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Abstract 

Existing software process models such as Waterfall and 
XP are characterised by unstated assumptions, a 
consequence of which is that we cannot easily compare 
models or transfer data from one model to another. This 
means that software planners have no mechanism for 
selecting process activities that are best suited to 
individual projects. In this paper, we propose a 
framework for modelling software processes that supports 
representation and comparison of different kinds of 
software process. Our framework is based on a lift in 
focus from ‘choosing activities’ to ‘identifying project 
objectives and selecting activities to meet those 
objectives’. We overview some evidence to support the 
claims of representation and comparison and discuss 
benefits and limitations of the approach. 
  
Keywords: software process modelling, software 
project planning, software process improvement, 
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1. INTRODUCTION 

Many models of the software development process have 
been proposed for a number of purposes. For example, 
some models are intended to proscribe how software is to 
be developed, such as Waterfall or XP. Some models are 
intended to help stakeholders understand consequences of 
decisions, such as simulation models. A third set of 
models supports the management of outcomes of software 
development projects, such as for cost estimation or 
defect prediction. Each kind of model reflects a particular 
perspective on software processes and their instantiation. 
Proscriptive models range from viewing the software 
development process as a traditional engineering process 
to viewing software development as an activity in which 
the most important characteristics relate to the humans 
carrying out the process. Simulation models are based on 
several modelling paradigms, for example, system 
dynamics and event-driven modelling, each characterised 

by a number of strengths and limitations. Predictive 
models generally apply statistical manipulations on 
existing data sets to predict future outcomes, and apply a 
variety of techniques to address the sparseness or 
uncertainty of the available data sets. 

Although models differ in kind and approach, they all 
share a common characteristic in that each embeds (often 
unstated) assumptions about how the process operates or 
what information is needed. For the proscriptive models, 
the more traditional models such as Waterfall assume 
objectives of high quality and low cost and realise these 
by implementing a defined set of engineering activities, 
for example, ‘specification’, ‘design’, ‘code’ and ‘test’. 
However, if a project is to deliver a new product based on 
novel technology to an early adopter marketplace in 
advance of the competition, the goal of early delivery 
may take priority over that of quality and a traditional 
process may hinder rather than support this prioritisation. 
Proponents of the agile approaches reject the 
‘engineering’ viewpoint and talk about ‘principles’ and 
‘practices’ rather than ‘activities’. However, these 
approaches also embed assumptions about objectives and 
project contexts. For example, it is claimed that the XP 
approach ‘reduces risk’ and specific practices are 
mandated to mitigate against specific risks. One practice, 
planning game, involves a regular meeting between 
developers and client representative to ensure changing 
requirements are understood. Another practice, pair 
programming, mandates that all design and code is 
carried out by two developers working together in a 
specific way in order to ensure code quality. Some 
assumptions embedded in the XP approach are that the 
project must deal with fast-changing requirements, an 
effective client representative is available, and developers 
are sufficiently experienced and personality-matched to 
render pair programming effective. Again, if the project 
profile is inconsistent with the profile assumed by the 
approach, the process will hinder, rather than support, 
project objectives. 

Simulation models [Drappa and Ludewig 1999, Lakey 
2003, Munch 2005, Raffo 2005, Storrle 2003] generally 
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define a specific process and support only small, local 
perturbations. Assumptions are thus generally embedded 
in the model structure and relate both to which activities 
are carried out and which factors are most likely to affect 
outcomes. For example it may be possible to change the 
value that defines the effectiveness of an inspection, but 
not to omit the inspection from the model. 

Cost estimation [Boehm 1981, Briand et al. 1999, 
Londeix 1987] and defect prediction [Khoshgoftaar et al. 
1996, Lanubile and Visaggio 1997, Zhang and Pham 
2000] models generally apply a statistical manipulation 
on an existing data set. However, the activities that were 
carried out during the process represented by the data set 
are generally unknown, or are known only by very high-
level labels such as ‘design effort’. Predictions are thus 
based on assumptions that the processes of the predicted 
projects involve the same activities as the original ones 
from which the data was extracted. This is seldom likely 
to be the case because, even if an organisation has a fixed 
process for all projects, it is unlikely that all developers 
on the new project will have the same experience and 
subject-area knowledge as those from earlier projects. 

A consequence of the variation in implicit assumptions 
embedded in the different models is that it is not easy to 
compare models or transfer knowledge derived from one 
model to another. This is problematic for the following 
reason. There is general agreement in the software 
industry that software project outcomes can be maximised 
by tailoring the process to the specifics of individual 
projects. For example, a project manager has heard that 
applying the agile technique of pair programming results 
in an increase in quality in the software product. (S)he 
would like to know whether replacing design inspections 
by pair programming in a traditional waterfall process 
would improve quality in the delivered product. In order 
to model this scenario using existing modelling 
techniques, a model specific to the scenario would be 
built. If the project manager then wishes to check if a 
better outcome would be achieved by improving the 
testing process, a new model would be built to describe 
the new scenario. The problem is that we have no 
mechanism for choosing activities and parameters in a 
flexible way and building process-specific models is 
expensive and time-consuming [Raffo et al. 2005]. 

We believe that the existence of so many disparate 
approaches is a consequence of our lack of a real 
understanding of the software process. Kitchenham and 
Cairn state that “. . . before software engineering can 
mature as an engineering discipline, practitioners need a 
better understanding of the process by which software is 
created” [Kitchenham and Cairn 1990]. We suggest that a 
first step towards such understanding is to attempt to 
create a more general model of the process that can be 
applied and validated in a local way, but that forces a 
consideration and declaration of the specific factors that 
characterise the local application. 

In this paper, we consider the form and some desired 
properties of such a model and propose a framework that 
we believe satisfies the properties. The motivation for the 
form of our framework is an observation that all current 
approaches are based on a communal and persistent 
mindset of ‘we must define what we must do without 

giving too much thought about what we want to achieve 
or to project contexts’. We suggest that both traditional 
and agile approaches represent local ‘solutions’ to 
unstated process ‘problems’, where process authors have 
created a set of activities or practices based on specific 
real-world experiences without characterising the real-
world aspects that informed the process. For example, 
traditional models have their origin in a military context, 
and relate to software projects that were believed to be 
relatively stable and were many person-years in size. 
Agile models have their roots in the context of smaller 
software organisations whose projects are inherently less 
stable and of smaller size and where there is increased 
reliance on individuals. The objectives and contexts 
relating to each have become secondary to the defined 
activities and practices and so have become unstated 
assumptions. 

We believe that the future for software process modelling 
lies in a change in paradigm from ‘choosing activities’ to 
‘understanding objectives and constraints’, a paradigm 
that inherently forces a more holistic approach to software 
system modelling. Our proposed framework is based on 
‘system variables-of-interest’ (SVoI) that makes no 
assumptions about what constitutes a process or what the 
model is intended for. In contrast with the activity-centric 
nature of the above models, our approach involves first 
identifying the key objectives for the software project, for 
example ‘deliver high quality artifacts’ and ‘increase 
developer product knowledge’, and then establishing each 
as a system factor-of-interest. Each key factor is then 
operationalised as at least one system variable-of-interest 
(SVoI) and assigned an appropriate target value, for 
example, ‘no more than ten known defects’. Process and 
management activities are then viewed as transformations 
on these SVoI. The aim of a software development 
process is to ‘move’ the values of the SVoI towards the 
desired outcome values. The progress that is actually 
made depends on the actual transformations i.e. on the 
contexts that affect how well the engineers are able to 
carry out tasks. 

The SVoI represent the aspects of the project system in 
which we have an interest i.e. the state of our project 
system. This means that transformations are definitions of 
state change and can be applied one after the other, as 
required. Activity transformations can be based on 
available evidence, if some exists, or on expert opinion. 
This means the framework may be applied in projects for 
which existing organisational data is available to indicate 
the expected effects of an activity on, for example, effort 
or defect numbers, and may also be applied when no data 
is available but the project manager chooses to estimate 
expected effects based on experience. 

The paper is organised as follows. In Section 2, we 
overview some process frameworks and models that aim 
to support process flexibility. In Section 3, we examine 
the kinds of properties we would like our model to 
exhibit, for example, extensibility of objectives and in 
Section 4, we present a framework that we believe meets 
these objectives. In Section 5, we discuss the claimed 
benefits and limitations of our approach and present some 
evidence. Finally, in Section 6, we summarise the paper 
and indicate directions for future research. 



2. RELATED WORK 

In this Section, we overview some process frameworks 
and models that aim to support the kind of process 
tailoring described in Section 1. 

2.1 Modelling and simulation 

The main source of related work is the modelling and 
simulation community. Software process simulation and 
modelling has become an “increasingly active research 
area” with growing numbers of publications and related 
activities [Zhang et al. 2008]. Techniques applied include 
discrete event simulation and system dynamics. The 
specific models overviewed below address the issue of 
flexibility by building processes from a number of pre-
defined activity ‘building blocks’. 

Lakey [Lakey 2003] introduces a model to support 
software project prediction and management. The model 
is intended as a theoretical framework. It comprises four 
building blocks, ‘preliminary design’, ‘detailed design’, 
‘code and unit test’ and ‘subsystem integration and test’. 
In this framework, project-specific process models are 
built by creating an appropriate number of building 
blocks and calibrating the equations for each with project, 
process and product data from the project to be modelled. 
Examples of project factors included are communication 
overhead’, ‘tool support’ and ‘skill levels’. Examples of 
process factors are ‘defects injected’ and ‘estimated 
calendar weeks’. Product factors include ‘size’ and 
‘quality’. A strength of this framework is the inclusion of 
cost, schedule and quality performance parameters in a 
holistic system as “the primary software project 
performance parameters of cost, schedule and quality are 
not independent, and they cannot be tracked and managed 
independently”. However, customisation is achieved by 
copying and renaming building blocks to achieve the 
correct process structure and then providing the relevant 
input values. This means that there is no possibility of 
representing any activities that do not comply with one of 
these blocks. We suggest that customisation thus refers to 
changing input values rather than changing the process. 
Another limitation is in the predefinition of the factors 
that are believed to affect outcomes. The beliefs are 
effectively model assumptions. 

Munch applies a patterns approach to the development of 
custom-tailored process models [Munch 2005]. He 
believes that “The development of high-quality software 
or software-intensive systems requires custom-tailored 
process models that fit the organizational and project 
goals as well as the independent contexts” (page 1). In 
Munch’s solution, a process pattern is a reusable fragment 
of a process model that represents an activity. Patterns 
can be combined to represent combinations of process 
models. Information for each pattern includes attributes 
and a description of how attributes change when the 
pattern is applied, for example, causing a change to 
‘reliability’ [Munch 2005]. In this model attributes may 
relate to process state (for example, ‘not in maintenance 
activity’) or process goals (for example, ‘Maximal effort 
is less than 2000’). Required goals are thus modelled as 
restrictions on project attributes and include only those 
over which the project has control. This means that the 

model does not support objectives such as ‘developer 
subject area knowledge’ and other human-related goals. 
In addition, the rules for transformation form an integral 
part of the model i.e. assumptions are embedded in the 
model. 

Raffo et. al. describe an approach for creating 
Generalised Process Simulation Models (GPSM) [Raffo 
et al. 2005]. The approach consists of constructing a 
process from a library of generic process building blocks, 
for example, relating to ‘Design’, configuring the inputs 
to blocks for specific environments and viewing outputs 
relating to time, cost, quality and functionality. Although 
the approach supports a degree of flexibility in process 
construction, there is an assumption of ‘traditional 
process’ and a restriction of outputs to those relating to 
time, cost, quality or functionality [Raffo 2005]. This 
means that the GPSM model as constructed cannot be 
used for simulating less traditional processes or for 
modelling, for example, the effects of ‘team meeting’ on 
‘developer product knowledge’. 

2.2 Other frameworks 

Several authors have proposed approaches that reduce 
risk by enabling a planner to select activities that will 
support organisational objectives. Models such as Spiral 
[Boehm 1988] and Rational Unified Process (RUP) 
[Kruchten 2000] aim to address risk by facilitating 
flexibility as regards which development activities are 
performed. However, there is an assumption of 
‘traditional’ objectives and so the approaches cannot 
represent, for example, architectural discussions to 
increase developer understanding. 

Recent contributions from collaborations involving the 
University of Southern California include combining 
process elements [Bhuta et al. 2005], tailoring the process 
according to business cases [Huang et al. 2006, Yang et 
al. 2007] and dealing with uncertainty by fixing the 
variable ‘Schedule’ [Yang et al. 2007]. The underlying 
paradigm for these contributions is that of value-based 
engineering, where key mechanisms include 
understanding what is the key objective for a project from 
a value perspective (for example, cost, quality), selecting 
activities that will ensure the objective is reached in the 
most cost-effective way and monitoring the project to 
ensure both objective and activity selection remain 
appropriate. The modelling of objectives is not formalised 
and so the contributions support flexibility in a limited 
way only. 

Other tailoring approaches include Basili and Rombach’s 
approach for tailoring processes towards project goals and 
environments [Basili and Rombach 1987]. Again, a 
specific project objective is identified and activities 
selected that will ensure the objective is met. However, 
there is no provision for examining multiple project 
objectives and the framework upon which the approach is 
based contains a number of process-related assumptions 
that constrain flexibility. 

2.3 Discussion 

The approaches described above all contribute in some 
way to the vision of providing project decision makers 



with a mechanism for defining desired outcomes and 
selecting activities according to outcomes and project 
contexts. Some highlight the need to focus on a specific 
project objective and to select activities most likely to 
ensure the objective is met; some identify the need to 
consider multiple objectives in a holistic way; some 
support modelling at different levels of granularity; some 
acknowledge the need to consider human-related aspects 
in addition to technical ones. However, each is 
constrained in some way and the vision is not achieved 
for the general case. The constraints that characterise the 
models relate to assumptions about the kinds of activities 
that take place in software projects and a limiting of 
outcomes-of-interest to the standard project outcomes of 
cost, quality, etc. The result is an inability to easily mix 
activities from both traditional and agile worlds or to 
include objectives and activities that relate to people and 
product, as well as to project. 

In the next section, we consider some properties for a 
model that addresses the constraints described above. 

 

3. MODEL PROPERTIES 

If we are to model software development processes in a 
flexible way, we require a model that allows us to capture 
any process model and supports comparison of processes 
in relation to desired objectives and construction of new 
processes. If we are to model software development 
processes in a flexible way, we need a model that allows 
us to: capture existing processes, provide comparison of 
processes, and construct new processes. As a first step 
towards creating an appropriate model, we present some 
considerations relevant to this intent and draw on these to 
suggest some properties we would like our model to 
exhibit. Our considerations are sourced from 
characteristics of existing processes, model limitations as 
identified in Section 2 and some observations of real-
world situations. 

3.1 Holistic approach 

Holistic considerations relate to the idea that researchers 
and practitioners have an interest in many kinds of 
objectives and these cannot be considered in isolation. 

• Traditional approaches to modelling the software 
development process focus on outcomes such as ‘Cost’ 
and ‘Product Quality’ and view knowledge as being held 
in documents. The more recent agile approaches are 
characterised by a greater focus on people, with concepts 
such as ‘Shared Vision’ and ‘Team Memory’. 

• Many models of the software development and 
management processes restrict outputs to single variables, 
for example, ‘Number of Defects’. However, decision 
makers generally need to understand all of the 
consequences of a process decision. For example, when 
considering the effects of introducing an inspection into 
the process, the decision maker may be interested in all of 
defect reduction, additional cost and increase in subject-
area knowledge [Kitchenham et al. 2002]. 

• Product line processes and management-by-projects 
require that the status of a delivered product and 

information about individuals are available as inputs to 
subsequent projects. 

Property 1: Our model must have the capability of 
representing the effects of a process on a number of 
factors-of-interest, both product- and human-related. 

3.2 Process definition 

Process considerations relate to the idea that many kinds 
of process are possible. 

• Different studies use the same term for a task to mean 
different things. For example, ‘Design’ might mean 
‘Create formal designs from requirements’, ‘Design the 
code based on discussions with the client’, ‘Create design 
documents to be formally inspected’, and the like. This 
means we cannot easily compare studies and build 
cumulative knowledge. 

• Some activities, for example, ‘share knowledge’, effect 
change to people only (not product). 

• Models and studies involve processes of varying 
granularities for example, an XP process or a ‘Design’ 
task. 

Property 2: Our model must have the capability of 
representing all existing and future processes in an 
unambiguous way and must allow processes of any 
granularity. 

3.3 Policy support 

Policy considerations relate to the need to support project 
managers who must decide, for example, when to 
commence a coding activity or release a product. 

• Decision makers often want to specify that an activity 
can commence before its predecessor is complete, for 
example, ‘commence coding when designs are 80 percent 
complete’. 

• Release managers need to define ‘readiness for delivery’ 
in terms of product factors, for example ‘deliver when all 
critical defects have been removed’. 

Property 3: Our model must provide sufficient 
information for managers to make policy-based decisions 
about activity commencement and completion without 
dictating policy. 

 

4. THE PROPOSED MODEL 

In this Section, we present an overview of a proposed 
framework that exhibits the above properties. For reasons 
of pragmatism, we present a restricted overview only. A 
full description is available in [Kirk 2007]. 

4.1 Modelling paradigm and context 

The framework presented in this paper is based on the 
concept of defining the objectives that are relevant for a 
project, representing each as a system factor-of-interest 
(SFoI), operationalising each SFoI as one or more system 
variables-of-interest (SVoI) and transforming the values 
of these SVoI by application of activities. Objectives may 



relate to any aspect of the software system, for example, 
to business-, product- or stakeholder-related objectives. 

For our framework, we apply the term 
RealisedProcesses,(RP) to represent a software 
development process [Kirk 2007]. The standard use of the 
term process generally refers to a description of a set of 
technical or management tasks and does not include any 
non-technical factors, for example, relating to humans. 
Our definition as transformation on SVoI means that all 
aspects of the transformation are included. If we consider 
an inspection that transforms ‘Discovered defects’ and 
‘Effort’, we understand, for example, that two actual 
inspections will effect different sizes of transformation 
according to the experience of the participants. 

A software development process RP is modelled as:  

RP = {Values, VRP, ActivitiesRP, s0, T}  

where VALUES is the set of all possible values, VRP is a 
set of system variables of interest (SVoI), ActivitiesRP is a 
set of activities, s0 is the initial state and T is the set of 
states representing the target of the process. This model of 
a process can be treated as a (potentially infinite) state 
machine, with states implied by VRP and the 
transformation function given by ActivitiesRP. 

VALUES is the set of all possible values. There is no 
restriction on what constitutes a value (e.g., tuples, sets, 
and other structures are allowed). This formulation means 
that the set of values is the same across all processes 
modelled. 

A state is a set of VALUES. Different RealisedProcesses 
may care about different parts of the state. 

We attach meaning to any given value by associating it 
with a system variable (usually abbreviated to variable). If 
a set of states have values associated with the same 
variable, and those states are considered to be in some 
order, then the interpretation is that the variable 
(potentially) changes value across the states. A system 
variable then represents a part of the world that we are 
interested in modelling. 

We can describe a state as a set of variables that have 
values. We decide what variables we are interested in (the 
SVoI), and that dictates the states that are relevant to us.  

An activity models the actions carried out by developers, 
such as ‘software inspection’, ‘create requirements’, and 
so on. An activity (potentially) causes a change in state, 
and so can be regarded as transforming system variables. 
Any given activity will probably only transform a few 
variables. For example, a ‘software inspection’ activity 
may change the ‘number of known defects’ value but not 
the ‘number of requirements’ value, whereas a ‘create 
requirements’ activity may not change the ‘number of 
known defects’ value. For an activity a, we denote the 
system variables it transforms by Varsa. This gives us, for 
an activity a, a : StatesVarsa → StatesVarsa 

An activity is defined by the variables it transforms and 
how it transforms them. If it is allowed that new 
requirements identified in the ‘software inspection’ 
activity are to be recorded, then that activity could also 
change the ‘number of requirements’ value, and it would 

be considered to be a different activity to the one that 
ignores any requirements identified. Thus our framework 
allows us to explicitly model variations on activities that 
are based on the desire to model different outcomes. 

A RealisedProcess RP is determined by the set of SVoI 
VRP and a set of activities ActivitiesRP that transform 
some subset of VRP. The set of activities in the process 
together make up the transformation function of the state 
machine that is the process. Finally, s0 is then a state in 
StatesVRP representing the initial state for the process, and 
T ≤ StatesV RP is the states indicating the process has 
reached the target values for the SVoI. 

4.1.1 Illustration 

As illustration of the basic model, in Figure 1, we depict 
three activities, ‘Code’, ‘Unit test’ and ‘Fix defects’, 
changing SVoI ‘Effort’ and ‘Defects’. In this illustration, 
the ‘Code’ activity increases ‘Effort’ and a number of 
‘Defects’ are injected. ‘Unit Test’ also increases ‘Effort’ 
but no change is effected to ‘Defects’ (although some 
defects may be uncovered). ‘Fix Defects’ increments 
‘Effort’ and reduces ‘Defects’ as existing defects are 
resolved and a smaller number are injected as a result of 
the activity. 

 
Figure 1. Activities changing Effort and Defects 

Note that we are transforming variables, not process 
outputs, such as documents. In our model, documents 
may contain variable-related content, for example, the 
quality-related aspects of the process may be captured in a 
number of documents. However, the SVoI for the process 
represents an abstraction of quality in which we have 
some interest i.e. represents how we operationalise 
quality. 

As can be seen, our model imposes very few limitations 
or, indeed, meaning. The meaning of variables and 
activities is determined by the modeller’s interpretation of 
the values and transformation of variables. We see this as 
a benefit. For example, ‘Design’ could mean many things. 
The different variations would be modelled as different 
sets of variables. For example, ‘Create formal designs 
from requirements’ implies SVoI relating to 
‘Requirements’, ‘Requirements designed’ and ‘Formality 
of designs’. ‘Design the code based on discussions with 
the client’ implies SVoI relating to ‘Features’ and 



‘Features coded’. As these activities change different 
SVoI, they are different activities. 

Even when the SVoI are the same, the transformations 
may be different in different contexts. Organisation A 
may have a group of developers all experienced in 
describing designs, whereas Organisation B’s group may 
be less experienced. The models for the two organisations 
may have two activities ‘Create designs from 
requirements’ with the same SVoI ‘Number of 
requirements designed’ but the size of the transformations 
will be different reflecting the different levels of 
experience. 

4.2 Model properties 

Although the model described above is simple, we submit 
that the change in perspective from ‘defined activities’ to 
‘system variables being transformed’ has a number of 
advantages relating to the properties discussed in Section 
3. 

Property 1: Holistic approach. As there is no constraint 
on what aspect of the software system can be represented 
as an SVoI, the framework supports the modelling of the 
‘traditional’ objectives, such as quality and cost, the 
human-related objectives, for example, ‘developer 
satisfaction’, of interest to the agile community, and any 
other objectives, for example, relating to economic value. 
As we are dealing with system state, the current state, 
including aspects such as ‘developer experience’, may be 
made available for new projects. 

Property 2: Process definition. As an activity is anything 
that transforms SVoI, activity content and granularity are 
unconstrained. This means we may model tasks such as 
‘pair programming’ and ‘team meeting’ and whole 
processes, such as Waterfall. As our definition of an 
activity is unambiguous, we have a powerful way to 
compare techniques and tools applied during activities. In 
a set of studies often stated as concerning ‘Pair 
Programming’, we find that there is lack of real definition 
about the technique studied and about what are the input 
to, and outputs from, the process [Kirk 2007]. If we do 
not know how techniques change the environment, any 
comparisons we make must inevitably be superficial. Our 
model forces definition of what is changed and so paves 
the way to more robust investigations. 

Property 3: System ‘readiness’. As our framework is 
based on system state, policy decisions, for example, 
relating to when to start coding or deliver to a client, may 
be based on state, for example ‘when designs are 80 
percent complete’ rather than activity completion, for 
example, ‘when testing is finished’. 

 

5. CLAIMED BENEFITS AND EVIDENCE 

We claim that our proposed lift in focus from ‘choosing 
activities’ to ‘identifying project objectives and selecting 
activities to meet those objectives’ facilitates the 
representation and comparison of software processes in a 
way that encourages modellers to make transparent any 
assumptions relating to objectives and contexts. We 
suggest that the ability to compare supports: 

Planning Planners must first consider objectives 
(encouraging systems thinking), how to operationalise 
these as SVoI and then may select activities that best meet 
objectives by carrying out ‘what if’ analysis [Kirk and 
MacDonell 2009b]. 

Software process improvement (SPI) We have used the 
approach to support a model for SPI based on an analogy 
of ‘human health’ [Kirk and MacDonell 2009a]. 

Project management Our approach is consistent with the 
recent interest in a more holistic viewpoint of the project 
management function [Sauer and Reich 2009]. 

Software research meta-analysis We hypothesise that 
our model will provide a framework to support meta-
analysis of formal research studies, for example, pair 
programming studies [Kirk 2007]. 

We now consider the issue of accumulating evidence to 
support the proposed framework. Our evidence rests on 
the ability to capture and compare many different kinds of 
process and process models [Kirk 2007].We have chosen 
techniques that have been applied in the domain of safety-
critical software and which provide a powerful way of 
organising and evaluating evidence in the wider field of 
evidence-based software engineering [Kitchenham et al. 
2005, Weaver et al. 2005]. The techniques involve 
defining objectives (in our case, 
Represent/Compare/Combine any software process or 
process model) and accumulating in a tree structure 
different kinds of evidence, for example, case studies, 
surveys, expert opinion, anecdotes and controlled 
experiments, to show that objectives are met. One 
strength of the approach is transparency as it is clear what 
‘evidence objectives’ have been considered and what 
kinds of evidence are available and missing. As 
illustration, we have shown our part of our evidence tree 
in Figure 2 [Kirk 2007]. 

Our evidence thus far includes representing and 
comparing typical waterfall and XP processes, exposing 
assumptions in some ‘pair programming’ studies, 
representing simulation models based on different 
modelling paradigms and identifying risks inherent in XP 
projects [Kirk and Tempero 2006]. 

5.1 Model limitations 

A key limitation in the model overviewed in this paper is 
that at present it does not deal with uncertainty. It is 
widely acknowledged that the human-intensive nature of 
software development introduces uncertainty into the 
processes applied to create software-intensive products 
[Connor 2007, Kitchenham and Linkman 1997, Rao et al. 
2008, Yang et al. 2007]. It is not generally possible to say 
exactly how many defects will be injected by an activity 
or exactly how much effort will be required. The handling 
of uncertainty is being addressed in future works. 

A second limitation lies in the inability of the model to 
include SVoI whose value depends upon whether or not 
activities are overlapped. For example, if we consider an 
activity A with a duration of 5 days to complete and 
activity B with duration 3 days, we have no idea what is 
the resultant value of the ‘duration’ variable, because this 
will depend upon how activities are scheduled i.e. on the 



degree of overlap. This is an inherent characteristic of the 
model and would require some kind of ‘implementation 
overlay’ for its solution. Allowed SVoI include only those 
which are incremented or scaled in a way that is 
independent of other transformations. 

A final limitation, at least for implementation of the 
described framework, relates to the current lack of 
evidential data within the industry. Although we suggest 

the framework may be used to help with evidence 
accumulation, there exists at the present time very little 
data to characterise how activities change SVoI or how 
best to operationalise system factors-of-interest. This 
means that the immediate use of the framework for 
decision support relies on the existence of organisational 
datasets or expert opinion. 

 
Figure 2. Evidence illustration 

6. SUMMARY AND FUTURE WORK 

In this paper, we suggest that existing software process 
models are characterised by unstated assumptions and this 
means that we cannot easily compare models or transfer 
data from one model to another. A consequence is that 
software planners have no mechanism for selecting 
process activities that are best suited to individual 
projects. We believe that the existence of so many 
disparate models is a consequence of our lack of a real 
understanding of the software process and suggest that, if 
we are to progress our understanding in any real way, we 
must first attempt to create a more general model of the 
process that can be applied and validated in a local way, 
and that forces a consideration and declaration of the 
specific factors that characterise the local application. 

We consider the form and properties of such a model and 
propose a framework we believe satisfies these properties. 
We present some evidence to support this belief. Finally, 
we discuss some current limitations of our proposed 
framework. 

Our next steps are to create an implementation of the 
framework and apply this in the areas of planning and 
software process improvement. To address the limitation 
relating to uncertainty in activity outputs, our current 
research includes study of probabilistic and fuzzy 
transformation mechanisms. 
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