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Abstract 

 

Quality of product is an important aspect in many commercial organizations where 

storage and shipment practices are required. Temperature is one of the main 

parameters that influence quality and temperature treatments of agricultural 

products therefore require special attention. 

 

The temperature variation in a meat chiller has a significant effect on tenderness, 

colour and microbial status of the meat, therefore thermal mapping during the 

chilling process and during chilled shipment to overseas markets is vital. The 

literature indicates that deviations of only a few degrees can lead to significant 

product deterioration. There are several existing methods for thermal mapping: 

these includes Computational Fluid Dynamics (CFD), Finite Element Methods 

(FEM) for examination of the environmental variables in the chiller. These 

methodologies can work effectively in non real-time. However these methods are 

quite complex and need high computational overhead when it comes to hard real-

time analysis within the context of the process dynamics. 

 

The focus of this research work is to develop a method and system towards 

building an object-centric environment monitoring using collaborative efforts of 

both wireless sensor networks and artificial neural networks for spatial thermal 

mapping. Thermal tracking of an object placed anywhere within a predefined space 

is one of the main objectives here. Sensing data is gathered from restricted sensing 

points and used for training the Neural Network on the spatial distribution of the 

temperature at a given time. The solution is based on the development of a generic 

module that could be used as a basic building block for larger spaces. The Artificial 

Neural Networks (ANNs) perform dynamic learning using the data it collects from 

the various sensing points within the specific subspace module. The ANN could 

then be used to facilitate mapping of any other point in the related sub-space. The 

distribution of the sensors (nodes placement strategy for better coverage) is used as 

a parameter for evaluating the ability to predict the temperature at any point within 

the space. 

 



xv 
 

This research work exploits the neuro Wireless Sensor Network (nWSN) 

architecture in steady-state and transient environments. A conceptual model has 

been designed and built in a simulation environment and also experiments 

conducted using a test-bed. A Shepard’s algorithm with modified Euclidian 

distance is used for comparison with an adaptive neural network solution. An 

algorithm is developed to divide the overall space into subspaces covered by 

clusters of neighbouring sensing nodes to identify the thermal profiles. Using this 

approach, a buffering and Query based nWSN Data Processing (QnDP) algorithm 

is proposed to fulfil the data synchronization. A case study on the meat plants cool 

storage has been undertaken to demonstrate the best layout and location 

identification of the sensing nodes that can be attached to the carcasses to record 

thermal behaviour. 

 

This research work assessed the viability of using nWSN architecture. It found that 

the Mean Absolute Error (MAE) at the infrastructural nodes has a variation of less 

than 0.5oC. The resulting MAE is effective when nWSN can be capable of 

generating similar applications of predictions. 
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Chapter 1 
 
 
 

  

1 Introduction 
 
This chapter discusses the introduction to wireless sensor networks, artificial neural 

networks and thermal mapping. The aim of this research work is to map the thermal 

profile of a given specified space using both sensor networks and neural networks. 

Hence focus is given to each elemental background and further the motivation of 

the work is addressed. The research objectives and the detailed approach are 

described in this section. Later on the contribution of the overall work is discussed 

along with the research publications. The structure of this thesis has been developed 

in such a manner to enable the original hypothesis to be developed and exploited in 

a clear and concise format. 

 

1.1 Introduction to Wireless Sensor Networks 

 

In a WSN, numerous tiny, battery-powered computing devices are scattered 

throughout a physical environment. Each device is capable of monitoring, sensing, 

and displaying actuating information. Sensing may include the collection of values 

for temperature, humidity, vibration or other data. An actuating device may cause a 

LED to blink, turn on lights, change colours on a display, display textual 

information, and trigger any other action that prompts a response or informs an 

operator. WSNs are used in commercial, industrial, environmental, and healthcare 

applications to monitor data that would be difficult or expensive to capture using 

wired sensors.  

Sensor networks can provide detailed coverage due to the small size of the nodes 

and therefore the large number that can be used within the required environment. 

However the small size can also mean that the node has a limited power supply. 

Due to this limitation, the sensor nodes will therefore have limited computational 

power, sensing capability and memory size. Sensors that can’t communicate 

directly with the base station can pass their data to nearby sensors, in a multi-hop 

fashion, until the data reaches its base station. A Combination of local sensor 
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networks, together with regional and globally distributed sensor systems, permits a 

seamless study of different variables over very different spatial scales. 

A variety of applications have been presented in the literature for WSN. These 

include ecological habit monitoring, smart spaces and geological monitoring. The 

deployment of embedded devices in recent decades has been widespread with 

increasing computational capabilities. Wireless sensor nodes [1-5] are very 

powerful and becoming popular to provide measurement of specific physical 

attributes. WSN nodes can communicate with neighbouring sensor nodes to 

exchange information with each other. 

Multiple sensor nodes together constitute a wireless sensor network; these can be 

applicable to large scale environmental monitoring [6, 7], building management, 

industrial and transportation systems. The wireless sensor nodes can be deployed 

across the area of interest and where they can measure the relevant data. The sensor 

nodes transmit data to a central station where it can be further processed to enable 

the system to make certain decisions about environmental or system management. 

The current trend is moving towards incorporating higher levels of more complex, 

computational capabilities into the sensor node itself and to communicate with 

other nodes only when required. 

In many applications hundreds of sensors are used in order to facilitate data 

environment for data collection. Estimating the temperature at any arbitrary 

position, where there are possibly no sensor nodes is a challenging task. Most of the 

WSN applications require monitoring of live streaming sensor data; hence the data 

processing must be performed in real time. Also data processing algorithms are 

time consuming and may not be able to cope with real time constraints. WSNs 

provide a better way of interacting with physical environments, hence these have 

been the focus of many research programmes over the last few years. 

 

1.2 Wireless Sensor Networks: Target Applications 

 

Sensor networks can be useful in a variety of domains including cool stores, 

greenhouses, warehouses, cargo containers, building monitoring, climate 

monitoring, logistics and several industrial applications. Temperature prediction 

constitutes a crucial issue for different applications. There are many applications 

where the temperature distribution in a given space has to be assessed. Monitoring 

of temperature is of extreme importance in the food and agricultural industry. Many 
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of the food and agricultural products are sensitive to the temperatures at which they 

are stored and transported. For example, the storage temperature of kiwi fruits is 

critical to ensure the quality of the fruit is not compromised. Therefore it is 

important that a producer is aware when temperature falls outside the required 

range to enable corrective action to be immediately taken. 

In another aspect, frost damage is a significant concern for fruit growers, where bud 

formation and flowering at the start of the growing season occurs. Unseasonably 

cold temperatures results in these flowers being killed and therefore, a reduction in 

fruit harvests. Hence temperature monitoring of the production system is vital. Of 

course, manual temperature monitoring of food products is possible but very time 

consuming. Furthermore, it is often not possible to measure multiple points in the 

production environment. 

As a further example, in multiple storage containers, an incorrect temperature level 

may exist for an extended period before it is discovered. Thus an automatic thermal 

mapping solution is needed. The temperature points from the given system must be 

reliably gathered over a period of time to identify the zones where the thermal 

condition is beyond the designated values. The resulting data can be mapped to 

identify the problem areas within the system. There is a need for research and 

several key issues must be resolved to allow application of these in practice. 

WSNs can facilitate the acquisition of physical attributes like temperature from a 

multitude of commercial applications. Within the cold chain of any perishable food 

commodity it is necessary to have information on and control of storage 

temperature, atmospheric temperatures, rate of cooling and length of storage to 

ensure cold chain integrity from harvest to consumption. It has been estimated that 

the fruit loss in Europe alone due to temperature abuse can cost $NZ6 million, 

excluding costs associated with reworking product [16]. The meat industry is 

another primary industry where temperature of the carcass or meat primal must be 

monitored and controlled to maintain the quality of the meat. 

 

1.2.1 WSN Background 

 

A wireless sensor network consists of transceivers, sensors, microcontrollers and 

power sources. The current technologies have led to advancements in developing 

low priced, low powered and multi-functional sensor nodes, as shown in Figure 1.1. 

Sensor nodes are capable of environmental sensing along with data processing. The 



4 
 

interconnection between the external sources and the wireless sensor networks is 

used to communicate and exchange data. 

 

  

 

 

 

 

 

 

 

 

 

WSNs are used in several applications that include environmental monitoring, 

acquisition of data, buildings monitoring, security and safety supervision [8]. The 

sensor node communicates with a gateway unit which further transfers data through 

LAN, WLAN or WSN. These devices facilitate exchanging and monitoring data. 

WSNs use the radio transmission medium provided by the Industrial Scientific and 

Medical (ISM) bands. Several studies have been conducted using these devices and 

the findings have been utilized by the research community to enable the uptake of 

sensor readings in WSNs using different protocols such as Bluetooth, Wi-Fi and 

Zigbee [11, 12, 13, 14]. The ISM bands have huge spectrum allocation and they are 

available on license free, such as the 2.4 GHz band to operate globally [8, 9, 10]. 

Multi-hop communications have greater advantages than traditional single hop 

communications in WSN since they consume less power [8, 9]. Zigbee and 

Bluetooth are the latest multi-hop communication protocols available and have 

become very popular. 

The IEEE 802.15.4 standard is a physical radio specification that provides low data 

rate connectivity among relatively simple devices that consume minimal power and 

which typically connect over short distances. This communication standard is ideal 

for monitoring, tracking and controlling industrial and home applications [15]. 

Radio signals have the capability to penetrate through wall and glass, due to their 

lower frequency and longer transmission range. 

 

 

Figure 1.1 Wireless sensing node 
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1.2.2 WSN research challenges 

 

Due to the sensors limited capabilities, there are a lot of design issues that must be 

addressed to achieve an effective and efficient operation of WSN. 

1) Autonomy: Sensor nodes are commonly deployed in places where cable 

access is either not possible or expensive. Sensor nodes are normally 

operated on a battery power and recharging may not be possible at all 

locations. Therefore, energy usage is extremely valuable in sensor nodes, 

building algorithms for minimizing the load on nodes is crucial when 

designing sensor networks. Another consequence of autonomy is the need 

for sensor nodes to organize themselves by learning and adapting to a 

changing environment. 

2) Location Identification: When an application requires the location of the 

sensor node, it is important to embed an algorithm that uses a location 

discovery protocols. Most of the tracking applications need to have a 

specified location. There are solutions available that use the GPS based 

technology, but the cost and energy consumption are high with this system. 

Recent research reveals methods to compute the location of the nodes by 

utilizing very minimal information. But further work is required to develop 

this to a point where it can be used in any system. 

3) Limited Computational Power: There is a lot of advancement in 

integrated circuit technology and its improved processing capacity. The 

capability available for data processing, data communication and memory of 

sensor nodes has increased markedly over recent times. Due to the limited 

energy of sensor nodes, it is advisable to minimize the computational times. 

Therefore, any information processing within the sensor nodes has to take 

into account the corresponding limitations. It is important to take proper 

measures while allocating the memory buffers and assigning the data types 

of the variable assignment. 

4) Complex Dynamics: The dynamics of the measured environment data can 

be complicated, for example if the current value of the dynamics depends on 

the long term historical value, or if the dynamic model at one location is 

related to the one at another location. Therefore, in some cases, the 

dynamics of the measured data is a complex system with both temporal and 

spatial characteristics. 
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1.3 Artificial Neural Networks Background 

 
The theoretical background related to ANN is discussed here but it will be limited 

to the topics directly related to the solutions given in this thesis. In theory, there are 

many popular Neural Network (NN) architectures available, particularly those used 

in offline tasks and these are complicated combinations of diverse neural structures 

[18, 19, 20] along with many statistical models [21, 22, 23, 24]. Due to the limited 

processing capacity of the sensor nodes, it may not be important to discuss the 

hybrid structures and evolutionary neural models [25, 26, 27]. A gradient 

calculation of NN architecture is considered since it is the main factor of the 

learning model.  

The computation within the NN was inspired by the functionality of a biological 

network, namely the human brain. Similar to a biological neuron, the artificial 

neuron has the structure as shown in Figure 1.2, where the neuron collects and 

accumulates the data � 	
� from outside, then fires an output after 

applying a summation over a nonlinear function , called the activation 

function. This can be formulated as shown in the equation 1.1, where b is the bias of 

the neuron, similar to the neuron’s activation threshold.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An ANN is a collection of many neurons, where in most cases the neurons activate 

synchronously and propagate their activation to another group of neurons. One of 

the important classical example of this is the feed forward operation between two 

	 		                              1.1 

Figure 1.2 Activation of neurons and its layers 
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layers of neurons as shown in Figure 1.2, where black circles represent neurons, a 

hollow circle denotes the bias. The group contains neurons usually independent of 

each other. The information is propagated from one group to another in an ANN. 

  

1.3.1 On-line Learning Algorithms 

 

In this research work, we proposed an online learning algorithm that is suitable for 

the application domain. Hence is it important to review the available algorithms. 

Neural network models can be categorized into two main classes based on the 

presentation of the training data and training methods. Those are the batch training 

methods and the online training methods. Batch training is defined as each iteration 

being trained with a batch of data at one time, such that the ∆w of the model 

parameter w is derived from the data set { � �}: 

   

 

 

 

Online learning also adjusts the model parameters in each iteration with the 

increment ∆w, which depends on the input data. In recurrent neural network, there 

is a memory vector �, which holds the history of input data; the parameters’ update 

is given by equation 1.3. 

 

 

 

Batch training methods have the ability to provide sufficient results using finite 

training set in each iteration. However this method requires a large amount of 

memory and high computational power. Hence, the batch training method is not 

suitable for sensor network applications. On the other hand, online training is a 

simplified method where it takes only a single data set into account in each 

iteration. The evidence also clarified that the online training can restore the 

trajectory of the batch learning model [96]. 

While looking at the difference in learning algorithms, error functions of neural 

network applications can normally takes the form given by equation 1.4. 

 

� ��� ��� � �  1.2 

� ��� ��� � �  1.3 
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where the evaluation error e measuring the Euclidean-like distance between output 

and target depends on parameters w, symbol  stands for the corresponding target. 

The network output y can be expressed as a function of w such that y = f(w), and 

the coefficient ½ is used for convenience of calculation. 

With the definition of residual δ: 

 

 

 

the associated gradient calculation is given by equation 1.6. 

 

 

 

 

 

1.3.2 Gradient Descent Learning Algorithm 

 

The gradient descent learning algorithm adjusts its parameters by following the 

error gradient. As defined in the equation 1.4, at a given task with an evaluation 

error E and also a gradient based on the equation 1.6, the adjustment step parameter 

is given by equation 1.7 and the parameters are updated using the equation 1.8. 

 

 

 

 

 

 

where  is the predefined learning rate, which is usually very small, j is the 

iteration index and 	 is the corresponding residual for index i. 
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1.3.3 Back-Propagation algorithm 

 

Within the multi-layer perceptron (MLP), the back-propagation algorithm is a 

further advancement to the gradient descent learning algorithm. This algorithm has 

been implemented in several applications and has proven accurate [18, 19]. 

The back-propagation algorithm cycles through two distinct passes, a forward pass 

followed by a backward pass through the layers of the network. The algorithm 

alternates between these passes several times as it scans the training data. Typically, 

the training data has to be scanned several times before the networks ‘learns’, 

thereby generating an accurate prediction with minimal error. 

 

1.3.4 Multiple local optima and epochs 

 

The back-propagation algorithm is a version of the steepest descent optimization 

method applied to the problem of finding the weights that minimize the error 

function of the network output. Due to the complexity of the function and the large 

numbers of weights that are being ‘trained’ as the network ‘learns’, there is no 

assurance that the back propagation algorithm (and indeed any practical algorithm) 

will find the optimum weights that minimize the error. The procedure can get stuck 

at a local minimum. In these circumstances, it is useful to randomize the order of 

presentation of the cases in a training set between different scans. It is possible to 

speed up the algorithm by batching, that is, updating the weights for several 

exemplars in a pass. However, at least the extreme case of using the entire training 

data set on each update has been found to get stuck frequently at poor local minima. 

A single scan of all cases in the training data is called an epoch. Most applications 

of feed-forward networks and back propagation require several epochs to minimize 

the error. A number of modifications have been proposed to reduce the epochs 

needed to train a neural net. One commonly employed approach is to incorporate a 

momentum term that injects some inertia in the weight adjustment on the backward 

pass. This is done by adding a term to the expression for weight adjustment for a 

connection that is a fraction of the previous weight adjustment for that connection. 

This fraction is called the momentum control parameter. High values of the 

momentum parameter will force successive weight adjustments to similar 

directions. 
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Another idea is to vary the adjustment parameter δ so that it decreases as the 

number of epochs increases. Intuitively this is useful because it avoids over fitting 

which is more likely to occur at later epochs than earlier ones. 

 

1.4 Thermal Mapping Background 

 

Thermal mapping is described as predicting an unknown temperature at a given 

point and it can further generate a profile based on multiple points within the given 

specified space. Figure 1.3 shows a mapping of a given space. The thermal mapping 

provides an easy identification of the hotspots in the space. 

Temperature prediction constitutes a crucial issue for different applications. There 

are many applications where the temperature distribution in a given space has to be 

assessed and several techniques or algorithms are available to predict unknown 

temperature data by using known data. There are several methodologies applied in 

various studies for thermal mapping. The majority of the techniques used are 

interpolation methods and discretization methods.  

 

 

 

 

 

 

 

 

   (a)          (b) 

 

A few conventional methods including CFD and FEM are also available to examine 

the environmental variables in a given space. In these studies multiple parameters 

can be varied in three dimensional calculations and their influence on distributions 

of temperature analysed. However, these studies are quite complex and need high 

computational overhead when it comes to real time analysis. Also data processing 

algorithms are time consuming and may not be able to cope with real time 

Figure 1.3 Thermal mapping - (a) Thermal map (b) Contour map 
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constraints. Most of the WSN applications require monitoring of live streaming 

sensor data, hence the data processing must be performed in real time. 

 
 

1.5 Motivation 

 

Quality of product is an important aspect in many commercial organizations where 

storage and shipment practices are an integral part of the operation. Temperature 

and humidity are the main parameters that influence product quality in agricultural 

and pharmaceutical industries. The applications for the cold chain integrity of meat 

products require special attention to work successfully. The focus is to identify the 

methodologies required to monitor and map the temperatures for a given 

infrastructure by using the WSN. In the meat industry the temperature variation in 

cool store has a significant effect on tenderness, colour and microbial status of the 

meat; therefore thermal mapping during the chilling process and shipment of the 

product is vital.  

Most of the consumable products such as fruits, vegetables or meat require 

controlled temperatures while transporting from one place to the other. In order to 

avoid deterioration and market loss, thermal monitoring is required and the 

products should be maintained at rated temperatures. Short interruptions in the 

control of the cold chain may result in immediate deterioration of product quality. 

Quality control, monitoring of goods transportation and delivery services is an 

increasing concern for producers, suppliers and consumers.  

      

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Concept Diagram of Object-Centric Environment 
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Temperature is the most important factor for extending shelf life. It is essential to 

ensure that temperature before and during transportation is stable. Reports indicate 

that a gradient of 5oC or more and a deviation of only a few degrees can lead to 

spoiled goods and thousands of dollars in damages [17]. Another reason for 

deterioration is the water loss that reduces the marketability of fresh meat, fruits 

and vegetables. 

Figure 1.4 gives a conceptual diagram of the object-centric environment. Practical 

motivation for this problem derives from current technological changes and 

reducing the size of sensor nodes, which will facilitate the acquisition of data on 

physical attributes (temperature, humidity and gas, etc.) under circumstances. There 

are several different sensor nodes available. These nodes differ from each other in 

their modalities, monitoring range, detection capabilities and cost. The sensor nodes 

can be classified into either fully functional or reduced functional versions based on 

their capacity in terms of processor, memory and battery costs. The philosophy of 

this work is to utilize fully functional ones to build the infrastructural nodes and 

reduced functional ones to use as portable nodes.  

The WSN is considered as the future technology of Radio Frequency Identification 

(RFID) tag evolution that advances how devices communicate with each other. 

These features contribute towards the development of an object-centric 

environment for thermal mapping, where the objects may vary based on the 

applications. Hence algorithmic techniques are needed to use the sensor nodes 

effectively. The infrastructural nodes may be expensive nodes and are deployed at 

some specific locations in such a way that they can contribute their services within 

the network of portable nodes, which may or may not move in the given space. This 

work considered the problem of placing sensors in a space for several applications. 

Examples are in buildings, warehouses, greenhouses, cool stores and containers, etc 

to map the temperature of the space. With the current growing infrastructural needs, 

we require decision support tools which can assist in planning locations for the 

nodes. The contribution of this research is related to the mapping of the thermal 

space and optimal placement configuration of the infrastructural nodes as well as 

the ubiquitous management of the system that focuses at sensor, system and mobile 

levels. 

 

This thesis discusses the development of a cool store thermal mapping system 

based on the nWSN. 
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1.6 Problem Statement and Approach 

 

1.6.1 Research Objectives 

 

The focus of this research is to develop a method and system towards building an 

object-centric environment using WSN for spatial environmental mapping. Thermal 

tracking of an object within a predefined space is one of the main objectives here. 

This research will look at using soft computing for spatial thermal analysis based 

on gathered data from restricted sensing points. The space is divided into two or 

more clusters of neighbouring nodes to communicate between each other in 

multiple regions. Each cluster having embedded therein an artificial neural network, 

which takes as an input data from other sensor nodes that monitor the environment 

surrounding them and adaptively maps the dynamic environment for the associated 

region. The distribution of the sensors (nodes placement strategy for better 

coverage) will be used as a parameter for evaluating the ability to predict the 

temperature at any point within the space. 

 

In this study the temperature mapping is analysed by using ANN. In order to test 

the system, a conceptual model is constructed based on the nWSN architecture. The 

objects involved in the modeling, such as the infrastructural nodes have been 

designed and a few assumptions made while building the scenarios. 

 

1.7 Contributions 

 

This thesis has initially discussed the state of the art of WSNs with a focus on 

applications in the field of thermal monitoring of indoor spaces. The literature 

review also revealed that the ANN in the field of WSN area is now growing. The 

research focus of this work, which is on the thermal mapping using ANNs and 

WSNs has not been widely covered in the literature. Therefore our contribution is 

to explore the possibilities using these techniques.  

 

Specifically, this thesis covers the following areas: 

 

1) The requirement of real-time monitoring in many applications including 

meat industry. 
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2) The importance of thermal mapping and the generation of a temperature 

gradient profile in real time. 

 

3) ANNs and their applications are explored and further addressed the areas 

mentioned above. 

 

4) A concept towards building an Object Centric Thermal Mapping 

environment based on the use of WSNs has been developed; here the sensor 

network is represented through infrastructural and portable sensor nodes of 

any functional space. The infrastructural sensor nodes facilitate initial 

values for the calculation of the temperature at a given location within the 

space. These results showed that the neural network for temperature 

mapping is feasible. Furthermore, a nWSN architecture has been developed 

to train the neural network continuously. An algorithm is developed to 

divide the overall space into subspaces covered by clusters of neighbouring 

sensing nodes to identify the thermal profiles. As part of this, a buffering 

and QnDP algorithm is proposed to fulfil the data synchronization 

requirement. 

 

5) A test bed has been constructed at SeNSe lab using Atmel’s RZUSBSTICK 

as a gateway and AVRRAVEN as motes to conduct the experiments. This 

work enhances the nWSN architecture that has been developed for spatial 

thermal mapping with query system for time synchronization and relevant 

aggregation functions at the sensor level.  

 

6) A case study of a meat plants cool storage has been undertaken to 

demonstrate the best layout and location identification of the sensing nodes 

that can be attached onto the carcasses to provide accurate thermal data. 

 

1.8 Publications 

 

During this study, the following International peer reviewed publications and 

conference proceedings have been completed. 
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1) Naresh Yamani and Adnan Al-Anbuky, “Query Based nWSN Data 

Processing for Spatial Thermal Mapping”, The Seventh International 

Conference on Intelligent Sensors, Sensor Networks and Information 

Processing (ISSNIP 2011), Adelaide, Australia, December 6-9, 2011.  

 

2) Naresh Yamani and Adnan Al-Anbuky, “neuro Wireless Sensor Network 

Architecture: Cool Stores Dynamic Thermal Mapping”, IEEE Sensors 

Applications Symposium, San Antonio, TX, USA, February 22-24, 2011.  

 

3) Naresh Yamani and Adnan Al-Anbuky, “Object-Centric Thermal Mapping 

(OCT MAP): A Wireless Sensor Network Perspective”, In the 8th Annual 

IEEE Conference on Sensors, Christchurch, New Zealand, October 25-28, 

2009. 

  

4) Naresh Yamani, Adnan Al-Anbuky and Amoakoh Gyasi-Agyei, “Portable 

Object Thermal Awareness: Modelling Intelligent Sensor Network for Cool 

Store Applications,” In the Ninth International Conference on Parallel and 

Distributed Computing, Applications and Technologies, Dunedin, New 

Zealand, December 1-4, pp. 218-224, IEEE Computer Society, 2008. 

 

1.9 Structure of the Thesis 

 

This thesis is divided into three parts. Part 1 (Chapter 1, Chapter 2 and Chapter 3) 

covers the Introduction, Literature review and Environment for model and test-bed 

development. Part 2 (Chapter 4 and Chapter 5) focuses on the conceptual design of 

the spatial thermal mapping, nWSN simulation and validation. Part 3 (Chapter 6, 

Chapter 7) discusses the nWSN implementation factors and a cool storage in a meat 

plant as a case study. Future research areas are discussed in chapter 8. 

 

Chapter 1: The current chapter explains the WSN background and target 

applications. A little background on ANN and thermal mapping is also presented. 

The research motivation and objectives of this thesis is described as well as the 

contributions and solutions in general. 
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Chapter 2: Presents the literature review and the current research in related topics, 

mainly in three categories including artificial neural networks, wireless sensor 

networks and thermal mapping. The focus of this research is highlighted where the 

ANN, WSN and thermal mapping are intersected. 

 

Chapter 3: This chapter discusses the modelling and development tools used for 

this research. The model building to mimic the real time system is important and 

these tools help to setup the environment to conduct the experiments. 

   

Chapter 4: This chapter covers the philosophy of the neuro WSN and its structural 

design to suit the problem domain. The thermal mapping methodologies are 

compared and the requirements are discussed, including the computation and 

coverage aspects, subspace and its overlap, nodes message interaction model and 

query based nWSN data processing, nodes minimization algorithms.  

 

Chapter 5: The nWSN simulation and validation is covered in this chapter. This 

includes generation of thermal profile for the modeling along with the discussion of 

the assumptions. Various scenarios are constructed to validate the concept and 

compare the ANN approach. The results from the experimental test-bed are also 

given in this section. 

 

Chapter 6: The implementation of the nWSN architecture requires various 

components and these are derived and explained here. This includes the query 

based nWSN, time synchronization and its implementation, neural net cluster 

dynamic grouping and nodes minimization approach. 

 

Chapter 7: A case study on the meat plants cool storage is discussed to discover the 

best layout and location identification of the portable nodes that can be attached on 

to the carcasses by keeping thermal accuracy in mind. 

 

Chapter 8: Finally, conclusions and future work directions are discussed in this 

chapter.     
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Chapter 2 
 

 

 

2 Literature Analysis 
 
The aim of this chapter is to review the existing literature that covers the areas 

related to thermal mapping, ANN and WSN for monitoring and traceability 

capability. This review also introduces the concept of cool room monitoring and 

tracing systems. The interdisciplinary work among these areas is also addressed and 

further section discusses the research focus of the current thesis. 

 

2.1 Cold Room Monitoring and Tracing Systems 

 

Tracking is defined as gathering the information related to the current location of 

products whereas monitoring refers to the ongoing assessment of the progress of 

transport by means of continuous or repeated measurement and evaluation [30]. In 

recent times, focus has been on the development of intelligent tracking systems. 

These systems have been developed with or without human intervention, and with 

wireless based systems. There are methodologies implemented using wired and 

wireless communications for many applications [28]. A number of supply chain 

and tracking systems have been developed and among those systems most of them 

are meant to be for non-intermodal transportation systems [29].  

The refrigerated containers are most widely used for perishable products like fruits 

and meat transportation. Improper functioning of the cooling system can result in 

significant production loss and therefore monetary loss to suppliers. Data loggers 

are the most common devices that are used by several companies to trace and track 

the products temperature profiles. But the disadvantage of data loggers is that it will 

not provide information about the whole thermal space mapping of the given 

volume and these data loggers are operated offline only. 

The tracing systems have to operate independently of the refrigeration systems to 

ensure that if anything goes wrong with the refrigeration system, the tracing system 

has to remain operational. To this end, there are systems where wired connections 

and sensors have been used to improve the overall monitoring [31]. 
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2.2 Mapping and Thermal Mapping 

 

The concepts of general three dimensional mapping have been studied over the past 

few years. The proposed models considered numerical, analytical, interpolation 

methods, discretization methods and Artificial Intelligence (AI) as well as their 

hybrids. Each model has its own limitations, depending on the application.  

The process of general mapping involves solving the image transformation relative 

to the vector data by taking into consideration its attribute values. The survey of 

traditional texture mapping is described in [32]. Geostatistical applications are 

investigated in [33], considering the problem of spatial sampling and interpolation 

methods. Geographical Information Systems (GIS) are also considered to be one of 

the mapping tools of the digital age. 

The main purpose of thermal mapping is to ensure that all areas of the process 

achieve the required temperature levels. Many researchers have attempted to 

predict indoor/outdoor temperatures and several models have been reported. An 

accurate numerical model of coupled heat transfer in buildings has been developed 

[34]. Data Based Mechanistic models (DBM) are also used for real time monitoring 

and online adaptive control of three dimensional distributions in both an individual 

biological product and in a given movement [35]. Teodosiu et al. [36] employed a 

computational fluid dynamics technique and a modified k-ε turbulence model to 

predict indoor air moisture and its transport in a mechanically ventilated test room 

to estimate the level of thermal comfort. Among these models, more detailed and 

complex ones are Navier-Stokes equations which describe the flow of fluids for air 

flow, temperature and contamination distributions. Most of these problems are 

solved using discretization methods.  

These numerical methods, called physical models, can be used to simulate the air 

temperature distributions. The main drawbacks of these models are extensive 

computations, which lead to time consuming simulations. Hence for a medium size 

building, it may take days to complete indoor temperature simulation in a modern 

personal computer [37]. Most of the conventional modeling techniques run offline, 

as it is quite difficult to run in real time. This is due to its computational times and 

thus requires high end processors to simulate the model. Further difficulties 

develop if the model includes environmental dynamics including energy absorbers 

and energy feeders. Several computational fluid dynamics tools are available to 

examine the environmental variables in a given space with different boundary 
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conditions [45] where multiple parameters can be given that can be varied in 3D 

calculations and their influence on distributions of temperature analysed. However 

these studies are quite complex and require high computational times when it 

comes to real time analysis. 

A variety of applications require temperature data distributions of a specified area. 

Predicting 3D spatial temperature uniformity from inlet temperature distribution in 

food storage systems has been studied [46]. Control of food storage environment is 

usually done using a limited number of temperature sensors in the facility. The 

design, deployment, and output of a large scale WSN in agriculture are described in 

paper [47]. Sensor data were analysed in a vineyard to monitor temperatures at 

various locations as temperature is considered to be one of the primary variables 

affecting the growth of grapes. The most significant findings were that the areas 

with highest temperature varied from day to day. In addition the heat summation 

data that is generated from these studies can provide grape growers with a better 

awareness of potential variability in fruit maturity. So far several researchers have 

analysed various methodologies and implemented algorithms for temperature 

mapping specific and relevant to the application area. 

 

2.3 Artificial Neural Networks: A Review 

 

Soft computing is a multidisciplinary field that was proposed by Dr. Lotfi Zadeh, 

whose goal was to construct new generation Artificial Intelligence (AI), known as 

computational intelligence. The idea of Soft Computing was initiated in 1981 when 

Dr. Zadeh published his first paper on soft data analysis (see[52]). The main goal of 

soft computing is to develop intelligent machines and to solve nonlinear and 

mathematically unmodelled system problems. 

An artificial system can emulate a simplified version of a neural computational 

system. The ANN is an example of such an artificial neural system [53]. ANNs 

have often been used as an alternative to the techniques of standard nonlinear 

regression and cluster analysis to carry out statistical analysis and data modeling 

[54]. The main characteristic of ANNs is their ability to learn. The learning process 

is achieved by adjusting the weights of the interconnections according to some 

applied learning algorithms. Therefore, the basic attributes of ANNs can be 

classified into architectural attributes and neurodynamic attributes [55]. The 

architectural attributes define the network structure, i.e., number and topology of 
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neurons and their interconnectivity. The neurodynamic attributes define the 

functionality of the ANN. 

 

2.3.1 Soft computing in physical fields 

 

The knowledge of temperature variation is used for the prediction of energy 

consumption in solar buildings. To estimate the daily temperature variation a 

number of different methods have been used and artificial neural networks have 

also provided a method for prediction in many applications. Neural networks were 

successfully used to model nonlinear systems and have been applied to greenhouse 

environment modeling as they have a strong ability for nonlinear function mapping 

[57, 58]. In energy applications, the information generated by the wide variety of 

experiments will be processed with the aid of models based on artificial neural nets 

in order to assess its importance. The example of this paradigm is an experiment 

being carried out in the particle accelerator Large Hadron Collider (LHC) in the 

European Nuclear Research Centre. The advances in artificial neural networks, 

methodological development and applications were studied, among others, in [59], 

which described various ANN architectures and training algorithms. Support 

Vector Machines (SVM) have also been used in parallel with ANN as a set of 

supervised generalized linear classifiers for atmospheric temperature prediction 

[60]. These methods have performed centrally, which means the data processing 

has not been distributed among the nodes or processers for computations.  

Distributed computational techniques have also developed in the field of ANN. A 

distributed computing architecture and environment based on grid technologies has 

been developed for rapidly and accurately dealing with the fitting of neural network 

for flood peak forecasting [61]. In another study, a parallel implementation of feed 

forward neural network has been developed using C# and message passing 

interface on .NET platform [62]. A toolkit [63] offered a XML based framework 

for implementing distributed ANNs; this framework is implemented to study the 

flexibility and scalability issues when multiple systems are connected to obtain a 

power beyond the power of human biological neural networks. 

 

2.3.2 ANNs applied to thermal mapping 

 

Artificial intelligence methods for thermal mapping are considered to be a better 

approach for real time mapping. Unlike the above-mentioned physical models, 
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ANN entirely depend on experimental data, which can be made adaptive and offer a 

much faster computation. A neural network is a powerful data modeling tool that is 

able to capture and represent complex input/output relationships. Various complex 

problems have been solved using ANNs, like weather prediction [38] and heat 

transfer prediction [39]. Neural networks have a good ability for pattern recognition 

and classification of data with multiple attributes. They have been widely used in 

estimating permeability from well logging information [40], and pixel by pixel 

classification of satellite images for making surficial geological maps [41, 42]. 

Several applications of neural networks for spatial estimation and interpolation of 

geological data have also heve been reported [43, 44], these are called interpolation 

methods using a neural network. 

 

2.4 Wireless Sensor Networks: A Review 

 

A WSN permits the measurement of variables distributed over a network. WSNs 

provides an unprecedented way of interacting with physical environments [48] 

something which has become a hot topic for research over the last few years. In 

many sensor networks applications, sensor nodes collect correlated measurements 

of physical fields [49]. The NNARX system is proposed [50] for modelling the 

internal greenhouse temperature as a function of outside air temperature and 

humidity, global solar radiation and sky cloudiness. The model showed a good 

performance without the need to frequently retune the parameters with a good 

fitness. The temperature gradient analysis is vital when transporting in containers or 

trucks. There was a proposal published [51], where a WSN was employed in 

refrigerated vehicles. An alarm is triggered when the temperature gradient falls 

beyond the limits, to avoid the deterioration of the products. 

As one example, city buses are equipped with sensors for atmospheric temperature 

and pollution measurements [64]. Most of the Ecological Research stations are 

increasingly using wireless sensor systems. WSNs are also of great interest for 

studies on the number, movement and behaviour of wild animals. In self-managed 

WSNs [65], nodes are deployed, they wake up, perform a self-test, find out their 

localization and monitor their energy levels. The proposed management solution 

results showed that it can improve the performance of the various continuous WSN 

configurations and give the observer relevant information. How a sensor network 

detects small changes in a smart environment has been studied [66]. Small changes 
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in an office, such as temperature or human movements can be detected. Another 

study explored the applications and challenges for underwater sensor networks 

[67]. They have focused mainly on the potential applications of using sensor 

network nodes in offshore oil fields for seismic monitoring, equipment monitoring 

and underwater robotics. 

Sensor networks are already used for climate monitoring to detect rainfall, water 

level and weather conditions. Several works have been published in this field where 

the sensors supply information to a centralized database system [68]. Real time 

surveillance systems are also proposed [69], where the WSN measures temperature 

and humidity, and smoke for fire detection. In many agricultural production 

systems the real-time measurements can provide important information which can 

be used as a basis for system management. WSN are playing a major role in 

precision agriculture and irrigation [70]. Wireless sensor technologies eliminate the 

difficulties when a network is deployed with wired sensors across the field. 

Greenhouse monitoring and control is another field where WSN can be rapidly 

implemented. In 2003, the first application of WSN in greenhouse environment was 

reported [71]. Later, another proposal [72] was published for greenhouse control 

and monitoring system using Zigbee. 

 

2.4.1 ANNs applied to wireless sensor works 

 

WSNs supported by ANNs offer promising solutions for numerous applications. 

With the growing requirement to closely monitor and manage systems across many 

different areas, comes the requirement to provide accurate and robust decision 

support methods. However, one area that has received little attention is the 

application of ANNs within WSNs. 

In a study given by Flouri et al. [91], an SVM classifier is applied in a distributed 

fashion in WSN. A consensus mechanism and a gossip algorithm are used to train 

the network. The model was described and the information communicated to one-

hop neighbours in order to update the estimation at each iteration.  

In another study a Machine Learning (ML) approach appears to be a powerful tool 

for fast predictive modelling of temperatures [92]. It is identified that the mapping 

of the temperature inversion phenomenon is essential to classify areas where frost 

can occur. The combination of ANN with K-NNA has applied in other applications 

outside the thermal mapping domain. ML methods can handle the data-driven air 
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temperature prediction maps to precise and reliable modelling of mean air 

temperatures. There are two different aggregation architectures presented, in which 

wavelets for initial data processing and ANN for categorization of the sensory 

inputs [93]. A greenhouse sensor network model is designed [94], to address 

conditional monitoring and facilitation for diagnostics and prognostics of various 

asset types inside the greenhouse that includes plants, machinery and others. These 

studies haven’t fully focused on WSNs that use ANN architectures for real time 

prediction and mappings. There are not many studies published in the intersection 

of WSN, ANN and thermal mapping shown in Figure 2.1 and further gaps needs to 

be explored. 

 

2.4.2 Nodes placement and minimization 

 

The nodes minimization approach is required to identify the number of nodes 

required to map the thermal space. In the literature review only a small number of 

studies in this area could be found. An attempt to solve the sensor placement for 

diagnosing problems in plants has been made [84]. However, they have built a 

scenario to minimize the sensor nodes within a discrete number of possible 

positions rather than the continuous space. There have also been non-numerical 

approaches to sensor placements that show how to place visual sensors in a 

building for 3D mapping using a combinatorial optimization approach [85]. There 

are several integer programming formulations to sensor placements for 

contamination detection in water networks [86-88]. In another method [89], an 

initial estimate is made, via a sensitivity analysis of the set of potential sensor 

locations. Then the author seeks the minimum number of these sensors required to 

ensure accurate observations of the present state of the network. Other techniques 

exist in the literature for designing sensor networks around environmental obstacles 

such as walls or cliffs [90]. 

 

2.5 Data Collection and Query Processing in WSN 

 

The existing literature indicates that the data collection within the WSN community 

is identified among three major trends: Systems, Testbeds, and algorithmic research 

[73]. Systems research is based on the sensor network query processors like 

TinyDB and Cougar etc. This simplifies the user access at communication, routing 
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and node programming levels. The research using these systems is based on the 

number of algorithms which are embedded within the sensor nodes. The testbeds 

are other area where the distributed data is shared among different users. It can give 

a better focus on testing algorithms and their scalability issues. Current trend and 

evolving requirements have motivated the algorithmic research in the WSN. Our 

contribution to this research falls within this area. In WSN data processing, the 

nodes can keep on sending data to the base station. This functionality has been 

studied in other WSN applications [74], but the data are received asynchronously 

from all other sensor nodes by the base station. The asynchronous data need to be 

filtered in order to produce any valuable information at the front end among the 

nodes. If the application requires a real time synchronous data, then a query 

processing needs to be implemented. Based on the existing methods, algorithmic 

approach would provide an efficient way to work in a homogenous or 

heterogeneous network. In any typical WSN it might be a common scenario to have 

a sink, a few cluster heads and more end nodes. By using a clustering approach, it 

ensures only the cluster heads are actively involved in the transmission of queries.  

Most of the works till today are based on the systems approach that involves query 

processors like TinyDB. In an experiment conducted by Gehrke et al. [75] for a 

smart sensor query processing architecture using database technology, they focus 

on networks composed of homogenous collections of nodes. In other studies [76, 

77], location-centric storage is envisioned for on demand data storage in 

networking environments. Based on their algorithms it has been identified that the 

stored data of any event only takes a small number of communication hops to query 

the sensor nodes. Another study on the interplay between mobile devices and static 

sensor nodes has been discussed [78]. The methodology supports and enables the 

heterogeneous design space. This work contains staged operations including query 

generation, query routing, query injection and query result routing to fulfil a two-

layer network approach. Data collection and monitoring will be a tedious task for 

large networks of sensors. Selective query processing from a user interface would 

be widely accepted if it is on a web based management system. An implementation 

related to the wireless sensor gateway for efficient query management through 

World Wide Web is described [79]. This approach is more suitable for remote 

accessing and managing the network. The whole sensor network is simulated and is 

connected through a socket for communication. A dynamic data aggregation 

scheme [80] is introduced to elaborate more aggregation schemes. These schemes 
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allow nodes to process data collected from sensors and aggregate the data based on 

the interest messages. An adaptive holistic scheduler [81] is introduced to adapt the 

schedule to the runtime dynamics. It shows that the performance of query 

processing improves in various dynamic settings. Inter query is another area of 

interest [82], to compute algorithms and reduce data redundancy. 

The data aggregation can be classified into two types, single query data aggregation 

and inter-query data aggregation. In multi-hopping networks, inter-query data 

aggregation algorithms can be very useful. In other study [83], a mechanism for 

spatial queries in WSN to detect dangers in disaster situations is discussed. These 

queries are created at more than one packet to acquire irregular contour data. Most 

of these query based algorithms have not much focussed heavily on data 

synchronization. 

 

2.6 Research focus 

 

The earlier topics have described the previous work done in the area of WSN, ANN 

and thermal mapping. A thorough literature review has revealed that there are 

several studies in the areas of WSN, ANN and thermal mapping individually.  

However, few studies cover a combination of any two of these areas. It has been 

identified that the research on thermal mapping using neural networks and WSN 

area is not well developed and requires further attention. Figure 2.1 shows the area 

where the current research work is focused and also provides some of the key 

references.  

Our research is to identify the methodologies to map the given space for thermal 

profile in WSN platforms using soft computing. Hence, the focus is given to the 

intersection of these three elements as shown in Figure 2.1. The literature review for 

each of these elements is already described in the earlier sections. Hence, we have 

focused on developing a generic concept where it can fit to an object-centric 

environment to map the thermal profile. These objects could be food items, plants 

or any industrial products where it is critical to monitor temperature. Towards this, 

we have examined the possible techniques that can be used in the WSN domain as 

the sensors nodes are very limited in computational resources. We have also 

realized the advantages of the online learning paradigm, which is suitable to drive 

the WSN in a real time environment for thermal mapping using ANN. 
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Figure 2.1 Research focus Intersection areas  
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Chapter 3 
 
 
 
 

3 Environment for nWSN Development 
 
This chapter introduces the tools required for nWSN development. In order to 

develop a concept we have to work either to build a model in a software 

environment or develop a prototype system. Nowadays there are several 

commercial software packages available that can mimic the real systems, while a 

prototype may have limited flexibility to create various scenarios other than the 

simulation environment. This chapter focuses on the software environment for 

simulation, neural network and data visualization for thermal mapping and the 

hardware environment for sensor networks.  

 

3.1 Introduction 

 

Development tools are necessary to undertake the modeling of a concept before 

implementation. This can be done either in a simulation environment or by directly 

embedding the logical code in suitable hardware or test beds. Several simulation 

tools are available to work in WSN simulation modeling to mimic the real system. 

These include Mote Runner from International Business Machines Corporation 

(IBM), OPNET, Visual Sense, sQualnet etc. There are also tools available from 

research institutes, but these are not widely used. The commercial versions 

mentioned above are popular in the WSN research area. When it comes to the 

specific modeling requirements of this research, there is no such environment or 

tools available to simulate and visualize the results. This is due to the reason that 

most of the simulation environments don’t support customization. In other terms, 

they are not open source tools. Hence, we chose to have more than one single 

environment to simulate and visualize the concept and to analyse the results. 

 

The main software environments used in the research work are as follows 

 

1) IBM’s Mote Runner - WSN Operating System, 

2) Flexsim – Simulation Software, 
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3) Peltarion Synapse Neural Net Software, and 

4) Voxler – A three Dimensional Scientific Visualization Program. 

  

3.2 Simulation Environments 

3.2.1 IBM’s Mote Runner 

 

The IBM’s Mote Runner runtime environment for WSN is currently under 

development at the Zurich Research Laboratory. Mote Runner is an operating 

system for the WSN environment. This also comes with simulation software to 

work offline to test the programs before loading into the sensor board. The 

hardware (RZUSBSTICK and AVRRAVEN) that has been used for the test bed 

discussed in Chapter 5 is from the Atmel Corporation. This hardware does support 

IBM’s Mote Runner operating system. Hence, we have chosen this hardware to 

enable ease of the development in simulation and real time modes.  

The key features of the simulation environment and its supporting hardware are 

shown in the Table 3.1. 

 

Programming 
Languages:  

Java and C# (either/or/mixed) + optimizer  

Hardware 
Requirements:  

8K RAM, 64K Flash (8bit/16bit/32bit CPUs)  

Supported Mote 
Hardware:  

IRIS (Memsic), RZUSBSTICK (Atmel), AVRRAVEN (Atmel),  

Programmable 
Middleware:  

Control, customization, setup, and testing of mote networks.  

Mote 
Simulation:  

Debugging, testing, analysis of sensor networks including power 
consumption, sensor feeds, inspection, tracing.  

IDE:  Source level distributed debugging using Eclipse.  
Web Front-End:  Integration of WSN applications with web-based front end.  

 

 

It allows programmers to use object oriented programming languages and 

development environments such as C# and Java to develop portable WSN 

applications that may be dynamically distributed, loaded, updated, and deleted even 

after the WSN hardware has been deployed. The Mote Runner operating system is 

targeted at small embedded systems. The programming languages C# and Java have 

a number of adaptations in order to run effectively on embedded systems. These 

changes are all aiming to improve the performance; small footprint, high bytecode 

throughput and reduced RAM usage. 

Table 3.1 Key features of the Mote Runner 
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The Mote Runner provides a virtual machine for executing byte codes and an 

operating system to organize access to different devices and to schedule the various 

activities. The virtual machine in Mote Runner provides only a single thread of 

execution. An application registers callbacks with operating services which will be 

invoked on certain events. 

Mote Runner WSN applications provide seamless integration with state of the art 

back end infrastructure by means of an event driven process engine effectively 

bridging the gap to large scale business scientific applications without requiring 

particular technology skills. 

 

3.2.2 Mote Runner architecture 

 

The Mote Runner implementation builds upon off the shelf embedded (Mote) 

hardware with a thin hardware abstraction layer written in C and Assembler 

encapsulating any hardware specific functionality. At the next layer, there is a 

virtual machine (written in C), runtime library (written in C and C#) and 802.15.4 

MAC layer (written in C). Runtime library and the MAC layer expose APIs for 

application development in higher level languages such as C# and Java.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 shows the Mote Runner Architecture. We have procured RZUSBSTICK 

and AVRRAVEN WSN modules from Atmel for the experimental setup at our 

Figure 3.1 Mote Runner Architecture [110] 



30 
 

 IBM Mote Runner OS Shell 

Sonoran 

Javascript 

Browser 

Comote 

 

 

 

 

 

 

 

Web Application 

SeNSe Testbed 

 

Database Server 

 

Neural Net Engine 

 

Test bed Interface 

(Web/Stand alone) 

SeNSe (Sensor Network and Smart environment – http://www.sense.ac.nz) 
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The Atmel’s modules can support Mote Runner operating system, as IBM has 

released the firmware to support these. The nWSN concept is initially developed in 

a simulation environment and later Atmel modules are used to implement nWSN 

structure and QnDP algorithms discussed in Chapter 5 and 6.  

3.2.2.1 Flexsim Discrete Event Simulation 

 

The nWSN concept development requires a three-dimensional space where the 

space can be generated via a grid based thermal profile to mimic the real system. 

This space is further used to deploy sensor nodes in a virtual reality environment. 

These nodes can be capable of sensing the temperature data at its location 

programmatically. Hence, a three-dimensional environment is required to evaluate 

the concept for its ability to run various scenarios. These customized nodes can be 

simulated as fixed nodes or mobile nodes. We have used Flexsim virtual reality 

simulation environment for designing this space, where the sensor nodes are created 

and customized to deploy in the space. 

Flexsim is a powerful simulation and modeling software. This software can help to 

make intelligent decisions in design and operation of a system. A real time three 

dimensional environment is provided to build a model of a real life system. Flexsim 

Figure 3.2 SeNSe Testbed Architecture  
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is more general purpose simulation software. The objects available within the 

software can be customized by using the C++ programming language and inbuilt 

functions. 

3.2.2.2 Visualization and 3D engine 

 

Flexsim is a highly visible technology that can be used by forward thinking 

researchers. It is surprising how effective an animated simulation model can be for 

getting people attention and influencing their way of thinking. The animation 

displayed during a simulation provides a superb visual aid for demonstrating how 

the final system will perform. It has a powerful three dimensional engine that 

supports high performance interactive three dimensional vector graphics. The 

graphics library uses OpenGL technology. We can write code in C++ and using 

custom libraries/functions for creating the objects in the given space. The concept 

modeling and validation uses the data generated by the simulation environment. 

3.2.2.3 Model views 

 

Flexsim uses a three dimensional modeling environment. The default model view 

for building models is called an orthographic view. We can also view the model in 

a more realistic perspective. It is generally easier to build the model's layout in the 

orthographic view, whereas the perspective view is more for presentation purposes. 

However, we may use any view option to build or run the model.  

3.2.2.4 Flexsim objects 

 

There are mainly two basic objects named Fixed Resources and Task Executers. 

The available model objects in the library are all derived from these basic objects. 

For the nWSN concept development, we have customized a fixed resource object 

and created an infrastructural node and a portable node. Further neural net 

algorithms are written by using C++ and user defined functions within the 

modeling environment. The custom Graphical User Interface (GUI) can be built for 

user input while running the simulation model. All the cold storage defined spaces 

for various scenarios are created in the Flexsim environment for concept modeling 

and are discussed in Chapter 7. The schematic diagram of the cold storage built in 

Flexsim is shown in Figure 3.3. 
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The infrastructural and portable node objects can be created dynamically and 

placed within the modeling environment to setup the scenarios. An example GUI 

built for running these scenarios is shown in Figure 3.4. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3 Artificial Neural Net Software 

 

Peltarion Synapse software [105] is used to run the neural net algorithm from the 

data generated by the simulation model to identify the best architecture and 

program validation. Peltarion Synapse can generate the neural net algorithm into a 

.NET DLL which can be connected to the simulation environment to calculate the 

Figure 3.3 Schematic diagram of the cold storage 

Figure 3.4 GUI built in Flexsim to setup a scenario 
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prediction. The program can be written in C# language and several neural net 

architectures can be tested for their performance. 

Peltarion Synapse is the most advanced development environment for adaptive 

systems. It allows the user to thoroughly analyse and process the data to design, 

train, post-process and deploy adaptive systems. Synapse has the most power 

algorithms and training architectures within its integrated development 

environment, hence it is used to compare various architectures for suitability to the 

application domain. 

 

3.2.4 Voxler visualization program 

 

Data visualization is important for any three dimensional data analysis. The 

volumetric rendered maps can produce a better comparison than any two 

dimensional charts. We have used Voxler visualization software for producing 

these three dimensional maps. 

In this research work, we have used Voxler for volumetric rendering the 

temperature data within the specified space. Voxler is a powerful visualization 

program oriented primarily towards volumetric rendering and three dimensional 

data display. 

 

 

 

 

 

 

 

 

 

 

In our scenarios, we have all the temperature data available in three dimensional 

space and Voxler has assisted throughout the conceptual and implementation 

phases for comparing the actual temperature to the predicted temperature as shown 

Figure 3.5 Volumetric rendering data produced by voxler 
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in Chapter 5, 6 and 7. The volumetric rendering temperature data at the SeNSe 

laboratory as shown in Figure 3.5. 

 

3.3 Hardware Selection for WSN 

 

One of the challenges is to decide what is the right hardware environment for this 

work. There are several commercial vendors who supply different hardware with 

various specifications. However, most of these vendors do not support a simulation 

mode where the algorithms can be built and tested before embedment. In simulation 

mode where we can write the algorithms and run offline to test the logic before it 

can be deployed; a reduced developmental life cycle can result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

IBM has the supported firmware for Atmel’s WSN nodes and IBMs Mote Runner 

has a simulation mode. Hence we have procured these sensor nodes to develop and 

test our conceptual model. The AVRRAVEN has an AT86RF230 2.4 GHz radio 

transceiver and each kit contains two AVRRAVENs (LCD module) and one 

RZUSBSTICK (USB dongle). The RZUSBSTICK uses a communication device 

class creating a virtual COM port. This will allow simple communication between 

the host PC and the RZUSBSTICK. Atmel’s AVR Wireless radio transceivers are 

designed to be compliant with IEEE 802.15.4 physical layer requirements that 

specify a mode of transmission where the RF output is off unless an active message 

packet is being sent. 

 

Figure. 3.6 Wireless sensor node from Atmel 
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Chapter 4 
 
 
 
 

4 Spatial Analysis: Thermal Mapping 
 

4.1 Introduction 

The temperature fluctuation has a significant effect on the quality of the products 

stored in a given space. Hence it is essential to identify a methodology for spatial 

mapping that can monitor the dynamics of the environment. This chapter introduces 

the ideology of the nWSN. It focuses on the architectural overview of an integrated 

solution of neural network and WSN as applied to spatial analysis and thermal 

mapping. The Neural Network approach is compared with the Shepard’s algorithm 

[100] modified Euclidian distance.  

 

4.2 Ideology of the nWSN 

 

The expected wide deployment of WSN can be used to predict the environmental, 

physical and behavioural attributes to manage and control the data. The physical 

attribute, that is temperature, is the main element considered for the data collection 

and analysis in this work. The space to be monitored is assumed to have the 

following components. 

 

1) Static Infrastructure – which allows for placement of sensing nodes, 

2) Portable Objects – which could carry sensing nodes, 

3) Energy Absorbers,  

4) Energy Feeders.  

 

While the first two represent the key generic components that facilitate the 

accommodation of the sensors that sample the space, the second two act as the main 

sources that influence the environment. However the elements (3) and (4) are not 

considered within the modeling, since they represent the excitation to the 

environmental dynamics. The assumption here is that at any moment in time the 

temperature of any point at the given space is in an equilibrium state. Hence, the 

temperature at any point in time is given by equation 4.1 below. 
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The nodes N1 to Nk deployed on the infrastructure shown in Figure 4.1 are stationary 

sensing nodes. Some of these nodes are elected as data collectors for other nodes 

and may have more computational capabilities than other nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The nodes P1 to Pk are the sensing nodes that are carried by mobile objects and P5, 

P6, P7 and P8 nodes are stationary. The nodes can provide sample temperature 

readings at their specific location within the space. The temperature at any arbitrary 

position can be estimated through either analytical or knowledge based approach by 

using the sample data from all sensor nodes available within the confined space.  

 

4.3 Object-Centric Intelligent Environment 

 

An object centric intelligent environment utilizes the temperature sensing samples 

provided by the scattered sensors within the confined space and calculates the 

temperature at the location of a specific object. These objects could be human, food 

material, plant or any other object that requires information about its temperature 

exposure. An intelligent environment has the ability to sense its current physical 

and computational environments. The objects are considered to be families of 

products that can vary from plants to human beings, each of which is characterized 

T(x,y,z) = f(element 3, element 4)  4.1 

Figure 4.1 Ideology of the problem 
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by a set of commonalities. In theory, the environment designed for thermal 

mapping can accommodate any object. 

For example, if the application area is a greenhouse, then it drives towards a plant-

centric environment. Controlling and monitoring temperature in greenhouses 

affects growth and development processes directly. The main climate state variable 

is typically the air temperature, which must be controlled to achieve proper plant 

development.  

 

 

 

 

 

 

 

 

 

 

 

Another example is that of fruit cool stores, where pallets containing fruits, are 

required to retain temperature records over time. Figure 4.2 gives a conceptual 

diagram of the object-centric environment for thermal mapping. The given object-

centric environment consists of three components, as follows.  

1) Data collecting node  

2) Sensing node  

3) An object.  

 

The sensing nodes are either portable (P1, P2…Px) or fixed (N1, N2, Nx) where x= 

1,2,3..n. The data collecting node is responsible for gathering the information from 

each sensing node. These data collecting nodes act as a cluster head for the given 

sensing nodes. The temperature in the vicinity of the object is required to be 

identified. Figure 4.3 shows the objects activity pseudo code and that gives an 

overview of the object centric model. 

It is possible to use environmental information to guide the cluster head in response 

to varying environmental conditions. This research drives towards an object-centric 

Figure 4.2 Conceptual diagram of the object-centric environment 
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intelligent environment for thermal mapping. The proposed concept will have the 

possibility to incorporate additional information into the system by combining prior 

knowledge of the environmental objects that exist and the system reacts according 

to the condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

4.4 Thermal Mapping Methodologies 

 

In many agricultural production systems the accumulative data on the surrounding 

temperature dynamic behavior is vital for identifying the product condition. There 

are several methodologies applied in various research studies for thermal mapping 

to measure temperature at a given location within a space. In a WSN arena, this 

task is challenging, as most of the data processing algorithms are time consuming 

and are difficult to implement in real time. As discussed in the literature review, 

most of the conventional methods are not suitable for the WSN arena when 

frequent update is required as an alternative approach to the analytic approach. The 

following section discusses two approaches used here. These are Shepard’s 

algorithmic solution and Neural Net based solution. 

 

Figure 4.3 Objects activity – an overview of the object centric model 

 

//Objects activity 

  

objectsActivity( ) 
{ 

Initialize node parameters  
Do  

New object identified 
Object’s status initialised and recorded 
 Loop for all sensor nodes 

{  
Request data from the sensor nodes 

  Collect location and temperature data 
 } 

Initialize the algorithm  
  Feed data into it 
 Run the algorithm 
Generate thermal profile 
Identify temperature in the vicinity of the object 

While (new object identification) 
} 
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4.4.1 Thermal mapping using Shepard’s algorithm 

 

It is assumed that each sensing node in the given space knows its location 

information (x, y, z) and attribute value temperature (T) at any given time. Hence, 

any given node defined in the space has its location and attribute information 

represented by expression 4.2 and equation 4.3, where wk is the weight function for 

a given node Nk, which is a function of Euclidean distance dk. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since we focus on dynamic temperature mapping, existing approaches such as 

Shepard’s algorithm [100] with modified Euclidean distance are used to test the 

performance. This model uses a weighted average of surroundings or neighbouring 

nodes data to compute the temperature by using an interpolated function based on 

the distance as shown by Figure 4.4. 

Let m denote m-dimensional Euclidean space in a dataset S m where S = {(x0, 

y0, z0),...(xa, yb, zc),...(xl, ym, zn)} which contains a number k of portable sensor nodes 

located randomly at points (xa, yb, zc) in such a way that 

Figure 4.4 Predicting temperature at a point using Shepard’s algorithm 

N(Location(x,y,z) , Attributes(T)) 4.2 

wk=f(dk) 4.3 
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m ={(x, y, z) : x, y, z  } at points x=xa at any a=0,1,2,…l, y=yb at any 

b=0,1,2,…m, and z=zc at any c=0,1,2,…n.  

The attribute value, i.e. temperature (T) at a given query point q in the space, can be 

evaluated by equation 4.4. 

 

 

 

 

where Tq(x, y, z) is the estimated or predicted temperature at any query point q(xa, yb, 

zc), and wj
'  is the weight of each portable node to the query point and it is given in 

equation 4.5. 

 

 

 

dj is the Euclidean distance between the sensing node and the predicting point for 

each j=1, 2,...k. Figure 4.5 shows the pseudo code written to compute the 

temperature prediction. 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

Tq(x, y, z) = 
∑ wjTj

k
j=1

∑ wj
k
j=1

 = wj
'k

j=1 Tj 4.4 

wj
'  = 

dj
-1

∑ dj
-1k

j=1

 4.5 

Figure 4.5 Pseudo code for Shepard’s algorithm 

 

//Compute the temperature at a point q(x,y,z)  

  

Temperature_at_q(x,y,z) 
{ 

Initialize the number of nearest sensing nodes – k 
Loop for all number of sensing nodes for each j=1 to k 

Calculate distance (dj) = 

� �
�

� �

�

� �
�   

  Square the distance: dj
2 

  Invert the distance: 1/dj 

  SumInverseDistance  += 1/dj  
 

Loop for all number of sensing nodes for each j=1 to k 
  Calculate Weight(j)  = Inverse the distance / 
SumInverseDistance 
  

Loop for all number of sensing nodes for each j=1 to k 
  Predicted Temp at q(x,y,z)  +=   Weight(j) * Ntemp 
} 
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The number of sensing nodes within the confined space does have an impact on the 

prediction accuracy. Hence, there is a tradeoff between the number of sensing 

nodes and the accuracy of the temperature prediction. The distribution of the 

sensing nodes is another factor which has an effect on the prediction. Balanced 

sampling of the space is therefore important. Shepard’s algorithm is always 

dependent on the distances and offers low computational overhead. However, it has 

a poor performance on the scenarios that have been conducted in our experiments. 

 

4.4.2 Neural net based solution to thermal mapping 

 

Based on the literature analysis, ANNs are used widely in the field of agriculture, 

manufacturing, food and pharmaceuticals. ANNs are also applied to model 

nonlinear systems (Ex. greenhouse environment) and they are particularly useful 

for handling nonlinearities and dealing with nonlinear function mapping.  

In a dynamic environment where temperature changes with time, online training is 

required to update the parameters of the neural net. Several approaches can be 

considered based on the application within the ANN.  

In Feed Forward Neural Networks (FFNN) the network connections are directed 

from input layer to output layer. All the sensing nodes within the confined space 

feed their location and temperature data to their cluster head as show in the Figure 

4.6. In this network, there is an input layer consisting of 3 neurons, an output layer 

consisting of one neuron and a hidden layer with six neurons.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 FFNN for thermal mapping 
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The input neurons get their data from all the given sensing nodes N1 to Nk. This data 

contains the sensing node location information (x,y,z) and the temperature (T) at 

that point. The information from each sensing node delivered to the cluster head is 

considered as a ‘sample’ (Pt), and is used to train the network. Hence the sensing 

nodes pattern can be represented by training data (Pt1, Pt2, Pt3,...Ptn) at regular time 

intervals, t1, t2, t3,...tn where n is the time interval. The on-line learning is 

accomplished, by ensuring each propagation is followed immediately by a weight 

update. The training is done by using back-propagation in two passes. The forward 

path is used to evaluate the output of the neural network for the given input in the 

existing weights. In the reverse path, the difference in the neural network output 

(Tn) with the desired output (T) is compared and fed back to the neural network as 

an error to change the weights of the neural network. 

The key parameter that affects the precision is the number of iterations to run the 

back propagation algorithm for each sample received from any sensing node. On 

the other hand, the number of hidden layers can also influence the output precision. 

The following section discusses the nWSN structure and the impact of internal 

parameters of the neural net architecture for thermal mapping.  

 

4.4.3 Data collection and node implementation 

 

The neural network learning process means finding an appropriate set of weights 

that influence the inputs to the neurons. The neurons are interconnected and each 

neuron operates by multiplying each incoming signal by a weight and then 

summing the weighted inputs. The iterative process for determining appropriate 

weights is called neuro-learning. The least mean error square is commonly used for 

minimizing the objective function. This is given by equation 4.6. 

 

 

 

 

where 	� is the desired output (conditioning value), 	� is the actual output, n is the 

number of samples in the training dataset that are fed from all the sensing nodes, 

and N is the number of nodes of the output layer. Ec is the network cumulative error 

of the nWSN, which is used as a criterion for learning. The learning continues until 

Ec converges to an acceptably small value, which is less than 1. The rate of 

Ec = 
�

�
 	� 	�

��
���

�
	��  4.6 
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convergence is governed by the learning rate and momentum as neural parameters. 

Equation 4.6 is more generalized and more appropriate if the confined space 

contains more than one single cluster head. The neural net algorithm is embedded 

in all the cluster heads. The pseudo code written for the nWSN neural net is given 

in Figure 4.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5 Computation and Thermal Coverage Focus 

 

The computation in the nWSN architecture is represented by distributed patterns of 

activity where it takes place in a decentralized manner. The main advantage of this 

concept is to minimize the computational burden on nodes, as it can lead to an 

automatic generalization. In real time monitoring systems, the data has to be 

Figure 4.7 Pseudo code for nWSN cluster head 

 

//Train the neural net at a cluster head  
  

Train_net(x,y,z,T) 
{ 
 Initialize number of sensing inputs (n) 

Initialize neural weights, learning rate, momentum 
Collect sensing location (x,y,z) and temperature (T) 

While not terminating condition (training error<0.001 or 10,000 
epochs) do 

 Initialize index for hidden and output layer – i, j 
 Initialize sum 

Loop for all hidden neurons 
{ 
   Sum += inputs[j] *h1_weights[j][i] 

   h1_a[i] = f(sum-h1_threshold[i]) 

 } 
Loop for output neuron  
{ 
   for(j=0; j<numHnodes;j++){ 

    sum += h1_a[j]*o1_weights[j][i] 

    o1_a[i] = f(sum – o1_threshold[i]) 

} 

} 
  if((Target Temp-output)>training error) 
  Adjust neural weights 
 else  

  beak; 
end While 

Repeat for all sensing inputs 

} 
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updated within a time interval. These systems are scheduled to update the data 

based on the application.  

The optimal deployment strategy within a confined space is important to maximize 

the coverage using the resource constrained sensor nodes. The optimal placement of 

nodes would minimize the number of nodes required, minimise cost, and reduce 

communication overhead while maximizing the coverage of the space. A typical 

deployment of WSN consists of a few hundred nodes which are distributed 

randomly or over a predefined distribution within the space to be recorded. In most 

of the applications, sensor nodes sense the environment and provide information to 

the sink or base station. But collaboration of multiple sensor nodes within a 

confined space would allow much more advanced tasks to be accomplished 

effectively. This means grouping of sensor nodes and performing tasks would allow 

wide areas of applications. In this scenario, the cluster head (infrastructural node) 

has a capability to compute certain tasks that leads to application specific decisions. 

One of the key issues here is to map the thermal profile with time (spatial-temporal 

mapping). This could be done by deploying WSN nodes that cover the local region 

where they can gather the temperature data as input to feed the cluster head. There 

is a computational burden to the cluster head where it can compute and generate a 

thermal profile. The accuracy of the thermal map varies with the number of sensing 

points and their placement strategy. 

 

4.5.1 Space division based on layers 

 

The space can be divided into a number of vertical or horizontal layers. In a spatio-

temporal mapping, the input data points can be collected continuously or discretely. 

In this work we have considered that the data points are gathered at discrete points.  

Accordingly, the space is also divided into layers, as shown in Figure 4.8. These 

layers can be used to map the profile at a specified time. Layer 1, Layer 2 and 

Layer 3 are divided for better coverage within the confined space to enable 

placement of the sensor nodes. These layers are partitioned horizontally for the 

meat plant application.  It is given an importance to the beef cuts that are expensive 

in the retail market (Ex. Topside, sirloin). It is also considered that the cold air is 

denser than warm air. Hence, the horizontal layers can reflect the same for better 

analysis.   
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4.5.2 Coverage aspects 

 

In nWSN, the concept of area coverage is considered as a measure of quality of 

service. But in our case, we are considering the thermal coverage of the confined 

space rather than the communication coverage. And of course the thermal coverage 

is a part of communication coverage. There are mainly three coverage types and 

these can be divided as follows. 

 

1) Blanket Coverage,  

2) Barrier Coverage, and  

3) Sweep Coverage. 

 

We have chosen type one, as it can be achieved by a static arrangement of nodes 

while maximizing the detection rates at arbitrary points within the sensing field. 

The coverage of a confined space requires an optimal number of nodes to be 

deployed in such a way that it can represent every point in the space. 

In this work, we have used computational geometry and probability theories to 

address the thermal mapping coverage. Initially we have considered the sensing 

models and the concept of total coverage. A sensing model addresses the quality of 

sensing, or sensitivity gradually attenuates with increasing distance, as given by 

equation 4.7. 

 

 

Figure 4.8 Space divisions into layers 
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where � is the sensitivity of a sensor 	 at point .  and  are the sensor 

dependant parameters and 	  is the Euclidean distance between the sensor 

and the point. A sensing range can be defined for each node and the sensitivity 

decreases with increasing distance. The basic model has been extended to a realistic 

one named probabilistic sensing model. The simplest communication model 

includes the probabilistic sensing model. It is assumed that each sensor node 	 is 

able to communicate only upto a specific distance (i.e. communication radius, Rci). 

At any arbitrary point which has been covered by more than one sensor node at the 

same time, each sensor node contributes a definite rate of coverage. This total 

coverage at any point is also described by equation 4.8. 

 

 

 

Let χ be the set of nodes Ni where i= 1, 2,...,k whose sensing range covers the 

points P(xi, yi, zi). ������ 	  is the probabilistic coverage of a point. The two nodes 

	 and � are able to communicate with each other if the Euclidean distance 

between them is less than or equal to the minimum of their communication radii, 

when d(Ni, Nj)≤min{Rci, Rcj}. 

 

4.6 Nodes Minimization Approach 

 

The minimum number of sensor nodes required to map the given space is an 

important criterion. Each node acts as an intelligent agent that can run its own 

algorithm by itself. The following section describes the methodology involved in 

minimizing the number of nodes required in the given space. The important factor 

here is that each node scrutinizes its neighbours and keeps track of its data 

including its location and temperature values. 

 

4.6.1 k-neighbour search for nodes 

 

Each node will have the data of its neighbour nodes. The neighbour nodes k will be 

generated dynamically for each node. The algorithm defined in the node will run 

frequently with a time span. The k-neighbour nodes will be decided by the proposed 

algorithm outlined in Figure 4.9. The accuracy of the predicted temperature largely 

depends upon the effective selection of the k-nearest neighbours. The general k-

������ ������ 	




	��

 4.8 
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Nearest Neighbour Algorithm (k-NNA) has got a limitation; that is, once we choose 

the nearest neighbours, the selection remains unchanged throughout the process. 

Now in this proposed model, nearest neighbours count changes from one node to 

another node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6.2 k-neighbour search for a query point 

 

Assume p is the sensor node identified by p(x, y, z) as the location of p. S is a set of 

nodes that may be selected for the process and should contain  nodes that could be 

elected for the process, where N S. The sensor node calculates the Euclidean 

distance for all neighbour N nodes and they are ranked from 1 to n, so we have the 

distances d1≤ d2≤...≤ dn.  

Among the specified set S, at least k nodes must be defined to estimate the 

temperature of the node p. It has been identified that the Dual Buffer Search (DBS) 

algorithm is more efficient to find the k value when compared to the others [103]. 

The DBS requires two buffers to sort out the neighbour nodes. Since p has its own 

neighbours ranked from 1 to n, we have a clue from the node ranked 1, say N1 and 

can give an initial guess and DBS is much more efficient with a smaller search 

between these two nodes. The results are discussed in the later chapter. 

Figure 4.9 k-neighbour search algorithm 

 

//k neighbour search algorithm  

  

N = Number of nodes 
k = Number of neighbour nodes 
  

At any selected Node ‘X’: 
Calculate the Euclidean distance to all (N-1) nodes and sort out and 
make the rankings from 1 to (N-1) 

Do for all nodes 
Calculate estimated temperature at Node ‘X’ by  

considering first three ranked neighbours 
Estimate, Error = Temperature(actual)- 

Temperature(predicted) 
 While (N-1)   

Identify the location (k count) where error is less 
k count will be the valid count to predict Temperature at node ‘X’ 
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Let us assume Sp as the set of nodes for node p and S1 as the set of nodes for node 

N1. Hence at least the set of nodes contained in Sp∩S1 are the nearest neighbours to 

the node p. The set of nodes Sp∩S1 will be taken into consideration as k-nearest 

neighbours for node p. 

 

4.7 Extending the Solution through Space Partitioning 

 

In the nWSN implementation based on the neural network approach, the coverage 

regions could be divided into sub regions or subspaces where they can overlap each 

other as shown in Figure 4.10. To map the thermal coverage we are looking at the 

overlap of the coverage regions of each cluster head (infrastructural node). Hence 

the profile generated by each infrastructural node is taken while mapping the 

subspaces. The influences of the multiple subspaces are studied for thermal 

coverage to map the overall space with increased profile accuracy. 

The coverage of a confined space requires an optimal number of nodes to be 

deployed in such a way that they can cover every point in a space. To map the 

thermal coverage, we looked at the overlap of the coverage regions of each cluster 

head. These scenarios examine the surface temperature variation around the 

subspaces.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.10 Subspace partitioning and their regions 
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These results will benefit to mainly focus on how the different cluster subspaces 

would help to predict the temperatures more precisely at the surface boundary. 

We have four regions, where it can overlap and that form subspaces within the 

whole space. Each region represents a population of sensors managed by a cluster 

head. A boundary exists among these four sub regions. The sensor nodes that can 

cover these boundaries can share information on the given region boundary cluster 

head. Hence we are looking at a point to analyse the surface of the boundary. The 

regions are distinguished as a1b1, a2b2, a1b2 and a2b1. The boundaries can be viewed 

at a1a2 and b1b2 as shown in Figure 4.10. The simulation results revealed the effect 

on the accuracy of thermal predictions at the given infrastructural node and are 

discussed in the simulation results chapter 7. These scenarios are built to evaluate 

the effect of subspace on the thermal accuracy. This subspace analysis is meant to 

identify a difference when utilizing more than one cluster head for computations. 

The next section describes the methodology of the nWSN structure for subspace 

partitioning.  

 

4.7.1 nWSN structure for subspace partitioning 

 

The confined space can be divided into sub-divisions to improve the prediction 

accuracy and this also reduces the computational burden on a single node. Each 

cluster models its own sub-space that contributes its computations to the overall 

space.  An example model scenario has 4 clusters. This intern has N equal to 4 in 

equation 4.6. The distributed node based nWSN structure is shown in Figure 4.11.  

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.11 nWSN Structure using 4 clusters 
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Assume the sensing nodes that are attached to the objects move continuously or 

occasionally. There is a possibility that nodes migrate to another region. Some of 

the data collected by that node may still be useful for the previous cluster for 

synchronization purposes and hence the communication among cluster heads is 

essential here. This approach of messaging services between the clusters is 

discussed in the implementation of the neural net cluster dynamic grouping. A 

dynamic grouping model assists in gathering information from the required sensing 

nodes along with the temperature data, even after the carcasses move continuously 

to synchronise the data at the instant when the training is required. The requirement 

of synchronized data input to the cluster head for training is discussed in the 

upcoming section. 

The cluster heads within the model are connected in mesh network topology. This 

service is used for computational and communication purposes. The sensing nodes 

that are attached to the mobile objects are dynamically connected with one of the 

cluster heads while they come into their cluster zone. The overall network 

formulates clusters to facilitate computations and message interactions. The cluster 

heads are shown in the Figure 4.11, where A, B, C and D can make use of Nodes 

Message interaction mode for message interactions among other cluster heads. 

Dijkstra’s algorithm is used to evaluate these models for finding the shortest 

weighted path from the sensing node to the cluster head. A dynamic programming 

model is designed to formulate a recursive algorithm, in which the shortest path 

length (LI) to a cluster head I can be expressed by equation 4.9.    

 

 

 

 

where  represents the sensing (portable) node and S is the space. When the NMi 

Pnode interaction executes, the algorithm calculates and identifies the cluster head 

to join. The NMi Inode and Pnode interactions in the nWSN architecture is shown 

in the Figure 4.12. 

Within the time interval, the algorithm runs to verify any changes. Alternatively, 

when the NMi Inode interaction executes, the querying system within the node 

triggers to redirect the relevant cluster head to act accordingly to give a response. 

The flowchart in Figure 6.9 explains the NMi Inode that responds in deciding the 

query to execute. The user can query for a specified location and the cluster head 

�
 !,�" ∈ %

!  4.9 
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can then evaluate and return the temperature value. The cluster head is the 

controller that initiates the process. If the specified query location is not within the 

range of the given cluster head, it will immediately pass it over to the corrected one. 

Let Ni be the cluster head (infrastructural node), where i is the node ID and p(x,y,z) 

is any arbitrary point within the boundary of the specified region. If p(x,y,z)  Ni , 

the temperature value is evaluated within the node Ni. If p(x,y,z) Ni the query will 

be forwarded to Nj where p(x,y,z)  Nj. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.8 Time Synchronization for nWSN Data Processing 

 

The nodes which are attached to an object can be moved continuously or can be 

static. When the objects are moving, the data received from a sensor data to a 

cluster head reaches asynchronously. This reflects an inaccurate training and 

mapping of the space. Hence there is a requirement to consider a method where 

Figure 4.12 NMi Inode and Pnode interaction among the nodes in nWSN 
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training could be done synchronously at the cluster head. The approach for 

buffering and query management methodology is proposed to fulfil this 

requirement and accordingly, the QnDP algorithm has been developed. 

 

4.8.1 An algorithmic approach – QnDP algorithm 

 

The query based data processing model consists of an assignment of the parameters 

within the nodes assembly. These parameters are dynamically assigned when a 

request is placed to any node. The queries receive and response state triggers for 

each epoch in the sensor node. The local variables data is allocated in byte array 

within the assembly. The cluster head/infrastructural node is allocated a buffer for 

the aggregation functions of interest. In this study, we have examined the aggregate 

functions including average [Avg()], maximum [Max()] and minimum [Min()] for 

temperature data at the cluster head level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Along with these aggregate functions, the main parameters of time, location and 

temperature are assigned to it. Error! Reference source not found. describes the 

variable assignment data model for the defined parameters. 

  

Figure 4.13 QnDP Memory buffer model 
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Each column is designated to allocate a parameter for a specified time as a row. 

Figure 4.14 describes the algorithmic approach for data processing for enhancing 

nWSN architecture. 

 

Figure 4.14 QnDP Algorithm 
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Chapter 5 
 
 
 
 

5 nWSN Simulation and Validation 
 

In this chapter, the nWSN structure is constructed in a simulation environment to 

validate various scenarios. Further testing on a local testbed at SeNSe laboratory is 

discussed. A Shepard’s algorithm is used for comparison with the adaptive neural 

network solution. Other scenarios are set to test the ANN approach and analyse key 

parameters involved in the solution. 

 

5.1 Introduction  

 

A simulation model is constructed with a space volume 20x20x3 m3. This size can 

be varied in the modelling environment. The code is written using C++ and custom 

libraries/functions of Flexsim simulation environment [104]. The nWSN is 

designed based on the following assumptions for the scenarios discussed in this 

section. 

 

1) The three dimensional location of each deployed node in the simulation 

environment is known. 

2) The stationary (infrastructural) nodes are considered to be deployed on the 

inner surface of the space boundary. 

3) Both cases of steady-state and transient state are considered, as follows: 

 

a) In steady-state mode, the temperature within the space follows a 

predefined profile. This profile is generated by assuming few 

temperature points and the volume is mapped within the 

simulation environment. 

 

b) In transient mode, the dynamic behaviour is introduced within the 

environment by varying the temperature profile at all points 

between ±2oC with the simulation time. The temperature 

fluctuation is assumed to be sinusoidal at a rate of 1 cycle/hour. 
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5.1.1 Temperature profile 

 

In the simulation environment, a function that generates to fit a set of data points (x, 

y, z), by performing a polynomial regression analysis on each dimension using the 

least-squares method. Similar methodologies have been applied [107, 108, 109] to 

formulate the analytical solution for the three dimensional modelling and 

visualization. 

In three dimensions a complete nth degree polynomial is given by equation 5.1. 

 

 

 

 

where i, j and k are permuted accordingly. The number of terms in the above 

polynomial is equal to (n+1)(n+2)(n+3)/6. 

For n=1: 

   

 

  

The model uses quadratic polynomials that describe a three dimensional curve 

parametrically. The polynomials are determined by using Gauss-Jordan elimination 

on a matrix. Hence the distance between the curve and the input points can be 

minimized by calculating the partial derivatives.  

The thermal profile is generated in the simulation environment and the sensing 

points are identified to evenly distribute over a specific elevated plane of the space. 

These sensing points are used as training set to calculate against the testing points. 

The test set is generated randomly using a uniform distribution and the probability 

distribution function is given by the equation 5.3. 

  

  

    

 

 

where  and  are real numbers with  < ,  is a location parameter and  is a 

scale parameter. 

� &
	 � 
�

&�'
 i+j+k  5.1 

� ' � � (  5.2 

 5.3 



56 
 

There are 13 evenly distributed points used for sensing, which are divided into three 

different patterns as explained in the next section. Out of 60 extracted data points 

from the map, around 20% are allocated to sensing points and another 20 points are 

extracted from the 80% balance of the data set. The contour map along with the 

lattice slice generated based on the sensing points as shown in Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The extracted sensing data are given in Table 5.1. The generated test data set is used 

to calculate the prediction error and Table 5.2 shows the thermal profile used for 

testing. 

  

Figure 5.1 Contour map of the thermal profile based on the sensing points 

Table 5.1 Temperature profile used for the sensing data 

Sno X Y Z Temp(
o
C)

1 5 5 1.5 5.9427

2 15 5 2.5 4.472

3 15 15 3.5 2.4708

4 5 15 4.5 3.3208

5 10 10 1.5 3.0154

6 10 2.5 2.5 6.9829

7 17.5 10 3.5 3.2486

8 10 17.5 4.5 2.1952

9 2.5 10 1.5 5.4068

10 2.5 2.5 2.5 7.5734

11 17.5 2.5 3.5 4.3257

12 17.5 17.5 4.5 1.465

13 2.5 17.5 1.5 2.4225



57 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2 Thermal profile used for the test set 

Sno X Y Z Temp(
o
C)

1 14.6993 11.1173 3.1163 3.2255

2 5.9293 9.2927 1.8406 4.4851

3 11.7076 18.6014 2.9507 1.7053

4 17.2856 12.3084 1.2442 2.9004

5 9.6011 13.8656 1.6928 3.0306

6 13.7048 11.7056 2.9408 3.1544

7 2.6908 11.4012 2.9139 4.9645

8 5.685 3.9114 2.1175 6.2354

9 17.1877 1.4868 1.028 4.4859

10 6.0663 16.7279 3.4719 2.7449

11 17.2047 7.7001 4.783 3.6627

12 16.7024 8.9071 3.7665 3.4848

13 5.7929 11.6882 1.5704 4.0047

14 7.1481 4.1476 3.7444 5.9532

15 12.7144 6.5196 3.6472 4.3424

16 18.7268 5.2014 1.5808 3.886

17 14.7833 9.0224 2.1189 3.5927

18 13.4463 14.8871 4.9531 2.6607

19 7.4092 16.3307 2.718 2.689

20 8.7183 19.5064 4.3714 1.8097

21 13.1249 18.6296 3.2838 1.8386

22 9.4167 13.5593 2.4651 3.0832

23 7.2684 2.9073 1.6824 6.5491

24 2.1574 13.2209 3.9101 4.3048

25 6.9424 1.3037 3.561 7.0779

26 13.0039 12.2017 1.439 3.1051

27 13.3063 18.2782 4.362 1.9704

28 7.2935 16.0156 2.5716 2.7845

29 10.0521 1.4301 2.964 8.0333

30 12.0799 2.9031 3.5125 5.9336

31 8.4805 7.7563 2.5125 4.2256

32 11.0565 18.5316 3.7132 1.7376

33 14.2504 15.5173 4.3064 2.4481

34 2.0586 4.0332 1.3208 6.8528

35 19.1492 11.627 3.1347 2.9469

36 13.3711 1.7635 4.5506 5.6952

37 15.7469 5.6687 4.5791 4.1934

38 8.7065 15.5604 4.0306 2.7822

39 15.6181 5.842 4.5448 4.1762

40 12.7068 18.0621 1.6719 1.9433

41 10.2478 4.0102 3.1752 5.7976

42 9.4463 3.1857 3.3174 6.3856

43 8.1547 13.9149 1.6684 3.1747

44 12.4025 10.4503 1.4194 3.3274

45 18.7413 18.5767 3.9482 0.3966

46 10.0977 19.3201 3.3241 1.1892

47 2.7012 12.9001 1.0427 4.3322
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In order to test the performance assessment of the network, the model involves 

obtaining the minimum statistical measurement of error between predicted 

temperature and actual temperature at any arbitrary points within the space. Actual 

temperature is the one which follows the temperature profile in a simulation 

environment and the estimated/predicted temperature is the value calculated from 

the algorithm used. The statistical measures that are evaluated are; MAE, Root 

Mean Square Error (RMSE) and Correlation Coefficient (R2) are expressed by 

equation 5.4, equation 5.5 and equation 5.6 respectively. 

 

 

 

 

 

 

 

 

 

 

where ���,	 and 
��,	 are the average actual and predicted temperatures for the ith 

observation, respectively. k is the total number of readings taken from the model. 

Using the statistical measures, a well trained ANN model should always turn out 

small MAE and RMSE with large R2 values. 

 

5.1.2 Transient model behaviour 

 

In order to generate a dynamic behaviour within the model, it is considered to 

fluctuate the temperature at any given point between ±2oC with the simulation time. 

The temperature fluctuation is assumed as a sinusoidal form of cycling with a 

period of 1 hour. Hence the fluctuation of temperature at any time is given by the 

equation 5.7 

 

 

Where hy = 2
o
C. 

The following chapter will give more focus on transient model behavioural study as 

part of the cold storage within the meat industry (a case study). 
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T(t) = (sin[time()*2π/period]*hy + hy ) - hy                     5.7 
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5.2 Thermal Mapping Based on a Fixed Sensing Points with 

Single Cluster Head/Infrastructural Node 

 

Initially we have considered sensing points based on a pattern in a given space 

volume 20x20x5m3. The sensing points are located in three different patterns to 

examine the variation of thermal prediction error using Shepard’s and ANN 

algorithms. Figure 5.2 shows the sensing point location patterns in a two 

dimensional view. 

 

 

 

 

 

 

 

 

   (a)         (b) 

 

 

 

 

 

 

  

 

           (c) 

 

These sensing points are evenly distributed over the region that can cover the 

overall space. The pattern with five nodes may not cover the space as much as the 

pattern thirteen nodes can cover. The extracted temperature data for the given 

patterns are shown in Table 5.1. 

The model is computed and calculated for the location points where temperature is 

known other than the sensing points given in the Table 5.2. It is observed that 

Figure 5.2 Sensing location points (a) pattern with 5 nodes (b) pattern with 9 

nodes (c) pattern with 13 nodes 
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Shepard’s method has generated more prediction errors at all the five, nine and 

thirteen node patterns. There is a significant decrease in error from five to thirteen 

node patterns. Figure 5.3 shows the MAE and RMSE for Shepard’s and ANN 

methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A further analysis has been done for ANN architectural parameters. A decrease in 

prediction error is observed with the increase of the number of epochs for thirteen 

nodes pattern compared to the five nodes pattern. There is not much difference in 

prediction error even with a larger number of epochs for the five nodes pattern. 

Figure 5.3 MAE and RMSE comparison between Shepards and ANN 

Figure 5.4 ANN Parameters comparison for training 
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This is due to the lack of coverage of the nodes. The number of epochs can even 

lead to converge to local optima instead of global optima. This can be avoided by 

keeping the model’s fitness criteria while training.   

Figure 5.4 shows the ANN parameters comparison when changing the number of 

iterations from 500 to 1000 at five, nine and thirteen nodes patterns. 

 

5.2.1 Impact of NN internal architectural parameters 

 

It is important to give attention and identify the best architecture of the neural 

network. In the experimental scenarios, the models are configured with different 

neural architectures to study the applicable method. The thermal mapping solution 

in this work uses the online training. The more internal structure a network has, the 

better that network will be at presenting complex solutions. But at the same time it 

may cause the training to diverge, which further leads to over-fitting. This would 

prevent the network from generalizing well to new data. The model configured with 

tan-sigmoid activation function in a MLP network has recorded a lower accuracy 

than those with other functions. 

It is also observed that the accuracy didn’t improve much with the number of 

iterations increased. Table 5.3 shows the initial parameters of the neural net 

architecture for thermal mapping. Initially the various NN architectures are 

evaluated for suitability of the thermal mapping application. 

 

 

 

 

 

 

 

 

 

We have used eight different function modelling architectures and among those the 

MLP has given the best results. It is observed that the MLP three and four layer 

performed better than any other architecture. 

 

 

 

 Table 5.3 Initial neural net parameters for mapping 

Minimum weight delta 0.0001

Epochs 10000

Initial weights 0.3

Learning rate 0.3

Momentum 0.6

Activation function tan-sigmoid

Neurons in hidden layer 3
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The trade off among the number of layers and the epochs is considered based on the 

time required to run the algorithm. There is the risk of converging at local optima 

instead of global optima, when running through a specified number of epochs. 

Hence the algorithm saves the best system while running by calculating the R2 

value. Figure 5.5 shows the time comparison to run the algorithm when changing the 

layers from 3 to 4 (at 6, 12 and 18 hidden neurons) and the epochs at 10,000, 

50,000 and 100,000. 

A three layer MLP model with six neurons at the hidden layer would require at 

least 0.9 seconds to run 10,000 epochs. To avoid converging to local optima, we 

have considered setting up the model to run at least 10,000 epochs. The best system 

identified in a simulation environment is at R2 value of 0.92. The algorithm run 

time is important when we have more training input. It is obvious that the increase 

in the number hidden neurons, layers and epochs has a greater impact on the 

resultant time based on Figure 5.5. 

The Paltarion Synapse software is used to optimize the number of epochs, number 

of hidden layers and number of neurons in a hidden layer. The Genetic Optimizer 

module is used to identify the right parameters that can produce a minimum output 

error within 95% confidence level for training and validation procedures. The 

algorithm starts with a minimal network, then adds hidden nodes during training. 

 

Figure 5.5 Time comparison at different MLP layers and epochs 
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5.3 Thermal Mapping Based on Random Sensing Points 

 

This model is considered to collect data in a steady-state environment. It has a 

single central data collection point and the sensing nodes are randomly placed. The 

central point gets the temperature and location data from 20 portable nodes as 

shown in Figure 5.6. The portable nodes P1 to P20 feed the temperature and location 

data to the infrastructural node N1. We have analysed the predicted temperatures at 

any given points within the space by using Shepard’s algorithm and the Artificial 

Neural Network’s approach. 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.1 Thermal mapping using Shepard’s Algorithm 

 

The model is computed initially using the Shepard’s algorithm and tested against 

20 arbitrary points in the space. MAE and RMSE recorded 0.89 and 1.24 

respectively. The R2 value was recorded 0.80. The following Table 5.4 shows the 

arbitrary points selected to predict the temperatures.   

 

 

 

 

 

Figure 5.6 Sensing node distribution over the space 
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The contour maps shown in Figure 5.8 give a clear difference between the actual 

and predicted temperatures in the three dimensional space. 

 

 

 

Table 5.4 Actual and Predicted temperatures using Shepard’s algorithm 

Figure 5.7 Actual vs Predicted temperatures  

Sno X Y Z Actual (
o
C) Predicted(

o
C)

1 14.6993 11.1173 3.1163 3.2255 3.6894

2 11.7076 18.6014 2.9507 1.7053 2.8954

3 9.6011 13.8656 1.6928 3.0306 3.4809

4 2.6908 11.4012 2.9139 4.9645 4.0203

5 17.1877 1.4868 1.028 4.4859 4.4034

6 17.2047 7.7001 4.783 3.6627 4.0441

7 5.7929 11.6882 1.5704 4.0047 3.8144

8 12.7144 6.5196 3.6472 4.3424 4.2938

9 14.7833 9.0224 2.1189 3.5927 3.916

10 7.4092 16.3307 2.718 2.689 3.367

11 13.1249 18.6296 3.2838 1.8386 2.7763

12 7.2684 2.9073 1.6824 6.5491 4.3969

13 6.9424 1.3037 3.561 7.0779 4.4585

14 13.3063 18.2782 4.362 1.9704 2.9248

15 10.0521 1.4301 2.964 8.0333 4.8582

16 8.4805 7.7563 2.5125 4.2256 4.1342

17 14.2504 15.5173 4.3064 2.4481 3.2386

18 19.1492 11.627 3.1347 2.9469 3.7022

19 7.1481 4.1476 3.7444 5.9532 4.378

20 15.6181 5.842 4.5448 4.1762 4.2401
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Shepard’s algorithm was ineffective at identifying the hot spots which exists in the 

space. The high and low temperatures are poorly predicted as also shown in Figure 

5.7 and Figure 5.8. 

Based on the hot spots, a further three nodes were deployed near the hot spot region 

in the simulation mode and the profiles were recalculated. The identified location 

and temperatures are given in Table 5.5. 

 

 

  

 

 

 

The contour maps are constructed to identify the differences in the actual and 

predicted thermal profile as shown in Figure 5.9. 

 

 

 

 

 

 

 

 

 

Figure 5.8 (a) Actual thermal profile (b) Predicted thermal profile 

Table 5.5 Additional deployed nodes at hot spots 

Figure 5.9 (a) Actual thermal profile (b) Predicted thermal profile 

Sno X Y Z Temp(
o
C)

1 8.00 2.50 1.50 6.8028

2 10.00 1.50 2.50 8.1286

3 11.00 2.50 1.50 6.6687
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The predicted profile was improved moderately after placing the nodes at hot spots, 

increasing R2 to 0.89. But there are other locations where the hot spots are not still 

effectively identified. If the hot spots are not identified, there is a probability of 

deterioration of the products.  

 

5.3.2 Thermal mapping using neural net approach 

 

The Neural Net approach was used to compare with the earlier Shepard’s 

algorithm. The MAE and RMSE are recorded as 0.35 and 0.52 respectively. The R2 

value is recorded as 0.92. The following Figure 5.10 shows the arbitrary points 

selected to predict the temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Actual and predicted temperatures using ANN approach 

Figure 5.11 Actual and predicted temperatures 

Sno X Y Z Actual (
o
C) Predicted (

o
C)

1 14.6993 11.1173 3.1163 3.2255 3.021

2 11.7076 18.6014 2.9507 1.7053 1.686

3 9.6011 13.8656 1.6928 3.0306 2.851

4 2.6908 11.4012 2.9139 4.9645 4.505

5 17.1877 1.4868 1.028 4.4859 5.201

6 17.2047 7.7001 4.783 3.6627 3.72

7 5.7929 11.6882 1.5704 4.0047 3.94

8 12.7144 6.5196 3.6472 4.3424 4.615

9 14.7833 9.0224 2.1189 3.5927 3.552

10 7.4092 16.3307 2.718 2.689 2.553

11 13.1249 18.6296 3.2838 1.8386 1.582

12 7.2684 2.9073 1.6824 6.5491 6.152

13 6.9424 1.3037 3.561 7.0779 6.605

14 13.3063 18.2782 4.362 1.9704 1.669

15 10.0521 1.4301 2.964 8.0333 6.237

16 8.4805 7.7563 2.5125 4.2256 4.776

17 14.2504 15.5173 4.3064 2.4481 2.081

18 19.1492 11.627 3.1347 2.9469 2.435

19 7.1481 4.1476 3.7444 5.9532 5.968

20 15.6181 5.842 4.5448 4.1762 4.46
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The actual and predicted temperatures for 20 sample data are shown in Figure 5.11. 

The contour maps shown in Figure 5.12 give a clear difference between the actual 

and predicted temperatures in the three dimensional space. There were few false 

positive and negatives recorded, among those the validation point 5 and point 15 

have given a major difference. 

 

 

 

 

 

 

 

 

The ANN approach has the capability to identify the hot spots and the low and high 

temperatures are predicted with less error when compared to the Shepard’s method.  

The additional nodes deployed as shown in Table 5.5 are used to identify the 

improvement for the hot spot prediction. There is a little improvement in the R2 to 

0.93, and a better profile is generated as shown in Figure 5.13. 

 

 

 

 

 

 

 

 

 

A few more scenarios were conducted to realize the ANN approach by varying the 

parameters that include the space volume and training data set. The earlier 

experimental model is a steady-state where the temperature at the given point does 

not change with time. But in real time applications like meat plant’s cool storage 

the temperature varies with time. Hence it is important to consider a dynamic 

Figure 5.12 (a) Actual thermal profile (b) Predicted thermal profile 

Figure 5.13 (a) Actual thermal profile (b) Predicted thermal profile 
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environment within the modeling space. We have considered the Meat Industry 

cool storage as a case study to further compute the experiments in the upcoming 

chapter. 

 

5.4 Thermal Mapping Experimental Scenarios 

 

In these scenarios, the ANN approach is implemented in a simulation modeling 

environment by varying the number of infrastructural nodes and portable nodes, 

room volume and training data set. These experiments are meant to identify the 

applicability of the approach for different configurations. This further helps to study 

and improve the performance and the effecting factors towards the accuracy of the 

output. 

The neural networks are used to model the temperature distribution in a space 

designed in a simulation environment. Suppose we have a room where the 

temperature is distributed with a minimum and maximum temperature ranges -4oC 

to 10oC respectively. Figure 5.14 shows the experimental design for the ANN. The 

room dimensions are assumed as 20x20x5 m3, 30x30x5 m3, 40x40x5 m3 and 

50x50x5 m3.  

 

 

 

 

 

 

 

 

 

A model is designed using Flexsim software to emulate the relationship between 

the training data along with infrastructural nodes temperature data at various 

locations to estimate the temperature distribution at other arbitrary positions. A 

temperature profile is generated based on the given temperature points at few 

locations within the designated space. 

Figure 5.14 Schematic diagram of the experiment 
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No. of 

Scenarios 
No. of Infrastructural Nodes 

used 
Room 

Volume(m3) 
Random 

Data Set 
Training 

Data Set 

1 8 20x20x5 20 28 

2 16 20x20x5 20 36 

3 24 20x20x5 20 44 

4 32 20x20x5 20 52 

5 40 20x20x5 20 60 

6 24 20x20x5 20 44 

7 24 30x30x5 20 44 

8 24 40x40x5 20 44 

9 24 50x50x5 20 44 

10 8 30x30x5 10 18 

11 8 30x30x5 20 28 

12 8 30x30x5 40 48 

13 8 30x30x5 80 88 

14 8 30x30x5 120 128 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Table 5.6 shows the model run scenarios to test at different data sets assumed 

initially. The infrastructural nodes are deployed on the inner surface of the room to 

get thermal feed from the boundary. These nodes are varied from 8 to 40 based on 

the designed scenarios. The random data set is the data feed from the portable 

nodes. This data set also varies as the number of portable nodes change from each 

scenario. 

A GUI has been built to input the required data for each scenario and the training 

data set is generated from the model. This training data set is generated by using a 

bounded continuous uniform probability distribution function. This training data set 

is nothing but the data supplied by the portable nodes.  

The uniform distribution is essential in generating random variants from all the 

other distributions and will return a continuous set of random values inclusive of 

minimum and maximum variants. This training data along with the infrastructural 

nodes data is supplied to train the neural net. 

The RMS error for each of the scenarios stated above has been calculated. Based on 

the results, each scenario of the model demonstrated noticeable change of error as a 

result of varying one of the parameters. The RMS error is given by the difference 

between RMS actual and estimated values.  

Scenarios 1 to 5 are evaluated by changing the infrastructural nodes from 8 to 40 

given in Table 5.7. It is observed that the RMS error decreased with the increase of 

number of infrastructural nodes for a given volume. Figure 5.15 clarifies the change 

Table 5.6 Model run scenarios 
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of responsiveness of RMS error with the increase in the number of infrastructural 

nodes. 

 

 

 

 

 

 

 

The vertical error bars at each point shown in Figure 5.15 are about 0.02oC for the 

given set of training data. This means an error ±0.02oC is observed by running a 

number of iterations at each training of the neural net. At the room volume 2000m3, 

a minimum of 24 nodes are required to get at least 0.02oC RMS error. 

Based on these results another set of test scenarios have been conducted in order to 

evaluate the room volume response by keeping 24 nodes, 20 training data set 

constant and varying room volume from 2000m3 to 12500m3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The RMS error has not affected much from 24 nodes to 40 nodes; hence it is 

considered to keep 24 nodes and 20 training data set constant for the next runs. 

Scenarios six to nine shown in Table 5.8 describe the RMS error actual and 

estimated values by changing the room volume. 

Table 5.7 RMS Errors – Inf. Nodes changing 8 to 40 at 2000m
3
 

Volume and 20 Training data 

Figure 5.15 RMS error Vs No. Infrastructural Nodes 

No. Nodes Volume(x1000m
3
) No. Training Data RMS Error

Scenario 1 8 2 20 0.099

Scenario 2 16 2 20 0.045

Scenario 3 24 2 20 0.014

Scenario 4 32 2 20 0.012

Scenario 5 40 2 20 0.006
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It was also observed that an error ±0.025ºC is resulted for each time we trained the 

neural net. Figure 5.16 shows the drastic change of RMS error by increasing the 

room volume. The RMS error is increased from 0.077ºC to 0.907ºC for the 2000m3 

and 12500m3 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

This clearly states that the given set of nodes and training data was not sufficient to 

keep the RMS error within the limits with the increase of room volume. Hence, 

further analysis was conducted to test the model for its suitability for thermal 

prediction using neural networks. This time another set of scenarios 10 to 14 are 

conducted by changing the number of training data set at a given room volume 

4500m3 and eight infrastructural nodes. We have chosen room volume 4500m3, 

based on the test results from Figure 5.16. 

It clearly shows that the RMS error is somewhat within 0.05⁰C at the room volume 

of 4500m3. Table 5.9 shows the decrease of RMS error by increasing the number of 

training data set. The trend-line is given by the best fit to the RMS error data set. 

Table 5.8 RMS errors – Room volume changing 2000m
3
 to 12500m

3
 at 24 

Inf. Nodes and 20 Training data 

Figure 5.16 RMS error Vs Room volume 

No. Nodes Volume(x1000m
3
) No. Training Data RMS Error

Scenario 6 24 2 20 0.077

Scenario 7 24 4.5 20 0.116

Scenario 8 24 8 20 0.413

Scenario 9 24 12.5 20 0.907
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An error of ±0.01oC is observed during the training period of the neural net and the 

vertical bar reflects the same. Figure 5.17 evidently illustrates that the increasing 

number of training data set produced a much better improvement of the RMS error. 

However, 8 infrastructural nodes and the room volume of 4500m3, allowed the 

temperature to be predicted with an RMS error of at least 0.02oC.  

Furthermore, the RMS error is almost reaches zero after 80 training data set for the 

given room volume 30x30x5 m3. However the increase in the number of training 

data set did not affect the RMS error after the training data set of 40. It is 

considerably lower than 0.01oC. 

The main conclusion possible from the different set of scenarios assessed in these 

experiments is that the greatest impact on the RMS error is through increasing the 

number of infrastructural nodes and training data set. Hence the number of 

infrastructural nodes can also influence the thermal prediction accuracy, since they 

are located on the inner surface of the boundary. 

Table 5.9 RMS Errors – Training data set changing 10 to 120 at 8 Inf. 

Nodes and 4500m
3
 volume 

Figure 5.17 RMS Error Vs Training Data 

No. Nodes Volume(x1000m
3
) No. Training Data RMS Error

Scenario 10 8 4.5 10 0.05747

Scenario 11 8 4.5 20 0.02921

Scenario 12 8 4.5 40 0.01627

Scenario 13 8 4.5 80 0.01276

Scenario 14 8 4.5 120 0.0025
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5.5 nWSN Testbed Experimentation 

 

Based on the nWSN structure, a testbed has been constructed at the Sensor Network 

and Smart Environment (SeNSe) Research centre. We have used Atmel’s 

RZRAVEN and RZUSBSTICK for the experimental setup and implementation. 

There are eight infrastructural nodes deployed in the room and each node is also 

responsible to sense the temperature at that point. These eight inputs are fed into a 

neural net for training. Each node is programmed using IBMs mote runner library. 

Apart from these eight nodes, there is another node which is connected at the base 

station to compute the thermal profile. Each node is programmed with a unique 

short ID and the location information is hardcoded and transmitted along with the 

temperature data. There are nine testing points selected to validate the model. These 

points were chosen randomly within the space and their actual temperatures were 

recorded. The schematic diagram of the room layout is shown in Figure 5.18.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each node from Inode-1 to Inode-8 is assigned a short ID as shown in the layout. 

We have left the system running to identify the temperature variation during the 

mid year. The following Figure 5.19 shows a sample the recorded temperature data 

during the evening hours. 

Figure 5.18 Testbed layout at SeNSe 
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The NN program is configured to use a one-layer MLP with 6 hidden neurons to 

generate the thermal profile of the space. The contour map of the actual room 

condition at the middle of the cross section is shown in Figure 5.20. 

 

 

 

 

 

 

 

 

 

 

 

 

The ANN training was performed at the node connected to the base station. The 

predicted temperature profiles are generated at a given instance of time. The actual 

temperatures at the test points are then compared against the predicted 

temperatures. An RMSE of 1.12oC is recorded for the given data and the one-layer 

MLP architecture has executed training with a 95% confidence interval of the 

output within ±0.012oC as shown in Table 5.10. 

Figure 5.19 Temperature profile of each sensor node 

Figure 5.20 Actual room temperature contour map 
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The validation set within the training data set produced with a 95% confidence 

interval an output within ±2.07oC of the measured data as shown in Table 5.11. This 

clearly reflects the insufficient data set for the training and validation of the model. 

 

 

 

 

 

 

  

   

The testing data is compared with the predicted data for the selected locations and 

the contour maps are drawn to examine the differences. Figure 5.21 and Figure 5.22 

shows the actual test data contour map and the predicted data contour map, 

respectively. 

The testing and predicted thermal maps have a similar profile on their contours with 

an accuracy of 0.8oC. There are two test points that have more influence than others 

due to less training and validation data set.   

 

 

 

 

Table 5.10 Training data confidence plot 

Table 5.11 Validation data within the training set confidence plot 

Sno Desired(
o
C) Output(

o
C) High95% Low95%

1 22.2 22.200 22.211 22.188

2 21.85 21.850 21.862 21.839

3 20.21 20.203 20.215 20.191

4 18.7 18.698 18.710 18.686

5 21.15 21.138 21.150 21.126

6 22.7 22.695 22.707 22.683

7 21.5 21.501 21.513 21.489

8 20.74 20.728 20.740 20.716

9 20.7 20.693 20.705 20.681

10 21.78 21.777 21.789 21.766

11 21.3 21.299 21.311 21.287

12 21.5 21.500 21.511 21.488

Sno Desired(
o
C) Output(

o
C) High95% Low95%

1 20.36 21.208 23.282 19.133

2 19.14 20.938 23.012 18.864

3 22.72 22.873 24.948 20.799

4 21.8 20.527 22.602 18.453

5 22.1 22.028 24.102 19.954
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Figure 5.21 Contour map of the testing data set 

Figure 5.22 Contour map of the predicted data set 
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Chapter 6 
 
 
 
 

6 nWSN Implementation Factors 
 
This chapter focuses on components that are essential for real time development 

and implementation based on the methodologies discussed in chapter 4. The 

required components for nWSN implementation are identified. This includes the 

query based spatio-thermal mapping, time synchronization, neural net cluster 

dynamic grouping and node distribution and minimization. Each component has 

significance to the overall implementation of the nWSN architecture. 

 

6.1 Components of the nWSN Implementation 

 

The important components of the nWSN structure are classified below. Each 

methodology described in the earlier chapter requires an implementation and 

further study of the performance measure for results analysis. 

 

1) Query based spatial thermal mapping, 

2) Time synchronization, 

3) Neural net cluster dynamic grouping, and 

4) Nodes minimization. 

 

In a dynamic environment, there is a requirement to feed the temperature data at a 

given point of time. In the case of portable nodes where they move with time, it 

may not be possible to acquire data without an implantation of a query system that 

fulfils the time synchronization. The implementation of query based spatial thermal 

mapping details these requirements.  

The time synchronization component is essential for a modularised model for 

mapping a localized data. The solution has been extended to further space 

partitioning to verify the precision when considering the sensor nodes that are at the 

boundaries among the sub regions. 

In several applications where the nodes deployment is a criterion, this is due to the 

restrictions of the surroundings and the working environment. It may not be 
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possible to deploy a node if there an infrastructural object does not exist. Hence the 

focus was given to look at the opportunity to minimize the number of nodes. The 

thermal precision is taken as performance measure for the implementation. 

 

6.2 Approach for Query Based nWSN Spatial Thermal 

Mapping 

 

Based on the case study described in the upcoming chapter, it is identified that the 

surface temperature of the carcass in a cool storage changes from 30 oC to 4 oC 

within a period of 10 to 15 hours. This is a rapid change at the beginning of the 

process before it comes to a steady state. Hence the temperature monitoring during 

this period is vital, together with identifying hotspots. In the nWSN training 

process, the infrastructural nodes require the training data set from all the portable 

nodes at a given time to train the neural net. These nodes can process the data by 

filtering, aggregating and sharing within the network. The infrastructural nodes 

have to initiate a query to all the nodes to request the training input data at a 

synchronized time. To address these requirements we proposed a Query Based 

nWSN (QBnWSN) implementation to support a synchronized data input to the 

infrastructural node upon a query request. The infrastructural and portable sensor 

node layers are responsible for data processing. 

The neural net algorithm requires training data from all the portable nodes within 

its range. The input data contains the portable node location (x, y, z) coordinates 

and temperature recorded at that location. The neural net calculates the required 

parameters that further assist to train the network rapidly. These neural training can 

be facilitated to build a spatial thermal map. It can further assist to calculate 

temperatures at any arbitrary point. A memory buffer model is introduced to store 

the data at infrastructural and portable node layers. When a query propagates to all 

the portable nodes to request the training data, each node responds with its buffered 

data stored at that time. The buffer data for each infrastructural and portable node 

contains location and temperature data. This buffer data loops through every 1 

minute to update the buffer table and to accommodate up to 10 minutes of pervious 

data within the node. 

The location and temperature data are the parameters that are dynamically assigned 

for each query to respond at a given time. The QnDP algorithm executes for each 

time a query triggers at the portable node. This processing is continuously 
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performed at a given time period to update the parameters and for further online 

training of the neural net. 

 

6.2.1 Query based nWSN data processing framework 

 

The WSN itself acts as distributed data storage where the data can be stored and 

retrieved upon query requests. The query based nWSN data processing framework 

is laid on the data which is stored at different node levels. The dynamic data 

acquired by each sensor node from the surroundings can be immediately consumed 

by the application or it can be sent to another peer node. In QBnWSN framework, 

the infrastructural node disseminates a query to all the portable nodes. The query 

consists of several attributes.  

 

 

 

 

 

 

 

 

 

 

 

 

Each attribute has a key value, where it can modify each portable node’s assembly 

module. Figure 6.1 shows the block diagram of the QBnWSN framework and its 

various components. 

The framework has mainly three parts: 

 

1) A client module running in a PC, which is typically a base station. This 

module continuously interacts with the sink to receive and send the data 

packets. The client side module can be used to parse queries and 

disseminates into the network. 

2) An infrastructural node layer module that runs on top of the run time 

platform. We have used IBM’s Mote Runner OS to test the model. One 

Figure 6.1 QBnWSN Framework 
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infrastructural sensor node acts as a sink to communicate with the client side 

module.  

3) A portable node layer module that also runs on top of the run time platform 

Mote Runner. Each portable node in this layer interacts with the 

infrastructural sensor node. 

 

In this implementation, the distributed sensor nodes constitute a single-hop system. 

The cluster head/infrastructural node communicates with the end/portable sensor 

nodes when the data is required. We have considered a query transmission to all the 

portable nodes within a time interval. The period for each result produced is an 

epoch. This epoch duration can also be known as sample interval of the query. The 

sample interval is a parameter that can be changed during the experiments of the 

model. The infrastructural node layer consists of several components that include 

query distribution, query manager, data storage, data collection, data 

filter/extraction; an extra web interface for monitoring is available in the client 

module. Each component has its own contribution to coordinate with others. We 

considered a large packet data to be sent from each node, hence there is a 

requirement of data collection and filtering at the infrastructural node layer.  

Every portable and infrastructural node has its own cache/buffer to accommodate 

data storage for each aggregation parameter. The main important attributes that are 

considered in this model are time, location and temperature. It can be extended for 

any other attribute. The data aggregation calculates for temperature at each 

infrastructural sensor node.  

Figure 6.2 shows a simple application scenario of the model. The sink injects a 

query that consists of a selective message that will be executed at the specified node 

or at all nodes. An example of the query may be the temperature recorded at a 

portable node at a given time. In another example, the maximum temperature 

recorded at a given sub-region. Each sensor node is capable of computing various 

aggregation functions including, average, maximum and minimum occurrence of 

the attribute at the specified time slot.  

In the first phase, selective messages are spread throughout the network using 

flooding, but these do not necessarily activate or require responses from all the 

nodes. In most cases the appropriate nodes are activated based on the query. 
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Let the infrastructural node Ni, where i is the node ID (short address), queries a 

portable node Pk to request the input training data (location and temperature) at the 

time t1. If Pk⊂Ni then it returns a response to Ni. In QBnWSN framework, the 

sensor node has the following states.: 

 

1) Query receive state: This state initiates when the first node of the network 

receives a query from the infrastructural node. The parameter of the query 

executes and the assembly returns true if the node belongs to the 

infrastructural node. It immediately sets the parameter values and calls the 

response state. 

 

2) Query response state: This state initiates when the query receive state 

returns true. This will generate a response and will update it to the nodes 

local variable and add it to the data packet that transmits back to the 

infrastructural node. 

 

3) Data aggregation buffer state: During this state, all the aggregation 

functions calculate at periodic times and update the local variable data. For 

every minute (or any configurable time) the mote senses the environment 

continuously and aggregates to update the variable data. These variable data 

Figure 6.2 WSN Nodes arrangement in the application scenario 
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fills the buffer and loops within it for every 1 minute to cover for a period of 

10 minutes data in the experiment. The volumetric rendered maps are 

constructed as performance measure to validate the QB-nWSN 

implementation. 

  

6.3 Time Synchronization and its Implementation 

 

In a dynamic environment the acquired sensor data at any given node varies with 

time. If the location of the sensor node also varies, then there is an issue with the 

data input to the neural net computations. This is due to the asynchronous data 

received from the sensor nodes to a cluster head. Hence the sensor data must be a 

temperature and location specific at a given time. Figure 6.3 shows the node’s 

location change with time while the cluster head triggers its query request state.  

Assume there is a node P1 at location x1, y1, z1 at time t1, which continuously moves 

with time. The query request state at the cluster head may trigger at any location 

before it reaches the state where its location is x2, y2, z2.     

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed system contains local variables data in byte array at each sensor 

node’s assembly program. This buffer data is the core element to implement the 

time synchronization and it contains the location and temperature data. The 

infrastructural and portable sensor nodes have a similar buffer model. Each function 

can accommodate up to 10 minutes of previous data. These buffer data is looped 

through every one minute to update all the functional parameters. This means each 

Figure 6.3 Node location change with time 
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row indicates the previous minute data of the model, i.e. row 1 contains the data for 

the last minute and row 10 contains the data corresponding to 10 minutes earlier. 

The algorithm described in the earlier chapter deals the query based nWSN data 

processing within the sensor nodes. The QnDP algorithm executes for each epoch 

at infrastructural or portable node level. This depends on the queries that are passed 

as a selective message to the nodes. The selective message consists of few 

parameters, including node ID (short address) and time. The time is the target time 

to query the data. 

  

 

 

 

 

 

 

 

 

 

Assume there are k numbers of portable nodes where all nodes from P1 to Pk form a 

cluster and having a cluster head as shown in Figure 6.4. The neural net that 

computes temperature profile requests temperature along with its location from all 

portable nodes as an input data. These data from all the portable nodes have to be 

collected at a given time ti in order to train the system at that time. In an example, a 

portable node can be attached to an object that continuously moves with time. 

When the infrastructural node requests all the location and temperature data at time 

ti, each portable node reacts and sends the parameters data from the buffer located 

at ti. In this way the nWSN algorithm within the infrastructural node trains the 

system at that time to update the parameters. Therefore a synchronized data set can 

be the input to the neural net and the online training is performed to sustain the 

parameters of the neural net. The flow diagram shown in Figure 6.4 describes the 

query flow and response between the infrastructural node and the portable node 

layers. 

The query transmit and receive times along with the average response times are 

calculated as a performance measure. The volumetric rendered maps are generated 

Figure 6.4 Flow diagram for query processing 
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to compare the thermal precision when the data are trained synchronously versus 

asynchronously. 

 

6.3.1 Configuration and setup for time synchronization 

 

The importance of QBnWSN was discussed in the earlier section. The main 

initiative of the QnDP algorithm is to have synchronized training data available to 

the infrastructural nodes. This can assure the online training of the neural net at 

specific time periods with consistent data sets. The location and temperature data is 

fed to train the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the experimental setup, there are four portable nodes used along with cluster 

head to query the data. Figure 6.5 shows the nWSN setup configuration for the 

experimental test bed. There are mainly two different levels that can be considered 

in the setup. At plant level all the sensor nodes are deployed in the given space 

where the temperature is monitored. 

A gateway is connected to the nWSN at the system level. We have used IBM’s 

Mote Runner to setup this scenario within the simulation environment. The socket 

programming functionality provided by Mote Runner can further facilitate to 

interact with the sensor network using the web browser. Using the interface it is 

Figure 6.5 nWSN configuration setup 
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possible to send a query manually to all the portable nodes. But this could be done 

programmatically in any infrastructural node within a time period. For each time 

period, when a call back function initiates its query propagation phase, a query 

propagates to all the portable nodes connected to the infrastructural node.  Upon 

receiving a query, the portable node verifies all the parameters of the query to 

respond accordingly. This means that a query requiring the temperature of all the 

portable sensor nodes within five minutes will return all the temperatures of each 

portable node along with its location data. This will make sure the neural net trains 

the system at a synchronized time. The current time of each node can be 

synchronized through the web interface. This will ensure the query statement time 

is valid at all the portable nodes. 

In the experimental setup, we have fixed a timing of 10 minutes for updating the 

memory buffer that includes temperature, location and other aggregate functions 

data. During this period the queried data is trained at each infrastructural node. The 

sensing time is independent of updating memory buffer time and it is given one 

minute. Figure 6.6 shows the WSN query management results within the Mote 

Runner simulation environment setup. The queries transmit and receive times are 

recorded from the number of samples. The collected result show that an average of 

25 seconds is consumed to respond to each portable node.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These times for the selected four nodes are given in Figure 6.8. There are 20 

numbers of samples taken to evaluate the results. These response times are quite 

Figure 6.6 QB-nWSN Framework results interface 
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enough to compute the neural net algorithm in any of the infrastructural nodes for 

the given times. 

 

 

 

 

 

 

 

  

 

 

A comparison of the thermal precision maps was also examined based on the 

simulation model results. Figure 6.7 shows the volumetric rendered temperature 

precision data when the infrastructural node receives synchronous and 

asynchronous data from the portable nodes. The map variation clearly represents 

more error when data is asynchronous. The query and sensing periods can be 

configured through the web interface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Increasing the number of portable nodes that can feed data to the cluster head may 

present challenges. However the viability of the model shows that the synchronized 

data can be fed to the infrastructural node to fulfil the application requirements. 

Figure 6.7 Volumetric temperature precision 

Figure 6.8 Query and response times for 4 nodes 
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6.4 Neural Net Cluster Dynamic Grouping 

 

The nWSN structure has been extended based on the modularization of cluster 

zones. Each cluster head is responsible to the given region. These regions are 

constructed dynamically and hence the sensor nodes are automatically grouped as 

sub regions. The information sharing among these regions could be done by 

utilizing a Nodes Messages interaction (NMi) mode implementation. The NMi 

mode acts upon triggering a node for information sharing. This could be between 

any two cluster heads and between cluster heads and the portable sensing nodes. 

The messaging is divided into two typical interaction modes. These are given as 

NMi Pnode interaction and NMi Inode interaction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The core elements of the NMi are the Message Structures and Triggers in a node. 

Whenever a trigger is raised, it causes the relevant message structure can be 

activated. The NMi Inode process flow is given by Figure 6.9. 

 

 

 

Figure 6.9 NMi Inode process flow 
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1)  NMi Pnode interaction 

In NMi Pnode interaction, a trigger is raised by the sensing node within a time 

interval. The sensing node transmits the information to its neighbour cluster 

head. This interaction may also cause the sensing node to join and leave the 

neighbour cluster head. 

  

2) NMi Inode interaction 

In this type of interaction, an automated mechanism plays an important role 

within the cluster head. It can raise a trigger for each time a sensing node joins 

the cluster head. This interaction affects cluster data collection messages for 

computations. The algorithm for NMi Inode initiates to run the neural net for 

online training of the model.  

 

6.4.1 Sequence diagram and process flow 

 

The sequence diagram of the dynamic grouping and further sensing thermal 

mapping is described as shown in Figure 6.10.  

 

 

 

 

 

 

 

 

 

 

The main classes in this part of the implementation are NMi Inode, neuralNet, NMi 

Pnode and TempMeasurement. The links between the elements can facilitate better 

understanding of the process flow for implementation. The sequence diagram 

contains mainly three tasks: 

 

1) Grouping of sensor nodes, 

2) Thermal sensing, and  

Figure 6.10 Sequence diagram of the nWSN process flow 
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3) Training the NN on the spatial thermal map. 

 

These tasks execute continuously in the sequential order upon identifying a sensor 

node in the group. Due to the NMi mode interactions the sensing nodes join and 

leave the nearest cluster head when moving within the given space. The location 

and temperature data is updated with NMi Inode to train the neural net which 

further generates a new thermal map. The implementation of the cluster dynamic 

grouping has been proved and supported by a case study in the upcoming chapter. 

The space partitioning and sub region analysis has been conducted by looking the 

thermal precision in terms of MAE, RMSE as performance measures.    

 

6.5 Minimizing Nodes Approach 

 

The nodes minimization approach follows by constructing a model where it is 

considered that k is a dynamic element as it varies from node to node. We have 

used the k-NNA and Bayesian methods to identify the number of nodes can be 

deployed for a given accuracy. Each node in the model has its own k nearest 

neighbours calculated by that node. The selection process to decide the k nearest 

neighbours is described in the next section. In k-NNA model, there are two inputs 

required: 

  

1) The number of neighbours to be considered - k, and 

2) Total number of sensor nodes in the space. 

 

In the simulation environment, a basic reusable object (a sensor node) is designed 

and customized. This sensor node acts as an intelligent agent in the model. The 

following assumptions have been taken into consideration while deploying the 

nodes into the model: 

  

1) The locations of each node deployed in the simulation environment know 

the coordinates (x, y, z) of its location, 

2) The nodes can be arranged on one layer at specified grid points or  

randomly distributed, and 

3) Environmental dynamics are not included and the space is considered 

homogeneous. 
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The simulation environment can facilitate the deployment of a number N of nodes. 

The basic building block of the model is the sensor node, which can be replicated N 

times within the boundary of the specified region . During the node generation, 

the simulation environment will set an attribute value of the node’s location and 

temperature. It is assumed that a uniform distribution of the room temperature 

values ranging between Tmin and Tmax and the location values between (x0, y0, z0) 

and (xl, ym, zn) will be generated and assigned. We have designed an approach to 

minimize the number of nodes that would be required to map the given space. 

These results are discussed in the next chapter. 

 

6.5.1 Sequential search and nodes minimization  

 

The nodes minimization process follows a sequential search from the first node in 

the tree. After nodes deployment, it can be chosen to minimize the model for 

reducing the node count while keeping the temperature distribution throughout the 

volume within the given precision (i.e. threshold value). The flowchart shown in 

Figure 6.11 explains the various steps involved for implementation. This process can 

takes place by deactivating each node and immediately queried at the same location 

to get the predicted temperature based on its neighbour nodes. 

The predicted value at that location will then be compared to the actual node 

temperature. Obviously there is an error, which is equivalent to ε (the difference 

between the actual and predicted temperatures). This error is then compared to the 

threshold value and if the error is beyond the specified tolerance, then the selected 

node will be flagged with a value ‘1’ in a built-in table named ‘A’ (the nodes that 

can’t be redundant). 
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If the ε is within the threshold value, the selected node will be flagged with a value 

‘0’ in the table ‘A’ (the nodes that can be redundant). Considering all the nodes in a 

tree followed by a starting node will make a hierarchy shown in the Figure 6.12. The 

table will have the nodes data containing flags ‘1’ and ‘0’, which further summed 

up and distinguished the influences and dependability of each node. 

 

 

 

 

 

 

 

 

Figure 6.11 Minimizing nodes approach flowchart 

Figure 6.12 Nodes hierarchy 
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The probabilities of each node on its neighbouring node are calculated to identify 

the influence of a given node. We have applied a Bayesian theory (belief theory) to 

identify the nodes that have more influence on each other. The redundant nodes 

have been eliminated after applying the Bayesian classification. Many real world 

applications deal with uncertain knowledge and input data that is insufficient to 

make a decision. In addressing such issues of uncertain information, classical 

probability theory has been found to be very useful. Hence, a Bayesian network is a 

probabilistic representation for uncertain relationships and is useful for modelling 

such real world problems. 

 

6.5.2 Bayesian approach to identify more mutually influenced nodes 

 

A Bayesian network encodes a joint probability distribution over a set of random 

variables that expresses the belief regarding how likely the different predictions are 

in order to quantify uncertainty in inferences. A Bayesian network (B), given a set 

of variables X={X1, X2...Xn} are the discrete variables (nodes). Assume that the node 

Xj is the child (neighbour) of the node Xi, which means Xi→Xj. The conditional 

probability can be calculated by utilizing the fundamental formula as in equation 

6.1. 

  

 

 

 

For individual probabilities, the number of occurrences of a state variable (1 or 0) 

can be counted. Let nij be the number of occurrences of the state j of the ith variable 

in the table and n is the total number of data cases from the table. Using these 

frequency values, we can calculate the probabilities by using the equation 6.2.  

 

 

 

Thus the conditional probabilities can be calculated by using the individual 

probabilities in equation 6.2. The conditional probability P(Xi → Xj) can be 

obtained as in the following equations. 

 

P(Xil Xj) = 
P(Xi ,Xj)

P(Xj)
  6.1 

P(Xi = xj) = 
n(Xi = xj)

n
 = 

nij

n
  6.2 



93 
 

 

 

 

 

 

By substituting equations 6.3 and 6.4 into equation 6.1 we get, 

 

 

 

The resulting equation 6.5 can be used to calculate the conditional probability by 

counting the corresponding frequencies or influences of the nodes to each of its 

neighbours. After evaluating the probabilities, the nodes with higher probability 

will be more vital. The group of nodes with higher probability will be the subset of 

the group of lower probability nodes. The final count of all the vital nodes can’t be 

redundant. From these nodes, the minimum number of nodes can be estimated, 

along with their location measured over the full space based on the accuracy 

discrepancy. This model is further examined by changing the value N and repeats 

the process to see if the algorithm is valid. 

 

6.5.3 Nodes minimization simulation results and discussion 

 

We have considered an algorithmic based approach using Bayesian theory to 

identify the minimum number of nodes required by keeping the thermal prediction 

error within the given range. The algorithmic approach was described in chapter 

four.  

The nodes are deployed in a 50x50x10 m3 volume of space. This size can be varied 

in the user interface control. The charts in Figure 6.13 and Figure 6.14 show precision 

versus minimum number of nodes required when deploying 50 and 100 nodes 

respectively. It is observed that the minimum number of nodes resulted from the 

model is same when 50 and 100 nodes are deployed. The model parameters can be 

submitted to the GUI control for experimentation. The code has been written in 

C++ for the algorithm development. The simulation environment can be 

customized to suit, where the nodes can be deployed for further examination of the 

given space. 

 

P(Xi , Xj) = 
n(Xi , Xj)

n(Xj)
 6.3 

P(Xj) = 
n(Xj)

n
 6.4 

P(Xil Xj) = 
n(Xi , Xj)

n(Xj)
 6.5 
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study further. The optimization of nodes can 

their location information by 

considering the aspects including the room space, location constraints with an 
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Chapter 7 
 
 
 
 

7 Cool Storage in a Meat Plant: A Case 

Study 
 

New Zealand is a world leader in farming for lamb and beef production. The New 

Zealand economy derives $3.8 billion from meat exports. The meat companies have 

to maintain high quality to meet the market demands. The temperature variation in 

cool store has a significant effect on meat tenderness, colour and on the microbial 

status of the meat. Hence the thermal mapping during the chilling process and 

further shipment in real time is very vital.  

 

7.1 Introduction 

 

In a dynamic environment, the temperature varies with time and that reflects the 

characteristic within the meat. The real time monitoring of the meat temperature 

gradient will further assist to predict the food quality. Figure 7.1 shows the 

temperature variation of beef at its surface, middle and core within 24hrs time in 

cool store [111]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Thermal profile of a beef within the first 24hrs 
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The meat pH and tenderness are also affected with the temperature variation as 

shown in Figure 7.2 and Figure 7.3 [111]. This reflects the importance of monitoring 

the thermal exposure history when precision is required in identifying the quality 

status. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.2 Modeling Scenario in a Cool Storage 

 

In this modeling scenario, the carcass hangers are used as sensor holder. Each 

sensor node (a portable node) is attached to a carcass for measuring the nearby 

Figure 7.2 pH variation of a beef carcass 

Figure 7.3 Tenderness variation of a beef carcass 
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environmental temperature while it is transported on an overhead conveyor. The 

sensor nodes feed temperature data to their cluster head (one of the infrastructural 

nodes) for processing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The neural net algorithm is embedded in each cluster head to compute the thermal 

map. Figure 7.4 shows the schematic diagram of a cold storage for nWSN. The top 

layer shows the infrastructural and portable nodes placement in a given space. The 

surface temperature of the carcass in a cold storage changes from 30oC to 4oC 

within a period of five hours as shown in Figure 7.1. This is a rapid change at the 

beginning of the process before it comes to a steady state. The temperature 

monitoring during this period is vital for overall coverage of the space and to 

identify the hotspots. 

 

7.3 Simulation environment setup and experimentation 

 

A model is designed within a discrete event simulation environment to test the 

nWSN architecture using the NMi model. For the experiment, we assume a cold 

storage where the temperature distributed with minimum and maximum ranges 

between -2oC to 8oC. A dynamic behaviour is introduced within the modelling 

environment by varying the temperature profile at all points between ±2oC with the 

simulation time. There are 174 beef carcasses used in the model. A simulation 

Figure 7.4 Schematic diagram of the cool storage 
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model is constructed with a space volume 20x20x3 m3. A GUI is built to ease the 

use of the experimental setup as shown in Figure 7.5.  

 

 

 

 

 

 

 

 

 

 

 

Four different scenarios have been analysed. The subsections are divided as 

follows. A dynamic temperature of ±2oC is used for sections A, B, C and the 

section D is used with an increased temperature to ±4oC. 

  

1) Section A: The prediction of the temperature for better coverage within the 

confined space by placing sensor nodes in three layers. Based on the 

methodology described in chapter 4, as shown in Figure 4.8, the space is 

divided into a number of vertical layers. The three layers are divided for 

better coverage to place the sensor nodes. 

2) Section B: The temperature variation analysis at the surface of the each 

subspace. The infrastructural nodes placed on the inner surface of the space 

can cover a subspace described in Figure 4.10. The overlap among the 

subspaces is analysed to study the variation of temperature at the surface of 

each subspace.   

3) Section C: The prediction analysis where the number of carcasses is reduced 

to 86, while all other parameters are unchanged. In this scenario, the inter-

arrival time of each carcass is increased, hence reflected into a reduced 

number of carcasses to 86 to fill the given space on the overhead conveyor. 

4) Section D: Thermal mapping of the space where the dynamic temperature 

behaviour is taken between ±4oC. In this section, the temperature fluctuation 

is increased to ±4oC per hour. This is due to test the feasibility of the nWSN, 

where the application involves a rapid fluctuation in temperature. 

Figure 7.5 GUI to setup experimentation 
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These different scenarios have been constructed to study the viability of the model.   

 

The estimated time to fill the carcasses in the meat cool store is about 5 hours for 174 and 

same for 86 but the inter-arrival time is increased from 120 seconds to 240 seconds for the 

given 180 meters of the overhead conveyor. 

 

7.3.1 (A) Predicting the temperature for better coverage by placing nodes in three 

layers. 

 

All the parameters of the model can be configured using the GUI including 

deploying the infrastructural nodes at specific locations around the wall. The 

temperature fluctuation is considered between ±2oC with the simulation time. The 

temperature fluctuation is assumed as a sinusoidal form of cycling with a period of 

1 hour. 

The space can be fully occupied with 174 carcasses which are equally distributed 

and hanging on the overhead conveyor. The conveyor moves the carcasses with a 

constant speed. The schematic diagram of the conveyor arrangement within the 

cold storage is given by Figure 7.6. The infrastructural nodes 3, 8, 13 and 18 are 

placed in the middle of the four side walls of the room. Each carcass that entered 

the cool storage is attached to a portable node. The interaction between the carcass 

node and infrastructural node is essential for effective coverage of operational 

requirement of nWSN. 

 

 

 

 

 

 

 

 

 

The carcass node joins the nearest infrastructural node for information sharing as 

soon as it enters that particular infrastructural node’s domain. The NMi modes act 

upon joining of any portable node into any infrastructural node as a cluster head. 

Figure 7.6 Schematic arrangement of infrastructural sensor nodes 
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The portable nodes are placed on a carcass where they can form three layers (Layer 

1, Layer 2 and Layer 3) as shown in Figure 7.7. This placement strategy has been 

chosen to identify the better coverage of the overall space for thermal tracking. 

While the carcass is moving from one location to the other on the overhead 

conveyor, the portable node joins and leaves the infrastructural nodes one after the 

other. The model continuously drives the nWSN to train the system. In order to test 

the performance assessment of the nWSN architecture, an MAE is measured. The 

minimum statistical measurement of error reflects the viability of the model. Hence 

the estimated temperature and actual temperature at any arbitrary points within the 

space are measured. The temperature precision data is collected at two different 

conditions of the thermal profile. The profile at Dip and Peak conditions are 

considered when collecting three layer nodes temperature data. The volumetric 

rendered temperature precision data is shown in Figure 7.8 for the Layer 1, Layer 2 

and Layer 3 when the temperature profile level went down (dip). 

 

 

 

 

 

 

 

 

 

Figure 7.7 Portable node layers within the cool store 

Figure 7.8 Volumetric temperature precision at dip 
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Figure 7.9 shows the volumetric rendered temperature precision data for Layer 1, 

Layer 2 and Layer 3 when the temperature profile level is up (peak). It can be easily 

distinguished by looking at these two volumetric maps that the Layer 2 nodes have 

a greater coverage than the Layer 1 and Layer 3. The temperature profile of the cold 

storage within the simulation environment is the actual temperature and the 

estimated temperature is calculated from the nWSN. Arbitrary testing points are 

considered to verify the model at infrastructural nodes 3, 8, 13 and 18. 

 

 

 

 

 

 

Figure 7.10 represents the MAE at Peak and Dip for infrastructural sensor nodes 3, 

8, 13 and 18. The temperature precision is higher at the layer 2 for both peak and 

dip. The MAE of ±0.5oC is observed among all the infrastructural nodes. This 

clearly states that the nWSN model prediction for temperature variation in a 

dynamic environment is suitable for meat industry applications. However, the 

feasibility of the nWSN using the NMi model would raise further more challenging 

issues to be tackled in the future work. A maximum error presents at node 8 and 

node 13 at peak in addition to node 3 and node 13 at dip as shown in Figure 7.11 and 

Figure 7.12. 

Figure 7.9 Volumetric temperature precision at peak 

Figure 7.10 MAE at peak and dip for Inf. sensor nodes 

Node Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

SNode3 -0.02764 -0.27374 -0.19867 -0.6174 -0.09339 -0.15047

SNode8 -0.58955 0.016004 0.361476 0.025936 -0.02975 0.025783

SNode13 -0.61867 0.135717 -0.01649 -0.55477 -0.03517 0.393174

SNode18 -0.0564 0.061493 -0.00487 -0.05323 0.010505 0.190446

MAE at Peak MAE at Dip
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This is due to the overhead conveyor design and flow direction of the carcasses. 

The conveyor layout factor also affects the error, since the number of carcasses that 

join and leave the infrastructural nodes varies. On the other hand, the location of the 

infrastructural nodes also affects the MAE of the model. These experiments identify 

future directions where nWSN with NMi model can be deployed for real time 

measurements. 

 

7.3.2 (B) Thermal analysis at the subspace surface region.  
 

We have examined the thermal variability of the surface of each subspace in each 

cluster head discussed in the chapter 4. The experimental results show that the 

MAE is considerably high at these regions for both peak and dip conditions as 

shown in Figure 7.13. 

 

 

 

Figure 7.11 MAE at nodes 3, 8, 13, 18 at peak 

Figure 7.12 MAE at nodes 3, 8, 13, 18 at dip 
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Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

SNode3 1.060 1.070 0.800 -1.600 0.140 -0.420

SNode8 1.160 0.840 0.980 -1.560 -1.430 0.560

SNode13 1.230 1.020 0.680 -1.570 0.170 -0.200

SNode18 1.410 0.460 0.820 -1.350 -0.260 -1.110

MAE at Peak MAE at Dip

 

 

 

 

 

 

 

 

The MAE of ±1.5oC is observed among all the infrastructural nodes. The maximum 

error presents at node 3, 8 and 13 at peak and dip as shown in Figure 7.14 and Figure 

7.15. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

The volumetric rendered temperature precision data is shown in Figure 7.16 for 

Layer 1, Layer 2 and Layer 3 when the temperature profile level went up. Figure 

7.17 shows the volumetric rendered temperature precision data for Layer 1, Layer 2 

and Layer 3 when the temperature profile level went down. 

 

 

Figure 7.13 MAE at peak and dip for Inf. sensor nodes  

Figure 7.14 MAE at nodes 3, 8, 13, 18 at peak 

Figure 7.15 MAE at nodes 3, 8, 13, 18 at dip 
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It can be easily distinguished by comparing the maps that there is an error around 

the subspaces. Hence the integration of multiple subspaces needs to be addressed to 

map the thermal influence precisely. 

 

7.3.3 (C) Thermal analysis at increased carcass inter-arrival time. i.e. Carcass 

count reduced to 86.  

 

In this scenario the inter-arrival rate of the carcass is increased, as a result of which, 

the carcass count is reduced to 86 in the cool storage. Therefore, all the carcasses 

are evenly distributed in the plant. All other parameters are similar to section (A). 

Three sensor node layers are considered in the model. The experimental result 

shows that there is a greater increase in MAE for both peak and dip conditions. 

The outcome clearly identifies the insufficient training data set for the neural net. 

The Figure 7.18 and Figure 7.19 shows volumetric rendered temperature precision 

data for Layer 1, Layer 2 and Layer 3 at peak and dip, respectively.  

 

 

 

 

Figure 7.16 Volumetric temperature precision at peak 

Figure 7.17 Volumetric temperature precision at dip 
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A MAE of ±2oC is observed and Layer 2 has recorded more errors than other 

layers. Hence, it is important to consider and re-evaluate the algorithm in these 

conditions. Evaluating other neural net architectures for these types of conditions 

especially where there is less training data available may be worth considering. 

Future studies need to address these challenges. 

 

7.3.4 (D) Thermal mapping of the space where the temperature fluctuation is 

taken between ±4
o
C.  

 

The dynamic behaviour within the cool storage is introduced by fluctuation of the 

temperature between ±4oC with the simulation time. In all the scenarios we have a 

temperature fluctuation of ±2oC. In this scenario, we deliberately introduced more 

rapid temperature change to study the behaviour of the model. However, a 

temperature change of ±4oC in a one hour period may not be a common situation in 

a cold storage environment. 

 

 

 

 

Figure 7.18 Volumetric temperature precision at peak 

Figure 7.19 Volumetric temperature precision at dip 
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Nevertheless, in our study, it was an interesting task as it may reflect the viability of 

the neural net for some kind of applications. The experimental results show that 

there is a rapid increase of MAE for both peak and dip conditions. Figure 7.20 and 

Figure 7.21 show that the volumetric rendered temperature precision data for Layer 

1, Layer 2 and Layer 3 at peak and dip, respectively. There is an MAE of ±4oC is 

observed at node 13 and 18 at dip and peak, respectively. Figure 7.22 and Figure 

7.23 show the variation of MAE between the infrastructural nodes 3, 8, 13 and 18 at 

Layer 1, Layer 2 and Layer 3.  

 

 

 

 

 

 

 

 

 

 

Figure 7.20 Volumetric temperature precision at peak 

Figure 7.21 Volumetric temperature precision at dip 
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This variation clearly identifies that the system is unstable in conditions of very 

rapid temperature changes. The temperature at any arbitrary points varies rapidly 

and hence the prediction error reflects the same. The mean temperature variation is 

very high between any two points within the space. Using WSN to respond to a 

very rapid dynamic environment with the nWSN architecture may be challenging 

and will need to be addressed in future studies. 

 

 

 

 

 

 

Figure 7.22 MAE at nodes 3, 8, 13, 18 at peak 

Figure 7.23 MAE at nodes 3, 8, 13, 18 at dip 
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Chapter 8 
 
 
 
 

8 Conclusions and Future Directions 
 

This chapter concludes the work that has been achieved by the research objectives 

specified in the first chapter. We have defined the motivation of the current 

research work, contributions and the approach in the same chapter. This chapter 

concludes the overall work which includes the various scenarios built to analyse the 

results based on the methodologies implemented. Future work and directions are 

discussed in a later section. 

 

8.1 Conclusions 

 

The focus of this work is to develop a method and system towards building an 

object-centric environment using WSNs for spatial environmental mapping. A 

thorough study of the background in the field of WSNs, ANNs and thermal 

mapping is discussed in the earlier chapters. It is also identified from the literature 

that the research on thermal mapping using ANN and WSN areas is not mature and 

need further attention. 

 

Thermal mapping is not a new area of research and there are several conventional 

methods that are published including CFD and FEM [45, 46]. Most of these 

methods require intensive computational power and hence are not suitable for the 

limited resources of wireless sensors. The data loggers are the most convenient 

devices to log the temperature data for the applications that include food and 

agricultural industries. These devices can’t provide any real time thermal mapping 

to identify the hotspots. There is a demand for applications that allow for real time 

thermal analysis and also to predict the temperature at any arbitrary position. On the 

other hand, WSN are becoming very popular and they decrease in size and increase 

in computational power with a lower price. The soft computing methods, which are 

ANN and their applications are explored and used to address the research problem. 

Hence, our research is focussed on identifying the methodologies that can fulfil 

these requirements in the WSN area. 
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Initially the proof of concept is designed to compare the prediction error between 

the Shepard’s algorithm and the ANN approaches in relation to spatial analysis and 

thermal mapping. The ANN approach resulted in mean absolute error of 0.35 oC 

compared to 0.8 oC with Shepard’s algorithm with modified Euclidian distance. 

The sensing points are located based on a distribution pattern within the given 

space. The neural parameters are compared to identify the best network for training. 

Randomly placed sensing points are also analysed to verify the prediction analysis. 

Further viability scenarios are examined by varying the confined space, number of 

infrastructural nodes and the number of portable nodes. It has been observed that 

there is a drop in RMS error while increasing the number of portable nodes at a 

given room volume and the infrastructural nodes deployed on inner side of the 

boundary, but there is a maximum number of portable nodes beyond which the 

error does not improve. The infrastructural nodes deployed on the inner surface of 

the boundary have an impact on the thermal prediction.  

 

The core module of this research is the implementation of nWSN architecture and 

its components for building an object centric thermal mapping environment. The 

NMi model is developed to organize the communication between the infrastructural 

nodes and portable nodes. A QnDP algorithm is proposed to fulfil the data 

synchronization for training in a dynamic environment. A volumetric temperature 

precision is given to compare the data among synchronous and asynchronous input. 

Larger errors are recorded when the data is asynchronously submitted into the 

model. This work disclosed the viability of nWSN architecture to execute further 

on a real time test bed. 

 

A test bed is constructed at SeNSe lab using Atmel’s RZUSBSTICK as a gateway 

and AVRRAVEN as motes to conduct the experiments. This experimental test bed 

has confirmed the viability of the proof of concept. The deployed nodes have given 

a great correlation on volume rendered maps and these results revealed a good 

accuracy between the testing and predicted data sets. 

The nodes minimization approach is proposed to identify the number of nodes 

required in a given space. The K-Nearest Neighbour Algorithm has been used 

together with Bayesian maps for evaluating more influenced nodes. This work 

exploits a spatial correlation of temperature data in a given space. The minimum 

number of nodes can be identified for any given space. 
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Finally we have analysed a meat industry case study to mimic a cool storage where 

the temperature varies with time. We have used 174 carcasses in the model and the 

experimental scenarios are categorized broadly into four sections: 

 

1) The first scenario describes the placement of nodes at three different layers 

in the space to identify the nodes deployment for better coverage. A 

dynamic temperature is introduced at each point where it fluctuates between 

±2oC with the simulation time. At both peak and dip, the layer 2 nodes 

deployment has given a high correlation compared to the layer 1 and layer 

3. 

2) The second scenario focussed on the temperature variation analysis at the 

surface of the each subspace based on the modularization of the space into 

sub-spaces. There is more error recorded around the subspace. Hence the 

integration of multiple subspaces needs to be addressed. 

3) In the third scenario, the inter-arrival time of the carcasses is increased, 

which reduced the number of carcasses to 86. This result clearly identified 

inadequate training data at each infrastructural node/cluster head for the 

given space. 

4) The final scenario has looked into an increase of dynamic temperature 

variation to ±4oC with the simulation time to identify the effect on the 

prediction. The system became very unstable at this rapid change in 

temperature and reflected an increased prediction error at all the 

infrastructural nodes. 

 

The concept development and the test bed analysis showed that there is an 

influence of the nodes placement and the number of training datasets. The results of 

the various scenarios built lead to the conclusion that the concept is valid for a 

similar kind of applications. 

 

8.2 Future Work and Directions 

 

The nWSN architecture has delivered promising results for further execution in real 

time domains. During the implementation of this research, a few assumptions were 

introduced to allow assessment and development of the concept and some of these 
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required for further attention. In this section some of these areas will be discussed 

as a potential future work. 

 

1. Neural parameters: The neural network architectures need to be reviewed for 

other applications. Other than the location and temperature, the variables like the air 

flow direction could influence the thermal profile predictions. In the Heating, 

Ventilation and Air-Conditioning (HVAC) systems, we can identify the nearby 

locations of the source to deploy the sensor nodes for the overall coverage of the 

space. The temperature gradients vary rapidly towards the direction of the air flow. 

Hence, the direction of the air flow would give a high precision mapping for 

applications that require greater accuracies. 

 

2. Fault detection and isolation: The training data received from the portable nodes 

should be identified at the cluster node level to determine, if any wrong information 

was provided by the node. For example, if nodes fail to detect or sense the 

temperature, this leads to generating incorrect data in the training process. Hence 

the implementation of the AI at the cluster node level can block the transmission of 

erroneous data for further training or validation.   

 

3. Time synchronization: The inclusion of time as a neural parameter could resolve 

the time synchronization issue which is required within a transient space where the 

portable nodes move with time. The time as an input parameter would give a fourth 

dimensional mapping of the space.     

 

4. Shelf life prediction: Implement and test better models for shelf life prediction 

during transportation of goods. Tracing and tracking systems during transportation 

would help taking certain decisions. This would require implementation of the real 

time data streaming algorithms. 

 

4. Optimization algorithms: The minimum number of nodes that are required to 

map the given space is analysed by using k-NNA along with Bayesian maps to 

identify the influenced nodes in this work. This analysis has given the minimum 

nodes for the defined configuration. But it depends on the spatial distribution of the 

nodes, size of the space and thermal profile. Locating the nodes is an important 

criterion along with the number of nodes. In an ideal condition, we assume that 
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there are no obstacles within the space. But in real world scenarios there might be 

walls, pillars in the middle of the space. The optimal nodes placement varies from 

one infrastructure to the other. Hence, the sensor nodes placement needs to be 

modified for a given infrastructure. An optimization problem needs to be 

constructed with an objective function to minimize the prediction error and 

considering all the constraints. Optimization algorithms would be required for 

future study.  

 

4. Data mining: In this study we have used the nWSN modularized system where 

the space is divided into subspaces. A cluster head is responsible for each subspace. 

When dealing with greater number of modularized systems, it is important to focus 

on data streaming for the query system to identify the hot spots and also trigger the 

alarm for the given thermal boundaries of any individual subspace. 

 

5.  Portable Nodes: In the experimental scenarios, we have used the motes from 

Atmel Corporation. These motes may not be suitable for the portable nodes, based 

on their size and power requirements. Hence it is important to give a focus on 

hardware development that is suitable to work in any environment. 
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A. Appendices 
 

The implementation of the nWSN architecture involves the software user interface 

and hardware that needs to be customized to mimic the real-time environment. We 

have used RZUSBSTICK and AVRRAVEN from Atmel to test the developed 

concepts. The effort towards building a three dimensional virtual reality 

environment to run the experiments has been successfully implemented within the 

simulation modeling. This appendices section gives all about the interfaces and 

coding. 

 

A.1 Hardware Environment: 

 

The hardware environment from Atmel Corporation allows the programmers to use 

object-oriented languages such as C# and Java to develop portable WSN 

applications that can be dynamically distributed, loaded and updated even after the 

deployment. The developed code is embedded into the infrastructural node and 

portable nodes. The QBnWSN uses the time synchronization for the synchronized 

data input to the cluster head. The code for these nodes is given here. 

 

IBMs Mote Runner Implementation: 

   
Batch file to compile the assembly (start.bat) 

  
mrgac --del Inode-6.0 
mrgac --del Pnode-6.0 
 
mrc --assembly=Inode-6.0 Inode.java 
mrc --assembly=Pnode-6.0 Pnode.java 
 
mrgac --copy Inode-6.0.sba 
mrgac --copy Pnode-6.0.sba 
 
mrsh.exe 

  
Simulation initialization code (run.mrsh): 

 
saguaro-start 
lip-enu 
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lip-create -p 02-00-00-00-A8-A8-D2-12 
sleep 3000 
l0 mote-reset 
sleep 3000 
l0 wlip-setup 
sleep 3000 
 
lip-create -p 02-00-00-00-2F-5B-50-04 
sleep 3000 
l1 mote-reset 
sleep 3000 
l1 moma-delete Inode-6.0 
l1 moma-load Inode-6.0 
sleep 3000 
wlip-appeal 
socket-bind -s collect.js collect 
socket-send collect 1 00 

 
 
 
 
 

package coord; 

import com.ibm.saguaro.system.*; 

public class Inode { 

private static final int GATEWAY = 0x5678; 

private static final int PANID = 0x1234; 

private static byte[] data = new byte[LIP.PAYLOAD + 10]; 

 
static { 

Radio.acquire(); 

Radio.setShortAddr(GATEWAY); 

Radio.setPanId(PANID, false); 

Assembly.setDataHandler(new DataHandler(null) { 

 
@Override 
public int invoke(int info, byte[] data, int len) { 

return onSerialData(info, data, len); 

} 

}); 

Radio.setRxDone(new RadioDone(null) { 

@Override 
 
public void invoke(int info) { 

onRxDone(info); 

} 

}); 

Radio.setRxHandler((byte)0, new RadioRxPdu(null) { 

@Override 
 
public void invoke(byte[] data, int len, long time, int quality) { 

onWirelessData(data, len, time, quality); 

A.1.1 Infrastructural node 
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} 

}); 

Radio.enableRx(Time.currentTicks() + 

Time.toTickSpan(Time.SECONDS, 20)); 

} 

 
private static void onWirelessData(byte[] pdu, int len, long time, int 
quality) { 

Util.copyData(pdu, 9, data, LIP.PAYLOAD, 10); 

LIP.send(data, 0, LIP.PAYLOAD + 10); 

} 

 
private static int onSerialData(int info, byte[] buf, int len){ 

Util.copyData(buf, 0, data, 0, LIP.PAYLOAD); 

return len; 

} 

  
private static void onRxDone(int info) { 

Radio.enableRx(Time.currentTicks() + 

Time.toTickSpan(Time.SECONDS, 20)); 

} 

} 
 
 
 

 
package snode; 

import com.ibm.saguaro.system.*; 

public class Pnode { 

private static final int PANID = 0x1234; 

private static final int GATEWAY = 0x5678; 

private static byte[] header = new byte[11]; 

private static byte[] data = new byte[10]; 

private static Timer timer = new Timer(); 
private static long INTERVAL = Time.toTickSpan(Time.SECONDS, 

10); 

private static boolean started = false; 

private static byte[] extendedAddress = new byte[8]; 

private static int shortAddress; 

private static int xval; 
private static int yval; 
private static int zval; 
private static int temp; 

 
static { 

Assembly.setDataHandler(new DataHandler(null) { 

 
public int invoke(int info, byte[] data, int len) { 

return onWLIPData(info, data, len); 

} 

}); 

A.1.2 Portable node 
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Assembly.setSystemInfoCallback(new SystemInfo(null) { 

 
public int invoke(int type, int info){ 

return onSystemEvent(type, info); 

} 

}); 

} 

 
private static int onWLIPData(int info, byte[] data, int len) { 

WLIP.shutdown(); 

return 0; 

} 

 
private static int onSystemEvent(int type, int info) { 

// system notification that WLIP has been shutdown 
if (type == WLIP.SYSEV_WLIP_DOWN) 

start(); 
return 0; 

} 

 
static private void start() { 

Radio.acquire(); // before we can use the radio we need to acquire 
it 
Radio.getExtAddr(extendedAddress, 0); 

shortAddress = Util.get16le(extendedAddress, 0); 

Radio.setShortAddr(shortAddress); 

Radio.setPanId(PANID, false); 

header[0] = Radio.FCF_DATA | Radio.FCF_ACKRQ; 

header[1] = Radio.FCA_SRC_SADDR | 
Radio.FCA_DST_SADDR; 

header[2] = 1; // sequence number 
// destination 
Util.set16le(header, 3, PANID); 

Util.set16le(header, 5, GATEWAY); 

// source 
Util.set16le(header, 7, PANID); 

Util.set16le(header, 9, shortAddress); 

timer.setCallback(new TimerEvent(null) { 

public void invoke(byte param, long time) { 

onTimeout(param, time); 

} 

}); 

// delay acquiring the radio so that the loading would not fail 
timer.setAlarmTime(Time.currentTicks() + INTERVAL); 

} 

 
static void onTimeout(byte param, long time) { 

try { 

xval = 500; 

yval = 500; 

zval = 10; 

Util.set16be(data, 0, xval); 
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Util.set16be(data, 2, yval); 
Util.set16be(data, 4, zval); 
SimpleDevices.read(SimpleDevices.MOTE_TEMP, 0, 0, data, 6, 

2); 

} 

catch (MoteException e) { 

LED.setState((byte) 2, (byte) 1); 

} 

Radio.transmit(Radio.TXMODE_CSMA, header, 11, data, 0, 8, null); 

timer.setAlarmTime(time + INTERVAL); 

} 

} 

 
 
 
 
 

User.collect = { 

onData: function(blob) { 

 

var ret = ""; 

if (blob.data.length == 0){ 

ret = "Connected.\n"; 

} 

else if (blob.data.length == 10){ 

var tmp = Formatter.unpack("2uL2u2u2u2u", blob.data); 

var src = tmp[0]; 

var xloc = tmp[1]; 

var yloc = tmp[2]; 

var zloc = tmp[3]; 

var T = tmp[4]; 

var temp= T; //* 0.09-45; 
var file; 

 

if(src == 33089) //Node 1 
{ 

file = IO.File.fopen("D:/1/SeNSe/fuswid/Pnode1.txt", "w+"); 

IO.File.fwrite(file, "" + temp); 

} 

if(src == 17941) //Node 2 
{ 

file = IO.File.fopen("D:/1/SeNSe/fuswid/Pnode2.txt", "w+"); 

IO.File.fwrite(file, "" + temp); 

} 

if(src == 31147) //Node 3 
{ 

file = IO.File.fopen("D:/1/SeNSe/fuswid/Pnode3.txt", "w+"); 

IO.File.fwrite(file, "" + temp); 

} 

if(src == 8902) //Node 4 
{ 

file = IO.File.fopen("D:/1/SeNSe/fuswid/Pnode4.txt", "w+"); 

A.1.3 Java script file for web-based data monitoring 
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IO.File.fwrite(file, "" + temp); 

} 

if(src == 57811) //Node 5 
{ 

file = IO.File.fopen("D:/1/SeNSe/fuswid/Pnode5.txt", "w+"); 

IO.File.fwrite(file, "" + temp); 

} 

if(src == 21966) //Node 6 
{ 

file = IO.File.fopen("D:/1/SeNSe/fuswid/Pnode6.txt", "w+"); 

IO.File.fwrite(file, "" + temp); 

} 

if(src == 31293) //Node 7 
{ 

file = IO.File.fopen("D:/1/SeNSe/fuswid/Pnode7.txt", "w+"); 

IO.File.fwrite(file, "" + temp); 

} 

if(src == 11374) //Node 8 
{ 

file = IO.File.fopen("D:/1/SeNSe/fuswid/Pnode8.txt", "w+"); 

IO.File.fwrite(file, "" + temp); 

} 

IO.File.fclose(file); 

var currentTime = new Date(); 

var hours = currentTime.getHours(); 

var minutes = currentTime.getMinutes(); 

if (minutes < 10){ 

minutes = "0" + minutes; 

} 

//var tm = sprintf(hours + ":" + minutes + " \n"); 
ret = sprintf("Time= %d:%d, SensorID = %X, X = %d, Y = %d, Z = %d, 
Temperature = 
%.2f C\n", hours, minutes, src, xloc, yloc, zloc, temp); 

} 

else { 

var tmp = Formatter.binToHex(blob.data); 

//var tmp = blob.data.length; 
ret = sprintf("Data = %s\n", tmp); 

//ret = "ERROR: unexpexted length \n"; 
} 

return ret; 
}, 

 

send: function(dstport, dstmote, argv) { 

return ""; 

}, 

broadcast: function(dstmote, dstport, argv) { 

return ""; 

}, 

onClose: function(status) { } 

}; 
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namespace com.ibm.moterunner.nwsn { 

internal sealed class HDEFS { 

internal HDEFS () {} // Default CTOR 
internal const byte APPLICATION_OFF = 0x00000002; 

internal const byte CHANNEL = 0x00000003; 

internal const byte CMD_OFF = 0x00000001; 

internal const byte CMD_UPDT = 0x00000002; 

internal const byte CMD_WLIP = 0x00000001; 

internal const uint GATEWAY = 0xD1D1; 

internal const byte MAX_DEVICES = 0x00000008; 

internal const byte MOTEID_OFF = 0x00000007; 

internal const uint PANID = 0x4ACE; 

internal const byte PORT = 0x0000006F; 

internal const byte RATE = 0x00000005; 

internal const byte RATE_OFF = 0x00000003; 

internal const byte STATUS_OFF = 0x00000000; 

internal const byte TEMP_CURR_OFF = 0x00000010; 

internal const byte TEMP_HIGH_OFF = 0x00000006; 

internal const byte TEMP_LOW_OFF = 0x00000004; 

internal const byte WDATA_LEN = 0x00000026; 

internal const byte WPAYLOAD_OFF = 0x00000009; 

} 

}  

 
 
 
 
 

namespace com.ibm.moterunner.nwsn { 

using com.ibm.saguaro.system; 

#if DEBUG 
using com.ibm.saguaro.logger; 
#endif 
public class nWSN { 

//internal static uint lip;  
// temporary data to be sent to motes 
internal static byte[] pendingData; 

internal static uint pending; 

// list of all known mote ids 
internal static uint[] knownMotes; 

internal static uint knownNum = 0; 

// buffer for sending radio messages 
//internal static byte[] radioMessage;  
internal static byte[] lipBuffer; 
internal static int handleLIP (int info, byte[] data, uint len){ 

// remember senders address 

A.1.4 Time synchronization – QBnWSN framework: 

initialization 

A.1.5 Time synchronization – QBnWSN framework: 

infrastructural node 
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Util.copyData(data, 0, lipBuffer, 0, LIP.PAYLOAD); 

// simply attach message 
if (len <= LIP.PAYLOAD + 1) 

return -1; 

// proper message 
// add pending data to forward the data to the specified mote 
addPendingData(data, LIP.PAYLOAD, len - LIP.PAYLOAD); 

return -1; 

} 

 

internal static void onRxPdu (byte[] pdu, uint len, long time, uint 
quality) { 

// we just received some data from a mote 
uint moteAddr = Util.get16le(pdu, HDEFS.MOTEID_OFF); 

#if DEBUG 
Logger.appendString(csr.s2b("rx - moteAddr:")); 

Logger.appendHexInt(moteAddr); 
Logger.flush(Mote.ERROR); 

#endif 
// check whether the mote has some pending data 
// and forward data from mote to the webapp 
checkAndForwardPendingData(moteAddr); 
// forward data from packet to webapp 
Util.copyData(pdu, HDEFS.WPAYLOAD_OFF-2, lipBuffer, 
LIP.PAYLOAD, len+2-HDEFS. 

WPAYLOAD_OFF); 

LIP.send(lipBuffer, 0, LIP.PAYLOAD+HDEFS.WDATA_LEN); 

} 

 
static nWSN () { 

/*uint lip =*/ LIP.open(HDEFS.PORT, handleLIP); 

// initialize data 
pendingData = new byte[HDEFS.MAX_DEVICES * 

HDEFS.WDATA_LEN]; 

knownMotes = new uint[HDEFS.MAX_DEVICES]; 

lipBuffer = new byte[LIP.PAYLOAD + 

HDEFS.WDATA_LEN]; 

// no pending data 
pending = 0x00; 

Radio.acquire(); 

Radio.setChannel(HDEFS.CHANNEL); 

// set addresses for radio filter 
Radio.setShortAddr(HDEFS.GATEWAY); 

Radio.setPanId(HDEFS.PANID, false); 

// enable receiver 
Radio.setRxDone(onRxDone); 

Radio.setRxHandler(/*backlog*/0,onRxPdu); 

Radio.enableRx(Time.currentTicks() + 0xEEEEEE); 

} 

 

internal static uint getMoteIndex (uint moteAddr) { 

uint index = 0; 
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for ( ; index < HDEFS.MAX_DEVICES ; index++) 

if (knownMotes[index] == moteAddr) 
return index; 

return index; 

} 

 

internal static void checkAndForwardPendingData (uint moteAddr) { 

uint moteIdx = getMoteIndex(moteAddr); 
if (moteIdx >= HDEFS.MAX_DEVICES) { 

// we do not know this mote 
knownNum++; 

if (knownNum == HDEFS.MAX_DEVICES) 

knownNum = 0; 

knownMotes[knownNum]=moteAddr; 
moteIdx = knownNum; 

} 

#if DEBUG 
Logger.appendString(csr.s2b("moteIdx: ")); 

Logger.appendInt((int)moteIdx); 

Logger.flush(Mote.ERROR); 

Logger.appendString(csr.s2b("pending: ")); 

Logger.appendHexInt(pending); 

Logger.flush(Mote.ERROR); 

#endif 
if ( (pending & (1<<(byte)moteIdx)) != 0){ 

pending &= ~((uint)(1<<(byte)moteIdx)); // clear pending bit 
uint off = moteIdx * HDEFS.WDATA_LEN; 

LED.setState(0,1); // yellow LED used for marking transmissions 
from gateway 
to packet 
Radio.transmit(Radio.TXMODE_CSMA, pendingData, off, 
HDEFS.WDATA_LEN, onTxDone 
); 

} 

} 

 

internal static void onTxDone(byte[] pdu, uint len, int status, long 
txend) { 

LED.setState(0,0); 

} 

 

internal static void addPendingData (byte[] data, uint offset, uint len){ 

uint moteAddr = Util.get16le(data, offset); 
#if DEBUG 
Logger.appendString(csr.s2b("addPendingData:")); 

Logger.appendHex(data, 0, len + LIP.PAYLOAD); 

Logger.flush(Mote.ERROR); 

#endif 
uint moteIdx = getMoteIndex(moteAddr); 
#if DEBUG 
Logger.appendString(csr.s2b("pend - moteAddr:")); 

Logger.appendHexInt(moteAddr); 
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Logger.flush(Mote.ERROR); 

#endif 
if (moteIdx >= HDEFS.MAX_DEVICES) { 

LED.setState(2,1); // red LED unknown mote 
// we do not know this mote 
return; 

} 

#if DEBUG 
Logger.appendString(csr.s2b("... we know it:")); 

Logger.flush(Mote.ERROR); 

#endif 
uint off = moteIdx * HDEFS.WDATA_LEN; 

Util.copyData(data, offset+2, pendingData, off + 

HDEFS.WPAYLOAD_OFF, len-2); 

// fix header 
pendingData[off+0/*FCF*/] = Radio.FCF_DATA | 
Radio.FCF_ACKRQ | Radio.FCF_NSPID; 

pendingData[off+1/*FCA*/] = Radio.FCA_SRC_SADDR | 
Radio.FCA_DST_SADDR; 

pendingData[off+2/*SEQNO*/] = 0xDD; 

Util.set16le(pendingData, off+3, HDEFS.PANID); 

Util.set16le(pendingData, off+5, moteAddr); 
Util.set16le(pendingData, off+7, HDEFS.GATEWAY); 

// mark that data is pending for this mote 
pending |= (uint)(1<<(byte)moteIdx); 

} 

 

internal static void onRxDone (uint info){ 

Radio.enableRx(Time.currentTicks() + 0xEEEEEE); 

} 

} 

} 

  
 
 
 
 
 
 

namespace com.ibm.moterunner.nwsn { 

using com.ibm.saguaro.system; 

#if DEBUG 
using com.ibm.saguaro.logger; 
#endif 
public class Packet { 

 

[Immutable] 

internal static readonly byte[] persistentData = {1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 

A.1.6 Time synchronization – QBnWSN framework: 

portable node 
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1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 1, 1, 1 
}; // 32 bytes 
// data used to send to gateway 
internal static byte[] data; 

internal static byte status; 

internal static byte rate_sec = HDEFS.RATE; 

internal static long rate_ticks; 

internal static byte application = 0; 

// temperature thresholds 
internal static uint temp_low = 4; 

internal static uint temp_high = 30; 

// Temperature Average 
internal static uint count; 
internal static uint temp; 

internal static uint temp_qry; 

internal static uint temp_min=0; 

internal static uint temp_max=0; 

internal static uint temp_avg; 

internal static uint timebefore = 0; 

internal static uint trcounter = 0; 

internal static byte radiostatus; 

//internal static uint nwsnTemp; 
internal static uint[] tempdata = new uint[12]; 

internal static Timer timer; 
// Timer at sensor node 
internal static Timer mytimer; 
internal static long rate_myticks; 

internal static uint numSecs = 0; 

internal static uint numMins = 0; 

internal static uint numHours = 0; 

internal static uint xval = 3; 

internal static uint yval = 7; 

internal static uint zval = 2; 

internal static byte seqno; 

internal static uint shortAddr; 
 
static Packet () { 

status = 0; 

// turn off all leds 
LED.setState(0,0); 

LED.setState(1,0); 

LED.setState(2,0); 

 
// check whether we have some persisten data 
if (persistentData[HDEFS.CMD_OFF] == HDEFS.CMD_UPDT){ 

#if DEBUG 
Logger.appendString(csr.s2b("we have persistent")); 

Logger.flush(Mote.ERROR); 

#endif 
// we have persistent data 
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application = persistentData[HDEFS.APPLICATION_OFF]; 

rate_sec = persistentData[HDEFS.RATE_OFF]; 

// thresholds 
temp_low = Util.get16be(persistentData, 

HDEFS.TEMP_LOW_OFF); 

temp_high = Util.get16be(persistentData, 

HDEFS.TEMP_HIGH_OFF); 

} 

rate_ticks = Time.toTickSpan(Time.SECONDS, rate_sec); 

Assembly.setSystemInfoCallback(onSystemEvent); 
// use a timer to start the application after ~ 2s 
timer = new Timer(); 
timer.setAlarm(initialStart, Time.currentTicks() + 2000000); 

rate_myticks = Time.toTickSpan(Time.SECONDS, 1); 

// Use a timer to count the TIME in an ARRAY 
mytimer = new Timer(); 
mytimer.setAlarm(myTimeRun, rate_myticks); 

} 

 

internal static void initialStart (byte param, long time) { 

WLIP.shutdown(); 

} 

 

internal static int onSystemEvent (int type, int info) { 

if (type == WLIP.SYSEV_WLIP_DOWN){ 

LED.setState(0,0); // end of maintenance yellow off 
start(); // we can now start the application 

} 

return 0; 

} 

 

internal static void start () { 

Radio.acquire(); 

Radio.setChannel(HDEFS.CHANNEL); 

Radio.setRxDone(onRxDone); 

Radio.setRxHandler(/*backlog*/0,onRxPdu); 

data = new byte[HDEFS.WDATA_LEN]; 

Radio.getExtAddr(data, 0); // use data for temporary read of 
extended address 
shortAddr = Util.get16le(data, 0); 

// set addresses for radio filter 
Radio.setShortAddr(shortAddr); 
Radio.setPanId(HDEFS.PANID, false); 

// set up radio message frame 
// 1 1 | 1 | 2 | 2 | 2 | ... | # bytes 
//+-----+-----+-------+--------+---------+--------+---------+-------------
-+ 
//| FCF | FCA | SEQNO | DSTPAN | DSTADDR |SRCADDR | 
payload | field name 
//+-----+-----+-------+--------+---------+--------+---------+-------------
-+ 
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data[0/*FCF*/] = Radio.FCF_DATA | Radio.FCF_ACKRQ | 
Radio.FCF_NSPID; 

data[1/*FCA*/] = Radio.FCA_SRC_SADDR | 
Radio.FCA_DST_SADDR; 

data[2/*SEQNO*/] = seqno; 

Util.set16le(data, 3, HDEFS.PANID); 

Util.set16le(data, 5, HDEFS.GATEWAY); 

Util.set16le(data, 7, shortAddr); 
rate_ticks = Time.toTickSpan(Time.SECONDS, rate_sec); 

// start a timer based on the persistent values 
timer.setAlarm(sense, Time.currentTicks() + rate_ticks); 

mytimer.setAlarm(myTimeRun, 1); 

tempdata[0] = 6000; 

} 

 

internal static void onRxPdu (byte[] pdu, uint len, long time, uint 
quality) { 

#if DEBUG 
Logger.appendString(csr.s2b("we got message")); 

Logger.flush(Mote.ERROR); 

#endif 
uint off = HDEFS.WPAYLOAD_OFF; 

// what command did we receive 
byte cmd = pdu[off + HDEFS.CMD_OFF]; 

 

if (cmd == HDEFS.CMD_WLIP){ 

// we need to switch to management mode 
// ---------------------------------------- 
// we will be notified with a sysev_wlip_down event 
LED.setState(0,1); // maintenance = yellow on 
timer.cancelAlarm(); 

Radio.release(); 

WLIP.activate(onSystemEvent, false /*keep WLIP up 
even if no gateway found 
the first time*/); 
return; 

} 

 

if (cmd == HDEFS.CMD_UPDT){ 

// we need to update our persistent parameters 
Util.updatePersistentData(pdu, off, persistentData, 0, 

HDEFS.WDATA_LEN); 

// and current application parameters 
application = pdu[off+HDEFS.APPLICATION_OFF]; 

// rate 
rate_sec = pdu[off+HDEFS.RATE_OFF]; 

rate_ticks = Time.toTickSpan(Time.SECONDS, rate_sec); 

timer.cancelAlarm(); 

timer.setAlarmTime(Time.currentTicks() + rate_ticks); 

// thresholds 
temp_low = Util.get16be(pdu, off+HDEFS.TEMP_LOW_OFF); 
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temp_high = Util.get16be(pdu, 

off+HDEFS.TEMP_HIGH_OFF); 

#if DEBUG 
Logger.appendString(csr.s2b("temp low = ")); 

Logger.appendInt((int)temp_low); 

Logger.appendString(csr.s2b("temp high = ")); 

Logger.appendInt((int)temp_high); 

Logger.appendInt((int)temp_avg); 

Logger.flush(Mote.ERROR); 

#endif 
return; 

} 

} 

 

internal static void onRxDone (uint info){ 

// nothing to do 
} 

 

internal static void sense (byte param, long time) 

{ 

LED.setState(1,(byte)(LED.getState(1)^1)); // toggle green LED 
uint off = HDEFS.WPAYLOAD_OFF; 

 

try { // Sample sensors directly into current data message 
// temperature 
SimpleDevices.read(SimpleDevices.MOTE_TEMP, 0, 0, 

data, off+HDEFS.TEMP_CURR_OFF, 2); 

temp = Util.get16be(data, off+HDEFS.TEMP_CURR_OFF); 

 

if(temp_min == 0 || temp_max ==0) 

{ 

temp_min = temp; 

temp_max = temp; 

temp_avg = temp; 

} 

 

if(temp <= temp_min) 

temp_min = temp; 

 

if(temp >= temp_max) 

temp_max = temp; 

// check the status for the application 
 

switch (application) 

{ 

case 0: 

temp_qry = temp_min; 

radiostatus = 0; 

if (temp >= temp_low && temp <= temp_high) 

status = 0; 

else status = 1; 

break; 
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case 1: 

temp_qry = temp_max; 

radiostatus = 0; 

status = 0; 

break; 

case 2: 

temp_qry = temp_avg; 

radiostatus = 1; 

status = 0; 

break; 

} 

} 

catch (MoteException) { 

LED.setState(2,1); // signal failed sensing with red LED 
} 

# Radio message payload PARAMS 
# 1 | 1 | 1 | 1 | ... | # bytes 
#+--------+---------+-------------+------+--------------+ =========== 
#| status | command | application | rate | thresholds | field name 
#+--------+---------+-------------+------+--------------+ ============ 
# Radio message payload (continued) THRESHOLDS 
# 2 | 2 | 2 | 2 | 2 | 2 
| # bytes 
#+-----------+-----------+-----------+------------+-----------+------------+ 
============ 
#| temp low | temp high | 
field name 
#+-----------+-----------+-----------+ 
# Radio message payload (continued) CURRENT DATA 
# 2 | 2 | 2 | # bytes 
#+-----------+------------+------------+ 
#| temp curr | field name 
#+-----------+------------+------------+ 
// we already have the status 
data[off] = status; off++; //status 
data[off] = HDEFS.CMD_UPDT; off++; // cmd 
data[off] = application; off++; // application 
data[off] = rate_sec; off ++; // rate 
// also send thresholds 
Util.set16be(data, off, tempdata[timebefore]); off += 2; 

Util.set16be(data, off, temp_high); off += 2; 

Util.set16be(data, off, numHours); off += 2; 

Util.set16be(data, off, numMins); off += 2; 

count = count+1; 

trcounter = trcounter+1; 

Util.set16be(data, off, numSecs); off += 2; 

Util.set16be(data, off, temp_qry); off += 2; 

uint sid = shortAddr & 7; 

 

switch (sid) { 

case 2: 

xval = 10; 
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yval = 15; 

zval = 5; 

Util.set16be(data, off+5, xval); 
Util.set16be(data, off+7, yval); 
Util.set16be(data, off+9, zval); 

break; 

case 3: 

xval = 5; 

yval = 20; 

zval = 5; 

Util.set16be(data, off+5, xval); 
Util.set16be(data, off+7, yval); 
Util.set16be(data, off+9, zval); 

break; 

case 4: 

xval = 20; 

yval = 10; 

zval = 5; 

Util.set16be(data, off+5, xval); 
Util.set16be(data, off+7, yval); 
Util.set16be(data, off+9, zval); 

break; 

case 5: 

xval = 5; 

yval = 15; 

zval = 5; 

Util.set16be(data, off+5, xval); 
Util.set16be(data, off+7, yval); 
Util.set16be(data, off+9, zval); 

break; 

} 

// transmit with CSMA to avoid collisions with other packets 
Radio.transmit(Radio.TXMODE_CSMA, data, 0, 
HDEFS.WDATA_LEN, onTxDone); 
if(trcounter<=10 || radiostatus == 1) 
{ 

RadioTransmit(); 
} 
data[2] = ++seqno; // always increment sequence number 
// set up a new timer for sensing data 
timer.setAlarmTime(Time.currentTicks() + rate_ticks); 

} 

 

internal static void RadioTransmit(){ 

// transmit with CSMA to avoid collisions with other packets 
Radio.transmit(Radio.TXMODE_CSMA, data, 0, 

HDEFS.WDATA_LEN, onTxDone); 

} 

 

internal static void myTimeRun (byte param, long time) 

{ 

try { 
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uint temp_numSecs = 

(uint)Time.currentTime(Time.SECONDS); 

numSecs = temp_numSecs%60; 

numMins = temp_numSecs/60; 

numHours = numMins/60; 

if(numMins%5==0) 

{ 

myTempRotate (); 
} 

} 

catch (MoteException) { 

LED.setState(2,1); 

} 

mytimer.setAlarmTime(Time.currentTicks() + rate_ticks); 

} 

 

internal static void myTempRotate () 
{ 

try { 

for(uint x=11; x>0; x--) 

{ 

tempdata[x] = tempdata[x-1]; 

} 

tempdata[0] = temp; 

} 

catch (MoteException) { 

LED.setState(2,1); 

} 

} 

 

internal static void onTxDone(byte[] pdu, uint len, int status, long 
txend) { 

// enable receiver for a very short time 
Radio.enableRx(Time.currentTicks() + 100000);  
} 

} 

} 
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A.2 Simulation Environment: 

 

Three Dimensional Virtual Reality Environments: 

A three dimensional virtual reality space is designed in Flexsim to build the thermal 

map within that. The red and blue colored nodes are infrastructural nodes having 

one red node at each side acting as a cluster head. Apart from these nodes situated 

on the inner surface of the space, the portable nodes can be deployed anywhere in 

the space by using a designed GUI that controls the model. The designed space 

volume is 20x20x5 m3 and this can be altered by the interface to conduct various 

scenarios. 
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//Temperature Limits 
double 
Temp_min=getnodenum(node("MAIN:/project/model/Tools/globaldata/Tmin")); 
double 
Temp_max=getnodenum(node("MAIN:/project/model/Tools/globaldata/Tmax")); 
 
//Spatial Coordinates  
double X_loc=getnodenum(node("MAIN:/project/model/Tools/globaldata/X")); 
double Y_loc=getnodenum(node("MAIN:/project/model/Tools/globaldata/Y")); 
double Z_loc=getnodenum(node("MAIN:/project/model/Tools/globaldata/Z")); 
 
//Initialization 
int knn=getnodenum(node("MAIN:/project/model/Tools/globaldata/kcount")); 
int 
Nodes=getnodenum(node("MAIN:/project/model/Tools/globaldata/numnodes")); 
double 
Threshold=getnodenum(node("MAIN:/project/model/Tools/globaldata/Threshval")
);  
 
 treenode SLocTable = reftable("LocTable"); 
 string StrNodes=numtostring(Nodes,0,0); 
 int LocTableCols=gettablecols(SLocTable); 
 int ColRepeat; 
 int ColCount; 
 int ColNext; 
 double XLoc; 
 double YLoc; 
 double ZLoc; 
 int ColRepeatFlag=0; 
  
 int nCount = round(Nodes/8) + 1; 
 int nFFRows=0; 
  
//Generate Inf. Nodes and locate in its position and set Temperature label 
for(int InfN=1;InfN<=Nodes;InfN++) 
{ 
 XLoc=gettablenum("NodeTable",InfN,1); 
 YLoc=gettablenum("NodeTable",InfN,2); 
 ZLoc=gettablenum("NodeTable",InfN,3); 
  
 int 
InfNrows=getnodenum(node("MAIN:/project/model/Tools/globaldata/numnodes"))
; 
 dropuserlibraryobject(node("MAIN:/project/userlibrary/WSN/SNode")); 
 setname(last(model()),concat("SNode",numtostring(InfN,0,0))); 
 setloc(last(model()),XLoc,YLoc,ZLoc); 
 setlabelnum(last(model()),"Temperature",temp_at(XLoc,YLoc,ZLoc)); 
  

A.2.1 Nodes deployment in simulation environment 
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 //Identify and set color to Fully functional node  
 if(Nodes/4 == 0 || fmod((Nodes/4),2) == 1) 
 {  
  if(InfN == nCount) 
  { 
   setcolor(last(model()),255,0,0); 
   nCount = nCount + Nodes/4; 
    
   //Update FFNodes table Data 
   nFFRows = nFFRows+1; 
   settablesize("FFNodes",nFFRows,5); 
   settablestr("FFNodes",nFFRows,1,getname(last(model()))); 
   settablenum("FFNodes",nFFRows,2,xloc(last(model()))); 
   settablenum("FFNodes",nFFRows,3,yloc(last(model()))); 
   settablenum("FFNodes",nFFRows,4,zloc(last(model()))); 
  
 settablenum("FFNodes",nFFRows,5,getlabelnum(last(model()),"Temperature")); 
  } 
 } 
  
} 
 
//Generate Temp values in Grid Table (NNgrid) 
settablesize("NNgrid",1,4); 
int rowcount=1; 
for(int xval=0;xval<=X_loc;xval++) 
 { 
  for(int yval=0;yval<=Y_loc;yval++) 
  { 
   for(int zval=0;zval<=Z_loc;zval++) 
   { 
   settablesize("NNgrid",rowcount,4); 
   settablenum("NNgrid",rowcount,1,xval); 
   settablenum("NNgrid",rowcount,2,yval); 
   settablenum("NNgrid",rowcount,3,zval); 
   double Tempval=temp_at(gettablenum("NNgrid",rowcount,1), 
           
 gettablenum("NNgrid",rowcount,2), 
           
 gettablenum("NNgrid",rowcount,3)); 
   settablenum("NNgrid",rowcount,4,Tempval); 
   rowcount++; 
   } 
  } 
 } 
 
for(int x=1;x<=Nodes;x++) 
{  
 XLoc=uniform(0,X_loc,1); 
 YLoc=uniform(0,Y_loc,2); 
 ZLoc=uniform(0,Z_loc,3); 
 dropuserlibraryobject(node("MAIN:/project/userlibrary/WSN/SNode")); 
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 setname(last(model()),concat("SNode",numtostring(x,0,0))); 
 setloc(last(model()),XLoc,YLoc,ZLoc); 
 setlabelnum(last(model()),"Temperature",NNtempXYZ(XLoc,YLoc,ZLoc)); 
 
 //Create Table and set the node data  
 treenode SNodesTable = reftable("NodesTable"); 
 settablesize(SNodesTable,x,5); 
 settableheader(SNodesTable, 1, x, concat("SNode",numtostring(x,0,0)));  
 settablenum(SNodesTable,x,1,XLoc); 
 settablenum(SNodesTable,x,2,YLoc); 
 settablenum(SNodesTable,x,3,ZLoc); 
 settablenum(SNodesTable,x,4,NNtempXYZ(XLoc,YLoc,ZLoc));//Temperature 
Val 
  
} 
//Generate Temp values in Grid Table (NNgrid) 
settablesize("NNgrid",1,4); 
int rowcount=1; 
for(int xval=0;xval<=X_loc;xval++) 
 { 
  for(int yval=0;yval<=Y_loc;yval++) 
  { 
   for(int zval=0;zval<=Z_loc;zval++) 
   { 
   settablesize("NNgrid",rowcount,4); 
   settablenum("NNgrid",rowcount,1,xval); 
   settablenum("NNgrid",rowcount,2,yval); 
   settablenum("NNgrid",rowcount,3,zval); 
   double 
Tempval=NNtempXYZ(gettablenum("NNgrid",rowcount,1), 
           
 gettablenum("NNgrid",rowcount,2), 
           
 gettablenum("NNgrid",rowcount,3)); 
   settablenum("NNgrid",rowcount,4,Tempval); 
   rowcount++; 
   } 
  } 
 } 
//Generate Nodes and locate in its position and set Temperature label 
for(int x=1;x<=Nodes;x++) 
{ 
 //For data/location consistency maintain another location table 
 //to keep the location constant whenever choosing the same number of nodes 
 int colflag; 
 if(ColRepeatFlag==1) 
 colflag=1; 
 else 
 colflag=0; 
 
 //Set Temperature value 
 double TempVal=uniform(Temp_min,Temp_max,1);  
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 //Check if the number of nodes already exists so that can't repeat another set of 
coordinates for the same no. of nodes 
 for(int cols=1;cols<=LocTableCols;cols++) 
 { 
  string ColName=gettableheader(SLocTable,2,cols); 
  if(comparetext(StrNodes,ColName)==1) 
  { 
   ColRepeat=1; 
   ColCount=cols; 
   break; 
  } 
  else 
  { 
   ColRepeat=0; 
  } 
 } 
  
 //Check the no. of nodes are repeating no need to verify the next column to start 
 if(ColRepeat==0) 
 { 
 for(int colsnext=1;colsnext<=LocTableCols;colsnext++) 
 { 
  string ColNextName=gettableheader(SLocTable,2,colsnext); 
  if(comparetext("Col",stringcopy(ColNextName,1,3))==1) 
  { 
   ColNext=colsnext; 
   break; 
  } 
 } 
 } 
  
 //Repeat the same coordinate set for the given node numbers ELSE generate new 
set of coordinates for given no.of nodes 
 if(ColRepeat==1&&colflag==0) 
 { 
  XLoc=gettablenum(SLocTable,x,ColCount); 
  YLoc=gettablenum(SLocTable,x,ColCount+1); 
  ZLoc=gettablenum(SLocTable,x,ColCount+2); 
  ColNext=ColCount; 
 } 
 else 
 { 
  ColRepeatFlag=1; 
  XLoc=uniform(0,X_loc,1); 
  YLoc=uniform(0,Y_loc,2); 
  ZLoc=uniform(0,Z_loc,3); 
 } 
  
 //Fill the coordinates in location table to keep track of the data for next time use.
  
 settableheader(SLocTable,2,ColNext,numtostring(Nodes,0,0)); 
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 settablenum(SLocTable,x,ColNext,XLoc); 
 settableheader(SLocTable,2,ColNext+1," "); 
 settablenum(SLocTable,x,ColNext+1,YLoc);  
 settableheader(SLocTable,2,ColNext+2," "); 
 settablenum(SLocTable,x,ColNext+2,ZLoc);  
  
 dropuserlibraryobject(node("MAIN:/project/userlibrary/WSN/SNode")); 
 setname(last(model()),concat("SNode",numtostring(x,0,0))); 
 setloc(last(model()),XLoc,YLoc,ZLoc); 
 setlabelnum(last(model()),"Temperature",TempVal); 
 
 //Create Table and set the node data  
 treenode SNodesTable = reftable("NodesTable"); 
  
 settablesize(SNodesTable,x,5); 
 settableheader(SNodesTable, 1, x, concat("SNode",numtostring(x,0,0)));  
 settablenum(SNodesTable,x,1,XLoc); 
 settablenum(SNodesTable,x,2,YLoc); 
 settablenum(SNodesTable,x,3,ZLoc); 
 settablenum(SNodesTable,x,4,TempVal);//Temperature Val 
  
} 
 
//Calculate k-Nearest Nodes to each node and set their distances into labels 
for(int y=1;y<=Nodes;y++) 
{ 
 treenode 
SenNodeCur=node(concat("MAIN:/project/model/","SNode",numtostring(y,0,0))); 
 treenode Stable=reftable("SortTable"); 
 for(int z=1;z<=Nodes;z++) 
 { 
  treenode 
SenNodeTo=node(concat("MAIN:/project/model/","SNode",numtostring(z,0,0))); 
  settablesize(Stable,z,2); 
  double dist=sqrt(sqr(xloc(SenNodeCur)-
xloc(SenNodeTo))+sqr(yloc(SenNodeCur)-
yloc(SenNodeTo))+sqr(zloc(SenNodeCur)-zloc(SenNodeTo))); 
  settablenum(Stable,z,1,dist); 
  settablestr(Stable,z,2,getname(SenNodeTo)); 
 } 
 sorttable(Stable,1); 
 treenode knode=node(">labels/knn",SenNodeCur); 
  
 for(int k=1;k<=knn;k++) 
 { 
  setnodename(rank(knode,k),gettablestr(Stable,k+1,2)); 
  setnodenum(rank(knode,k),gettablenum(Stable,k+1,1)); 
 }  
} 
 
//Set OptTable Size and Fill Datatype 
treenode OpNodesTable = reftable("OptTable"); 
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for(int Op=1;Op<=Nodes+1;Op++) 
{ 
 treenode 
OpNodeCur=node(concat("MAIN:/project/model/","SNode",numtostring(Op,0,0)))
; 
 
 settablesize(OpNodesTable,Nodes,Nodes,DATATYPE_NUMBER); 
 settableheader(OpNodesTable, 1, Op, concat("SNode",numtostring(Op,0,0)));  
 settableheader(OpNodesTable, 2, Op, concat("SNode",numtostring(Op,0,0))); 
 if(Op==Nodes+1) 
 { 
 
 settablesize(OpNodesTable,Nodes+1,Nodes+1,DATATYPE_NUMBER); 
  settableheader(OpNodesTable, 1, Op, "WNodes"); 
  settableheader(OpNodesTable, 2, Op, "INodes"); 
 } 
} 
//Find the first 2 nearest nodes in each node and set "1" in opttable 
for(int F2kn=1;F2kn<=Nodes;F2kn++) 
{ 
 treenode 
k2SenNodeCur=node(concat("MAIN:/project/model/","SNode",numtostring(F2kn,
0,0))); 
 for(int k2Temp=1;k2Temp<=2;k2Temp++) 
 { 
  string 
Op2KnodeTo=getname(rank(node(">labels/knn",k2SenNodeCur),k2Temp)); 
  for(int Rowt=1;Rowt<=Nodes;Rowt++) 
  {   
  
 if(comparetext(gettableheader("OptTable",1,Rowt),Op2KnodeTo)==1) 
   { 
    settablenum("OptTable",Rowt,F2kn,1); 
    break; 
   } 
  } 
 } 
}  

 
//Evaluate all nodes and compute its Temperature if that node is absent 
for(int j=1;j<=Nodes;j++) 
{ 
 treenode 
CSenNode=node(concat("MAIN:/project/model/","SNode",numtostring(j,0,0))); 
 double PredTemp=TempXYZ(CSenNode); 
 setlabelnum(CSenNode,"PTemp",PredTemp); 
} 
 
//Refresh the window to update all the labels 
forobjecttreeunder(node("VIEW:/1")) 
{ 
repaintview(a); 
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} 
repaintall(); 
 
 
 
 
 
//Destroy the nodes created from deployment 
int index; 
treenode objtree=node("MAIN:/project/model"); 
int Totnodes=content(objtree); 
int 
Numnodes=getnodenum(node("MAIN:/project/model/Tools/globaldata/numnodes"
)); 
for(int Ntimes=1;Ntimes<=Numnodes;Ntimes++) 
{ 
 for(index = 1; index <= Totnodes; index++) 
 { 
  string nodename=stringcopy(getname(rank(objtree,index)),1,5); 
  if(comparetext("SNode", nodename)) 
  { 
   destroyobject(rank(objtree,index)); 
  } 
  Totnodes=content(objtree); 
  //pd(index);pr(); 
 }  
} 
//Delete table rows 
treenode SNodesTable = reftable("NodesTable"); 
settablesize(SNodesTable,1,5); 
clearglobaltable(SNodesTable); 
 
settablesize("NNRandData",1,4); 
 
//Set Min nodes to Zero 
setnodenum(node("MAIN:/project/model/Tools/globaldata/Optnum"),0); 
//Set Hotspot temp table (NodeTable) 
int 
Infnodes=getnodenum(node("MAIN:/project/model/Tools/globaldata/numnodes")); 
//Spatial Coordinates  
double X_loc=getnodenum(node("MAIN:/project/model/Tools/globaldata/X")); 
double Y_loc=getnodenum(node("MAIN:/project/model/Tools/globaldata/Y")); 
double Z_loc=getnodenum(node("MAIN:/project/model/Tools/globaldata/Z")); 
settablesize("NodeTable",Infnodes,5); 
int Infcase=1; 
int casein=1; 
int noddiv=Infnodes/4+1; 
for(int Infrow=1;Infrow<=Infnodes;Infrow++) 
{ 
 settableheader("NodeTable", 1, Infrow, 
concat("InfNode",numtostring(Infrow,0,0))); 
  

A.2.2 Nodes reset to initialize code 
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 switch(Infcase) 
 { 
  case 1: 
  { 
   settablenum("NodeTable",Infrow,1,(casein/noddiv)*X_loc); 
   settablenum("NodeTable",Infrow,2,0*Y_loc+0.1); 
   settablenum("NodeTable",Infrow,3,(1/2)*Z_loc); 
  
 settablenum("NodeTable",Infrow,4,temp_at(gettablenum("NodeTable",Infrow,1
), 
           
  gettablenum("NodeTable",Infrow,2), 
           
  gettablenum("NodeTable",Infrow,3))); 
   settablenum("NodeTable",Infrow,5,1); 
   casein++; 
   break; 
  } 
  case 2: 
  { 
   settablenum("NodeTable",Infrow,1,(casein/noddiv)*X_loc); 
   settablenum("NodeTable",Infrow,2,1*Y_loc); 
   settablenum("NodeTable",Infrow,3,(1/2)*Z_loc); 
  
 settablenum("NodeTable",Infrow,4,temp_at(gettablenum("NodeTable",Infrow,1
), 
           
  gettablenum("NodeTable",Infrow,2), 
           
  gettablenum("NodeTable",Infrow,3))); 
   settablenum("NodeTable",Infrow,5,1); 
   casein++; 
   break; 
  } 
  case 3: 
  { 
   settablenum("NodeTable",Infrow,1,0*X_loc+0.1); 
   settablenum("NodeTable",Infrow,2,(casein/noddiv)*Y_loc); 
   settablenum("NodeTable",Infrow,3,(1/2)*Z_loc); 
  
 settablenum("NodeTable",Infrow,4,temp_at(gettablenum("NodeTable",Infrow,1
), 
           
  gettablenum("NodeTable",Infrow,2), 
           
  gettablenum("NodeTable",Infrow,3))); 
   settablenum("NodeTable",Infrow,5,1); 
   casein++; 
   break; 
  } 
  case 4: 
  { 
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   settablenum("NodeTable",Infrow,1,1*X_loc); 
   settablenum("NodeTable",Infrow,2,(casein/noddiv)*Y_loc); 
   settablenum("NodeTable",Infrow,3,(1/2)*Z_loc); 
  
 settablenum("NodeTable",Infrow,4,temp_at(gettablenum("NodeTable",Infrow,1
), 
           
  gettablenum("NodeTable",Infrow,2), 
           
  gettablenum("NodeTable",Infrow,3))); 
   settablenum("NodeTable",Infrow,5,1); 
   casein++; 
   break; 
  } 
  default: 
  { 
   break; 
  } 
    
 }  
 if(fmod(Infrow,Infnodes/4)==0) 
 { 
  Infcase++; 
  casein=1; 
 } 
}   
 
settablesize("NNgrid",1,4); 
treenode Optr=node("MAIN:/project/model/Operator"); 
setloc(Optr,0,0,0); 

 
//Reset FFNodes Table// 
settablesize("FFNodes",1,5); 
 
//Fixed Temp location setting 
treenode FixedT = reftable("FixedTemp"); 
 
settablenum(FixedT,1,1,0); 
settablenum(FixedT,1,2,0); 
settablenum(FixedT,1,1,Z_loc/2); 
settablenum(FixedT,2,1,X_loc/2); 
settablenum(FixedT,2,2,0); 
settablenum(FixedT,2,3,0); 
settablenum(FixedT,3,1,X_loc/2); 
settablenum(FixedT,3,2,0); 
settablenum(FixedT,3,3,Z_loc); 
settablenum(FixedT,4,1,X_loc); 
settablenum(FixedT,4,2,0); 
settablenum(FixedT,4,3,Z_loc/2); 
settablenum(FixedT,5,1,X_loc); 
settablenum(FixedT,5,2,Y_loc/2); 
settablenum(FixedT,5,3,0); 
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settablenum(FixedT,6,1,X_loc); 
settablenum(FixedT,6,2,Y_loc/2); 
settablenum(FixedT,6,3,Z_loc); 
settablenum(FixedT,7,1,X_loc); 
settablenum(FixedT,7,2,Y_loc); 
settablenum(FixedT,7,3,Z_loc/2); 
settablenum(FixedT,8,1,X_loc/2); 
settablenum(FixedT,8,2,Y_loc); 
settablenum(FixedT,8,3,0); 
settablenum(FixedT,9,1,X_loc/2); 
settablenum(FixedT,9,2,Y_loc); 
settablenum(FixedT,9,3,Z_loc); 
settablenum(FixedT,10,1,0); 
settablenum(FixedT,10,2,Y_loc); 
settablenum(FixedT,10,3,Z_loc/2); 
settablenum(FixedT,11,1,0); 
settablenum(FixedT,11,2,Y_loc/2); 
settablenum(FixedT,11,3,0); 
settablenum(FixedT,12,1,0); 
settablenum(FixedT,12,2,Y_loc/2); 
settablenum(FixedT,12,3,Z_loc); 
 
forobjecttreeunder(node("VIEW:/1")) 
{ 
repaintview(a); 
} 
repaintall(); 
 
 
 

 
 
//Generating Grid Table coords based on grid size and number of points required 
double gridsize; 
double locx; 
double locy; 
double locz; 
int gridpoints=5; 
treenode objectview=node("VIEW:/active/ortho",views()); 
if(objectexists(objectview)) 
{ 
 gridsize=getnodenum(gridx(objectview)); 
pf(gridsize);pr();  
} 
else 
{ 
 gridsize=1; 
} 
treenode firstobject=node("MAIN:/project/model/Node1",model()); 
if(objectexists(firstobject)) 
{ 
 locx=xloc(firstobject); 

A.2.3 Grid generation code in simulation 
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 locy=yloc(firstobject); 
 locz=zloc(firstobject); 
} 
else 
{ 
 locx=0;locy=0;locz=0; 
} 

int cols=gridpoints; 
int rows=gridpoints; 
//Coordinate phase change matrix 
int numbox=gridpoints-1; 
intarray phasechange=makearray(numbox); 

for(int fcount=1;fcount<=numbox;fcount++) 
{ 
 phasechange[fcount]=numbox*fcount-1; 
} 
//Fill total grid matrix 
int totgridpoints=cols*rows; 
//Create array to store temperature data 
doublearray tempdata = makearray((cols+1)*(rows+1)); 
 
int pointcount=1; 
for(int rowcount=1;rowcount<=rows;rowcount++) 
{ 
 for(int colcount=1;colcount<=cols;colcount++) 
 { 
  settablenum("GridTable",pointcount,1,locx); 
  settablenum("GridTable",pointcount,2,locy); 
  settablenum("GridTable",pointcount,3,locz); 
 
 settablenum("GridTable",pointcount,4,temp_at(gettablenum("GridTable",pointc
ount,1), 
      
 gettablenum("GridTable",pointcount,2), 
      
 gettablenum("GridTable",pointcount,3) 
          )); 
  locx=locx+gridsize; 
  pointcount++; 
 } 
 locx=0; 
 locy=locy+gridsize; 
} 
 
 
 
 
 
double x=parval(1); 
double y=parval(2); 
double z=parval(3); 
 

A.2.4 Internal functions code 
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double dist; 
double sum_Invdist; 
double prod_DT; 
double temp_Point; 
int numtabrows=gettablerows("FixedTemp"); 
doublearray sq_dist_array=makearray(numtabrows);  
doublearray inv_dist_array=makearray(numtabrows); 
 
for(int j=1; j<=numtabrows;j++) 
{ 
 if(gettablenum("FixedTemp",j,5)==1) 
 { 
  dist=sqrt(sqr(gettablenum("FixedTemp",j,1)-
x)+sqr(gettablenum("FixedTemp",j,2)-y)+sqr(gettablenum("FixedTemp",j,3)-z)); 
  sq_dist_array[j]=sqr(dist); 
  if(dist==0) 
  { 
   inv_dist_array[j]=10000000; 
  } 
  else 
  { 
   inv_dist_array[j]=1/dist; 
  } 
  sum_Invdist=sum_Invdist+inv_dist_array[j]; 
  Gsum_Invdist=sum_Invdist; 
 } 
 else 
 { 
  dist=0;  
  sq_dist_array[j]=sqr(dist); 
   
  inv_dist_array[j]=0; 
  sum_Invdist=sum_Invdist+inv_dist_array[j]; 
  Gsum_Invdist=sum_Invdist; 
   
 } 
  
} 
//pf(Gsum_Invdist);pr(); 
doublearray weight_array=makearray(numtabrows); 
for(int k=1;k<=numtabrows;k++) 
{ 
 if(gettablenum("FixedTemp",k,5)==1) 
 { 
  weight_array[k]=inv_dist_array[k]/Gsum_Invdist; 
 } 
 else 
 { 
  weight_array[k]=inv_dist_array[k]/Gsum_Invdist; 
 } 
  
} 
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for(int l=1;l<=numtabrows;l++) 
{ 
 if(gettablenum("FixedTemp",l,5)==1) 
 { 
  prod_DT=prod_DT+weight_array[l]*gettablenum("FixedTemp",l,4);  
 } 
 else 
 { 
  prod_DT=prod_DT+weight_array[l]*gettablenum("FixedTemp",l,4);  
 } 
}  
return prod_DT; 
 
 
 
 
 
 
treenode Snode=parnode(1); 
int KNcount=parval(2); 
 
double xi=xloc(Snode); 
double yi=yloc(Snode); 
double zi=zloc(Snode); 
 
double Sdist; 
double inv_dist; 
double sum_Invdist; 
double weight_node; 
double TempVal; 
 
treenode knode=node(">labels/knn",Snode); 
int numlabelrows=content(knode); 
int Rlabelrows; 
for(int Vn=1;Vn<=numlabelrows;Vn++) 
{ 
 if(getnodenum(rank(knode,Vn))>0) 
 { 
  Rlabelrows=Rlabelrows+1; 
 } 
 else 
 { 
  break; 
 } 
} 
 
//Calculate denominator(sum of inverse distances) of weight function  
for(int ji=1; ji<=KNcount;ji++) 
{ 
 Sdist=getnodenum(rank(knode,ji)); 
 inv_dist=1/Sdist; 
 sum_Invdist=sum_Invdist+inv_dist;   

A.2.5 Nodes minimization approach 
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} 
 
//Calculate weights for each node  
doublearray weight_array=makearray(KNcount); 
for(int ki=1;ki<=KNcount;ki++) 
{ 
 Sdist=getnodenum(rank(knode,ki)); 
 inv_dist=1/Sdist; 
 weight_array[ki]=inv_dist/sum_Invdist; 
} 
 
//Calculate estimated temperature at X,Y,Z 
for(int li=1;li<=KNcount;li++) 
{ 
 treenode Tnode=node(concat("/",getname(rank(knode,li))),model()); 
 double NodeTempVal=getlabelnum(Tnode,"Temperature");  
 TempVal=TempVal+weight_array[li]*NodeTempVal; 
}  
return TempVal; 
 
 
 
 
 
treenode current = ownerobject(c); 
treenode view = parnode(1); 
 
/**Update Node data*/ 
//Set the node Info...Temperature and Spatial data... 
int nodes = 3; 
string SNodeName=getname(current); 
treenode SNodeTableRow= 
node(concat("MAIN:/project/model/Tools/GlobalTables/NodesTable>variables/dat
a/",SNodeName)); 
 
//Set label status for Running/Redundant 
setnodenum(rank(SNodeTableRow,5),getlabelnum(current,"status")); 
 
treenode  displaynodes = objectinfo(current); 
while(nodes>content(displaynodes)) 
{ 
  nodeinsertinto(displaynodes); 
} 
 
while(nodes<content(displaynodes)) 
{ 
  destroyobject(last(displaynodes)); 
} 
 
if(getlabelnum(current,"status")==1) 
{ 
 setname(rank(displaynodes,1),concat("Status: ","Running")); 

A.2.6 Portable nodes object’s update 
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 setcolor(current,0,0,255); 
} 
else 
{ 
 setname(rank(displaynodes,1),concat("Status: ","Stopped")); 
 setcolor(current,255,0,0); 
} 
 
setname(rank(displaynodes,2),concat("Temp: 
",numtostring(getlabelnum(current,"Temperature"),0,2))); 
setname(rank(displaynodes,3),concat("X:",numtostring(xloc(current),0,2)," ", 
        
 "Y:",numtostring(yloc(current),0,2)," ", 
        
 "Z:",numtostring(zloc(current),0,2)  
 )); 
 
double x_grid=0; 
double y_grid=0.5; 
double gridcount=1/y_grid; 
drawtomodelscale(current); 
 
glBegin(GL_LINES); 
double xs=x_grid; 
double ys=y_grid; 
double ks=0; 
 
for(int k=0;k<=4;k++) 
{ 
 for(int j=1;j<=4;j++) 
 {
 glColor3d(color_at(gettablenum("GridTable",1,4),1),color_at(gettablenum("Gri
dTable",2,4),2),color_at(gettablenum("GridTable",3,4),3)); 
  
  glVertex3d(xs,0,-ks); 
  glVertex3d(ys,0,-ks); 
  glVertex3d(ys,0,-ks-y_grid); 
  glVertex3d(xs,0,-ks-y_grid); 
  xs=xs+y_grid; 
  ys=ys+y_grid; 
 }  
 xs=x_grid; 
 ys=y_grid; 
 ks=k*ys; 
} 
glEnd(); 
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A.3 GUI for Nodes Minimization 

 

 
 
 

A.4 GUI for Setup Scenarios 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


