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A B S T R A C T
Indoor positioning has attracted considerable interest in both the industry and academic communities
because of its wide range of applications, such as asset tracking, healthcare and context-aware
services like targeted advertisements. While there are many indoor localisation methods, each has
its advantages and disadvantages, taking into consideration various factors such as the effect of
the indoor environment, ease of implementation, computational cost, positioning accuracy, etc. In
other words, no single solution can cater for all different situations. Although many survey papers
have been published on indoor positioning, new techniques and methods are proposed every year,
so it is important to stay abreast of its latest developments. In addition, each survey has its own
classification for indoor positioning systems without a common scheme. Inspired by the well-known
OSI model and TCP/IP model, it would be desirable to develop a systematic framework for studying
indoor positioning systems. In this paper, we make this new contribution by introducing a systemic
survey framework based on a six-layer model to give a comprehensive survey of indoor positioning
systems, namely: device layer, communication layer, network layer, data layer, method layer and
application layer. Complementing the previous survey papers, this paper provides a survey of the latest
research works on indoor positioning based on the six-layer model. Our emphasis is on systematic
categorisation, machine learning-based enhancements, collaborative localisation and COVID-19-
related applications. The six-layer model should provide a useful framework and new insights for
the research community.

ntroduction
n the last few decades, indoor positioning has risen in
larity in the scholarly community because of the grow-
vailability of smartphones and their support for indoor
isation technologies such as WiFi and Bluetooth. Indoor
ioning refers to the process of determining a target’s
ion indoors and has a wide range of applications, in-
ng targeted location-based advertising [1], tracking the
ly [2] and the handicapped [3] and navigation in low-
ility environments [4]. While GPS (Global Positioning
m) is one of the most widely used positioning systems,

rforms poorly in indoor environments because of the
number of obstructions and low signal penetration

Therefore, other indoor positioning technologies are
red, the most common ones being Bluetooth, WiFi,

(Ultra-Wideband), VLC (Visible Light Communica-
, acoustic sound and ultrasound, but sub-metre accuracy
minimal installation and maintenance costs is still hard
hieve. The general trends in recent years have been the
tion of machine learning in indoor positioning [6] as
as the fusion of multiple technologies [7] to strike a
ce between the advantages and disadvantages of each.
all, researchers are seeking to address the following
lems when designing an IPS (Indoor Positioning Sys-
: (1) infrastructure installation cost, (2) infrastructure
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maintenance cost, (3) computational complexity/positioning
latency, (4) accuracy, (5) device battery life (if any). Note
that localisation is different from tracking as localisation
aims to acquire an object’s position just once, whereas in
tracking, the object’s location is updated in real time as it
is moving. Both involve position estimation, but tracking is
more long-term. This paper will focus more on localisation,
but some popular technologies are being extensively used for
tracking as well, so the paper will cover these use cases as
well.

Indoor positioning is an ever-changing field with new
techniques and methods proposed each year, so it is impor-
tant to keep surveying the recent trends. To facilitate this, it
would be helpful to have a single standardised framework
for IPSs, which, to the best of our knowledge, has not
been devised yet. This paper presents a new framework for
this purpose, and a survey of the latest indoor positioning
works is conducted based on the framework, with emphasis
on collaborative localisation and COVID-19 applications in
view of the recent pandemic situation worldwide. Because
of GPS’s poor performance in indoor environments, indoor
positioning technologies have been used in enforcing social
distancing in indoor spaces to prevent the spread of COVID-
19 by tracing people who have been in proximity to infected
individuals and placing them in quarantine to lower the
risk of further infection. The authors of [8] ran simulations
to study the effectiveness of contact tracing with different
communication technologies and found that a minimum of
60% adoption of contact tracing systems was required to
flatten the curve, and the best effect would be achieved with
2m proximity detection range systems, e.g., those based
on BLE (Bluetooth Low Energy). They also looked at less
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A Six-Layer Model for Indoor Positioning Systems

lar technologies for contact tracing, e.g., RFID (Radio-
uency Identification) and GPS. Contact tracing systems
ot designed to localise people but rather to detect

nces between them. Nevertheless, they are still going
considered in this paper as IPSs can be extended to be
for proximity detection as well.
Recent IPS Survey Analysis
any survey papers on indoor positioning have been

en in recent years. Zafari et al. [9] wrote one of the
popular indoor positioning surveys that gives a detailed
iew of indoor positioning techniques and compares

rent IPSs against criteria like energy efficiency, cost,
10] gave a more recent account of the state of the art of
or positioning research, comparing different positioning
ods. [11, 12] also reviewed indoor positioning tech-
s, methods and technologies but with a special empha-
IoT applications. [13] reviewed real indoor positioning

ms and described their applications in the industry in
detail, while also providing use cases for different
unication technologies along with their strengths and

ations. [14] is one of the most comprehensive indoor
ioning surveys with descriptions of more advanced
iques and methods.
any surveys focused on a specific theme instead of

iding a general overview of recent works on indoor
ioning. A large cluster of surveys focused on machine-
ing-based indoor positioning methods [15, 6, 16, 17,
which can be explained by the ability of machine
ing to handle complex noise patterns in indoor settings
posed to traditional methods. [18] gave a comprehen-
overview of deep learning methods for WiFi-based
rprinting (see section 8.3.3), where the authors show
despite the emergence of more advanced WiFi signal
urements like CSI (Channel State Information) (see
on 7.1.3), RSS (Received Signal Strength) (see section
), which is known to be unstable, can still yield com-
ive results for indoor positioning with the help of deep
ing. [18] reviewed works specifically on WiFi RSS-
d fingerprinting with the help of machine learning and
ssed dataset collection and open-source datasets. An-
significant cluster of surveys concentrated on indoor

ioning for smartphones [19, 20, 21, 22], which can be
ined by the fact that smartphone use is rising, meaning

they can be used to localise people indoors. [19, 22]
ned smartphone sensors that can be used for positioning
as barometer, camera, accelerometer, gyroscope, Blue-
, etc., along with positioning methods that can be used
them. [20] complemented this survey by discussing the
enges and possible solutions for implementing ubiqui-
IPSs for smartphones based on WiFi without additional
ware to account for the problem of device heterogene-

dvances in UWB technology for indoor positioning
pted surveys on the topic to also gain traction. [23]
ssed developments in UWB positioning systems since
and their use for smart logistics. The survey also went

the use of multi-sensor fusion and machine learning for

addressing the NLOS (Non-Line-of-Sight) problem in UWB
signal propagation. [24] surveyed collaborative UWB-based
systems. According to the authors, UWB system infrastruc-
ture is expensive to deploy because of the anchor nodes
required, but collaborative methods can turn mobile nodes
into anchors, reducing deployment costs. Other surveys that
focused on specific communication technologies for indoor
positioning are [25] (magnetic-field-based), [26] (BLE), [27]
(VLC). There are also surveys on emerging trends in indoor
positioning. For example, [28] described multi-sensor fusion
positioning methods, which fuse measurements from differ-
ent positioning technologies to achieve better performance,
and [29, 30, 31] surveyed device-free indoor positioning,
where no device is attached to the localisation target.

Many indoor positioning surveys provide a classification
system for indoor positioning methods, techniques and/or
technologies but, according to a meta-review of indoor
positioning surveys [32], there is no consensus on a general
IPS taxonomy. Note that in this paper, we define “methods”
as the positioning algorithms used, e.g., kNN (k-Nearest
Neighbours), trilateration, etc. It is necessary to review
classifications in recent surveys and distil them into a single
unambiguous framework because some authors do not use
the same terms. [9] provided an architecture-based classi-
fication with three classes: device-based (DBL), monitor-
based (MBL) and proximity-based (PBL) localisation sys-
tems. In DBL, the target (usually a smartphone) makes use
of reference points, whose positions are usually known, to
calculate its position. In MBL, the network is responsible
for localising the target, and in PBL, the task is to determine
how far the target is from a point of interest. The authors of
the survey also highlighted the importance of distinguishing
between localisation technologies (BLE, WiFi, etc.) and
techniques (RSSI (Received Signal Strength Indicator),
AoA (Angle of Arrival), etc.). [12] offered a similar cat-
egorisation for localisation topologies: mobile-node-based
(similar to DBL), reference-node-based (similar to MBL),
IMU-based (Inertial Measurement Unit) and proximity-
based (similar to PBL). Similar to [9], both [17] and [12]
distinguished between techniques and methods but [12] used
algorithms and techniques interchangeably. Kunhoth et al.
[5] divided IPSs into three groups: computer vision, com-
munication and PDR-based (Pedestrian Dead Reckoning)
systems, i.e., they classified IPSs based on the technology
and method used. Similarly, Ridolfi et al. [24] categorised
IPSs based on their algorithms (e.g., triangulation, fin-
gerprinting, etc.) and architectures (collaborative vs. non-
collaborative). [20] categorised IPSs based on infrastructure
availability (infrastructure-based vs infrastructure-free) and
further classified them by "mode" (single vs hybrid), which
specifies whether a single technology or multiple technolo-
gies are used for localisation. [13, 11, 10] described IPSs
in terms of their underlying communication technologies
and techniques used, and [14] gave a custom classification
for positioning methods (distance-based, direction-based,
connectivity-based, signal-based), technologies (RF (Radio
Frequency) vs non-RF) and “parameters” (distance-based,
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A Six-Layer Model for Indoor Positioning Systems

1
eviations used in the paper

AL Ambient Assisted Living
E Autoencoder
oA Angle of Arrival
oD Angle of Departure
P Access Point
PIT Approximate Point in Triangle
LE Bluetooth Low Energy
P Belief Propagation
AB Concentric Anchor Beacon
FR Channel Frequency Response
IR Channel Impulse Response
L Centroid Localisation
NN Convolutional Neural Network
SI Channel State Information
BN Deep Belief Network
V-Hop Distance-vector hop
KF Extended Kalman Filter
AN Generative Adversarial Network
PS Global Positioning System
F High Frequency
MA Interacting Multiple Model Algorithm
U Inertial Meaurement Unit
S Indoor Positioning System

Infrared
S Intelligent Reflecting Surface
M Industrial, Scientific and Medical
F Kalman Filter
NN k-Nearest Neighbours
DA Linear Discriminant Analysis
ED Light Emitting Diode
F Low Frequency
oRa Long Range
oRaWAN Long Range Wide Area Network
OS Line-of-Sight
PWAN Low Power Wide Area Network
STM Long Short-Term Memory
AP Maximum a Posteriori

MDS Multidimensional Scaling
ML Machine Learning
MLE Maximum Likelihood Estimator
MMSE Minimum Mean Square Estimator
NLOS Non-Line-of-Sight
OSI Open Systems Interconnection
PDoA Phase Difference of Arrival
PDR Pedestrian Dead Reckoning
POCS Projection Onto Convex Sets
PPM Parallel Projection Method
RBM Restricted Boltzmann Machine
RF Radio Frequency
RFID Radio-Frequency Identification
RNN Recurrent Neural Network
RSS Received Signal Strength
RSSI Received Signal Strength Indicator
RTI Radio Tomography Imaging
RToF Return Time of Flight
RTT Round Trip Time
SDP Semi-Definite Programming
SVM Support Vector Machine
TDoA Time Difference of Arrival
ToA Time of Arrival
ToD Time of Departure
ToF Time of Flight
TWR Two-Way Ranging
UCA Uniform Circular Array
UHF Ultra-High Frequency
UKF Unscented Kalman Filter
ULA Uniform Linear Array
URA Uniform Rectangular Array
UWB Ultra-Wideband
VLC Visible Light Communication
WCL Weighted Centroid Localisation

WCWCL Weight Compensated Weighted Centroid Lo-
calisation

WKNN Weighted kNN
WLAN Wireless Local Area Network

-based, direction-based). [17] classified IPSs by tech-
gies, techniques and methods used. It is evident that

surveys distinguish between techniques and methods,
e others describe them jointly, which can be confusing.
n general, a layered model can provide a more system-
classification approach, which can then be translated
a clear survey structure. However, none of the previous
y papers have studied this layered model approach.

aim of this paper is to provide this new contribution to
lement the previous survey papers. All abbreviations
in the paper are listed in Table 1.
Key Contributions
ased on a six-layer model, this survey paper covers
r papers published in the last five years. While we
cover indoor positioning systems/applications in gen-
our focus is on machine learning-based enhancements,

collaborative positioning methods and COVID-19-related
applications in particular. Compared to other survey papers,
the main contributions of this paper are summarised as
follows:

• A Systemic Survey Framework based on a Six-Layer
Model: Inspired by the OSI (Open Systems Intercon-
nection) model and TCP/IP model and complement-
ing the previous work, this paper presents a systemic
framework based on a six-layer model for organis-
ing indoor positioning surveys. Note that for com-
puter networks, it is common to define layered models
for various purposes such as the well-known OSI
and TCP/IP models and other models e.g., for cloud
computing. There is yet a layered model for indoor
positioning systems/methods. One major difference
between our model and frameworks used in other

yeva et al.: Preprint submitted to Elsevier Page 3 of 55
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A Six-Layer Model for Indoor Positioning Systems

survey papers is that we consider a more holistic
approach, covering different layers: device layer, com-
munication layer, network layer, data layer, method
layer and application layer. To the best of our knowl-
edge, little work has been done to construct a similar
layered model. Therefore, our work should provide
new contributions to the research community. It can
provide a more standardised structure for surveys in
the field, making them easier for readers to navigate.
Indoor positioning surveys use different frameworks,
which may be hard for the reader to put together,
especially because of overlaps. In addition, a survey
framework can facilitate IPS analysis by providing
structure and thus help compare different systems
against each other.
Systematic Review of Recent Papers on Indoor Po-
sitioning: Based on the six-layer model, we study
recent papers on indoor positioning. The majority of
our studies are from 2017 to 2022. Note that due to
COVID-19 in the last two years, there have been big
changes around the world. Hence, there is a need to
conduct a new survey to complement the previous
surveys.
A Holistic Categorisation Framework at Various Lay-
ers: At each layer of the six-layer model, whenever ap-
propriate, we provide a holistic categorisation frame-
work such as categorising devices as transmitter, re-
ceiver, localiser, tag, anchor and processor at the de-
vice layer; providing network classification based on
infrastructure availability, passivity, centralisation and
collaboration at the network layer; and dividing meth-
ods into two general types: collaborative and non-
collaborative methods at the method layer. In sum-
mary, compared to other surveys, the presented six-
layer model with the categorisation framework should
provide more insights.
A Comprehensive Overview of Indoor Positioning
Methods: Most surveys cover a subset of indoor
positioning methods, usually traditional methods like
trilateration and fingerprinting. This paper discusses
both collaborative and non-collaborative methods,
with more emphasis on the former because they are
less dependent on the availability of infrastructure. In
addition, we provide examples of machine-learning-
based enhancements that address the shortcomings
of non-collaborative methods and give an overview
of machine learning algorithms in the appendix for
reference purposes.
A Wide Range of Examples of Indoor Positioning
Applications: Unlike other surveys, we classify indoor
positioning applications based on the function(s) a
system is designed for, e.g., proximity detection, navi-
gation, tracking, as opposed to the domain the system
operates in. We give real-life examples of each appli-
cation type and domains/industries it is applicable in,

with more emphasis on examples related to COVID-
19.

To summarise, this paper serves as a proposal for an
indoor positioning system framework accompanied by a
literature review of the latest works to demonstrate the
framework.
1.3. Roadmap

The next section will provide an overview of the indoor
positioning survey framework, and the rest of the paper will
delve into each layer in detail while also covering the most
common types of data, technologies and methods as well
as general trends in indoor positioning simultaneously. This
paper will only focus on recent works on indoor positioning,
i.e., it does not aim at providing a historical overview of
the field. In addition, acknowledging that other surveys
used extensive evaluation frameworks for indoor positioning
systems, e.g., based on accuracy, computational complexity,
etc., in this paper, whenever examples of systems are pre-
sented from the literature, they are mainly evaluated in terms
of positioning accuracy.

2. Methodology
In this section, we give an overview of the methodology

adopted for finding related works, which consists of two
parts: a general search and a specific search. For general
search, we followed the guidelines of [33] to perform a sys-
tematic literature review on indoor localisation surveys and
distil a general model for indoor positioning. Our method-
ology for general search consists of the following stages,
inspired by a survey written by [34]:

1. Planning
2. Formulating research questions
3. Outlining inclusion criteria
4. Finding papers
5. Data collection and extraction
6. Quality assessment
The rest of this section will describe each stage in more

detail.
2.1. Planning

In the planning stage, the scope of the survey was defined
based on a preliminary literature review, and the significance
of the topic was assessed. Based on this, it was discov-
ered that there is a lack of consensus on a general indoor
positioning system taxonomy in the literature. It would be
useful to define a model for indoor positioning similar to the
OSI model for the Internet to assist standardisation, avoid
inconsistencies in terms used in the literature, guide readers
unfamiliar with the topic, etc.

yeva et al.: Preprint submitted to Elsevier Page 4 of 55
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A Six-Layer Model for Indoor Positioning Systems

Formulating Research Questions
esearch questions were formulated to define the scope

e survey for general search in particular. In general, there
our research questions as discussed below.
Q1. How can indoor positioning systems be divided

layers similar to other models like the OSI model for
ternet? This question can help identify general patterns
g indoor positioning systems and facilitate their com-

on.
Q2. What technologies are typically used for indoor

isation? How can they be classified? We need to study
or positioning technologies currently in use and their
gths and limitations. This question is necessary to as-
in how to further categorise each layer.
Q3. What methods are most commonly employed in

or localisation? What classification system can be de-
d for them? It is necessary to examine what indoor
ioning methods recent papers employ and how they are
ified in other surveys/frameworks.
Q4. What are the applications of indoor positioning?

lar to the OSI model, the new indoor positioning model
ld have an application layer at its highest level to help
le understand the uses of indoor positioning systems.
Outlining Inclusion Criteria
ased on the research questions defined in the previous

on, the following list of inclusion criteria was curated.
der to be included in this survey, a paper must

be related to indoor localisation
be a journal article or a conference paper
be published between 2018 and 2023
be in English
specific search: be an empirical study with experimen-
tal results (simulated conditions are accepted); general
search: be a survey paper

rence was given to papers from peer-reviewed journals.
Finding Papers
or both general and specific search, paper search was
ucted over four databases:

Scopus (https://scopus.com/)
Google Scholar (https://scholar.google.com/)
IEEE Xplore Library (https://ieeexplore.ieee.org/)
Web of Science (https://webofscience.com/)

general search, the following search string was used:
or AND (posit* OR locali*) AND (survey OR review

overview)”. Search results from the databases were
rted and combined into a single spreadsheet.

2.5. Data Collection and Extraction
The data collection stage was divided into two phases:

the general search phase and the specific search phase. In
the former, search results from the four databases in section
2.4 were collated and analysed to define the structure of
the survey, including outlining relevant security and privacy
issues. Specific search was needed to obtain more details for
insights derived from the first phase.
2.5.1. General Search

After compiling search results, duplicates were dis-
carded. Specifically, articles with the same DOI and/or title
were dropped. The following pieces of information were
extracted for each paper:

1. abstract
2. title
3. keywords
4. year of publication
5. citation count
6. document type
7. journal/conference title
8. DOI

The PRISMA framework by [35] was used to systematically
search for relevant papers, and the PRISMA diagram for this
survey is presented in Figure 1. Overall, out of 1869 search
results, 134 surveys were analysed.

Figure 1: PRISMA diagram for this survey.

yeva et al.: Preprint submitted to Elsevier Page 5 of 55
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A Six-Layer Model for Indoor Positioning Systems

Figure 2: A six-layer model used for indoor positioning systems survey

. Specific Search
he aim of specific search was to find more details for
layer in the proposed framework and refine its structure.
same databases as in section 2.4 were in this stage, and
hly 150 papers were included in this survey.
Quality Assessment

34] used the DARE criteria from the York University
er for Reviews and Dissemination CDR Database of
racts of Reviews of Effect to perform quality assess-
, but these criteria are for review papers. Since this
y is not restricted to reviews, a custom set of quality
sment criteria were employed, as listed below:
𝑄𝐴1: Does the paper meet the inclusion criteria?
𝑄𝐴2: Does the paper evaluate its proposed method?
Is evidence provided?
𝑄𝐴3: Was related work covered and the strengths
and contributions of the work compared to others
described?

Systematic Survey Framework -
ix-Layer Model
ased on extensive review of recent papers on indoor
ioning, this section presents a novel six-layer model
Ss in general and the survey framework in particular,

which is illustrated in Figure 2. The model/framework con-
sists of six layers (starting from the bottom layer): device,
communication, network, data, method and application. As
one goes up the hierarchy, the more abstract and high-
level each layer becomes. Table 2 describes interrelation-
ships between different layers, which are directed and are
defined as “row item determines column item”. The table
demonstrates that even though the layers are distinct, they
are interconnected and influence each other. For example,
the positioning method used determines the types of data
and communication technologies required. Similar to the
classification of [17], we separate algorithms, technologies
and types of data into distinct categories.

The device layer serves as the physical backbone of
an IPS, describing the types of devices employed as well
as their roles and functions. Most IPSs rely on a model
of inter-device signal exchange, so three device functions
can be delineated: transmitter, receiver and localiser. One
device does not have to be restricted to just one function,
e.g., a transmitter can be a receiver and a localiser, i.e.,
be able to calculate its own position. Device functions are
different from device roles in that functions are about what
the device does, whereas roles are what the device is, i.e.,
it could be a tag (a device attached to the target), an anchor
(part of the network with a known location), or a processor,
i.e., positioning facilitator. Interactions between entities and
functions are discussed in more detail in section 4.

yeva et al.: Preprint submitted to Elsevier Page 6 of 55
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A Six-Layer Model for Indoor Positioning Systems

2
relationships between the different layers of the proposed framework.

Device Communication Network Data Method Application
ice - Determines

communication
technologies
supported

Determines
architecture,
passivity,
collaboration
ability and
infrastructure
dependence

Determines
positioning
data supported

Determines
computational
complexity
supported

Determines the
scope of appli-
cations

muni-
ion

Determines de-
vices required

- Determines
passivity,
collaboration
ability and
infrastructure
dependence

Determines
positioning
data supported

Determines
method
supported

Determines the
scope of appli-
cations

a Determines de-
vices required

Determines
communication
technologies
allowed

Determines
collaboration
ability and
architecture

- Determines
method
supported

Determines the
scope of appli-
cations

thod Determines de-
vices required

Determines
communication
technologies
allowed

Determines
architecture,
passivity,
collaboration
ability,
infrastructure
dependence

Determines
positioning
data required

- Determines the
scope of appli-
cations

lication Determines de-
vices required

Determines
communication
technologies
allowed

Determines the
architecture,
passivity,
need for
collaboration
and
infrastructure

Determines the
type of data al-
lowed for col-
lection

Determines
computational
complexity,
accuracy,
latency,
response time,
scalability
and other
requirements

-

he next layer in the model is the communication layer,
h describes the technologies used to enable communi-
n between devices. A wide variety of technologies are
for indoor positioning, and they can be broadly clas-
into four categories: light-based, sound-based, radio-

ency-based and communication-free technologies. The
n for the wide variety of indoor positioning technolo-
is that each has its own strengths and weaknesses,
ing one is more suitable for a certain application than
er. Light-based technologies, for example, tend to be
precise if used for distance estimation but can only

ate at room level because light cannot penetrate walls,
like sound. Radio-frequency-based technologies vary
rms of ranging accuracy but in general are attractive
use of low cost, invisibility and ease of use. One of their
r limitations is that they perform poorly in obstructed
onments. As for communication-free technologies, as
ame suggests, these do not involve signal exchange
een devices. IMU-based and magnetic-field-based po-
ing rely on navigation sensors embedded in smart-
es, and computer vision relies on image processing for
isation.

The first two layers establish the devices used in an IPS
as well as how they communicate, and the next layer, i.e.,
the network layer, describes their arrangement and mode
of interaction. Network architectures can be classified in
four ways. The first categorisation is based on the extent to
which the system relies on specialised infrastructure, with
infrastructure-free systems rising in popularity because they
entail little to no installation and maintenance costs [36, 37].
IPS architectures can also be classified into passive and
active systems, depending on the interplay between device
functions and entities. If the tag is a transmitter, the infras-
tructure is said to be passive, and if the tag is a receiver, the
network is expected to consume power for signal transmis-
sion, so the infrastructure is labelled as active. The next type
of IPS architecture classification is based on the distribution
of computational power. If positioning is delegated to a
single device, then the system is said to be centralised, and
centralised systems are generally easier to implement but
might pose problems like privacy issues, communication
bottlenecks and single point of failure. Finally, IPSs can
be collaborative and non-collaborative, which is not the
same as being distributed vs centralised. A collaborative

yeva et al.: Preprint submitted to Elsevier Page 7 of 55
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A Six-Layer Model for Indoor Positioning Systems

3
ples of IPSs from the literature described based on the proposed framework

er [38] [39] [40] [41]
lication • Localisation

• Navigation
• Localisation • Localisation

• Navigation
• Localisation
• Navigation

thod • Positioning: (1)
fingerprinting (LSTM-
based); (2) PDR

• Fusion: loose
• Distance estimation

technique: N/A

• Positioning: recursive
DV-Hop

• Fusion: N/A
• Distance estimation

technique: RSSI-based

• Positioning: other (ge-
ometric)

• Fusion: N/A
• Distance estimation

technique: light-based

• Positioning:
fingerprinting (LSTM
based)

• Fusion: none
• Distance estimatio

technique: N/A
a • RSSI heatmap (signal-

characteristics-based
data)

• Stride length and
heading direction angle
(motion-based data)

• RSSI • Linear velocity, angu-
lar velocity, speed cycle
(motion-based data)

• Images of LEDs
(image-based data)

• Magnetic field data

work • Infrastructure
availability:
infrastructure-based

• Passivity: passive
• Computing

architecture:
client-based (edge
computing)

• Collaboration: non-
collaborative

• Infrastructure availabil-
ity: infrastructure-free

• Passivity: passive
• Computing

architecture:
client-based (edge
computing)

• Collaboration: collabo-
rative

• Infrastructure
availability:
infrastructure-based

• Passivity: passive
• Computing

architecture: server-
based (fog computing)

• Collaboration: collabo-
rative

• Infrastructure availabi
ity: infrastructure-free

• Passivity: N/A
• Computing

architecture: client-sid
(edge computing)

• Collaboration: non
collaborative

muni-
ion

• WiFi (RF-based)
• IMU (communications-

free)

• An RF technology that
supports RSSI

• VLC (light-based)
• Odometer

(communications-free)

• Magnetometer
(communications-free

ices • Transmitters: WiFi ac-
cess points; receiver: a
smartphone; localiser: a
smartphone

• Tag: smartphone;
anchor: WiFi access
points; processor: none

• Auxiliary devices: a PC
to train the model

• Transmitter: wireless
sensor node; receiver:
wireless sensor node;
localiser: wireless
sensor node

• Tag: wireless sensor
node without access
to GPS; anchor: GPS-
equipped wireless sen-
sor node; processor:
none

• Auxiliary devices: none

• Transmitters: LED
lamps; receiver: rolling
shutter camera on a
robot; localiser: robot

• Tag: robot; anchor:
LED lamps; processor:
a remote controller PC

• Auxiliary devices: none

• Transmitter: N/A; re
ceiver: N/A; localiser:
smartphone

• Tag: a smartphone; an
chor: N/A; processo
N/A

• Auxiliary devices: a P
to train the model

in
ings

• WiFi data can be fused
with IMU data

• LSTMs can be used for
WiFi and IMU data as
a time series and yield
a positioning error of
around 1m

• Recursive DV-hop im-
proves localisation ac-
curacy in WSNs

• Cooperative
localisation of robots
enabled with VLC
and an odometer can
achieve an average
positioning error of
4.31 cm

• LSTMs can be used fo
magnetic field position
ing data as a time se
ries for localisation an
yield a positioning erro
of around 1m

m is one where devices exchange data and propagate
information to their neighbours. In non-collaborative
ms, unlocalised nodes cannot act as anchors, and if they
an insufficient number of localised neighbours, their

ion cannot be obtained. In collaborative systems, on the
hand, once an unlocalised node obtains its position, it
ecome an anchor and assist in the localisation of other

calised nodes.

The data layer of the model focuses on the data used as
input for positioning methods, which are represented by the
next layer. Data such as ToA (Time of Arrival) and AoA
are sometimes referred to in the literature as localisation
algorithms, e.g., [12]. However, in our framework, they are
regarded as data because ToA values on their own, for
example, cannot be used to localise a node. Our framework
separates these data from the method layer and considers
distance estimation part of the method layer. Note that, in

yeva et al.: Preprint submitted to Elsevier Page 8 of 55
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A Six-Layer Model for Indoor Positioning Systems

Figure 3: Device layer breakdown

papers, e.g., [9], indoor positioning data such as ToA
AoA are referred to as techniques, so we use these
s interchangeably. Data that can be used for positioning
ly relies on the communication technology used. For
ple, AoA has only just recently been integrated into the
standard [42]. Data for indoor positioning algorithms
e broadly classified into signal-characteristics-based,
-based, time-based and sensor-based data. Most types
ta are used for inter-node distance estimation, which

fficult in indoor environments because most distance
ation schemes assume that the signal travels in LOS
-of-Sight) conditions, which can easily be disrupted by
ng objects.
he method layer represents the algorithm used in an IPS
lculate targets’ positions. A wide variety of positioning
ods exist, depending on the system architecture and
ologies used. Similar to IPS architectures, there are
ways to classify indoor positioning methods, and many

ese classifications overlap, so this paper provides a cus-
categorisation. In general, positioning methods can be
ified into collaborative and non-collaborative methods,
e the former rely on inter-node data exchange and the
s do not. Most traditional positioning methods (e.g.,
ilateration) are non-collaborative. They can be further
ified into proximity-based, geometric, self-processing,
rprinting and other methods. Out of these methods,
rprinting is the best in terms of positioning accuracy
but, like other traditional methods, usually requires the
f machine learning for best results. In recent years,

borative methods have been rising in popularity [36]
use of their shared merits with collaborative architec-
. Collaborative methods can also be categorised in
rent ways. Some of them are probabilistic, e.g., belief
agation, and some are deterministic, e.g., MDS (Multi-
nsional Scaling). Some allow the use of virtual anchors,

i.e., treating recently localised nodes as anchors, while others
do not.

Finally, the topmost layer of the model, the applica-
tion layer, provides a high-level overview of an IPS. It
describes the real-life context in which the system is used,
e.g., navigation for customers in a shopping mall, tracking
assets in a warehouse, etc. Most studies do not cover the
specific application aspect of their proposed systems. In this
paper, IPS applications are classified based on the high-
level functions they were designed for, and one system
can be used for multiple applications. Four functions can
be distinguished: proximity detection, localisation, tracking
and navigation. Previous work generally discusses indoor
positioning applications in the context of their use cases
and/or industries, but this work argues that an application
should not be domain-dependent. Of course, technologies
and methods used may be different between domains, but the
underlying application can be the same. In other words, this
survey presents the application layer from a more abstract
viewpoint, but it also gives examples of use cases for each
abstract application. When it comes to industries and use
cases where indoor positioning has been most commonly
used, researchers generally list healthcare, robotics, asset
tracking, disaster management, marketing and security and
defence.

To demonstrate how the framework can be used, Table 3
breaks down some IPSs from the literature based on the
proposed six-layer model.

4. Device Layer
The device layer is the foundation layer of the six-layer

model that provides a high-level overview of the entities
and functions of physical devices involved in the positioning
process. Figure 3 presents the outline of this section to guide
readers.

yeva et al.: Preprint submitted to Elsevier Page 9 of 55
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A Six-Layer Model for Indoor Positioning Systems

here is a wide variety of devices used in indoor po-
ing systems, and their choice depends on the type of
unication technology they support. For example, an
(Light Emitting Diode) lamp would not be able to

mit radio signals. Despite this, these devices can be
ralised into entities depending on their role (tag, anchor,
essor) and the function(s) they serve (transmission, re-
on, localisation). Note that this only applies to systems
d on signal exchange, i.e., PDR-based systems are not
red and are considered a special case because they are
ed for target tracking rather than positioning. Figure 4
s the different device types and whether one can be the
, e.g., a tag can be a transmitter, a receiver, a localiser
r an anchor.

Figure 4: IPS device categories

hese relationships are not necessarily mutually exclu-
(e.g., a tag can be a transceiver) and are dictated by the
ty of different IPS architectures, which will be covered
ction 6. This section will describe each device type and
ide examples from the literature. Please refer to Table 4
xamples of IPS entities and their functions based on the
osed framework.
Transmitter
transmitter is a device that continuously sends signal

s, be it radio waves, ultrasound or light, at a certain
gth and time intervals. If a transmitter is wireless, bat-
life is a major consideration as frequent battery replace-
might be impractical. Some devices can be configured

eserve energy by transmitting at sparser time intervals
t sending signals at all so that they can be “woken

and broadcast signals as required whenever needed.
nding on the network architecture, a transmitter could

nything from a lightweight mobile device to a more
lex equipment piece. One of the most popular examples

e former is a BLE beacon, which, according to [43], is a
l radio device that transmits BLE signals periodically
hannels 37-39 in the BLE 2.4GHz ISM (Industrial,
tific and Medical) band. It is connectionless, meaning

devices do not need to be paired to receive data ad-
sed by a beacon, allowing multiple devices to read a

single beacon’s data (beacons can only act as transmitters).
Beacons run on lithium-cell coin batteries, which can last
for several years because of the fact that beacons save energy
between advertisements. However, for some systems, battery
replacement is not an option, and some work has been done
to harvest energy for beacons from external sources, e.g.,
solar energy and human motion, but these attempts have
not been able to provide sufficient energy to sustain beacons
long-term, so more research is needed in this area. A WiFi
AP would be an example of a heftier device that can be
used for signal broadcasting. One of WiFi APs’ attractive
features is that existing APs can be used for localisation [44],
meaning that it is possible to deploy WiFi-based IPSs with
no additional infrastructure. The issue is that APs were de-
signed for communication, not positioning, i.e., they do not
have an in-built mechanism for noise elimination, making
it very difficult to achieve sub-metre accuracy with WiFi
alone in NLOS settings [45]. Another downside of access
points is that they consume more power than beacons [46],
and performance is poor in low-coverage areas. In a similar
fashion, smart things with embedded BLE beacons could be
used as anchors in home environments for monitoring the
elderly or children, for example.
4.2. Receiver

A receiver is a device that detects signals broadcast
by a transmitter using one or more antennas and converts
it to machine-readable data. Figure 4 illustrates that a re-
ceiver can be a transmitter, and devices that support both
functions are called transceivers. Examples of devices that
only support signal reception include passive RFID tags,
photodetectors, etc., but many IPSs use transceivers for
reception, e.g., WiFi APs, smartphones, UWB transceivers,
ultrasound transducers, etc. Position estimation can happen
on the receiver’s side, meaning that a receiver can act as a
localiser, and this case will be described in more detail in
subsequent sections. Different receivers come with their own
caveats and may require special arrangements. For instance,
wireless UWB transceivers need to be synchronised to a
clock accuracy of less than 1 ns [23]. An example of how
this can be achieved is provided in the system proposed by
the authors of [47], where receivers were connected to a syn-
chronous controller through fiber lines to record the arrival
times of signals coming from all receivers and correct for
transmission delay before positioning took place. However,
there are other methods that do not require synchronisation,
e.g., in [48], two-way ranging is used to remove UWB clock
asynchronisation error.
4.3. Localiser

A localiser is a device that is responsible for calculating
the position of a target. This is where the most computation-
ally expensive part of the positioning process takes place,
so a localiser is expected to have a framework for carrying
out computational operations. Thus, a localiser is usually
some sort of computer, but this is not to say positioning
itself is too expensive to be handled by, say, a smartphone.
Examples of localisers include servers, Raspberry Pis, PCs,

yeva et al.: Preprint submitted to Elsevier Page 10 of 55
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A Six-Layer Model for Indoor Positioning Systems

4
ples of the types of devices used for indoor positioning and their functions

- Transmitter Receiver Localiser Tag Anchor Processor
WiFi AP (access point) ✓ ✓ ✓

UWB transceiver ✓ ✓ ✓ ✓
Ultrasound transducer ✓ ✓ ✓ ✓

Server ✓ ✓
BLE beacon ✓ ✓ ✓
LED lamp ✓ ✓

Photodetector ✓ ✓
Active RFID tag ✓ ✓
Passive RFID tag ✓ ✓

RFID reader ✓ ✓
Smartwatch ✓ ✓ ✓ ✓ ✓
Smartphone ✓ ✓ ✓ ✓ ✓

ZigBee transceiver ✓ ✓ ✓ ✓
Infrared LED lamp ✓ ✓

which are processors, but tags can also be localisers. A
tphone that acts as a tag carried by the target can also be
aliser by employing self-positioning technologies and
ods. However, in recent years, to improve positioning
racy and capture the complexity of signal propaga-
researchers have been proposing more sophisticated

ioning algorithms, making them more computationally
nsive, e.g., as was mentioned previously, there is a
ounced upward trend in the use of machine learning in
. The more computationally expensive an algorithm is,
ore likely it is to be delegated to a more powerful third-
device such as a server, which may not be possible or

able. Thus, a trade-off between computational complex-
nd accuracy must be made, and the right architecture
ld be chosen accordingly. This trade-off is discussed in
on 6.3 in the network layer.
Anchor
n anchor is a general term for any network node that fa-
tes the positioning process of the target by either trans-
ng or receiving signals. Typical examples of anchors
de WiFi access points, RFID receivers, ultrasound re-
rs, etc. Anchors can be thought of as the constituents
e indoor positioning infrastructure. Like tags, anchors
e exclusive in their functionalities, i.e., some can only
s receivers, e.g., photodetectors, or transmitters, e.g.,
lights. Transceivers are also a common choice for

ors, e.g., ultrasound transducers, UWB transceivers,
s was mentioned in the previous section, localisation

rs either on the server side or on the client side, and
anchors do not belong in either category, they do not

ort localisation, i.e., they simply act as hubs for signal
ange. One of the most popular networking scenarios is
al anchors transmitting signals to a receiving tag, which
this information to position itself, e.g., a BLE-based

with BLE beacons as anchors and a smartphone as a
49], a VLC-based IPS with LED lights as anchors and
todetector attached to a smartphone as a tag [50] and
. Another common blueprint is a transmitting tag and

receiving anchors connected to a central unit responsible for
position determination, e.g., a UWB-based IPS with UWB
transceivers both as anchors and a tag [51], an RFID-based
IPS with active RFID tags as tags and RFID receivers as
anchors [52] and more. Finally, Figure 4 shows that the tag
and anchor nodes are connected, meaning that a tag can be an
anchor and vice versa. This happens in collaborative systems
where devices can act as both transmitters and receivers and
exchange signals to position each other so that no additional
infrastructure is required [36].
4.5. Tag

Before discussing the definition of a tag, a distinction
between a target and a tag must be made. This survey defines
a target as the object or person of interest that needs to
be localised, whereas a tag is defined as a device or piece
of hardware attached to the target that helps pinpoint the
location of the real object of interest, which could be a
person, a robot, an asset, etc. Localisation targets do not
have to be digital devices; they can be people, objects, etc.
However, we may use “target” and “tag” interchangeably
throughout the survey. In many IPSs, a device is attached to
the target to enable positioning, and this is known as device-
based positioning. In device-free positioning, on the other
hand, no device is attached to the target, so positioning is
performed purely with the help of anchors broadcasting a
signal [14]. For example, computer vision-based systems
based on camera surveillance are device-free because ob-
jects of interest do not have to carry any device with them.
Another example is given by [53], where a device-free lo-
calisation optimisation-based method was proposed for RF-
based systems, where the indoor space is divided into grids,
and a matrix of RSS values exchanged between anchors is
collected and analysed to identify the target’s location. In
a similar study [54], infrared sensors were used to collect
measurements for a person walking over labelled grids, and
a deep learning model was trained on time series data for
location inference. This discussion is necessary to highlight
that tags do not have to be present in an IPS.
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A Six-Layer Model for Indoor Positioning Systems

Figure 5: Communication layer breakdown

hen it comes to device-based positioning, tags used in
systems are usually expected to be light and portable
the object of interest is mobile most of the time, and
ples of such devices include RFID tags, BLE beacons,
tphones and wearable tech. Some devices can only act
ansmitters, e.g., beacons [43], active RFID tags [55],

can only receive incoming signals, e.g., passive RFID
[55], while others can do both, e.g., smartphones, smart-
hes, transceivers, etc. When it comes to localisation,

can calculate its own position only when it acts as a
ver and if it has computational capability (e.g., the only
tionality a passive RFID tag supports is signal reception,
t was not designed to perform calculations required for
or positioning). This is referred to as self-positioning
e literature. If the tag acts as a transmitter in a system,
positioning is either done by the receiver or is sent to a
rate processor such as a server or a PC.
Processor
rocessors and localisers may seem like they refer to
ame thing, but their conceptualisations are different. A
essor is a server or a PC where data is sent from receivers
osition estimation, but, as was mentioned previously, it
t present in every IPS. In other words, a processor is
tity, whereas a localiser is defined by its function. It
not mean a processor cannot be a localiser. In case a

essor is present in an IPS, it can only be responsible
ocalisation and is thus a localiser, but a localiser is
ecessarily a processor. They do not have to be mutu-
xclusive, they are disparate concepts. The reason why

essors are defined as separate entities is because they
ot directly involved in communicating with tags, they

simply process data they receive. This distinction can be
useful for IPS security analysis because security and privacy
considerations for third-party processing can be different.

Although servers can handle more computationally com-
plex methods, server-side localisation has its own chal-
lenges. First, for privacy purposes [56], it would be better
to compute location estimates on the client side, i.e., on the
tag, which is described in the next section, but the tag’s
computational resources may be insufficient for the level
of accuracy required. In general, for location privacy, it is
better for the client to share as little information with third
parties as possible. Although protocols have been proposed
for location privacy, e.g., [57], they are still incomplete and
do not ensure full privacy. Secondly, if machine-learning-
based fingerprinting is used, for example, it is cumbersome
for the client to download the model and keep it up-to-date.
Another potential problem with server-based positioning is
latency as it may be inefficient to keep exchanging data
with the server. Smartphone-based indoor positioning is
gaining more interest in the research community because
more people have access to smartphones and smartphones
are becoming more powerful, so client-side localisation is
becoming more feasible. In general, researchers are striving
to minimise the complexity of IPS infrastructure by using
as few devices as possible, so the former issue is being
addressed by new algorithms and techniques. Server-based
systems are usually those where self-positioning is not vi-
able, e.g., in UWB-based systems UWB transceivers do not
support positioning, but after the integration of UWB chips
in smartphones [58], serverless UWB positioning is likely to
become an attractive option. Servers are usually not used for
signal reception or transmission. Referring to the discussion

yeva et al.: Preprint submitted to Elsevier Page 12 of 55
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A Six-Layer Model for Indoor Positioning Systems

Figure 6: IPS communication technologies ordered by frequency (not to scale)

omputational paradigms in section 4.3, fog nodes and
servers would be considered processors, so an IPS can

more than one processor with different computational
rces.
Auxiliary Devices
ome systems may require additional devices to assist
calisation and are part of the infrastructure but are not
isers and do not seek to be localised, e.g., routers for

unicating with the server, database servers, etc. One
le example of an auxiliary device that has been gaining

tion among researchers is the Intelligent Reflecting
ce (IRS). IRS is a two-dimensional surface that can

ect electromagnetic waves towards a desired location,
acting as a relay [59]. As discussed in section 5.3, RF-
d technologies suffer from environmental noise caused
stacles, but studies show that IRS can significantly re-
noise by redirecting the signal in the desired direction,

cing multipath fading. [59] tested IRS in indoor and
oor environments with a 30 cm concrete wall between
eceiver and the transmitter and found that IRS was
tive even in NLOS conditions, meaning the authors
able to significantly improve the signal’s strength.

e studies have been done on employing IRS in IPSs.
xample, the authors of [60] implemented a device-free
-based IPS with an IRS and found that even in the pres-
of noise and multipath interference, the system could
e multiple people with sub-centimetre accuracy. This
ar-reaching implications for indoor positioning as IRS

help address the problem of obstacles that undermine
ioning performance. However, IRS also comes with its
enges. According to [61], one of the major problems
e high cost of channel estimation, which is performed
r at the receiver or the transmitter, meaning that either
should have the computational capacity for channel
ation, and the large array of passive scattering elements
result in long estimation delay. Channel estimation can
rformed by overhearing signals emitted by transceivers,
is requires a low-power information exchange protocol.
her issue is that, since IRS requires training, it needs

retrained in dynamic, heterogeneous networks with
iple users. This requires additional infrastructure for co-
ating multiple IRSs. In addition, phase reconfiguration
attering elements is required for beam steering, but this
o a computationally expensive process.

5. Communication Layer
Serving the device layer, the communication layer de-

termines how devices communicate with each other in an
IPS. Figure 5 outlines the structure of this layer. There
is a variety of different means of device communication,
and they can be broadly classified into three categories:
light-based, sound-based and radio-frequency (RF)-based
technologies. Light-based and RF-based technologies are
electromagnetic in nature but operate over different fre-
quencies and thus have different characteristics (please see
Figure 6 for how IPS communication technologies fit on
the electromagnetic spectrum). Table 5 compares different
indoor positioning technologies across different metrics like
coverage and frequency, while Table 6 lists the advantages
and disadvantages of the communication technologies cov-
ered. [12] categorised communication technologies that can
be used for indoor positioning into four groups: light-based,
radio-frequency-signal-based, sound-based and other tech-
nologies. A similar substructure for the communication layer
is adopted in this paper, but since this layer only describes
communications, other types of positioning technologies
will be described in a separate subsection within the Com-
munications section. Occasional references to positioning
data may be made, but they will be explained in detail in
the Data section.
5.1. Light-Based Technologies

As the name suggests, light-based technologies use light
as a medium of inter-device communication. Light and radio
are both on the electromagnetic spectrum but exhibit dis-
parate characteristics. One of the major advantages of light-
based technologies is high accuracy, but since light cannot
travel through walls, they can only be used for room-level
positioning. In addition, they require specialised hardware,
meaning using them for infrastructure-free systems would
be a challenge.
5.1.1. Infrared (IR)

IR light is an electromagnetic communication medium
that operates on the 300GHz-400 THz frequency band [79],
meaning that it is between visible light and microwave
radiation. This technology works similar to VLC in that there
is an IR LED that emits bursts of IR light that is captured by
a photodiode for further data processing. IR light’s coverage
can reach 4m [80]. According to [87], an IR LED-based
proximity sensor is embedded in most smartphones, making
it convenient for end-users. The authors of the study used
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A Six-Layer Model for Indoor Positioning Systems

5
parison of different indoor positioning technologies

Frequency Coverage Bit rate
i 2.4GHz or 5GHz [62] up to 75m indoors and 250m

outdoors [63]
up to 600MBps [63]

2.4GHz [64] up to 100m [65] up to 2MBps [66]
B 3.1 − 10.6GHz [67] up to 50m [68] up to 27.24MBps [69]
Bee 2.4GHz [70] up to 70m [71] 250 kBps [71]

D
]

125−134 kHz (LF ((Low Fre-
quency)))

< 50 cm < 1 kBps

13.56MHz (HF (High Fre-
quency))

up to 1.5m 25 kBps

433 − 864MHz (UHF (Ultra-
High Frequency))

up to 100m 100 kBps

865 − 956MHz (UHF) 0.5 − 5m 100 kBps
2.45GHz (microwave) 10m 100 kBps

a (Long
ge)

433, 868, 915MHz [73] up to 19 km [74] 0.3 − 37.5 kBps [75]

430 − 770 THz [76] up to 1.4 km [77] up to 1 TBps [78]
(Infrared) 300GHz-400 THz [79] up to 4m [80] up to 16MBps [81]
ustic signal < 20 kHz [82] up to 1m [83] up to 1 kBps [84]
rasound > 20 kHz [82] up to 8m [85] up to 30MBps [86]

6
ntages and disadvantages of different communication technologies

hnology Advantages Disadvantages
i Existing access points can be used, so infras-

tructure costs can be cut
Operates poorly in NLOS conditions

Beacons are lightweight, portable and can last
for several years

NLOS sensitivity

B High accuracy Special equipment needed for the target
Bee Low cost and low power consumption NLOS sensitivity
D Low cost and low power consumption NLOS sensitivity
a Highest coverage, low power consumption,

can work indoors and outdoors
Cannot be used for real-time positioning;
requires special equipment

High accuracy and low cost Additional infrastructure is required; sensitiv-
ity to NLOS; smartphone-based positioning is
not convenient for all methods

High accuracy and low cost Only operates on room level; sensitivity to
sunlight

ustic signal High accuracy and low cost Only operates on room level; special arrange-
ments needed to make sound inaudible

rasound High accuracy Only operates on room level; high installation
costs

tphone IR LEDs as beacons and IR cameras as receivers
2.44 × 2.23m2 area and achieved an error of less than

on average. This goes in line with the high accuracy
LC, meaning that light-based technologies would be
rred if positioning accuracy is critical. In addition, IR-
d IPSs can be easier and cheaper to set up. For example,
8], a device-free IR-based IPS was designed to count
umber of people present in a room only using one sensor
nted on the ceiling. Despite the aforementioned benefits,
ased positioning does not seem to be a viable option
ide-area positioning for a number of reasons. First, it
sceptible to sunlight and requires LOS conditions to
rm well. Secondly, unlike other RF technologies, IR

light cannot penetrate walls [89], so IR equipment would
have to be deployed for each room in an indoor environment.
5.1.2. Visible Light Communication (VLC)

VLC is a communication technology that uses visible
light as a medium of data transfer. There are other tech-
nologies that use light, but outside of the visible spectrum.
According to [90], VLC operates on the 430−770THz band,
which is 10000 times the entire radio frequency spectrum.
As a result, VLC consumes more power than radio technolo-
gies, but its bit rate (up to 1 TBps [91]) and range (1.4 km
[77]) are also much higher. LEDs are used to emit light,
which is detected by an optical sensor, e.g., a photodiode or a
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A Six-Layer Model for Indoor Positioning Systems

ra, and at least three LEDs are required for positioning.
nt improvements in illumination technologies made
s transmit data imperceptibly to the human eye, while
illuminating the environment, so they can serve multiple
oses [92]. In [93], VLC-based IPSs are classified into
al categories depending on the devices used: camera-

d (rolling shutter effect, double camera approach, cam-
nd IMU), photodiode-based (one photodiode and many
s, one LED and many photodiodes, one photodiode and
LED), outdoor (traffic lights, vehicle lights, LED bea-
) and hybrid systems (fusion with other technologies).
seems to be an attractive indoor positioning technology

use of its high accuracy. For example, the authors of
achieved an accuracy of 8 cm with an SVM (Support
or Machine) in a 5 × 5m2 area using four LEDs and a
ile node with a photodetector attached. In another study
the authors used a smartphone camera as the receiver

achieved 5 cm and 6.6 cm accuracy with four LEDs
ioned at 50 cm and 80 cm heights respectively. Like
technologies, however, VLC also has its limitations.
xample, it requires the target object to be in its line
ht, otherwise, its performance goes down. In addition,
positioning requires at least three LEDs in a single area

verage, so special installation arrangements in buildings
eed to be made. Moreover, photodiodes are not embed-
n smartphones, so smartphone-based positioning with
is inconvenient.
Sound-based Technologies
imilar to light-based technologies, sound-based tech-

gies typically are only applicable to room-level position-
ecause of their inability to penetrate walls. Two types of
d can be used for indoor positioning: acoustic (audible)
d and ultrasound (beyond human hearing range), and
will be briefly described next.
. Acoustic Signal
ound within the audible range (less than 20 kHz [82])

be used as a means of data transfer and can thus be
ded to be used for indoor positioning, but its range
ited to 1m [83]. To make the sound inaudible, the

mission power from the speaker needs to be lowered,
special algorithms are needed to improve the ability
e receiver to detect the incoming signal [9]. In an
stic-signal-based IPS, a speaker acts as a transmitter,

microphone acts as a receiver, and since smartphones
both, they can be used to be an infrastructure-free

ioning system. For example, in an acoustic-signal-based
described in [96], speakers were used as anchors to
ise smartphones, which received the acoustic signal

their microphones and used TDoA for positioning,
ving an error of under 1.8m 95% of the time. A system
d EchoSpot [83] relied on inaudible sound sensing
evice-free positioning, where a single speaker and a
ophone available in household devices were used for
an localisation based on ToF. The system achieved a
cm error at 5m distance.

5.2.2. Ultrasound
Ultrasound is a communication technology that uses

sound inaudible to the human ear (greater than 20 kHz) for
data transmission [82], so its obvious advantage is that no
extra measures need to be taken to suppress the sound vol-
ume. Ultrasound has a slower propagation speed compared
to IR and RF technologies, making its clock synchronisation
for time-based indoor positioning methods easier. Ultra-
sound indoor positioning is also based on the transmitter-
receiver model and requires its own devices, i.e., ultrasound
technologies are not embedded in smartphones. Usually,
an ultrasound tag (microphone) is used as a receiver and
a target, and ultrasound transmitters are attached to the
ceiling to act as anchors. A common practice is to use RF
technologies in ultrasound IPSs for clock synchronisation.
For example, in their study, Carter et al. [82] combined RFID
with ultrasound to determine the TDoA (Time Difference
of Arrival) of the RF signal and the ultrasound signal to
calculate the ToF (Time of Flight) of the latter. This helped
them achieve a 5.5 cm error in LOS and a 35 cm error in
NLOS conditions. The authors used ToF for positioning and
reported that the majority of ultrasound-based IPSs use it
as well, but some studies exploring RSS-based ultrasound
positioning have been conducted as well. Another example
of the fusion of ultrasound with another technology is a
study by Paredes et al. [97], which combined optical and
ultrasound signals. Specifically, the authors used a camera
with IR LEDs to obtain depth information and used five
ultrasonic transducers to locate a drone with an ultrasound
receiver attached in 3D space. A maximum accuracy of
8 cm was reported in LOS conditions, which is high, but no
NLOS results were reported, and this system would require
special equipment setup in every room. Although Bluetooth
is a more popular choice for contact tracing [98], ultrasound
has also found its use in preventing the spread of COVID-
19. Specifically, a contact tracing system called NOVID
combined Bluetooth with ultrasound to improve proximity
estimation accuracy in [99].
5.3. Radio-Frequency-Based Technologies

RF technologies are some of the most popular choices
for indoor positioning because of their invisibility, low cost,
wirelessness and ability to travel through walls. However,
a common limitation of RF technologies is that they are
sensitive to obstructions and need LOS to perform their best.
This is not to say all RF technologies are the same. Each
has its own characteristics and trade-offs, and application
needs determine which RF technologies are chosen. This
section will provide an overview of the most common RF
technologies used for indoor positioning.
5.3.1. Bluetooth Low Energy (BLE)

According to [43], BLE is a wireless communication
technology that was designed to broadcast small amounts of
data encoded as an electromagnetic signal at a constant rate
and consume less power compared to Bluetooth. Bluetooth
consists of the physical and MAC layers and is used to
connect Bluetooth devices within a confined area [9]. Like
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A Six-Layer Model for Indoor Positioning Systems

tooth, BLE operates on the 2.4GHz ISM spectrum [64]
as 40 channels instead of 79, the last three of which
sed for advertisement and the rest are used for data ex-
ge. Its data rate can reach 2MBps [66], and its signal can
agate up to 100m [65]. [100] described the reasons why

ore power-efficient than Bluetooth. First, BLE devices
sleep mode the majority of the time and only activate
needed. Secondly, BLE only uses three frequency

s compared to 16-32 frequency bands in Bluetooth,
h greatly reduces power consumption. BLE is part of
luetooth 4.0 standard and was designed specifically for
pplications. It is mainly used for distance estimation
anging, i.e., calculating how close the receiver is to a
mitter.
ecause BLE devices are relatively cheap and are power-
ent, BLE has been a popular communication technol-
of choice for indoor positioning among researchers
e last few decades. For example, the authors of [3]
ned a tracking system for the elderly and the hand-
ed based on BLE. They gave the test subjects BLE

ons (either actual beacons or wearable BLE devices like
bands) and installed eight Raspberry Pis as receivers.
r LOS experiment in a 36m2 area yielded an error of
than 1.7m 90% of the time, and in NLOS conditions,
% accuracy was reported. Beacon placement on the
of the subjects did not have a significant impact on

ccuracy. Researchers are striving to achieve centimetre-
accuracy in indoor positioning, but BLE alone is not
ient because of its vulnerability to multipath fading.
ignal power at the receiving end is negatively correlated
the squared distance between the receiver and the

mitter [43], meaning that the signal fades faster the
er away they are from each other, and this effect is
avated by obstructions even further.
n recent years, researchers have started to fuse BLE
other technologies. For example, the authors of [48]
ared positioning accuracy when using only UWB base
ns, only BLE beacons or a combination of both. They

d that positioning error was lowest (12.2 cm) when only
base stations were used and was highest when only

beacons were used (1.21m). The authors of [101] also
ucted a comparative study on BLE and UWB-based
ioning and arrived at similar conclusions. They found

WB performed better, especially in NLOS conditions.
ite this, using UWB alone is expensive because it has

orter battery life, so combining it with BLE acts as
de-off between accuracy and power consumption. In
], an algorithm for fusing ultrasound with BLE in the

IPS was shown to achieve a median error of 0.38 −
m. Another common pairing is BLE with IMU, e.g.,
03], BLE and inertial navigation were integrated for
or positioning, which reduced the error from 1.76m to
oximately 1m. Another example is [104], where BLE
used with IMU for 3D positioning, and BLE RSSI data
sed to detect landmarks rather than directly for distance
ation to reduce the influence of multipath fading. Most
es usually use RSSI for BLE-based positioning, but

Bluetooth recently released a new version of the BLE stan-
dard that now supports direction finding using AoA/AoD
(angle of arrival/angle of departure) (see sections 7.2.1 and
7.2.2) [105].

BLE has also found wide use in contact tracing systems
[8]. For example, the UK National Health Service developed
an app for COVID-19 contact tracing using BLE to detect
proximity between people’s smartphones and exchanging
encrypted data between them to notify users whether they
have been in contact with infected people [106].
5.3.2. Ultra-Wideband (UWB)

UWB is a wireless radio technology that utilises a large
portion of its radio spectrum, allowing it to have a high data
rate over short distances. It operates on a 3.1 − 10.6GHz
spectrum and has a high temporal resolution because of its
high bandwidth, making it immune to multipath fading and
thus making it more accurate for indoor positioning [67].
According to [69], UWB is characterised by energy effi-
ciency, multipath resolving ability, low cost and centimetre-
level accuracy, making it an attractive technology for indoor
positioning, especially because UWB is expected to be inte-
grated into smartphones soon [58]. The UWB and BLE radio
signal is called CIR (Channel Impulse Response). Because
UWB provides more accurate measurements than BLE, it
is becoming incorporated into commercial devices such as
smartphones [69].

Many studies using UWB for indoor positioning have
been conducted in recent years. For instance, the authors of
[107] used three UWB transceivers to localise a UWB tag
in a 20 × 20m2 area using deep learning and ToA (please
refer to section 7.3.1) and achieved a 7 cm accuracy. [108]
reported a similar level of accuracy (5 cm at best) by using
median and a KF (Kalman Filter). In [109], a 3.6 cm error
was achieved using AoA-based localisation. [51] extended
UWB-based positioning to use different methods, depending
on whether it was operating in NLOS or LOS conditions.
The authors achieved a maximum error of 1.3m and an
average error of 47 cm (method with lowest average error)
in NLOS conditions. Like BLE, UWB is also sensitive
to obstructions, but the amount of variation in its signal
is much smaller. Nevertheless, a number of papers have
been published on detecting NLOS conditions, usually using
machine learning (e.g., [110, 111, 112]) and mitigating the
effect of obstructions on the UWB positioning error, e.g.,
the authors of [113] improved the positioning accuracy from
79% to 87%, and the authors of [114] combined NLOS
detection and mitigation in the same method, achieving sub-
metre accuracy 90% of the time with NLOS mitigation.

Similar to BLE, UWB is also often used in conjunction
with other technologies. For example, in [115], UWB and
IMU were combined to correct the long-term drift error
of the latter. In line with the work that has been done on
detecting NLOS conditions for better UWB positioning per-
formance, the authors of this study stated that UWB-based
positioning performed poorly in cluttered environments, so
they suggested that IMU be coupled with UWB so that
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A Six-Layer Model for Indoor Positioning Systems

correct each other’s errors. They achieved a maximum
of 20 cm in a 10 × 10m2 area. Another noteworthy
ination was tried in [116] - WiFi, ZigBee, BLE, UWB
MU. IMU was used to get the trajectory of the target’s
ment, whereas the other technologies were used for

ing the target in a location. They conducted experiments
460m2 area and achieved an error of less than 2m 90%
e time. The authors’ intention was to design a system
would be scalable and suit the needs of both small and
spaces, but the infrastructure required for this system

be cumbersome to install and maintain.
. Wireless Fidelity (WiFi)
iFi, also known as the IEEE802.11 standard, is a wire-

ommunication technology that operates on the 2.4GHz
GHz ISM band, similar to Bluetooth [62]. Its coverage
nds on whether it is operating indoors or outdoors.
oor coverage can reach 250m, while maximum indoor

is 75m, depending on the exact standard [63]. WiFi
ainly used to provide access to the internet for WiFi-
led devices. Most smartphones, computers and other
es support WiFi, making it one of the most popular
ologies for indoor positioning [36].
large body of research has been done to design meth-

o take advantage of existing APs and maximise posi-
ng accuracy. Given the wide variety of methods avail-
the accuracy in the literature also has a wide range –
m [45] to 8m [117] roughly. For instance, the authors
18] achieved an accuracy of 2m with nine APs and a
tphone as a target in a 57 × 20m2 area, while in [45],
2 − 3.43 cm accuracy was reached using CSI finger-
ing (see section 8.3.3) in NLOS conditions. WiFi is
often combined with other positioning technologies. For
ple, the authors of [118] fused WiFi RSS values with
data to generate a radio map of the indoor environment
chieved an accuracy of 1.71m in a 1495m2 area with
Ps, which is a good result given the size of the area.
as mentioned previously, smartphones can act as access
ts as well, and in [119], this fact was used to build an
structure-free system with a 90% accuracy using WiFi
ct and IMU embedded in smartphones, i.e., the authors
ot use any external access points.
here have been new developments in WiFi communi-
ns. For example, apart from RSS, WiFi now supports
re granular type of signal measurements called CSI,
h is discussed in section 7.1.3. In short, RSS, as dis-
d in section 7.1.1, is highly unstable and gives limited
mation about signal propagation, but more information
e derived from the CSI matrix because it captures how

tly the signal refracted and changed on its way to the
nation. There are many studies on WiFi CSI fingerprints
door positioning, e.g., [120, 121, 122, 123]. Another
ising development is the introduction of IRS for wire-
ommunication, which is discussed in section 4.7. With
iFi standard IEEE 802.11mc released in 2016, WiFi

now supports RTT-based distance estimation [124].

5.3.4. Long Range (LoRa)
A LoRaWAN (Long Range Wide Area Networks) is a

LPWAN (Low Power Wide Area Network) whose infras-
tructure is similar to that of cellular networks but has a larger
range (up to 19 km in LOS conditions [74]). Some commer-
cial LPWANs have already adopted LoRa, and it is an emerg-
ing IoT technology for indoor positioning. According to [73],
it operates on three frequency bands: 433, 868, 915MHz.
LPWANs are characterised by low power consumption with
extensive coverage. This comes at the cost of a lower data
rate (0.3 − 37.5 kBps [75]), which is even lower than that of
BLE and ZigBee, and long intervals between data transmis-
sions, which means that LoRa is not suitable for real-time po-
sitioning. LPWANs incur significant deployment costs and
require extensive planning effort. Therefore, they combine
the functionalities of GPS and short-range communication
technologies as they can be used for both indoor and out-
door positioning. When used indoors, LoRa features lower
signal attenuation because of its low data rate. When used
outdoors, it does not need to communicate with satellites.
LoRa uses CSS (Chirp Spread Spectrum) modulation [73],
making it resistant to multipath fading, interference and
Doppler effects, but implementing it is difficult because of
its low bandwidth and large distances [9]. Therefore, LoRa
has worse performance for indoor positioning compared to
other RF technologies, but, if used in conjunction with GPS,
localisation accuracy can be improved.

When it comes to examples from the literature, the
authors of [125] evaluated the performance of LoRa for in-
door positioning using RSSI fingerprinting and reported an
average error between 4m and 23m in NLOS conditions, de-
pending on which floor experiments were conducted. [126]
reported a better positioning error of 1.6m and 3.2m for
LOS and NLOS conditions respectively. In [127], a TWR-
based (Two-Way Ranging) positioning system achieved a
considerably higher accuracy with four LoRa transceivers
as anchors - 60 cm 99% of the time in a 40 × 40m2 area,
but this figure was reported for LOS conditions. In NLOS
conditions, the maximum error went up to 8.6m. Overall, it
is evident that even though LoRa boasts the highest coverage
out of all indoor positioning technologies, there are better
alternatives if accuracy is the main priority.
5.3.5. ZigBee

ZigBee is a radio communication technology similar to
Bluetooth developed by the ZigBee Alliance. According to
[70], it also operates on the 2.4GHz frequency band, features
low power consumption and does not interfere with other
2.4GHz frequency band technologies. Unlike Bluetooth,
however, ZigBee is a low data rate technology (250 kBps)
[71]. Most ZigBee-based indoor positioning systems use
RSSI for position estimation, similar to other RF technolo-
gies like BLE and WiFi. RSSI levels are embedded in data
packets sent by ZigBee, making it convenient for developers.
According to [9], ZigBee is not a favourable choice for
indoor positioning as it is not supported by user devices.
Despite this, several studies have been conducted on the use
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A Six-Layer Model for Indoor Positioning Systems

gBee for indoor positioning. For example, the authors
28] used four ZigBee beacons as reference nodes in a
12m2 area and achieved an accuracy of 1.15m using
cle swarm optimisation. ZigBee has also been combined
other technologies, e.g., in [129], ZigBee was fused
IMU, yielding an error of less than 50 cm. Another
orthy ZigBee-based system was built by the authors

30], where the user’s position was determined based on
er interaction with smart home devices with the help
ngerprinting and proximity-based localisation (please
sections 7 and 8 for a more in-depth discussion of
isation data and methods). Fingerprinting was used to
ify which room the user was in, and proximity-based
ioning was used to determine the exact location of
ser in the room based on which smart sensor he/she

acted with, e.g., fridge sensor, door sensor, etc. The
rs also distributed wearable sensors to users so that
would transmit RSSI data, and environmental sensors
distinguish between multiple users. ZigBee is widely

in smart home devices [131], so this IPS can reuse
ing home devices and extend their use to indoor locali-
n. ZigBee was specifically designed to address the need
w-power, low-cost, secure communication technology,
h it does, but, similar to other RF technologies, ZigBee-
d positioning suffers from low accuracy because of
ipath fading [132]. Overall, ZigBee’s mode of operation

ilar to BLE, but its main disadvantage is that it is not
rated in smartphones, meaning that it requires its own
ware for mobile targets.
. Radio Frequency Identification (RFID)
ccording to [133], RFID is a cheap radio communi-

n technology that is used to transmit data between an
transmitter and an RFID reader, which is connected to

ice that processes and stores data from the reader. It has
dy found use in identifying, locating and tracking ob-
such as assets in warehouses, patients in hospitals, etc.,
ts widespread adoption is limited due to such factors
ivacy, cost and unsatisfactory accuracy. RFID operates
veral frequency bands: low-frequency (125−134 kHz),
-frequency (13.56MHz), ultra-high frequency (865 −
Hz) and microwave frequency, and there are two types

FID: active and passive [72]. An active RFID tag is
red by an internal battery and periodically transmits
signals, which are captured by an RFID reader. Active
tags are more expensive than passive ones, but their
is much higher, so they are more suitable for tracking.

ive RFID tags do not require power to work. Their signal
mission circuit is triggered by a signal sent by a high-
r RFID reader. Because of their limited range (1−2m),
are used more for identification of objects rather than
ing or localisation. A relatively recent development in

technology has been the use of chipless RFID sensors,
h have attracted significant attention in the research

unity because they are suitable for harsh environments
emove chip-associated costs, among other advantages

over traditional sensors [134]. Recent studies [135, 136]
demonstrate their usefulness in indoor localisation.

RFID is an attractive technology for indoor positioning
because of its low cost, but similar to BLE, achieving sub-
metre accuracy with RFID remains a challenge. The authors
of [137] managed to achieve an error of less than 50 cm over
96% of the time with RFID, but their test area was quite small
(3 × 3m2). They separated transmitters and receivers from
RFID readers to save power and used a passive RFID tag as
the target. In [138], passive RFID tags were used as well
but to correct for IMU drift in asset tracking. They were
able to bring positioning error consistently under 3m, but
the range of RFID tags was very small (75 cm). In terms of
active RFID, in [139], active RFID transmitters were used
as anchors to track wearable RFID readers carried by users,
yielding a 2m accuracy in a high-noise simulated area of
40 × 20m2. Similar to other radio technologies, researchers
have tried to combine RFID with other technologies. For
example, the authors of [52] distributed active RFID tags to
users to carry along with their smartphones so that IMU data
from the smartphones could be fused with RFID positioning
results. All positioning data was sent to a central unit for
processing, and the authors achieved an accuracy of 4m in
a 1600m2 area.
5.4. Communication-Free Technologies

A variety of alternative technologies for indoor position-
ing exist, but this section will only cover some of the most
common ones encountered in the literature.
5.4.1. Inertial Technologies

Devices like smartphones and autonomous vehicles have
an embedded IMU, which contains orientation sensors, and
a typical IMU includes a triaxial accelerometer and a triaxial
gyroscope. Some IMUs also contain a triaxial magnetometer
because it can output high-precision heading data, but its
azimuth estimation is unreliable because of magnetic field
disturbances in the environment [140]. Accelerometers de-
tect user acceleration in a specific direction, and gyroscopes
help improve this prediction. IMU sensors can be used to
predict the next location, speed and direction of a moving
object, and this process is referred to as dead reckoning.
PDR involves step detection, step length estimation, heading
estimation and, finally, position estimation. One of the main
problems of PDR is the initialisation issue. PDR can only
calculate positions relative to its origin, which is unknown at
the start, so other technologies need to be used to localise the
target initially, e.g., WiFi [141], which has its own accuracy
issues. Another major problem is the accumulation of drift
and deviation errors, which leads to progressively worse
performance over time [142]. The authors of [143] suggested
that the position of the target is re-initialised periodically, but
its accuracy depends on the resolution of the initialisation
problem. In addition, IMU sensors can be power-intensive
and thus be taxing on the battery [37].
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A Six-Layer Model for Indoor Positioning Systems

. Magnetic Field
agnetic-field-based positioning relies on magnetic field

ference, be it artificially generated or stemming from
’s natural magnetic field (ambient magnetic field),
e strength varies in different parts of the planet. Accord-

o [144], some animals, especially birds, rely on Earth’s
etic field for navigation. In outdoor spaces, ambient
etic field strength does not show much variation over

, but indoors, ferromagnetic elements like iron and
l create unique disturbance patterns in Earth’s magnetic

, and these patterns can be used to identify where one
he majority of studies rely on ambient magnetic field,
that of Earth, and a magnetometer is used to measure
etic interference [25]. Earth’s magnetic field can be
sented using a Cartesian system where any point 𝑃
presented in terms of three coordinates: 𝑥 - direction
rds the geographic north, 𝑦 - direction towards the ge-
phic east and 𝑧 - direction towards the earth. Magnetic-
-based positioning is a relatively new field of study
ared to RF technologies, for example. Some of its most

ctive features are high availability and low cost since
etometers are embedded in devices like smartphones
utonomous vehicles. Moreover, unlike PDR, magnetic-

-based systems do not require another technology for
lute positioning if a magnetic field map of the indoor
e is constructed before real-time positioning, making
attractive choice for infrastructure-free systems [144].
xample, Yeh et al. [145] designed a purely magnetic-

-based IPS with a smartphone-based magnetometer
achieved an average error of 90 cm in a 32 × 10m2

e. Some authors have tried fusing magnetic-field-based
ioning with other technologies. For example, Sun et al.
] combined PDR and magnetic-field-based positioning

genetic particle filtering, which yielded an accuracy of
m in a 360m2 environment. Compared to the previously
ioned study, this system showed worse performance,
though testing conditions were similar, which could
plained by the fact that the two studies used different
tphones. One of the main problems of magnetic-field-
d positioning is changes in disturbance patterns caused
he movement of ferromagnetic objects indoors. As

entioned previously, magnetic-field-based positioning
s on pattern matching, so, if patterns change, positioning
racy will be adversely affected. Movement of people
non-ferromagnetic objects, however, does not exert a
ficant influence on the magnetic field. Another major
lem is device heterogeneity: different devices have
etometers from different vendors that vary in precision
olerance level, meaning that two different devices may
uce different estimates for the same position, even if
use the same algorithm [144]. Finally, similar to PDR,

a magnetometer for a prolonged period of time can
the battery on smartphones [37]. Overall, it seems that
etic-field-based positioning is similar to IMU-based

ioning in that both can be infrastructure-free and are
ble for smartphone-based positioning, but the former
not seem to be as sensitive to interference on the part

of the target moving around, making it a more attractive
alternative.
5.4.3. Computer Vision

Computer vision refers to the use of machine learning
to perform inferences on images. Specifically, in the context
of indoor positioning, computer vision can be used to deter-
mine the location of a target through a camera using different
methods, e.g., by matching pictures from the environment
with a database of pictures collated beforehand. Computer-
vision-based positioning boasts one of the highest accuracy
levels among all indoor positioning technologies but is more
expensive and operates poorly in the dark [5]. However,
in [147], infrared cameras were used for thermal imaging,
removing the need for illumination. The study was moti-
vated by the difficulty firefighters face when navigating fire-
afflicted areas. Firefighters participating in the study were
given handheld infrared cameras to estimate their direc-
tion, velocity and angle of movement, and this information
was combined with IMU data, yielding an average error of
2m, which is rather high for a computer-vision IPS, but
handheld cameras can move around frequently, especially in
extreme unpredictable environments firefighters work in. An
infrastructure-free object-detection-based system by Xiao et
al. [148], on the other hand, showed better performance. In
their system, a database of the images of reference objects
(e.g., doors, windows) was compiled prior to positioning,
so that during positioning, a smartphone, acting as a target,
could capture pictures of its environment and upload them
to a server, which ran an object recognition model to locate
reference objects and calculated the target’s position based
on its position relative to the reference objects. The au-
thors reported an average error of 70 cm. Object recognition
models with high accuracy are computationally expensive
and need time and effort to train, and these are some of
the considerations that should be taken before opting for
computer vision solutions for indoor positioning.

6. Network Layer
The network layer presents a higher level of abstraction

in indoor positioning systems and focuses on their infras-
tructure, i.e., what components are required and what roles
they are supposed to play. Researchers have used different
terms for various IPS architectures, but overall, no uniform
classification for them has been proposed. One probable
reason is that there are multiple ways to classify them,
depending on the perspective adopted. This section presents
different considerations to be taken when designing an IPS
architecture, based on literature review and trends identified
in studies. Figure 7 shows the outline of this section. Dif-
ferent types of architectures are difficult to be classified in a
single hierarchy because of overlaps, so a graph-based rep-
resentation is provided for the reader’s reference in Figure 8,
where a connection between two nodes means that they are
compatible, i.e., not mutually exclusive. When it comes to
relationships between system architectures within the same
category, e.g., collaborative and non-collaborative, they can
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Figure 7: Network layer breakdown

be combined in the same system, but these relationships
ot included in the diagram to avoid confusion. This is
cable to all categories except for infrastructure-based vs
structure-free systems, as is explained in section 6.1.

Figure 8: Types of IPS architecture

Infrastructure Availability
ne of the main issues in designing indoor positioning
ms is the cost associated with installing and main-
ng their architecture, so researchers have been striv-
o devise systems that either use existing networking
structure in buildings, e.g., WiFi access points, or do
ely on any specialised hardware. Another compelling
n why infrastructure-free systems are becoming more
lar is that, in emergency situations like earthquakes
re, infrastructure-based IPSs cannot be relied on since

ork operation can be disrupted [37]. Some studies call
ms that use existing infrastructure infrastructure-free,
or simplicity and to have a clear definition of infrastruc-
independence, this work shall restrict the definition of
structure-free systems to those that can operate in any
or environment without relying on external hardware.
rding to [37], there are three types of infrastructure-free
ms: sensor-based, by knowledge exchange and through
interaction. Sensor-based ones are those that rely on
tphone sensors, including IMU sensors (please refer to
on 5.4 for a more in-depth discussion of these technolo-
. The second type is based on the collaboration of net-
participants to infer their positions based on individual

pieces of knowledge about the area to construct its holistic
map. It will be covered in more detail in section 6.4. The last
type is the most lightweight one in that the user is asked to
select a landmark they are standing next to from a finite list of
landmarks compiled beforehand and then select a destination
from the same list so that a route can be constructed between
the two points. This is a navigation scenario rather than a
positioning scenario, so only the first two will be considered
in the paper. As for infrastructure-based systems, as their
name suggests, they rely on a network of devices installed
in an indoor environment to perform positioning (examples
can be found in section 6.2). Infrastructure-free systems also
require devices like smartphones, but the difference is that
these devices are portable and do not need to be installed
or maintained. In other words, they have lower coupling
compared to infrastructure-based systems. In sensor-based
positioning, these devices are self-sufficient and can perform
positioning independently. Of course, there are hybrid sys-
tems where both infrastructure-free and infrastructure-based
methods are employed, but these systems shall be considered
infrastructure-based because they still use devices that need
to be installed and maintained. To avoid repetition, please
refer to section 6.4 for examples of infrastructure-free sys-
tems.
6.2. Passivity

In Section 4, we discuss the different functions of IPS
devices, i.e., some devices are responsible for transmission,
some receive the signal and others translate it to positioning
information. This is not to say that all IPSs follow the
transmitter-receiver model, but the infrastructure of this type
can be classified into two categories: passive and active.
Overall, IPSs can be classified into three categories based
on passivity: passive, active and other, where “other” refers
to systems that are not based on the transmitter-receiver
model. We define a passive IPS as one where reference
nodes act as transmitters and targets passively receive the
broadcast signal. In active systems, the roles are reversed,
i.e., targets are responsible for sending data, and reference
nodes passively listen. In summary, this type of classification
is from the perspective of which device(s) is/are responsible
for transmission and dictates where position estimation will
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A Six-Layer Model for Indoor Positioning Systems

place, as was described in section 4. This classification
e found in existing literature. For example, Zafari et al.
oined their own terms for the two categories – device-
d localisation (DBL) and monitor-based localisation
L) respectively.
here are other definitions of passivity in the literature.
xample, device-free systems are commonly referred to
ssive, e.g., in [149, 60, 150]. [151] defined passive posi-
ng as passive monitoring of tags that start broadcasting
as soon as they enter a certain coverage area, meaning
iggering on the user’s part and no ranging is required,
h is more energy-efficient. Another definition of passiv-
n be found in [152], which refers to passive positioning
e that does not require the active collaboration of the
i.e., positioning can be performed without the user’s

rsement. While we acknowledge other definitions of
vity from the literature, we shall use our own definition
is survey.
he choice of infrastructure for this classification de-
s on the application and devices chosen. For example, a
lar configuration is to have BLE beacons attached to the
g and a smartphone receiving the signals of multiple

ons to calculate its own position (e.g., [153, 154, 3,
). This is a passive framework, but if the application stip-
s that using BLE beacons is compulsory, transforming
ramework into an active system is not feasible because
ons can only act as transmitters, while smartphones can
broadcast and receive. In addition, if the positioning
ithm is not too computationally expensive, calculating
osition locally rather than on a server reduces the

ioning delay. This could be one of the reasons why
ve positioning is more common in WiFi-based systems
ell (e.g., [117, 156, 157]), despite the fact that WiFi
can act as receivers as well. Ultrasound, however, is
flexible. For example, in [158], three transmitters were

hed to the target and sent signals to four beacons acting
ltrasound receivers for 3D localisation. The configu-
n of a system presented in [159] was similar except
an ultrasound receiver was attached to the target, while
ultrasonic transmitters were attached to the ceiling as
ors for localisation.
Computing Architecture
s briefly discussed in section 4.3, a trade-off must be
between the computational complexity of a position-
ethod and positioning accuracy, and it depends on the
uting architecture, i.e., how computation is distributed

e network. An important distinction must be made here
gh. The next section discusses collaboration of nodes in
, and, in this survey, two nodes are said to collaborate if
employ a communication technology, i.e., both directly
cipate in positioning, and need to be localised. If two
s simply exchange positioning data so that one node can
ate the location of the other, i.e., where one node simply
ates computation to another node, this is not an instance
llaboration because one node acts as a processor and
not aim to be localised.

In the IoT era, more devices are connected to the in-
ternet and need server-based data processing, which puts
significant strain on servers, congests the network and in-
creases latency. This can be a problem for large-scale IPSs as
well. Although not all IPSs require server-side positioning,
as discussed previously, more computationally expensive
methods are being used for indoor positioning to handle the
complexity of indoor signal propagation. This means that, in
anticipation of an increased demand for indoor positioning
services, similar to other IoT systems, alternative computa-
tional paradigms must be considered.

In recent years, computational paradigms such as edge
computing, fog computing, cloud computing and mist com-
puting are becoming more popular. Cloud computing pro-
vides elastic computing services and storage on demand
[160], so computing is performed on a remote server. In
the IoT era, cloud computing cannot keep up with an in-
creasing demand for cloud processing, so edge computing
and fog computing paradigms have recently been introduced
to address the issue. Edge computing is a computational
paradigm where computing is performed at the edge of the
network, where an edge can be a smartphone, an autonomous
vehicle, etc. [161]. IPSs where tags are localisers can be
said to follow the edge computing paradigm if the localisers
are self-sufficient, i.e., do not rely on external computation.
As for fog computing, according to [162], fog computing
refers to a network of servers located between edges and
cloud services, meaning they are closer to the edges, which
reduces latency. These servers have lower storage and pro-
cessing capability than cloud servers but they help reduce
network congestion. Fog computing is not a replacement for
cloud computing because the cloud is needed for long-term
storage and computationally heavy operations. Fog nodes
aim to service low-resource devices such as IoT devices
that need low latency. Mist computing pushes computation
even closer to the edges than fog computing [163]. Cloud
computing, mist computing and fog computing would be
suitable for large-scale indoor positioning systems but for
smaller systems, local servers or even edge processing would
suffice. Examples of these paradigms in indoor positioning
can be found in the literature. For example, [164] defined
a fog computing architecture for a BLE-beacon-based in-
door navigation system, and [165] designed a WLAN-based
(Wireless Local Area Network) IPS with different types of
fog nodes, where some were responsible for positioning and
others were responsible for forwarding, i.e., wireless routers.
Experimental results show that distributed fog computing
yielded the lowest latency compared to cloud computing and
fog computing with a single fog node, and this effect became
more pronounced with larger amounts of positioning data.
However, as the number of fog nodes was large enough,
positioning latency started to go up again.
6.4. Collaboration

Based on the previous subsection, it may seem that
collaboration and centralisation refer to the same concept,
but there is a difference between the two. Pascacio et al. [36]
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Figure 9: Data layer breakdown

ed a collaborative IPS as a system where independent
s draw information from different sources and share it
each other, assisting in the localisation of every actor.
authors also pointed out that centralised systems can
ollaborative, but their implementation is complicated
use one must figure out how to make network devices

unicate and share their information with a central node
ice versa, which creates additional network delay. The
rchers argue that collaborative systems are an evolution
e growing trend of sensor fusion in indoor localisation
present several advantages over traditional systems.
, collaborative systems allow for higher area coverage
users can propagate their positions to their neighbours.

ndly, they decrease the need for costly and/or complex
structure since, by definition, users can locate each other
out the help of additional hardware. As for the limita-
, one of the main drawbacks is the high computational
en incurred by collaborative positioning algorithms,
asing energy consumption of independent actors. An-
major concern is privacy. Since collaborative systems

y frequent data exchange, extra measures must be taken
cure communication channels between devices and to

sure no sensitive information is revealed. When it
s to positioning accuracy, it depends on many factors
as the algorithm, data and technology used, so it is
ult to argue that collaborative systems show worse per-
ance than non-collaborative ones. However, examples
llaborative systems from the literature will be provided

for reference. The authors of [52] designed a centralised col-
laborative IPS with RFID transmitters in fixed locations and
active RFID tags attached to smartphones (mobile nodes),
which sent RSS measurements and step length and heading
estimates from their IMUs to a central server for localisation.
They tested the system in a 1600m2 area and achieved a
median error of 2.6m using a cooperative approach.

7. Data Layer
The data layer delineates the types of data used for indoor

localisation, and a high-level overview of this layer is shown
in Figure 9. As was mentioned in section 5, a recent trend in
indoor positioning has been the fusion of multiple technolo-
gies in the same system to improve localisation accuracy and
compensate for the limitations of individual technologies,
e.g., combining UWB and BLE for increasing accuracy and
saving energy respectively. While most types of data are
supported by the majority of localisation technologies, it
is common to combine them in the same system as well.
In general, localisation data can be categorised into sev-
eral groups: power-based, angle-based, time-based, motion-
based and image-based data. This section will provide an
overview of the most common types of data that can be used
for positioning, compare them against each other and provide
examples from literature. The advantages and disadvantages
of different types of data for indoor positioning are discussed
in Table 7. Please note that these types of data simply
provide insight into what data is used rather than how it
is handled. These types of data are employed for distance
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7
ntages and disadvantages of different types of data for indoor positioning

Advantages Disadvantages
SSI Low cost and high availability High sensitivity to noise and limited granularity
SI Provides more information on dynamics of signal

attenuation, higher accuracy compared to RSSI
Supported by a limited set of communication
technologies

oA More precise than RSSI Requires specialised hardware with AoA-enabled
antennae

oA Simple to calculate Requires synchronisation between the target and
reference nodes; assumes free space signal prop-
agation, i.e., does not account for obstructions;
needs the time of signal dispatch from the trans-
mitter for ToF calculation

DoA No synchronisation with the target required Requires synchronisation between reference
nodes; assumes a clear LOS

WR No synchronisation between network nodes is
required, provides high accuracy

Sensitive to clock drifts; assumes a clear LOS

DoA Can be fused with other types of data for better
positioning performance

Lower accuracy; assumes that the transmitted
signal is of sinusoidal form; performs poorly in
NLOS conditions

U data Can be collected locally, i.e., on the target,
reducing dependency on external infrastructure

Only allows for relative positioning, i.e., it pro-
vides information relative to positions it saw in
the past; drift error accumulates over time

ages Good for custom positioning solutions where
placement of reference points is significant; can
be an effective way of representing fingerprints of
data

Not suitable for similar-looking spaces because
it is hard to distinguish between them; usu-
ally require a database of reference images to
match pictures taken during real-time positioning
against, and the database needs to be maintained,
especially in frequently changing environments

ation, and many localisation methods are predicated
e availability of distance estimation between different
ork nodes.
Signal-Characteristics-Based Data
. Received Signal Strength Indicator (RSSI)
SS is a measure of the power of a signal when it arrives

e receiver. It is an estimate of the average amplitude
the whole channel bandwidth and all antennae [9]. It
e of the simplest, cheapest and most popular sources of
for indoor localisation [166], partly because it does not
re additional hardware to measure and is supported by
wireless technologies [71]. RSS is often confused with

I, a relative RSS indicator measured in arbitrary units,
h are vendor-dependent [9]. As a signal travels from
nsmitter to a receiver, its power fades, and, according
67], RSSI is sensitive to electromagnetic interference,
ction and reflection. In other words, signal power is
ced further by obstacles in its way and thus varies
iderably, not representing the true signal power at the
ver by the time it arrives. To address these issues,
lly computationally expensive methods are required [9],
KF [49, 168], Gaussian filtering [48]. Another popular
ique is to average RSSI values over time, but usually
idual RSSI values are so far from the ground truth that
ge values still give a high error. A new technique to

ce RSS noise has been the use of IRS, e.g., the authors
69] designed a phase shift optimisation algorithm to

improve RSS-based localisation accuracy by adjusting sig-
nal phase shifts for multi-user positioning. Moreover, as was
mentioned previously, RSSI is vendor-dependent, meaning
that different devices may output different RSSI values.
Overall, RSSI is a widely available and cheap source of data,
making it attractive for indoor positioning, but using it for
consistent sub-metre accuracy is a challenge.
7.1.2. Phase Difference of Arrival (PDoA)

A signal travelling between two nodes can be modelled
as a wave with a certain amplitude, phase and frequency.
Signals transmitted from multiple anchors or the target,
depending on where passivity is shifted, are assumed to be of
sinusoidal form, having the same frequency and zero offset
[9]. When they arrive at different antennae of the receiver,
they have different phases, and these differences can be used
for estimating the distance between two nodes.

Some VLC-based IPSs have used PDoA (Phase Differ-
ence of Arrival) for localisation. For example, the authors of
[170] designed a 3D positioning system with four LEDs with
a new distance estimation method, which utilised differences
in the phases of signals arriving at the photodetector. They
tested the new system in a simulated 5 × 5m3 room and
achieved millimetre-level accuracy in LOS conditions. Then
they simulated noise using two different noise distributions
and obtained a maximum error of 4 cm. PDoA was also
used with RFID in conjunction with AoA in [171], which
focused on designing a system for multipath and NLOS
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A Six-Layer Model for Indoor Positioning Systems

onments. The authors used RSS to isolate top two
gest signals that arrived at the receivers’ antennae and
lated their PDoA for better positioning performance.

A was also used to calculate the AoA, and both were
to construct a system of equations, from which the co-
ates of the target were recovered. The authors reported
etre-level accuracy in a simulated 100m2 area.

. Channel State Information (CSI)
ccording to [172], CSI describes the propagation of

less signals from the transmitter to the receiver at certain
er frequencies. It is a 3D matrix that is estimated by
eceiver to get insight into how the transmitted signal
transformed into the received signal, which can be
sented as a formula: 𝑦 = 𝐻𝑥+𝑛, where 𝑦 is the received
l, 𝑥 is the transmitted signal, 𝐻 is CSI and 𝑛 is the noise
r. The rows of the matrix represent antennae on the
mitter, the columns represent the receiver’s antennae,
within each cell, there are 𝑘 values for 𝑘 frequencies
e channel, which makes up the third dimension of the
ix. In other words, it describes the changes that the
l went through on its way to the receiver, which led to
tenuation. As was mentioned in the previous section,
averages information over the whole signal bandwidth,
eas CSI is more granular because it can provide in-
ation for each frequency and antennae pair (please see
] for a more detailed discussion of CSI representation).
can provide large amounts of data, which needs to be
led in real-time and be adaptable to changes in the
onment, so that the system can learn the radio geometry
e network on the fly [173]. CSI measurements are
stable over time than RSSI measurements and are thus
reliable [174]. Therefore, CSI seems to be a promising
e of data for indoor localisation because of its high
oral stability, but to achieve marginally better accuracy,
utationally expensive methods are required. Another
r limitation of CSI is that it is not supported by all
es and can only be extracted from specific Network
face Cards. Moreover, CSI is still sensitive to signal
ference, e.g., from people walking [175].
Angle-Based Data
. Angle of Arrival (AoA)
ccording to [42], AoA refers to the angle at which the

mitted signal arrives at the antennae of the receiving
e. The receiver should have several antennae so that
like time difference of arrival, phase of arrival, etc.
e calculated to estimate AoA. AoA is different from

, which is the angle at which the signal starts travelling
the transmitter, please see [42] for an illustration of
ifference between AoA and AoD. Unlike other types
ta, AoA is not used for range-based methods. Instead,

used as input to the multiangulation method described
ction 8.3.2. Unlike RSS-based positioning, angle-based
ioning requires a minimum of two anchors for 2D
isation and a minimum of three for 3D localisation
rform multiangulation [176]. Angle-based positioning

boasts higher positioning accuracy compared to RSS meth-
ods, but it is not yet supported by smartphones, meaning
that it requires special hardware for operation. The authors
of [177] explained that there are multiple ways to estimate
AoA, including TDoA and PDoA [178], but this depends
on the type of device used because some may not support
time-based ranging.

AoA is a relatively new type of positioning data, so
it comes with its own challenges. For example, antennae
arrangement can affect positioning performance, and there
are three main ways to do this: ULA, URA and UCA [179].
The first one is a sequential 1D arrangement, which can only
be used for 2D positioning because it can only measure the
azimuth angle and assumes the target is moving in the same
plane. 2D arrangements, however, are capable of estimating
both azimuth and elevation angles, making them suitable for
localisation in half-3D space. Full 3D space positioning re-
quires a 3D arrangement of the antennae. One of the reasons
why integrating angle calculation in smartphones is difficult
is because antennae need to be spaced apart to minimise
interference, which is also referred to as mutual coupling.
Direction finding using AoA is more difficult because, simi-
lar to RSSI, it is sensitive to multipath fading. When it comes
to examples from literature, the authors of [180] developed
a WiFi-based IPS using 13 WiFi APs that support AoA
and smartphones that acted as transmitting targets. They
connected the APs to a central server that was responsible
for position estimation. The system was tested over a floor
in a university building and achieved an error of less than
5m 77% of the time with Android phones. A 50% accuracy
improvement was observed using iPhones, which suggests
that AoA-based systems are highly sensitive to the type
of devices used. Another promising study combined AoA
with blockchain for indoor COVID-19 contact tracing [181].
Blockchain was used for secure decentralised BLE packet
exchange to address privacy issues, and a CNN (Convolu-
tional Neural Network) was used to localise AoA-enabled
mobile BLE receivers, which were responsible for reading
signals from BLE beacons acting as transmitters using AoA
fingerprints in 3D space. The authors achieved a localisation
accuracy of approximately 40 cm in a 100m2 area 90% of
the time. They also designed a custom credit score system,
where the score was calculated based on one’s distance to
infected people and general conduct (e.g., being transparent
about infection status), and users with higher credit scores
could mine blockchain blocks faster. The advantage of this
system is the low cost of BLE communication, but using a
CNN coupled with block mining may be taxing on the users’
smartphones.
7.2.2. Angle of Departure (AoD)

As was mentioned in the previous section, AoD is the
angle at which the signal leaves the transmitter. The transmit-
ter must have multiple antennas, and the receiver must have
one [182]. Another difference between AoA and AoD is that
in the latter case, the transmitter must send its coordinates
to the receiver as well so that the receiver can estimate its
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A Six-Layer Model for Indoor Positioning Systems

ion after processing the signal using IQ sampling [183].
her words, both AoA and AoD allow one to estimate the
tion of the signal, which can be coupled with ranging
hieve better positioning performance. Similar to AoA,
can be measured using phase differences of signals

lling from multiple antennae. Please refer to Figure 1
83] for an illustration of AoD calculation.
ased on the literature review, AoD is not as popular

oA. However, one interesting application of AoD can
und in [184], where AoD was used to detect security
hes in indoor positioning by comparing AoA estimated
chors to AoD estimated at the target tag.
Time-Based Data
. Time of Arrival (ToA)
oA is simply the timestamp of signal arrival at the
ver. ToA is used to estimate the time it took for a signal
vel between a transmitter and a receiver (ToF). To do
however, ToA alone is not sufficient; the timestamp at
ansmitter, i.e., when the signal was dispatched, must be
acted from ToA. ToA assumes that the speed of signal
agation is known and requires that the transmitter’s and
ver’s clocks are synchronised so that ToF estimation
is minimised [185]. ToA is used less frequently than its
terpart, TDoA, because it does not account for indoor
l interference, i.e., it assumes that the signal travels

straight line, and requires that the timestamp of signal
mission is sent in the data packet [180]. Similar to RSSI,
s problem is sensitivity to signal interference. However,
uthors of [186] improved the traditional trilateration
od using ToA, which can also be used with RSSI, to
ct for noise and achieved an error of 5 − 10 cm in
lated conditions.
. Time Difference of Arrival (TDoA)
ne of the downsides of ToA is that it needs ToD (Time
parture) to calculate ToF. One way to address this issue
take advantage of ToA values from multiple nodes,

this is what TDoA is based on. A single TDoA is
ly the difference between ToAs of two nodes, and at
four TDoA values are required for positioning [113].
e TDoA values must be accompanied by the absolute
dinates of the four reference nodes when they are fed to
ethod layer. Similar to ToA, calculating TDoA requires

reference nodes are synchronised because even a small
difference may yield a high positioning error [180].
hronisation with the target, however, is not required.
A is a popular technique of choice for UWB-based IPSs.
xample, Cai et al. [187] developed a UWB-based IPS
TDoA and TWR and a custom optimisation algorithm.
set up four UWB base stations connected to a central
r and used four active tags as targets. They tested
system in a 100m2 area and achieved consistent sub-

e accuracy of 36 targets. Of course, the high accuracy
not just because of TDoA or TWR. As was discussed
ously, UWB is a highly accurate RF-based technology
s own, but using the right method as well as arranging
onfiguring devices correctly is also important.

7.3.3. Two-Way Ranging (TWR)
Both ToA and TDoA require precise clock synchronisa-

tion among network nodes, which may not always be possi-
ble, e.g., when the number of network nodes is prohibitively
high. TWR (also known as RToF (Return Time of Flight))
is a time-based type of positioning data designed such that
it does not require synchronising network nodes. Similar to
ToA, it is used to estimate the ToF between a transmitter and
a receiver, but because it does not require synchronisation, it
does not rely on any timestamps. TWR’s name comes from
the fact that a transmitter and a receiver exchange signals
back and forth to calculate the ToF. Unlike TDoA, TWR
needs a minimum of three reference nodes for positioning
[113]. According to [188], although TWR does not require
clock synchronisation between devices, its accuracy can be
compromised by clock drifts, i.e., when a clock gets behind
or ahead of its original state. Even a 1 ns error of ToF can
lead to a 30 cm drop in accuracy. Symmetric double-sided
two-way ranging is a more popular TWR-based distance
estimation technique because it minimises the clock drift
error of both devices [189]. A downside of TWR is that it
extends the positioning delay because ToF calculation takes
more time [190]. TWR has recently been made available in
WiFi, and in [191], it was fused with IMU data with the help
of the Federated Filter for tracking, leading to a 37.4-67.6%
reduction in positioning error compared to EKF (Extended
Kalman Filter).
7.4. Motion-Based Data

Previous sections have covered data that rely on signal
exchange between two devices. However, the target can
predict its next position by collecting information about its
movement over time. Modern smartphones are equipped
with a wide variety of sensors, including a barometer, ac-
celerometer, IR LED, etc. Sensors from the IMU unit, i.e.,
accelerometer, gyroscope, magnetometer, light sensor and
barometer, can be used to model motion. According to [192],
an accelerometer measures the acceleration of a moving
object in 3D space, i.e., it produces an estimate in each
direction. A gyroscope calculates the angle of the subject’s
movement in 3D space and is used to determine heading
direction. A magnetometer can help calibrate gyroscope
readings by providing direction towards the true north from
the ambient magnetic field. A barometer is used to measure
atmospheric pressure, which decreases the further away one
moves from the sea level. Thus, a barometer can be used to
measure changes in altitude and is usually used to determine
which floor a user is on. Motion-based data is primarily
employed in PDR (see section 8.3.4).
7.5. Image-Based Data

Images are primarily used in computer-vision-based in-
door positioning, and, in general, they are mostly used as
fingerprints (see section 8.3.3. One variation of image-based
data is artificially generated images of signal data, e.g.,
RSSI [193]. Alternatively, images of the environment can
be used, but then the database of reference images of the
environment will need to be extensive, posing an additional
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A Six-Layer Model for Indoor Positioning Systems

Figure 10: Method layer breakdown

utational burden for the system [192]. Images can be
red from the target’s perspective, as is done in robot
ation, e.g., [194, 195], or from the network’s perspec-

i.e., with surveillance cameras. The perspective adopted
mines the localisation method, e.g., fingerprinting in
rst case and object detection in the second case. In the
er scenario, users can use smartphone cameras to take
res of their surroundings and match them to a location
database. A disadvantage of this type of data is that
undings can change, e.g., doors can be opened, objects
e moved around. Another downside is that some spaces
t have distinguishing features, e.g., most corridors in a
ing may look the same, so it may be hard to differentiate
een similar-looking environments [192].

ethod Layer
he previous layer mostly covered the types of derived
res of the transmitted signal that can be used for estimat-
e distance between two network nodes, but this alone is

ufficient for localisation. The method layer consolidates
ata provided by the data layer and uses it to estimate
cation of one or more targets. Please refer to Figure 10
n outline of this layer. Similar to the network layer,
ethod layer can be classified differently depending on
erspective taken. The following classifications are an
sion of Buehrer et al.’s [196] classification system. A
orisation of common indoor positioning methods based
ethod type is provided in Table 8.
Range-free vs range-based. One of the most com-
mon classifications of positioning methods found in
the literature is based on the use of ranging, i.e.,
range-based vs range-independent algorithms (e.g.,

[198, 199]). Range-based algorithms are based on
direct distance estimation between anchors and target
nodes via ranging, e.g., using RSSI, ToF, etc., whereas
range-free methods rely on network connectivity and
nodes communicating with each other [200]. The lat-
ter are usually less accurate but are less costly and less
computationally expensive (except for fingerprinting)
[201]. Note that if a method uses a type of data that
can be used for ranging, such as RSSI, it does not nec-
essarily classify as a range-based method as it may not
need to convert RSSI into distances, i.e., it inherently
does not rely on inter-node distance measurements.
For example, in fingerprinting, RSSI values are simply
collected from reference points, they are not converted
into distances [202] (see a detailed description of
fingerprinting in section 8.3.3).

• Centralised vs distributed. Buehrer et al. [196]
extended ranging-based classification by introducing
four more dichotomies, one of which is based on
centralisation. Centralised algorithms delegate locali-
sation of all network nodes to one entity, whereas dis-
tributed algorithms allow each node to localise itself.
While we recognise emerging computing paradigms
discussed in section 6.3, we shall adopt this defini-
tion independent of the network layer, meaning that
centralised methods are those that require to be run
on a processor (see section 4.6), whereas distributed
methods are those that only require local information
exchange. In other words, how the processor is chosen
in the network is irrelevant in the method layer.

• Collaborative vs non-collaborative. Similar to net-
work architectures, localisation algorithms can be
classified based on the degree of cooperation between
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8
lisation methods and their classifications [36, 24, 196, 197]; N/A means “not applicable”

ethod Collaborative
(C) / Non-
collaborative
(NC)

Centralised
(C) /
Distributed
(D)

Deterministic
(D) /
Probabilistic
(P)

Range-free
(RF) /
Range-based
(RB)

Tracking
(T) / Non-
tracking
(NT)

Sequential
(S) /
Concurrent
(C)

ultilateration NC C D RB NT N/A
ultiangulation NC C D RB NT N/A
ingerprinting NC C D RF NT N/A
entroid C + NC D D RF NT S
V-hop C D D RF NT S
DS C C + D D RB NT C
elief propaga-
ion

C C + D P RB T S

aximum likeli-
ood

C C + D D RB NT S

emi-definite
rogramming

C C + D D RB NT S

PM (Parallel
rojection
ethod)

C D D RB NT S

V NC C + D D RF T + NT N/A
DR NC D D RF T N/A

nodes. Collaborative algorithms are different from
non-collaborative algorithms in that the former need
to handle inter-node communication. According to
[24], all collaborative algorithms are range-based.
Probabilistic vs deterministic. This categorisation
was also introduced by Buehrer et al. [196]. Proba-
bilistic, or Bayesian, algorithms return a probability
distribution of all possible location estimates and tend
to be more computationally expensive. Deterministic
methods assume there is only one possible location
estimate, so they do not provide insights into how
confident they are in their estimates. Probabilistic
algorithms are typically used for tracking because they
take historical information into account [52].
Sequential vs concurrent. This categorisation can
be found in [24] and [196]. Sequential algorithms
allow freshly localised nodes to act as reference nodes,
even if they are mobile, whereas concurrent methods
only rely on nodes whose position was known before
the localisation process started. The advantage of this
approach is that positioning error does not propagate
throughout the network, and the opposite is true for its
counterpart. It should be noted that this classification
is only applicable to collaborative algorithms.
Tracking vs non-tracking. Tracking algorithms are
used for mobile targets so that their previous positions
can be taken into account to improve accuracy. This
categorisation was newly proposed in [196].

ometimes, it may be difficult to distinguish data and
ods as they are so closely related. For example, the
rprinting method heavily relies on the data it uses, so

some papers counted it as both data and a method, e.g., [36].
However, an algorithm is not the same as the data it uses
as it is a more dynamic concept, involving a sequence of
steps. Hence, for clarity, positioning methods are distilled
into a separate layer in the six-layer model. The rest of this
section will be classified based on our custom categorisation
approach, but first, distance estimation techniques and sensor
fusion methods are discussed as distance estimation is an
essential part of range-based methods, and sensor fusion
methods are considered to be part of the positioning method.
It is important to note that distance estimation techniques
and sensor fusion methods are not said to be independent lo-
calisation methods but rather part of some of them. Broadly,
localisation methods are classified as collaborative and non-
collaborative. We listed the time complexities of different
methods found in the literature in Table 9. Note that the table
does not include all methods since we only included those
whose time complexity was evaluated in the literature.
8.1. Distance Estimation Techniques

As was discussed in section 8, range-based methods rely
on inter-node distance estimation. There are several ways
to convert data from the data layer to distance, and these
techniques will be discussed in this section.
8.1.1. RSSI-Based Distance Estimation

As was discussed in section 7.1.1, RSSI is a measure of
signal power at the receiver. RSSI can be used to estimate
the distance between a receiver and a transmitter, and, in
general, the higher the distance between the receiver and the
transmitter, the lower the received signal power because the
signal loses more of its power on its way, and this is referred
to as path loss. There are different path loss models. The
most popular one is the logarithmic distance path loss model
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9
time complexities of indoor positioning methods from the literature

Method Time Complexity
Trilateration 𝑂(𝑛 log 𝑛), where 𝑛 is the number of reference nodes [203]
Weighted centroid 𝑂(𝑛), where 𝑛 is the number of reference nodes [204]
Triangulation 𝑂(𝑛2), where 𝑛 is the number of reference nodes [205]
Fingerprinting 𝑂(𝑛2), where 𝑛 is the number of fingerprints [206]
DV-hop 𝑂(𝑛3), where 𝑛 is the number of anchor nodes [207]
Belief propagation 𝑂(𝑛2), where 𝑛 is the number of particles [208]
Multidimensional scaling 𝑂(𝑛3), where 𝑛 is the number of access points [204]

]. Another common model is the free-space path loss
el [210]. This model assumes that there is a clear line
ght between the receiver and the transmitter, hence the
. Since this is not usually the case in indoor environ-
s, the logarithmic path loss model is used more widely.
SSI is not a reliable indicator of distance because

ries significantly in NLOS conditions. However, it is
of the cheapest and most accessible sources of data,

coupled with more sophisticated distance estimation
iques, e.g., based on machine learning, its accuracy can
proved.
ccording to [98], because of high availability and low
RSSI has been one of the most popular types of data for
nce estimation in COVID-19 contact tracing. However,

systems do not take measures to mitigate the noise
, so some infected people at a far distance, at which
isk of contagion is low, may be estimated to be close,
ng to unnecessary quarantine [8].
. PDoA-Based Distance Estimation
DoA can also be used for distance estimation between
nodes based on the difference between the phases of
eceiver and the transmitter using the following formula
[211] for a single antenna 𝑖:

𝑑 =
𝜆𝑖
2

×
(
𝜙𝑖
2𝜋

+ 𝑛𝑖

)
, (1)

e 𝑑 is the distance, 𝜆 = 𝑐
𝑓𝑖

is the signal wavelength, 𝑐
e signal speed, 𝑓𝑖 is the signal frequency at antenna 𝑖,

the difference between the phases of the transmitted
received signal, and 𝑛𝑖 is a parameter that needs to
nfigured. Like other techniques, PDoA-based distance
ation assumes a clear line of sight between the receiver

the transmitter, which is rarely the case in indoor en-
ments. However, it can be combined with other tech-
s to improve the accuracy, e.g., with RSSI, ToA, etc.

. CSI-Based Distance Estimation
212] extended the free space path loss model to describe
elationship between CSI and distance as follows:

𝑑 = 1
4𝜋

[(
𝑐

𝑓0 × 𝛾(𝑑)

)2
× 𝜎

] 1
𝑛

, (2)

where 𝑐 is the wave speed, 𝜎 is an environmental factor that
denotes RF baseband gains at the transmitter and receiver
and power loss due to shadowing and passing through walls
in NLOS conditions, 𝑛 is the path loss fading exponent, 𝑑 is
the distance, 𝛾(𝑑) = |( 1𝐾

∑𝐾
𝑘=1

𝑓𝑘
𝑓0

× |𝐻𝑘|)|, 𝑘 ∈ {−15, 15},
𝐾 is the number of groups of subcarriers (𝐾 = 30), 𝑓𝑘 is the
frequency of the 𝑘𝑡ℎ subcarrier, |𝐻𝑘| is the amplitude of the
𝑘𝑡ℎ subcarrier’s CSI, and 𝑓0 is the central frequency. The au-
thors of the study compared RSSI and CSI for triangulation
using WiFi and found that CSI yielded a lower positioning
error - 1.24m versus 1.54m, which cannot be considered an
instance of sub-metre accuracy. Studer et al. [173] suggested
the use of machine learning and mathematical modelling
for CSI-based positioning, and Li et al. [213] did just that.
They used multi-level fingerprints (see section 8.3.3 for a
detailed description of the fingerprinting method) of CSI and
fed them to a deep learning model for training. The model
generated top five locations closest to the target with an error
of 60 cm more than 90% of the time, compared to 4m using
RSSI.
8.1.4. ToF-Based Distance Estimation

One simple way of calculating the distance between two
nodes (𝑑) is simply multiplying the speed of the signal (𝑐)
by the time it travelled to reach the receiver (ToF).

𝑑 = 𝑐 × 𝑇 𝑜𝐹 (3)
If the velocity of the signal is known, then this technique can
be used, but its downside is that it does not account for noise.
If a signal takes longer to travel because of obstructions,
this technique will overestimate the distance covered by the
signal. There are two ways to calculate ToF: using ToA and
TWR, as described in sections 7.3.1 and 7.3.3 respectively.
The choice of data for ToF calculation depends on whether
clock synchronisation among network nodes is possible.
Because TWR-based distance estimation does not require
clock synchronisation, it is a popular technique of choice for
UWB-based systems. For example, the authors of [115] used
TWR and a fusion of noise filters to minimise positioning
accuracy in a system with four UWB base stations and one
tag acting as the target, reporting a 20 cm accuracy in a
100m2 area.
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. Image-Based Distance Estimation
ifferent image-based distance estimation techniques
e found in the literature. For example, [214] described
3D cameras with depth sensors can be used to estimate
istance between a QR code and a camera. In [40], the
rs presented a distance estimation technique between a
ra and an LED lamp as follows:

𝐻 = 𝑓
𝑟
⋅ 𝑅, (4)

e 𝐻 is the distance between an LED lamp and a camera
𝑓 is the focal length of the image sensor, 𝑅 is the radius
e lamp and 𝑟 is the radius of the lamp on the imaging
obtained by casting a projection from the lamp.
Sensor Fusion
ccording to [28, 215], the use of multiple sensors for

or positioning improves positioning accuracy and posi-
ng service availability, hence, multi-sensor fusion meth-
re becoming more popular among researchers. Sensor
n methods are categorised by the level of coupling.
] defined loosely coupled fusion as fusing the output
ultiple positioning methods with a filtering algorithm
as a KF, whereas tightly coupled fusion was defined as a
of sensor fusion where sensor measurements were fused
tly. Most fusion-based IPSs are loosely coupled but
coupling is gaining popularity. Common technology
inations that support sensor fusion are WiFi and IMU

, [216, 191]), BLE and IMU (e.g., [217]), UWB and
(e.g., [218, 219]). For example, in [216], an EKF

utilised to fuse PDR-based positions with WiFi-based
ions as follows:
𝐗𝑘 = 𝐹 ⋅ 𝐗𝑘−1 +𝛀 ⋅ 𝐔𝑘−1 +𝐖𝑘−1, (5)

e𝐗𝑘 is the PDR position vector at time 𝑘,𝐔𝑘 is the WiFi
ion vector at time 𝑘, 𝐅 is the state transition matrix, 𝛀
control matrix and 𝐖 is the system noise matrix. The

tion illustrates that the next PDR position is coupled
both the previous WiFi position and PDR position,

ing a tight coupling. [220] also utilised an EKF to fuse
position estimates obtained with trilateration and PDR

in a tight-coupling manner to correct for position and
tation drift. The UWB position estimate was loosely
led with heading estimation and tightly coupled before

fed to PDR-based tracking algorithm.
Non-Collaborative Methods
on-collaborative localisation methods have been in
for a long time, and their advantages and limitations
been studied well. In recent years, researchers have
considerable interest in studying collaborative and

structure-free solutions [37] because they have mini-
installation and maintenance costs. In addition, many
cooperative methods suffer from low positioning ac-
y, and researchers have been trying to employ ma-
learning to address the issue [6]. This section will

r non-collaborative positioning methods and machine

learning enhancements proposed by researchers for them
in recent studies. Examples of machine-learning-based en-
hancements for non-cooperative indoor localisation methods
can be found in tables 10 (communication-free methods), 11
and 12 (communication-based methods).
8.3.1. Proximity-Based Positioning
Closest Neighbour Method Proximity methods simply
rely on mapping the position of the target to the nearest
reference point. If the target is in the range of one or more
reference points, it is assigned the location of the reference
point from which the strongest signal is received. Note that
this method is also applicable to device-free positioning,
i.e., for untagged targets, by defining a threshold on signal
measurements, depending on the communication technol-
ogy, which can be RF-based, sound-based or light-based
[31]. This method is simple and is thus computationally
inexpensive but is also highly inaccurate [142]. Of course,
localisation granularity could be increased by decreasing
network sparsity, but, if reference nodes are positioned too
close to each other, they may interfere with each other,
making it hard to arbitrate between several candidate nodes
close to the target. Moreover, if high accuracy is required,
the number of reference nodes required may be too high
to be practical in terms of deployment and maintenance
costs. Proximity-based methods are usually used for context-
aware services like targeted location-based advertising and
anonymous user data collection in shopping malls [9], i.e.,
where high accuracy is not required but simply knowing the
target is near a certain location is enough. Proximity detec-
tion has been instrumental in curbing the spread of COVID-
19. Contact tracing applications usually rely on BLE for
proximity detection and do not require high granularity in
distance estimation. They simply need to track people who
have stayed within 2m from an infected individual [237].
Centroid Localisation (CL) This method is similar to
kNN but is not discrete, i.e., the target’s position does not
need to be assigned to a particular anchor node’s position.
According to [154], centroid localisation simply refers to
taking the average of the coordinates of all anchors detected
in the target’s range, making it computationally inexpensive.
This method’s downside is that remote anchors contribute
as much as those that are closer to the target, which skews
the positioning result. This can be solved by assigning more
weight to closer nodes, which is known as weighted centroid
localisation (WCL). In WCL, the coordinates of each node
are multiplied by the inverse of the distance from that node
to the target (each node is given a weight), so that nodes that
are further away contribute less to location estimation [238].
This method assumes that the closer two nodes are, the
more accurate distance estimation between them is. WCL is
simple and computationally inexpensive but fails to measure
up to range-based methods in terms of accuracy [239].
Because of its lower accuracy, WCL is often combined with
other methods like least squares [240]. CL-based methods
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10
cooperative communication-free methods and recent ML enhancements

thod Description Conventional problems Examples of ML enhancements
R The target’s movement is detected using

an accelerometer, which estimates the
number of steps made by the target.
Then the target’s heading and step
length are calculated to estimate the
next position of the target relative to its
previous location.

• Accumulated drift error due
to noise, meaning that
PDR is only accurate in the
short-term

• Only provides relative posi-
tion estimates, i.e., it needs
a reference location, mean-
ing that it needs to be
coupled with another posi-
tioning method that is able
to supply an absolute ini-
tial location of the target,
which may not be accurate

• IMU sensors can drain the
battery if used for an ex-
tended amount of time

• Wang et al. [221] proposed a
pedestrian movement behaviour
recognition algorithm to classify
different types of gait of a person
with an SVM (see section A.2)
and use it for better step length
estimation. The authors claim to
have increased PDR positioning ac-
curacy to 96%.

• Abadi et al. [119] designed an MLP
(see section A.5) model for col-
laborative dead reckoning; specifi-
cally, they used the model to de-
tect targets whose heading estima-
tions based on their magnetometer
readings were within an acceptable
margin of error and used these es-
timations as heading estimates for
targets moving in roughly the same
direction. If several targets move in
the same direction, the magnetic
field may not change as predicted
for all targets.

• Jamil et al. [222] trained an ar-
tificial neural network to derive
true gyroscope and accelerometer
readings from noisy input. They
fed gyroscope and accelerometer
readings as well as accelerometer
readings processed by a KF to the
network for training.

• Object detection: This method uses a
deep learning model, usually a CNN,
to detect targets from a video feed.
The model must be trained on an ex-
tensive dataset of labelled images, but
open-source models that have already
been trained can be used instead. For
custom labels, transfer learning can
be used.

• Background subtraction: In this
method, a reference frame with
no targets in sight is stored, and
subsequent frames are compared
to the reference. The difference is
subtracted and assumed to be the
moving target.

• Landmarking : either artificial or nat-
ural landmarks are set up to assist
in portable-camera-based localisation.
Object detection is performed to de-
tect natural landmarks and match
them to a location. Artificial land-
marks can be used in different ways,
but usually they contain information
about their location, which can be
read by the target and used for self-
localisation.

• CV-based localisation
methods are
computationally expensive
and may be not fast
enough for real-time frame
processing

• Object detection requires
an infrastructure in the
form of static cameras

• These methods cannot per-
form well in poorly lit envi-
ronments and may not be
fast enough to handle dif-
ferent angles and orienta-
tions of the camera, espe-
cially if it is portable

• Punn et al. [223] designed a real-
time object detection system for
monitoring social distancing via
surveillance cameras using a YOLO
v3 model for human detection and
DeepSort for tracking.

yeva et al.: Preprint submitted to Elsevier Page 30 of 55



Journal Pre-proof

Table
Non-

Me
Clo
Nei

Fin

Sarta
Jo
ur

na
l P

re
-p

ro
of
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11
cooperative communication-based methods and recent ML enhancements: Part 1

thod Description Conventional problems Examples of ML enhancements
sest
ghbour

The target is assigned the loca-
tion of the node closest to it.

• Low positioning accuracy
• High number of reference

nodes is required for high
accuracy, which may be
impractical

• Madoery et al. [224] performed
feature engineering on BLE RSSI
values to improve proximity de-
tection, tested the dataset on
random forest, SVM and logistic
regression models and achieved
a maximum accuracy of 83%
with the random forest model.

• Su et al. [225] compared ran-
dom forest, SVM (see sections
A.3 and A.2 respectively) and
gradient boosted machine mod-
els with classical estimation the-
ory algorithms in detecting peo-
ple who have been in prox-
imity with a person who con-
tracted COVID-19 for more than
15min and found that classi-
cal approaches had a confidence
level of 69.6%, while the ML ap-
proaches showed a 20% improve-
ment over the classical ones.

gerprinting Consists of two phases: offline
and online. In the offline phase,
reference nodes are set up equidis-
tantly in the indoor space, and
signal readings are collected in
each reference node’s location to
build a fingerprint for each, which
are then stored in a database. In
the online phase, fingerprints are
collected in the target’s location
and mapped to the closest match
in the database to estimate its
location using classification algo-
rithms like kNN, SVM, MLP, DT
and more.

• Compiling an offline database
is labour-intensive and time-
consuming

• Fingerprints can change with
the rearrangement of objects

• May be costly if high coverage
is required

• Accuracy depends on the algo-
rithm used; simpler algorithms
have higher error, whereas
more accurate algorithms are
more computationally expen-
sive, making real-time position-
ing difficult

• Large fingerprints can be hard
to classify because of high di-
mensionality

• DBN (Deep Belief Network) (see
section A.8 in the appendix for
a description of DBNs) - au-
tomated feature extraction for
dimensionality reduction [226].

• GAN (Generative Adversarial
Network) (see section A.9 in the
appendix for a description of
GANs) - generation of artificial
fingerprints for dataset augmen-
tation [227].

• AE (autoencoder) (see section
A.10 in the appendix for a de-
scription of AEs) - noise reduc-
tion [228].

• CNN (see section A.6 in the
appendix for a description of
CNNs) - generation of images
based on various types of data,
e.g., derived AoA from CSI
[229], training a deep learning
model in the offline phase and
predicting the target’s location
with the trained model in the
online phase.

• RNN (see section A.7 in the
appendix for a description of
RNNs) - Hoang et al. [230]
trained an RNN based on RSS
time-series data from consecu-
tive points on a pre-determined
trajectory to take correlation be-
tween RSS readings over time
into account.
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A Six-Layer Model for Indoor Positioning Systems

12
cooperative communication-based methods and recent ML (Machine Learning) enhancements: Part 2

thod Description Conventional problems Examples of ML enhancements
ltilateration Distances from the target to at

least three anchors are calculated,
a system of equations based on
the equation of a circle in 2D
space or a sphere in 3D space,
with the distances as the corre-
sponding radii, is built and solved
for the coordinates of the target.

• Heavily relies on the accuracy
of distance estimation because
it assumes the supplied dis-
tances are the ground truth

• Shi et al. [155] designed a k-
means clustering algorithm to
filter out extreme RSSI values.

• Marques et al. [231] used kNN
(see section A.1) to estimate
the distance to anchors with
RSSI instead of using raw RSSI
values.

• Li et al. [232] trained an LSTM
(Long Short-Term Memory)
model for modelling non-linear
Bluetooth signal attenuation
and mapping a sequence of
RSSI values to a distance mea-
surement between two nodes
and achieved a localisation er-
ror of 1.5m with trilateration.

• Choi et al. [233] designed an
unsupervised machine learning
approach for range estimation,
where cost functions were de-
signed based on network esti-
mation.

ltiangulation AoAs/AoDs are calculated, and
a system of equations based on
basic geometry is built and solved
for the coordinates of the target.

• Heavily relies on angle estima-
tion accuracy, assuming there is
no error

• Angle calculation requires spe-
cialised hardware not available
on all devices

• Alteneiji et al. [234] designed a
CNN (see section A.6) whose
input was the eigenvector ma-
trix derived from the covariance
matrix of the received signal,
that estimated AoA using re-
gression.

• Khan et al. [235] used a
single-hidden-layer neural net-
work (see section A.5), Gaus-
sian Process and regression
trees to estimate AoA by means
of extracting variances from
normalised snapshot data from
the MUSIC spectrum.

troid The coordinates of all nodes in
the target’s range are averaged;
the target is assumed to be in the
centre of its region of reach.

• Low positioning accuracy
• Long communication range re-

quired if the number of anchor
nodes is low

• Jondhale et al. [236] combined
trilateration and weighted cen-
troid localisation estimates and
fed them to an artificial neural
network for training, which was
then used for real-time locali-
sation with an average error of
more than 3m.

to be computationally cheap but have high positioning
.
. Geometric Methods
eometric methods can be divided into two categories

d on whether they use ranging or not. Range-based
ods rely on data exchange (e.g., RSSI, ToA, TWR) be-
n nodes and require network nodes to support ranging,
h in turn requires specialised hardware. They are more
lar among researchers because of significantly higher

accuracy compared to range-free methods. Thus, it could
be said that range-free methods are better for more high-
level positioning, e.g., which room an object is located in
rather than where exactly in that room it is. Range-based geo-
metric methods include multilateration and multiangulation,
and range-free methods include DV-hop (Distance-Vector
hop), CAB (Concentric Anchor Beacon), APIT (Approx-
imate Point in Triangle) and more. Range-free geometric
methods are less accurate because they have a lower locali-
sation granularity. In general, most of these methods try to
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A Six-Layer Model for Indoor Positioning Systems

ict the search space to a small region where the target
be and calculate the area’s centroid as the estimated

ion, but the target could be anywhere within that region,
h means the accuracy could be low.
tilateration Multilateration is a simple positioning al-
hm that relies on simple geometry and is thus one of the
computationally expensive methods. In this method,

nces between 𝑁 anchor nodes, usually at least three,
the target are calculated, assuming that the positions
e anchor nodes are known in advance. Multilateration
three nodes is called trilateration and is often coupled
RSSI-based distance estimation. Then, the Euclidian

nce formula in a Cartesian system of coordinates is
to construct a system of equations as in [153]. Distance
ation is an integral part of multilateration, and there
everal ways to do this. Please refer to section 8.1 for
different types of data from the data layer can be used
lculate the distance between two nodes.
ne of the main problems of multilateration is that it

s distances from anchors to the target as the ground
, which is rarely the case because distance estimation
iques described in the previous section almost always
ve some error. In other words, multilateration assumes
there is a clear LOS between the target and the an-
, which is not always the case in real-world settings.
ilateration can also be performed for 3D positioning,
t least four reference nodes with known positions are
red [241]. In 3D positioning, the range of possible
t locations for each node is represented by a sphere, and
tersection of four spheres yields the 3D position of the

t. Increasing the number of reference nodes does not
lly increase accuracy [242].
tudies that use multilateration usually use some kind of
or machine learning to address the distance estimation
issue. For example, the authors of [155] designed a

ans clustering model that partitioned RSSI readings
three classes based on their distribution: RSSI val-
f signals weakened by interference, RSSI values that

wed the normal path loss model and RSSI values of
ls strengthened by external factors like power gain
tennae. They compared their filter to the mean filter,
one that simply averages incoming RSSI values, in a
ioning system based on trilateration and found that their
showed a better performance with an error of less than
m. The authors of [49] used a KF to smooth fluctuations
coming RSSI values and combined trilateration with
rprinting in a system that fused BLE with PDR. The
rs managed to achieve an average error of 2.75m. In

], kNN was used as a regression model to estimate
istance between reference nodes and the target, thus

cing distance estimation error, and trilateration was used
ositioning. In general, it is difficult to achieve high
ioning accuracy with multilateration because of the
ability of distance estimation techniques to account for
l interference present in indoor settings.

Multiangulation Multiangulation is similar to multilater-
ation in that it relies on the presence of reference nodes, but
in this case, it uses AoA or AoD to estimate the position
of a target, and, as was mentioned in section 7.2.1, two
references nodes are enough for this in 2D space. Note that
this method is also applicable to device-free positioning,
where the target is identified by movement and thus a change
in signal measurements [31]. For example, [243] employed
phase changes in a CSI signal to triangulate the position of
hands. Since this method is one of the most popular indoor
positioning methods, readers are referred to [244] for the
detailed description of multiangulation. Multiangulation can
also be used for 3D positioning, but two angles, i.e., elevation
and azimuth angles, are required, which can only be achieved
with at least three reference nodes with known coordinates
[245].

The advantages and disadvantages of this method are
in line with the data it relies on, i.e., AoA/AoD. Similar
to multilateration, this method’s performance depends on
the accuracy of angle measurements as it assumes they are
correct, i.e., it does not account for noise (e.g., from nearby
antennae). In addition, it requires that receivers are equipped
with special antennae for AoA estimation, meaning special
equipment is required. However, similar to multilateration, it
is computationally inexpensive, though geometric methods
are more computationally expensive than proximity-based
methods as they require a system of simultaneous equations.
TDoA-Based Positioning Although TDoA makes use of
ToA, TDoA is not used for inter-node distance estimation.
Instead, TDoA-based positioning itself depends on distance
estimation techniques, e.g., using RSSI. This method is also
predicated on the simple displacement formula, i.e., velocity
times time. In this method, ToA values are recorded from
multiple reference nodes (at least four [113]), and a system of
equations is constructed to derive the position of the target,
but this system of equations assumes that the coordinates of
reference nodes are known [246]. The system of equations
makes use of the fact that the difference in distances from the
target to two nodes 𝑗 and 𝑖 is proportional to the difference in
the time they had to travel to the target. One of the downsides
of this method is that, similar to other range-based methods,
it assumes the distances between nodes are correct, i.e., it
does not account for error in distance estimation. Similar to
other geometric methods, TDoA-based positioning is com-
putationally inexpensive as it is simply based on a system of
simultaneous equations.
8.3.3. Fingerprinting

Fingerprinting is one of the most accurate methods for
indoor positioning and is thus widely used [247]. A fin-
gerprint refers to a vector of values that acts as a unique
identifier for a reference location. Fingerprinting requires a
training phase before localisation can occur. This phase is
called the offline phase, where the indoor space is divided
into equal sectors with reference locations, and fingerprints
of data such as RSSI [157, 116, 248, 238, 49, 117], sound
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A Six-Layer Model for Indoor Positioning Systems

], magnetic field data [250], CSI [251] or even images
omputer-vision-based positioning [252] are collected
time at each location and stored in a database. Some sys-
use hybrid fingerprints, e.g., [253] combined CSI and
data into fingerprints. Once the fingerprinting database
dy, target nodes can build their own fingerprints, which

hen compared to offline fingerprints. A reference loca-
ith the closest matching fingerprint is selected, and the

t is predicted to be in that discrete location [9]. Because
rprinting most commonly involves mapping indoor po-
ing data to a reference location rather than estimating
istance to reference nodes directly, it is classified as a
-free method, as in other works, e.g., [202, 254]. Note
his method is also applicable to device-free positioning,
n this case, fingerprints are based on how the object
terest perturbs the signal [31]. For example, [255]

emented a WiFi-based device-free indoor positioning
m that employed domain adaptation to differentiate
een CSI variation without the target and with the target
ngerprint-based localisation. [256] also used WiFi CSI
evice-free positioning with continuous calibration of
rprints to account for changes in CSI readings over
compared to the original fingerprint database. The
utational complexity of fingerprinting depends on the
rprint matching algorithm. Simple algorithms like kNN
ess expensive than deep-learning-based methods, for
ple.
ne of the major limitations of fingerprinting is the
sive amount of effort and time required to construct
ngerprint database. Another drawback of this method
fact that fingerprints can change as the arrangement of
ts in the indoor environment is altered, meaning that the
ase should be updated regularly. Thirdly, mapping the
t’s location to a reading in the database yields a discrete
f coordinates, whereas the target could be anywhere
een two reference nodes on a continuous spectrum,
ere is a margin of error involved depending on the
nce between the nodes. Of course, the number of refer-
locations could be increased, but this would mean that

rences between the fingerprints of neighbouring nodes
d be lower than typical online measurement variations
ed by noise, making selecting a reference node with
losest fingerprint difficult [9]. Therefore, it is essential
ike a balance between localisation granularity and the

ber of reference nodes.
ingerprinting involves mapping an online fingerprint to
ine location, which can be regarded as a classification
Researchers have tried using different classifiers in
t years for localisation, but simpler ones generally do
erform as well because of a high degree of fluctuation
e fingerprint data, especially RSSI. This creates the
for more high-dimensional fingerprint vectors to model
variability, but simpler algorithms fail to capture the
lexity of the input. Therefore, researchers have tried

cing dimensionality using methods like PCA [257] and
(Linear Discriminant Analysis) [258]. Even though
methods try to preserve the quality of the original data,

some features are still bound to not be represented correctly.
Therefore, researchers have recently been more interested in
using deep learning, which can perform feature extraction
on its own [18]. For example, the authors of [259] employed
a convolutional autoencoder to denoise RSS fingerprints
and combined it with a CNN for location estimation. The
appendix provides an overview of machine learning models
used in indoor positioning, either for localisation or to en-
hance positioning performance. Please refer to that section
for information on the types of classification (and regression)
models that can be used for fingerprinting-based localisa-
tion, which are kNN (section A.1), SVM (section A.2), MLP
(section A.5), Naive Bayes (section A.4), CNN (section
A.6) and decision trees (section A.3). Each algorithm has
its strengths and weaknesses as well as input requirements,
which are discussed in the appendix. For example, CNNs are
usually used for image-based data, so fingerprints should be
converted into images before training.
8.3.4. Self-Processing-Based Methods

Self-processing refers to a method being self-sufficient,
i.e., not relying on external infrastructure and only utilising
its own local resources. Dead reckoning is an example of this
because it relies on IMU sensors embedded in smartphones.
Magnetometer-based positioning is also self-sufficient, but
it either uses magnetometer readings for heading estimation
in dead reckoning or uses fingerprints of the readings. Fin-
gerprinting was already described in the previous section, so
this section is only going to cover dead reckoning.

According to [142], PDR is a self-localisation method
that relies on measurements from inertial sensors. PDR is
not capable of absolute position estimation, i.e., its estimates
are relative to the point of origin, which should be supplied
externally. It involves three steps: heading estimation, step
length estimation and step detection. Readers are referred to
[142] for a detailed description of PDR.

Similar to other methods, PDR suffers from noise that
comes from IMU data. For example, device orientation plays
a significant role in estimation quality [260]. Measurement
noise in step length estimation using an accelerometer hin-
ders positioning and leads to large errors. Another way is to
use a simple linear model, i.e., assuming the target moves in a
straight line, and the target’s speed, but this method requires
knowing the target’s height, which is sensitive data if the tar-
get is a person. Machine learning can also be used to develop
a model that takes multiple parameters into account, i.e., ac-
celerometer readings, the target’s speed, ground inclination,
etc. Finally, heading estimation is typically performed using
a compass or a gyroscope, where the former measures the
target’s angle of movement with respect to the true north and
the latter measures angular velocity. Compass measurements
are sensitive to ferromagnetic interference, and gyroscope
readings are subject to drift error [142].
8.3.5. Model-Based Methods

These methods are mainly applicable to device-free po-
sitioning [31]. They generate position estimates based on
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A Six-Layer Model for Indoor Positioning Systems

l propagation models such as shadowing models that
ribe RF signal attenuation or the excess path delay
el for human presence detection. Then, based on the
tive function, an optimisation algorithm such as genetic
ithms or gradient descent is run to find the estimate.
e methods have low accuracy because they do not
unt for environmental noise, so model parameters need

updated for new locations [31]. For example, [261]
RTI with its shadowing model to estimate the location

target by generating tomographic images.
. Computer Vision (CV)
omputer-vision-based methods are some of the most
utationally expensive positioning methods because
rely on continuous processing of images, which often
ves computationally heavy machine learning models.
also require offline training and digital map construc-

of the indoor space, which is labour-intensive. Nev-
less, computer vision is promising in that it provides
high localisation accuracy. Of course, similar to other
ods, it is not immune to noise like lack of lighting,
ts blocking the field of view, etc. However, if accuracy
utmost importance, one may consider investing in

illance cameras, although this is not necessary for all
ods. Some studies explore the use of cameras with
advanced features like infrared cameras, 3D cameras

those equipped with depth sensors [262]. In general,
uter vision methods rely on the use of cameras, which

either be part of the infrastructure or be carried by
arget. Three types of computer vision approaches can
elineated based on literature review: object detection,
ground subtraction and landmarking.
bject detection is one of the simplest ways to localise
ject and is usually performed by CNNs. Open-source

els have already been trained to recognise a wide array
mmon objects like people, books, etc. They can be

ined to recognise custom objects with relatively small
ets with the help of transfer learning. Many object
tion models have been developed over the years, in-
ng SSDs, RCNNs, YOLO and more [263]. In order
tain an absolute position of the target, a map of the

or space needs to be constructed along with a database
atic camera locations. If tracking is required, object
ing algorithms like the mean shift algorithm [264] can
ed.
ince running an object detection model is computation-
expensive if high accuracy is required, some studies
used the background difference method, which takes

ntage of the fact that the background captured by static
illance cameras does not change much. It takes a refer-
frame with no objects of interest in view and compares
frame to the reference. If there is a difference, it is
ed that the target has caused the background to change,

e difference region is where the target is located. The
rs of [265] used the background difference method to
t and track people through static cameras and combined
ethod with PDR. They used a sliding window approach

to make sure the reference frame was updated regularly
since lighting conditions and the background could change
over time. One of the drawbacks of this approach is that
there may be false positives like doors opening, which are
hard to detect. However, targets do not have to carry any
additional devices since localisation is purely dependent on
motion, which means that users do not have to bring their
smartphones or install localisation software beforehand.

Finally, landmarking is another popular computer vision-
based positioning method. It is similar to fingerprinting
in that it relies on building a database of landmarks and
their locations in the digital map of the indoor space, but
the use of landmarks in positioning the target is slightly
different from fingerprinting. Landmarking is usually used
in systems where the user carries a camera, i.e., they are not
usually used in systems with static cameras. For example, the
authors of [266] retrained a VGG19 CNN model for land-
mark recognition in video frames collected by users to assist
pedestrian navigation. Similarly, [267] trained a CNN model
based on ResNet50 [268] for scene recognition based on
user-taken images and achieved an average error of 1.31m.
In another study [269], the authors used a depth sensor to
estimate distances to nearby QR codes, which served as
artificial landmarks with their locations encoded on them,
and performed trilateration to locate the target. Essentially,
this study combined landmarking and trilateration in one
system.
8.4. Collaborative Methods

In collaborative methods, all devices (network nodes)
participate in localising each other by exchanging informa-
tion about their absolute or estimated locations, if known,
and distances to their neighbours. One of the advantages of
collaborative localisation is that infrastructure requirements
can be greatly relaxed as devices’ positions are incrementally
propagated throughout the network, so not all devices need
to have neighbours with known positions [197]. With the
rising popularity of smartphones, collaborative positioning
methods are expected to play an important role in indoor
positioning. Let 𝑁 be the number of unlocalised (agent)
nodes, which includes target nodes, and let 𝑀 be the number
of anchor nodes, i.e., whose absolute position is known. In
general, cooperative methods can be categorised based on
the number of anchors involved in localisation. The first
scenario is when the number of anchors exceeds the number
of agent nodes, i.e., 𝑀 > 𝑁 . In this case, collaborative
localisation is mainly used to enhance the accuracy of agent
nodes’ estimated locations. Traditional methods like trilater-
ation can be used to localise agent nodes with at least three
nodes, and their estimated locations can then be propagated
to their unlocalised neighbours so that they can do the same.
The second scenario is when 𝑀 < 𝑁 . In this case, if
network connectivity is low, more sophisticated methods
are needed, which usually employ the minimisation of an
objective function that captures the joint positioning of all
nodes. These methods can be collectively referred to as
optimisation-based methods. One of the main problems with
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A Six-Layer Model for Indoor Positioning Systems

methods is how to obtain an initial solution, and there
everal ways to do this, including multidimensional scal-
270] and mean connected anchor initialisation [196].
natively, anchor nodes can be equipped with GPS so
hey can position themselves any time, especially if they
obile, but this is only applicable to outdoor spaces

]. The last scenario is when 𝑀 = 0 and 𝑁 ≠ 0. This is a
ult problem because, according to [272], the number of
or nodes in a collaborative localisation setting must be
st three. However, it can still be considered as a relative
isation problem, i.e., where each node obtains other
s’ locations relative to itself and the node itself acts as
rigin. In general, collaborative positioning methods are
ively new, so more research is needed in this area.
. Multidimensional Scaling (MDS)
ccording to [270], multidimensional scaling is an algo-
used to represent a set of samples in an 𝑟-dimensional

e given a matrix of dissimilarities between each pair of
les. In the context of indoor positioning, the dissim-
y matrix is the matrix of pairwise distances between
ork nodes. MDS does not take locations of anchor nodes
account, meaning that it can be used even if all network
s are mobile. In other words, MDS is an algorithm for
g a dissimilarity matrix without any additional con-
ts. MDS is usually performed in a centralised manner

s computationally expensive [273]. However, MDS can
plemented in distributed and semi-centralised systems,

ring its computational load and increasing overall posi-
ng accuracy.
. Distance Vector Hop (DV-Hop)
V-Hop is a range-free distributed localisation algo-
that relies on the arrangement of nodes in the network,

e coordinates are assumed to be known. In this method,
inimum number of hops it would take to reach a node

ther nodes is calculated and multiplied by the average
nce between two nodes. Readers are referred to [201]
detailed description of this method.
ike other range-free methods, DV-Hop suffers from

ively low accuracy. To address this problem, improve-
s were proposed for the DV-hop algorithm by re-
hers. For example, Cai et al. [274] suggested including
al objective functions instead of just one, where one
tive function aims to minimise the absolute distance
and assumes that the average hop size for each node
erent. They added one more objective function, which

duced a constraint based on the average hop size for
odes to achieve better convergence. They tested the
model in simulated conditions and demonstrated an
ovement over existing 3D DV-hop algorithms. Chai et
75] integrated whale swarm optimisation into their DV-
algorithm to minimise inter-node distance estimation
, which was based on calculating the hop size.
. Constraint-Based Optimisation Methods

ef Propagation (BP) According to [197], belief prop-
on is a message-passing algorithm where each network

node holds a belief about its current state, i.e., its position,
but other pieces of data could be included as well, like veloc-
ity, in case nodes are mobile, and this state evolves according
to a model of the target’s behaviour, e.g., a motion model of a
person [276], a robot [277], etc. [272]’s simulations showed
that the minimum number of nodes with known positions
in a collaborative network to achieve a unique localisation
solution is three, but, due to node sparsity, the number of
anchors in real-world settings should be at least 10, which is
quite high.

One of the major advantages of this method is that a node
is not required to have three nodes with known locations in
its range to localise itself, as is required by triangulation and
trilateration. Instead, a node can wait for its neighbours to
localise themselves. Belief propagation is an umbrella term
for collaborative Bayesian algorithms that rely on message
exchange, which include MMSE (minimum mean square
estimator) [278], MAP (maximum a posteriori) estimator
[279], KF (for linear, Gaussian systems), EKF (Gaussian
approximation for non-linear systems, runs faster than a
particle filter) [140, 280, 281], UKF (Unscented Kalman
Filter) and PF (for non-linear systems) [52, 51]. In general,
they rely on calculating the next possible node states based
on historical information and a function that determines the
next state.
Maximum Likelihood Estimation (MLE) According to
[282], MLE (Maximum Likelihood Estimator) is a parame-
ter estimation method similar to the least-squares method.
In the context of indoor positioning, it aims to minimise
the error between estimated and real distances by taking the
probability distribution of measurement noise into account,
but, according to [196], the method itself is deterministic,
meaning it produces one-shot locations. This method as-
sumes that the probability distribution of measurement noise
is known, which may not be the case. If Gaussian distribution
is assumed, there may be additional error. Another problem
with this method is that not only is this function not linear,
it is also not convex, meaning that there is a risk of stopping
at local minima while searching for an optimal solution.
Therefore, an optimal starting value for the optimisation
algorithm used is required, which is difficult to obtain since
the search space is unknown. Other local search algorithms
like simulated annealing can be used, but the problem of
local minima remains. The minimisation function can be
transformed into a relaxed version and solved using semi-
definite programming [196], which will be described next.
Semi-Definite Programming (SDP) SDP (Semi-Definite
Programming) is a collaborative positioning algorithm that
helps find the optimum value of an objective function (either
maximum or minimum), given a set of constraints in the
form of inequalities. As was mentioned in the previous
section, it can be used to solve a relaxed version of the col-
laborative localisation optimisation problem. The derivation
of the relaxed version is beyond the scope of this paper.
The problem is relaxed such that the cost function becomes

yeva et al.: Preprint submitted to Elsevier Page 36 of 55



Journal Pre-proof

conv
posit
close
this
know
This
semi
Para
colla
capa
cost
full i
[283
rativ
optim
[284
onto
func
howe
deter
using
Then
calis
of ea
term
8.4.4

T
ods.
acco
wher
shap
anch
ellip
their
gene
recei
the i
own
boun
poin
Sarta
Jo
ur

na
l P

re
-p

ro
of

A Six-Layer Model for Indoor Positioning Systems

Figure 11: Application layer breakdown

ex but remains non-linear. Because of the relaxation,
ioning error increases, but it is generally acceptable and
to the optimal solution [196]. One of the limitations of

algorithm is that it needs some nodes’ positions to be
n, i.e., with no anchor nodes localisation is impossible.
means that nodes need to localise themselves before

-definite programming starts.
llel Projection Method (PPM) This is a distributed
borative localisation method with low computational
city that is also based on minimising the localisation
function. It achieves high accuracy but needs to have
nformation on NLOS error, which may be hard to obtain
]. The non-convex and nonlinear nature of the collabo-
e positioning problem complicates the search for global

a, as was mentioned in section 8.4.3. According to
], PPM solves this problem with the POCS (Projection
Convex Set) method, and the transformed objective

tion becomes a least squares problem. Before running,
ver, PPM needs to obtain an initial solution, which
mines the quality of the final solution and can be done
multidimensional scaling or mean connected anchor.
gradient descent is used to update positions of unlo-

ed nodes in each iteration by averaging the projections
ch node’s unlocalised neighbours [196]. The algorithm
inates when every node has been localised.
. Other Methods
his section will discuss less popular collaborative meth-

The first one is the outer-approximation method, which,
rding to [197], approximates the bounds of the area
e the target could be and reduces it to a geometrical
e by finding intersections of the ranges of virtual and
or nodes. The authors of this study previously used
ses as location-bounding shapes and used polygons in
new work because they produced tighter bounds. In

ral, in outer-approximation, each unlocalised node 𝑗
ves bounding areas from its neighbouring nodes, and
ntersection of all these bounding areas becomes 𝑗’s
bounding area, whose shape remains convex. Once all
ding areas are established, for each node, a random
t within each unlocalised node’s bounding area is picked

as its estimated location. Initially, each node’s bounding area
is set to a circle whose radius is set to the range of the node,
i.e., how far its signal can travel. Outer-approximation-based
methods are usually range-free, and range-free methods have
a lower accuracy compared to range-based methods [285].

A simpler version of outer-approximation is called APIT.
In this method, all nodes in the network exchange data,
i.e., their locations and IDs. Then, based on this data, all
possible triangles formed by reference nodes are determined,
and triangles containing the target are extracted. Then their
overlapping area is taken, and its centroid is returned as the
estimated position of the target. In terms of examples from
the literature, [286] developed an enhanced APIT algorithm,
where the authors used APIT to get an initial positioning
estimate and then narrowed down the area of the target’s pos-
sible location based on the tangent circle. One of the major
shortcomings of APIT is that it requires high reference node
density or a long communication range. Another limitation
is that it requires that at least three anchors are in the target’s
range, otherwise, it yields an error. Similar to other range-
free methods, APIT has a low positioning accuracy.

9. Application Layer
Finally, the application layer provides the most high-

level perspective on indoor positioning, i.e., in terms of
what it is intended to be used for in real-world settings.
Based on the literature review, there is not much diversity
when it comes to classifying IPS applications. One useful
categorisation was proposed in [37], which categorised IPSs
by the amount of granularity required by system users,
which usually dictates and is dictated by the resources avail-
able to system designers. The authors of [238] designed a
fuzzy-logic-based scheme that selected a suitable position-
ing method based on signal strength, room size and the
number of available BLE beacons. Winter et al. [37] clas-
sified IPS navigation scales into building-level (error of less
than 100m), room-level (error of less than 10m), furniture-
level (error of less than 1m) and component-level (error of
less than 10 cm) navigation, from coarsest to finest. Some
applications require extremely high accuracy, e.g., locating
small but critical parts within a large piece of equipment,
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A Six-Layer Model for Indoor Positioning Systems

e for others component-level accuracy would be a waste
mputational resources, e.g., locating a shop. A person
ee where a shop’s entrance is, so guiding him/her to
oor would be unnecessary, unless the person’s vision is
romised. This is just one classification system, but most

es classify IPS applications based on their use cases,
stry or both, e.g., [287, 16, 9]. However, a single IPS is
ecessarily supposed to be dependent on the domain it

ates in. For example, a system used for guiding people
certain location in a museum should be applicable for
ing people in a library. Classifying IPS applications
d on their granularity provides a better generalisation
use one cannot be replaced by the other, i.e., they
iscrete. Another possible abstraction can focus on the

an IPS brings rather than the industry it operates
.g., localisation vs tracking. Thus, in this paper, IPS
cations shall be categorised as follows: localisation,
ing, navigation and proximity detection, as depicted
gure 11. Proximity detection is the easiest task for an
to accomplish, followed by localisation and tracking.
lisation and navigation require proximity detection, and
ing and navigation require localisation, so these tasks
elated to each other, as is illustrated in Figure 12.
section will also cover examples of special applications
ed to COVID-19.

Figure 12: IPS applications

able 13 lists examples of indoor positioning applica-
along with their requirements along five dimensions:

racy (abbreviated in the table as ACC), response time
reviated as RT), latency (LT), scalability (SCL) and
stness (RB). Accuracy requirements are based on [37]’s
ation scale, where C stands for component-level, F
s for floor-level, R stands for room-level and B means
ing-level accuracy in Table 13. The other four require-
s are defined as high (H), medium (M) and low (L). No
ific metrics were defined for these requirements as we
ve exact measurements depend on the use case.

9.1. Localisation
Localisation is a more difficult task compared to prox-

imity detection because if an object is localised, calculating
its proximity to another node is trivial, but simply knowing
the object is near the node is not enough to provide a precise
location estimate. In addition, localisation only provides one
snapshot of a target’s location, so if one needs continuous
updates on the target’s location, one may need to look for
tracking solutions. Localisation plays a vital role in disaster
management for locating victims in risky environments with
low visibility such as during natural disasters like tornadoes,
earthquakes, etc. For example, the authors of [4] developed
an ad-hoc UWB-based IPS named CELIDON for assisting
firefighters in localising their teammates, which achieved
an accuracy of 30 cm. They proposed an architecture where
tracking devices could be integrated into firefighters’ equip-
ment such as augmented reality masks and helmets. The
authors of [288] designed a WiFi-based IPS for evacuating
people trapped in buildings; their locations were stored in
a central database for the rescue team to search for them.
However, this system relied on internet connectivity and
victims carrying smartphones, which may be lost during a
disaster, so this system is unlikely to be a robust disaster
management solution. Infrastructure-based systems do not
guarantee to be functional during a disaster as the network
could be disrupted. Thus, disaster management requires
infrastructure-free solutions with little coupling. IPSs for
dangerous environments can also be used to help victims
locate the nearest exit. Apart from this, uses of localisation
can be found in healthcare for locating patients, staff and
medical equipment, e.g., [289, 290]. AAL (ambient assisted
living) systems also need to keep a record of the elderly’s
location to make sure they do not go outside, e.g., the authors
of [291] designed a personalised AAL system based on
WiFi RSS fingerprinting with Gradient Boosted trees with
AdaBoost, and [292]’s AAL system based on BLE beacons
achieved 82% accuracy in zone classification in a building
using machine learning, with random forest showing the best
performance. In addition, IPSs can be used for localising
lockers, rooms, books in a library, cafes in an airport, assets
in a warehouse and much more. They are especially useful
in multi-story and multi-building spaces.
9.2. Tracking

Tracking is a more difficult task compared to localisa-
tion. In a sense, tracking can be viewed as continuous lo-
calisation with additional constraints on localisation latency,
i.e., if real-time tracking is required, then the time interval
between two consecutive localisation attempts should be
negligible. IPSs can be used to track the elderly and frail
people in general to detect anomalies in their movement,
e.g., when they collapse or have a seizure [3]. Tracking
patients during COVID-19 quarantine is another new use
case that has emerged recently. For example, the authors of
[293] built a sensor-based system to monitor the health of
patients diagnosed with COVID-19 that were self-isolating.
They used wearable biomedical and geo-location sensors for
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13
ples of IPS applications by industry with their requirements.

dustry Application type Example ACC RT LT SCL RB
isaster
an-
e-
ent

Localisation Localising arson victims in a multi-story
building

F H L H H

Navigation Building an escape route for people
trapped in a building during an earthquake
towards the closest exit

F H L H H

Tracking Tracking a firefighter looking for a victim
to make sure he/she is on the right path

F H L H H

set
ck-

g

Proximity
detection

Tracking which items get approached the
most in a shop

C M M M M

Tracking which shops attract most atten-
tion in a mall

F M M M M

Localisation Localising lost goods in a large warehouse C H L M H
Navigation Guiding a staff member to an item in a

warehouse
C M L H M

Tracking Tracking an item to make sure it is not
dropped off on the way

F H L H H

ealthcare

Proximity
detection

Notifying nurses closest to a patient in case
his or her condition is deteriorating

F H L M H

Warning a person to maintain social dis-
tancing in case he or she comes too close
to another person

R H L H H

Notifying people who have been close to
a confirmed case of COVID-19 for over
15min to self-isolate

F H M H H

Localisation Localising estranged patients F H L M H
Calculating the probability of contracting
COVID-19 in some space before a person
decides to walk in

R M M H M

Navigation Building a route and guiding a visually
impaired person towards a washroom

R M L M M

Constructing a path towards a destination
with a minimum number of people infected
with COVID-19 on the way

R/B M L H M

Tracking
Tracking an old person diagnosed with
dementia at home with no caregiver nearby
to make sure the person is safe

R M L L H

Tracking delivery of prescriptions to pa-
tients

F M L H H

Sending information about an exhibit to a
museum visitor when he/she approaches it

R M M M M

ntext-
sed
-
-
nce

Proximity
detection

Sending targeted promotions, coupons or
advertisements to a mall visitor depending
on the shop he/she is next to

R M L M M

Visualising performance of industrial equip-
ment in an augmented reality application
for staff as they pass by

F H L M M

Localisation Helping a person locate him- or herself in
a large building in case he or she is lost

R M M M H

Navigation A person clicking on a cafe in an air-
port navigation app, which builds a route
towards the cafe based on the person’s
current location

R M M H M

curity Tracking
Tracking soldiers carrying out a mission R H L H H
Tracking military assets F H L H H
Tracking people to detect suspicious activ-
ity

R H L M H

riculture Tracking Tracking farm animals to make sure they
do not go out of the barn or get stolen

R M L M H
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A Six-Layer Model for Indoor Positioning Systems

te health monitoring and WiFi- and GPS-based geo-
ng during quarantine. IPSs can also be used for tracking
le to detect suspicious behaviour and prevent them from
ing forbidden areas, e.g., staff, visitors, crime suspects,
hey can even be used to track farm animals, e.g., the
rs of [294] developed a UWB-based IPS for tracking
in a barn and achieved a localisation error of 37 cm in
.5 × 11.6m2 area with seven base stations. There are

IPS instances in the literature that track mobile targets
umans [295, 296], robots [297] and even animals, but

are not limited to mobile objects. IPSs play an important
n asset tracking, especially those using BLE, RFID and
ee [298]. Asset tracking is not restricted to warehouses;
-based IPSs have been used for asset management in

itals as well [299, 300]. Asset tracking can also be used
ce the use of items and even detect theft. For example,
uthors of [301] built an anti-theft system for e-bicycles,
e, if stolen, an e-bike could receive RSSI readings from
y ZigBee anchors, and these RSSI readings would then

onverted into distances and sent to a base station to
rm trilateration.
Navigation
avigation is defined as building a route from one point

other. While an IPS itself cannot build a route, it is used
eriving the coordinates of the destination, meaning that
or positioning serves as the basis of indoor navigation.
ing a route requires having access to a digital map
e indoor space, which is different from a radiomap
e indoor space because the latter simply stores the
ions of reference nodes. Navigation is necessary for
de range of industries, one of which is healthcare.
or positioning can be used to guide hospital visitors
taff to patients. Similarly, museum visitors can pinpoint
hibit they would like to see in an app so that the app
uild a trajectory towards it after obtaining their initial
ion. Another use case for indoor navigation is assisting
lly impaired people and those who operate in low-
ility conditions, e.g., [302, 303]. Indoor navigation is
cially widely used to enable autonomous movement of
ts and unmanned aerial vehicles, which heavily rely on
sensors to avoid obstacles [304]. The authors of [305]
rmed multisource fusion for automated meal delivery
estaurant. According to the authors, most meal delivery
ts rely on magnetic navigation, which require magnetic
s to be installed and relocated in case the movement
tory changes. The authors utilised UWB to let the robot
n its initial location and infrared, ultrasonic and IMU
rs to avoid obstacles as it moved towards its destination.
Proximity Detection
roximity detection refers to detecting whether a node is
vicinity of another node of interest, which is usually an

or node. Proximity-detection-based systems usually do
equire a high level of accuracy because simply knowing
de is within reach is enough. Examples of such appli-
ns include location-aware marketing, whereby people
ing by shops are sent customised promotions, coupons

or advertisements depending on which shops they are close
to [306]. These systems can be extended to send context-
aware content to users not just based on their location but
also on their spending habits, browsing history, age, gender
and more [16]. Of course, this comes with privacy caveats,
which is beyond the scope of this paper. Another example
of context-aware data distribution is assisted exhibit explo-
ration in museums, where information about exhibits is sent
to people automatically as they get closer [307]. Proximity
detection is also critical in the healthcare sector, where, in
case a patient needs urgent help, staff in the patient’s vicinity
should be detected and notified immediately. Next, examples
of COVID-19-specific applications that rely on proximity
detection will be given.
9.4.1. Social Distancing

Barsocchi et al. [308] conducted a review of social
distancing apps and described their use in three scenarios:
before entering a populated indoor space, while being in
a populated space and after leaving. In the first scenario,
indoor localisation can be used to determine how crowded
an indoor space is and inform visitors which places to avoid
to minimise the risk of infection. In the second scenario, IPSs
can assist in building the safest routes towards a destination,
i.e., with the lowest number of infected people on the way. In
the last scenario, crowd traffic patterns can be used to design
an optimal cleaning schedule. Similar to contact tracing,
social distancing applications usually rely on BLE but there
are infrastructure-free systems as well. For example, the
authors of [309] built a magnetic-field-based proximity de-
tection system for enforcing social distancing, where people
were asked to wear special devices with compact magnetic-
field-generating hardware that was used to detect if two
people were less than 2m apart from each other with 100%
accuracy.
9.4.2. Contact Tracing

Contact tracing is a special case of proximity detection
and was defined by [310] as the ability to pinpoint, track
and notify past contacts of an infected person so that they
can be asked to self-isolate. Contact tracing apps have been
developed in the last few years to curb the transmission of
COVID-19, which is a new virus that has become a global
health threat. Traditional contact tracing involves conducting
a test on a patient suspected to have contracted COVID-
19, and, if the result is positive, the patient is interviewed
to list his/her recent contacts, which can be problematic
because the patient may not be able to recall everyone [311].
Therefore, automated contact tracing can be an attractive
alternative as it requires no human intervention other than
installing an app on a smartphone or a wearable device,
reducing the exposure of authorised personnel to possi-
ble COVID-19 cases. Braithwaite et al. [312] conducted a
systematic review of automated contact tracing and found
no evidence of its effectiveness for transmission reduction.
They suggest contact tracing may be effective if population
uptake of contact tracing apps is increased to at least 56%,
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A Six-Layer Model for Indoor Positioning Systems

eople are hesitant to trust these apps due to privacy
erns. Anglemyer et al. [311] also found that the effec-
ess of digital solutions for contact tracing is unproven.
suggested digital solutions were unlikely to replace
al contact tracing completely. Despite this, Ferreti et

[313] study found that manual tracing was not sufficient
ntaining the spread of COVID-19, and if it was coupled
digital contact tracing and social distancing, the pan-
c could be stopped completely because digital solutions
detect possible infection cases much faster and inform

ted people immediately. According to [310], Bluetooth
most popular technology of choice for contact tracing

use of its low power consumption and low cost. BLE’s
l bandwidth is too narrow to handle ToA and TDoA
istance estimation [314], so RSS-based distance esti-
on is most suitable for real-time contact tracing, which
nsistent with [310]’s findings. [314] found that RSS-
d distance estimation in contact tracing was the optimal
e for decentralised systems, which are necessary for
rving users’ privacy. In centralised systems, all users’
ds are stored on a single server, which calculates the
ability of infection and notifies affected individuals in
the probability exceeds a certain threshold, whereas in
ntralised systems, this probability is calculated locally.

Conclusion
n conclusion, we have used a systematic framework
d on a six-layer model to provide a comprehensive
y of indoor positioning systems, covering indoor po-
ing technologies, algorithms, applications and current
s, with examples from recent studies. According to
odel, an IPS can be described in terms of six layers:
e, communication, network, data, method and applica-
sorted by increasing level of abstraction. The device
is the lowest level of the model and delineates the phys-

devices used in the IPS, i.e., its tangible components,
beacons, servers, smartphones, photodetectors, etc. The
nd layer of the model is the communication layer, which
ribes the communication technologies employed by the
e.g., BLE, WiFi, UWB, etc. These are less tangible than
evices they are based on but are still not just a fabricated
ept like the next layer (network), which explains the
gement of IPS devices and how they interact with each
via their communication technologies. This layer is

wed by the data layer, which describes what data is
for positioning and how it is processed before being fed

the method layer. The method layer is about positioning
ithms utilised in an IPS for localising one or more
ts. Finally, the application layer describes the high-level
tions of an IPS, i.e., what exactly it will be used for or
e it will be applied in real life, e.g., locating people
ed in a building during an earthquake. Overall, this
w shows that indoor positioning is a vast field with
research potential. Currently, there is no one single

or positioning solution for all applications. The use of
ine learning and the fusion of multiple technologies

offer promising prospects for the development of indoor po-
sitioning. More research needs to be done to minimise IPSs’
dependence on infrastructure and increase the distribution of
computational power over all network nodes to minimise the
risk of network failure. The six-layer model should provide
a useful framework for the research community.

11. Remaining Challenges, Open Issues and
Future Research

Indoor positioning is still an open research area with
many directions for future work. In this section, we highlight
some potential future research work.
11.1. Challenges/Open Issues
11.1.1. Noise Reduction

Based on the literature review, one of the most significant
issues in indoor positioning research, despite decades of
research, remains to be high levels of noise resulting from
multipath fading and absence of a consistent line of sight
in indoor settings. Although many studies report sub-meter
accuracy, no consensus on a single solution has been reached
because of considerations like devices available, infrastruc-
ture requirements, cost and more. For example, even though
UWB shows promise, it is still expensive to adopt and
maintain for small businesses. Deep learning methods and
the use of advanced filters have already had a positive impact
on positioning error, but more research is needed. The recent
introduction of UWB into smartphones and the use of IRS
for reducing noise in wireless communications shows that
advances in hardware are also required, so optimising soft-
ware and hardware for indoor positioning should be done as
a joint effort.
11.1.2. Generalisation

Many IPSs are designed to be suited for specific indoor
environments, meaning that they do not generalise to differ-
ent settings. Researchers should explore how to make adapt-
ing to new environments more seamless, e.g., with trans-
fer learning. Another major issue is device heterogeneity,
especially in smartphone-based positioning. For example,
different models measure RSSI differently, which poses an
additional challenge to positioning methods.
11.1.3. Indoor positioning security and privacy

Existing research work on indoor positioning typically
focuses on positioning accuracy. Another important issue is
security and privacy. In other words, accuracy depends on
system security. For example, if fake data are provided, the
measurements become useless. Furthermore, there is also
a need to protect user privacy while maintaining position-
ing accuracy. Therefore, as demand for indoor positioning
is rising, it is vital for researchers to investigate privacy-
preserving and secure positioning solutions.
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. Future Research
.1. Blockchain for secure positioning

ith the advent of blockchains, they can be used to
nticate IPS network nodes, track decentralized records

ensure positioning data integrity. In other words, it is
terest to investigate the use of blockchains for secure
ioning in a decentralised environment.
.2. Deep learning for indoor positioning
ven though there is a significant body of literature on
se of deep learning for indoor positioning already, exist-
orks still have their limitations, such as long inference

, dependence on a central entity for positioning, low
tability to new environments, etc. That means, more
es are required to tackle these issues. Moreover, deep
ing provides a promising solution for dealing with noise
ent in indoor positioning data, but new or enhanced
ions are required to account for security and privacy
iderations.
.3. Infrastructure-free collaborative indoor

positioning
here is a pronounced need to minimise dependence

omplex IPS infrastructure in order to reduce coupling
maintenance costs. This can be achieved by using co-
ative indoor positioning, whereby dependence on in-
ucture is relaxed because IPS nodes can propagate
locations throughout the system, meaning that remote
s do not have to a certain number of neighbours to
ise themselves. Collaborative indoor positioning has
eceived much attention compared to non-collaborative
or positioning. This is a promising area for further
rch.
.4. Indoor positioning based on hybrid

technologies and sensor fusion
urrently indoor positioning research tends to focus on
idual technologies. It is of interest to conduct more
es on using hybrid technologies such as BLE/UWB/BLE
hance the overall performance. Coupling with AI/machine
ing, more effective methods can be developed. Tightly
led sensor fusion approaches are attracting attention
e research community since they can yield better
ioning performance than loosely coupled methods.
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A. Overview of Machine Learning Algorithms
In this appendix, we give an overview of commonly

used machine learning algorithms. They are used to enhance
positioning methods.
A.1. k-Nearest Neighbours (kNN)

In kNN, 𝑘 vectors from the training dataset that are
closest to a test sample are selected, and the most frequent
label among the selected vectors is returned as the label of
the test sample. Distances between samples can be calcu-
lated using different methods, such as Euclidian distance
[117, 315], Chebyshev distance [315], cosine similarity [49],
etc. When 𝑘 = 1, i.e., only one nearest vector is selected,
this is referred to as simply a nearest-neighbour algorithm.
Another common version of kNN is called weighted kNN.
In kNN, labels of 𝑘 nearest neighbours are simply averaged
if it is used for regression, or the most frequent label is
chosen in a classification task, whereas in weighted kNN
(WKNN), closer samples are given more weight. WKNN
is said to be more accurate than kNN [117]. kNN shows
poor performance with high-dimensional data, and, in the
context of indoor positioning, the number of dimensions in
fingerprints increases with increased data variability, espe-
cially with RSSI [16].
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Support Vector Machine (SVM)
VM is a machine learning algorithm that takes a series
ining samples and is trained to find a hyperplane that

rates the samples into categories based on their output
s; an SVM can be used for classification and regression
, so its output does not have to be discrete. SVM is
s computationally expensive as more advanced machine
ing models, but it is powerful enough to handle non-
r feature spaces, making it useful for handling complex
l interference patterns in indoor spaces. However, if
umber of support vectors is large, which controls error
ance, i.e., how closely the hyperplane follows training
then space complexity may be an issue.
Decision Trees (DT) and Random Forest
decision tree is a supervised learning model that

s some decision rules based on the input data features.
decision path leads to a classification label. Single

ion trees tend to perform poorly since they may not be
to effectively identify the most efficient set of decision
. Therefore, it is common to combine multiple decision
in a single model called Random Forest. The input

is randomly divided into 𝑛 partitions, and a decision
is constructed based on each partition. Then the label
ned by the majority of decision trees based on a test
le is returned in a classification task. In regression, the

ictions may be averaged or the maximum value could be
. There are multiple ways to arbitrate between multiple
ion trees’ votes.
Naive Bayes (NB)

his is one of the fastest classification algorithms that
Bayes’ theorem to calculate the probability that a test
le belongs to a certain class given its set of features.

sumes that every pair of features is conditionally in-
ndent from each other, hence the “naive” label [316].
probability that an input vector of online readings 𝑥
sponds to a label 𝑙𝑖 is [316]:

𝑃 (𝑙𝑖|𝑥) =
𝑃 (𝑥|𝑙𝑖)𝑃 (𝑙𝑖)

𝑃 (𝑥)
, (6)

𝑙𝑖 yielding the highest probability should be returned,
𝑟𝑔𝑚𝑎𝑥
𝑖∈{1...𝑛}

(𝑃 (𝑙𝑖|𝑥)), where 𝑛 is the number of labels. 𝑃 (𝑥)
(𝑙𝑖) are assumed to be known, so the goal is to find an

t maximises 𝑃 (𝑥|𝑙𝑖).
Multilayer Perceptron (MLP)
LP is one of the simplest deep learning models that

ists of an input layer, an output layer and one or more
en layers in between. Nodes in each layer are connected
ery node in the previous layer, which is why MLP
o referred to as a fully connected neural network. In
implest configuration, MLP has only one hidden layer,
the more hidden layers are added, the better the net-
can model high-dimensional data, but it also becomes
computationally expensive. In the context of indoor

ioning, the input layer usually accepts fingerprints of

reference locations, and the network is trained to output the
coordinates of the corresponding locations with supervised
learning. The model is then used in the online phase to
estimate online fingerprints’ corresponding locations. The
hidden layers learn the relationship between the input and
the output by updating their weights, so that in the online
phase the input can be multiplied by the weights to obtain
an estimated output.

Figure 13: MLP structure

Essentially, an MLP network is like a complex function,
where the target is to optimise the weights. This can be
done using gradient descent, which minimises the error
between network output and real output. Figure 13 provides
an overview of the structure of an MLP network. The values
of each layer are calculated by multiplying the weights of
the current layer by the values of the previous layer, so the
general formula for each layer is 𝑎𝑟 = 𝑓 (

∑
𝑤𝑟𝑡𝑎𝑡 + 𝑏𝑟),where 𝑓 is an activation function, e.g., ReLU, 𝑏𝑟 is a bias

unit, 𝑎𝑟 is a value of the current layer, 𝑎𝑡 is a value of the
previous layer and 𝑤𝑟𝑡 is a weight outgoing from node 𝑡 to
node 𝑟.

Since all layers in MLP networks are fully connected,
they are computationally expensive, especially as more lay-
ers and units are added, but examples of them being used
in the literature still exist. For example, [317] used MLP
with RSSI and AoA measurements from BLE anchors for
localisation in a 4 × 4m2 area and achieved an error of just
over 1m.
A.6. Convolutional Neural Network (CNN)

CNNs are mainly used for image processing. Since im-
ages can be large, running a MLP on images, especially
videos, would be slow, so CNNs were designed to reduce
the computational load and allow for real-time image pro-
cessing. A CNN typically includes pooling, convolutional
and fully connected layers. A single convolution consists of
three steps. First, the input is convolved using a kernel and
a sliding window to generate a set of features. Secondly, the
features are run through an activation function like ReLU,
and finally, the pooling layer reduces the size of extracted
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A Six-Layer Model for Indoor Positioning Systems

res, which speeds up the model. Next, these features
ed into a fully connected layer so that it can map
to a label [318]. In indoor positioning, data like RSSI

rprints is usually transformed into images before being
to a CNN. For example, the authors of [157] combined
rprints of WiFi RSSI with magnetic sensor data to
rate images as training samples for a deep CNN. They
ved an error of less than 1m in a 60 × 40m2 test bed

found that WiFi’s lowest accuracy values were worse
those that were generated by a magnetometer, and vice
.
Recurrent Neural Network (RNN)

ecurrent neural networks are usually used for sequen-
ata, i.e., something where historical information mat-
e.g., stock exchange, speech, music, etc. Taking a stream
SSI values as an example, most methods assume that
I values in a sequence are independent of each other, but
I sequences may carry useful information based on how
ignal reflects off of objects, e.g., [319]. In an RNN, each
considers the current input as well as historical inputs,

the network maintains “memory” of the data it saw
ediately prior to the current input. An unrolled version
sequence of RNN nodes is illustrated in Figure 14.

Figure 14: RNN structure (adapted from [320])

(𝑖)
𝑡 refers to the same node ℎ(𝑖) at time 𝑡. In general, each
’s value is calculated based on the following formula
]:
ℎ(1)𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(ℎ(1))(𝛽ℎ(1) +𝑊1ℎ

(1)
𝑡−1 + 𝑈𝑥𝑡),

ℎ(2)𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(ℎ(2))(𝛽ℎ(2) +𝑊2ℎ
(2)
𝑡−1 + 𝑉 ℎ(1)𝑡 ),

𝑜𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑜)(𝛽𝑜 + 𝑅ℎ(2)𝑡 )
(7)

formula shows that each unit considers its previous
, i.e., at time 𝑡−1 and the newly incoming value (𝑥𝑡 for
for example), each with its own weight, adds a bias term
passes the result to an activation function (𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛),

h can be different for each layer, e.g., ReLU for hidden
s and sigmoid for the last layer. 𝑜𝑡 is the output unit,
h does not have a feedback loop, has its own weights and
n bias term. Note that the weight for the previous value

e current unit (e.g., 𝑊1) is different from the weight for
coming data from the previous layer (e.g., 𝑈 ).

A.8. Deep Belief Network (DBN)
According to [321], a DBN is an unsupervised learning

model formed by stacking several RBMs together such that
the hidden node of one RBM (Restricted Boltzmann Ma-
chine) acts as the visible node of the next one. An RBM
is itself a neural network represented as a bipartite graph
with two layers, a visible and a hidden layer, and nodes
within the same layer are not connected, but every node
in one layer is connected to every node in the other layer,
which is in a sense similar to MLP. Each node is a stochastic
variable with a value between 0 and 1. An RBM learns a
probability distribution of its sets of inputs so that it can
learn to reconstruct its input using its weights. DBNs are
thus usually used for generative learning tasks like image
generation. However, they can also be used for regression,
classification and more. The energy function of an RBM is
calculated as

𝐸𝑅𝐵𝑀 (𝑉 ,𝐻 ; 𝜃) = −(
𝑛∑
𝑖=1

𝑏𝑖𝑉𝑖+
𝑚∑
𝑗=1

𝑐𝑗𝐻𝑗+
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑤𝑖𝑗𝑉𝑖𝐻𝑗),

(8)
where 𝜃 = {𝑊 , 𝑏, 𝑐} is the set of model parameters, 𝑊 is
the weight matrix, 𝑤𝑖𝑗 is a weight connecting a visible node
𝑖 and a hidden node 𝑗, 𝑏𝑖 and 𝑐𝑗 are the bias weights of visible
and hidden nodes respectively, 𝐻𝑗 is the value of a hidden
node, 𝑉𝑖 is the value of a visible node, 𝑛 is the number of
visible nodes and 𝑚 is the number of hidden nodes [321].
The network calculates the probability of each (𝑉𝑖,𝐻𝑗) pair
and of a single visible node as follows [321]:

𝑝(𝑉 ,𝐻) = 𝑒−𝐸(𝑉 ,𝐻)

∑
(𝑉 ,𝐻)

𝑒−𝐸(𝑉 ,𝐻)
, (9)

𝑝(𝑉 ) =
∑
𝐻

𝑝(𝑉 ,𝐻) =

∑
𝐻
𝑒−𝐸(𝑉 ,𝐻)

∑
(𝑉 ,𝐻)

𝑒−𝐸(𝑉 ,𝐻)
(10)

Here, the activation function is the sigmoid function. The
network aims to update its weights so that its output matches
the input as closely as possible. Weight update happens
based on approximating each 𝑝(𝑉 ) as follows [321]:

𝑤𝑖𝑗 ∶= 𝑤𝑖𝑗 − 𝜖(
𝜕 log 𝑝(𝑉 )

𝜕𝑤𝑖𝑗
) = 𝑤𝑖𝑗−

𝜖(𝐸𝑑𝑎𝑡𝑎[𝑉𝑖𝐻𝑗] − 𝐸𝑚𝑜𝑑𝑒𝑙[𝑉𝑖𝐻𝑗]),
(11)

where 𝐸𝑑[𝑉𝑖𝐻𝑗] represents the expected value over distri-
bution 𝑑. In other words, an RBM calculates the probability
of a hidden node, which represents a certain feature, given
a vector of visible node values 𝑝(𝐻|𝑉 ) =

𝑚∏
𝑗=1

𝑝(𝐻𝑗|𝑉 ). In
order to perform classification or regression, one more layer
needs to be added after the last hidden layer. In the indoor
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A Six-Layer Model for Indoor Positioning Systems

isation field, DBNs are usually used for feature extrac-
For example, the authors of [226] used a four-layer
to normalise incoming RSSI values into a fingerprint

was easier to map to another fingerprint in the offline
ase. The DBN was trained to capture the behaviour of

I values in the test environment.
Generative Adversarial Network (GAN)

n [227], a GAN is described as a combination of two
of nets: generative and discriminative. Generative nets
the probability distribution of its input and determine

likely a certain output is in that distribution. This means
he generative part of a GAN learns how to transform an
lly random input into a data instance that exhibits the
cteristics of a real one. Discriminative nets determine
likely an instance from the generative network to be
ned a certain label, i.e., either fake or real. In other
s, a GAN consists of an unsupervised learning model
generator) and a supervised learning model (the classi-
that are trained together in an adversarial fashion, i.e.,
enerator is trained such that the discriminator cannot
an instance is fabricated about half the time. GANs are

lly used for data synthesis, including, but not limited to,
es, text, music and more. During training, the objective
minimise the cost function, i.e., the joint error of the
odels [227]:
𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝑉 (𝐷,𝐺) = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[log10𝐷(𝑥)]+

𝐸𝑦∼𝑝𝑦(𝑦)[log10(1 −𝐷(𝐺(𝑦)))]
(12)

discriminator tries to maximise the number of fake
nces it detects, while the generator tries to minimise it.
) is the probability distribution 𝑑 of variable 𝑣, 𝐷(𝑥)

output of the discriminator, and 𝐺(𝑦) is the output of
enerator. GANs have been used in indoor positioning
ugmenting offline fingerprint datasets because finger-
collection requires extensive effort. For example, the
rs of [227] used a GAN to generate thousands of new
rprints to cover the entire indoor environment, and they
used a semi-supervised deep neural network to label the
fingerprints based on fingerprints with known labels.
. Autoencoder (AE)
n autoencoder is an unsupervised deep learning net-
that learns how to transform an input into another

sentation using an encoder and convert it back to its
nal form using a decoder. The latent space represen-
n is computed in a layer called the bottleneck. That is
an autoencoder has the same number of input nodes
utput nodes. Autoencoders can be used for data com-
ion, anomaly detection, dimensionality reduction and
. In indoor positioning, AEs are used to reduce noise
gerprints and use the smaller fingerprints to perform
ssion for position estimation, i.e., the decoder can be
ced with a supervised model [228].
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