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Abstract  
 Computational procedures for the stationary probability distribution, the group inverse of the 
Markovian kernel and the mean first passage times of a finite irreducible Markov chain, are 
developed using perturbations. The derivation of these expressions involves the solution of 
systems of linear equations and, structurally, inevitably the inverses of matrices. By using a 
perturbation technique, starting from a simple base where no such derivations are formally 
required, we update a sequence of matrices, formed by linking the solution procedures via 
generalized matrix inverses and utilising matrix and vector multiplications. Four different 
algorithms are given, some modifications are discussed, and numerical comparisons made 
using a test example.  The derivations are based upon the ideas outlined in Hunter, J.J., “The 
computation of stationary distributions of Markov chains through perturbations”, Journal of 
Applied Mathematics and Stochastic Analysis, 4, 29-46, (1991). 
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1. Introduction 
 
In Markov chain theory stationary distributions, mean first passage times and the group inverse 
provide significant information regarding the behaviour of the chain. 
 
Let {Xn, n ≥ 0} be a finite Markov chain (M. C.) with state space S = {1, 2, …, m} and 
transition matrix P = [pij], where pij = P{Xn = j | Xn-1 = i} for all i, j ∈ S.  
 
It is well known (Feller (1950), Kemeny and Snell (1960), that if the M. C. is regular 
(irreducible and aperiodic) then for all i, j, limn→∞ pij

(n) = limn→∞ pj
(n) = π j  where                     

pij
(n) = P{Xn = j | X0 =i}, pj

(n)= P{Xn = j}. The limiting probability of being in state j,π j , is in 
fact the “stationary probability” of being in state j, in that if P{X0 = j} =π j  for all j, then         
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P{Xn = j} =π j , for all j and n ≥ 0. An important result is that the stationary distribution {πj},   
(1 ≤ j ≤ m), exists and is unique for all irreducible M. C.’s, that πj > 0 for all j, and satisfies the 
equations (the stationary equations) 
                                                    π j = π ii=1

m∑ pij  with π ji=1

m∑ = 1.                                          (1.1) 
If πT = (π1, π2,…, πm), the stationary probability vector,  and e is a column vector of 1’s, the 
stationary equations (1.1) can be expressed as  

        π
T (I − P) = 0T ,  with    π

T e = 1 .                                           (1.2) 
Thus πT can be determined by solving a constrained system of linear equations involving the 
singular matrix I – P (since each row of P is a discrete distribution, and P is a stochastic matrix 
with each row sum 1, i.e. Pe = e).  
 
Let Π = eπT. In the case of a regular M. C. (finite, irreducible and aperiodic), limn→∞ P

n =Π,  

and, in the case of a finite irreducible M. C., limn→∞
I + P + P2 + ...+ Pn

n
=Π.    

Let [ ]0min 1, |ij nT n X j X i= ≥ = =  be the first passage time from state i to state j (first return 

when i = j) and define 0|ij ijm E T X i⎡ ⎤= =⎣ ⎦ as the mean first passage time from state i to state j 
(or mean recurrence time of state i when i = j).  It is well known that for finite irreducible       
M. C.’s all the mij are well defined and finite. Let M = [mij] be the mean first passage time 
matrix. Letδ ij = 1,  when i = j and 0, when i ≠ j.  Let Md = δ ijmij⎡⎣ ⎤⎦  be the diagonal matrix 
formed from the diagonal elements of M, and E = [1] (i.e. all the elements are unity). 
 
It is well known (Kemeny and Snell (1960)) that, for 1 ≤ i, j ≤ m, 
                                                           mij = 1+ pikk≠ j∑ mkj .                                                     (1.3) 
In particular, the mean recurrence time of state j is given by  
                                                           mjj = 1 π j .                                                                     (1.4) 
From (1.3) and (1.4) it follows that M satisfies the matrix equation  

   (I – P)M = E – PMd , with Md = Πd( )−1 .                               (1.5)                                                                                              
 
Generalized matrix inverses (g-inverses) of I – P are typically used to solve systems of linear 
equations (e.g. (1.2) and (1.5)). Various properties of the M. C., in particular the {πj} and the  
{mij}, can be found in terms of g-inverses of I – P, either in matrix or elemental form. 
 
While it is possible to use any one-condition g-inverse of A = I – P to solve (1.2) and (1.5), 
special g-inverses are often used because of their desirable additional properties.  
 
One such g-inverse is A#, the “group inverse” of the matrix A = I – P, which is the unique 
matrix satisfying not only the condition  AA# A = A,  but also the additional conditions A#AA# = 
A# and AA# = A#A.  When the M. C. is ergodic, A# has the representation A# ≡ [I – P + Π]-1 – Π, 
as originally identified by Meyer (1975). 
 
The group inverse A#, of A = I – P, has a number of important properties and leads to modern 
efficient methods for analysing M. C.’s, (Berman and Plemmons (1979, 1994)). In particular, 
Meyer (1975), shows that 
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I − AA# =

limn→∞
I + P + P2 + ...+ Pn

n
, for every M. C.,

limn→∞
n
i

⎛
⎝⎜

⎞
⎠⎟
kn−i (1− k)i Pi ,

i=0

n∑ if the M. C. is ergodic and 0 < k <1,

limn→∞ P
n , if the M. C, is either regular or absorbing.

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

  

We are interested in developing techniques for finding three key properties of discrete time 
finite M. C.’s: (i) the stationary probabilities {πj}, (1≤ j ≤ m), (ii) the mean first passage times 
{mij} (1≤ i, j ≤ m), and (iii) the group inverse of A = I – P, A#. These properties provide 
significant information regarding (i) the long-term behaviour, (ii) the short-term behaviour, and 
(iii) the key attributes of the M. C. The key focus in this paper is on using perturbation 
techniques in an attempt to develop some useful procedures.  Langville and Meyer (2006) 
pointed out that sequential rank-one updating algorithms typically cost O(m3) flops and 
therefore may not be practical in general. While the algorithms may not be computationally 
efficient it is useful to explore whether we can obtain accurate results. We should point out that 
determining stationary distributions for M. C.’s using perturbations has been considered by a 
number of researchers (see, for example, Meyer (1980), Meyer and Shoaf (1980), Funderlic and 
Plemmons (1986), Hunter (1986), Seneta (1991), Hunter (1991), Langville and Meyer (2006)). 
However it is the extension to consider the mean first passage times and the group inverse that 
is a main aim of this paper. 
 
Before exploring this we focus first on generalized matrix inverses, their properties and 
applications in expressions for the key properties of M. C.’s.  
 
Following a discussion on computational considerations, we describe four different algorithms, 
all based upon perturbation procedures, where we make row-by-row changes to the transition 
matrix. We highlight the computational differences between these different algorithms by using 
a typical five state M. C. to make comparisons. 
 
A sequel to this paper is planned by comparing the perturbation algorithms of this paper, with 
current techniques for finding the mean first passage times, as well as an alternative accurate 
computational procedure given in Hunter (2016) based upon an algorithm, due to Kohlas 
(1986). In this last procedure no subtractions need be carried out. 
 
 
2.  Generalized Matrix Inverses 
 
We summarize the definition and classification of generalized matrix inverses. For the context 
of this paper, we restrict attention to real square matrices of dimension m.  
 
Definition 1: Let A be an m × m matrix of real elements. Let X be any m × m matrix such that X 
satisfies some of the following conditions: 
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  (Condition 1) AXA = A.                   
  (Condition 2) XAX = X. 
  (Condition 3)     ( AX )T = AX .  
  (Condition 4)   ( XA)T = XA.  
  (Condition 5) AX = XA. 
If  A( i, j ,...,l )  is any matrix X that satisfies conditions (i), (j), …, (l) of the above itemised 
conditions, then  A( i, j ,...,l ) is called an - (i, j, ..., l) g-inverse of A, under the assumption that 
condition (1) is always included.  Let A{i, j, …, l} be the class of all (i, j, ..., l) g-inverses of A. 
 
  A(1) , a one-condition g-inverse of A, is often written as  A− . If A is a non-singular matrix (i.e. 
det (A) ≠ 0) then X =  A−1 , the inverse of A, satisfies all the conditions of the Definition1 and is 
unique. If A is singular, as is the case for A = I – P,  A−  is not, in general unique. Special cases 
include A(1,2), a 'reflexive' g-inverse; A(1,3), a 'least squares' g-inverse; A(1,4), a 'minimum norm' 
g-inverse; A(1,2,3,4), the unique 'Moore-Penrose' g-inverse; and A(1,2,5), the 'group inverse', which 
exists and is unique if rank(A) = rank(A2). 
 
The following theorem, due to Hunter (1982), gives a procedure for finding all one-condition g-
inverses of I – P. 
 
Theorem 1: Let P be the transition matrix of a finite irreducible M. C. with m states and 
stationary probability vector  π

T = (π1, π2, …, πm).  Let eT = (1, 1, …, 1) and t and u be any 
vectors. 
(a) I − P + tuT  is non-singular if and only if    π

T t ≠ 0  and uTe ≠ 0. 
(b) If    π

T t ≠ 0  anduTe ≠ 0  then [I − P + tuT ]−1  is a one-condition g-inverse of I – P. 
(c) All one-condition g-inverses of I – P can be expressed as 
            A

− = [I − P + tuT ]−1 + ef T + gπ T  for arbitrary vectors f and g.  
!  

A useful by-product of the proof of the above theorem are the following results: 

       [I − P + tuT ]−1t = e
uTe

.         (2.1) 

   
   
uT [I − P + tuT ]−1 = π T

π T t
.                                                          (2.2) 

A summary of the parametric forms for all generalized inverses of I – P, given in Hunter (1990) 
and extended in Hunter (2014), follows below. 
  
Theorem 2: If G is any g-inverse of I – P, where P is the transition matrix of a finite 
irreducible M. C. with stationary probability vector   π

T ,  then G can be uniquely expressed in 
parametric form as 
                                                  G ≡ G(α ,β ,γ ) = [I − P +αβ T ]−1 + γ eπ T ,                                (2.3)                
where  α , β , and γ  involve 2m – 1 independent parameters with the property that  
                                                          π

Tα  = 1 and β T e = 1.                                                       (2.4) 
If AG ≡ I − (I − P)G  and BG ≡ I −G(I − P) then  
                                                      AG = απ T and  BG = eβ T ,                                                       (2.5) 
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so that                                           α  = AGe and  β T = π T BG .                                                       (2.6)  

Further, from (2.1) and (2.2),    Gα   = (γ  + 1)e and  β TG = (γ  + 1)π T ,                                     (2.7) 
so that                                         γ  +  1 = π TGα   = β TGe = β TGα .                                          (2.8) 
Also 
                              G ∈A{1, 2} ⇔  γ  = – 1,                                                         (2.9) 
                              G ∈A{1, 3} ⇔   α = π / π Tπ ,                                               (2.10) 
                              G ∈A{1, 4} ⇔    β = e / eT e = e / m ,                                      (2.11) 
                              G ∈A{1, 5a}  ⇔   α = e,                                                        (2.12) 
                              G ∈A{1, 5b}  ⇔  β   = π ,                                                       (2.13) 
                              G ∈A{1, 5} ⇔   α  = e, β  = π .                                               (2.14) 

                         !  
The following results, given in Hunter (2014), provide simple conditions for determining the  
A{1, 5a} and A{1, 5b} classes of g-inverses.  
 
Theorem 3: Let   G = G(α , β , γ )  be any g-inverse of I – P, where P is the transition matrix of a 
finite irreducible M. C. with stationary probability vector  π

T .  
(a) G ∈A{1, 5a} ⇔ Ge = ge  for some g. Further, if Ge = ge  for some g then g = 1 + γ. 
(b) G ∈A{1, 5b} ⇔  π

TG = hπ T for some h. Further, if  π
TG = hπ T  for some h then h =1 + γ. 

(c) If Ge = ge for some g, and  π
TG = hπ T for some h, then g  = h = γ   +  1 and consequently    

   G = G(e,  π , γ ) and G ∈A{1, 5}. 
                         !  

Note that the group inverse A# of A = I – P, when P is irreducible, is the unique member of the 
A{1, 2, 5} class of g-inverses with parametric form G = G( e, π , –1) so that, from (2.3), A# =                    
[I − P +Π ]−1 −Π  where Π = eπ T . This expression for A# first appeared in Theorem 5.5 of 
Meyer (1975). A# has some special properties that can be deduced from Theorems 2 and 3 
above. 
 
Theorem 4: If A# is the group inverse of A = I – P, where P is the transition matrix of a finite 
irreducible M. C., then the following four properties uniquely determine A#: 
(i)  (I – P)A# = I  – eπT,  (ii)  A#(I – P) = I  – eπT, (iii)  A#e = 0, (iv)  πTA# = 0T. 

                         !  
Note that from Theorem 2, the conditions of Theorem 4 imply that    α = e, β T = π Tand γ = −1,  
leading to A# as the group inverse, the only member of A{1, 2,5}. 
 
Theorem 5: Let G =  G(α ,  β ,  γ )  be any one-condition g-inverse of I – P. 
(a) Let H = G(I – Π). Then H is a one-condition g-inverse of I – P with the property that He = 0 
and    H = G(e,β ,−1) = [I − P + eβ T ]−1 − eπ T , implying that H ∈A{1, 2, 5a}. 
(b) Let K = (I – Π)G(I – Π) = (I – Π)H.  Then K is an invariant g-inverse and takes the value of 
the group inverse A#.  i.e.    K = G(e,π ,−1) = [I − P + eπ T ]−1 − eπ T  implying that K ∈A{1, 2, 5}. 

                         !  
Theorem 5(a) is given by Theorem 7 of Hunter (2014) while Theorem 5(b) appeared in 
Theorem 6.3 of Hunter (1982) and Corollary 4.6.1 of Hunter (1988).  
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Thus H = G(I – Π)  has some of the characteristics   (α = e and γ = − 1)  of   A#  but not all.  The 

additional computation K = (I – Π)H in fact characterises  A# . The result (b) of Theorem 5 is a 
useful tool for finding the group inverse when any one-condition g-inverse is available. 
 
One other important related matrix associated with finite irreducible M. C.’s is Kemeny and 
Snell’s fundamental matrix Z = [I − P +Π ]−1  which was introduced in Kemeny & Snell (1960). 
Z was shown in Hunter (1969) to be a one-condition g-inverse of I – P and further, in Hunter 
(1988), to be a (1, 5) g-inverse with the characterisation Z = G(e, π , 0). 
 
One-condition generalized matrix inverses play a major role in solving systems of linear 
equations often leading to them being called “equation solving” g-inverses. See Theorem 3.1 of 
Hunter (1982).  
 
 
3. Stationary Distributions using generalized matrix inverses 
 
The papers Hunter (1982) and Hunter (2007) give a variety of expressions for the stationary 
probability vector  π

T  in terms of different g-inverses of I – P.  In particular we list the 
following results that have relevance to the algorithms to be developed in this paper. Let ei

T  be 
the i-th elementary row vector, with 1 in the i-th position and 0 elsewhere. 
 
Theorem 6:  
(a) (Hunter, (1982)). If G is any g-inverse of I – P, AG ≡ I − (I − P)G  and vT is any vector such 
that vTAG e ≠ 0 then  

                                                   
   
π T =

vT AG

vT AGe
 ,                                                                     (3.1)   

Furthermore AG e ≠ 0 for all g-inverses of G, so that it is always possible to find a suitable vT.  
  
 (b) (Hunter, (1992)). If G is a  (1, 5) g-inverse of I – P, 

     
π T =

eT AG

eT e
 and, for any i  =  1, 2, ..., m,  π T = ei

T AG .              (3.2) 

 (c) (Paige, Styan Wachter (1975), Hunter (1982)).  
      If G = [I − P + tuT ]−1  where u and t are any vectors such that    π

T t ≠ 0  and    u
T e ≠ 0 , then 

                                                 
   
π T = uTG

uTGe
.                                                                             (3.3) 

     In particular 
 (i) If G = [I − P + euT ]−1  where uTe ≠ 0,  then π T = uTG .                                       (3.4) 

(ii) If G ≡ Geb =[I − P + eeb
T ]−1  = [gij] thenπ j = gbj .                                                         (3.5) 

(iii) If G ≡ Gee =[I − P + eeT ]−1   = [gij] then 
 
π j = gkjk=1

m∑ = gi j .                                     (3.6) 
                               !  
If one wishes to find a computationally efficient algorithm for finding πj based upon (3.4), note 
that we need to solve the equations   π

T (I − P + euT ) = uT . Paige, Styan and Wachter (1975) 
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recommended solving this system of linear equations for π  with   uT =   e j
T P  = 

   p j
(r )T , using 

Gaussian elimination with pivoting.   
 
A numerically stable algorithm for finding the stationary probabilities is the GTH/State 
Reduction algorithm of Grassman, Taksar and Heyman (1985) and Sheskin (1985) that has the 
advantage that no subtractions are required. 
 
 
4. Mean first passage times using generalized matrix inverses 
 
The solution of equations of the form of (1.5) can be implemented using g-inverses of I – P.   
 
Theorem 7:  
Let G be any g-inverse of I – P, let D = (Πd )

−1 , and let M be the mean first passage time 
matrix. Then 
(a) M = [GΠ  – E(GΠ)d + I – G + EGd]D,                                                                              (4.1) 
(b) If H ≡  G(I – Π) then H is a g-inverse of I – P with He =  0 and 
      M = [I – H + EHd]D,                                                                                                          (4.2) 
 (c) M = [ I – G + EGd]D,                                 (4.3)  
      if and only if   Ge = ge  for some g, (or equivalently that G ∈A{1, 5a}).                                !  

 
Equation (4.1) was derived in Hunter (1982). The special case given by (4.2) appears in Hunter 
(2006) while (4.3) appears in Hunter (2014).                                    
 
The advantage of the alternative expressions (4.2) and (4.3) is that they lead to simpler 
elemental forms for the mij, as summarised below. 
 
Corollary 7.1:  
Let G = [gij] be any g-inverse of  I – P, and  M = [mij]. 
 Let

 
gi,i = gijj=1

m∑  and H = G(I –Π) = [hij]  so that 

     hij = gij − gi,iπ j  for  all  i, j                                                                     (4.4) 
and                           mij = [hjj − hij +δ ij ] /π j  for  all  i,  j.                              (4.5) 
In addition, if 

   
gi,i = g , or equivalently that G is a (1, 5a) g-inverse, then 

                                  

mij = [gjj − gij +δ ij ] /π j ,  for  all  i, j,

      =
[gjj − gij ] /π j , i ≠ j,

1 /π j , i = j.

⎧
⎨
⎪

⎩⎪
                                                             (4.6)

   

!  
Special cases of equation (4.3) for M and (4.6) for the elements mij are G = Z, Kemeny and 
Snell’s fundamental matrix, (Kemeny and Snell (1960)) and G = A#, Meyer’s group inverse of  
I – P, (Meyer (1975)). 
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Corollary 7.2: (Hunter (2007)). 
If Geb = [ gij ] = [I – P + eeb

T]–1 then 
                               π j = gbj ,  j = 1,2,  ...,m,                                                                               (4.7) 
with mij given by (4.6).                       
                            !  
Thus following one matrix inversion (actually only the b-th row, typically the first row, for the 
stationary distribution), one can find the stationary probabilities and the mean first passage 
times. We explore this further in some of our results to follow. 
 
We have seen that the mean first passage times mij can be found using A#. Conversely A# can in 
fact be found directly from the mij. The following result appears in Ben Ari & Neumann (2012) 
and Hunter (2014).   
 
Theorem 8: Let τ j = π kk=1

m∑ mkj = π kk≠ j∑ mkj +1,  and let A# = [aij
# ]  then 

                                         aij
# =

π j (τ j −1), i = j,

π j (τ j −1−mij ) = ajj
# −π jmij , i ≠ j.

⎧
⎨
⎪

⎩⎪
  

              !  
Heyman and Reeves (1989) noted that the computation of mean first passage times using the 
group inverse and the relevant equation (4.3), viz. M = [I – A# + EA#

d]D leads to a significant 
inaccuracy on the more difficult problems in that the computation of M yields three sources of 
errors: 

1. The algorithm for computing π  T, 
2. The computation of the inverse of I – P + Π, as the matrix may have negative elements 

that can cause round-off errors in computing the inverse. 
3. The matrix evaluation of M, as the matrix multiplying D may have negative elements. 

 
Heyman and O’Leary (1995) state that … “it does not make sense to compute …. the group 
generalized inverse unless the individual elements of those matrices are of interest.” 
 
In a recent paper, (Hunter (2016)), an accurate procedure for computing the matrix of mean 
first passage times is given, based on the procedure of Kohlas (1986). It is shown in that paper 
that the more general setting of Markov renewal processes leads to a procedure not involving 
any subtractions. A further paper comparing the results of this paper with other alternative 
procedures is planned, including this new procedure. 
 

5. Perturbed Markov chains 
We now explore some relationships between the stationary distributions of unperturbed and 
perturbed M. C.’s utilizing some special g-inverses of I – P.  The following results appear in 
Section 8 of Hunter (2014). 
 
Theorem 9:  Let P be the transition matrix of a finite irreducible M. C.  Let  P  = P +Ε , be the 
transition matrix of the perturbed M. C., with   

Ε = [ε ij ]  as the matrix of perturbations (with 

ε ijj=1

m∑ = 0)  so that  Ε e = 0.  Assume that  P  is irreducible. Let πT = (π1, π2, …, πm) and 
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π T  = (π1, π 2 , …, πm ) be the stationary probability vectors of the M. C.’s with transition 

matrices P and  P , respectively.  Let Π  = eπT and let G be any g-inverse of I – P. 
(a) If H = G(I – Π),  then  π

T − π T = π TΕ  H .                                                                        (5.1) 
(b) If   Ge = ge for some g, then   π

T − π T = π TΕG.                                                                   (5.2) 
(c) If G = [I – P + euT]-1 + ef T + gπT with uTe ≠ 0, f T and g arbitrary vectors, then 
                                              π

T − π T = π TΕ [I − P + euT ]−1.                                                      (5.3) 
(d) If G = A#, the group inverse of I – P then   π

T − π T = π TΕ A# .                                           (5.4) 
!     

If we can establish conditions under which matrices of the form   [I − Ε H ]−1 exist (or more 
simply with H taken as G) and are of simple form then we can establish useful expressions for 
 π

T  from equations (5.1) to  (5.4)).  We summarise some special cases where such expressions 
do in fact hold. 
 
Theorem 10:  Under the conditions of Theorem 9,  
(a)   I − Ε A# is non singular and  

                                                       π
T = π T (I − Ε A# )−1 .                                                     (5.5) 

(b) If Ε =abT, let bT H ≡ hT  and assume hTa ≠ 1.  Then   I − Ε H = I − ahT  is non-singular and 

                                        
   
π T = π T [I − Ε H ]−1 = π T I + ahT

1− hT a
⎛
⎝⎜

⎞
⎠⎟

.                                          (5.6) 

(c) If   Ge = ge for some g,Ε = abT, let bTG ≡ gT .  Then  I − ΕG = I − agT  is non-singular and   

         π
T = π T [I − ΕG]−1  

   
= π T I + agT

1− gT a
⎛
⎝⎜

⎞
⎠⎟

.                                           (5.7)                                                           

Proof: 
(a) The non-singularity of   I − Ε A#  was established in Theorem 3.1 of Meyer (1980) with (5.5) 
following from (5.4).    
(b) The Sherman-Morrison (1949) formula states that 

                                I − ahT⎡⎣ ⎤⎦ I + ahT

1− hTa
⎡

⎣
⎢

⎤

⎦
⎥ = I = I + ahT

1− hTa
⎡

⎣
⎢

⎤

⎦
⎥ I − ahT⎡⎣ ⎤⎦,                            (5.8) 

provided hTa ≠ 1.   By the “matrix determinant lemma” (see Section 12.1, Harville, (1997)), 
det[I − ahT ]= 1− hTa ≠ 0   so that the inverse of   I − Ε H = I − ahT exists and, from (5.8), 

[I − ahT ]−1 = I + ahT

1− hTa
,   leading to (5.6). 

(c) Equation (5.7) will follow from the arguments that led to (5.6) provided we can establish 
that   I − ΕG = I − abTG

 
is non-singular where G is any (1, 5a) g-inverse of A = I – P. The key 

to establishing (5.7) is Meyer’s result regarding the non-singularity of   I − Ε A# . Now 

   det(I − Ε A# ) = det(I − abT A# ) = 1− bT A#a = 1− bT [I − P + eπ T ]−1a ≠ 0.  
Now G has the form    G = [I − P + eβ T ]−1 + γ eπ T where   β

T e = 1, (Theorem 2, Hunter (2014).) 
Further, from equation (3.6) of Theorem 3.3 in Hunter (1988), 

   [I − P + eβ T ]−1 = [I − eβ T ][I − P + eπ T ]−1 + eπ T so that since    bT e = 0  it is easily seen that 

   det(I − ΕG) = det(I − abTG) = 1− bTGa = 1− bT [I − P + eπ T ]−1a ≠ 0.                                          !  
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Theorem 11:  Under the conditions of Theorem 9, if A = I – P, A = I − P  with  P = P + Ε  
the group inverse A#  of  A = I − P = I − P − Ε = A− Ε  is given by 
                                     A

# = A# (I − Ε A# )−1 −Π (I − Ε A# )−1 A# (I − Ε A# )−1.                            (5.9) 
Proof: 
From Theorem 3.1 of Meyer (1980), the group inverse of   A

# = (I − P)# = (I − P − Ε )#  is given 
by  
                                 A

# = A# + A#Ε A# (I − Ε A# )−1 −Π (I − Ε A# )−1 A# (I − Ε A# )−1.               (5.10) 
This expression is also given in Theorem 5.3.30 of Kirkland and Neumann (2013). 
Equation (5.9) follows from (5.10) by verifying that   A

# + A#Ε A# (I − Ε A# )−1 = A# (I − Ε A# )−1.  
 
Alternatively, let G be the expression for A#  given by (5.9). With    A = A− Ε , it can be shown, 
following some algebraic manipulations, (upon observing that Ε e = 0 , Ae = 0,  ΕΠ = 0 and 
AΠ  = 0) that    AG = I − eπ T = GA,

 
from which   AGA = A  and  GAG = G  showing that G 

satisfies the three conditions specified by Definition 1 to be the group inverse of  A .                !  
 
We now specialize our results to the case when the perturbing matrix has only one non-zero 
row, the i-th row. bi

T .  
 
Theorem 12:  Let P and  P  be the transition matrices of finite irreducible M. C.’s with  P  
differing from P only in the i-th row, so that  P  = P + eibi

T  for some vector bi
T  such that 

 bi
Te = 0 .  Let πT and  π

T be the stationary probability vectors of the respective M. C.’s. Let G 
be any one-condition g-inverse of I – P. Let H = G(I – eπT ) and A# be the group inverse of        
I – P. Then 

(a)        (i)  
 
π T = π T I + 1

hi
eibi

T H
⎡

⎣
⎢

⎤

⎦
⎥  where hi = 1− bi

T Hei ≠ 0,                                        (5.11) 

(ii) 
  
π T = π T I + 1

gi
eibi

TG
⎡

⎣
⎢

⎤

⎦
⎥  where gi  =1−  bi

TGei
 
when Ge = ge for some g,    (5.12) 

(iii)  
 
π T = π T I + 1

ai
eibi

T A#⎡

⎣
⎢

⎤

⎦
⎥where  ai  =1−  bi

T A#ei .                                           (5.13)  

(b) If   A# and  A# are the group inverses of A = I – P and A = I − P   then 

 
A# = A# + 1

ai
A#eibi

T A# − π i

ai
ebi

T A# + bi
T (A# )2ei
ai

I
⎛
⎝⎜

⎞
⎠⎟
A# .                                            (5.14) 

 
Proof: 
(a) Set Ε =  eibi

T  so that a = ei. (i) Equation (5.11) follows from (5.6) with  h
T = bi

T H .  (ii) 
Equation (5.12) follows from (5.7) with  g

T = bi
TG.  (iii) Equation (5.13) follows from 

(5.5) and (5.8) with  g
T = bi

T A# .   
(b) From (5.9),    A

# = A# (I − eibi
T A# )−1 − eπ T (I − eibi

T A# )−1 A# (I − eibi
T A# )−1 . 
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         Now   
   
A# (I − eibi

T A# )−1 = A# + 1
ai

A#eibi
T A#  where ai = 1− bi

T A#ei  and  

            
(I − eibi

T A# )−1 A# (I − eibi
T A# )−1 = I + 1

ai

eibi
T A#⎡

⎣
⎢

⎤

⎦
⎥ A# I + 1

ai

eibi
T A#⎡

⎣
⎢

⎤

⎦
⎥  

        implying after simplification and expansion 

         
   
(I − eibi

T A# )−1 A# (I − eibi
T A# )−1 = A# +

A#eibi
T A#

ai

+
eibi

T ( A# )2

ai

+
(bi

T ( A# )2 ei )eibi
T A#

(ai )
2 . 

         Now    π
T A# = 0T so that 

           

A# = A# + 1
ai

A#eibi
T A# − eπ T eibi

T ( A# )2

ai

+
(bi

T ( A# )2 ei )eibi
T A#

(ai )
2

⎛

⎝⎜
⎞

⎠⎟

= A# + 1
ai

A#eibi
T A# − e

π ibi
T ( A# )2

aii

+
π i(bi

T ( A# )2 ei )bi
T A#

(ai )
2

⎛

⎝⎜
⎞

⎠⎟

 

          leading to (5.14). 
!                                                   

 
In the algorithms to follow in the next section we use a very simple procedure. We start with a 
simple transition matrix P0 with known or easily computed stationary probability vector π 0

T , 
mean first passage time matrix M0 and group inverse A0

#  or a simple g-inverse G0. We then 
sequentially change the transition matrix P0 by replacing the i-th row of P0  with the i-th row of 
P (i.e. pi

T = ei
T P )  (i = 1, 2, …, m) to obtain Pi ending up with Pm = P.  

Thus letP0 = eii=1

m∑ p(0)i
T  so that if P = eii=1

m∑ pi
T   then Pi = Pi−1 + eibi

T  with bi
T = pi

T −  p(0)i
T , for  

i = 1, 2, …, m. Thus we update π i−1
T ,  Mi−1  and Ai−1

# (or Gi−1)  to π i
T ,  Mi  and Ai

#  (or Gi )  
finishing with π m

T = π T ,  Mm = M  and Am
# = A# .  

 
We need to start with an irreducible transition matrix P0 and ensure that each successive 

transition matrix Pi is also irreducible. The simplest structure is to take P0 =
1
m
eeT ,  implying 

 p(0)i
T = e

T

m
.  This leads to M 0 = mee

T  and A0
# = I − 1

m
eeT .  

 
  Let   Ai−1 = I − Pi−1  with the i-th and subsequent rows of   Pi−1  all   e

T m , so that for the update 

 A  is taken as  Ai = I − Pi  with the i-th row of  Pi  taken as the prescribed vector   pi
T . This is 

equivalent to taking    Pi = Pi−1 + eibi
T  with   bi

T = pi
T − eT m , i = 1, 2, …, m. 

 
 
6.  The algorithms 

We consider a variety of techniques. 
1. Extend the procedure of Hunter (1991), updating one-condition generalized inverses to 

find successive stationary probability vectors, to compute the group inverse and mean 
first passage time matrix. 
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2. Successive direct perturbation updates of the group inverses of the perturbed matrices, 
leading to an expression for the stationary distribution and the group inverse  (and hence 
the mean first passage times).  

3. Consider an extension to the second procedure through updating using matrix 
procedures that yield, in tandem, the stationary probability vectors and the group 
inverses. 

4. Three interrelated algorithms, each with different starting conditions, based on updating 
simple generalised inverses of I – P0 that lead to simple computations for the stationary 
probabilities, the group inverse and the mean first passage time matrix, 

 
6.1 Procedure using successive updating of general g-inverses of I – P. 
 
This procedure is based upon Hunter (1991). Let P0 = ee

T m.  For i = 1, 2, …, m, let 
Pi = Pi−1 + eibi

T with bi
T = pi

T − eT m , and  let Gi = [I − Pi + tiui
T ]−1 . We update the g-inverse  Gi-1  

to Gi  successively as follows. Take t0 = e  and u0
T = eT m  then G0 = [I − P0 + t0u0

T ]−1 = I .  

First note that u0
Te ≠ 0, π 0

T  t0 ≠ 0, π 0
T = u0

TG0

u0
TG0e

= eT m .   

For i = 1, 2, …, m, let ti = ei and ui
T = ui−1

T + bi
T = ui−1

T + pi
T − eT m ,  then 

Gi = [I − Pi + tiui ]
−1 = Gi−1[I + (ei−1 − ei )(π i−1

T π i−1
T ei )]  leading to π i

T = ui
TGi

ui
TGie

.  

In Hunter (1991) it is shown that Gi = Gi-1 + Fi-1 where all the elements in Fi-1 in rows numbered 
i+1, …, m are all zero. The basic algorithm is as follows. 
 
Algorithm 1 

(i)   Let G0 = I ,  u0
T = eT m .  

(ii)    For i = 1,  2,  ...,m,  let pi
T = ei

T P,  ui
T = ui−1

T + pi
T −  eT m ,  

           Gi = Gi−1 +Gi−1(ei−1 − ei )(ui−1
T Gi−1 ui−1

T Gi−1ei ).  

(iii)    At i = m, let Gm = G and π T = π m
T = um

TGm

um
TGme

.  

(iv)   Compute  H = G(I − eπ T ).  

(v)   Compute A# = (I − eπ T )H .  

(vi)   Compute   M = [I − H + E(diag(H ))]D where    E = [1] and  D = inv[diag(eπ T )].  
 
Some other simplifications are also possible. For example start with 

(i)      G1 = I + (e − e1)eT and let    α1
T = p1

TG1.  
(ii)  For   i =  1,..., m−1,  compute  

(a)  
   
vi

T =
α i

T

α i
T ei+1

,  

(b)  Compute the first i rows of    Bi = Gi(ei − ei+1)vi
T , with the other entries all 0, 

(c)  Set   Gi+1 = Gi + Bi ,  
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(d)  Compute    α i+1
T =  vi

T − eT + pi+1
T Gi+1.  

 (iii)  Compute at the final iteration 
   
π T =

α m
T

α m
T e

.  

(iv), (v) and (vi) as above. 
 
The justification for the above modifications are discussed in Hunter (1991). 
 
Note that Seneta (1991) also proposed a similar procedure but updating Kemeny and Snell’s 
fundamental matrix Z by taking P0 = ee

TP m with π 0
T = eTP m and Z0 = I .  No numerical 

comparisons were given.  
 
6.2 Procedure based on row perturbations of the Group Inverse 
 
Let us explore (5.14) in this recursive setting, by starting with A# as Ai−1

#  and A#  as Ai
# , 

                                    Ai
# = Ai−1

# + 1
1− bi

T Ai−1
#  ei

Ai−1
#  eibi

T Ai−1
# + eyi

T ,                                         (6.1) 

where yi
T = − π i

(i−1)

1− bi
T Ai−1

# ei

⎛
⎝⎜

⎞
⎠⎟
bi
T Ai−1

# + bi
T (Ai−1

# )2ei
1− bi

T Ai−1
# ei

I
⎛
⎝⎜

⎞
⎠⎟
Ai−1
# .

 
 
Note that since    Ai−1

#e = 0  it follows that    yi
T e = 0 . (See Kirkland and Neumann (2013)). 

 
The full computation of (6.1) requires expressions for the constants   1− bi

T Ai−1
# e ,    bi

T ( Ai−1
# )2 ei as 

well as  π i
( i−1) .  Note however from (6.1) that if we express the i-th group inverse as 

 Ai
# = Ri + eyi

T , starting with   A0
# = R0  and y0

T = 0T ,  then the recursion (6.1) with any terms of 
the form egi

T omitted, can be expressed, using the observation that  bi
Te = 0 , as 

   
Ri = Ri−1 +

1
1− bi

T Ri−1ei

Ri−1eibi
T Ri−1,  

with Ai
#  found as Ri + eyi

T with yi
Te = 0 . The determination of the yi

T ,  in particular when i = m, 
when A# = Am

# , can be determined by requiring  Rie = 0 and the properties of the group inverse. 
Since (I − P)A# = I − eπ T  we have that π T = e1

T − e1
T (I − P)R.  Further π T A = 0T  implies that 

ym
T = −π T R  so that A# = (I − eπ T )R.  

 
The procedure is outlined below. 
 
Algorithm 2 
Start with P.  

(i)    Set R0 = I − ee
T m .  

(ii)    For i = 1, 2, …, m,  let pi
T = ei

T P,  bi
T = pi

T −  eT m ,  

       
   
Ri = Ri−1 +

1
1− bi

T Ri−1ei

Ri−1eibi
T Ri−1.  
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(iii)     Compute  π
T = e1

T − e1
T (I − P)Rm .  

(iv)    Compute  A
# = (I − eπ T )Rm .  

(v)     Compute M = [I − Rm + E(diag(Rm ))]D,  where E  = [1] and D = inv[diag(eπ T )].  
  
Some simplifications to this algorithm are possible, as not all the calculations are required.  

In (ii) note that Ri = Ri−1 I +Ci( ),where Ci =
1
ki
eibi

T Ri−1and ki = 1− bi
T Ri−1ei  so that Ci has all 

terms zero except in the ith row. So that in the ith recursion the only terms that are updated are 
in the first i rows with the rows numbered i+1. i+2, …, m remaining unchanged. 

 
6.3 Procedure based on updating the group inverse by matrix operations 
Rather than focus directly on the expression of the group inverse, observe that, from (5.5) under 
the perturbation Ε ,   π

T = π T (I − Ε A# )−1 .  

Thus, if   Π = eπ T  and   Π = eπ
T

 then   Π =Π (I − Ε A# )−1.                                                     (6.2) 

Now under the perturbation    Ε = eibi
Tto the i-th row with bi

T e = 0,  yields, as in (5.13),  

   
(I − Ε A# )−1 = I + 1

1− bi
T A#ei

eibi
T A# so that 

    
Π =Π I + 1

1− bi
T A#ei

eib
T A#⎡

⎣
⎢

⎤

⎦
⎥   

and, from (5.9) and (6.2),  
   
A

#
= (I −Π )A# (I − Ε A# )−1 = (I −Π )A# I + 1

1− bi
T A#ei

eibi
T A#⎛

⎝⎜
⎞

⎠⎟
.  

In the context of successive updating of the group inverse on a row by row basis we have the 
following procedure. 

 
Algorithm 3 

(i) Let P0 = ee
T m , implying Π0 = ee

T m ,  A0
# = I − eeT m . 

(ii) For  i = 1,  2,  ...,m,  let pi
T = ei

T P,  bi
T = pi

T − eT m ,  

         Si = I +
1

1− bi
T Ai−1

# ei
eibi

T Ai−1
# ,   Πi =Πi−1Si ,  Ai

# = (I −  Πi )A
#
i−1Si .  

(iii) At  i = m, let S = Sm then  Π  =Πm−1S,  A# = (I −Π )Am−1
# S.  

(iv) Compute M =  [I − A# + EAd
# ]D,  where E  = [1] and  D = (Πd )−1.  

 
 
6.4 Procedures based on updating simple g-inverses of I – P. 

 
We have seen earlier (Theorem 7(c)) that if we choose a g-inverse G of I – P with the property 
that Ge = ge, (i.e. G ∈ A{1, 5a}) then we have a simple form of the mean first passage time 
matrix M given by eqn. (4.3). Further, it is easy to find an expression for the group inverse of    
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I – P as A# = (I − eπ T )G.  If we take G of the form G = [I − P + eβ T ]−1 , then its computation 
would not require any prior knowledge of the stationary probability vector πT. 
 
In Hunter (2007) we explored the properties of some generalized inverses of this form. We 

consider three different algorithms using the special forms, Ge ≡ I − P + ee
T

m
⎡

⎣
⎢

⎤

⎦
⎥

−1

, 

Ge1 ≡ [I − P + ee1
T ]−1  and Gee ≡ [I − P + eeT ]−1 , utilizing (3.4), (3.5) and (3.6), respectively. 

 
The starting conditions for each algorithm, followed by similar recursions, but with different 
expressions for the stationary probability vector πT lead to identical calculation procedures for 
the group inverse and the mean first passage times.  
 
We explore the recursions to determine G = [I − P + eβ T ]−1 .  In each case we start with            

K0 = [I − P0 + eβ
T ]−1 = I − ee

T

m
+ eβ T⎡

⎣
⎢

⎤

⎦
⎥

−1

= I + ehT⎡⎣ ⎤⎦
−1

 where 
  
hT = β T − eT

m
 implying, from the 

proof of Theorem 10(b), that 
   
K0 = I − ehT

1+ hT e
. 

The recursion is to take Ki−1 = [I − Pi−1 + eβ
T ]−1  to Ki = [I − Pi + eβ

T ]−1 where    Pi = Pi−1 + eibi
T  

and  bi
T = pi

T − eT m .   
Now  Ki = [I − Pi + eβ

T ]−1 = [I − Pi−1 + eβ
T − eibi

T ]−1 = [(Ki−1)
−1 − eibi

T ]−1 . 
Using the well known Sherman-Morrison (1949) formula: If A is invertible and    

(A + uvT )−1 = A−1 − 1
1+ vT A−1u

A−1uvT A−1 ,  the above expression leads to the recursion:  

for i = 1, 2, …, m, Ki = Ki−1 +
1

1− bi
T Ki−1ei

Ki−1eibi
T Ki−1 ,                                                           (6.3) 

with K0 = [I − P0 + eβ
T ]−1 and  Km = [I − Pm + eβ

T ]−1 = [I − P + eβ T ]−1 . 
 

For Ge = I − P + ee
T

m
⎡

⎣
⎢

⎤

⎦
⎥

−1

= Km , β T = e
T

m
,  K0  = I   and π T = 1

m
eTKm . 

For Ge1 = [I − P + ee1
T ]−1 = Km ,  β T = e1

T ,  K0 = I + e
eT

m
− e1

T⎛
⎝⎜

⎞
⎠⎟

 and π T = e1
TKm .  

ForGee = [I − P + eeT ]−1 = Km ,β T = eT ,  K0 = I −
m −1
m2

⎛
⎝⎜

⎞
⎠⎟ ee

T  and π T = eTKm . 

The expressions for π  T  follow from (2.2) since  π
T = β T [I − P + eβ T ]−1 . 

 
This leads to three further algorithms, all variants of the generic recursion given by (6.3). 
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Algorithm 4: (and its variants 4A, 4B and 4C)

(i)  Start with K0 :   (For AL4A let K0 = I .   For AL4B let K0 = I + e
eT

m
− e1

T⎛
⎝⎜

⎞
⎠⎟

. 

       For AL4C  let  K0 = I −
m −1
m2

⎛
⎝⎜

⎞
⎠⎟ ee

T . )
  

 

(ii)  For  i = 1,  2,  ...,m,  let pi
T = ei

T P,  bi
T = pi

T −  eT m ,

        Ki = Ki−1 I +Ci( ),where ki = 1− bi
T Ki−1ei  and  Ci =

1
ki
eibi

T Ki−1.

(iii)  At  i = m, let K = Km  and then compute π T :

        (For AL4A let π T = 1
m
eTK .  For AL4B let π T = e1

TK .  For AL4C  let π T = eTK .)

(iv) Compute A# = (I − eπ T )K .
(v)  Compute  M =  [I − K + EKd ]D,   where E  = [1] and D = (Πd )−1. 

 

 
 
7. Numerical results  
 
We conclude this paper with a comparison of all the algorithms by coding each algorithm using 
MatLab and exploring numerical computations using a test example (which has previously 
been considered in the literature). MatLab was run in both single precision and double 
precision. As had been done by others, a comparison of the single precision and double 
precision results has been used to compare the accuracy of the different algorithms. 
 
One of the difficulties in making comparisons as to which algorithm is preferable is that there is 
no bench mark of accurate results related to test problems in respect to the mean first passage 
times and the group inverse.  
 
7.1 Stationary distributions 
 
Using the four algorithms, as listed in section 6, the stationary distributions were computed in 
single precision giving{π i (S)}  and double precision {π i (D)}.   
 
In order to compare the procedures against a benchmark procedure we used the GTH/State 
Reduction algorithm of Grassman, Taksar and Heyman (1985) and Sheskin (1985). This was 
carried out in single precision and double precision and listed as π i (GTHS){ } and π i (GTHD){ }  
respectively. The double precision figures of the GTH algorithm were taken as the most 
accurate that we could obtain. Note that the stationary probability vector is just the left 
eigenvector of P corresponding to the dominant eigenvalue 1. One could alternatively have 
used MatLab’s eigs package as an alternative benchmark. However we elected to use the GTH 
algorithm due to its numerical stability with no subtractions being used in the calculations. 
 
We also calculate the average number of accurate decimal places for both the single precision 
and double precision results for each algorithm by comparing the actual computed results 
against an appropriately rounded version of the GTH computed distribution. 
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Suppose{π i (A)}  is the calculation for Procedure A and {π i (B)}  is the calculation for 
Procedure B.  The minimum error, the maximum error and the relative error between A and B 
are, respectively,

 
MINE(A,  B) = min

1≤i≤m
π i (A)−π i (B) , MAXE(A,B) = max

1≤i≤m
π i (A)−π i (B) , and

RELE(A,B) = π i (A)−π i (B)i=1

m∑ .  
Under, single and double precision, for any particular algorithm, the minimum residual error, 
the maximum residual error and the relative errors are, respectively,                              
MINRE(⋅) = min

1≤ j≤m
π j (⋅)− π i (⋅)i=1

m∑ pij , MAXRE(⋅)=max
1≤ j≤m

π j (⋅)− π i (⋅)i=1

m∑ pij , and RELE(⋅)  = 

π j (⋅)− π i (⋅)i=1

m∑ pijj=1

m∑ .  

 
We provide a table of comparisons comparing the single and double precision results together 
with a comparison against the GTH algorithm.  
 
 
7.2  Mean first passage times 
A measure for the accuracy of the mean first passage times was carried out by calculating the 
mij using the algorithms in single and double precision to compute and compare the matrices 
M(S) = [mij(S)] and M(D) = [mij(D)]. 
 
We could not find any published results for accurate values of the mij against any specific test 
problem in the literature.  
 
We consider the minimum, maximum and overall residual errors for each algorithm (based on 
the formal calculation for the mij given by (1.3)), under both single and double precision. i.e 
MINRESM (⋅) = min

1≤i≤m, 1≤ j≤m
mij (⋅)− pikk≠ j∑ mkj (⋅)−1 ,

 
MAXRESM (⋅) =

 
max

1≤i≤m, 1≤ j≤m
mij (⋅)− pikk≠ j∑ mkj (⋅)−1 ,

 
and RESM (⋅)   = mij (⋅)− pikk≠ j∑ mkj (⋅)−1j=1

m∑i=1

m∑ .
 

 
The accuracy of each algorithm was evaluated in terms of the minimum error, the maximum 
error and the relative errors between the double and single precision computations as 
MINEM (S,  D) = min

1≤i≤m, 1≤ j≤m
mij (S)−mij (D) ,MAXEM (S,  D) = max

1≤i≤m, 1≤ j≤m
mij (S)−mij (D)  

and REM (S,D) = mij (S)−mij (D)j=1

m∑i=1

m∑ .  
 
If one regards the double precision result as the “true” result and the single precision result as 
the “computed” result, then the number of (extra) accurate digits can be defined as the overall 

average of − log10
resulttrue − resultcomputed

resulttrue
 Heyman and Reeves (1989) and Heyman and 

O’Leary (1995), computed this statistic for a set of test problems when computing the mean 
first passage time matrix. Heyman and Reeves (1989) considered four different procedures 
(state-reduction, Gaussian elimination, and two closed form matrix solutions) while in Heyman 
and O’Leary (1995) an UL factorization with normalisation related to a state reduction 
procedure was used.  However in both of these papers their results were displayed in figures 
and no actual numerical results were tabulated.  
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As done for the stationary distributions, we also compute the single precision version of M for 
each algorithm and comparing directly with the rounded double precision version and then 
calculating the average number of accurate decimal places obtained by the single precision 
version. 
 
7.3 The Group inverse 
A single measure for the accuracy of the group inverse is more problematic as there are three 
conditions that the group inverse must satisfy and a direct computation of the group inverse 
using matrix inversions is prone to multiple errors. Further we do not have any exact results 
published in the literature for group inverses of I – P. 
 
The three conditions for parameterization of a generalized matrix inverse have been considered 
and three different statistics have been introduced to measure the accuracy of the computations.  
Let AG = I – (I – P)A#, BG = I – A#(I – P). As in (2.6) and (2.8), let α  = AGe, βT= π  TBG and γ  = 
βTA#α   –1. 
 
From the parametrization of the group inverse, (Theorem 2, conditions (2.9) and (2.14)), these 
parameters are α  = e, β   = π   and γ  = –1. 
 
Thus we compute, based on the single and double precision results, the following statistics: 
MINDELTA α  = min

1≤i≤m
α i −1 , MAXDELTA α  =max

1≤i≤m
α i −1 , RELDELTA α  = α i −1i=1

m∑ ,  

 MINDELTA β  = min
1≤i≤m

βi −π i , MAXDELTA β  = max
1≤i≤m

βi −π i , RELDELTA β  = βi −π ii=1

m∑  
and DELTA γ = βA#α .  All of these statistics should be close to zero. 
 
In the paper of Heyman and O’Leary (1995), a procedure to compare the accuracy of the group 
inverse, based on the similar procedure as used for finding the average number of (extra) 
accurate digits for computing the mean first passage times, was used. We use this to find the 
average number of (extra) accurate digits in the computation of the group inverse in our 
perturbation procedures, using the technique we used for the mean first passage time matrix. 
 
Further, as was done for the previous two properties, we also compute the single precision 
version of A# for each algorithm and then compare this result directly with the appropriately 
rounded double precision elements to calculate the average number of accurate decimal places 
obtained by the single precision version. 
 
We now illustrate the calculations performed for the following example. 
 
7.4 Test Example: The transition matrix P below appears in p.199 of Kemeny and Snell (1960) 
and in Sheskin (1985). The (1,1) entry was changed (as used in Hunter (1991)) to ensure that 
the matrix P is in fact a stochastic matrix. 
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P =

0.831 0.033 0.013 0.028 0.095
0.046 0.788 0.016 0.038 0.112
0.038 0.034 0.785 0.036 0.107
0.054 0.045 0.017 0.728 0.156
  0.082 0.065 0.023 0.071 0.759

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

 
 
7.4.1 MatLab errors 
For our numerical computation we use MatLab software, in particular the 64-bit version 
R2015b on a MacBook Air computer. In interpreting the errors generated by Matlab care must 
be taken. (See Moler (1996) and Moler (2004).)  Under double precision (single precision) the 
spacing between 1 and the next largest number is the 2.2204e-16 (1.1921e-07), the eps. This 
floating point accuracy also depends on the size of the number and for numbers smaller than 1 
(typically say probabilities) the spacing will be smaller. For example, observe that a = 0.1 + 0.2 
– 0.3 yields a MatLab value of 5.5511e-17. This error is due to the machine precision which, of 
course, we cannot eliminate. 
 
7.4.2 Stationary distribution 
No exact results for the stationary distribution of the M. C. with transition matrix P appears in 
the literature. The stationary probability vector πT using the GTH algorithm is, under double 
precision to 15 decimal places is given as π T (GTHD)  = (0.270457577293538, 
0.184235456501417, 0.076135265451860, 0.147597142335324, 0.321574558417861). 
 
For all algorithms, under double precision, the calculations leading to the corresponding 
stationary probability distributions   yield the same results as computed by the GTH algorithm, 
when rounded to 14 decimal places.  (Actually the average number of accurate digits for the 
stationary distribution for each algorithm ranges from 14.6 to 14.8, as displayed in Table 1.) 
 
The single precision version the stationary probability distribution given by GTH  is same as the 
double precision version, when rounded to 6 decimal places. Further, the single precision 
versions of the stationary distributions derived using each algorithm also give the double 
precision GTH version when rounded to 6 decimal places for AL1 and AL2 but 7 decimal paces 
for AL3, AL4A, AL4B and AL4C. The average number of decimal places ranges from 6.6 to 7.8 
with AL4B and AL4C both attaining 7.8. 
 
As can been seen from Table 1, all algorithms yield very small errors for MINRE(D),  
MAXRE(D) and RELE(D), with perhaps AL2 and AL4C slightly inferior. 
 
The relevant accuracy statistics show that, to 15 decimal places, we cannot detect any 
significant differences between MINE, MAXE and RELE for the pairs (GTHD, D) although AL2 
and, especially, AL4C are marginally inferior. Similarly, under single precision, for the pairs  
(GTHD, S), AL1 and AL2 are marginally inferior to the other algorithms for MINE, MAXE and 
RELE. 
 
It is difficult to identify and recommend one specific algorithm that performs better than others, 
although note that AL4A and AL4B  (which are minor variants with different initial conditions) 
each perform consistently well across all error categories with mainly smaller errors than the 
other algorithms. 
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TABLE 1: Errors for stationary distributions under single and double precision. 
 GTH AL1 AL2 AL3 AL4A AL4B AL4C 
MINRE(S)  1.2943e-09 5.0298e-09 0  2.5147e-09 3.6394e-11 1.4715e-10 2.9227e-11 
MAXRE(S)  1.5001e-08 4.0083e-08 1.4901e-08  1.6366e-08 1.8086e-08 1.8200e-08 1.8069e-08 
RELE(S)  3.9539e-08 8.3314e-08 1.4901e-08  4.0149e-08 3.4222e-08 3.4867e-08 3.4206e-08 
Av # d.p.’s for π(S)  7.2 6.6 7.4 7.6 2.3188e-08 2.2792e-08 
MINE(GTHS, S)  5.1810e-09 1.3499e-08 8.5802e-09 6.8943e-09 6.9936e-09 6.8804e-09 
MAXE(GTHS, S)  8.4687e-08 7.4605e-08 2.7866e-08 2.2766e-08   
RELE(GTHS, S)  1.7997e-07 1.6876e-07 7.2892e-08 6.7103e-08 6.7751e-08 6.7120e-08 
MINE(S, D)  2.4537e-09 7.6347e-09 2.8958e-09 1.4306e-09 2.8898e-10 4.0312e-10 2.7164e-10 
MAXE(S, D)  2.3830e-08 8.8179e-08 7.1114e-08 2.4374e-08 1.9275e-08 1.9697e-08 1.9300e-08 
RELE(S, D)  5.4643e-08 1.7636e-07 1.40576e-07 5.1610e-08 3.8667e-08 3.9511e-08 3.8624e-08 
MINE(GTHD, D)  0 0 0 0 4.1633e-17 0 
MAXE(GTHD, D)  2.2204e-16 4.9960e-16 1.1102e-16 1.6653e-16 5.5511e-17 4.9960e-16 
RELE(GTHD, D)  6.3838e-16 9.7145e-16 2.9143e-16 3.0531e-16 2.6368e-16 1.1935e-15 
MINRE(D ) 0 0 0 0 0 0 0 
MAXRE(D)  5.5511e-17  5.5511e-17 1.1102e-16  5.5511e-17 5.5511e-17 0 1.1102e-16 
RELE(D)  5.5511e-17 1.6653e-16  2.2204e-16 8.3267e-17 6.9389e-17 0 2.7756e-16 
Av # d.p.’s for π(D) 15 14.8 14.8 14.8 14.6 14.8 14.8 
 
7.4.3. Mean first passage time matrix M: 
 
For each of the different algorithms the mean first passage times are given  (to 12 decimal 
places) as follows:   
 

M =

3.697437542727 22.374164571709 57.756742192108 23.278850538432 9.598732858601
17.032615490720 5.427836850679 56.864516889123 22.100075015307 8.844407674651
17.667201055109 22.106202543394 13.134517809389 22.292628444747 9.020416501550
16.341175493452 21.005100548563 56.552837505099 6.775198924435 7.609106618566
15.243523199997 20.060109096789 55.798746557709 20.158095744297 3.109698742711

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.  

 
TABLE 2: Errors for mean first passage times under single and double precision. 

 AL1 AL2 AL3 AL4A AL4B AL4C 
MINRESM(S) 0 0 0 0 0 0 
MAXRESM(S) 1.7285e-06 3.8147e-06 3.7104e-06 4.4256e-06 2.7269e-06 4.3064e-06 
RESM(S) 1.6227e-05 1.9968e-05 1.9461e-05 2.1696e-05 1.8865e-05 1.9073e-05 
Accurate d.p.’s for M(S) 5.04 5.00 5.20 5.56 4.88 5.28 
MINEM(S, D) 4.7146e-08 2.4245e-08 4.2147e-08 3.04986e-09 1.1877e-08 8.0028e-09 
MAXEM(S, D) 1.3477e-05 1.8601e-05 3.7823e-06 4.5595e-06 8.0312e-06 4.4580e-06 
REM(S, D) 8.0903e-05 1.1128e-04 2.5273e-05 2.3256e-05 4.2810e-05 2.4030e-05 
MINRESM(D) 0 0 2.7756e-17 5.551e-17 0 1.1102e-16 
MAXRESM(D) 1.3378e-14 7.2164e-15 7.8826e-15 6.9389e-15 6.7168e-15 8.0214e-15 
RESM(D) 6.5808e-14 4.9655e-14 5.5261e-14 3.6221e-14 3.8386e-14 4.8128e-14 
Accurate Digits 7.0475 7.1011 7.5035 7.8174 7.5678 7.6773 
 
Calculations in single precision in general do poorly and we typically achieve much less 
accuracy than the expected six decimal places. (see Table 2.) AL1 gives the most accurate 
results with AL4A the worst.   
 
By comparing the single precision results for each of the algorithms against rounding the terms 
for M above we achieve an average of 5.56 decimal places for AL4A with smaller averages for 
the other algorithms (with AL4B being the worst at an average of 4.88 decimal places). 
 
In terms of double precision, all AL achieve relatively small MINRESM(D) errors. AL1 has the 
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largest MAXRESM(D) and RESM(D) errors. Even though AL4B gives the smallest 
MAXRESM(D), AL4A gives the smallest MINEM(S, D), REM(S, D),  RESM(D) errors as well 
as the largest number of accurate digits.   
 
Overall AL4A, except for the single precision results, appears to perform consistently well and 
is recommended for calculating the mean first passage times. 
 
7.4.4.  Group inverse A#: 
The group inverse for I – P is given (to 13 decimal places) is as follows:  A# = 

3.1905741863522 −0.9375239582265 −0.4087732024356 −0.6983862380226 −1.1458907876676
−1.4160257342402 3.1845904654802 −0.3408433921500 −0.5244023393545 −0.9033189997355
−1.5876542085704 −0.8881558516147 3.9885516959952 −0.5528226752867 −0.9599189605234
−1.2290205477352 −0.6852938229425 −0.3171135995114 2.7375055783011 −0.5060776081121
−0.9321521677369 −0.5111928914350 −0.2597006850570 −0.2377717484790 1.9408174927079

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

  
All the algorithms give the above expression to the requisite decimal places when the 
computations are carried out in double precision. 
 
When the terms of A# above are rounded to 5 decimal places we obtain the group inverse 
expression for all the algorithms when the calculations are carried out under single precision 
(with one entry for AL1 only at 4 decimal places).  However, for every algorithm there are 
some entries that can be expressed to seven decimal places (and even one to 8 d.ps for AL4B). 
In Table 3 we give figures for the average number of accurate decimal places with AL4B 
having the highest average of 6.28, under single precision. 
 
Table 3 gives the accuracy of the α , β  and γ  parameters for the parametric form for the group 
generalized inverse A# derived using each algorithm. 
 

TABLE 3: Errors for the group inverse under single and double precision. 
 AL1 AL2 AL3 AL4A AL4B AL4C 
MINDELTA α(S) 0 0 0 0 0 0 
MAXDELTA α(S) 1.1921e-07 1.1921e-07 0  1.1921e-07 1.1921e-07 0 
RELDELTA α(S) 1.7881e-07 1.1921e-07 0 1.7881e-07 1.7881e-07 0 
MINDELTA β (S) 8.0763e-09 0 1.4652e-09 2.7727e-09 1.4715e-10 2.7424e-09 
MAXDELTA β (S) 1.2473e-08 0 1.2865e-08 7.7656e-09 2.1615e-08 7.7911e-09 
RELDELTA β (S) 5.1601e-08 0 2.5248e-08 2.6771e-08 3.7371e-08 2.6756e-08 
DELTA γ (S) 2.2352e-08 1.4901e-08 8.9407e-08 6.7055e-08 3.7253e-08 8.9407e-08 
Av # accurate d.p.’s A#(S) 5.84 5.88 6.08 6.16 6.28 6.16 
MINDELTA α(D) 0 0 1.1102e-16 0 0 0 
MAXDELTA α(D) 2.2204e-16 2.2204e-16 6.6613e-16 2.2204e-16 2.2204e-16 4.4409e-16 
RELDELTA α(D) 3.3307e-16 3.3307e-16 1.4433e-15 5.5511e-16 7.7716e-16 8.8818e-16 
MINDELTA β (D) 0 0 0 0 0 0 
MAXDELTA β (D) 5.5511e-17 2.7756e-17 5.5511e-17 5.5511e-17 5.5511e-17 5.5511e-17 
RELDELTA β (D) 9.7145e-17 2.7756e-17 5.5511e-17 8.3267e-17 6.9389e-17 8.3267e-17 
DELTA γ (D) 3.7470e-16 4.1633e-17 3.4694e-16 9.7145e-17 2.2204e-16 4.1633e-17 
Accurate digits    6.7495 6.8348 7.0582 7.1085 7.2211 7.1458 
 
Under single precision, AL3 and AL4C both give DELTA α  explicity 0. AL2 gives DELTA β  
explicitly 0 with AL1 the least accurate. AL2 gives the smallest error for  γ.  
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Under double precision, all AL, except for AL3 have zero MINDELTA α  errors. AL1 and AL2 
give the smallest overall RELDELTA α  error. All AL have zero MINDELTA β  errors with AL2 
having the smallest MAXDELTA β  and AL1 the largest. For DELTA γ, AL2 and AL4C have the 
smallest error with AL1 the largest.  Note however that for all algorithms under double 
precision we get accuracy to at least 15 d.p.’s for all the parameters α ,  β  and γ . 
 
While it is difficult to give a universal recommendation based on the above observations, 
overall, AL2 appears to give consistently accurate results for all the parameters although AL4B 
gives the most accurate number of digits, under both single and double precision. 
 
An interesting observation is that no one particular algorithm for computing the key Markov 
chain properties has emerged to dominate the accuracy of all the different procedures. 
 
In a sequel paper, when we compare not only the perturbation procedures but alternative 
computational techniques for the key properties of irreducible M. C.’s, we may be able to gain 
a better impression as to whether perturbation procedures may in fact prove to be suitable 
alternatives. 
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