy is initiated by 

a person using a centralized control system [138]. Automated demand response (ADR) is 

a DR strategy that is completely non-invasive in terms of human involvement. 

Demand response programs are widely adopted in different geographical regions. Samad 

et al. [140] present different case studies that are based on demand response programs for 

smart buildings and microgrids in different geographical regions. In New Zealand, a 

ripple control system for water heating circuits was introduced in the 1950s [141]. In the 
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recent past, Transpower37 New Zealand, which owns and operates the national grid, 

started its early demand response trials in 2007. Later in 2011, Transpower acquired a DR 

management system to further scale up its DR programs [142]. 

5.2.2 Non-Intrusive Load Disaggregation Assisted Demand Response 

This section presents the details of the proposed DR framework assisted by the proposed 

non-intrusive load disaggregation approach, as a potential application of the presented 

research work in this thesis. 

5.2.2.1 Rationale and Significance  

Demand response has an effective and proven role in the sustainability and reliability of 

the power grid systems. One of the widely used demand response approaches is the load 

curtailment, commonly referred to as load shedding approach. In this approach, pre-

selected consumers’ loads are curtailed in time of need, i.e., during the peak demand or 

system contingencies. But since long this approach lacks a trust-worthy business model 

towards effective deployment due to a tradeoff that exists among consumers and utility 

providers. For example, if the consumers’ loads are controlled directly (remotely) by the 

utility, there is a possibility that the consumers may face unpleasant situations due to 

curtailment of their loads by the utility at the time of their requirement, e.g., water heating 

circuit. Likewise, if the consumer’s loads are controlled by consumers themselves based 

on demand response instructions received from the utility provider, there is a possibility 

that the consumers do not follow the DR instruction while getting incentives from the 

utility providers based on their mutual agreement as per established DR program. To 

address this tradeoff, it is necessary to work out a DR program that facilitates both parties, 

i.e., empowers the consumers in terms of controlling their load and enable the utility 

providers to effectively monitor the consumers’ DR compliance, subsequently, eliminate 

the freeloaders38.  In this context, this research work presents a DR business model 

assisted by non-intrusive load disaggregation, inspired by the early work presented in 

[143], that can facilitate all the concerned stakeholders. 

Based on the aforesaid rationale, this research work presents a demand response program 

incorporated with a non-invasive load-shed authentication framework, that is assisted by 

low-sampling event-based non-intrusive load disaggregation approach proposed in this 

thesis. For evaluation and validation purposes, real-world load data from NZ GREEN 

 
37 https://www.transpower.co.nz/ 
38 Freeloaders refer to those consumers who acknowledge but do not execute the received demand response instructions from the 
utility provider, while at the same time getting benefits from the incentives offered by the utilities based on the terms of their already 

existing demand response agreements. 

https://www.transpower.co.nz/
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Grid is used, where a water heating circuit is utilized as a potential DR load, as it is not 

only the most significant load element of a typical household but also has a high potential 

towards demand response [121]. Further, the water heating circuit has a proven history in 

DR programs, e.g., in New Zealand, water heating based ripple control dates back to the 

1950s39, for balancing the demand and supply by controlling the former entity. 

The presented NILM based DR application in this thesis, based on low-sampling data 

granularity, will not only significantly contribute to the existing literature in terms of 

broader applications of NILM but also provide a reliable non-invasive trust model for the 

concerned stakeholders towards effective deployment of demand response programs. 

5.2.2.2 Problem Formulation and Methodology 

As discussed earlier the time-series load consumption can be considered as an algebraic 

sum of i numbers of loads’ consumption at a single metering point, given as in (23). 

LoadMetering Point= ∑ Loadx(t)

i

x=1

                                       (23) 

 

With the only information of the aggregated load: LoadMetering Point, the task of the NILM 

is to identify the operation state of the individual loads: Loadx(t), where x=1, 2, 3, …, i. 

In the given context, assume, a household having A appliances and a single day has T 

timeslots, where A={1, 2, 3, …, a, … A} and T={1, 2, 3, …, t, … T}. Under the given 

conditions, T equal to 1440, as the given database (NZ GREEN Grid) has the data 

granularity of 1/60 Hz, i.e., 1-minute sampling rate. Further, the given household has a 

DR enrolled appliance a, given that a ϵ A. For non-invasive load-shed authentication 

purposes in DR program, the DR enrolled appliance a, water heating circuit under given 

conditions, is monitored and inferred, using the proposed NILM approach, for D days, 

where D={1, 2, 3, …, d, … D}. In this context, (23) can be represented as in (24). 

LoadMetering Point=Loada(t)+n(t)                                 (24) 

where n(t) is a measurement noise comprised of acquisition noise along with other 

household appliances’ consumptions not under consideration. The proposed non-

intrusive load disaggregation approach will monitor and estimate the operation status s of 

the DR enrolled appliance a for D days, mathematically defined as in (25). 

sa
t, d= {

0,   Appliance Turn-Off

 1,   Appliance Turn-On 
                                     (25) 

 
39 https://www.transpower.co.nz/keeping-you-connected/demand-response/demand-response-journey-so-far 

https://www.transpower.co.nz/keeping-you-connected/demand-response/demand-response-journey-so-far
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where sa
t,d denotes the operation status, i.e., turn-on and turn-off, of the given DR enrolled 

household appliance a, i.e., water heating circuit, at timeslot t in day d. The information 

provided, i.e., sa
t,d, by the non-intrusive load disaggregation approach plays a vital role in 

terms of non-invasive load-shed authentication, as it can be used to authenticate whether 

an appliance is turned-off or turned-on in reality according to the DR instruction provided 

by the utility provider. To accomplish this, a complete framework is proposed for the DR 

program with non-invasive load-shed authentication capabilities assisted by the non-

intrusive load disaggregation approach presented in this research work. The proposed 

framework is depicted in Figure 43 and is comprised of different blocks/components 

namely, non-intrusive load disaggregation, smart demand response hub, in-house display, 

controllable relays, metering device, and communication gateway. 

 

Figure 43  Proposed Application Framework 
Demand response with non-invasive load-shed authentication assisted by non-intrusive load disaggregation. 
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Each component has dedicated functionality, e.g., non-intrusive load disaggregation 

block takes aggregated load data from a single metering device and provides output in the 

form of individual load circuits operation status, i.e., sa
t,d. The smart demand response hub 

manages all the information concerning DR strategies implementation among the 

concerned stakeholders. Dedicated controllable relays are employed to control, i.e., 

connect or disconnect, different loads according to received DR instructions. 

Communication gateway is used to communicate the outcome of non-intrusive load 

disaggregation, i.e., individual load operation status, sa
t,d, among different components of 

the presented framework as well as concerned stakeholders. The in-house display 

comprises a centralized display unit within the consumers’ premises and other smart 

portable devices having the capability to enable the consumers to interact with 

information related to the DR. Moreover, the sequential flow of information among the 

concerned stakeholder, i.e. utility provider and consumer, towards establishing DR 

program and further execution of DR instruction and non-invasive load-shed 

authentication, in case of UDR, is graphically presented in Figure 44. 

 

Figure 44  Information Flow Between Consumer and Utility 

5.2.2.3 Case Study and Validation  

To validate the proposed framework, a case study is carried out based on a real-world 

scenario. A single household of NZ GREEN Grid database, having a dedicated water 

heating circuit installed in its premises is considered. Assume the utility provider 

approaches the household to take part in the demand response program with certain 

incentives. The household accepts the offer and enrols its most significant load element, 

i.e., water heating, in the DR program. As per the DR agreement, the utility provider 

agrees that the given household will control the enrolled load element manually as per 

received DR instructions, given that the household already acknowledged the DR signal 
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and the utility provider sent a confirmation for that, as shown in Figure 44. In return, the 

household agrees that the utility provider can access the non-invasive load-shed 

authentication information assisted by the non-intrusive load disaggregation system 

installed at the premises of the given household. 

Consider, on the first day of a month the utility provider has a scheduled maintenance, 

and to maintain the reliability of services a DR signal is sent to the participating 

households. The given household (under consideration) acknowledges the DR signal and 

in return, the utility provider sends a confirmation. Later, the DR instruction is sent to the 

given household, i.e., to curtail the enrolled load (water heating) from 06:30 to 07:30 in 

the morning of the given day. Now according to the DR agreement, it is the responsibility 

of the household to curtail its load at the instructed time and day, as per DR instructions. 

On the other side, to validate whether the household executed the DR instruction or not, 

the utility provider can access the non-intrusive load disaggregation outcome of the given 

household for non-invasive load-shed authentication purposes.  

Comprehensive simulations are carried out based on the proposed low-sampling event-

based non-intrusive load disaggregation approach to retrieve the individual load inference 

information, sa
t,d, of the given household. The said information can be further used by the 

utility provider to authenticate whether the DR instructions are executed or not. For the 

given household, Figure 45 presents the extracted results in the form of sa
t,d, related to the 

day of scheduled maintenance and DR implementation. 

 

Figure 45  Water Heating Circuit Operation Authentication 
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Figure 45 also validates the non-invasive load inference results by benchmarking it 

against the actual ground-truth water heating activity. The non-intrusive water heating 

inference results (Figure 45) are further elaborated in Table 41, by presenting the 

extracted results in 24-hours time format along with the operation duration of the water 

heating circuit of the given household. 

Table 41  Water Heating Operation Inference Results 

Water Heating Turn-On Water Heating Turn-Off Duration  

(minutes)  Time Indices 24-hours Format Time Indices 24-hours Format 

47 00:47 52 00:52 5 

155 02:35 162 02:42 7 

269 04:29 275 04:35 6 

372 06:12 378 06:18 6 

402 06:42 448 07:28 46 

472 07:52 480 08:00 8 

509 08:29 515 08:35 6 

549 09:09 555 09:15 6 

597 09:57 602 10:02 5 

653 10:53 657 10:57 4 

722 12:02 727 12:07 5 

809 13:29 814 13:34 5 

905 15:05 917 15:17 12 

1042 17:22 1050 17:30 8 

1220 20:20 1231 20:31 11 

1289 21:29 1296 21:36 7 

1368 22:48 1375 22:55 7 

In terms of load-shed authentication, it is evident from the non-intrusive load 

disaggregation based inference results that irrespective of the received and acknowledged 

DR signal, the given household operated the water heating during the DR timeframe, as 

highlighted in Figure 45 (shaded region) and Table 41 (brown color). Hence, it is 

established that the non-intrusive load disaggregation information, i.e., sa
t,d, can be 

successfully employed to effectively monitor the DR compliance in a non-invasive way, 

subsequently enable the utility providers to effectively eliminate the freeloaders. Further, 

the given information i.e., sa
t,d, is not only beneficial for the utility provider in terms of 

load-shed authentication but also facilitates the households in terms of keeping track of 

their individual circuits operation status, using the in-house displays or smart portable 

devices as shown in Figure 43. Providing such information to the households will further 

facilitate effective load monitoring and management. 

It is worth noting that the presented case study and the corresponding analysis of the 

results in this section are explicitly intended for the proof of concept and validating the 

proposed NILM application. Therefore, it does not imply that the given household is a 

freeloader. 
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5.3 Miscellaneous Applications 

Besides non-invasive load-shed authentication in the context of UDR, the non-intrusive 

load disaggregation outcome, i.e., sa
t,d, can also facilitate the automated DR programs. As 

the extracted inference results in the form of consumption patterns, i.e., time of use, and 

operation duration (presented in Table 41) can significantly facilitate the utility 

companies to identify the potential DR loads and formulate more efficient and effective 

ADR strategies. Furthermore, the NILM assisted inference can also contribute to the load 

forecasting systems, consequently, facilitates the utility companies and policymakers to 

formulate more efficient and effective strategies/policies.  For example, it is observed 

from the results presented in Figure 45 and Table 41 that the water heating circuit of the 

given household is mostly operated (not only in terms of frequency but also in terms of 

duration) in the morning and evening time-slots. From a larger perspective, such NILM 

assisted feedback regarding the consumption patterns will be highly valuable towards 

energy efficiency and conservation programs.  

Further, in terms of identifying the DR potential load elements and corresponding 

patterns, the non-intrusive load disaggregation outcome, i.e., sa
t,d, can also facilitate the 

load shifting techniques in the context of demand side management (DSM). As load 

shifting of high consumption load elements, like water heating circuit, will not only 

significantly flatten the peak load demand but also facilitates the consumers in terms of 

savings [144]. 

5.4 Concluding Remarks 

This chapter presented a brief overview of non-invasive load disaggregation applications 

along with a proof of concept in terms of real-world energy efficiency application, i.e., 

non-invasive load-shed authentication based demand response framework. The presented 

application is assisted by the proposed non-invasive load disaggregation approach, 

presented in this thesis. Based on the presented overview, proposed demand response 

framework, and corresponding analysis of the results, it is established that the non-

intrusive load disaggregation has a solid potential toward real-world energy efficiency 

applications. 

Furthermore, it is also established that irrespective of less number of load elements to be 

disaggregated with low data granularity, the proposed low-sampling event-based non-

intrusive load disaggregation approach has a high potential for real-world deployment 

towards energy efficient systems.  
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Despite promising potential and leap forward of non-invasive load disaggregation 

domain, there are constraints and open challenges that limit the advancement of the 

aforesaid domain. Therefore, in addition to concluding remarks regarding each aspect of 

this thesis, the next chapter, i.e., Chapter 6, also highlights different open challenges in 

the NILM domain and provides an outline of the future research directions accordingly.  
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Chapter 6 Conclusion and Future Work 

This Chapter presents a brief synopsis of the research work carried out during the three 

years of this PhD study. This Chapter also presents comprehensive conclusive remarks 

regarding different aspects of the presented research work. Furthermore, in the context of 

non-intrusive load disaggregation, a brief discussion on the challenges limiting the 

development of the said field and an outline of the future research scope is also the key 

focus of this Chapter. 

6.1 Synopsis and Conclusion 

This research work is primarily focussed on the implementation of a non-intrusive load 

disaggregation approach that can further contribute towards energy efficient systems. The 

proposed approach is built on the event-based working principle and all the results are 

validated on low sampling data granularity, subsequently making it more viable option 

for the existing metering infrastructure in terms of load measurements and real-world 

energy efficiency applications.  

6.1.1 Event Detection 

In the context of event-based non-intrusive load disaggregation, three new low-

complexity and computationally fast event detection algorithms, namely mean sliding 

window (MSW), variance sliding window (VSW), and mean absolute deviation sliding 

window (MAD-SW), are proposed in this research work. The proposed algorithms track 

statistical features using the iterative process to detect the events within the aggregated 

load measurements. The proposed algorithms not only detect the events but also return 

the time occurrence of the corresponding detected events. Comprehensive simulations 

including sensitivity analysis in terms of different input parameters are carried out, where 

the extracted event detection results are validated using the available ground-truth load 

measurements. Based on the results and corresponding analysis, it is established that all 

three proposed event detection algorithms attained very promising results. It is also worth 

noting that the robustness of the proposed event detection algorithms is further evaluated 

using two diverse real-world load databases hailing from New Zealand and the United 

State of America. 

6.1.2 Feature Engineering 

This research work explored the given load data in the context of feature extraction, 

feature reduction, and feature selection. A total of nine distinct load features based on 
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statistical, geometrical, and power features are extracted and thoroughly analyzed in the 

context of feature reduction and feature selection. To investigate the significance of 

feature space reduction and feature selection, comprehensive digital simulations on real-

world load data are carried out in this research work. The extracted results are further 

validated using classification performance. In the context of feature space reduction, it is 

concluded that the combinatorial process of distinct load features, i.e., intelligently 

grouping distinct load features, not only reduces the feature space dimensionality but also 

facilitates learning models in terms of classification performance. The same phenomenon 

is noted for feature selection with a further observation that, it is the relevance of the 

individual load feature, not the number of load features that facilitate the classification 

performance. Overall, under the given conditions, it is concluded that the feature 

reduction and feature selection methodologies significantly facilitate the employed 

classifiers in terms of classification performance. Further, it may also facilitate the 

classification models in terms of complexity and computational demands due to reduced 

feature set (dimensionality) as an input to the classifiers. 

6.1.3 Classification 

For load classification, this research work adopted the machine learning domain, more 

specifically the supervised approach, where eight diverse supervised machine learning 

models are employed. The employed machine learning models are first evaluated using a 

holdout/train-test and 10-fold cross-validation approaches and later trained on a single 

real-world household and tested on a diverse and independent set of real-world 

households, including the same household as used for training purposes and completely 

different households. It is worth noting that all the testing data (including the same 

household as of training) are completely unseen in the training phase. Comprehensive 

simulation studies are carried out to extract circuit-level, household-level, and classifier-

level performance of the employed learning models. A comparative analysis of the 

employed learning models is also part of this research work. For the given conditions, it 

is concluded that the multi-layer perceptron, support vector machine, logistic regression, 

and Gaussian process classifiers outperform other employed models. On the other side, 

the decision trees classifier lags in performance compared to the other employed 

classifiers, under the given conditions. It is worth noting that the comparative evaluation 

of different machine learning models presented in this research work does not mean to 

undermine the one or another learning model but to investigate the optimal learning model 

under the given conditions. As in the machine learning domain, ‘one size fits all’ is not 
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the case, hence the quest is to investigate an optimal classifier for a certain application 

under a given condition, rather than exploring the supremacy of one learning model over 

the others. 

To further address the shortcoming of the combinatorial learning model techniques in the 

non-intrusive load disaggregation domain, this research work also explored the ensemble 

learning approach, in addition to employing standalone learning models, for load 

classification. It is observed that the given ensemble model built on three diverse learning 

models, i.e., multi-layer perceptron, decision trees, and Naïve Bayes, balanced the 

performance of all its members and manages some reasonable classification performance 

improvement compared to most of its respective individual members. But it is also worth 

noting that the performance improvement enabled by the presented ensemble model came 

at a price of higher model complexity and computational demands, which leads to a trade-

off among overall performance and model complexity and computational demands. 

Hence it is fair to conclude that the selection of ensemble learning over the standalone 

learning model exclusively depends on the sensitivity of the targeted application or the 

choice of the end-user; to prefer performance over complexity or vice versa. 

6.1.4 Applications 

Despite leap forward in the field of non-intrusive load disaggregation, the research in 

terms of its actionable feedback, i.e., applications, is lagging, consequently, its real-world 

deployment is limited. To address this shortcoming, a real-world application framework 

based on non-intrusive load disaggregation is presented as a proof of concept. The 

presented framework targets the demand response program incorporated with non-

invasive load-shed authentication that is solely assisted by the proposed research work, 

i.e., low-sampling event-based non-intrusive load disaggregation approach. In this 

context, based on the presented case study for a real-world household, it is concluded that 

the research work presented in this thesis has a high potential for real-world deployment 

toward energy efficient systems. 

Finally, the proposed low-sampling event-based non-intrusive load disaggregation 

approach and corresponding application framework presented in this research work 

established that the non-intrusive load disaggregation performed at low sampling data 

granularity is not only viable but can also be effectively incorporated in real-world 

applications. Consequently, it is concluded that the non-intrusive load disaggregation 

approach has a solid potential towards energy efficient systems and further research and 

development in the said domain will unlock the actual potential of the smart grid concept. 
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6.2 Potential Challenges and Future Research Scope 

Despite the recent development in the non-intrusive load disaggregation domain, still, it 

faces many challenges that limit its real potential. In this context, some of the key factors 

are generalized load features, availability of standardized load disaggregation databases, 

and performance metrics for evaluation.  

The existing load space is too diverse and complex, making it hard to define a universal 

load feature space of interest. In the existing literature, there are load features which can 

be employed with confidence towards load inference, however, formulating a generalized 

load feature space that could be employed for load inference across the board is still an 

open research problem. As the electrical characteristics of the existing loads are quite 

diverse and complex, even in case of similar appliances the characteristics may vary due 

to their diverse manufacturing technologies. This diversity and variation in load space 

make generalized load features formulation harder, consequently, making accurate load 

classification more difficult. In the given context, the load feature analysis presented in 

this research can be extended to further formulate load features that are applicable to 

effectively model more load elements, subsequently enabling further robust and precise 

non-intrusive load disaggregation. 

Another factor that limits the advancement of the non-intrusive load disaggregation is the 

open availability of adequate load disaggregation databases. In terms of measurement 

attributes, the available load disaggregation databases are quite diverse and in some cases 

inadequate, consequently limiting the development of non-intrusive load disaggregation 

algorithms [145]. Hence, building a load disaggregation database with further detailed 

and refined measurement information for a wide range of load elements would be 

valuable for future algorithms development. Further, in the given context, future research 

needs to be more focus on low data granularity, as load databases with low data 

granularity measurements will not only provide ease in terms of computational needs: 

acquisition, storage, and processing, but also enable the research community to realize 

the real-world potential of NILM applications by developing and evaluating low sampling 

NILM algorithms. 

Further in the context of low data granularity, load classification techniques need to be 

further researched and to this end, the recent development of computational capabilities 

and advanced learning technologies can play a significant role. In the given context, this 

research work provides comprehensive evaluation of diverse learning models not only in 

a standalone/independent configuration but also in terms of ensemble learning. However, 
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this research can be further extended and more advanced learning models in both 

configurations: standalone and ensemble, can be explored toward accurate non-invasive 

load inference. 

Moreover, as discussed in Chapter 5 of this thesis, non-intrusive load disaggregation has 

solid potential towards efficient and sustainable energy systems. Hence, to further unlock 

the real-world potential of the non-intrusive load disaggregation, future research must be 

focussed on the real-world actionable feedback: applications, of non-intrusive load 

disaggregation towards, rather than exclusively focusing on existing algorithms’ 

performance enhancements and inference of more individual appliances/circuits.  
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Appendix 

A.1 Confirmation of Candidature 

 

A.2 Learning Models Parameters 

For simulation purposes, the details of the employed learning models’ parameters are 

presented in Table 42 [58]. Further details of the presented parameters can be found in 

Scikit-Learn [107].  

Table 42  Employed Learning Models’ Parameters   

Learning Models Parameter Details 

Support Vector Machine C=1.0, kernel=‘rbf’,  

Multi-Layer Perceptron activation=‘relu’, hidden_layer_sizes=(100,), solver=‘sgd’ 

Decision Tree min_samples_leaf=1, min_samples_split=2, splitter=‘best’, criterion=‘gini’ 

Random Forest  criterion=‘gini’, min_samples_leaf=1, min_samples_split=2, n_estimators=10 

Naïve Bayes var_smoothing=1e-09 

Gaussian Process max_iter_predict=100, multi_class=‘one_vs_rest’ 

Logistic Regression C=1.0, max_iter=100, penalty=‘l2’ 

k-Nearest Neighbors p=2, n_neighbors=5, weights=‘uniform’ 

Voting Ensemble  voting=‘hard’ 
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A.3 Sensitivity Analysis for Dataport  

Based on simulation parameters presented in Table 21, comprehensive sensitivity 

analysis is carried out for Dataport’s load data in terms of delay tolerance factor. The 

corresponding results along with the details of the employed household are presented in 

Table 43. 

Table 43  MSW Sensitivity Analysis in terms of ∆τ for Dataport 

 Dataport, Pecan Street 

 Household ID 26 

Data Acquisition Timeframe June 18 - July 02, 2014 

Number of Days 15 

Number of Samples 21600 

Total Detected Events 323 

Delay Tolerance 0 1 2 3 4 

True Positive 286 313 314 315 315 

False Positive 37 10 9 8 8 

False Negative 47 17 16 14 14 

Recall (%) 85.88 94.84 95.15 95.74 95.74 

Precision (%) 88.54 96.90 97.21 97.52 97.52 

F-Score (%) 87.19 95.86 96.17 96.62 96.62 

It is evident from the results presented in Table 43 that with the increase in delay tolerance 

value, the true positive detection also increases, subsequently, a consistent improvement 

in event detection performance has been recorded. Hence, similarly to the sensitivity 

results presented in Table 19 and corresponding analysis for the NZ GREEN Grid 

database, it is also evident from the results presented in Table 43 that the incorporation 

of delay tolerance significantly facilitates the event detection performance for Pecan 

Street’s Dataport. 

 

 

 


