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Abstract

Attention mechanisms have been incorporated into many neural network-based natural lan-
guage processing (NLP) models. They enhance the ability of these models to learn and reason
with long input texts. A critical part of such mechanisms is the computation of attention sim-
ilarity scores between two elements of the texts using a similarity score function. Given
that these models have different architectures, it is difficult to comparatively evaluate the
effectiveness of different similarity score functions. In this paper, we proposed a baseline
model that captures the common components of recurrent neural network-based Question
Answering (QA) systems found in the literature. By isolating the attention function, this
baseline model allows us to study the effects of different similarity score functions on the
performance of such systems. Experimental results show that a trilinear function produced the
best results among the commonly used functions. Based on these insights, a new T-trilinear
similarity function is proposed which achieved the higher predictive EM and F1 scores than
these existing functions. A heatmap visualization of the attention score matrix explains why
this T-trilinear function is effective.

Keywords Attention mechanism - Question answering - Deep learning - Natural language
processing

1 Introduction

In natural language processing (NLP), handling long sequences of words is a crucial and
challenging task. The traditional way is to compress long sequences into short fix-length
vectors [1, 2]. However, this can potentially cause a loss of information, especially in the
earlier stages of the processing pipeline [3]. More recently, attention mechanisms are used
to circumvent this problem by focusing on the information that is most relevant to the target.
Their success has made them an indispensable part of neural network-based NLP models for
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machine translation [4, 5], machine reading comprehension [6-9], sentiment analysis [10,
11], and question answering (QA) [12, 13].

The goal of QA systems is to generate answers to questions based on the information
provided by a passage. A natural way to do this is to compute the relevance of various parts
of the passage to the words in the question. Alternatively, we can say that the words in the
question pay attention to different parts of the passage that are considered most relevant. This
method has been used successfully in many Recurrent Neural Network (RNN)-based QA
systems [6, 7, 14-16].

More recently, another type of attention known as self-attention or intra-attention has been
introduced by the Transformer model [17]. The main aim of the Transformer model is to
replace recurrent networks by multi-layer feedforward networks. Self-attention is computed
in each layer for all inputs to that layer. Its goal is to learn the contextualized word embeddings
of a sequence. A position encoder is employed to preserve the knowledge of the order of
the words in the input sequence. This architecture has been very successful and inspired
many variants, such as OpenAI’s GPT [18], GPT-2 [19], GPT-3 [20], and Google’s BERT
[21]. Another variant, known as Transformer-XL, re-introduced recurrent structures into the
model in order to learn longer-term dependencies [22].

Since attention is a core part of these deep learning systems, it is important to understand
how the similarity score function affects the performance of these models. However, it is
not easy to compare them fairly as the models they are associated with are different. In this
paper, we designed a baseline model for this purpose. This model is based on the common
characteristics of neural QA systems from the literature that allow us to easily substitute
different attention similarity score functions into the model. In this way, we are able to
fairly compare the effects of various similarity score functions, both additive [6, 8, 9] and
multiplicative [17, 23-27], on the performance of the system.

Using the insights obtained from this comparison, a new function that combines the
strengths of the additive and multiplicative methods for similarity calculation is proposed.
Results show that this new function provides the highest predictive scores compared with all
the existing attention functions. Furthermore, visualization of the attention similarity matrices
shows that the proposed method provides a more intuitive understanding of the relationship
between the question and the relevant words in the passage.

The rest of this paper is organized as follows. A brief review of neural QA systems that
make use of attention mechanisms is provided in Sect. 2. Based on the common characteristics
of these systems, in Sect. 3, a baseline QA model is designed for a fair comparison of
the different similarity score functions. Section 4 describes the various attention similarity
functions considered in this paper. The experimental setup and the comparison results are
presented in Sect. 5. In Sect. 6, anew similarity score function is proposed, and its performance
is compared with four of the best existing methods. Finally, Sect. 7 presents the conclusions
and provides suggestions for future work.

2 Architectures of Neural QA Systems with Attention Mechanisms

Several neural QA systems with attention mechanisms can be found in the literature. Some
of them make use of RNNs to capture the contextual dependencies in the word sequences
[6, 7], while others encode sequences by fine-tuning the pre-trained language model [17-19,
21, 28]. These neural QA systems can be categorized into two groups—RNN-based and
Transformer-based (RNN-free). The attention mechanisms in these two groups of QA models
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are structured very differently. We shall refer to them as modular attention and self-attention
respectively.

A representative of the RNN-based models is BIDAF [6]. It consists of five basic layers.
The first layer maps each word to a high-dimensional vector by combining both word-level
and character-level embeddings. The second layer is the contextual embedding layer which
makes use of a bidirectional Long Short-Term Memory (biLSTM) to capture the temporal
dependencies among words for both the passage and the question. This is followed by the
attention flow layer that acts as an attention mechanism to generate both context-to-query
and query-to-context attention-based summaries. The subsequent modeling layer applies
another biLSTM to the output of the attention mechanism, to produce query-aware context
representations that capture the temporal interactions among them. The output layer, through
two classifiers, provides the prediction of the start and end indices of the answer in the
passage.

These layers in the BIDAF model are typical for a range of such QA systems. In some
models, several layers are grouped together into a module. An example is the DCN model
[7] which has three modules—a document and question encoder, a co-attention encoder,
and a dynamic pointing decoder. The first encoder serves the same functions as the first
and second layers of BiDAF but without the character-level embeddings. The co-attention
encoder acts as an attention mechanism. But it uses a different attention similarity function
and a different approach to generate passage-aware query summaries. The decoder performs
the same functions as the modelling and output layers of BiDAF. Other examples of such
QA systems include FastQA [23], SAN [27], QANet [14], DocQA [29], DrQA [30] and
FusionNet [31]. Some of these models include additional linguistic features in addition to
word embeddings [23, 27, 30, 31]. DocQA adds an additional self-attention calculation in its
attention mechanism. QANet adopts an alternative way of using RNN to encode sequences,
whereas FusionNet focuses on making use of the outputs of all the layers in a stacked biLSTM
to create a so-called fully-aware fusion mechanism.

Even though the models mentioned above differ from each other in certain ways, there
are four aspects that cover all the essential components. First, words are mapped into a high-
dimensional vector space called word embeddings. Second, contextual dependencies among
the words are captured by an RNN-based context encoder. Third, relevant information from
the passage is generated with an attention mechanism. Finally, the output of the attention
mechanism is passed into two separate classifiers, which predict the start and end indices of
the answer span in the passage respectively. The structure of these models in terms of the
four components is shown in Fig. 1.

Transformer-based models are quite different from the RNN-based QA models described
above. These models include GPT [18], BERT [21], GPT-2 [19], GPT-3 [20]. The Trans-
former model that was designed to dispense with the recurrent operations and was originally
experimented on machine translation tasks [17]. Hence, this type of models has a feedfor-
ward structure. Among them, GPT-3 is the latest and most powerful one. With 175 billion
parameters, 10 times more than any previously trained language models, it performs language
generation and other capabilities amazingly comparable to humans. Succeeding GPT-3 some
large-scaled models have emerged, such as Switch Transformer scaling up to trillion param-
eters without increasing computational costs [32], DALL-E a Text2Image system trained on
text-image pairs [33], and Wu Dao 2.0 have both Chinese and English language generation
skills [34].

The architecture of these models typically consists of several encoder or decoder layers.
Within each layer is a sub-layer for self-attention, also known as intra-attention. Self-attention
allows each position (word) in a sequence to relate to all the other positions, in order to
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Fig. 1 The relational illustration of the four components

generate a representation of each word in relation to other words in the sequence. Several
such layers are stacked to produce a higher-level contextualized representation of the sequence
before passing to the downstream related prediction layer. More significantly, as the focus of
this group of models is language modeling, there is no such concept of the interaction between
the passage and the question. Therefore, the passage and the question are not separated in
the earlier layers like that in Fig. 1, but are concatenated as a single sequence of words.

In this paper, we shall focus on modular attention; self-attention will be left as the subject of
future work. In particular, we want to investigate the effects of using different similarity score
functions. In order to make fair comparisons, we designed a baseline model that captures the
invariant aspects of the aforementioned RNN-based neural QA systems. The purpose of this
baseline model is not to compete with the state-of-the-art models, but to fulfil the purpose in
this work.

3 The Baseline Model

The baseline model is designed to provide a fair comparison of the effectiveness of vari-
ous attention similarity functions used in modular attention mechanisms. A detailed block
diagram of this model is illustrated in Fig. 2. It consists of four modules that are used in a
range of QA systems that have been described in Sect. 2. These four modules—input, context
encoding, attention, and answer predictor, are described in detail below.
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Fig. 2 Block diagram of the baseline model

3.1 Embedding Layer

The task of this layer is to represent each word using its word embedding which is a high-
dimensional vector in the Euclidean space. This is arequired step in any neural network-based
QA model [6, 12, 13, 27, 31, 35, 36]. Given a passage {x|, x2, ..., x3r} with M words, and
a question {q1, g2, ..., gy} with N words. In the word embedding space, the passage is
represented as {ef, €5, ..., e},} € RM*V and the question as {e{, 3, ..., el } € RV*V,
where v is the dimension of the word embedding.

Pretrained word embeddings or contextualized word embeddings produced by a pretrained
language model can be used, in line with a number of QA models [8, 14, 27, 29]. The feedfor-
ward neural network (FNN) is primarily used to reduce the dimension of word embeddings
if necessary. If sufficient memory is available, the dimension of the output layer of the FNN
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can be the same as that of its input layer. Otherwise, its dimension can be made smaller than
its input.

3.2 Context Encoder

The sequence of words in the passage is passed to a bi-directional LSTM (biLSTM) layer to
fuse the temporal and contextual information into its hidden states to produce the contextual
embeddings H = {h,}?il € RM*4_The sequence of words in the question is fed into the
same biLSTM to generate its contextual embeddings U = {ut}fvz | € RN*4_The calculation
of H and U can be expressed as:

hy = biLSTM (h;—1, w?), (1)

u; =biLSTM (u;—1, w). )

The advantage of contextual embeddings is that they capture the positional and ordering
information of words within a sequence (a sentence or a paragraph) [6, 7, 13, 15]. In other
words, contextual embeddings contain the information on the context (what goes before
and after) of the current word. As a result, the same word appearing in different places and
representing different meaning will have different contextual embeddings.

3.3 Attention Mechanism

As the passage usually contains information that is irrelevant to the question, the main objec-
tive of this module is to identify the relevant portions of the passage. An attention mechanism
usually consists of two parts: similarity score calculation, and relevant information genera-
tion.

3.3.1 Similarity Score Calculation

Given two vectors h; and u; representing the ith and jth elements of the contextual embeddings
of the passage H and of the question U respectively, the attention similarity score between
them is given by

Sij :go(hi,uj), (3)

RM*N s obtained by

where @(-) is the similarity function. The attention score matrix S €
arranging these scores in rows and columns.

In this baseline model, we purposedly isolate this computational block from the rest of
the model so that ¢ could be easily replaced in our comparative study. Details of the most

common functions are discussed in Sect. 4.

3.3.2 Relevant Information Generation

Instead of using the attention score matrix § directly, it is first normalized. The normalized
form of S is known as the attention weight matrix A € RM>*N with elements given by

exp(sij)

S @)
k-1 exp(sic)

Qjj =
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Such normalization yields 0 < o;; < 1, and they represent the probability of each passage
word i being related to each question word j. Note that

Xﬁﬁsz. )
j

The context-aware summary U € R™*¢, also known as the context-to-query summary
in some models [6, 29], plays an important role in generating the relevant information in
attention mechanisms [6, 23, 37, 38]. It is given by

U = AU. (6)

The relevant information needed to predict the answer is the function of U and H and it
is denoted by O = {o; iﬁil € RM*do where

0; = f(hi. ;). 7

f is generally a nonlinear function with trainable weights such as an FNN and do is the
dimension of the output of f. However, simple concatenation of the operands and their
derivatives have been shown to yield good results and are used by a number of QA models
[6, 7]. There are two possible concatenation methods:

0; = [hi; u;] 8
with dimension d» = 2d, and
0i = [hi:;: hj o ;] &)

where do = 3d, and o denotes the Hadamard product.

3.4 Answer Predictor

The relevant information generated is first passed into a biLSTM to relate the representation
at each time step with those preceding and succeeding it. Thus,

z; =biLSTM(0;, zi-1)- (10)

Each cell in this biLSTM also plays the important role of projecting the high-dimensional
representation from the attention mechanism to a lower-dimensional space. This layer exists
in many QA models with attention [6, 7, 27, 29, 38]. It is also known as the modelling layer
[6].

The answer is specified by the start and end indices, denoted by p; and p, respectively,
of words from the original passage. p; is obtained from the output of a fully connected FNN
followed by the softmax function. That is,

p1 = softmax(wp, [ Z; H]+bpl), 1D

where Z = {Zi}iﬁi
bias.

Z is then fed into another biLSTM to generate G. G and H are then passed into another
fully connected FNN followed by the softmax function to predict the probability of the end
index p,. This can be expressed in the following equation

€ RM>X2 e R4 are the weights of the FNN and b, € R is its

P2 =softmax(wp2[G; H]—i—bpz). (12)
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As the input to this FNN is G = { g; }lﬂil which is derived from Z via another biLSTM
where

g =biLSTM(zi, g;_1). (13)

the prediction of the end index is conditioned on that of the start index.

4 Similarity Score Functions

As discussed in Sect. 3.3.1, an attention similarity score is computed for the contextual
embeddings of the passage and the question. The two groups of similarity score functions,
additive and multiplicative, are listed in Table 1.

4.1 Additive Attention Functions

The bilinear function is not seen as an attention similarity function, but according to our
preliminary experimental results it provides more insight. Comparing to the trilinear function,
bilinear gives much worse results. It is interesting to see how important the element-wise
product term is.

The trilinear is well-used in QA models [6, 14, 29], but rarely seen as similarity functions
for other uses. It contains three trainable weight vectors w,, w, and w,,, associated with
h;, u; and their element-wise product h; o u; respectively. Another form of this function

Table 1 Similarity score functions compared in this paper

Group Types go(hi, uj) forms
Additive Bilinear* wph; +wqu;
Trilinear [29] wph; + wquj + wpy (ki ouj) or
ww[hi; uj; hjo uj]
FNN [8] wg tanh (W ph; + W ;)
Concat-FNN [39] wy tanh(W p[h;: u;])
Multiplicative Dot-product [4, 7, 36, 37] hiTuj
Cosine [26] hiT u;
hipujp
Scaled dot-product [17, 24] h,'T“j
Nz
General-1 [4] hiT Wu;
General-2 [25] Wihp)T (Wauj)
General-3 [27] FWihy)., f(Wou;)
Hadamard [23] w! (h,- o u_j)

Bold indicates conventional expressions for vectors and matrices

Wy, Wy, Wpg, Wy and w are trainable vectors. W, Wq, W, W1 and W5 are trainable matrices. f(-) is the
ReLU activation

*It is not seen as an attention similarity function, but including it helps to gain more insights on the other
methods
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is wy [h,-; uj; h; o uj], containing only one trainable weight vector that associates with the
concatenation of the three vectors. The two forms are the same theoretically, as wy, is just
the concatenation of the w,, w, and w ;.

The FNN method first multiplies /; and u; with two trainable matrices respectively. From
another perspective, this method passes h; and u; to two different linear FNN layers. The
outputs of these two layers are summed before squashing with the fanh function. The resulting
vector is then passed into another linear layer to produce the similarity score [8].

The concat-FNN function first concatenates the two input vectors k; and u;. The concate-
nation is then fed to a nonlinear FNN to produce the similarity score [3]. Comparing with
the FNN function, the concat-FNN requires more computational memory.

4.2 Multiplicative Attention Functions

Dot-product is the most commonly used similarity function for QA models. The dot product

between h; and u; can be expressed as h! u; = |h;| |uj|cos®, where 6 is the angle between
b

) o I A L3 ] P
The advantage of the cosine function is that its magnitude is limited to within £1. It was used

early on for neural Turing machines [26] to compute the similarity of two representations.
However, none of the QA models have made use of this function.

The Transformer model [17] makes use of the scaled dot-product for its self-attention
mechanism. The scaling factor is +/d, where d is the dimension of the vectors. This scaling
apparently promotes efficient learning. As the transformer-based pretrained language models
are becoming ubiquitous, the scaled dot-product function is also increasingly utilized [18,
19, 21, 28].

The general-1 function generalizes the dot product function by introducing a trainable
weight matrix W. The general-2 function further incorporates two trainable weight matrices,
one for each vector. These two methods make it possible to calculate the attention score for
the case where the two vectors have different dimensions. The general-3 method rectifies the
linearly transformed input vectors with the ReLU activation function before computing the
dot-product. The ReLU function is defined as f(x) = max(0, x).

The Hadamard method has never been used as a similarity function of attention. Instead,
it was used to calculate the similarity for generating word-in-question features to augment
word embedding representations [23]. It has been included as it is a bit different from the
other multiplicative similarity functions. Here, w is a trainable weight vector.

the two vectors. Hence it is related to the cosine function by the scaling factor

5 Experiments for Comparing the Effects of Similarity Functions
With the baseline model, we are able to fairly evaluate the effects of the similarity score

functions on the performance of QA systems. Details of the experimental setup and the
results are described in this Section.

5.1 Dataset and Evaluation Metrics
Our experiments make use of the SQuAD dataset which is a popular benchmark for testing

QA and machine reading comprehension systems [40]. Its passages were collected from
a wide range of articles on Wikipedia. The answer to each question can be found in the
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corresponding passage, identified by the text span in the passage. This dataset contains
107,785 question—answer pairs obtained by the crowdsourcing based on the articles. Each
answer to a question is the text span from the corresponding passage. It covers a range of
question types.

Two evaluation metrics are used—EM and F1. EM is a metric that measures the rate or
percentage of exact match with the ground truth. F1 measures the harmonic mean of precision
and recall. For each question, precision is the ratio of the number of correct words and the
number of words in the predicted answer. Recall is calculated as the number of correct words
divided by the number of words in the ground truth answer. The F1 score is computed per
question and then averaged across all questions.

5.2 Training Setup

The baseline models in our experiment are trained using the following setup parameters. The
word embeddings are 300-dimensional GloVe vectors' pre-trained on 840 billion tokens in
Common Crawl [41]. The out-of-vocabulary (OOV) words are set to be zero vectors. The
output dimension of the FNN in the input module is set to be 100. The training batch is set
to be 60, and the number of epochs is 20. We use the Adadelta optimizer [42] with an initial
learning rate of 0.5. A 0.2 dropout rate is applied to the input for each RNN and linear layers,
except for the linear layers in the answer prediction module. An exponential moving average
(EMA) of all the trainable weights with a decay rate of 0.999 is utilised. In the testing stage,
these averages are used for predicting the answers. The sum of the cross-entropy functions,
one for the start index prediction and the other for the end index prediction, are used as the
loss function.

5.3 Results

Using the eleven similarity functions listed in Table 1, results are obtained using the two
different ways of generating the output of the attention mechanism, given by (8) and (9). For
the sake of expression convenience, we denote results using (8) as O_1, and those using (9)
as O_2. The best EM and F1 scores for models obtained from five training runs are shown
in Table 2. Figure 3 shows box and whisker plots of the corresponding EM scores. The red
circles and orange horizontal lines indicate the average and median values respectively.

Comparing the results of O_1 and O_2, firstly, the results show that O_2 gives better results
for both EM and F1 with all similarity score functions except general-2. This indicates the
element-wise product between the contextual passage embeddings and the context-aware
query representations in O_2 helps to improve the performance. The possible reason is that
the element-wise product of two vectors contains some information that neural networks
cannot learn from the concatenation of the two vectors. Remember that the output of the
attention mechanism is passed into a recurrent neural network.

Secondly, the Hadamard function is the best performer overall, with the EM score only
slightly below general-3 for O_2. Figure 3 shows that the performance of the models based
on this similarity function for O_1 is not robust across different runs—EM scores ranging
from 55.0 to 64.3 and F1 scores from 67.0 to 75.5. However, no such problem exists using
O_2. This shows that the inclusion of the h; o &; term plays a vital role in improving the
robustness of the model with this similarity score function.

I downloaded from https://nlp.stanford.edu/projects/glove/.
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Table 2 EM and F1 scores with different attention similarity score functions for O_1 and O_2

Groups Similarity score function 0O_1 0_2
EM Fl1 EM Fl1

Additive bilinear 49.9 60.6 58.2 69.0
trilinear 64.4 75.0 65.1 75.5
FNN 64.1 74.6 64.8 752
concat-FNN 64.0 74.8 65.1 75.4

Multiplicative dot-product 63.8 74.5 64.2 75.0
cosine 54.5 65.7 60.7 71.8
scaled dot-product 63.3 74.0 63.5 74.4
general-1 63.9 74.5 64.8 75.0
general-2 64.1 74.9 64.0 74.7
general-3 63.5 74.2 64.9 75.3
Hadamard 64.3 75.2 64.7 75.3

Bold indicates the maximum value in each column
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Fig. 3 The box plots of EM scores under O_1 and Q_2
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Fig. 4 Histograms of the Similarity Scores for the three functions without parameters

Comparing the results of additive and multiplicative groups, the highest scores are mainly
given by the additive group, especially the trilinear attention function. The bilinear has the
two terms w,h; and w,u; which are also contained in trilinear. However, because of the
lack of the h; o u; term, bilinear gives dramatically low scores. This suggests the relation
between the two input vectors are not bilinear, and including the k; o u; term into the bilinear
transformation improves the predictive accuracy of the model significantly. Another possible
reason is that with more parameters trilinear has more capacity for the higher accuracy, which
aligns with the observations in the literature on network design space [43, 44]. Although the
FNN function has similar parameters, it is more nonlinear than linear. Its slightly lower results
comparing to the trilinear function suggests that the information of the element-wise product
of two vectors may not be fully learned through passing the concatenation of the same two
vectors into a feedforward neural network.

It is interesting to note that the scaled dot-product function, a default preference in pre-
trained language models, performs the same or slightly worse than the simple dot-product.
This could be due to the scaling factor, defined as the squared root of the dimensionality of
the vectors, which is quite large. This may cause the magnitudes of the similarity score to be
reduced to such an extent that their values are too close to each other, especially after being
normalised by the softmax function. In order to confirm this hypothesis, we extract the sim-
ilarity scores of dot-product, scaled dot-product along with another non-parameter function
cosine for the same test sample from their corresponding trained models. The histograms of
their similarity scores are demonstrated in Fig. 4. It clearly shows that the scaling factor in
the scaled dot-product function does reduce the range of the scores significantly compared
to dot-product.

Another function whose values are restricted to a small finite range—the cosine function,
gives the poorest results. Thus, it is clear that based on this type of system architecture, the
similarity function should be able to produce a larger range of values.

6 Proposed New Attention Similarity Function

Based on the findings presented in the previous Section, we seek to obtain a better attention
similarity function by combing the strengths of both the additive and multiplicative similarity
functions.

In the additive group, the trilinear function achieves the best results among all the similarity
functions, while the bilinear shows the worst performance. The only difference between these
two functions is the element-wise k; ou; associated term. Projecting the element-wise product
along with its corresponding two input vectors helps to improve the performance of the model
significantly.
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In the multiplicative group, the ReLU function that is used to transform the two input
vectors in the general-3 function on top of general-2 helps to improve the performance
noticeably in the O_2 setting. ReLU is the rectified linear activation function that outputs
the input unchangeably if it is positive, otherwise outputs 0. Therefore, we introduce a ReLU
transformation operation into the best similarity score function, trilinear, to propose a new
attention function called T-trilinear (short for transformed trilinear):

h! = ReLU(W1h; + b)) (14)
u} = ReLU(Wau; + b)) (15)
o(hi, uj) = wyh; + wou; + wpq(hit Ouzt) (16)

where W and W, € R¥%4_ b, and b, € R?*!, Wy, wy and wy, € RAxT,

The two input vectors k; and u; are passed into an FNN with the ReLU activation before
going through the trilinear function to get the similarity score. The ReLU function deactivates
the neurons to get the desired output while keeping the efficiency of the computation.

6.1 Evaluation Results

The EM and F1 scores of the T-trilinear function, along with all the functions from the additive
group except for bilinear and general-3 from the multiplicative group whose results are the
top ones shown in Table 2, are demonstrated in Table 3. It can be seen that the proposed T-
trilinear method achieves the best results under both O_1 and O_2 settings. Figure 5 shows the
distributions of the results through different runs. It demonstrates that the performance of the
T-trilinear function is consistent among runs, particularly in comparison with the Hadamard
function.

The loss curves, which show the training convergence behaviour, with the similarity score
functions listed in Table 3 are shown in Fig. 6. It can be observed that all the functions converge
faster in the O_2 setting than in the O_1 setting. In the O_1 setting, the one that uses the
trilinear function converges most rapidly in the early stage, followed by general-3 slightly
slower. All the other ones demonstrate quite similar convergence patterns. The proposed
T-trilinear function shows a similar trend to FNN and concat-FNN in the initial stages. This
is not surprising as the three have relatively more trainable weights and the models need to
search for the optimal combination. After that, their losses continue to decrease and end up

Table 3 Comparison of EM and F1 scores for the best performing attention similarity functions

Attention similarity function O_1 0.2

EM Fl EM Fl
trilinear 64.4 75.0 65.1 75.5
FNN 64.1 74.6 64.8 75.2
concat-FNN 64.0 74.8 65.1 75.4
general-3 63.5 74.2 64.9 753
T-trilinear 64.5 75.2 65.3 75.8

Bold indicates the maximum value in each column
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Fig. 5 The box plots of EM and F1 scores under O_1 and Q_2
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Fig. 6 Loss curves of the baseline model with the similarity functions listed in Table 3
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Table 4 EM and F1 scores of three QA models with their original attention similarity score functions in
comparison with the proposed T-trilinear function

Models Original similarity function Original similarity T-trilinear

function

EM Fl1 EM F1
BiDAF trilinear 67.7 71.3 68.5 71.9
DCN dot 65.4 75.6 65.7 76.1
QANet trilinear 73.6 82.7 74.9 83.1

with a similar level as the other two functions. In the O_2 setting, all the functions display
similar convergence trends and T-trilinear reaches a relatively lower loss in the later stage.

In order to confirm that the proposed T-trilinear attention function works well with the
original QA models, it was implemented on BiDAF, DCN and QANet. The original similarity
functions for both BiDAF and QANet is the trilinear function and DCN uses the dot function.
The comparison results in Table 4 show that using the T-trilinear function, both the EM and
F1 scores are higher for all three models. These results confirm that the T-trilinear function
is indeed more effective compared with the other similarity functions.

Taking a closer look at the extents of performance improvement in Tables 3 and 4, we
can see that the improvement in the three existing models is more significant than that of
the baseline model. This indicates that the proposed T-trilinear function may work better
in “real” models. This is likely due to additional components included in the “real” models
but not in the baseline model as the latter only consists of the four invariant modules of the
existing RNN-based neural QA models.

Comparing the improvement extents among the three existing models, we can see that the
performance of the QANet model is improved more than the other two models. The DCN
model demonstrates a slightly lower improvement than BiDAF does. This is very likely
caused by the different aspects that these models distinct themselves from each other. In
the future research, the baseline model will be used to study the effectiveness of different
approaches for other modules.

6.2 Visualization and Local Explanation

As the proposed T-trilinear is inspired by the strengths of trilinear and general-3 discussed in
Sect. 6, this section visually compares the three using a test sample chosen from the dataset.
Figure 7 shows the sample, consisting of the passage, the question, and the ground truth
answer. We plot the similarity scores between individual words in the passage and those in
the question as heatmaps in Fig. 8. The x-axis of the heatmap are words from the question
and the y-axis are words from the passage. The colour of each cell in a heatmap represents the
attention similarity score between the corresponding words in the x and y axes. The darker
the colour is, the higher the score is. Results in both the O_1 and O_2 settings are shown.
Intuitively the word “day” in the question should be more related to the word span
“February 7, 2016” in the passage. Consider Fig. 8a which is for the O_1 setting. For
the trilinear and general-3 functions, the cells corresponding to the answer words February
7, 2016 display no distinct darker colour compared with other cells. This shows that these
two attention functions fail to pay attention to the related text span in the passage. However,
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Santa Clara, California. ...

True answer: February 7, 2016

... The American football conference (AFC) champion Denver broncos
defeated the national football conference (NFC) champion Carolina
panthers 2410 to earn their third super bowl title. the game was played
on February 7, 2016, at Levi's stadium in the san Francisco bay area at

Question: What day was the game played on?

Fig. 7 The chosen test sample of passage-question—answer
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Fig. 8 Heatmaps of the attention similarity matrices
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the heatmap of our proposed T-trilinear function clearly has darker colour in these cells. This
shows that the T-trilinear function is more able to pay attention to the right text span in the
passage.

With the O_2 setting in Fig. 8b, trilinear’s darker color seems to be able to concentrate
on a smaller number of areas than in the O_1 setting. It shows slight darker on the answer
word range February 7, 2016, but still has a relatively high focus on other words such as was,
played and on, which are irrelevant to the question. The general-3 exhibits a very different
heatmap from O_1. It shows high scores for the relevant words in the passage, especially
February 7, but the pattern still seems row-wise (passage-word-wise) like in O_1. The T-
trilinear method can focus on the answer words clearly and pay less attention to words that
are irrelevant to the answer except for the dot behind the answer span. This may be because
part of the answer information is transferred to the adjacent position (the dot behind 2016)
of the answer span through the RNNs in the model.

7 Conclusions

Attention mechanisms are prevalent techniques for neural network-based NLP models in
recent years. Attention similarity calculation is an important part of attention mechanisms.
In this work we compared several similarity calculation functions that have been used in
various NLP tasks. We tested them in the QA context, using a QA baseline model we created,
benchmarked on the SQuAD dataset.

The experimental results demonstrate that the additive similarity functions perform better
than the multiplicative ones. The trilinear similarity function in the additive group achieved
the highest predictive scores. The general-3 function, applying the ReLU operation on top of
general-2, achieves the highest EM and F1 scores in the O_2 setting. As for the Hadamard
similarity function, it achieved the highest predictive scores in the O_1 setting compared with
those based on the inner product and has competitive scores as general-3 in O_2. However, its
results are not consistent across multiple training runs in O_1. The two most commonly used
functions—dot-product and scaled dot-product functions are among the worst performers.

Based on these results, we proposed a new function T-trilinear, which introduces the ReLU
transformation applied in general-3 to trilinear. Experimental results show that T-trilinear
demonstrates the highest predictive scores as well as has stable performance across multiple
runs.

In this paper, we focused on the extractive QA task, which means that the answer is a
consecutive text span in the passage. Investigating the effects of the similarity functions
for multiple-step reasoning tasks would be a reasonable next step. It is also worthwhile to
test their performance in other NLP areas, such as textual similarity prediction and neural
machine translation.
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