
Full citation: Licorish, S., Philpott, A., & MacDonell, S.G. (2009) A prototype tool to support
extended team collaboration in agile project feature management, in Proceedings of the
International Conference on Software Engineering Theory and Practice (SETP-09). Orlando FL,
USA, ISRST, pp.105-112.

A Prototype Tool to Support Extended Team Collaboration in
 Agile Project Feature Management

Sherlock Licorish, Anne Philpott and Stephen G. MacDonell
SERL, Auckland University of Technology

 Private Bag 92006, Auckland 1142, New Zealand
{sherlock.licorish, anne.philpott, stephen.macdonell}@aut.ac.nz

Abstract

In light of unacceptable rates of software project
failure agile development methodologies have
achieved widespread industry prominence, aimed at
reducing software project risks and improving the
likelihood of project success. However, the highly
collaborative processes embedded in agile
methodologies may themselves introduce other risks.
In particular, the fluid and diverse nature of agile team
structures may mean that collaboration regarding
what is to be delivered becomes more challenging. We
have therefore developed a prototype tool intended to
enable all stakeholders to have greater access to the
features of the emerging system irrespective of their
location, via remote feature management functionality.
Software engineering experts have evaluated the initial
prototype, verifying that it would enhance
collaboration and is likely to assist teams in their
handling of feature management.

1. INTRODUCTION

Among the software systems development
methodologies to gain recent dominance have been
those characterized as agile. In agile methodologies
there is a gradual surfacing of the software through
extensive co-operation, with team members interacting
constantly in a common space employing a ‘speculate-
collaborate-learn’ approach [1]. Beznosov and
Kruchten [2] contend that the aims of such an approach
are to reduce software project failure and development
costs. More generally, Abrahamsson et al. [3] and

Kuppuswami et al. [4] state that agile methodologies
can reduce failure in software projects by mitigating
software project risks. While the likelihood and impact
of some risks may well be reduced through the use of
agile methods, Kirk and Tempero [5] and Sharp et al.
[6] argue that agile methodologies may themselves
present complexities that might result in additional
risks in the software process. Added risks may be
associated with: minimal upfront planning which can
result in rework due to oversight; frequent and ongoing
customer involvement which may lead to disagreement
and increase project cost; the need to manage a
diversity of skills and personalities within highly
interactive project teams; a lack of shared vision and
domain knowledge among project stakeholders; and a
lack of documentation which can result in poor
communication during the project [5-7].

In recent years there has been steady adoption of
agile methodologies in practice [8], and the body of
evidence supporting their use continues to grow. The
bulk of that research evidence, however, has
understandably considered the impact that the use of
agile methods has had on conventional risks. The
contention that there are possibly new risks to consider
therefore presents us with a research opportunity.
Providing a degree of automated support for the
potentially delicate handling of interactions among
team members during feature management could be
beneficial in terms of ensuring that the team can
operate as intended – with customer representatives as
genuinely active and embedded members irrespective
of the their location – but with reduced likelihood of
disagreements occurring among the wider team and
exposing the entire project to risk. This research

therefore addresses the support for agile project
contexts with particular emphasis on mitigating the
risks that may arise from intensive and ongoing
collaboration in feature management, leading to the
development and preliminary evaluation of a suitable
prototype tool.

The remainder of this paper is structured as follows.
In the next section we review prior related work with
particular attention directed to the involvement of
customers in software teams, both under agile and more
conventional methodologies. We then describe the
development and preliminary evaluation of our
prototype tool as a vehicle to assist diverse and/or
dispersed teams in the feature management activity. We
acknowledge the limitations and threats to the work in
Section 5. We then draw conclusions from our work
and describe further research opportunities.

2. RELATED WORK

Extensive and active customer involvement has long
been cited as a key to software project success [9,10].
In the context of this study, customer involvement is
taken to mean the active engagement of one or more of
the intended users of the software system in
requirements specification, software testing, and other
development practices. The endorsement of customer
involvement is especially dominant in agile processes;
an extreme example of user involvement is evident in
XP’s onsite customer practice [11]. While customer
involvement may be beneficial in principle, and has
indeed been shown to be a factor in some project
successes, it has long been acknowledged that larger
teams, and particularly those with diverse membership,
present additional communication and management
challenges compared to their smaller and more
homogeneous counterparts.

Some research goes so far as to suggest that there
are in fact several pitfalls to extensive customer
involvement. For instance, a high degree of early
involvement can have an inflationary impact on the
expectations of customers regarding the likely
performance of the system being developed. Evidence
for such an assertion can be found in studies reported
by Grisham and Perry [12] and Tesch et al. [13], both
of which found that customer satisfaction was
influenced by their prior expectations. These studies
established that when team performance is higher than
customer expectations there is greater conformity and
higher customer satisfaction. However, when the
reverse occurs, customers are (naturally) dissatisfied.

Sharp et al. [6] studied nineteen software developers
in an activity session and found that heavy customer
involvement threatened software project success in a

number of ways. While their findings may not
generalize to all software projects, the results indicate
that the incidence of conflicting views, skill
differences, customer exposure to sensitive information
such as schedule slippages and technical issues, and the
opportunity for customers to assert influence in
developers’ decisions can lead to stakeholder clashes
and may therefore negatively influence project success.

Since customer satisfaction is a central goal
(perhaps the central goal) of the software developer in
agile contexts [14], it is necessary that developers seek
to stabilize scope, price, and duration to keep
customers satisfied in what is often a changing
environment. Ceschi et al. [15] assert, however, that it
may be difficult to stabilize these variables in highly
collaborative and iterative contexts. This could clearly
pose challenges for agile project teams. In addition,
agile methodologies generally emphasize the necessity
of customer involvement to ensure software quality.
However, Siakis and Siakis [16] posit that quality for
the customer is mainly associated with ease of use
(after the software is released) and suitable
functionality to match appropriate pricing. These are
not necessarily linked to ongoing active customer
involvement in the development process.

In summary, the findings of previous studies suggest
that extensive customer involvement is most beneficial
when teams are successful, when customers and
developers share similar views, and when there is
minimal skill difference between the customer(s) and
the developer(s). In addition, customer interest in the
software development process is linked primarily to
software ease of use and functional adequacy in
relation to pricing [16]. Accordingly, the extension of
the team to include onsite customers may be
problematic under circumstances in which the above
conditions are not met – for instance, when the
developers perform poorly, or where the team inclusive
of the customer representatives lacks balance in skills
or personalities. Therefore, finding a means of
facilitating optimal collaboration among team members
may reduce potential conflict and the negative impacts
associated with such interpersonal conflict. In addition,
such means may also ensure involvement in instances
when onsite participation is not feasible. One way to
optimize interaction with customer representatives
during feature management is to extend their ability to
contribute via a remote tool interface. Such an interface
should simulate aspects of the face-to-face
environment, providing the customer with the
opportunity to initiate features, and to participate in the
management of other aspects of the process, but
without the intensive and constant onsite engagement
commonly promoted.

Previous studies have demonstrated that software
tools can enable and/or improve communication in
projects [17,18]. For instance, it has been proposed that
the use of groupware systems enhances project
communication and produces improved project
outcomes [19,20]. Therefore, a tool to improve the
extent and quality of customer contributions,
particularly in the determination and management of
software features, could add value to software project
management. An assessment of existing project
management tools based on the work of Kelter et al.
[21] and VersionOne [22] indicates that these tools
have not been built with the intent of enabling remote
extension of the onsite customer. As a result, the
objective of the current study is to bridge this gap with
a prototype feature management tool that extends
distributed customer interaction, and enhances team
collaboration, through a remote interface.

3. THE ASRM TOOL

This section describes the development of a
prototype tool called the Agile Social-Risk Mitigation
Tool (ASRMT), designed in part to support

collaborative feature management by providing remote
access via a web interface to all stakeholders during
agile software development [23]. The intent is to
facilitate active involvement and collaboration
irrespective of time or stakeholder location, thus
supporting the work of dispersed teams. It is also
hoped that increased collaboration would reduce the
likelihood of conflict or miscommunication regarding
software features.

We intended in the first instance to develop the tool
rapidly and iteratively, as a lightweight and therefore
readily usable prototype, rather than a fully viable
product. Our goal in this regard was to have the tool
used and evaluated by a small group of practitioners so
that it could be refined (based on their feedback) before
being deployed and assessed more formally in live
project settings. Several choices exist for web
application development that would fit well with such
an approach. Among these, Java technologies and
Visual Studio.NET seem popular [24,25]. Our
prototype tool was developed using the ASP.NET
framework using Visual Basic and some JavaScript for
client side validation [26]. The development
architecture for the tool is shown in Figure 1.

Figure 1. ASRMT development architecture

The initiation, specification and prioritization of

software features, a sequence of standard and ongoing
activities in agile software development, can be tracked
either on- or off-site using ASRMT. Customer
stakeholders can actively contribute to the management
of features for all projects in which they are involved.

Feature information initiated by customer team
members is from that point jointly managed by both
developer and customer members using ASRMT. The
status of each feature is visible to all concerned at any
time and follows the partially iterative sequence of
states depicted in Figure 2, illustrated in the tool screen
shot shown in Figure 3.

Figure 2. Feature traversing states

Requested Estimated Scheduled

Client Changes

In Progress Completed

Figure 3. Feature editing screen

Add Feature: ASRMT enables customer team

members to add features. In order to do so they must
provide information relating to the Project, a Feature
Description (short statement of not more than 200
words), Feature Details (any additional details
regarding the feature), an indication of perceived
Business Value (Low, Moderate, or Significant,
features that are Significant being most important for
the business at the time of entry), the feature’s Priority
(High, Medium, or Low – features that are High in
priority should attract most of the developers’
attention), Feature Type (New Feature, Defect repair,
or Enhancement), and whether the feature needs to be
discussed in a face-to-face meeting. New features are
tagged with the default status ‘Requested’. (Reporting
based on all of these fields is also supported.)

Edit Feature: Customer team members are able to
edit information for features previously added when the
feature carries the status ‘Requested’, ‘Estimated’, or
‘Scheduled’. If a feature’s status is ‘Estimated’ or
‘Scheduled’ and it is edited, its status reverts to
‘Requested’. A log is maintained for all changes made
to features. When the assigned Developer team
member is ready to estimate a requested feature and so
enters estimation information (Date Estimated and
Estimated Hours), the feature status is automatically
changed to ‘Estimated’. If the feature is then scheduled
(once Date Scheduled is entered), its status is
automatically changed to ‘Scheduled’. Once the
feature’s Date Started field is entered, the feature status
is then automatically updated to ‘In Progress’ (and the
customer team members can no longer directly edit the
feature). Finally, the feature status is automatically

changed to ‘Completed’ once the Actual Hours and
Date Completed are entered. In addition to considering
a feature’s Business Value and Priority in terms of
effort allocation, project managers and developers are
able to categorize and process features based on an
estimation of their technical risk (Low, Medium, or
High).

ASRMT offers a range of project summaries for
feature information (for example: New Feature, Defect
Repair, and Enhancement tracking, at various states of
completion). ASRMT also provides real-time feature
tracking information support for customer and
developer team members, in both detailed and
summary forms. This allows all stakeholders to observe
project progress while still being physically remote
from the rest of the team. In addition, the decision
making of project managers is supported through the
information provided by ASRMT.

4. ASRMT EVALUATION

In keeping with the research aims and the present

prototype form of the tool, ASRMT has been
informally tested by a small number of software
engineering experts. Seven participants were involved
in the evaluation process. These participants were agile
software developers with varying levels of
development and project management experience who
were therefore well placed to comment on whether they
felt the tool would help agile teams to optimize
collaboration during feature management.

The tool was installed on a local server, on which
the participants completed a scenario-based evaluation

comprised of two parts. The first part of the evaluation
asked each participant to test ASRMT’s functionality
using 23 tasks, in the roles of project manager,
developer, and customer, while the second part of the
evaluation was designed to solicit feedback regarding
participants’ impressions of the tool and their use of it
while working through the scenarios. While questions
may arise in relation to validity for randomly
constructed evaluation instruments [27], it is important
to note that the questions for the ASRMT user
evaluation were not randomly selected. Rather, this
evaluation was adopted from an earlier exercise
reported by Lewis [28]. Lewis’ instrument has been
previously assessed for reliability and validity, and
recommended for usability evaluations (see, for
example, [29,30]).

The scenarios used in the first part of the evaluation
required that each participant carry out ‘typical’ team
member activities; for instance, step 5 of the project
manager’s set of tasks was conveyed as follows: “Next
you need to change an ongoing project – the Credit
Card System. Edit a feature previously added using the
Edit Feature menu. The status of the feature determines
what data is added to the feature; for example, if the
values for ‘Estimated Hours’ and ‘Date Estimated’ are
entered, the feature status automatically changes to
Estimated. Let the feature traverse states by updating
its associated information (enter the Date Scheduled,
notice the status changes to Scheduled). (Features
entered by clients have ‘Requested’ status by default,
features then traverse status in the following order:
Estimated, Scheduled, In Progress, and Completed).”

Task 6 of the customer scenario required the
following: “You want to know how the team is getting
on overall with the project. Go to the Project
Summaries Section of the main screen and get a
summary. (Note: you are only allowed to see project
summaries for projects that you have been added to by
the Project Managers.) Get a feature summary for the
Credit Card System project – information should exist
pertaining to features previously entered (Insert Start
Date (22/02/2007), End Date (15/04/2007), Filter by
Priority, then by Status, then by Risk Rating).”

Having completed the set of tasks, participants then
moved to part two of the evaluation. This comprised 11
questions. Seven closed questions, each conforming to
a four-point Likert scale, were used to evaluate
ASRMT’s stability and the users’ learning experience.
Two closed questions conforming to a Likert scale and
two further open-ended questions were used to assess
ASRMT’s usefulness, to consider whether ASRMT
addressed the research objectives (explained to the
participants at the beginning of the evaluation
exercise), and to seek participants’ overall impressions
and recommendations for improving ASRMT:

1. ASRMT would be useful if used in live
projects.

2. ASRMT offers functionality to address the
features discussed in the ‘ASRMT
purpose’ section at the beginning of this
document. [This section spelled out the
challenges associated with team
collaboration in such projects and the
desire to support as much as possible the
interaction among all team members.]

3. In terms of your overall impression of
ASRMT…

a. List any negative aspects
b. List any positive aspects

4. Please outline any suggestions you have for
improving ASRMT.

 The possible responses to the questions conforming

to a Likert scale included ‘strongly agree’, ‘agree’,
‘disagree’, and ‘strongly disagree’ options. The
answers were linearly scaled from one to four where a
‘strongly agree’ choice was represented by one and
four represented a ‘strongly disagree’ choice, offering
participants no neutral choice such as ‘neither agree nor
disagree’. This approach was deliberately selected to
force participants to express an opinion. While there
may be threats to reliability for usability evaluations
employing such an approach, given that the participants
were all trained software engineers with a range of
levels of experience, and so represented the target
population, it is believed that this option presents a low
threat to the reliability of the findings [27].

All participants completed the evaluation in full,
with the average time taken being just under one hour.
In general, participants felt that the concepts and ideas
underpinning the development of ASRMT were
excellent. Six of the participants thought ASRMT was
easy to use. Of the seven participants, three reported
encountering a small number of faults while using
ASRMT. However, all participants reported that they
were able to successfully complete the scenarios, that
ASRMT was easy to learn to use, and that they
recovered easily and quickly from any errors.

Of the seven participants, five reported that ASRMT
was simple and satisfying to use, and four believed that
ASRMT would be useful and effective if used in live
projects. The three participants who did not agree that
ASRMT would be useful if used in live projects felt
that the tool needed usability improvement before it
would be suitable. All of the participants, however,
believed that ASRMT offered functionality to address
the challenges of collaborative feature management in
keeping with the purpose of optimizing interactions and
minimizing project risk. In terms of the participants’
overall impressions of ASRMT, all participants

believed that the notion of extending customer (and
other stakeholder) interaction via a remote interface
such as that in ASRMT would be useful. Regarding the
tool’s ease of use, five of the participants believed that
ASRMT’s simplicity and ease of use would enhance
agile project management.

Among the recommendations for improvement, five
participants believed that a few of ASRMT’s user
interfaces could be improved, and one participant
suggested that ASRMT might need enhancement if it
was to be implemented in large projects. Participants
suggested that additional guidance for user tasks be
provided. In addition, one participant also suggested
that ASRMT could be extended to include additional
functionality such as a discussion feature and automatic
e-mail reminders, which would be likely to further
assist project participants.

5. LIMITATIONS AND THREATS

There are at least two limitations to our study, both

of which relate to the evaluation of the ASRM tool.
The first arises from the limited scale and artificial
nature of the sample tasks participants were asked to
undertake. Even though the ASRMT user evaluation
scenarios were meaningful, in that they were tasks
typical of those undertaken in feature management, due
to resource constraints the ASRMT was not used in the
management of live software projects. In such projects
there could be many project members occupying
varying roles, and there may be a need to coordinate
and manage many concurrent development tasks,
perhaps across a portfolio of projects. Further ASRMT
user evaluations should therefore be carried out in live
project environments.

The second limitation relates to the scale and form
of the evaluation. The tool was evaluated by just seven
participants. While these seven individuals were
representative of some of the intended users of the tool,
being experienced software engineers, they were not
themselves project customers nor were they
communicating with other developers. The degree to
which their responses could be considered
representative of stakeholder perceptions of the tool
and its usefulness is not known. Further assessment of
the tool by project managers, customers and other
developers, preferably in concert, would therefore be
beneficial.

6. SUMMARY, CONCLUSIONS AND

FUTURE WORK

Regardless of the methodology employed, evidence

shows that software development continues to be a very

challenging endeavour. This study found that, while
agile methodologies are increasingly likely to improve
some aspects of software project development and
management, the human collaboration practices
common in agile methods may also introduce social
risks, and such risks could be critical – especially in
circumstances where the project team begins to under-
perform.

With such issues in mind, a prototype tool was
designed and developed. The tool was intended as a
low-overhead complement to face-to-face team
interaction, providing stakeholders with a lightweight
means of maintaining involvement in feature
management without the risks arising from intensive
and constant interactions. ASRMT was verified by a
small number of software engineering experts. In
scenario-based testing the tool was found to be easy to
learn and use and sufficiently lightweight as not to
present unjustified additional overhead. The expert
assessors were also strongly supportive of the concept
of remote stakeholder involvement. The ASRMT user
evaluation findings suggest that the tool is likely to be
useful to agile developers, and should improve their
handling of collaboration-related risks.

While the purpose of ASRMT in the context of agile
projects was to reduce the incidence and severity of
risks associated with potentially disruptive interactions,
ASRMT may provide a vehicle through which
customer involvement could be further strengthened in
non-agile projects. Since the literature also shows that
too little customer involvement may be problematic,
balancing customer involvement is key. Therefore, the
ASRMT solution may support risk mitigation in two
ways: it should enable project managers to deal
effectively with complex interactions in diverse teams
(as per agile methods), but it may also help managers to
engage more frequently and intensively with customers
if their lack of input under traditional methodologies
begins to threaten project progress.

Irrespective of the enhancement just described, in
order to draw any stronger conclusions regarding risk
mitigation and project success it would be necessary to
utilise ASRMT in live project settings – the logical
next step for this work.

7. REFERENCES

[1] Highsmith, J. (2000) Adaptive Software
Development: A Collaborative Approach to Managing
Complex Systems. New York: Dorset House.

[2] Beznosov, K., & Kruchten, P. (2004) Towards agile
security assurance. Proc 2004 Workshop on New
Security Paradigms, Nova Scotia, Canada.

[3] Abrahamsson, P., Warsta, J., Siponen, M. T., &
Ronkainen, J. (2003) New directions on agile methods:
a comparative analysis. Proc 25th ICSE, Portland OR,
USA.

[4] Kuppuswami, S., Vivekanandan, K., Ramaswamy,
P., & Rodrigues, P. (2003) The effects of individual
XP practices on software development effort.
SIGSoftSEN 28(6) 1-6.

[5] Kirk, D., & Tempero, E. (2006) Identifying Risks
in XP Projects through Process Modeling. Proc
Australian Software Engineering Conference.

[6] Sharp, H., Robinson, H., & Segal, J. (2004)
Customer collaboration: successes and challenges in
practice systems. Report TR2004/10, Computing Dept,
Open University.

[7] Hulkko, H., & Abrahamsson, P. (2005) A multiple
case study on the impact of pair programming on
product quality. Proc 27th ICSE, St. Louis, MO, USA.

[8] Anon (2008) Martinig & Associates: Adoption of
agile methods. Retrieved March 2008, from
http://www.methodsandtools.com/

[9] Clavadetscher, C. (1998) User involvement: key to
success. IEEE Software, 15(2), 30-32.

[10] Jiang, J. J., Klein, G., & Balloun, J. (1996)
Ranking of system implementation success factors.
Project Management Journal, 27(4), 50-55.

[11] Beck, K. (2000) Extreme Programming
Explained: Embrace Change. Reading, MA: Addison-
Wesley Longman.

[12] Grisham, S. P., & Perry, E. D. (2005) Customer
relationships and Extreme Programming Proc 2005
Workshop on Human and Social Factors of SE.

[13] Tesch, D., Jiang, J. J., & Klein, G. (2003) The
impact of information system personnel skill
discrepancies on stakeholder satisfaction. Decision
Sciences, 34(1), 107-127.

[14] Kettunen, P. (2007) Extending Software Project
Agility with New Product Development Enterprise
Agility. Software Process: Improvement and Practice,
12(6), 541-548.

[15] Ceschi, M., Sillitti, A., Succi, G., & De Panfilis, S.
(2005) Project management in plan-based and agile
companies. IEEE Software, 22(3), 21-27.

[16] Siakas, K. V., & Siakas, E. (2007) The agile
professional culture: a source of agile quality. Software
Process: Improvement and Practice, 12(6), 597-610.

[17] Boehm, B., Grunbacher, P., & Briggs, R. O.
(2001) Developing groupware for requirements
negotiation: lessons learned. IEEE Software, 18(3), 46-
55.

[18] Damian, D. E. H., Eberlein, A., Shaw, M. L. G., &
Gaines, B. R. (2000) Using different communication
media in requirements negotiation. IEEE Software,
17(3), 28-36.

 [19] Ali Babar, M., Kitchenham, B., Zhu, L., Gorton,
I., & Jeffery, R. (2006) An empirical study of
groupware support for distributed software architecture
evaluation process. Journal of Systems and Software,
79(7), 912-925.

[20] Ali Babar, M., Kitchenham, B., & Jeffery, R.
(2007) Comparing distributed and face-to-face
meetings for software architecture evaluation: a
controlled experiment. Empirical Software
Engineering, 13(1), 39-62.

[21] Kelter, U., Monecke, M., & Schild, M. (2003) Do
we need 'Agile' software development tools? LNCS
v.2591, Springer Berlin/ Heidelberg, 412-430.

[22] VersionOne. (2006) Agile tool evaluator guide.
Retrieved Oct 10 2006, from
http://www.versionone.com

[23] Angioni, M., Carboni, D., Pinna, S., Sanna, R.,
Serra, N., & Soro, A. (2006) Integrating XP project
management in development environments. Journal of
Systems Architecture, 52(11), 619-626.

[24] Atsuta, S., & Matsuura, S. (2004) eXtreme
Programming support tool in distributed environment.
Proc Computer Software and Applications Conference.

[25] Kaariainen, J., Koskela, J., Abrahamsson, P., &
Takalo, J. (2004) Improving requirements management
in extreme programming with tool support - an
improvement attempt that failed. Proc Euromicro
SEAA.

[26] Flanagan, D. (2001) JavaScript: The Definitive
Guide. (Fourth ed.). CA, USA: O'Reilly.

[27] Kirakowski, J. (2000) Questionnaires in usability
engineering: a list of frequently asked questions. Cork,
Ireland: Human Factors Research Group.

[28] Lewis, J. R. (1995) IBM Computer Usability
Satisfaction Questionnaires: Psychometric Evaluation

http://www.methodsandtools.com/�
http://www.versionone.com/�

and Instructions for Use. Intl Jnl of Human-Computer
Interaction, 7(1), 57-78.

[29] Calisir, F., and Calisir, F. (2004) The relation of
interface usability characteristics, perceived usefulness,
and perceived ease of use to end-user satisfaction with
enterprise resource planning (ERP) systems.
Computers in Human Behavior 20, 505–515.

[30] Vuolle, M., Kallio, T., Kulju, M., Tiainen, M.,
Vainio, T., and Wigelius, H. (2008) Developing a
Questionnaire for Measuring Mobile Business Service
Experience. Proc MobileHCI, Amsterdam, 53-62.

	1. Introduction
	2. Related work
	3. The ASRM tool
	4. ASRMT evaluation
	5. Limitations and threats
	6. Summary, conclusions and future work
	7. References

