
Full citation: Kirk, D.C., MacDonell, S.G., & Tempero, E. (2009) Modelling software processes - a
focus on objectives, in Proceeding of the 24th ACM SIGPLAN conference companion on Object
oriented programming systems languages and applications. Orlando FL, USA, ACM Press, pp.941-948.
http://dx.doi.org/10.1145/1639950.1640061

Modelling Software Processes - a Focus on Objectives

Diana Kirk, Stephen MacDonell
SERL, Auckland University of Technology

Private Bag 92006, Auckland 1142,
New Zealand

dkirk@aut.ac.nz, stephen.macdonell@aut.ac.nz

Ewan Tempero
Department of Computer Science

University of Auckland
New Zealand

e.tempero@cs.auckland.ac.nz

Abstract

Existing software process models such as Waterfall and
XP are characterised by unstated assumptions, a
consequence of which is that we cannot easily compare
models or transfer data from one model to another. This
means that software planners have no mechanism for
selecting process activities that are best suited to
individual projects. In this paper, we propose a
framework for modelling software processes that supports
representation and comparison of different kinds of
software process. Our framework is based on a lift in
focus from ‘choosing activities’ to ‘identifying project
objectives and selecting activities to meet those
objectives’. We overview some evidence to support the
claims of representation and comparison and discuss
benefits and limitations of the approach.

Keywords: software process modelling, software
project planning, software process improvement,
project objectives

1. INTRODUCTION

Many models of the software development process have
been proposed for a number of purposes. For example,
some models are intended to proscribe how software is to
be developed, such as Waterfall or XP. Some models are
intended to help stakeholders understand consequences of
decisions, such as simulation models. A third set of
models supports the management of outcomes of software
development projects, such as for cost estimation or
defect prediction. Each kind of model reflects a particular
perspective on software processes and their instantiation.
Proscriptive models range from viewing the software
development process as a traditional engineering process
to viewing software development as an activity in which
the most important characteristics relate to the humans
carrying out the process. Simulation models are based on
several modelling paradigms, for example, system
dynamics and event-driven modelling, each characterised

by a number of strengths and limitations. Predictive
models generally apply statistical manipulations on
existing data sets to predict future outcomes, and apply a
variety of techniques to address the sparseness or
uncertainty of the available data sets.

Although models differ in kind and approach, they all
share a common characteristic in that each embeds (often
unstated) assumptions about how the process operates or
what information is needed. For the proscriptive models,
the more traditional models such as Waterfall assume
objectives of high quality and low cost and realise these
by implementing a defined set of engineering activities,
for example, ‘specification’, ‘design’, ‘code’ and ‘test’.
However, if a project is to deliver a new product based on
novel technology to an early adopter marketplace in
advance of the competition, the goal of early delivery
may take priority over that of quality and a traditional
process may hinder rather than support this prioritisation.
Proponents of the agile approaches reject the
‘engineering’ viewpoint and talk about ‘principles’ and
‘practices’ rather than ‘activities’. However, these
approaches also embed assumptions about objectives and
project contexts. For example, it is claimed that the XP
approach ‘reduces risk’ and specific practices are
mandated to mitigate against specific risks. One practice,
planning game, involves a regular meeting between
developers and client representative to ensure changing
requirements are understood. Another practice, pair
programming, mandates that all design and code is
carried out by two developers working together in a
specific way in order to ensure code quality. Some
assumptions embedded in the XP approach are that the
project must deal with fast-changing requirements, an
effective client representative is available, and developers
are sufficiently experienced and personality-matched to
render pair programming effective. Again, if the project
profile is inconsistent with the profile assumed by the
approach, the process will hinder, rather than support,
project objectives.

Simulation models [Drappa and Ludewig 1999, Lakey
2003, Munch 2005, Raffo 2005, Storrle 2003] generally

http://dx.doi.org/10.1145/1639950.1640061�

define a specific process and support only small, local
perturbations. Assumptions are thus generally embedded
in the model structure and relate both to which activities
are carried out and which factors are most likely to affect
outcomes. For example it may be possible to change the
value that defines the effectiveness of an inspection, but
not to omit the inspection from the model.

Cost estimation [Boehm 1981, Briand et al. 1999,
Londeix 1987] and defect prediction [Khoshgoftaar et al.
1996, Lanubile and Visaggio 1997, Zhang and Pham
2000] models generally apply a statistical manipulation
on an existing data set. However, the activities that were
carried out during the process represented by the data set
are generally unknown, or are known only by very high-
level labels such as ‘design effort’. Predictions are thus
based on assumptions that the processes of the predicted
projects involve the same activities as the original ones
from which the data was extracted. This is seldom likely
to be the case because, even if an organisation has a fixed
process for all projects, it is unlikely that all developers
on the new project will have the same experience and
subject-area knowledge as those from earlier projects.

A consequence of the variation in implicit assumptions
embedded in the different models is that it is not easy to
compare models or transfer knowledge derived from one
model to another. This is problematic for the following
reason. There is general agreement in the software
industry that software project outcomes can be maximised
by tailoring the process to the specifics of individual
projects. For example, a project manager has heard that
applying the agile technique of pair programming results
in an increase in quality in the software product. (S)he
would like to know whether replacing design inspections
by pair programming in a traditional waterfall process
would improve quality in the delivered product. In order
to model this scenario using existing modelling
techniques, a model specific to the scenario would be
built. If the project manager then wishes to check if a
better outcome would be achieved by improving the
testing process, a new model would be built to describe
the new scenario. The problem is that we have no
mechanism for choosing activities and parameters in a
flexible way and building process-specific models is
expensive and time-consuming [Raffo et al. 2005].

We believe that the existence of so many disparate
approaches is a consequence of our lack of a real
understanding of the software process. Kitchenham and
Cairn state that “. . . before software engineering can
mature as an engineering discipline, practitioners need a
better understanding of the process by which software is
created” [Kitchenham and Cairn 1990]. We suggest that a
first step towards such understanding is to attempt to
create a more general model of the process that can be
applied and validated in a local way, but that forces a
consideration and declaration of the specific factors that
characterise the local application.

In this paper, we consider the form and some desired
properties of such a model and propose a framework that
we believe satisfies the properties. The motivation for the
form of our framework is an observation that all current
approaches are based on a communal and persistent
mindset of ‘we must define what we must do without

giving too much thought about what we want to achieve
or to project contexts’. We suggest that both traditional
and agile approaches represent local ‘solutions’ to
unstated process ‘problems’, where process authors have
created a set of activities or practices based on specific
real-world experiences without characterising the real-
world aspects that informed the process. For example,
traditional models have their origin in a military context,
and relate to software projects that were believed to be
relatively stable and were many person-years in size.
Agile models have their roots in the context of smaller
software organisations whose projects are inherently less
stable and of smaller size and where there is increased
reliance on individuals. The objectives and contexts
relating to each have become secondary to the defined
activities and practices and so have become unstated
assumptions.

We believe that the future for software process modelling
lies in a change in paradigm from ‘choosing activities’ to
‘understanding objectives and constraints’, a paradigm
that inherently forces a more holistic approach to software
system modelling. Our proposed framework is based on
‘system variables-of-interest’ (SVoI) that makes no
assumptions about what constitutes a process or what the
model is intended for. In contrast with the activity-centric
nature of the above models, our approach involves first
identifying the key objectives for the software project, for
example ‘deliver high quality artifacts’ and ‘increase
developer product knowledge’, and then establishing each
as a system factor-of-interest. Each key factor is then
operationalised as at least one system variable-of-interest
(SVoI) and assigned an appropriate target value, for
example, ‘no more than ten known defects’. Process and
management activities are then viewed as transformations
on these SVoI. The aim of a software development
process is to ‘move’ the values of the SVoI towards the
desired outcome values. The progress that is actually
made depends on the actual transformations i.e. on the
contexts that affect how well the engineers are able to
carry out tasks.

The SVoI represent the aspects of the project system in
which we have an interest i.e. the state of our project
system. This means that transformations are definitions of
state change and can be applied one after the other, as
required. Activity transformations can be based on
available evidence, if some exists, or on expert opinion.
This means the framework may be applied in projects for
which existing organisational data is available to indicate
the expected effects of an activity on, for example, effort
or defect numbers, and may also be applied when no data
is available but the project manager chooses to estimate
expected effects based on experience.

The paper is organised as follows. In Section 2, we
overview some process frameworks and models that aim
to support process flexibility. In Section 3, we examine
the kinds of properties we would like our model to
exhibit, for example, extensibility of objectives and in
Section 4, we present a framework that we believe meets
these objectives. In Section 5, we discuss the claimed
benefits and limitations of our approach and present some
evidence. Finally, in Section 6, we summarise the paper
and indicate directions for future research.

2. RELATED WORK

In this Section, we overview some process frameworks
and models that aim to support the kind of process
tailoring described in Section 1.

2.1 Modelling and simulation

The main source of related work is the modelling and
simulation community. Software process simulation and
modelling has become an “increasingly active research
area” with growing numbers of publications and related
activities [Zhang et al. 2008]. Techniques applied include
discrete event simulation and system dynamics. The
specific models overviewed below address the issue of
flexibility by building processes from a number of pre-
defined activity ‘building blocks’.

Lakey [Lakey 2003] introduces a model to support
software project prediction and management. The model
is intended as a theoretical framework. It comprises four
building blocks, ‘preliminary design’, ‘detailed design’,
‘code and unit test’ and ‘subsystem integration and test’.
In this framework, project-specific process models are
built by creating an appropriate number of building
blocks and calibrating the equations for each with project,
process and product data from the project to be modelled.
Examples of project factors included are communication
overhead’, ‘tool support’ and ‘skill levels’. Examples of
process factors are ‘defects injected’ and ‘estimated
calendar weeks’. Product factors include ‘size’ and
‘quality’. A strength of this framework is the inclusion of
cost, schedule and quality performance parameters in a
holistic system as “the primary software project
performance parameters of cost, schedule and quality are
not independent, and they cannot be tracked and managed
independently”. However, customisation is achieved by
copying and renaming building blocks to achieve the
correct process structure and then providing the relevant
input values. This means that there is no possibility of
representing any activities that do not comply with one of
these blocks. We suggest that customisation thus refers to
changing input values rather than changing the process.
Another limitation is in the predefinition of the factors
that are believed to affect outcomes. The beliefs are
effectively model assumptions.

Munch applies a patterns approach to the development of
custom-tailored process models [Munch 2005]. He
believes that “The development of high-quality software
or software-intensive systems requires custom-tailored
process models that fit the organizational and project
goals as well as the independent contexts” (page 1). In
Munch’s solution, a process pattern is a reusable fragment
of a process model that represents an activity. Patterns
can be combined to represent combinations of process
models. Information for each pattern includes attributes
and a description of how attributes change when the
pattern is applied, for example, causing a change to
‘reliability’ [Munch 2005]. In this model attributes may
relate to process state (for example, ‘not in maintenance
activity’) or process goals (for example, ‘Maximal effort
is less than 2000’). Required goals are thus modelled as
restrictions on project attributes and include only those
over which the project has control. This means that the

model does not support objectives such as ‘developer
subject area knowledge’ and other human-related goals.
In addition, the rules for transformation form an integral
part of the model i.e. assumptions are embedded in the
model.

Raffo et. al. describe an approach for creating
Generalised Process Simulation Models (GPSM) [Raffo
et al. 2005]. The approach consists of constructing a
process from a library of generic process building blocks,
for example, relating to ‘Design’, configuring the inputs
to blocks for specific environments and viewing outputs
relating to time, cost, quality and functionality. Although
the approach supports a degree of flexibility in process
construction, there is an assumption of ‘traditional
process’ and a restriction of outputs to those relating to
time, cost, quality or functionality [Raffo 2005]. This
means that the GPSM model as constructed cannot be
used for simulating less traditional processes or for
modelling, for example, the effects of ‘team meeting’ on
‘developer product knowledge’.

2.2 Other frameworks

Several authors have proposed approaches that reduce
risk by enabling a planner to select activities that will
support organisational objectives. Models such as Spiral
[Boehm 1988] and Rational Unified Process (RUP)
[Kruchten 2000] aim to address risk by facilitating
flexibility as regards which development activities are
performed. However, there is an assumption of
‘traditional’ objectives and so the approaches cannot
represent, for example, architectural discussions to
increase developer understanding.

Recent contributions from collaborations involving the
University of Southern California include combining
process elements [Bhuta et al. 2005], tailoring the process
according to business cases [Huang et al. 2006, Yang et
al. 2007] and dealing with uncertainty by fixing the
variable ‘Schedule’ [Yang et al. 2007]. The underlying
paradigm for these contributions is that of value-based
engineering, where key mechanisms include
understanding what is the key objective for a project from
a value perspective (for example, cost, quality), selecting
activities that will ensure the objective is reached in the
most cost-effective way and monitoring the project to
ensure both objective and activity selection remain
appropriate. The modelling of objectives is not formalised
and so the contributions support flexibility in a limited
way only.

Other tailoring approaches include Basili and Rombach’s
approach for tailoring processes towards project goals and
environments [Basili and Rombach 1987]. Again, a
specific project objective is identified and activities
selected that will ensure the objective is met. However,
there is no provision for examining multiple project
objectives and the framework upon which the approach is
based contains a number of process-related assumptions
that constrain flexibility.

2.3 Discussion

The approaches described above all contribute in some
way to the vision of providing project decision makers

with a mechanism for defining desired outcomes and
selecting activities according to outcomes and project
contexts. Some highlight the need to focus on a specific
project objective and to select activities most likely to
ensure the objective is met; some identify the need to
consider multiple objectives in a holistic way; some
support modelling at different levels of granularity; some
acknowledge the need to consider human-related aspects
in addition to technical ones. However, each is
constrained in some way and the vision is not achieved
for the general case. The constraints that characterise the
models relate to assumptions about the kinds of activities
that take place in software projects and a limiting of
outcomes-of-interest to the standard project outcomes of
cost, quality, etc. The result is an inability to easily mix
activities from both traditional and agile worlds or to
include objectives and activities that relate to people and
product, as well as to project.

In the next section, we consider some properties for a
model that addresses the constraints described above.

3. MODEL PROPERTIES

If we are to model software development processes in a
flexible way, we require a model that allows us to capture
any process model and supports comparison of processes
in relation to desired objectives and construction of new
processes. If we are to model software development
processes in a flexible way, we need a model that allows
us to: capture existing processes, provide comparison of
processes, and construct new processes. As a first step
towards creating an appropriate model, we present some
considerations relevant to this intent and draw on these to
suggest some properties we would like our model to
exhibit. Our considerations are sourced from
characteristics of existing processes, model limitations as
identified in Section 2 and some observations of real-
world situations.

3.1 Holistic approach

Holistic considerations relate to the idea that researchers
and practitioners have an interest in many kinds of
objectives and these cannot be considered in isolation.

• Traditional approaches to modelling the software
development process focus on outcomes such as ‘Cost’
and ‘Product Quality’ and view knowledge as being held
in documents. The more recent agile approaches are
characterised by a greater focus on people, with concepts
such as ‘Shared Vision’ and ‘Team Memory’.

• Many models of the software development and
management processes restrict outputs to single variables,
for example, ‘Number of Defects’. However, decision
makers generally need to understand all of the
consequences of a process decision. For example, when
considering the effects of introducing an inspection into
the process, the decision maker may be interested in all of
defect reduction, additional cost and increase in subject-
area knowledge [Kitchenham et al. 2002].

• Product line processes and management-by-projects
require that the status of a delivered product and

information about individuals are available as inputs to
subsequent projects.

Property 1: Our model must have the capability of
representing the effects of a process on a number of
factors-of-interest, both product- and human-related.

3.2 Process definition

Process considerations relate to the idea that many kinds
of process are possible.

• Different studies use the same term for a task to mean
different things. For example, ‘Design’ might mean
‘Create formal designs from requirements’, ‘Design the
code based on discussions with the client’, ‘Create design
documents to be formally inspected’, and the like. This
means we cannot easily compare studies and build
cumulative knowledge.

• Some activities, for example, ‘share knowledge’, effect
change to people only (not product).

• Models and studies involve processes of varying
granularities for example, an XP process or a ‘Design’
task.

Property 2: Our model must have the capability of
representing all existing and future processes in an
unambiguous way and must allow processes of any
granularity.

3.3 Policy support

Policy considerations relate to the need to support project
managers who must decide, for example, when to
commence a coding activity or release a product.

• Decision makers often want to specify that an activity
can commence before its predecessor is complete, for
example, ‘commence coding when designs are 80 percent
complete’.

• Release managers need to define ‘readiness for delivery’
in terms of product factors, for example ‘deliver when all
critical defects have been removed’.

Property 3: Our model must provide sufficient
information for managers to make policy-based decisions
about activity commencement and completion without
dictating policy.

4. THE PROPOSED MODEL

In this Section, we present an overview of a proposed
framework that exhibits the above properties. For reasons
of pragmatism, we present a restricted overview only. A
full description is available in [Kirk 2007].

4.1 Modelling paradigm and context

The framework presented in this paper is based on the
concept of defining the objectives that are relevant for a
project, representing each as a system factor-of-interest
(SFoI), operationalising each SFoI as one or more system
variables-of-interest (SVoI) and transforming the values
of these SVoI by application of activities. Objectives may

relate to any aspect of the software system, for example,
to business-, product- or stakeholder-related objectives.

For our framework, we apply the term
RealisedProcesses,(RP) to represent a software
development process [Kirk 2007]. The standard use of the
term process generally refers to a description of a set of
technical or management tasks and does not include any
non-technical factors, for example, relating to humans.
Our definition as transformation on SVoI means that all
aspects of the transformation are included. If we consider
an inspection that transforms ‘Discovered defects’ and
‘Effort’, we understand, for example, that two actual
inspections will effect different sizes of transformation
according to the experience of the participants.

A software development process RP is modelled as:

RP = {Values, VRP, ActivitiesRP, s0, T}

where VALUES is the set of all possible values, VRP is a
set of system variables of interest (SVoI), ActivitiesRP is a
set of activities, s0 is the initial state and T is the set of
states representing the target of the process. This model of
a process can be treated as a (potentially infinite) state
machine, with states implied by VRP and the
transformation function given by ActivitiesRP.

VALUES is the set of all possible values. There is no
restriction on what constitutes a value (e.g., tuples, sets,
and other structures are allowed). This formulation means
that the set of values is the same across all processes
modelled.

A state is a set of VALUES. Different RealisedProcesses
may care about different parts of the state.

We attach meaning to any given value by associating it
with a system variable (usually abbreviated to variable). If
a set of states have values associated with the same
variable, and those states are considered to be in some
order, then the interpretation is that the variable
(potentially) changes value across the states. A system
variable then represents a part of the world that we are
interested in modelling.

We can describe a state as a set of variables that have
values. We decide what variables we are interested in (the
SVoI), and that dictates the states that are relevant to us.

An activity models the actions carried out by developers,
such as ‘software inspection’, ‘create requirements’, and
so on. An activity (potentially) causes a change in state,
and so can be regarded as transforming system variables.
Any given activity will probably only transform a few
variables. For example, a ‘software inspection’ activity
may change the ‘number of known defects’ value but not
the ‘number of requirements’ value, whereas a ‘create
requirements’ activity may not change the ‘number of
known defects’ value. For an activity a, we denote the
system variables it transforms by Varsa. This gives us, for
an activity a, a : StatesVarsa → StatesVarsa

An activity is defined by the variables it transforms and
how it transforms them. If it is allowed that new
requirements identified in the ‘software inspection’
activity are to be recorded, then that activity could also
change the ‘number of requirements’ value, and it would

be considered to be a different activity to the one that
ignores any requirements identified. Thus our framework
allows us to explicitly model variations on activities that
are based on the desire to model different outcomes.

A RealisedProcess RP is determined by the set of SVoI
VRP and a set of activities ActivitiesRP that transform
some subset of VRP. The set of activities in the process
together make up the transformation function of the state
machine that is the process. Finally, s0 is then a state in
StatesVRP representing the initial state for the process, and
T ≤ StatesV RP is the states indicating the process has
reached the target values for the SVoI.

4.1.1 Illustration

As illustration of the basic model, in Figure 1, we depict
three activities, ‘Code’, ‘Unit test’ and ‘Fix defects’,
changing SVoI ‘Effort’ and ‘Defects’. In this illustration,
the ‘Code’ activity increases ‘Effort’ and a number of
‘Defects’ are injected. ‘Unit Test’ also increases ‘Effort’
but no change is effected to ‘Defects’ (although some
defects may be uncovered). ‘Fix Defects’ increments
‘Effort’ and reduces ‘Defects’ as existing defects are
resolved and a smaller number are injected as a result of
the activity.

Figure 1. Activities changing Effort and Defects

Note that we are transforming variables, not process
outputs, such as documents. In our model, documents
may contain variable-related content, for example, the
quality-related aspects of the process may be captured in a
number of documents. However, the SVoI for the process
represents an abstraction of quality in which we have
some interest i.e. represents how we operationalise
quality.

As can be seen, our model imposes very few limitations
or, indeed, meaning. The meaning of variables and
activities is determined by the modeller’s interpretation of
the values and transformation of variables. We see this as
a benefit. For example, ‘Design’ could mean many things.
The different variations would be modelled as different
sets of variables. For example, ‘Create formal designs
from requirements’ implies SVoI relating to
‘Requirements’, ‘Requirements designed’ and ‘Formality
of designs’. ‘Design the code based on discussions with
the client’ implies SVoI relating to ‘Features’ and

‘Features coded’. As these activities change different
SVoI, they are different activities.

Even when the SVoI are the same, the transformations
may be different in different contexts. Organisation A
may have a group of developers all experienced in
describing designs, whereas Organisation B’s group may
be less experienced. The models for the two organisations
may have two activities ‘Create designs from
requirements’ with the same SVoI ‘Number of
requirements designed’ but the size of the transformations
will be different reflecting the different levels of
experience.

4.2 Model properties

Although the model described above is simple, we submit
that the change in perspective from ‘defined activities’ to
‘system variables being transformed’ has a number of
advantages relating to the properties discussed in Section
3.

Property 1: Holistic approach. As there is no constraint
on what aspect of the software system can be represented
as an SVoI, the framework supports the modelling of the
‘traditional’ objectives, such as quality and cost, the
human-related objectives, for example, ‘developer
satisfaction’, of interest to the agile community, and any
other objectives, for example, relating to economic value.
As we are dealing with system state, the current state,
including aspects such as ‘developer experience’, may be
made available for new projects.

Property 2: Process definition. As an activity is anything
that transforms SVoI, activity content and granularity are
unconstrained. This means we may model tasks such as
‘pair programming’ and ‘team meeting’ and whole
processes, such as Waterfall. As our definition of an
activity is unambiguous, we have a powerful way to
compare techniques and tools applied during activities. In
a set of studies often stated as concerning ‘Pair
Programming’, we find that there is lack of real definition
about the technique studied and about what are the input
to, and outputs from, the process [Kirk 2007]. If we do
not know how techniques change the environment, any
comparisons we make must inevitably be superficial. Our
model forces definition of what is changed and so paves
the way to more robust investigations.

Property 3: System ‘readiness’. As our framework is
based on system state, policy decisions, for example,
relating to when to start coding or deliver to a client, may
be based on state, for example ‘when designs are 80
percent complete’ rather than activity completion, for
example, ‘when testing is finished’.

5. CLAIMED BENEFITS AND EVIDENCE

We claim that our proposed lift in focus from ‘choosing
activities’ to ‘identifying project objectives and selecting
activities to meet those objectives’ facilitates the
representation and comparison of software processes in a
way that encourages modellers to make transparent any
assumptions relating to objectives and contexts. We
suggest that the ability to compare supports:

Planning Planners must first consider objectives
(encouraging systems thinking), how to operationalise
these as SVoI and then may select activities that best meet
objectives by carrying out ‘what if’ analysis [Kirk and
MacDonell 2009b].

Software process improvement (SPI) We have used the
approach to support a model for SPI based on an analogy
of ‘human health’ [Kirk and MacDonell 2009a].

Project management Our approach is consistent with the
recent interest in a more holistic viewpoint of the project
management function [Sauer and Reich 2009].

Software research meta-analysis We hypothesise that
our model will provide a framework to support meta-
analysis of formal research studies, for example, pair
programming studies [Kirk 2007].

We now consider the issue of accumulating evidence to
support the proposed framework. Our evidence rests on
the ability to capture and compare many different kinds of
process and process models [Kirk 2007].We have chosen
techniques that have been applied in the domain of safety-
critical software and which provide a powerful way of
organising and evaluating evidence in the wider field of
evidence-based software engineering [Kitchenham et al.
2005, Weaver et al. 2005]. The techniques involve
defining objectives (in our case,
Represent/Compare/Combine any software process or
process model) and accumulating in a tree structure
different kinds of evidence, for example, case studies,
surveys, expert opinion, anecdotes and controlled
experiments, to show that objectives are met. One
strength of the approach is transparency as it is clear what
‘evidence objectives’ have been considered and what
kinds of evidence are available and missing. As
illustration, we have shown our part of our evidence tree
in Figure 2 [Kirk 2007].

Our evidence thus far includes representing and
comparing typical waterfall and XP processes, exposing
assumptions in some ‘pair programming’ studies,
representing simulation models based on different
modelling paradigms and identifying risks inherent in XP
projects [Kirk and Tempero 2006].

5.1 Model limitations

A key limitation in the model overviewed in this paper is
that at present it does not deal with uncertainty. It is
widely acknowledged that the human-intensive nature of
software development introduces uncertainty into the
processes applied to create software-intensive products
[Connor 2007, Kitchenham and Linkman 1997, Rao et al.
2008, Yang et al. 2007]. It is not generally possible to say
exactly how many defects will be injected by an activity
or exactly how much effort will be required. The handling
of uncertainty is being addressed in future works.

A second limitation lies in the inability of the model to
include SVoI whose value depends upon whether or not
activities are overlapped. For example, if we consider an
activity A with a duration of 5 days to complete and
activity B with duration 3 days, we have no idea what is
the resultant value of the ‘duration’ variable, because this
will depend upon how activities are scheduled i.e. on the

degree of overlap. This is an inherent characteristic of the
model and would require some kind of ‘implementation
overlay’ for its solution. Allowed SVoI include only those
which are incremented or scaled in a way that is
independent of other transformations.

A final limitation, at least for implementation of the
described framework, relates to the current lack of
evidential data within the industry. Although we suggest

the framework may be used to help with evidence
accumulation, there exists at the present time very little
data to characterise how activities change SVoI or how
best to operationalise system factors-of-interest. This
means that the immediate use of the framework for
decision support relies on the existence of organisational
datasets or expert opinion.

Figure 2. Evidence illustration

6. SUMMARY AND FUTURE WORK

In this paper, we suggest that existing software process
models are characterised by unstated assumptions and this
means that we cannot easily compare models or transfer
data from one model to another. A consequence is that
software planners have no mechanism for selecting
process activities that are best suited to individual
projects. We believe that the existence of so many
disparate models is a consequence of our lack of a real
understanding of the software process and suggest that, if
we are to progress our understanding in any real way, we
must first attempt to create a more general model of the
process that can be applied and validated in a local way,
and that forces a consideration and declaration of the
specific factors that characterise the local application.

We consider the form and properties of such a model and
propose a framework we believe satisfies these properties.
We present some evidence to support this belief. Finally,
we discuss some current limitations of our proposed
framework.

Our next steps are to create an implementation of the
framework and apply this in the areas of planning and
software process improvement. To address the limitation
relating to uncertainty in activity outputs, our current
research includes study of probabilistic and fuzzy
transformation mechanisms.

7. REFERENCES

Victor R. Basili and H. Dieter Rombach. Tailoring the
Software Process to Project Goals and Environments. In
Proceedings of the Ninth International Conference on
Software Engineering. IEEE, IEEE Computer Society
Press, 1987.

Jesal Bhuta, Barry Boehm, and Steven Meyers. Process
Elements: Components of Software Process
Architectures. In M. Li, B. Boehm, and L.J. Osterweil,
editors, SPW 2005, Lecture Notes in Computer Science
(LNCS), volume 3840, pages 332–346, Berlin,
Heidelberg, 2005. Springer-Verlag.

Barry Boehm. Software Engineering Economics.
Prentice-Hall, Inc., 1981. ISBN 0138221227.

Barry W. Boehm. A Spiral Model of Software
Development and Enhancement. IEEE Computer,
May(11), 1988.

Lionel C. Briand, Khaled El Emam, Dagmar Surmann,
Isabella Wieczorek, and Katrina D. Maxwell. An
Assessment and Comparison of Common Software Cost
Estimation Modeling Techniques. In Proceedings of the
1999 Conference on Software Engineering. IEEE
Computer Society Press, 1999.

A.M. Connor. Probabilistic estimation of software project
duration. New Zealand Journal of Applied Computing and
Information Technology, 11(1):11–22, 2007.

A. Drappa and J. Ludewig. Quantitative modeling for the
interaction simulation of software projects. Journal of
Systems and Software, 46(2/3), 1999.

Liguo Huang, Hao Hu, Jidong Ge, Barry Boehm, and Jian
Lu. Tailor the Value-Based Software Quality
Achievement Process to Project Business Case. In Q.
Wang et. al., editor, SPW/ProSim 2006, Lecture Notes in
Computer Science (LNCS), volume 3966, pages 56–63,
Berlin, Heidelberg, 2006. Springer-Verlag.

Taghi M. Khoshgoftaar, Edward B. Allen, Kalai S.
Kalaichelvan, and Nishith Goel. Early Quality Prediction:
A Case Study in Telecommunications. IEEE Software,
January, 1996.

Diana Kirk. A Flexible Software Process Model. PhD
thesis, University of Auckland, Auckland, New Zealand,
2007.

Diana Kirk and Stephen MacDonell. A Systems
Approach to Software Process Improvement in Small
Organisations. In Proceedings of the 16th European
Systems and Software Process Improvement and
Innovation Conference (EuroSPI 2009), 2009a.

Diana Kirk and Stephen MacDonell. A Simulation
Framework to Support Software Project (Re)Planning. In
Proceedings of the 35th Euromicro Conference on
Software Engineering Advanced Applications (Euromicro
SEAA 2009)), 2009b.

Diana Kirk and Ewan Tempero. Identifying Risks in XP
Projects through Process Modelling. In Proceedings of
the Australian Software Engineering Conference
(ASWEC’06), pages 411–420, Sydney, Australia, 2006.
IEEE Computer Society Press. ISBN 0-7695-2551-2.

Barbara Kitchenham and Roland Cairn. Research and
Practice: Software Design methods and Tools. In J.-M.
Hoc, T.R.G. Green, R. Samurcay, and D.J. Gilmore,
editors, Psychology of Programming, pages 271–284.
Academic Press Ltd., London, U.K., 1990. ISBN 0-12-
350772-3.

Barbara Kitchenham and Stephen Linkman. Estimates,
Uncertainty and Risk. IEEE Software, May/June, 1997.

Barbara Kitchenham, David Budgen, Pearl Brereton, and
Stephen Linkman. Realising Evidence-Based Software
Engineering. In Realising Evidence-Based Software
Engineering Workshop 2005, Workshop co-located with
ICSE 2005, St. Louis, Missouri, 2005. Keele University.

Barbara A. Kitchenham, Shari Lawrence Pfleeger, David
C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg.
Preliminary Guidelines for Empirical Research in
Software Engineering. IEEE Transactions on Software
Engineering, 28(8), 2002.

Philippe Kruchten. The Rational Unified Process: An
Introduction, Second Edition. Addison-Wesley, United
States of America, 2000. ISBN 0-201-70710-1.

Peter B. Lakey. A Hybrid Software Process Simulation
Model for Project Management. In Proceedings of the
2003 International Workshop on Software Process
Simulation and Modeling (ProSim’03), Portland, Oregan,
U.S.A., 2003.

Filippo Lanubile and Giuuseppe Visaggio. Evaluating
Predictive Quality Models Derived from Software
Measures: Lessons Learned. Journal of Systems and
Software, 38, 1997.

Bernard Londeix. Cost Estimation for Software
Development. Addison-Wesley, Cornwall, UK, 1987.
ISBN 0-201-17451-0.

Jurgen Munch. Goal-oriented Composition of Software
Process Patterns. In Proceedings of the 6th International
Workshop on Software Process Simulation and Modeling
(ProSim’05), pages 164–168, St. Louis, Missouri, 2005.
Fraunhofer IRB. ISBN 3-8167-6761-3.

David Raffo, Umanatha Nayak, and Wayne Wakeland.
Implementing Generalized Process Simulation Models. In
Proceedings of the 6th International Workshop on
Software Process Simulation and Modeling (ProSim’05),
pages 139–143, St. Louis, Missouri, 2005. Fraunhofer
IRB. ISBN 3-8167-6761-3.

David Raffo. System and method for simulating product
design and development. United States Patent Application
20050160103, July 2005.

Uma Sudhaker Rao, Srikanth Kestur, and Chinmay
Pradhan. Stochastic Optimization and Modeling and
Quantitative Project Management. IEEE Software,
May/June: 29–36, 2008.

C. Sauer and B.H. Reich. Rethinking IT project
management: Evidence of a new mindset and its
implications. International Journal of Project
Management, 27:182–193, 2009.

Harald Storrle. Making Agile Processes Scalable. In
Proceedings of the 2003 International Workshop on
Software Process Simulation and Modeling (ProSim’03),
2003.

Rob Weaver, Georgios Despotou, Tim Kelly, and John
McDermid. Combining Software Evidence - Arguments
and Assurance. In Realising Evidence-Based Software
Engineering Workshop 2005, Workshop co-located with
ICSE 2005, St. Louis, Missouri, 2005. Keele University.

Da Yang, Barry Boehm, Ye Yang, Qing Wang, and
Mingshu Li. Coping with the Cone of Uncertainty: An
Empirical Study of the SAIV Process Model. In Q. Wang,
D. Pfahl, and D.M. Raffo, editors, ICSP 2007, Lecture
Notes in Computer Science (LNCS), volume 4470, pages
37–48, Berlin, Heidelberg, 2007. Springer-Verlag.

He Zhang, Barbara Kitchenham, and Dietmar Pfahl.
Reflections on 10 Years of Software Process Simulation
Modeling: A Systematic Review. In Q. Wang, D. Pfahl,
and D.M. Raffo, editors, ICSP 2008, Lecture Notes in
Computer Science (LNCS), volume 5007, pages 345–356,
Berlin, Heidelberg, 2008. Springer-Verlag.

Xuemei Zhang and Hoang Pham. The analysis of factors
affecting software reliability. Journal of Systems and
Software, 50, 2000.

