
Object-Centric Intelligence: Sensor
Network and Thermal Mapping

Naresh Yamani
Design and Creative Technology, School of Engineering

Auckland University of Technology

A thesis is submitted to Auckland University of Technology in
fulfilment of the requirements for the degree of

Doctor of Philosophy

August, 2013

ii

Acknowledgements

I am grateful to my primary supervisor Professor Adnan Al-Anbuky for the

continuous support and cooperation in the hours of need and for his expert

technological and innovative advices in the area of Wireless Sensor Networks. He

was a beacon light, whose constant efforts and encouragement proved to be a

parallel stimulus in completing this project successfully. I would like to thank AUT

University for providing me this opportunity and financial support.

I offer my profuse thanks with humble reverence to Dr. Clyde Daly and Dr. Nicola

Simmons, Carne Technologies Ltd, Cambridge for their support. They are well

known in the meat industry both in New Zealand and internationally.

The funding for this work was provided by the Foundation for Research, Science

and Technology (FRST) as sponsored by Carne Technologies Ltd under the

programme contract number CARN0801. I would like to thank and acknowledge

their continued support.

This thesis is dedicated to my loving wife, Jyothsna Yamani and loving son

Kanishka Gandharva Yamani for providing me with a strong support which helped

me undertake this doctoral journey and successfully prepare this thesis.

iii

Declaration

I hereby declare that this submission is my own work and that to the best of my

knowledge and belief, it contains no material previously published or written by

another person nor material which to a substantial extent has been submitted for the

award of any other degree or diploma of a university or other institution of higher

learning.

Name: Naresh Yamani

Sign:

Date:

iv

Contents

1 Introduction .. 1

1.1 Introduction to Wireless Sensor Networks ... 1

1.2 Wireless Sensor Networks: Target Applications .. 2

1.2.1 WSN Background ... 3

1.2.2 WSN research challenges .. 5

1.3 Artificial Neural Networks Background .. 6

1.3.1 On-line Learning Algorithms .. 7

1.3.2 Gradient Descent Learning Algorithm .. 8

1.3.3 Back-Propagation algorithm ... 9

1.3.4 Multiple local optima and epochs ... 9

1.4 Thermal Mapping Background ... 10

1.5 Motivation .. 11

1.6 Problem Statement and Approach .. 13

1.6.1 Research Objectives .. 13

1.7 Contributions .. 13

1.8 Publications .. 14

1.9 Structure of the Thesis .. 15

2 Literature Analysis ... 17

2.1 Cold Room Monitoring and Tracing Systems .. 17

2.2 Mapping and Thermal Mapping ... 18

2.3 Artificial Neural Networks: A Review ... 19

2.3.1 Soft computing in physical fields .. 20

2.3.2 ANNs applied to thermal mapping ... 20

2.4 Wireless Sensor Networks: A Review ... 21

2.4.1 ANNs applied to wireless sensor works ... 22

2.4.2 Nodes placement and minimization .. 23

2.5 Data Collection and Query Processing in WSN ... 23

2.6 Research focus .. 25

3 Environment for nWSN Development .. 27

3.1 Introduction .. 27

3.2 Simulation Environments ... 28

v

3.2.1 IBM’s Mote Runner .. 28

3.2.2 Mote Runner architecture .. 29

3.2.2.1 Flexsim Discrete Event Simulation .. 30

3.2.2.2 Visualization and 3D engine .. 31

3.2.2.3 Model views ... 31

3.2.2.4 Flexsim objects ... 31

3.2.3 Artificial Neural Net Software .. 32

3.2.4 Voxler visualization program .. 33

3.3 Hardware Selection for WSN ... 34

4 Spatial Analysis: Thermal Mapping .. 35

4.1 Introduction .. 35

4.2 Ideology of the nWSN .. 35

4.3 Object-Centric Intelligent Environment ... 36

4.4 Thermal Mapping Methodologies .. 38

4.4.1 Thermal mapping using Shepard’s algorithm 39

4.4.2 Neural net based solution to thermal mapping 41

4.4.3 Data collection and node implementation ... 42

4.5 Computation and Thermal Coverage Focus ... 43

4.5.1 Space division based on layers .. 44

4.5.2 Coverage aspects ... 45

4.6 Nodes Minimization Approach .. 46

4.6.1 k-neighbour search for nodes .. 46

4.6.2 k-neighbour search for a query point .. 47

4.7 Extending the Solution through Space Partitioning 48

4.7.1 nWSN structure for subspace partitioning .. 49

4.8 Time Synchronization for nWSN Data Processing .. 51

4.8.1 An algorithmic approach – QnDP algorithm .. 52

5 nWSN Simulation and Validation ... 54

5.1 Introduction .. 54

5.1.1 Temperature profile ... 55

5.1.2 Transient model behaviour .. 58

5.2 Thermal Mapping Based on a Fixed Sensing Points with Single Cluster
Head/Infrastructural Node ... 59

5.2.1 Impact of NN internal architectural parameters 61

vi

5.3 Thermal Mapping Based on Random Sensing Points 63

5.3.1 Thermal mapping using Shepard’s Algorithm 63

5.3.2 Thermal mapping using neural net approach .. 66

5.4 Thermal Mapping Experimental Scenarios .. 68

5.5 nWSN Testbed Experimentation .. 73

6 nWSN Implementation Factors ... 77

6.1 Components of the nWSN Implementation ... 77

6.2 Approach for Query Based nWSN Spatial Thermal Mapping 78

6.2.1 Query based nWSN data processing framework 79

6.3 Time Synchronization and its Implementation ... 82

6.3.1 Configuration and setup for time synchronization 84

6.4 Neural Net Cluster Dynamic Grouping .. 87

6.4.1 Sequence diagram and process flow ... 88

6.5 Minimizing Nodes Approach ... 89

6.5.1 Sequential search and nodes minimization ... 90

6.5.2 Bayesian approach to identify more mutually influenced nodes 92

6.5.3 Nodes minimization simulation results and discussion 93

7 Cool Storage in a Meat Plant: A Case Study ... 95

7.1 Introduction .. 95

7.2 Modeling Scenario in a Cool Storage ... 96

7.3 Simulation environment setup and experimentation 97

7.3.1 (A) Predicting the temperature for better coverage by placing nodes in

three layers. .. 99

7.3.2 (B) Thermal analysis at the subspace surface region. 102

7.3.3 (C) Thermal analysis at increased carcass inter-arrival time. i.e. Carcass

count reduced to 86. ... 104

7.3.4 (D) Thermal mapping of the space where the temperature fluctuation is

taken between ±4oC. ... 105

8 Conclusions and Future Directions .. 108

8.1 Conclusions .. 108

8.2 Future Work and Directions ... 110

9 References .. 113

A. Appendices ... 126

A.1 Hardware Environment: .. 126

vii

A.1.1 Infrastructural node .. 127

A.1.2 Portable node .. 128

A.1.3 Java script file for web-based data monitoring ... 130

A.1.4 Time synchronization – QBnWSN framework: initialization 132

A.1.5 Time synchronization – QBnWSN framework: infrastructural node 132

A.1.6 Time synchronization – QBnWSN framework: portable node 135

A.2 Simulation Environment: .. 143

A.2.1 Nodes deployment in simulation environment ... 144

A.2.2 Nodes reset to initialize code .. 150

A.2.3 Grid generation code in simulation .. 153

A.2.4 Internal functions code ... 154

A.2.5 Nodes minimization approach .. 156

A.2.6 Portable nodes object’s update ... 157

A.3 GUI for Nodes Minimization .. 159

A.4 GUI for Setup Scenarios ... 159

viii

List of Figures

Figure 1.1 Wireless sensing node ... 4

Figure 1.2 Activation of neurons and its layers .. 6

Figure 1.3 Thermal mapping - (a) Thermal map (b) Contour map 10

Figure 1.4 Concept Diagram of Object-Centric Environment .. 11

Figure 2.1 Research focus Intersection areas .. 26

Figure 3.1 Mote Runner Architecture [110] ... 29

Figure 3.2 SeNSe Testbed Architecture .. 30

Figure 3.3 Schematic diagram of the cold storage .. 32

Figure 3.4 GUI built in Flexsim to setup a scenario ... 32

Figure 3.5 Volumetric rendering data produced by voxler ... 33

Figure. 3.6 Wireless sensor node from Atmel .. 34

Figure 4.1 Ideology of the problem .. 36

Figure 4.2 Conceptual diagram of the object-centric environment 37

Figure 4.3 Objects activity – an overview of the object centric model 38

Figure 4.4 Predicting temperature at a point using Shepard’s algorithm 39

Figure 4.5 Pseudo code for Shepard’s algorithm .. 40

Figure 4.6 FFNN for thermal mapping ... 41

Figure 4.7 Pseudo code for nWSN cluster head ... 43

Figure 4.8 Space divisions into layers .. 45

Figure 4.9 k-neighbour search algorithm .. 47

Figure 4.10 Subspace partitioning and their regions ... 48

Figure 4.11 nWSN Structure using 4 clusters ... 49

Figure 4.12 NMi Inode and Pnode interaction among the nodes in nWSN 51

Figure 4.13 QnDP Memory buffer model ... 52

Figure 4.14 QnDP Algorithm .. 53

Figure 5.1 Contour map of the thermal profile based on the sensing points 56

Figure 5.2 Sensing location points (a) pattern with 5 nodes (b) pattern with 9 nodes (c)
pattern with 13 nodes .. 59

Figure 5.3 MAE and RMSE comparison between Shepards and ANN 60

Figure 5.4 ANN Parameters comparison for training ... 60

Figure 5.5 Time comparison at different MLP layers and epochs 62

Figure 5.6 Sensing node distribution over the space... 63

Figure 5.7 Actual vs Predicted temperatures .. 64

Figure 5.8 (a) Actual thermal profile (b) Predicted thermal profile 65

Figure 5.9 (a) Actual thermal profile (b) Predicted thermal profile 65

Figure 5.10 Actual and predicted temperatures using ANN approach 66

Figure 5.11 Actual and predicted temperatures .. 66

Figure 5.12 (a) Actual thermal profile (b) Predicted thermal profile 67

Figure 5.13 (a) Actual thermal profile (b) Predicted thermal profile 67

Figure 5.14 Schematic diagram of the experiment ... 68

Figure 5.15 RMS error Vs No. Infrastructural Nodes ... 70

Figure 5.16 RMS error Vs Room volume ... 71

Figure 5.17 RMS Error Vs Training Data ... 72

Figure 5.18 Testbed layout at SeNSe .. 73

Figure 5.19 Temperature profile of each sensor node ... 74

Figure 5.20 Actual room temperature contour map .. 74

Figure 5.21 Contour map of the testing data set ... 76

Figure 5.22 Contour map of the predicted data set ... 76

ix

Figure 6.1 QBnWSN Framework ... 79

Figure 6.2 WSN Nodes arrangement in the application scenario 81

Figure 6.3 Node location change with time .. 82

Figure 6.4 Flow diagram for query processing ... 83

Figure 6.5 nWSN configuration setup .. 84

Figure 6.6 QB-nWSN Framework results interface .. 85

Figure 6.7 Volumetric temperature precision ... 86

Figure 6.8 Query and response times for 4 nodes ... 86

Figure 6.9 NMi Inode process flow .. 87

Figure 6.10 Sequence diagram of the nWSN process flow .. 88

Figure 6.11 Minimizing nodes approach flowchart .. 91

Figure 6.12 Nodes hierarchy ... 91

Figure 6.13 Precision Vs Nodes (at 50) .. 94

Figure 6.14 Precision Vs Nodes (at 100) .. 94

Figure 7.1 Thermal profile of a beef within the first 24hrs ... 95

Figure 7.2 pH variation of a beef carcass .. 96

Figure 7.3 Tenderness variation of a beef carcass .. 96

Figure 7.4 Schematic diagram of the cool storage .. 97

Figure 7.5 GUI to setup experimentation .. 98

Figure 7.6 Schematic arrangement of infrastructural sensor nodes 99

Figure 7.7 Portable node layers within the cool store ... 100

Figure 7.8 Volumetric temperature precision at dip ... 100

Figure 7.9 Volumetric temperature precision at peak ... 101

Figure 7.10 MAE at peak and dip for Inf. sensor nodes ... 101

Figure 7.11 MAE at nodes 3, 8, 13, 18 at peak ... 102

Figure 7.12 MAE at nodes 3, 8, 13, 18 at dip ... 102

Figure 7.13 MAE at peak and dip for Inf. sensor nodes ... 103

Figure 7.14 MAE at nodes 3, 8, 13, 18 at peak ... 103

Figure 7.15 MAE at nodes 3, 8, 13, 18 at dip ... 103

Figure 7.16 Volumetric temperature precision at peak ... 104

Figure 7.17 Volumetric temperature precision at dip ... 104

Figure 7.18 Volumetric temperature precision at peak ... 105

Figure 7.19 Volumetric temperature precision at dip ... 105

Figure 7.20 Volumetric temperature precision at peak ... 106

Figure 7.21 Volumetric temperature precision at dip ... 106

Figure 7.22 MAE at nodes 3, 8, 13, 18 at peak ... 107

Figure 7.23 MAE at nodes 3, 8, 13, 18 at dip ... 107

x

List of Tables

Table 3.1 Key features of the Mote Runner .. 28

Table 5.1 Temperature profile used for the sensing data .. 56

Table 5.2 Thermal profile used for the test set ... 57

Table 5.3 Initial neural net parameters for mapping ... 61

Table 5.4 Actual and Predicted temperatures using Shepard’s algorithm 64

Table 5.5 Additional deployed nodes at hot spots .. 65

Table 5.6 Model run scenarios .. 69

Table 5.7 RMS Errors – Inf. Nodes changing 8 to 40 at 2000m3 Volume and 20
Training data ... 70

Table 5.8 RMS errors – Room volume changing 2000m3 to 12500m3 at 24 Inf. Nodes
and 20 Training data ... 71

Table 5.9 RMS Errors – Training data set changing 10 to 120 at 8 Inf. Nodes and
4500m3 volume ... 72

Table 5.10 Training data confidence plot ... 75

Table 5.11 Validation data within the training set confidence plot 75

xi

List of Symbols and Abbreviations

A/D Analog-to-Digital

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

ASM Assembly

CFD Computational Fluid Dynamics

DBM Data Based Mechanistic

DBS Dual Buffer Search

EEPROM Electrically Erasable Programmable Read-Only Memory

FEM Finite Element Methods

FFNN Feed Forward Neural Network

GUI Graphical User Interface

I/O Input and Output

ID Sensor node short address

ISM Industrial Scientific and Medical

k-NNA k Nearest Neighbour Algorithm

LAN Local Area Network

LED Light Emitting Diode

MAC Media Access Control

MAE Mean Absolute Error

ML Machine Learning

MLP Multi-layer Perceptron

N1 Infrastructural/Stationary sensor node numbered 1

NMi Nodes Message interaction

NN Neural Network

nWSN neuro Wireless Sensor Network

OCT-Map Object-Centric Thermal Mapping

P1 Portable sensor node (carried by an object) numbered 1

QB-nWSN Query Based nWSN

QnDP Query based nWSN Data Processing

R2 Correlation coefficient

RAM Random Access Memory

xii

RF Radio Frequency

RFID Radio Frequency Identification

RMSE Root Mean Square Error

SVM Support Vector Machines

WLAN Wireless Local Area Network

WSN Wireless Sensor Network

XML Extended Mark-up Language

 Thermal diffusivity

b Bias

δ Residual or adjustment parameter

η Predefined learning rate

 Density

χ Set of sensor nodes

, Sensor dependent parameters

B[k] Memory buffer at sensor node level

cp Specific heat capacity

������
 Probabilistic coverage of a point

dk Euclidean distance

e Epoch

E Error between output and target

h Heat transfer coefficient

k Thermal conductivity

LI Shortest path length

oij Actual output

ok Output of node k

pD Packet Data

Pt Training sample

q Query point

 Confined space or region

Rci Communication radii

m m-dimensional Euclidean space

S Dataset

Se Sensitivity of the sensor node

St Memory vector

ti Time point for data synchronization

xiii

T Temperature

Tmin Minimum temperature

Tmax Maximum temperature

���,	 Average actual temperature for ith observation

��,	 Average predicted temperature for ith observation

vij Desired output

∆w Small increment to the model parameter

wij Weight of the connection from node i to node j

wk Weight function for a given node

�

��� New value of the weight from node j to node k

�

��� New value of the weight from node j to node k

(x,y,z) Location coordinates at a given point

y Network output

xiv

Abstract

Quality of product is an important aspect in many commercial organizations where

storage and shipment practices are required. Temperature is one of the main

parameters that influence quality and temperature treatments of agricultural

products therefore require special attention.

The temperature variation in a meat chiller has a significant effect on tenderness,

colour and microbial status of the meat, therefore thermal mapping during the

chilling process and during chilled shipment to overseas markets is vital. The

literature indicates that deviations of only a few degrees can lead to significant

product deterioration. There are several existing methods for thermal mapping:

these includes Computational Fluid Dynamics (CFD), Finite Element Methods

(FEM) for examination of the environmental variables in the chiller. These

methodologies can work effectively in non real-time. However these methods are

quite complex and need high computational overhead when it comes to hard real-

time analysis within the context of the process dynamics.

The focus of this research work is to develop a method and system towards

building an object-centric environment monitoring using collaborative efforts of

both wireless sensor networks and artificial neural networks for spatial thermal

mapping. Thermal tracking of an object placed anywhere within a predefined space

is one of the main objectives here. Sensing data is gathered from restricted sensing

points and used for training the Neural Network on the spatial distribution of the

temperature at a given time. The solution is based on the development of a generic

module that could be used as a basic building block for larger spaces. The Artificial

Neural Networks (ANNs) perform dynamic learning using the data it collects from

the various sensing points within the specific subspace module. The ANN could

then be used to facilitate mapping of any other point in the related sub-space. The

distribution of the sensors (nodes placement strategy for better coverage) is used as

a parameter for evaluating the ability to predict the temperature at any point within

the space.

xv

This research work exploits the neuro Wireless Sensor Network (nWSN)

architecture in steady-state and transient environments. A conceptual model has

been designed and built in a simulation environment and also experiments

conducted using a test-bed. A Shepard’s algorithm with modified Euclidian

distance is used for comparison with an adaptive neural network solution. An

algorithm is developed to divide the overall space into subspaces covered by

clusters of neighbouring sensing nodes to identify the thermal profiles. Using this

approach, a buffering and Query based nWSN Data Processing (QnDP) algorithm

is proposed to fulfil the data synchronization. A case study on the meat plants cool

storage has been undertaken to demonstrate the best layout and location

identification of the sensing nodes that can be attached to the carcasses to record

thermal behaviour.

This research work assessed the viability of using nWSN architecture. It found that

the Mean Absolute Error (MAE) at the infrastructural nodes has a variation of less

than 0.5oC. The resulting MAE is effective when nWSN can be capable of

generating similar applications of predictions.

xvi

1

Chapter 1

1 Introduction

This chapter discusses the introduction to wireless sensor networks, artificial neural

networks and thermal mapping. The aim of this research work is to map the thermal

profile of a given specified space using both sensor networks and neural networks.

Hence focus is given to each elemental background and further the motivation of

the work is addressed. The research objectives and the detailed approach are

described in this section. Later on the contribution of the overall work is discussed

along with the research publications. The structure of this thesis has been developed

in such a manner to enable the original hypothesis to be developed and exploited in

a clear and concise format.

1.1 Introduction to Wireless Sensor Networks

In a WSN, numerous tiny, battery-powered computing devices are scattered

throughout a physical environment. Each device is capable of monitoring, sensing,

and displaying actuating information. Sensing may include the collection of values

for temperature, humidity, vibration or other data. An actuating device may cause a

LED to blink, turn on lights, change colours on a display, display textual

information, and trigger any other action that prompts a response or informs an

operator. WSNs are used in commercial, industrial, environmental, and healthcare

applications to monitor data that would be difficult or expensive to capture using

wired sensors.

Sensor networks can provide detailed coverage due to the small size of the nodes

and therefore the large number that can be used within the required environment.

However the small size can also mean that the node has a limited power supply.

Due to this limitation, the sensor nodes will therefore have limited computational

power, sensing capability and memory size. Sensors that can’t communicate

directly with the base station can pass their data to nearby sensors, in a multi-hop

fashion, until the data reaches its base station. A Combination of local sensor

2

networks, together with regional and globally distributed sensor systems, permits a

seamless study of different variables over very different spatial scales.

A variety of applications have been presented in the literature for WSN. These

include ecological habit monitoring, smart spaces and geological monitoring. The

deployment of embedded devices in recent decades has been widespread with

increasing computational capabilities. Wireless sensor nodes [1-5] are very

powerful and becoming popular to provide measurement of specific physical

attributes. WSN nodes can communicate with neighbouring sensor nodes to

exchange information with each other.

Multiple sensor nodes together constitute a wireless sensor network; these can be

applicable to large scale environmental monitoring [6, 7], building management,

industrial and transportation systems. The wireless sensor nodes can be deployed

across the area of interest and where they can measure the relevant data. The sensor

nodes transmit data to a central station where it can be further processed to enable

the system to make certain decisions about environmental or system management.

The current trend is moving towards incorporating higher levels of more complex,

computational capabilities into the sensor node itself and to communicate with

other nodes only when required.

In many applications hundreds of sensors are used in order to facilitate data

environment for data collection. Estimating the temperature at any arbitrary

position, where there are possibly no sensor nodes is a challenging task. Most of the

WSN applications require monitoring of live streaming sensor data; hence the data

processing must be performed in real time. Also data processing algorithms are

time consuming and may not be able to cope with real time constraints. WSNs

provide a better way of interacting with physical environments, hence these have

been the focus of many research programmes over the last few years.

1.2 Wireless Sensor Networks: Target Applications

Sensor networks can be useful in a variety of domains including cool stores,

greenhouses, warehouses, cargo containers, building monitoring, climate

monitoring, logistics and several industrial applications. Temperature prediction

constitutes a crucial issue for different applications. There are many applications

where the temperature distribution in a given space has to be assessed. Monitoring

of temperature is of extreme importance in the food and agricultural industry. Many

3

of the food and agricultural products are sensitive to the temperatures at which they

are stored and transported. For example, the storage temperature of kiwi fruits is

critical to ensure the quality of the fruit is not compromised. Therefore it is

important that a producer is aware when temperature falls outside the required

range to enable corrective action to be immediately taken.

In another aspect, frost damage is a significant concern for fruit growers, where bud

formation and flowering at the start of the growing season occurs. Unseasonably

cold temperatures results in these flowers being killed and therefore, a reduction in

fruit harvests. Hence temperature monitoring of the production system is vital. Of

course, manual temperature monitoring of food products is possible but very time

consuming. Furthermore, it is often not possible to measure multiple points in the

production environment.

As a further example, in multiple storage containers, an incorrect temperature level

may exist for an extended period before it is discovered. Thus an automatic thermal

mapping solution is needed. The temperature points from the given system must be

reliably gathered over a period of time to identify the zones where the thermal

condition is beyond the designated values. The resulting data can be mapped to

identify the problem areas within the system. There is a need for research and

several key issues must be resolved to allow application of these in practice.

WSNs can facilitate the acquisition of physical attributes like temperature from a

multitude of commercial applications. Within the cold chain of any perishable food

commodity it is necessary to have information on and control of storage

temperature, atmospheric temperatures, rate of cooling and length of storage to

ensure cold chain integrity from harvest to consumption. It has been estimated that

the fruit loss in Europe alone due to temperature abuse can cost $NZ6 million,

excluding costs associated with reworking product [16]. The meat industry is

another primary industry where temperature of the carcass or meat primal must be

monitored and controlled to maintain the quality of the meat.

1.2.1 WSN Background

A wireless sensor network consists of transceivers, sensors, microcontrollers and

power sources. The current technologies have led to advancements in developing

low priced, low powered and multi-functional sensor nodes, as shown in Figure 1.1.

Sensor nodes are capable of environmental sensing along with data processing. The

4

interconnection between the external sources and the wireless sensor networks is

used to communicate and exchange data.

WSNs are used in several applications that include environmental monitoring,

acquisition of data, buildings monitoring, security and safety supervision [8]. The

sensor node communicates with a gateway unit which further transfers data through

LAN, WLAN or WSN. These devices facilitate exchanging and monitoring data.

WSNs use the radio transmission medium provided by the Industrial Scientific and

Medical (ISM) bands. Several studies have been conducted using these devices and

the findings have been utilized by the research community to enable the uptake of

sensor readings in WSNs using different protocols such as Bluetooth, Wi-Fi and

Zigbee [11, 12, 13, 14]. The ISM bands have huge spectrum allocation and they are

available on license free, such as the 2.4 GHz band to operate globally [8, 9, 10].

Multi-hop communications have greater advantages than traditional single hop

communications in WSN since they consume less power [8, 9]. Zigbee and

Bluetooth are the latest multi-hop communication protocols available and have

become very popular.

The IEEE 802.15.4 standard is a physical radio specification that provides low data

rate connectivity among relatively simple devices that consume minimal power and

which typically connect over short distances. This communication standard is ideal

for monitoring, tracking and controlling industrial and home applications [15].

Radio signals have the capability to penetrate through wall and glass, due to their

lower frequency and longer transmission range.

Figure 1.1 Wireless sensing node

Sensor Inputs

Sensor signal
conditioning

Multiplexer: Amplifier
A/D converter

Li-ion battery
voltage regulator
along with power

source

Radio Frequency
(RF) transceiver

8 bit, low power,
microcontroller

Flash EEPROM for
sensor logging

5

1.2.2 WSN research challenges

Due to the sensors limited capabilities, there are a lot of design issues that must be

addressed to achieve an effective and efficient operation of WSN.

1) Autonomy: Sensor nodes are commonly deployed in places where cable

access is either not possible or expensive. Sensor nodes are normally

operated on a battery power and recharging may not be possible at all

locations. Therefore, energy usage is extremely valuable in sensor nodes,

building algorithms for minimizing the load on nodes is crucial when

designing sensor networks. Another consequence of autonomy is the need

for sensor nodes to organize themselves by learning and adapting to a

changing environment.

2) Location Identification: When an application requires the location of the

sensor node, it is important to embed an algorithm that uses a location

discovery protocols. Most of the tracking applications need to have a

specified location. There are solutions available that use the GPS based

technology, but the cost and energy consumption are high with this system.

Recent research reveals methods to compute the location of the nodes by

utilizing very minimal information. But further work is required to develop

this to a point where it can be used in any system.

3) Limited Computational Power: There is a lot of advancement in

integrated circuit technology and its improved processing capacity. The

capability available for data processing, data communication and memory of

sensor nodes has increased markedly over recent times. Due to the limited

energy of sensor nodes, it is advisable to minimize the computational times.

Therefore, any information processing within the sensor nodes has to take

into account the corresponding limitations. It is important to take proper

measures while allocating the memory buffers and assigning the data types

of the variable assignment.

4) Complex Dynamics: The dynamics of the measured environment data can

be complicated, for example if the current value of the dynamics depends on

the long term historical value, or if the dynamic model at one location is

related to the one at another location. Therefore, in some cases, the

dynamics of the measured data is a complex system with both temporal and

spatial characteristics.

6

1.3 Artificial Neural Networks Background

The theoretical background related to ANN is discussed here but it will be limited

to the topics directly related to the solutions given in this thesis. In theory, there are

many popular Neural Network (NN) architectures available, particularly those used

in offline tasks and these are complicated combinations of diverse neural structures

[18, 19, 20] along with many statistical models [21, 22, 23, 24]. Due to the limited

processing capacity of the sensor nodes, it may not be important to discuss the

hybrid structures and evolutionary neural models [25, 26, 27]. A gradient

calculation of NN architecture is considered since it is the main factor of the

learning model.

The computation within the NN was inspired by the functionality of a biological

network, namely the human brain. Similar to a biological neuron, the artificial

neuron has the structure as shown in Figure 1.2, where the neuron collects and

accumulates the data � 	
� from outside, then fires an output after

applying a summation over a nonlinear function , called the activation

function. This can be formulated as shown in the equation 1.1, where b is the bias of

the neuron, similar to the neuron’s activation threshold.

An ANN is a collection of many neurons, where in most cases the neurons activate

synchronously and propagate their activation to another group of neurons. One of

the important classical example of this is the feed forward operation between two

	 		 1.1

Figure 1.2 Activation of neurons and its layers

7

layers of neurons as shown in Figure 1.2, where black circles represent neurons, a

hollow circle denotes the bias. The group contains neurons usually independent of

each other. The information is propagated from one group to another in an ANN.

1.3.1 On-line Learning Algorithms

In this research work, we proposed an online learning algorithm that is suitable for

the application domain. Hence is it important to review the available algorithms.

Neural network models can be categorized into two main classes based on the

presentation of the training data and training methods. Those are the batch training

methods and the online training methods. Batch training is defined as each iteration

being trained with a batch of data at one time, such that the ∆w of the model

parameter w is derived from the data set { � �}:

Online learning also adjusts the model parameters in each iteration with the

increment ∆w, which depends on the input data. In recurrent neural network, there

is a memory vector �, which holds the history of input data; the parameters’ update

is given by equation 1.3.

Batch training methods have the ability to provide sufficient results using finite

training set in each iteration. However this method requires a large amount of

memory and high computational power. Hence, the batch training method is not

suitable for sensor network applications. On the other hand, online training is a

simplified method where it takes only a single data set into account in each

iteration. The evidence also clarified that the online training can restore the

trajectory of the batch learning model [96].

While looking at the difference in learning algorithms, error functions of neural

network applications can normally takes the form given by equation 1.4.

� ��� ��� � � 1.2

� ��� ��� � � 1.3

8

where the evaluation error e measuring the Euclidean-like distance between output

and target depends on parameters w, symbol stands for the corresponding target.

The network output y can be expressed as a function of w such that y = f(w), and

the coefficient ½ is used for convenience of calculation.

With the definition of residual δ:

the associated gradient calculation is given by equation 1.6.

1.3.2 Gradient Descent Learning Algorithm

The gradient descent learning algorithm adjusts its parameters by following the

error gradient. As defined in the equation 1.4, at a given task with an evaluation

error E and also a gradient based on the equation 1.6, the adjustment step parameter

is given by equation 1.7 and the parameters are updated using the equation 1.8.

where is the predefined learning rate, which is usually very small, j is the

iteration index and 	 is the corresponding residual for index i.

	 	
�

�

	��

� 	
�

�

	��

 1.4

	 	 	 � 	 	 1.5

	
	

	
	

�

	��

�

	��

 1.6

 �
�

���
	

���

���

�
	�� 1.7

� � � 1.8

9

1.3.3 Back-Propagation algorithm

Within the multi-layer perceptron (MLP), the back-propagation algorithm is a

further advancement to the gradient descent learning algorithm. This algorithm has

been implemented in several applications and has proven accurate [18, 19].

The back-propagation algorithm cycles through two distinct passes, a forward pass

followed by a backward pass through the layers of the network. The algorithm

alternates between these passes several times as it scans the training data. Typically,

the training data has to be scanned several times before the networks ‘learns’,

thereby generating an accurate prediction with minimal error.

1.3.4 Multiple local optima and epochs

The back-propagation algorithm is a version of the steepest descent optimization

method applied to the problem of finding the weights that minimize the error

function of the network output. Due to the complexity of the function and the large

numbers of weights that are being ‘trained’ as the network ‘learns’, there is no

assurance that the back propagation algorithm (and indeed any practical algorithm)

will find the optimum weights that minimize the error. The procedure can get stuck

at a local minimum. In these circumstances, it is useful to randomize the order of

presentation of the cases in a training set between different scans. It is possible to

speed up the algorithm by batching, that is, updating the weights for several

exemplars in a pass. However, at least the extreme case of using the entire training

data set on each update has been found to get stuck frequently at poor local minima.

A single scan of all cases in the training data is called an epoch. Most applications

of feed-forward networks and back propagation require several epochs to minimize

the error. A number of modifications have been proposed to reduce the epochs

needed to train a neural net. One commonly employed approach is to incorporate a

momentum term that injects some inertia in the weight adjustment on the backward

pass. This is done by adding a term to the expression for weight adjustment for a

connection that is a fraction of the previous weight adjustment for that connection.

This fraction is called the momentum control parameter. High values of the

momentum parameter will force successive weight adjustments to similar

directions.

10

Another idea is to vary the adjustment parameter δ so that it decreases as the

number of epochs increases. Intuitively this is useful because it avoids over fitting

which is more likely to occur at later epochs than earlier ones.

1.4 Thermal Mapping Background

Thermal mapping is described as predicting an unknown temperature at a given

point and it can further generate a profile based on multiple points within the given

specified space. Figure 1.3 shows a mapping of a given space. The thermal mapping

provides an easy identification of the hotspots in the space.

Temperature prediction constitutes a crucial issue for different applications. There

are many applications where the temperature distribution in a given space has to be

assessed and several techniques or algorithms are available to predict unknown

temperature data by using known data. There are several methodologies applied in

various studies for thermal mapping. The majority of the techniques used are

interpolation methods and discretization methods.

 (a) (b)

A few conventional methods including CFD and FEM are also available to examine

the environmental variables in a given space. In these studies multiple parameters

can be varied in three dimensional calculations and their influence on distributions

of temperature analysed. However, these studies are quite complex and need high

computational overhead when it comes to real time analysis. Also data processing

algorithms are time consuming and may not be able to cope with real time

Figure 1.3 Thermal mapping - (a) Thermal map (b) Contour map

11

constraints. Most of the WSN applications require monitoring of live streaming

sensor data, hence the data processing must be performed in real time.

1.5 Motivation

Quality of product is an important aspect in many commercial organizations where

storage and shipment practices are an integral part of the operation. Temperature

and humidity are the main parameters that influence product quality in agricultural

and pharmaceutical industries. The applications for the cold chain integrity of meat

products require special attention to work successfully. The focus is to identify the

methodologies required to monitor and map the temperatures for a given

infrastructure by using the WSN. In the meat industry the temperature variation in

cool store has a significant effect on tenderness, colour and microbial status of the

meat; therefore thermal mapping during the chilling process and shipment of the

product is vital.

Most of the consumable products such as fruits, vegetables or meat require

controlled temperatures while transporting from one place to the other. In order to

avoid deterioration and market loss, thermal monitoring is required and the

products should be maintained at rated temperatures. Short interruptions in the

control of the cold chain may result in immediate deterioration of product quality.

Quality control, monitoring of goods transportation and delivery services is an

increasing concern for producers, suppliers and consumers.

Figure 1.4 Concept Diagram of Object-Centric Environment

12

Temperature is the most important factor for extending shelf life. It is essential to

ensure that temperature before and during transportation is stable. Reports indicate

that a gradient of 5oC or more and a deviation of only a few degrees can lead to

spoiled goods and thousands of dollars in damages [17]. Another reason for

deterioration is the water loss that reduces the marketability of fresh meat, fruits

and vegetables.

Figure 1.4 gives a conceptual diagram of the object-centric environment. Practical

motivation for this problem derives from current technological changes and

reducing the size of sensor nodes, which will facilitate the acquisition of data on

physical attributes (temperature, humidity and gas, etc.) under circumstances. There

are several different sensor nodes available. These nodes differ from each other in

their modalities, monitoring range, detection capabilities and cost. The sensor nodes

can be classified into either fully functional or reduced functional versions based on

their capacity in terms of processor, memory and battery costs. The philosophy of

this work is to utilize fully functional ones to build the infrastructural nodes and

reduced functional ones to use as portable nodes.

The WSN is considered as the future technology of Radio Frequency Identification

(RFID) tag evolution that advances how devices communicate with each other.

These features contribute towards the development of an object-centric

environment for thermal mapping, where the objects may vary based on the

applications. Hence algorithmic techniques are needed to use the sensor nodes

effectively. The infrastructural nodes may be expensive nodes and are deployed at

some specific locations in such a way that they can contribute their services within

the network of portable nodes, which may or may not move in the given space. This

work considered the problem of placing sensors in a space for several applications.

Examples are in buildings, warehouses, greenhouses, cool stores and containers, etc

to map the temperature of the space. With the current growing infrastructural needs,

we require decision support tools which can assist in planning locations for the

nodes. The contribution of this research is related to the mapping of the thermal

space and optimal placement configuration of the infrastructural nodes as well as

the ubiquitous management of the system that focuses at sensor, system and mobile

levels.

This thesis discusses the development of a cool store thermal mapping system

based on the nWSN.

13

1.6 Problem Statement and Approach

1.6.1 Research Objectives

The focus of this research is to develop a method and system towards building an

object-centric environment using WSN for spatial environmental mapping. Thermal

tracking of an object within a predefined space is one of the main objectives here.

This research will look at using soft computing for spatial thermal analysis based

on gathered data from restricted sensing points. The space is divided into two or

more clusters of neighbouring nodes to communicate between each other in

multiple regions. Each cluster having embedded therein an artificial neural network,

which takes as an input data from other sensor nodes that monitor the environment

surrounding them and adaptively maps the dynamic environment for the associated

region. The distribution of the sensors (nodes placement strategy for better

coverage) will be used as a parameter for evaluating the ability to predict the

temperature at any point within the space.

In this study the temperature mapping is analysed by using ANN. In order to test

the system, a conceptual model is constructed based on the nWSN architecture. The

objects involved in the modeling, such as the infrastructural nodes have been

designed and a few assumptions made while building the scenarios.

1.7 Contributions

This thesis has initially discussed the state of the art of WSNs with a focus on

applications in the field of thermal monitoring of indoor spaces. The literature

review also revealed that the ANN in the field of WSN area is now growing. The

research focus of this work, which is on the thermal mapping using ANNs and

WSNs has not been widely covered in the literature. Therefore our contribution is

to explore the possibilities using these techniques.

Specifically, this thesis covers the following areas:

1) The requirement of real-time monitoring in many applications including

meat industry.

14

2) The importance of thermal mapping and the generation of a temperature

gradient profile in real time.

3) ANNs and their applications are explored and further addressed the areas

mentioned above.

4) A concept towards building an Object Centric Thermal Mapping

environment based on the use of WSNs has been developed; here the sensor

network is represented through infrastructural and portable sensor nodes of

any functional space. The infrastructural sensor nodes facilitate initial

values for the calculation of the temperature at a given location within the

space. These results showed that the neural network for temperature

mapping is feasible. Furthermore, a nWSN architecture has been developed

to train the neural network continuously. An algorithm is developed to

divide the overall space into subspaces covered by clusters of neighbouring

sensing nodes to identify the thermal profiles. As part of this, a buffering

and QnDP algorithm is proposed to fulfil the data synchronization

requirement.

5) A test bed has been constructed at SeNSe lab using Atmel’s RZUSBSTICK

as a gateway and AVRRAVEN as motes to conduct the experiments. This

work enhances the nWSN architecture that has been developed for spatial

thermal mapping with query system for time synchronization and relevant

aggregation functions at the sensor level.

6) A case study of a meat plants cool storage has been undertaken to

demonstrate the best layout and location identification of the sensing nodes

that can be attached onto the carcasses to provide accurate thermal data.

1.8 Publications

During this study, the following International peer reviewed publications and

conference proceedings have been completed.

15

1) Naresh Yamani and Adnan Al-Anbuky, “Query Based nWSN Data

Processing for Spatial Thermal Mapping”, The Seventh International

Conference on Intelligent Sensors, Sensor Networks and Information

Processing (ISSNIP 2011), Adelaide, Australia, December 6-9, 2011.

2) Naresh Yamani and Adnan Al-Anbuky, “neuro Wireless Sensor Network

Architecture: Cool Stores Dynamic Thermal Mapping”, IEEE Sensors

Applications Symposium, San Antonio, TX, USA, February 22-24, 2011.

3) Naresh Yamani and Adnan Al-Anbuky, “Object-Centric Thermal Mapping

(OCT MAP): A Wireless Sensor Network Perspective”, In the 8th Annual

IEEE Conference on Sensors, Christchurch, New Zealand, October 25-28,

2009.

4) Naresh Yamani, Adnan Al-Anbuky and Amoakoh Gyasi-Agyei, “Portable

Object Thermal Awareness: Modelling Intelligent Sensor Network for Cool

Store Applications,” In the Ninth International Conference on Parallel and

Distributed Computing, Applications and Technologies, Dunedin, New

Zealand, December 1-4, pp. 218-224, IEEE Computer Society, 2008.

1.9 Structure of the Thesis

This thesis is divided into three parts. Part 1 (Chapter 1, Chapter 2 and Chapter 3)

covers the Introduction, Literature review and Environment for model and test-bed

development. Part 2 (Chapter 4 and Chapter 5) focuses on the conceptual design of

the spatial thermal mapping, nWSN simulation and validation. Part 3 (Chapter 6,

Chapter 7) discusses the nWSN implementation factors and a cool storage in a meat

plant as a case study. Future research areas are discussed in chapter 8.

Chapter 1: The current chapter explains the WSN background and target

applications. A little background on ANN and thermal mapping is also presented.

The research motivation and objectives of this thesis is described as well as the

contributions and solutions in general.

16

Chapter 2: Presents the literature review and the current research in related topics,

mainly in three categories including artificial neural networks, wireless sensor

networks and thermal mapping. The focus of this research is highlighted where the

ANN, WSN and thermal mapping are intersected.

Chapter 3: This chapter discusses the modelling and development tools used for

this research. The model building to mimic the real time system is important and

these tools help to setup the environment to conduct the experiments.

Chapter 4: This chapter covers the philosophy of the neuro WSN and its structural

design to suit the problem domain. The thermal mapping methodologies are

compared and the requirements are discussed, including the computation and

coverage aspects, subspace and its overlap, nodes message interaction model and

query based nWSN data processing, nodes minimization algorithms.

Chapter 5: The nWSN simulation and validation is covered in this chapter. This

includes generation of thermal profile for the modeling along with the discussion of

the assumptions. Various scenarios are constructed to validate the concept and

compare the ANN approach. The results from the experimental test-bed are also

given in this section.

Chapter 6: The implementation of the nWSN architecture requires various

components and these are derived and explained here. This includes the query

based nWSN, time synchronization and its implementation, neural net cluster

dynamic grouping and nodes minimization approach.

Chapter 7: A case study on the meat plants cool storage is discussed to discover the

best layout and location identification of the portable nodes that can be attached on

to the carcasses by keeping thermal accuracy in mind.

Chapter 8: Finally, conclusions and future work directions are discussed in this

chapter.

17

Chapter 2

2 Literature Analysis

The aim of this chapter is to review the existing literature that covers the areas

related to thermal mapping, ANN and WSN for monitoring and traceability

capability. This review also introduces the concept of cool room monitoring and

tracing systems. The interdisciplinary work among these areas is also addressed and

further section discusses the research focus of the current thesis.

2.1 Cold Room Monitoring and Tracing Systems

Tracking is defined as gathering the information related to the current location of

products whereas monitoring refers to the ongoing assessment of the progress of

transport by means of continuous or repeated measurement and evaluation [30]. In

recent times, focus has been on the development of intelligent tracking systems.

These systems have been developed with or without human intervention, and with

wireless based systems. There are methodologies implemented using wired and

wireless communications for many applications [28]. A number of supply chain

and tracking systems have been developed and among those systems most of them

are meant to be for non-intermodal transportation systems [29].

The refrigerated containers are most widely used for perishable products like fruits

and meat transportation. Improper functioning of the cooling system can result in

significant production loss and therefore monetary loss to suppliers. Data loggers

are the most common devices that are used by several companies to trace and track

the products temperature profiles. But the disadvantage of data loggers is that it will

not provide information about the whole thermal space mapping of the given

volume and these data loggers are operated offline only.

The tracing systems have to operate independently of the refrigeration systems to

ensure that if anything goes wrong with the refrigeration system, the tracing system

has to remain operational. To this end, there are systems where wired connections

and sensors have been used to improve the overall monitoring [31].

18

2.2 Mapping and Thermal Mapping

The concepts of general three dimensional mapping have been studied over the past

few years. The proposed models considered numerical, analytical, interpolation

methods, discretization methods and Artificial Intelligence (AI) as well as their

hybrids. Each model has its own limitations, depending on the application.

The process of general mapping involves solving the image transformation relative

to the vector data by taking into consideration its attribute values. The survey of

traditional texture mapping is described in [32]. Geostatistical applications are

investigated in [33], considering the problem of spatial sampling and interpolation

methods. Geographical Information Systems (GIS) are also considered to be one of

the mapping tools of the digital age.

The main purpose of thermal mapping is to ensure that all areas of the process

achieve the required temperature levels. Many researchers have attempted to

predict indoor/outdoor temperatures and several models have been reported. An

accurate numerical model of coupled heat transfer in buildings has been developed

[34]. Data Based Mechanistic models (DBM) are also used for real time monitoring

and online adaptive control of three dimensional distributions in both an individual

biological product and in a given movement [35]. Teodosiu et al. [36] employed a

computational fluid dynamics technique and a modified k-ε turbulence model to

predict indoor air moisture and its transport in a mechanically ventilated test room

to estimate the level of thermal comfort. Among these models, more detailed and

complex ones are Navier-Stokes equations which describe the flow of fluids for air

flow, temperature and contamination distributions. Most of these problems are

solved using discretization methods.

These numerical methods, called physical models, can be used to simulate the air

temperature distributions. The main drawbacks of these models are extensive

computations, which lead to time consuming simulations. Hence for a medium size

building, it may take days to complete indoor temperature simulation in a modern

personal computer [37]. Most of the conventional modeling techniques run offline,

as it is quite difficult to run in real time. This is due to its computational times and

thus requires high end processors to simulate the model. Further difficulties

develop if the model includes environmental dynamics including energy absorbers

and energy feeders. Several computational fluid dynamics tools are available to

examine the environmental variables in a given space with different boundary

19

conditions [45] where multiple parameters can be given that can be varied in 3D

calculations and their influence on distributions of temperature analysed. However

these studies are quite complex and require high computational times when it

comes to real time analysis.

A variety of applications require temperature data distributions of a specified area.

Predicting 3D spatial temperature uniformity from inlet temperature distribution in

food storage systems has been studied [46]. Control of food storage environment is

usually done using a limited number of temperature sensors in the facility. The

design, deployment, and output of a large scale WSN in agriculture are described in

paper [47]. Sensor data were analysed in a vineyard to monitor temperatures at

various locations as temperature is considered to be one of the primary variables

affecting the growth of grapes. The most significant findings were that the areas

with highest temperature varied from day to day. In addition the heat summation

data that is generated from these studies can provide grape growers with a better

awareness of potential variability in fruit maturity. So far several researchers have

analysed various methodologies and implemented algorithms for temperature

mapping specific and relevant to the application area.

2.3 Artificial Neural Networks: A Review

Soft computing is a multidisciplinary field that was proposed by Dr. Lotfi Zadeh,

whose goal was to construct new generation Artificial Intelligence (AI), known as

computational intelligence. The idea of Soft Computing was initiated in 1981 when

Dr. Zadeh published his first paper on soft data analysis (see[52]). The main goal of

soft computing is to develop intelligent machines and to solve nonlinear and

mathematically unmodelled system problems.

An artificial system can emulate a simplified version of a neural computational

system. The ANN is an example of such an artificial neural system [53]. ANNs

have often been used as an alternative to the techniques of standard nonlinear

regression and cluster analysis to carry out statistical analysis and data modeling

[54]. The main characteristic of ANNs is their ability to learn. The learning process

is achieved by adjusting the weights of the interconnections according to some

applied learning algorithms. Therefore, the basic attributes of ANNs can be

classified into architectural attributes and neurodynamic attributes [55]. The

architectural attributes define the network structure, i.e., number and topology of

20

neurons and their interconnectivity. The neurodynamic attributes define the

functionality of the ANN.

2.3.1 Soft computing in physical fields

The knowledge of temperature variation is used for the prediction of energy

consumption in solar buildings. To estimate the daily temperature variation a

number of different methods have been used and artificial neural networks have

also provided a method for prediction in many applications. Neural networks were

successfully used to model nonlinear systems and have been applied to greenhouse

environment modeling as they have a strong ability for nonlinear function mapping

[57, 58]. In energy applications, the information generated by the wide variety of

experiments will be processed with the aid of models based on artificial neural nets

in order to assess its importance. The example of this paradigm is an experiment

being carried out in the particle accelerator Large Hadron Collider (LHC) in the

European Nuclear Research Centre. The advances in artificial neural networks,

methodological development and applications were studied, among others, in [59],

which described various ANN architectures and training algorithms. Support

Vector Machines (SVM) have also been used in parallel with ANN as a set of

supervised generalized linear classifiers for atmospheric temperature prediction

[60]. These methods have performed centrally, which means the data processing

has not been distributed among the nodes or processers for computations.

Distributed computational techniques have also developed in the field of ANN. A

distributed computing architecture and environment based on grid technologies has

been developed for rapidly and accurately dealing with the fitting of neural network

for flood peak forecasting [61]. In another study, a parallel implementation of feed

forward neural network has been developed using C# and message passing

interface on .NET platform [62]. A toolkit [63] offered a XML based framework

for implementing distributed ANNs; this framework is implemented to study the

flexibility and scalability issues when multiple systems are connected to obtain a

power beyond the power of human biological neural networks.

2.3.2 ANNs applied to thermal mapping

Artificial intelligence methods for thermal mapping are considered to be a better

approach for real time mapping. Unlike the above-mentioned physical models,

21

ANN entirely depend on experimental data, which can be made adaptive and offer a

much faster computation. A neural network is a powerful data modeling tool that is

able to capture and represent complex input/output relationships. Various complex

problems have been solved using ANNs, like weather prediction [38] and heat

transfer prediction [39]. Neural networks have a good ability for pattern recognition

and classification of data with multiple attributes. They have been widely used in

estimating permeability from well logging information [40], and pixel by pixel

classification of satellite images for making surficial geological maps [41, 42].

Several applications of neural networks for spatial estimation and interpolation of

geological data have also heve been reported [43, 44], these are called interpolation

methods using a neural network.

2.4 Wireless Sensor Networks: A Review

A WSN permits the measurement of variables distributed over a network. WSNs

provides an unprecedented way of interacting with physical environments [48]

something which has become a hot topic for research over the last few years. In

many sensor networks applications, sensor nodes collect correlated measurements

of physical fields [49]. The NNARX system is proposed [50] for modelling the

internal greenhouse temperature as a function of outside air temperature and

humidity, global solar radiation and sky cloudiness. The model showed a good

performance without the need to frequently retune the parameters with a good

fitness. The temperature gradient analysis is vital when transporting in containers or

trucks. There was a proposal published [51], where a WSN was employed in

refrigerated vehicles. An alarm is triggered when the temperature gradient falls

beyond the limits, to avoid the deterioration of the products.

As one example, city buses are equipped with sensors for atmospheric temperature

and pollution measurements [64]. Most of the Ecological Research stations are

increasingly using wireless sensor systems. WSNs are also of great interest for

studies on the number, movement and behaviour of wild animals. In self-managed

WSNs [65], nodes are deployed, they wake up, perform a self-test, find out their

localization and monitor their energy levels. The proposed management solution

results showed that it can improve the performance of the various continuous WSN

configurations and give the observer relevant information. How a sensor network

detects small changes in a smart environment has been studied [66]. Small changes

22

in an office, such as temperature or human movements can be detected. Another

study explored the applications and challenges for underwater sensor networks

[67]. They have focused mainly on the potential applications of using sensor

network nodes in offshore oil fields for seismic monitoring, equipment monitoring

and underwater robotics.

Sensor networks are already used for climate monitoring to detect rainfall, water

level and weather conditions. Several works have been published in this field where

the sensors supply information to a centralized database system [68]. Real time

surveillance systems are also proposed [69], where the WSN measures temperature

and humidity, and smoke for fire detection. In many agricultural production

systems the real-time measurements can provide important information which can

be used as a basis for system management. WSN are playing a major role in

precision agriculture and irrigation [70]. Wireless sensor technologies eliminate the

difficulties when a network is deployed with wired sensors across the field.

Greenhouse monitoring and control is another field where WSN can be rapidly

implemented. In 2003, the first application of WSN in greenhouse environment was

reported [71]. Later, another proposal [72] was published for greenhouse control

and monitoring system using Zigbee.

2.4.1 ANNs applied to wireless sensor works

WSNs supported by ANNs offer promising solutions for numerous applications.

With the growing requirement to closely monitor and manage systems across many

different areas, comes the requirement to provide accurate and robust decision

support methods. However, one area that has received little attention is the

application of ANNs within WSNs.

In a study given by Flouri et al. [91], an SVM classifier is applied in a distributed

fashion in WSN. A consensus mechanism and a gossip algorithm are used to train

the network. The model was described and the information communicated to one-

hop neighbours in order to update the estimation at each iteration.

In another study a Machine Learning (ML) approach appears to be a powerful tool

for fast predictive modelling of temperatures [92]. It is identified that the mapping

of the temperature inversion phenomenon is essential to classify areas where frost

can occur. The combination of ANN with K-NNA has applied in other applications

outside the thermal mapping domain. ML methods can handle the data-driven air

23

temperature prediction maps to precise and reliable modelling of mean air

temperatures. There are two different aggregation architectures presented, in which

wavelets for initial data processing and ANN for categorization of the sensory

inputs [93]. A greenhouse sensor network model is designed [94], to address

conditional monitoring and facilitation for diagnostics and prognostics of various

asset types inside the greenhouse that includes plants, machinery and others. These

studies haven’t fully focused on WSNs that use ANN architectures for real time

prediction and mappings. There are not many studies published in the intersection

of WSN, ANN and thermal mapping shown in Figure 2.1 and further gaps needs to

be explored.

2.4.2 Nodes placement and minimization

The nodes minimization approach is required to identify the number of nodes

required to map the thermal space. In the literature review only a small number of

studies in this area could be found. An attempt to solve the sensor placement for

diagnosing problems in plants has been made [84]. However, they have built a

scenario to minimize the sensor nodes within a discrete number of possible

positions rather than the continuous space. There have also been non-numerical

approaches to sensor placements that show how to place visual sensors in a

building for 3D mapping using a combinatorial optimization approach [85]. There

are several integer programming formulations to sensor placements for

contamination detection in water networks [86-88]. In another method [89], an

initial estimate is made, via a sensitivity analysis of the set of potential sensor

locations. Then the author seeks the minimum number of these sensors required to

ensure accurate observations of the present state of the network. Other techniques

exist in the literature for designing sensor networks around environmental obstacles

such as walls or cliffs [90].

2.5 Data Collection and Query Processing in WSN

The existing literature indicates that the data collection within the WSN community

is identified among three major trends: Systems, Testbeds, and algorithmic research

[73]. Systems research is based on the sensor network query processors like

TinyDB and Cougar etc. This simplifies the user access at communication, routing

24

and node programming levels. The research using these systems is based on the

number of algorithms which are embedded within the sensor nodes. The testbeds

are other area where the distributed data is shared among different users. It can give

a better focus on testing algorithms and their scalability issues. Current trend and

evolving requirements have motivated the algorithmic research in the WSN. Our

contribution to this research falls within this area. In WSN data processing, the

nodes can keep on sending data to the base station. This functionality has been

studied in other WSN applications [74], but the data are received asynchronously

from all other sensor nodes by the base station. The asynchronous data need to be

filtered in order to produce any valuable information at the front end among the

nodes. If the application requires a real time synchronous data, then a query

processing needs to be implemented. Based on the existing methods, algorithmic

approach would provide an efficient way to work in a homogenous or

heterogeneous network. In any typical WSN it might be a common scenario to have

a sink, a few cluster heads and more end nodes. By using a clustering approach, it

ensures only the cluster heads are actively involved in the transmission of queries.

Most of the works till today are based on the systems approach that involves query

processors like TinyDB. In an experiment conducted by Gehrke et al. [75] for a

smart sensor query processing architecture using database technology, they focus

on networks composed of homogenous collections of nodes. In other studies [76,

77], location-centric storage is envisioned for on demand data storage in

networking environments. Based on their algorithms it has been identified that the

stored data of any event only takes a small number of communication hops to query

the sensor nodes. Another study on the interplay between mobile devices and static

sensor nodes has been discussed [78]. The methodology supports and enables the

heterogeneous design space. This work contains staged operations including query

generation, query routing, query injection and query result routing to fulfil a two-

layer network approach. Data collection and monitoring will be a tedious task for

large networks of sensors. Selective query processing from a user interface would

be widely accepted if it is on a web based management system. An implementation

related to the wireless sensor gateway for efficient query management through

World Wide Web is described [79]. This approach is more suitable for remote

accessing and managing the network. The whole sensor network is simulated and is

connected through a socket for communication. A dynamic data aggregation

scheme [80] is introduced to elaborate more aggregation schemes. These schemes

25

allow nodes to process data collected from sensors and aggregate the data based on

the interest messages. An adaptive holistic scheduler [81] is introduced to adapt the

schedule to the runtime dynamics. It shows that the performance of query

processing improves in various dynamic settings. Inter query is another area of

interest [82], to compute algorithms and reduce data redundancy.

The data aggregation can be classified into two types, single query data aggregation

and inter-query data aggregation. In multi-hopping networks, inter-query data

aggregation algorithms can be very useful. In other study [83], a mechanism for

spatial queries in WSN to detect dangers in disaster situations is discussed. These

queries are created at more than one packet to acquire irregular contour data. Most

of these query based algorithms have not much focussed heavily on data

synchronization.

2.6 Research focus

The earlier topics have described the previous work done in the area of WSN, ANN

and thermal mapping. A thorough literature review has revealed that there are

several studies in the areas of WSN, ANN and thermal mapping individually.

However, few studies cover a combination of any two of these areas. It has been

identified that the research on thermal mapping using neural networks and WSN

area is not well developed and requires further attention. Figure 2.1 shows the area

where the current research work is focused and also provides some of the key

references.

Our research is to identify the methodologies to map the given space for thermal

profile in WSN platforms using soft computing. Hence, the focus is given to the

intersection of these three elements as shown in Figure 2.1. The literature review for

each of these elements is already described in the earlier sections. Hence, we have

focused on developing a generic concept where it can fit to an object-centric

environment to map the thermal profile. These objects could be food items, plants

or any industrial products where it is critical to monitor temperature. Towards this,

we have examined the possible techniques that can be used in the WSN domain as

the sensors nodes are very limited in computational resources. We have also

realized the advantages of the online learning paradigm, which is suitable to drive

the WSN in a real time environment for thermal mapping using ANN.

26

Figure 2.1 Research focus Intersection areas

Ref: 33, 34, 36, 37, 45

Ref: 38-39, 43-44,
52-55, 59

Ref: 48-49, 64-70

Ref: 84-89,
91, 93

Ref: 35,
56-58, 60

Ref: 46, 47,
50

Ref: 92, 94

Research
Focus

?

27

Chapter 3

3 Environment for nWSN Development

This chapter introduces the tools required for nWSN development. In order to

develop a concept we have to work either to build a model in a software

environment or develop a prototype system. Nowadays there are several

commercial software packages available that can mimic the real systems, while a

prototype may have limited flexibility to create various scenarios other than the

simulation environment. This chapter focuses on the software environment for

simulation, neural network and data visualization for thermal mapping and the

hardware environment for sensor networks.

3.1 Introduction

Development tools are necessary to undertake the modeling of a concept before

implementation. This can be done either in a simulation environment or by directly

embedding the logical code in suitable hardware or test beds. Several simulation

tools are available to work in WSN simulation modeling to mimic the real system.

These include Mote Runner from International Business Machines Corporation

(IBM), OPNET, Visual Sense, sQualnet etc. There are also tools available from

research institutes, but these are not widely used. The commercial versions

mentioned above are popular in the WSN research area. When it comes to the

specific modeling requirements of this research, there is no such environment or

tools available to simulate and visualize the results. This is due to the reason that

most of the simulation environments don’t support customization. In other terms,

they are not open source tools. Hence, we chose to have more than one single

environment to simulate and visualize the concept and to analyse the results.

The main software environments used in the research work are as follows

1) IBM’s Mote Runner - WSN Operating System,

2) Flexsim – Simulation Software,

28

3) Peltarion Synapse Neural Net Software, and

4) Voxler – A three Dimensional Scientific Visualization Program.

3.2 Simulation Environments

3.2.1 IBM’s Mote Runner

The IBM’s Mote Runner runtime environment for WSN is currently under

development at the Zurich Research Laboratory. Mote Runner is an operating

system for the WSN environment. This also comes with simulation software to

work offline to test the programs before loading into the sensor board. The

hardware (RZUSBSTICK and AVRRAVEN) that has been used for the test bed

discussed in Chapter 5 is from the Atmel Corporation. This hardware does support

IBM’s Mote Runner operating system. Hence, we have chosen this hardware to

enable ease of the development in simulation and real time modes.

The key features of the simulation environment and its supporting hardware are

shown in the Table 3.1.

Programming
Languages:

Java and C# (either/or/mixed) + optimizer

Hardware
Requirements:

8K RAM, 64K Flash (8bit/16bit/32bit CPUs)

Supported Mote
Hardware:

IRIS (Memsic), RZUSBSTICK (Atmel), AVRRAVEN (Atmel),

Programmable
Middleware:

Control, customization, setup, and testing of mote networks.

Mote
Simulation:

Debugging, testing, analysis of sensor networks including power
consumption, sensor feeds, inspection, tracing.

IDE: Source level distributed debugging using Eclipse.
Web Front-End: Integration of WSN applications with web-based front end.

It allows programmers to use object oriented programming languages and

development environments such as C# and Java to develop portable WSN

applications that may be dynamically distributed, loaded, updated, and deleted even

after the WSN hardware has been deployed. The Mote Runner operating system is

targeted at small embedded systems. The programming languages C# and Java have

a number of adaptations in order to run effectively on embedded systems. These

changes are all aiming to improve the performance; small footprint, high bytecode

throughput and reduced RAM usage.

Table 3.1 Key features of the Mote Runner

29

The Mote Runner provides a virtual machine for executing byte codes and an

operating system to organize access to different devices and to schedule the various

activities. The virtual machine in Mote Runner provides only a single thread of

execution. An application registers callbacks with operating services which will be

invoked on certain events.

Mote Runner WSN applications provide seamless integration with state of the art

back end infrastructure by means of an event driven process engine effectively

bridging the gap to large scale business scientific applications without requiring

particular technology skills.

3.2.2 Mote Runner architecture

The Mote Runner implementation builds upon off the shelf embedded (Mote)

hardware with a thin hardware abstraction layer written in C and Assembler

encapsulating any hardware specific functionality. At the next layer, there is a

virtual machine (written in C), runtime library (written in C and C#) and 802.15.4

MAC layer (written in C). Runtime library and the MAC layer expose APIs for

application development in higher level languages such as C# and Java.

Figure 3.1 shows the Mote Runner Architecture. We have procured RZUSBSTICK

and AVRRAVEN WSN modules from Atmel for the experimental setup at our

Figure 3.1 Mote Runner Architecture [110]

30

 IBM Mote Runner OS Shell

Sonoran

Javascript

Browser

Comote

Web Application

SeNSe Testbed

Database Server

Neural Net Engine

Test bed Interface

(Web/Stand alone)

SeNSe (Sensor Network and Smart environment – http://www.sense.ac.nz)

Research laboratory. Figure 3.2 shows the SeNSe test-bed architecture.

The Atmel’s modules can support Mote Runner operating system, as IBM has

released the firmware to support these. The nWSN concept is initially developed in

a simulation environment and later Atmel modules are used to implement nWSN

structure and QnDP algorithms discussed in Chapter 5 and 6.

3.2.2.1 Flexsim Discrete Event Simulation

The nWSN concept development requires a three-dimensional space where the

space can be generated via a grid based thermal profile to mimic the real system.

This space is further used to deploy sensor nodes in a virtual reality environment.

These nodes can be capable of sensing the temperature data at its location

programmatically. Hence, a three-dimensional environment is required to evaluate

the concept for its ability to run various scenarios. These customized nodes can be

simulated as fixed nodes or mobile nodes. We have used Flexsim virtual reality

simulation environment for designing this space, where the sensor nodes are created

and customized to deploy in the space.

Flexsim is a powerful simulation and modeling software. This software can help to

make intelligent decisions in design and operation of a system. A real time three

dimensional environment is provided to build a model of a real life system. Flexsim

Figure 3.2 SeNSe Testbed Architecture

31

is more general purpose simulation software. The objects available within the

software can be customized by using the C++ programming language and inbuilt

functions.

3.2.2.2 Visualization and 3D engine

Flexsim is a highly visible technology that can be used by forward thinking

researchers. It is surprising how effective an animated simulation model can be for

getting people attention and influencing their way of thinking. The animation

displayed during a simulation provides a superb visual aid for demonstrating how

the final system will perform. It has a powerful three dimensional engine that

supports high performance interactive three dimensional vector graphics. The

graphics library uses OpenGL technology. We can write code in C++ and using

custom libraries/functions for creating the objects in the given space. The concept

modeling and validation uses the data generated by the simulation environment.

3.2.2.3 Model views

Flexsim uses a three dimensional modeling environment. The default model view

for building models is called an orthographic view. We can also view the model in

a more realistic perspective. It is generally easier to build the model's layout in the

orthographic view, whereas the perspective view is more for presentation purposes.

However, we may use any view option to build or run the model.

3.2.2.4 Flexsim objects

There are mainly two basic objects named Fixed Resources and Task Executers.

The available model objects in the library are all derived from these basic objects.

For the nWSN concept development, we have customized a fixed resource object

and created an infrastructural node and a portable node. Further neural net

algorithms are written by using C++ and user defined functions within the

modeling environment. The custom Graphical User Interface (GUI) can be built for

user input while running the simulation model. All the cold storage defined spaces

for various scenarios are created in the Flexsim environment for concept modeling

and are discussed in Chapter 7. The schematic diagram of the cold storage built in

Flexsim is shown in Figure 3.3.

32

The infrastructural and portable node objects can be created dynamically and

placed within the modeling environment to setup the scenarios. An example GUI

built for running these scenarios is shown in Figure 3.4.

3.2.3 Artificial Neural Net Software

Peltarion Synapse software [105] is used to run the neural net algorithm from the

data generated by the simulation model to identify the best architecture and

program validation. Peltarion Synapse can generate the neural net algorithm into a

.NET DLL which can be connected to the simulation environment to calculate the

Figure 3.3 Schematic diagram of the cold storage

Figure 3.4 GUI built in Flexsim to setup a scenario

33

prediction. The program can be written in C# language and several neural net

architectures can be tested for their performance.

Peltarion Synapse is the most advanced development environment for adaptive

systems. It allows the user to thoroughly analyse and process the data to design,

train, post-process and deploy adaptive systems. Synapse has the most power

algorithms and training architectures within its integrated development

environment, hence it is used to compare various architectures for suitability to the

application domain.

3.2.4 Voxler visualization program

Data visualization is important for any three dimensional data analysis. The

volumetric rendered maps can produce a better comparison than any two

dimensional charts. We have used Voxler visualization software for producing

these three dimensional maps.

In this research work, we have used Voxler for volumetric rendering the

temperature data within the specified space. Voxler is a powerful visualization

program oriented primarily towards volumetric rendering and three dimensional

data display.

In our scenarios, we have all the temperature data available in three dimensional

space and Voxler has assisted throughout the conceptual and implementation

phases for comparing the actual temperature to the predicted temperature as shown

Figure 3.5 Volumetric rendering data produced by voxler

34

in Chapter 5, 6 and 7. The volumetric rendering temperature data at the SeNSe

laboratory as shown in Figure 3.5.

3.3 Hardware Selection for WSN

One of the challenges is to decide what is the right hardware environment for this

work. There are several commercial vendors who supply different hardware with

various specifications. However, most of these vendors do not support a simulation

mode where the algorithms can be built and tested before embedment. In simulation

mode where we can write the algorithms and run offline to test the logic before it

can be deployed; a reduced developmental life cycle can result.

IBM has the supported firmware for Atmel’s WSN nodes and IBMs Mote Runner

has a simulation mode. Hence we have procured these sensor nodes to develop and

test our conceptual model. The AVRRAVEN has an AT86RF230 2.4 GHz radio

transceiver and each kit contains two AVRRAVENs (LCD module) and one

RZUSBSTICK (USB dongle). The RZUSBSTICK uses a communication device

class creating a virtual COM port. This will allow simple communication between

the host PC and the RZUSBSTICK. Atmel’s AVR Wireless radio transceivers are

designed to be compliant with IEEE 802.15.4 physical layer requirements that

specify a mode of transmission where the RF output is off unless an active message

packet is being sent.

Figure. 3.6 Wireless sensor node from Atmel

35

Chapter 4

4 Spatial Analysis: Thermal Mapping

4.1 Introduction

The temperature fluctuation has a significant effect on the quality of the products

stored in a given space. Hence it is essential to identify a methodology for spatial

mapping that can monitor the dynamics of the environment. This chapter introduces

the ideology of the nWSN. It focuses on the architectural overview of an integrated

solution of neural network and WSN as applied to spatial analysis and thermal

mapping. The Neural Network approach is compared with the Shepard’s algorithm

[100] modified Euclidian distance.

4.2 Ideology of the nWSN

The expected wide deployment of WSN can be used to predict the environmental,

physical and behavioural attributes to manage and control the data. The physical

attribute, that is temperature, is the main element considered for the data collection

and analysis in this work. The space to be monitored is assumed to have the

following components.

1) Static Infrastructure – which allows for placement of sensing nodes,

2) Portable Objects – which could carry sensing nodes,

3) Energy Absorbers,

4) Energy Feeders.

While the first two represent the key generic components that facilitate the

accommodation of the sensors that sample the space, the second two act as the main

sources that influence the environment. However the elements (3) and (4) are not

considered within the modeling, since they represent the excitation to the

environmental dynamics. The assumption here is that at any moment in time the

temperature of any point at the given space is in an equilibrium state. Hence, the

temperature at any point in time is given by equation 4.1 below.

36

The nodes N1 to Nk deployed on the infrastructure shown in Figure 4.1 are stationary

sensing nodes. Some of these nodes are elected as data collectors for other nodes

and may have more computational capabilities than other nodes.

The nodes P1 to Pk are the sensing nodes that are carried by mobile objects and P5,

P6, P7 and P8 nodes are stationary. The nodes can provide sample temperature

readings at their specific location within the space. The temperature at any arbitrary

position can be estimated through either analytical or knowledge based approach by

using the sample data from all sensor nodes available within the confined space.

4.3 Object-Centric Intelligent Environment

An object centric intelligent environment utilizes the temperature sensing samples

provided by the scattered sensors within the confined space and calculates the

temperature at the location of a specific object. These objects could be human, food

material, plant or any other object that requires information about its temperature

exposure. An intelligent environment has the ability to sense its current physical

and computational environments. The objects are considered to be families of

products that can vary from plants to human beings, each of which is characterized

T(x,y,z) = f(element 3, element 4) 4.1

Figure 4.1 Ideology of the problem

Stationary Sensing node

Sensing node carried by mobile object

Energy Absorber

Energy Feeder

N1

N2

N3

N4

P5

P3

P1

P2

P4

P6

P7 P8

37

by a set of commonalities. In theory, the environment designed for thermal

mapping can accommodate any object.

For example, if the application area is a greenhouse, then it drives towards a plant-

centric environment. Controlling and monitoring temperature in greenhouses

affects growth and development processes directly. The main climate state variable

is typically the air temperature, which must be controlled to achieve proper plant

development.

Another example is that of fruit cool stores, where pallets containing fruits, are

required to retain temperature records over time. Figure 4.2 gives a conceptual

diagram of the object-centric environment for thermal mapping. The given object-

centric environment consists of three components, as follows.

1) Data collecting node

2) Sensing node

3) An object.

The sensing nodes are either portable (P1, P2…Px) or fixed (N1, N2, Nx) where x=

1,2,3..n. The data collecting node is responsible for gathering the information from

each sensing node. These data collecting nodes act as a cluster head for the given

sensing nodes. The temperature in the vicinity of the object is required to be

identified. Figure 4.3 shows the objects activity pseudo code and that gives an

overview of the object centric model.

It is possible to use environmental information to guide the cluster head in response

to varying environmental conditions. This research drives towards an object-centric

Figure 4.2 Conceptual diagram of the object-centric environment

Sensing node

Data collecting node

 An object

Sensing node
NC

P1

P3

P2

P4

N4

P8 P7

P6

P5

N2 N3

N1

38

intelligent environment for thermal mapping. The proposed concept will have the

possibility to incorporate additional information into the system by combining prior

knowledge of the environmental objects that exist and the system reacts according

to the condition.

4.4 Thermal Mapping Methodologies

In many agricultural production systems the accumulative data on the surrounding

temperature dynamic behavior is vital for identifying the product condition. There

are several methodologies applied in various research studies for thermal mapping

to measure temperature at a given location within a space. In a WSN arena, this

task is challenging, as most of the data processing algorithms are time consuming

and are difficult to implement in real time. As discussed in the literature review,

most of the conventional methods are not suitable for the WSN arena when

frequent update is required as an alternative approach to the analytic approach. The

following section discusses two approaches used here. These are Shepard’s

algorithmic solution and Neural Net based solution.

Figure 4.3 Objects activity – an overview of the object centric model

//Objects activity

objectsActivity()
{

Initialize node parameters
Do

New object identified
Object’s status initialised and recorded
 Loop for all sensor nodes

{
Request data from the sensor nodes

 Collect location and temperature data
 }

Initialize the algorithm
 Feed data into it
 Run the algorithm
Generate thermal profile
Identify temperature in the vicinity of the object

While (new object identification)
}

39

4.4.1 Thermal mapping using Shepard’s algorithm

It is assumed that each sensing node in the given space knows its location

information (x, y, z) and attribute value temperature (T) at any given time. Hence,

any given node defined in the space has its location and attribute information

represented by expression 4.2 and equation 4.3, where wk is the weight function for

a given node Nk, which is a function of Euclidean distance dk.

Since we focus on dynamic temperature mapping, existing approaches such as

Shepard’s algorithm [100] with modified Euclidean distance are used to test the

performance. This model uses a weighted average of surroundings or neighbouring

nodes data to compute the temperature by using an interpolated function based on

the distance as shown by Figure 4.4.

Let m denote m-dimensional Euclidean space in a dataset S m where S = {(x0,

y0, z0),...(xa, yb, zc),...(xl, ym, zn)} which contains a number k of portable sensor nodes

located randomly at points (xa, yb, zc) in such a way that

Figure 4.4 Predicting temperature at a point using Shepard’s algorithm

N(Location(x,y,z) , Attributes(T)) 4.2

wk=f(dk) 4.3

Sensing node

A point to predict
N1

N8

N3

N4

N2

N2

N5

N7

N6

N9

d3

d7

d6

d8

d2

d9

d5

d1

d2
d4

40

m ={(x, y, z) : x, y, z } at points x=xa at any a=0,1,2,…l, y=yb at any

b=0,1,2,…m, and z=zc at any c=0,1,2,…n.

The attribute value, i.e. temperature (T) at a given query point q in the space, can be

evaluated by equation 4.4.

where Tq(x, y, z) is the estimated or predicted temperature at any query point q(xa, yb,

zc), and wj
' is the weight of each portable node to the query point and it is given in

equation 4.5.

dj is the Euclidean distance between the sensing node and the predicting point for

each j=1, 2,...k. Figure 4.5 shows the pseudo code written to compute the

temperature prediction.

Tq(x, y, z) =
∑ wjTj

k
j=1

∑ wj
k
j=1

 = wj
'k

j=1 Tj 4.4

wj
' =

dj
-1

∑ dj
-1k

j=1

 4.5

Figure 4.5 Pseudo code for Shepard’s algorithm

//Compute the temperature at a point q(x,y,z)

Temperature_at_q(x,y,z)
{

Initialize the number of nearest sensing nodes – k
Loop for all number of sensing nodes for each j=1 to k

Calculate distance (dj) =

� �
�

� �

�

� �
�

 Square the distance: dj
2

 Invert the distance: 1/dj

 SumInverseDistance += 1/dj

Loop for all number of sensing nodes for each j=1 to k
 Calculate Weight(j) = Inverse the distance /
SumInverseDistance

Loop for all number of sensing nodes for each j=1 to k
 Predicted Temp at q(x,y,z) += Weight(j) * Ntemp
}

41

The number of sensing nodes within the confined space does have an impact on the

prediction accuracy. Hence, there is a tradeoff between the number of sensing

nodes and the accuracy of the temperature prediction. The distribution of the

sensing nodes is another factor which has an effect on the prediction. Balanced

sampling of the space is therefore important. Shepard’s algorithm is always

dependent on the distances and offers low computational overhead. However, it has

a poor performance on the scenarios that have been conducted in our experiments.

4.4.2 Neural net based solution to thermal mapping

Based on the literature analysis, ANNs are used widely in the field of agriculture,

manufacturing, food and pharmaceuticals. ANNs are also applied to model

nonlinear systems (Ex. greenhouse environment) and they are particularly useful

for handling nonlinearities and dealing with nonlinear function mapping.

In a dynamic environment where temperature changes with time, online training is

required to update the parameters of the neural net. Several approaches can be

considered based on the application within the ANN.

In Feed Forward Neural Networks (FFNN) the network connections are directed

from input layer to output layer. All the sensing nodes within the confined space

feed their location and temperature data to their cluster head as show in the Figure

4.6. In this network, there is an input layer consisting of 3 neurons, an output layer

consisting of one neuron and a hidden layer with six neurons.

Figure 4.6 FFNN for thermal mapping

42

The input neurons get their data from all the given sensing nodes N1 to Nk. This data

contains the sensing node location information (x,y,z) and the temperature (T) at

that point. The information from each sensing node delivered to the cluster head is

considered as a ‘sample’ (Pt), and is used to train the network. Hence the sensing

nodes pattern can be represented by training data (Pt1, Pt2, Pt3,...Ptn) at regular time

intervals, t1, t2, t3,...tn where n is the time interval. The on-line learning is

accomplished, by ensuring each propagation is followed immediately by a weight

update. The training is done by using back-propagation in two passes. The forward

path is used to evaluate the output of the neural network for the given input in the

existing weights. In the reverse path, the difference in the neural network output

(Tn) with the desired output (T) is compared and fed back to the neural network as

an error to change the weights of the neural network.

The key parameter that affects the precision is the number of iterations to run the

back propagation algorithm for each sample received from any sensing node. On

the other hand, the number of hidden layers can also influence the output precision.

The following section discusses the nWSN structure and the impact of internal

parameters of the neural net architecture for thermal mapping.

4.4.3 Data collection and node implementation

The neural network learning process means finding an appropriate set of weights

that influence the inputs to the neurons. The neurons are interconnected and each

neuron operates by multiplying each incoming signal by a weight and then

summing the weighted inputs. The iterative process for determining appropriate

weights is called neuro-learning. The least mean error square is commonly used for

minimizing the objective function. This is given by equation 4.6.

where 	� is the desired output (conditioning value), 	� is the actual output, n is the

number of samples in the training dataset that are fed from all the sensing nodes,

and N is the number of nodes of the output layer. Ec is the network cumulative error

of the nWSN, which is used as a criterion for learning. The learning continues until

Ec converges to an acceptably small value, which is less than 1. The rate of

Ec =
�

�
 	� 	�

��
���

�
	�� 4.6

43

convergence is governed by the learning rate and momentum as neural parameters.

Equation 4.6 is more generalized and more appropriate if the confined space

contains more than one single cluster head. The neural net algorithm is embedded

in all the cluster heads. The pseudo code written for the nWSN neural net is given

in Figure 4.7

4.5 Computation and Thermal Coverage Focus

The computation in the nWSN architecture is represented by distributed patterns of

activity where it takes place in a decentralized manner. The main advantage of this

concept is to minimize the computational burden on nodes, as it can lead to an

automatic generalization. In real time monitoring systems, the data has to be

Figure 4.7 Pseudo code for nWSN cluster head

//Train the neural net at a cluster head

Train_net(x,y,z,T)
{
 Initialize number of sensing inputs (n)

Initialize neural weights, learning rate, momentum
Collect sensing location (x,y,z) and temperature (T)

While not terminating condition (training error<0.001 or 10,000
epochs) do

 Initialize index for hidden and output layer – i, j
 Initialize sum

Loop for all hidden neurons
{
 Sum += inputs[j] *h1_weights[j][i]

 h1_a[i] = f(sum-h1_threshold[i])

 }
Loop for output neuron
{
 for(j=0; j<numHnodes;j++){

 sum += h1_a[j]*o1_weights[j][i]

 o1_a[i] = f(sum – o1_threshold[i])

}

}
 if((Target Temp-output)>training error)
 Adjust neural weights
 else

 beak;
end While

Repeat for all sensing inputs

}

44

updated within a time interval. These systems are scheduled to update the data

based on the application.

The optimal deployment strategy within a confined space is important to maximize

the coverage using the resource constrained sensor nodes. The optimal placement of

nodes would minimize the number of nodes required, minimise cost, and reduce

communication overhead while maximizing the coverage of the space. A typical

deployment of WSN consists of a few hundred nodes which are distributed

randomly or over a predefined distribution within the space to be recorded. In most

of the applications, sensor nodes sense the environment and provide information to

the sink or base station. But collaboration of multiple sensor nodes within a

confined space would allow much more advanced tasks to be accomplished

effectively. This means grouping of sensor nodes and performing tasks would allow

wide areas of applications. In this scenario, the cluster head (infrastructural node)

has a capability to compute certain tasks that leads to application specific decisions.

One of the key issues here is to map the thermal profile with time (spatial-temporal

mapping). This could be done by deploying WSN nodes that cover the local region

where they can gather the temperature data as input to feed the cluster head. There

is a computational burden to the cluster head where it can compute and generate a

thermal profile. The accuracy of the thermal map varies with the number of sensing

points and their placement strategy.

4.5.1 Space division based on layers

The space can be divided into a number of vertical or horizontal layers. In a spatio-

temporal mapping, the input data points can be collected continuously or discretely.

In this work we have considered that the data points are gathered at discrete points.

Accordingly, the space is also divided into layers, as shown in Figure 4.8. These

layers can be used to map the profile at a specified time. Layer 1, Layer 2 and

Layer 3 are divided for better coverage within the confined space to enable

placement of the sensor nodes. These layers are partitioned horizontally for the

meat plant application. It is given an importance to the beef cuts that are expensive

in the retail market (Ex. Topside, sirloin). It is also considered that the cold air is

denser than warm air. Hence, the horizontal layers can reflect the same for better

analysis.

45

4.5.2 Coverage aspects

In nWSN, the concept of area coverage is considered as a measure of quality of

service. But in our case, we are considering the thermal coverage of the confined

space rather than the communication coverage. And of course the thermal coverage

is a part of communication coverage. There are mainly three coverage types and

these can be divided as follows.

1) Blanket Coverage,

2) Barrier Coverage, and

3) Sweep Coverage.

We have chosen type one, as it can be achieved by a static arrangement of nodes

while maximizing the detection rates at arbitrary points within the sensing field.

The coverage of a confined space requires an optimal number of nodes to be

deployed in such a way that it can represent every point in the space.

In this work, we have used computational geometry and probability theories to

address the thermal mapping coverage. Initially we have considered the sensing

models and the concept of total coverage. A sensing model addresses the quality of

sensing, or sensitivity gradually attenuates with increasing distance, as given by

equation 4.7.

Figure 4.8 Space divisions into layers

� 	
	

∅
 4.7

Layer 1

Layer 2

Layer 3

P1
P2

P3

P7

P8

P5

46

where � is the sensitivity of a sensor 	 at point . and are the sensor

dependant parameters and 	 is the Euclidean distance between the sensor

and the point. A sensing range can be defined for each node and the sensitivity

decreases with increasing distance. The basic model has been extended to a realistic

one named probabilistic sensing model. The simplest communication model

includes the probabilistic sensing model. It is assumed that each sensor node 	 is

able to communicate only upto a specific distance (i.e. communication radius, Rci).

At any arbitrary point which has been covered by more than one sensor node at the

same time, each sensor node contributes a definite rate of coverage. This total

coverage at any point is also described by equation 4.8.

Let χ be the set of nodes Ni where i= 1, 2,...,k whose sensing range covers the

points P(xi, yi, zi). ������ 	 is the probabilistic coverage of a point. The two nodes

	 and � are able to communicate with each other if the Euclidean distance

between them is less than or equal to the minimum of their communication radii,

when d(Ni, Nj)≤min{Rci, Rcj}.

4.6 Nodes Minimization Approach

The minimum number of sensor nodes required to map the given space is an

important criterion. Each node acts as an intelligent agent that can run its own

algorithm by itself. The following section describes the methodology involved in

minimizing the number of nodes required in the given space. The important factor

here is that each node scrutinizes its neighbours and keeps track of its data

including its location and temperature values.

4.6.1 k-neighbour search for nodes

Each node will have the data of its neighbour nodes. The neighbour nodes k will be

generated dynamically for each node. The algorithm defined in the node will run

frequently with a time span. The k-neighbour nodes will be decided by the proposed

algorithm outlined in Figure 4.9. The accuracy of the predicted temperature largely

depends upon the effective selection of the k-nearest neighbours. The general k-

������ ������ 	

	��

 4.8

47

Nearest Neighbour Algorithm (k-NNA) has got a limitation; that is, once we choose

the nearest neighbours, the selection remains unchanged throughout the process.

Now in this proposed model, nearest neighbours count changes from one node to

another node.

4.6.2 k-neighbour search for a query point

Assume p is the sensor node identified by p(x, y, z) as the location of p. S is a set of

nodes that may be selected for the process and should contain nodes that could be

elected for the process, where N S. The sensor node calculates the Euclidean

distance for all neighbour N nodes and they are ranked from 1 to n, so we have the

distances d1≤ d2≤...≤ dn.

Among the specified set S, at least k nodes must be defined to estimate the

temperature of the node p. It has been identified that the Dual Buffer Search (DBS)

algorithm is more efficient to find the k value when compared to the others [103].

The DBS requires two buffers to sort out the neighbour nodes. Since p has its own

neighbours ranked from 1 to n, we have a clue from the node ranked 1, say N1 and

can give an initial guess and DBS is much more efficient with a smaller search

between these two nodes. The results are discussed in the later chapter.

Figure 4.9 k-neighbour search algorithm

//k neighbour search algorithm

N = Number of nodes
k = Number of neighbour nodes

At any selected Node ‘X’:
Calculate the Euclidean distance to all (N-1) nodes and sort out and
make the rankings from 1 to (N-1)

Do for all nodes
Calculate estimated temperature at Node ‘X’ by

considering first three ranked neighbours
Estimate, Error = Temperature(actual)-

Temperature(predicted)
 While (N-1)

Identify the location (k count) where error is less
k count will be the valid count to predict Temperature at node ‘X’

48

Let us assume Sp as the set of nodes for node p and S1 as the set of nodes for node

N1. Hence at least the set of nodes contained in Sp∩S1 are the nearest neighbours to

the node p. The set of nodes Sp∩S1 will be taken into consideration as k-nearest

neighbours for node p.

4.7 Extending the Solution through Space Partitioning

In the nWSN implementation based on the neural network approach, the coverage

regions could be divided into sub regions or subspaces where they can overlap each

other as shown in Figure 4.10. To map the thermal coverage we are looking at the

overlap of the coverage regions of each cluster head (infrastructural node). Hence

the profile generated by each infrastructural node is taken while mapping the

subspaces. The influences of the multiple subspaces are studied for thermal

coverage to map the overall space with increased profile accuracy.

The coverage of a confined space requires an optimal number of nodes to be

deployed in such a way that they can cover every point in a space. To map the

thermal coverage, we looked at the overlap of the coverage regions of each cluster

head. These scenarios examine the surface temperature variation around the

subspaces.

 Figure 4.10 Subspace partitioning and their regions

49

These results will benefit to mainly focus on how the different cluster subspaces

would help to predict the temperatures more precisely at the surface boundary.

We have four regions, where it can overlap and that form subspaces within the

whole space. Each region represents a population of sensors managed by a cluster

head. A boundary exists among these four sub regions. The sensor nodes that can

cover these boundaries can share information on the given region boundary cluster

head. Hence we are looking at a point to analyse the surface of the boundary. The

regions are distinguished as a1b1, a2b2, a1b2 and a2b1. The boundaries can be viewed

at a1a2 and b1b2 as shown in Figure 4.10. The simulation results revealed the effect

on the accuracy of thermal predictions at the given infrastructural node and are

discussed in the simulation results chapter 7. These scenarios are built to evaluate

the effect of subspace on the thermal accuracy. This subspace analysis is meant to

identify a difference when utilizing more than one cluster head for computations.

The next section describes the methodology of the nWSN structure for subspace

partitioning.

4.7.1 nWSN structure for subspace partitioning

The confined space can be divided into sub-divisions to improve the prediction

accuracy and this also reduces the computational burden on a single node. Each

cluster models its own sub-space that contributes its computations to the overall

space. An example model scenario has 4 clusters. This intern has N equal to 4 in

equation 4.6. The distributed node based nWSN structure is shown in Figure 4.11.

 Figure 4.11 nWSN Structure using 4 clusters

50

Assume the sensing nodes that are attached to the objects move continuously or

occasionally. There is a possibility that nodes migrate to another region. Some of

the data collected by that node may still be useful for the previous cluster for

synchronization purposes and hence the communication among cluster heads is

essential here. This approach of messaging services between the clusters is

discussed in the implementation of the neural net cluster dynamic grouping. A

dynamic grouping model assists in gathering information from the required sensing

nodes along with the temperature data, even after the carcasses move continuously

to synchronise the data at the instant when the training is required. The requirement

of synchronized data input to the cluster head for training is discussed in the

upcoming section.

The cluster heads within the model are connected in mesh network topology. This

service is used for computational and communication purposes. The sensing nodes

that are attached to the mobile objects are dynamically connected with one of the

cluster heads while they come into their cluster zone. The overall network

formulates clusters to facilitate computations and message interactions. The cluster

heads are shown in the Figure 4.11, where A, B, C and D can make use of Nodes

Message interaction mode for message interactions among other cluster heads.

Dijkstra’s algorithm is used to evaluate these models for finding the shortest

weighted path from the sensing node to the cluster head. A dynamic programming

model is designed to formulate a recursive algorithm, in which the shortest path

length (LI) to a cluster head I can be expressed by equation 4.9.

where represents the sensing (portable) node and S is the space. When the NMi

Pnode interaction executes, the algorithm calculates and identifies the cluster head

to join. The NMi Inode and Pnode interactions in the nWSN architecture is shown

in the Figure 4.12.

Within the time interval, the algorithm runs to verify any changes. Alternatively,

when the NMi Inode interaction executes, the querying system within the node

triggers to redirect the relevant cluster head to act accordingly to give a response.

The flowchart in Figure 6.9 explains the NMi Inode that responds in deciding the

query to execute. The user can query for a specified location and the cluster head

�
 !,�" ∈ %

! 4.9

51

can then evaluate and return the temperature value. The cluster head is the

controller that initiates the process. If the specified query location is not within the

range of the given cluster head, it will immediately pass it over to the corrected one.

Let Ni be the cluster head (infrastructural node), where i is the node ID and p(x,y,z)

is any arbitrary point within the boundary of the specified region. If p(x,y,z) Ni ,

the temperature value is evaluated within the node Ni. If p(x,y,z) Ni the query will

be forwarded to Nj where p(x,y,z) Nj.

4.8 Time Synchronization for nWSN Data Processing

The nodes which are attached to an object can be moved continuously or can be

static. When the objects are moving, the data received from a sensor data to a

cluster head reaches asynchronously. This reflects an inaccurate training and

mapping of the space. Hence there is a requirement to consider a method where

Figure 4.12 NMi Inode and Pnode interaction among the nodes in nWSN

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Cluster head
Node

Stationary
Node

Stationary
Node

Stationary
Node

Stationary
Node

Cluster head
Node

Stationary
Node

Stationary
Node

Stationary
Node

Stationary
Node

C
lu

ster h
ead

N
o

d
e

S
tatio

n
ary

N
o

d
e

S
tatio

n
ary

N
o

d
e

S
tatio

n
ary

N
o

d
e

S
tatio

n
ary

N
o

d
e

C
lu

st
er

 h
ea

d

N
o

d
e

S
ta

ti
o
n

ar
y

N
o

d
e

S
ta

ti
o
n

ar
y

N
o

d
e

S
ta

ti
o
n

ar
y

N
o

d
e

S
ta

ti
o
n

ar
y

N
o

d
e

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

Portable
Node

52

training could be done synchronously at the cluster head. The approach for

buffering and query management methodology is proposed to fulfil this

requirement and accordingly, the QnDP algorithm has been developed.

4.8.1 An algorithmic approach – QnDP algorithm

The query based data processing model consists of an assignment of the parameters

within the nodes assembly. These parameters are dynamically assigned when a

request is placed to any node. The queries receive and response state triggers for

each epoch in the sensor node. The local variables data is allocated in byte array

within the assembly. The cluster head/infrastructural node is allocated a buffer for

the aggregation functions of interest. In this study, we have examined the aggregate

functions including average [Avg()], maximum [Max()] and minimum [Min()] for

temperature data at the cluster head level.

Along with these aggregate functions, the main parameters of time, location and

temperature are assigned to it. Error! Reference source not found. describes the

variable assignment data model for the defined parameters.

Figure 4.13 QnDP Memory buffer model

In
fr

a
st

ru
ct

u
ra

l
S

e
n

so
r

N
o

d
e

P
o

rt
a

b
le

 S
e

n
so

r
N

o
d

e
 (

P
k

-1
)

Buffer

1

2

3

4

5

6

7

8

9

10

Time

Location

Buffer

P
o

rt
a

b
le

 S
e

n
so

r
N

o
d

e
 (

P
1
)

Buffer

1

2

3

4

5

6

7

8

9

10

Time

Location

Buffer

P
o

rt
a

b
le

 S
e

n
so

r
N

o
d

e
 (

P
k

)

Buffer

1

2

3

4

5

6

7

8

9

10

Time

Location

Buffer
Temp

Buffer
Temp

Buffer

Temp

Buffer

Buffer

1

2

3

4

5

6

7

8

9

10

Time

Location

Buffer

Temp

Buffer Buffer Buffer Buffer

Min()

Max()

Avg()

53

Each column is designated to allocate a parameter for a specified time as a row.

Figure 4.14 describes the algorithmic approach for data processing for enhancing

nWSN architecture.

Figure 4.14 QnDP Algorithm

54

Chapter 5

5 nWSN Simulation and Validation

In this chapter, the nWSN structure is constructed in a simulation environment to

validate various scenarios. Further testing on a local testbed at SeNSe laboratory is

discussed. A Shepard’s algorithm is used for comparison with the adaptive neural

network solution. Other scenarios are set to test the ANN approach and analyse key

parameters involved in the solution.

5.1 Introduction

A simulation model is constructed with a space volume 20x20x3 m3. This size can

be varied in the modelling environment. The code is written using C++ and custom

libraries/functions of Flexsim simulation environment [104]. The nWSN is

designed based on the following assumptions for the scenarios discussed in this

section.

1) The three dimensional location of each deployed node in the simulation

environment is known.

2) The stationary (infrastructural) nodes are considered to be deployed on the

inner surface of the space boundary.

3) Both cases of steady-state and transient state are considered, as follows:

a) In steady-state mode, the temperature within the space follows a

predefined profile. This profile is generated by assuming few

temperature points and the volume is mapped within the

simulation environment.

b) In transient mode, the dynamic behaviour is introduced within the

environment by varying the temperature profile at all points

between ±2oC with the simulation time. The temperature

fluctuation is assumed to be sinusoidal at a rate of 1 cycle/hour.

55

5.1.1 Temperature profile

In the simulation environment, a function that generates to fit a set of data points (x,

y, z), by performing a polynomial regression analysis on each dimension using the

least-squares method. Similar methodologies have been applied [107, 108, 109] to

formulate the analytical solution for the three dimensional modelling and

visualization.

In three dimensions a complete nth degree polynomial is given by equation 5.1.

where i, j and k are permuted accordingly. The number of terms in the above

polynomial is equal to (n+1)(n+2)(n+3)/6.

For n=1:

The model uses quadratic polynomials that describe a three dimensional curve

parametrically. The polynomials are determined by using Gauss-Jordan elimination

on a matrix. Hence the distance between the curve and the input points can be

minimized by calculating the partial derivatives.

The thermal profile is generated in the simulation environment and the sensing

points are identified to evenly distribute over a specific elevated plane of the space.

These sensing points are used as training set to calculate against the testing points.

The test set is generated randomly using a uniform distribution and the probability

distribution function is given by the equation 5.3.

where and are real numbers with < , is a location parameter and is a

scale parameter.

� &
	 �
�

&�'
 i+j+k 5.1

� ' � � (5.2

 5.3

56

There are 13 evenly distributed points used for sensing, which are divided into three

different patterns as explained in the next section. Out of 60 extracted data points

from the map, around 20% are allocated to sensing points and another 20 points are

extracted from the 80% balance of the data set. The contour map along with the

lattice slice generated based on the sensing points as shown in Figure 5.1.

The extracted sensing data are given in Table 5.1. The generated test data set is used

to calculate the prediction error and Table 5.2 shows the thermal profile used for

testing.

Figure 5.1 Contour map of the thermal profile based on the sensing points

Table 5.1 Temperature profile used for the sensing data

Sno X Y Z Temp(
o
C)

1 5 5 1.5 5.9427

2 15 5 2.5 4.472

3 15 15 3.5 2.4708

4 5 15 4.5 3.3208

5 10 10 1.5 3.0154

6 10 2.5 2.5 6.9829

7 17.5 10 3.5 3.2486

8 10 17.5 4.5 2.1952

9 2.5 10 1.5 5.4068

10 2.5 2.5 2.5 7.5734

11 17.5 2.5 3.5 4.3257

12 17.5 17.5 4.5 1.465

13 2.5 17.5 1.5 2.4225

57

Table 5.2 Thermal profile used for the test set

Sno X Y Z Temp(
o
C)

1 14.6993 11.1173 3.1163 3.2255

2 5.9293 9.2927 1.8406 4.4851

3 11.7076 18.6014 2.9507 1.7053

4 17.2856 12.3084 1.2442 2.9004

5 9.6011 13.8656 1.6928 3.0306

6 13.7048 11.7056 2.9408 3.1544

7 2.6908 11.4012 2.9139 4.9645

8 5.685 3.9114 2.1175 6.2354

9 17.1877 1.4868 1.028 4.4859

10 6.0663 16.7279 3.4719 2.7449

11 17.2047 7.7001 4.783 3.6627

12 16.7024 8.9071 3.7665 3.4848

13 5.7929 11.6882 1.5704 4.0047

14 7.1481 4.1476 3.7444 5.9532

15 12.7144 6.5196 3.6472 4.3424

16 18.7268 5.2014 1.5808 3.886

17 14.7833 9.0224 2.1189 3.5927

18 13.4463 14.8871 4.9531 2.6607

19 7.4092 16.3307 2.718 2.689

20 8.7183 19.5064 4.3714 1.8097

21 13.1249 18.6296 3.2838 1.8386

22 9.4167 13.5593 2.4651 3.0832

23 7.2684 2.9073 1.6824 6.5491

24 2.1574 13.2209 3.9101 4.3048

25 6.9424 1.3037 3.561 7.0779

26 13.0039 12.2017 1.439 3.1051

27 13.3063 18.2782 4.362 1.9704

28 7.2935 16.0156 2.5716 2.7845

29 10.0521 1.4301 2.964 8.0333

30 12.0799 2.9031 3.5125 5.9336

31 8.4805 7.7563 2.5125 4.2256

32 11.0565 18.5316 3.7132 1.7376

33 14.2504 15.5173 4.3064 2.4481

34 2.0586 4.0332 1.3208 6.8528

35 19.1492 11.627 3.1347 2.9469

36 13.3711 1.7635 4.5506 5.6952

37 15.7469 5.6687 4.5791 4.1934

38 8.7065 15.5604 4.0306 2.7822

39 15.6181 5.842 4.5448 4.1762

40 12.7068 18.0621 1.6719 1.9433

41 10.2478 4.0102 3.1752 5.7976

42 9.4463 3.1857 3.3174 6.3856

43 8.1547 13.9149 1.6684 3.1747

44 12.4025 10.4503 1.4194 3.3274

45 18.7413 18.5767 3.9482 0.3966

46 10.0977 19.3201 3.3241 1.1892

47 2.7012 12.9001 1.0427 4.3322

58

In order to test the performance assessment of the network, the model involves

obtaining the minimum statistical measurement of error between predicted

temperature and actual temperature at any arbitrary points within the space. Actual

temperature is the one which follows the temperature profile in a simulation

environment and the estimated/predicted temperature is the value calculated from

the algorithm used. The statistical measures that are evaluated are; MAE, Root

Mean Square Error (RMSE) and Correlation Coefficient (R2) are expressed by

equation 5.4, equation 5.5 and equation 5.6 respectively.

where ���,	 and
��,	 are the average actual and predicted temperatures for the ith

observation, respectively. k is the total number of readings taken from the model.

Using the statistical measures, a well trained ANN model should always turn out

small MAE and RMSE with large R2 values.

5.1.2 Transient model behaviour

In order to generate a dynamic behaviour within the model, it is considered to

fluctuate the temperature at any given point between ±2oC with the simulation time.

The temperature fluctuation is assumed as a sinusoidal form of cycling with a

period of 1 hour. Hence the fluctuation of temperature at any time is given by the

equation 5.7

Where hy = 2
o
C.

The following chapter will give more focus on transient model behavioural study as

part of the cold storage within the meat industry (a case study).

�

 ���,	
��,	

	�� 5.4

���,	
��,	
�

	��

� �⁄

 5.5

���,	 ���,	
�

	�� ���,	
��,	
�

	��

���,	 ���,	
�

	��

 5.6

T(t) = (sin[time()*2π/period]*hy + hy) - hy 5.7

59

5.2 Thermal Mapping Based on a Fixed Sensing Points with

Single Cluster Head/Infrastructural Node

Initially we have considered sensing points based on a pattern in a given space

volume 20x20x5m3. The sensing points are located in three different patterns to

examine the variation of thermal prediction error using Shepard’s and ANN

algorithms. Figure 5.2 shows the sensing point location patterns in a two

dimensional view.

 (a) (b)

 (c)

These sensing points are evenly distributed over the region that can cover the

overall space. The pattern with five nodes may not cover the space as much as the

pattern thirteen nodes can cover. The extracted temperature data for the given

patterns are shown in Table 5.1.

The model is computed and calculated for the location points where temperature is

known other than the sensing points given in the Table 5.2. It is observed that

Figure 5.2 Sensing location points (a) pattern with 5 nodes (b) pattern with 9

nodes (c) pattern with 13 nodes

60

Shepard’s method has generated more prediction errors at all the five, nine and

thirteen node patterns. There is a significant decrease in error from five to thirteen

node patterns. Figure 5.3 shows the MAE and RMSE for Shepard’s and ANN

methods.

A further analysis has been done for ANN architectural parameters. A decrease in

prediction error is observed with the increase of the number of epochs for thirteen

nodes pattern compared to the five nodes pattern. There is not much difference in

prediction error even with a larger number of epochs for the five nodes pattern.

Figure 5.3 MAE and RMSE comparison between Shepards and ANN

Figure 5.4 ANN Parameters comparison for training

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

5 Nodes 9 Nodes 13 Nodes 5 Nodes 9 Nodes 13 Nodes

Shepard's ANN

E
rr

o
r(

o
C

)

Algorithm

Shepard's Vs ANN

MAE

RMSE

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1
0

0
 E

p
o

c
h

s

5
0

0
 E

p
o

c
h

s

1
0

0
0

 E
p

o
c

h
s

1
0

0
 E

p
o

c
h

s

5
0

0
 E

p
o

c
h

s

1
0

0
0

 E
p

o
c

h
s

1
0

0
 E

p
o

c
h

s

5
0

0
 E

p
o

c
h

s

1
0

0
0

 E
p

o
c

h
s

5 Nodes 9 Nodes 13 Nodes

M
A

E
/

R
M

S
E

Node patterns/Epochs

ANN Parameters comparison

MAE(Deg.C)

RMSE(Deg.C)

61

This is due to the lack of coverage of the nodes. The number of epochs can even

lead to converge to local optima instead of global optima. This can be avoided by

keeping the model’s fitness criteria while training.

Figure 5.4 shows the ANN parameters comparison when changing the number of

iterations from 500 to 1000 at five, nine and thirteen nodes patterns.

5.2.1 Impact of NN internal architectural parameters

It is important to give attention and identify the best architecture of the neural

network. In the experimental scenarios, the models are configured with different

neural architectures to study the applicable method. The thermal mapping solution

in this work uses the online training. The more internal structure a network has, the

better that network will be at presenting complex solutions. But at the same time it

may cause the training to diverge, which further leads to over-fitting. This would

prevent the network from generalizing well to new data. The model configured with

tan-sigmoid activation function in a MLP network has recorded a lower accuracy

than those with other functions.

It is also observed that the accuracy didn’t improve much with the number of

iterations increased. Table 5.3 shows the initial parameters of the neural net

architecture for thermal mapping. Initially the various NN architectures are

evaluated for suitability of the thermal mapping application.

We have used eight different function modelling architectures and among those the

MLP has given the best results. It is observed that the MLP three and four layer

performed better than any other architecture.

 Table 5.3 Initial neural net parameters for mapping

Minimum weight delta 0.0001

Epochs 10000

Initial weights 0.3

Learning rate 0.3

Momentum 0.6

Activation function tan-sigmoid

Neurons in hidden layer 3

62

The trade off among the number of layers and the epochs is considered based on the

time required to run the algorithm. There is the risk of converging at local optima

instead of global optima, when running through a specified number of epochs.

Hence the algorithm saves the best system while running by calculating the R2

value. Figure 5.5 shows the time comparison to run the algorithm when changing the

layers from 3 to 4 (at 6, 12 and 18 hidden neurons) and the epochs at 10,000,

50,000 and 100,000.

A three layer MLP model with six neurons at the hidden layer would require at

least 0.9 seconds to run 10,000 epochs. To avoid converging to local optima, we

have considered setting up the model to run at least 10,000 epochs. The best system

identified in a simulation environment is at R2 value of 0.92. The algorithm run

time is important when we have more training input. It is obvious that the increase

in the number hidden neurons, layers and epochs has a greater impact on the

resultant time based on Figure 5.5.

The Paltarion Synapse software is used to optimize the number of epochs, number

of hidden layers and number of neurons in a hidden layer. The Genetic Optimizer

module is used to identify the right parameters that can produce a minimum output

error within 95% confidence level for training and validation procedures. The

algorithm starts with a minimal network, then adds hidden nodes during training.

Figure 5.5 Time comparison at different MLP layers and epochs

63

5.3 Thermal Mapping Based on Random Sensing Points

This model is considered to collect data in a steady-state environment. It has a

single central data collection point and the sensing nodes are randomly placed. The

central point gets the temperature and location data from 20 portable nodes as

shown in Figure 5.6. The portable nodes P1 to P20 feed the temperature and location

data to the infrastructural node N1. We have analysed the predicted temperatures at

any given points within the space by using Shepard’s algorithm and the Artificial

Neural Network’s approach.

5.3.1 Thermal mapping using Shepard’s Algorithm

The model is computed initially using the Shepard’s algorithm and tested against

20 arbitrary points in the space. MAE and RMSE recorded 0.89 and 1.24

respectively. The R2 value was recorded 0.80. The following Table 5.4 shows the

arbitrary points selected to predict the temperatures.

Figure 5.6 Sensing node distribution over the space

Infrastructural node

Portable node

P9

P4

P3

P2

N1

P13 P1

P19

P15

P18

P16

P7

P10

P17

P12

P11

P6

P8

P20

P14

P5

64

The contour maps shown in Figure 5.8 give a clear difference between the actual

and predicted temperatures in the three dimensional space.

Table 5.4 Actual and Predicted temperatures using Shepard’s algorithm

Figure 5.7 Actual vs Predicted temperatures

Sno X Y Z Actual (
o
C) Predicted(

o
C)

1 14.6993 11.1173 3.1163 3.2255 3.6894

2 11.7076 18.6014 2.9507 1.7053 2.8954

3 9.6011 13.8656 1.6928 3.0306 3.4809

4 2.6908 11.4012 2.9139 4.9645 4.0203

5 17.1877 1.4868 1.028 4.4859 4.4034

6 17.2047 7.7001 4.783 3.6627 4.0441

7 5.7929 11.6882 1.5704 4.0047 3.8144

8 12.7144 6.5196 3.6472 4.3424 4.2938

9 14.7833 9.0224 2.1189 3.5927 3.916

10 7.4092 16.3307 2.718 2.689 3.367

11 13.1249 18.6296 3.2838 1.8386 2.7763

12 7.2684 2.9073 1.6824 6.5491 4.3969

13 6.9424 1.3037 3.561 7.0779 4.4585

14 13.3063 18.2782 4.362 1.9704 2.9248

15 10.0521 1.4301 2.964 8.0333 4.8582

16 8.4805 7.7563 2.5125 4.2256 4.1342

17 14.2504 15.5173 4.3064 2.4481 3.2386

18 19.1492 11.627 3.1347 2.9469 3.7022

19 7.1481 4.1476 3.7444 5.9532 4.378

20 15.6181 5.842 4.5448 4.1762 4.2401

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
e

m
p

e
ra

tu
re

 o
C

validation points

Actual vs Predicted (Shepard's Approach)

Actual

Predicted

65

Shepard’s algorithm was ineffective at identifying the hot spots which exists in the

space. The high and low temperatures are poorly predicted as also shown in Figure

5.7 and Figure 5.8.

Based on the hot spots, a further three nodes were deployed near the hot spot region

in the simulation mode and the profiles were recalculated. The identified location

and temperatures are given in Table 5.5.

The contour maps are constructed to identify the differences in the actual and

predicted thermal profile as shown in Figure 5.9.

Figure 5.8 (a) Actual thermal profile (b) Predicted thermal profile

Table 5.5 Additional deployed nodes at hot spots

Figure 5.9 (a) Actual thermal profile (b) Predicted thermal profile

Sno X Y Z Temp(
o
C)

1 8.00 2.50 1.50 6.8028

2 10.00 1.50 2.50 8.1286

3 11.00 2.50 1.50 6.6687

66

The predicted profile was improved moderately after placing the nodes at hot spots,

increasing R2 to 0.89. But there are other locations where the hot spots are not still

effectively identified. If the hot spots are not identified, there is a probability of

deterioration of the products.

5.3.2 Thermal mapping using neural net approach

The Neural Net approach was used to compare with the earlier Shepard’s

algorithm. The MAE and RMSE are recorded as 0.35 and 0.52 respectively. The R2

value is recorded as 0.92. The following Figure 5.10 shows the arbitrary points

selected to predict the temperatures.

Figure 5.10 Actual and predicted temperatures using ANN approach

Figure 5.11 Actual and predicted temperatures

Sno X Y Z Actual (
o
C) Predicted (

o
C)

1 14.6993 11.1173 3.1163 3.2255 3.021

2 11.7076 18.6014 2.9507 1.7053 1.686

3 9.6011 13.8656 1.6928 3.0306 2.851

4 2.6908 11.4012 2.9139 4.9645 4.505

5 17.1877 1.4868 1.028 4.4859 5.201

6 17.2047 7.7001 4.783 3.6627 3.72

7 5.7929 11.6882 1.5704 4.0047 3.94

8 12.7144 6.5196 3.6472 4.3424 4.615

9 14.7833 9.0224 2.1189 3.5927 3.552

10 7.4092 16.3307 2.718 2.689 2.553

11 13.1249 18.6296 3.2838 1.8386 1.582

12 7.2684 2.9073 1.6824 6.5491 6.152

13 6.9424 1.3037 3.561 7.0779 6.605

14 13.3063 18.2782 4.362 1.9704 1.669

15 10.0521 1.4301 2.964 8.0333 6.237

16 8.4805 7.7563 2.5125 4.2256 4.776

17 14.2504 15.5173 4.3064 2.4481 2.081

18 19.1492 11.627 3.1347 2.9469 2.435

19 7.1481 4.1476 3.7444 5.9532 5.968

20 15.6181 5.842 4.5448 4.1762 4.46

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

T
e

m
p

e
ra

tu
re

 o
C

Validation points

Actual Vs Predicted (ANN Approach)

Actual

Predicted

67

The actual and predicted temperatures for 20 sample data are shown in Figure 5.11.

The contour maps shown in Figure 5.12 give a clear difference between the actual

and predicted temperatures in the three dimensional space. There were few false

positive and negatives recorded, among those the validation point 5 and point 15

have given a major difference.

The ANN approach has the capability to identify the hot spots and the low and high

temperatures are predicted with less error when compared to the Shepard’s method.

The additional nodes deployed as shown in Table 5.5 are used to identify the

improvement for the hot spot prediction. There is a little improvement in the R2 to

0.93, and a better profile is generated as shown in Figure 5.13.

A few more scenarios were conducted to realize the ANN approach by varying the

parameters that include the space volume and training data set. The earlier

experimental model is a steady-state where the temperature at the given point does

not change with time. But in real time applications like meat plant’s cool storage

the temperature varies with time. Hence it is important to consider a dynamic

Figure 5.12 (a) Actual thermal profile (b) Predicted thermal profile

Figure 5.13 (a) Actual thermal profile (b) Predicted thermal profile

68

environment within the modeling space. We have considered the Meat Industry

cool storage as a case study to further compute the experiments in the upcoming

chapter.

5.4 Thermal Mapping Experimental Scenarios

In these scenarios, the ANN approach is implemented in a simulation modeling

environment by varying the number of infrastructural nodes and portable nodes,

room volume and training data set. These experiments are meant to identify the

applicability of the approach for different configurations. This further helps to study

and improve the performance and the effecting factors towards the accuracy of the

output.

The neural networks are used to model the temperature distribution in a space

designed in a simulation environment. Suppose we have a room where the

temperature is distributed with a minimum and maximum temperature ranges -4oC

to 10oC respectively. Figure 5.14 shows the experimental design for the ANN. The

room dimensions are assumed as 20x20x5 m3, 30x30x5 m3, 40x40x5 m3 and

50x50x5 m3.

A model is designed using Flexsim software to emulate the relationship between

the training data along with infrastructural nodes temperature data at various

locations to estimate the temperature distribution at other arbitrary positions. A

temperature profile is generated based on the given temperature points at few

locations within the designated space.

Figure 5.14 Schematic diagram of the experiment

5 m

20 m

20 m

Infrastructural Sensor Nodes

Room Temperatures: - 4 oC ~ 10
oC

69

No. of

Scenarios
No. of Infrastructural Nodes

used
Room

Volume(m3)
Random

Data Set
Training

Data Set

1 8 20x20x5 20 28

2 16 20x20x5 20 36

3 24 20x20x5 20 44

4 32 20x20x5 20 52

5 40 20x20x5 20 60

6 24 20x20x5 20 44

7 24 30x30x5 20 44

8 24 40x40x5 20 44

9 24 50x50x5 20 44

10 8 30x30x5 10 18

11 8 30x30x5 20 28

12 8 30x30x5 40 48

13 8 30x30x5 80 88

14 8 30x30x5 120 128

Table 5.6 shows the model run scenarios to test at different data sets assumed

initially. The infrastructural nodes are deployed on the inner surface of the room to

get thermal feed from the boundary. These nodes are varied from 8 to 40 based on

the designed scenarios. The random data set is the data feed from the portable

nodes. This data set also varies as the number of portable nodes change from each

scenario.

A GUI has been built to input the required data for each scenario and the training

data set is generated from the model. This training data set is generated by using a

bounded continuous uniform probability distribution function. This training data set

is nothing but the data supplied by the portable nodes.

The uniform distribution is essential in generating random variants from all the

other distributions and will return a continuous set of random values inclusive of

minimum and maximum variants. This training data along with the infrastructural

nodes data is supplied to train the neural net.

The RMS error for each of the scenarios stated above has been calculated. Based on

the results, each scenario of the model demonstrated noticeable change of error as a

result of varying one of the parameters. The RMS error is given by the difference

between RMS actual and estimated values.

Scenarios 1 to 5 are evaluated by changing the infrastructural nodes from 8 to 40

given in Table 5.7. It is observed that the RMS error decreased with the increase of

number of infrastructural nodes for a given volume. Figure 5.15 clarifies the change

Table 5.6 Model run scenarios

70

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

8 16 24 32 40

R
M

S
 E

rr
o

r

No. of Inf. Nodes

RMS Error Vs No. of Inf. Nodes

No. of Inf. Nodes

Trendline

of responsiveness of RMS error with the increase in the number of infrastructural

nodes.

The vertical error bars at each point shown in Figure 5.15 are about 0.02oC for the

given set of training data. This means an error ±0.02oC is observed by running a

number of iterations at each training of the neural net. At the room volume 2000m3,

a minimum of 24 nodes are required to get at least 0.02oC RMS error.

Based on these results another set of test scenarios have been conducted in order to

evaluate the room volume response by keeping 24 nodes, 20 training data set

constant and varying room volume from 2000m3 to 12500m3.

The RMS error has not affected much from 24 nodes to 40 nodes; hence it is

considered to keep 24 nodes and 20 training data set constant for the next runs.

Scenarios six to nine shown in Table 5.8 describe the RMS error actual and

estimated values by changing the room volume.

Table 5.7 RMS Errors – Inf. Nodes changing 8 to 40 at 2000m
3

Volume and 20 Training data

Figure 5.15 RMS error Vs No. Infrastructural Nodes

No. Nodes Volume(x1000m
3
) No. Training Data RMS Error

Scenario 1 8 2 20 0.099

Scenario 2 16 2 20 0.045

Scenario 3 24 2 20 0.014

Scenario 4 32 2 20 0.012

Scenario 5 40 2 20 0.006

71

0.000

0.200

0.400

0.600

0.800

1.000

1.200

2.00 4.50 8.00 12.50

R
M

S
 E

rr
o

r

Room Volume (1000x m3)

RMS Error Vs Room Volume

Room Volume

Trendline

It was also observed that an error ±0.025ºC is resulted for each time we trained the

neural net. Figure 5.16 shows the drastic change of RMS error by increasing the

room volume. The RMS error is increased from 0.077ºC to 0.907ºC for the 2000m3

and 12500m3 respectively.

This clearly states that the given set of nodes and training data was not sufficient to

keep the RMS error within the limits with the increase of room volume. Hence,

further analysis was conducted to test the model for its suitability for thermal

prediction using neural networks. This time another set of scenarios 10 to 14 are

conducted by changing the number of training data set at a given room volume

4500m3 and eight infrastructural nodes. We have chosen room volume 4500m3,

based on the test results from Figure 5.16.

It clearly shows that the RMS error is somewhat within 0.05⁰C at the room volume

of 4500m3. Table 5.9 shows the decrease of RMS error by increasing the number of

training data set. The trend-line is given by the best fit to the RMS error data set.

Table 5.8 RMS errors – Room volume changing 2000m
3
 to 12500m

3
 at 24

Inf. Nodes and 20 Training data

Figure 5.16 RMS error Vs Room volume

No. Nodes Volume(x1000m
3
) No. Training Data RMS Error

Scenario 6 24 2 20 0.077

Scenario 7 24 4.5 20 0.116

Scenario 8 24 8 20 0.413

Scenario 9 24 12.5 20 0.907

72

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

10 20 40 80 120

R
M

S
 E

rr
o

r

Training Data

RMS Error Vs Training Data

Training Data

Trendline

An error of ±0.01oC is observed during the training period of the neural net and the

vertical bar reflects the same. Figure 5.17 evidently illustrates that the increasing

number of training data set produced a much better improvement of the RMS error.

However, 8 infrastructural nodes and the room volume of 4500m3, allowed the

temperature to be predicted with an RMS error of at least 0.02oC.

Furthermore, the RMS error is almost reaches zero after 80 training data set for the

given room volume 30x30x5 m3. However the increase in the number of training

data set did not affect the RMS error after the training data set of 40. It is

considerably lower than 0.01oC.

The main conclusion possible from the different set of scenarios assessed in these

experiments is that the greatest impact on the RMS error is through increasing the

number of infrastructural nodes and training data set. Hence the number of

infrastructural nodes can also influence the thermal prediction accuracy, since they

are located on the inner surface of the boundary.

Table 5.9 RMS Errors – Training data set changing 10 to 120 at 8 Inf.

Nodes and 4500m
3
 volume

Figure 5.17 RMS Error Vs Training Data

No. Nodes Volume(x1000m
3
) No. Training Data RMS Error

Scenario 10 8 4.5 10 0.05747

Scenario 11 8 4.5 20 0.02921

Scenario 12 8 4.5 40 0.01627

Scenario 13 8 4.5 80 0.01276

Scenario 14 8 4.5 120 0.0025

73

5.5 nWSN Testbed Experimentation

Based on the nWSN structure, a testbed has been constructed at the Sensor Network

and Smart Environment (SeNSe) Research centre. We have used Atmel’s

RZRAVEN and RZUSBSTICK for the experimental setup and implementation.

There are eight infrastructural nodes deployed in the room and each node is also

responsible to sense the temperature at that point. These eight inputs are fed into a

neural net for training. Each node is programmed using IBMs mote runner library.

Apart from these eight nodes, there is another node which is connected at the base

station to compute the thermal profile. Each node is programmed with a unique

short ID and the location information is hardcoded and transmitted along with the

temperature data. There are nine testing points selected to validate the model. These

points were chosen randomly within the space and their actual temperatures were

recorded. The schematic diagram of the room layout is shown in Figure 5.18.

Each node from Inode-1 to Inode-8 is assigned a short ID as shown in the layout.

We have left the system running to identify the temperature variation during the

mid year. The following Figure 5.19 shows a sample the recorded temperature data

during the evening hours.

Figure 5.18 Testbed layout at SeNSe

X

Y

(3.33, 0, 2.25) (6.66, 0, 2.25)

(10, 3.5, 2.25)
(6.66, 3.5, 1)

(6.66, 7, 2.25)

(3.33, 3.5, 1)
(0, 3.5, 2.25)

(3.33, 7, 2.25)

Inode – 1(DA-EA)

Inode – 2(46-15) Inode – 3(88-8C)

Inode – 4(22-C6)

Inode – 5(E1-D3) Inode – 6(55-CE)

Inode – 8(64-E8) Inode – 9(ED-94)

1

2

3

4

5

6

7

8

9

 - Test Points - Sensing Points

74

The NN program is configured to use a one-layer MLP with 6 hidden neurons to

generate the thermal profile of the space. The contour map of the actual room

condition at the middle of the cross section is shown in Figure 5.20.

The ANN training was performed at the node connected to the base station. The

predicted temperature profiles are generated at a given instance of time. The actual

temperatures at the test points are then compared against the predicted

temperatures. An RMSE of 1.12oC is recorded for the given data and the one-layer

MLP architecture has executed training with a 95% confidence interval of the

output within ±0.012oC as shown in Table 5.10.

Figure 5.19 Temperature profile of each sensor node

Figure 5.20 Actual room temperature contour map

22

23

24

25

26

27

28

29

30

31

32

17:29 17:49 18:07 18:29 18:49 19:07 19:29 19:49 20:10 20:29

T
e

m
p

e
ra

tu
re

(o
C

)

Time Period

Recorded Temperatures

Inode1-DAEA

Inode2-4615

Inode3-888C

Inode4-22C6

Inode5-E1D3

Inode6-55CE

Inode7-64E8

Inode8-ED94

75

The validation set within the training data set produced with a 95% confidence

interval an output within ±2.07oC of the measured data as shown in Table 5.11. This

clearly reflects the insufficient data set for the training and validation of the model.

The testing data is compared with the predicted data for the selected locations and

the contour maps are drawn to examine the differences. Figure 5.21 and Figure 5.22

shows the actual test data contour map and the predicted data contour map,

respectively.

The testing and predicted thermal maps have a similar profile on their contours with

an accuracy of 0.8oC. There are two test points that have more influence than others

due to less training and validation data set.

Table 5.10 Training data confidence plot

Table 5.11 Validation data within the training set confidence plot

Sno Desired(
o
C) Output(

o
C) High95% Low95%

1 22.2 22.200 22.211 22.188

2 21.85 21.850 21.862 21.839

3 20.21 20.203 20.215 20.191

4 18.7 18.698 18.710 18.686

5 21.15 21.138 21.150 21.126

6 22.7 22.695 22.707 22.683

7 21.5 21.501 21.513 21.489

8 20.74 20.728 20.740 20.716

9 20.7 20.693 20.705 20.681

10 21.78 21.777 21.789 21.766

11 21.3 21.299 21.311 21.287

12 21.5 21.500 21.511 21.488

Sno Desired(
o
C) Output(

o
C) High95% Low95%

1 20.36 21.208 23.282 19.133

2 19.14 20.938 23.012 18.864

3 22.72 22.873 24.948 20.799

4 21.8 20.527 22.602 18.453

5 22.1 22.028 24.102 19.954

76

Figure 5.21 Contour map of the testing data set

Figure 5.22 Contour map of the predicted data set

77

Chapter 6

6 nWSN Implementation Factors

This chapter focuses on components that are essential for real time development

and implementation based on the methodologies discussed in chapter 4. The

required components for nWSN implementation are identified. This includes the

query based spatio-thermal mapping, time synchronization, neural net cluster

dynamic grouping and node distribution and minimization. Each component has

significance to the overall implementation of the nWSN architecture.

6.1 Components of the nWSN Implementation

The important components of the nWSN structure are classified below. Each

methodology described in the earlier chapter requires an implementation and

further study of the performance measure for results analysis.

1) Query based spatial thermal mapping,

2) Time synchronization,

3) Neural net cluster dynamic grouping, and

4) Nodes minimization.

In a dynamic environment, there is a requirement to feed the temperature data at a

given point of time. In the case of portable nodes where they move with time, it

may not be possible to acquire data without an implantation of a query system that

fulfils the time synchronization. The implementation of query based spatial thermal

mapping details these requirements.

The time synchronization component is essential for a modularised model for

mapping a localized data. The solution has been extended to further space

partitioning to verify the precision when considering the sensor nodes that are at the

boundaries among the sub regions.

In several applications where the nodes deployment is a criterion, this is due to the

restrictions of the surroundings and the working environment. It may not be

78

possible to deploy a node if there an infrastructural object does not exist. Hence the

focus was given to look at the opportunity to minimize the number of nodes. The

thermal precision is taken as performance measure for the implementation.

6.2 Approach for Query Based nWSN Spatial Thermal

Mapping

Based on the case study described in the upcoming chapter, it is identified that the

surface temperature of the carcass in a cool storage changes from 30 oC to 4 oC

within a period of 10 to 15 hours. This is a rapid change at the beginning of the

process before it comes to a steady state. Hence the temperature monitoring during

this period is vital, together with identifying hotspots. In the nWSN training

process, the infrastructural nodes require the training data set from all the portable

nodes at a given time to train the neural net. These nodes can process the data by

filtering, aggregating and sharing within the network. The infrastructural nodes

have to initiate a query to all the nodes to request the training input data at a

synchronized time. To address these requirements we proposed a Query Based

nWSN (QBnWSN) implementation to support a synchronized data input to the

infrastructural node upon a query request. The infrastructural and portable sensor

node layers are responsible for data processing.

The neural net algorithm requires training data from all the portable nodes within

its range. The input data contains the portable node location (x, y, z) coordinates

and temperature recorded at that location. The neural net calculates the required

parameters that further assist to train the network rapidly. These neural training can

be facilitated to build a spatial thermal map. It can further assist to calculate

temperatures at any arbitrary point. A memory buffer model is introduced to store

the data at infrastructural and portable node layers. When a query propagates to all

the portable nodes to request the training data, each node responds with its buffered

data stored at that time. The buffer data for each infrastructural and portable node

contains location and temperature data. This buffer data loops through every 1

minute to update the buffer table and to accommodate up to 10 minutes of pervious

data within the node.

The location and temperature data are the parameters that are dynamically assigned

for each query to respond at a given time. The QnDP algorithm executes for each

time a query triggers at the portable node. This processing is continuously

79

performed at a given time period to update the parameters and for further online

training of the neural net.

6.2.1 Query based nWSN data processing framework

The WSN itself acts as distributed data storage where the data can be stored and

retrieved upon query requests. The query based nWSN data processing framework

is laid on the data which is stored at different node levels. The dynamic data

acquired by each sensor node from the surroundings can be immediately consumed

by the application or it can be sent to another peer node. In QBnWSN framework,

the infrastructural node disseminates a query to all the portable nodes. The query

consists of several attributes.

Each attribute has a key value, where it can modify each portable node’s assembly

module. Figure 6.1 shows the block diagram of the QBnWSN framework and its

various components.

The framework has mainly three parts:

1) A client module running in a PC, which is typically a base station. This

module continuously interacts with the sink to receive and send the data

packets. The client side module can be used to parse queries and

disseminates into the network.

2) An infrastructural node layer module that runs on top of the run time

platform. We have used IBM’s Mote Runner OS to test the model. One

Figure 6.1 QBnWSN Framework

 EN

 EN

 EN

 EN
 EN

z

y

x

Query Manager

Data Storage

Data Collection

Query Distribution

Data Filter/Extraction

Portable Nodes Layer Infrastructural Nodes Layer

 EN

 EN

 EN

 EN

 EN

Client Module

End User – Status

monitoring

(Web based Interface)

Query Manager

Data Storage

Data Collection

Query Distribution

Data Filter/Extraction

D
a

ta
/Q

u
e

ri
e

s

D
a

ta
/Q

u
e

ri
e

s

In
te

rm
e

d
ia

te
 L

ib
ra

ry
 f

o
r

H
W

/S
W

In
te

ra
ct

io
n

n
W

SN
 S

e
n

so
r

G
a

te
w

ay

80

infrastructural sensor node acts as a sink to communicate with the client side

module.

3) A portable node layer module that also runs on top of the run time platform

Mote Runner. Each portable node in this layer interacts with the

infrastructural sensor node.

In this implementation, the distributed sensor nodes constitute a single-hop system.

The cluster head/infrastructural node communicates with the end/portable sensor

nodes when the data is required. We have considered a query transmission to all the

portable nodes within a time interval. The period for each result produced is an

epoch. This epoch duration can also be known as sample interval of the query. The

sample interval is a parameter that can be changed during the experiments of the

model. The infrastructural node layer consists of several components that include

query distribution, query manager, data storage, data collection, data

filter/extraction; an extra web interface for monitoring is available in the client

module. Each component has its own contribution to coordinate with others. We

considered a large packet data to be sent from each node, hence there is a

requirement of data collection and filtering at the infrastructural node layer.

Every portable and infrastructural node has its own cache/buffer to accommodate

data storage for each aggregation parameter. The main important attributes that are

considered in this model are time, location and temperature. It can be extended for

any other attribute. The data aggregation calculates for temperature at each

infrastructural sensor node.

Figure 6.2 shows a simple application scenario of the model. The sink injects a

query that consists of a selective message that will be executed at the specified node

or at all nodes. An example of the query may be the temperature recorded at a

portable node at a given time. In another example, the maximum temperature

recorded at a given sub-region. Each sensor node is capable of computing various

aggregation functions including, average, maximum and minimum occurrence of

the attribute at the specified time slot.

In the first phase, selective messages are spread throughout the network using

flooding, but these do not necessarily activate or require responses from all the

nodes. In most cases the appropriate nodes are activated based on the query.

81

Let the infrastructural node Ni, where i is the node ID (short address), queries a

portable node Pk to request the input training data (location and temperature) at the

time t1. If Pk⊂Ni then it returns a response to Ni. In QBnWSN framework, the

sensor node has the following states.:

1) Query receive state: This state initiates when the first node of the network

receives a query from the infrastructural node. The parameter of the query

executes and the assembly returns true if the node belongs to the

infrastructural node. It immediately sets the parameter values and calls the

response state.

2) Query response state: This state initiates when the query receive state

returns true. This will generate a response and will update it to the nodes

local variable and add it to the data packet that transmits back to the

infrastructural node.

3) Data aggregation buffer state: During this state, all the aggregation

functions calculate at periodic times and update the local variable data. For

every minute (or any configurable time) the mote senses the environment

continuously and aggregates to update the variable data. These variable data

Figure 6.2 WSN Nodes arrangement in the application scenario

82

fills the buffer and loops within it for every 1 minute to cover for a period of

10 minutes data in the experiment. The volumetric rendered maps are

constructed as performance measure to validate the QB-nWSN

implementation.

6.3 Time Synchronization and its Implementation

In a dynamic environment the acquired sensor data at any given node varies with

time. If the location of the sensor node also varies, then there is an issue with the

data input to the neural net computations. This is due to the asynchronous data

received from the sensor nodes to a cluster head. Hence the sensor data must be a

temperature and location specific at a given time. Figure 6.3 shows the node’s

location change with time while the cluster head triggers its query request state.

Assume there is a node P1 at location x1, y1, z1 at time t1, which continuously moves

with time. The query request state at the cluster head may trigger at any location

before it reaches the state where its location is x2, y2, z2.

The proposed system contains local variables data in byte array at each sensor

node’s assembly program. This buffer data is the core element to implement the

time synchronization and it contains the location and temperature data. The

infrastructural and portable sensor nodes have a similar buffer model. Each function

can accommodate up to 10 minutes of previous data. These buffer data is looped

through every one minute to update all the functional parameters. This means each

Figure 6.3 Node location change with time

83

row indicates the previous minute data of the model, i.e. row 1 contains the data for

the last minute and row 10 contains the data corresponding to 10 minutes earlier.

The algorithm described in the earlier chapter deals the query based nWSN data

processing within the sensor nodes. The QnDP algorithm executes for each epoch

at infrastructural or portable node level. This depends on the queries that are passed

as a selective message to the nodes. The selective message consists of few

parameters, including node ID (short address) and time. The time is the target time

to query the data.

Assume there are k numbers of portable nodes where all nodes from P1 to Pk form a

cluster and having a cluster head as shown in Figure 6.4. The neural net that

computes temperature profile requests temperature along with its location from all

portable nodes as an input data. These data from all the portable nodes have to be

collected at a given time ti in order to train the system at that time. In an example, a

portable node can be attached to an object that continuously moves with time.

When the infrastructural node requests all the location and temperature data at time

ti, each portable node reacts and sends the parameters data from the buffer located

at ti. In this way the nWSN algorithm within the infrastructural node trains the

system at that time to update the parameters. Therefore a synchronized data set can

be the input to the neural net and the online training is performed to sustain the

parameters of the neural net. The flow diagram shown in Figure 6.4 describes the

query flow and response between the infrastructural node and the portable node

layers.

The query transmit and receive times along with the average response times are

calculated as a performance measure. The volumetric rendered maps are generated

Figure 6.4 Flow diagram for query processing

84

to compare the thermal precision when the data are trained synchronously versus

asynchronously.

6.3.1 Configuration and setup for time synchronization

The importance of QBnWSN was discussed in the earlier section. The main

initiative of the QnDP algorithm is to have synchronized training data available to

the infrastructural nodes. This can assure the online training of the neural net at

specific time periods with consistent data sets. The location and temperature data is

fed to train the system.

In the experimental setup, there are four portable nodes used along with cluster

head to query the data. Figure 6.5 shows the nWSN setup configuration for the

experimental test bed. There are mainly two different levels that can be considered

in the setup. At plant level all the sensor nodes are deployed in the given space

where the temperature is monitored.

A gateway is connected to the nWSN at the system level. We have used IBM’s

Mote Runner to setup this scenario within the simulation environment. The socket

programming functionality provided by Mote Runner can further facilitate to

interact with the sensor network using the web browser. Using the interface it is

Figure 6.5 nWSN configuration setup

85

possible to send a query manually to all the portable nodes. But this could be done

programmatically in any infrastructural node within a time period. For each time

period, when a call back function initiates its query propagation phase, a query

propagates to all the portable nodes connected to the infrastructural node. Upon

receiving a query, the portable node verifies all the parameters of the query to

respond accordingly. This means that a query requiring the temperature of all the

portable sensor nodes within five minutes will return all the temperatures of each

portable node along with its location data. This will make sure the neural net trains

the system at a synchronized time. The current time of each node can be

synchronized through the web interface. This will ensure the query statement time

is valid at all the portable nodes.

In the experimental setup, we have fixed a timing of 10 minutes for updating the

memory buffer that includes temperature, location and other aggregate functions

data. During this period the queried data is trained at each infrastructural node. The

sensing time is independent of updating memory buffer time and it is given one

minute. Figure 6.6 shows the WSN query management results within the Mote

Runner simulation environment setup. The queries transmit and receive times are

recorded from the number of samples. The collected result show that an average of

25 seconds is consumed to respond to each portable node.

These times for the selected four nodes are given in Figure 6.8. There are 20

numbers of samples taken to evaluate the results. These response times are quite

Figure 6.6 QB-nWSN Framework results interface

86

enough to compute the neural net algorithm in any of the infrastructural nodes for

the given times.

A comparison of the thermal precision maps was also examined based on the

simulation model results. Figure 6.7 shows the volumetric rendered temperature

precision data when the infrastructural node receives synchronous and

asynchronous data from the portable nodes. The map variation clearly represents

more error when data is asynchronous. The query and sensing periods can be

configured through the web interface.

Increasing the number of portable nodes that can feed data to the cluster head may

present challenges. However the viability of the model shows that the synchronized

data can be fed to the infrastructural node to fulfil the application requirements.

Figure 6.7 Volumetric temperature precision

Figure 6.8 Query and response times for 4 nodes

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
e

sp
o

n
se

 T
im

e
 (

S
e

co
n

d
s)

Sample Query Numbers

Query and Response Times

Node 1

Node 2

Node 3

Node 4

87

6.4 Neural Net Cluster Dynamic Grouping

The nWSN structure has been extended based on the modularization of cluster

zones. Each cluster head is responsible to the given region. These regions are

constructed dynamically and hence the sensor nodes are automatically grouped as

sub regions. The information sharing among these regions could be done by

utilizing a Nodes Messages interaction (NMi) mode implementation. The NMi

mode acts upon triggering a node for information sharing. This could be between

any two cluster heads and between cluster heads and the portable sensing nodes.

The messaging is divided into two typical interaction modes. These are given as

NMi Pnode interaction and NMi Inode interaction.

The core elements of the NMi are the Message Structures and Triggers in a node.

Whenever a trigger is raised, it causes the relevant message structure can be

activated. The NMi Inode process flow is given by Figure 6.9.

Figure 6.9 NMi Inode process flow

Initialize NMi at Ni

Run NMi mode
Sensing location

p(x,y,z)

If p(x,y,z) Ni

Choose the sensing node ID and

collect the data

Generate thermal profile

Send the details back to requested

node

Yes

No Forward to Nj where

p(x,y,z) Nj

88

1) NMi Pnode interaction

In NMi Pnode interaction, a trigger is raised by the sensing node within a time

interval. The sensing node transmits the information to its neighbour cluster

head. This interaction may also cause the sensing node to join and leave the

neighbour cluster head.

2) NMi Inode interaction

In this type of interaction, an automated mechanism plays an important role

within the cluster head. It can raise a trigger for each time a sensing node joins

the cluster head. This interaction affects cluster data collection messages for

computations. The algorithm for NMi Inode initiates to run the neural net for

online training of the model.

6.4.1 Sequence diagram and process flow

The sequence diagram of the dynamic grouping and further sensing thermal

mapping is described as shown in Figure 6.10.

The main classes in this part of the implementation are NMi Inode, neuralNet, NMi

Pnode and TempMeasurement. The links between the elements can facilitate better

understanding of the process flow for implementation. The sequence diagram

contains mainly three tasks:

1) Grouping of sensor nodes,

2) Thermal sensing, and

Figure 6.10 Sequence diagram of the nWSN process flow

:NMiInode :neuralNet :NMiPnode :TempMeasurement

Return Temperature

Sense Temperature

Train neural Net

Update NMi Inode with
Location and Temperature

NMiPnode Trigger Joins Infrastructural Node

NMiInode Trigger

Generating new thermal
map

 1

 2

 3

89

3) Training the NN on the spatial thermal map.

These tasks execute continuously in the sequential order upon identifying a sensor

node in the group. Due to the NMi mode interactions the sensing nodes join and

leave the nearest cluster head when moving within the given space. The location

and temperature data is updated with NMi Inode to train the neural net which

further generates a new thermal map. The implementation of the cluster dynamic

grouping has been proved and supported by a case study in the upcoming chapter.

The space partitioning and sub region analysis has been conducted by looking the

thermal precision in terms of MAE, RMSE as performance measures.

6.5 Minimizing Nodes Approach

The nodes minimization approach follows by constructing a model where it is

considered that k is a dynamic element as it varies from node to node. We have

used the k-NNA and Bayesian methods to identify the number of nodes can be

deployed for a given accuracy. Each node in the model has its own k nearest

neighbours calculated by that node. The selection process to decide the k nearest

neighbours is described in the next section. In k-NNA model, there are two inputs

required:

1) The number of neighbours to be considered - k, and

2) Total number of sensor nodes in the space.

In the simulation environment, a basic reusable object (a sensor node) is designed

and customized. This sensor node acts as an intelligent agent in the model. The

following assumptions have been taken into consideration while deploying the

nodes into the model:

1) The locations of each node deployed in the simulation environment know

the coordinates (x, y, z) of its location,

2) The nodes can be arranged on one layer at specified grid points or

randomly distributed, and

3) Environmental dynamics are not included and the space is considered

homogeneous.

90

The simulation environment can facilitate the deployment of a number N of nodes.

The basic building block of the model is the sensor node, which can be replicated N

times within the boundary of the specified region . During the node generation,

the simulation environment will set an attribute value of the node’s location and

temperature. It is assumed that a uniform distribution of the room temperature

values ranging between Tmin and Tmax and the location values between (x0, y0, z0)

and (xl, ym, zn) will be generated and assigned. We have designed an approach to

minimize the number of nodes that would be required to map the given space.

These results are discussed in the next chapter.

6.5.1 Sequential search and nodes minimization

The nodes minimization process follows a sequential search from the first node in

the tree. After nodes deployment, it can be chosen to minimize the model for

reducing the node count while keeping the temperature distribution throughout the

volume within the given precision (i.e. threshold value). The flowchart shown in

Figure 6.11 explains the various steps involved for implementation. This process can

takes place by deactivating each node and immediately queried at the same location

to get the predicted temperature based on its neighbour nodes.

The predicted value at that location will then be compared to the actual node

temperature. Obviously there is an error, which is equivalent to ε (the difference

between the actual and predicted temperatures). This error is then compared to the

threshold value and if the error is beyond the specified tolerance, then the selected

node will be flagged with a value ‘1’ in a built-in table named ‘A’ (the nodes that

can’t be redundant).

91

If the ε is within the threshold value, the selected node will be flagged with a value

‘0’ in the table ‘A’ (the nodes that can be redundant). Considering all the nodes in a

tree followed by a starting node will make a hierarchy shown in the Figure 6.12. The

table will have the nodes data containing flags ‘1’ and ‘0’, which further summed

up and distinguished the influences and dependability of each node.

Figure 6.11 Minimizing nodes approach flowchart

Figure 6.12 Nodes hierarchy

 N1

.

.

.

.

Nn

k – Neighbour nodes for each node

Nodes

92

The probabilities of each node on its neighbouring node are calculated to identify

the influence of a given node. We have applied a Bayesian theory (belief theory) to

identify the nodes that have more influence on each other. The redundant nodes

have been eliminated after applying the Bayesian classification. Many real world

applications deal with uncertain knowledge and input data that is insufficient to

make a decision. In addressing such issues of uncertain information, classical

probability theory has been found to be very useful. Hence, a Bayesian network is a

probabilistic representation for uncertain relationships and is useful for modelling

such real world problems.

6.5.2 Bayesian approach to identify more mutually influenced nodes

A Bayesian network encodes a joint probability distribution over a set of random

variables that expresses the belief regarding how likely the different predictions are

in order to quantify uncertainty in inferences. A Bayesian network (B), given a set

of variables X={X1, X2...Xn} are the discrete variables (nodes). Assume that the node

Xj is the child (neighbour) of the node Xi, which means Xi→Xj. The conditional

probability can be calculated by utilizing the fundamental formula as in equation

6.1.

For individual probabilities, the number of occurrences of a state variable (1 or 0)

can be counted. Let nij be the number of occurrences of the state j of the ith variable

in the table and n is the total number of data cases from the table. Using these

frequency values, we can calculate the probabilities by using the equation 6.2.

Thus the conditional probabilities can be calculated by using the individual

probabilities in equation 6.2. The conditional probability P(Xi → Xj) can be

obtained as in the following equations.

P(Xil Xj) =
P(Xi ,Xj)

P(Xj)
 6.1

P(Xi = xj) =
n(Xi = xj)

n
 =

nij

n
 6.2

93

By substituting equations 6.3 and 6.4 into equation 6.1 we get,

The resulting equation 6.5 can be used to calculate the conditional probability by

counting the corresponding frequencies or influences of the nodes to each of its

neighbours. After evaluating the probabilities, the nodes with higher probability

will be more vital. The group of nodes with higher probability will be the subset of

the group of lower probability nodes. The final count of all the vital nodes can’t be

redundant. From these nodes, the minimum number of nodes can be estimated,

along with their location measured over the full space based on the accuracy

discrepancy. This model is further examined by changing the value N and repeats

the process to see if the algorithm is valid.

6.5.3 Nodes minimization simulation results and discussion

We have considered an algorithmic based approach using Bayesian theory to

identify the minimum number of nodes required by keeping the thermal prediction

error within the given range. The algorithmic approach was described in chapter

four.

The nodes are deployed in a 50x50x10 m3 volume of space. This size can be varied

in the user interface control. The charts in Figure 6.13 and Figure 6.14 show precision

versus minimum number of nodes required when deploying 50 and 100 nodes

respectively. It is observed that the minimum number of nodes resulted from the

model is same when 50 and 100 nodes are deployed. The model parameters can be

submitted to the GUI control for experimentation. The code has been written in

C++ for the algorithm development. The simulation environment can be

customized to suit, where the nodes can be deployed for further examination of the

given space.

P(Xi , Xj) =
n(Xi , Xj)

n(Xj)
 6.3

P(Xj) =
n(Xj)

n
 6.4

P(Xil Xj) =
n(Xi , Xj)

n(Xj)
 6.5

The

methodology for its accuracy. Irrespective of the number of deployed nodes to

conduct the experi

p

than

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

resolve

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

The

methodology for its accuracy. Irrespective of the number of deployed nodes to

conduct the experi

precision to map the space based on the

than

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

resolve

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

The

methodology for its accuracy. Irrespective of the number of deployed nodes to

conduct the experi

recision to map the space based on the

than

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

resolve

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

The

methodology for its accuracy. Irrespective of the number of deployed nodes to

conduct the experi

recision to map the space based on the

than

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

resolve

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

The m

methodology for its accuracy. Irrespective of the number of deployed nodes to

conduct the experi

recision to map the space based on the

than 20 can lead to

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

resolve

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

m

methodology for its accuracy. Irrespective of the number of deployed nodes to

conduct the experi

recision to map the space based on the

20 can lead to

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

resolve

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

model

methodology for its accuracy. Irrespective of the number of deployed nodes to

conduct the experi

recision to map the space based on the

20 can lead to

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

resolve

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

odel

methodology for its accuracy. Irrespective of the number of deployed nodes to

conduct the experi

recision to map the space based on the

20 can lead to

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

resolve the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

odel

methodology for its accuracy. Irrespective of the number of deployed nodes to

conduct the experi

recision to map the space based on the

20 can lead to

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

odel

methodology for its accuracy. Irrespective of the number of deployed nodes to

conduct the experi

recision to map the space based on the

20 can lead to

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

odel is tested

methodology for its accuracy. Irrespective of the number of deployed nodes to

conduct the experi

recision to map the space based on the

20 can lead to

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

is tested

methodology for its accuracy. Irrespective of the number of deployed nodes to

conduct the experi

recision to map the space based on the

20 can lead to

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

is tested

methodology for its accuracy. Irrespective of the number of deployed nodes to

conduct the experi

recision to map the space based on the

20 can lead to

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

is tested

methodology for its accuracy. Irrespective of the number of deployed nodes to

conduct the experi

recision to map the space based on the

20 can lead to

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

is tested

methodology for its accuracy. Irrespective of the number of deployed nodes to

conduct the experi

recision to map the space based on the

20 can lead to

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

is tested

methodology for its accuracy. Irrespective of the number of deployed nodes to

conduct the experiment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

20 can lead to

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

is tested

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

20 can lead to further

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Figure

Figure

is tested by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

further

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Figure

Figure

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

further

the spatial distribution

The nodes minimization and their location are important for any application

domain, and it is considered

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Figure

Figure

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

further

the spatial distribution of the nodes

The nodes minimization and their location are important for any application

domain, and it is considered

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Figure

Figure

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

further

of the nodes

The nodes minimization and their location are important for any application

domain, and it is considered

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Figure

Figure

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

further

of the nodes

The nodes minimization and their location are important for any application

domain, and it is considered

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Figure

Figure

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

further

of the nodes

The nodes minimization and their location are important for any application

domain, and it is considered

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Figure 6

Figure 6

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

further increase the precision.

of the nodes

The nodes minimization and their location are important for any application

domain, and it is considered

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

6.

6.14

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

increase the precision.

of the nodes

The nodes minimization and their location are important for any application

domain, and it is considered

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

.13

14

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

increase the precision.

of the nodes

The nodes minimization and their location are important for any application

domain, and it is considered

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

13

14

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

increase the precision.

of the nodes

The nodes minimization and their location are important for any application

domain, and it is considered for

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

13 Precision Vs Nodes (at 50)

 Precision Vs Nodes (at

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

increase the precision.

of the nodes

The nodes minimization and their location are important for any application

for

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Precision Vs Nodes (at 50)

Precision Vs Nodes (at

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

increase the precision.

of the nodes

The nodes minimization and their location are important for any application

for

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Precision Vs Nodes (at 50)

Precision Vs Nodes (at

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

increase the precision.

of the nodes, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

 study further. The optimization of nodes can

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Precision Vs Nodes (at 50)

Precision Vs Nodes (at

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

increase the precision.

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Precision Vs Nodes (at 50)

Precision Vs Nodes (at

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

increase the precision.

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Precision Vs Nodes (at 50)

Precision Vs Nodes (at

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

increase the precision.

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Precision Vs Nodes (at 50)

Precision Vs Nodes (at

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

recision to map the space based on the

increase the precision.

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Precision Vs Nodes (at 50)

Precision Vs Nodes (at

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

 configuration.

increase the precision.

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Precision Vs Nodes (at 50)

Precision Vs Nodes (at

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

configuration.

increase the precision.

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Precision Vs Nodes (at 50)

Precision Vs Nodes (at

by varying the density

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

configuration.

increase the precision.

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Precision Vs Nodes (at 50)

Precision Vs Nodes (at

by varying the density of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

configuration.

increase the precision.

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Precision Vs Nodes (at 50)

Precision Vs Nodes (at

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

configuration.

increase the precision.

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Precision Vs Nodes (at 50)

Precision Vs Nodes (at

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

configuration.

increase the precision.

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Precision Vs Nodes (at 50)

Precision Vs Nodes (at

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

configuration.

increase the precision.

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Precision Vs Nodes (at 50)

Precision Vs Nodes (at

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

configuration.

increase the precision. But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

the minimum number of nodes and

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Precision Vs Nodes (at 50)

Precision Vs Nodes (at

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

configuration.

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

the minimum number of nodes and their location information by

considering the aspects including the room space, location constraints with an

object function to minimize the prediction accuracy.

Precision Vs Nodes (at 50)

Precision Vs Nodes (at

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

configuration.

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

Precision Vs Nodes (at 50)

Precision Vs Nodes (at

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

configuration.

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

Precision Vs Nodes (at 50)

Precision Vs Nodes (at

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

configuration.

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

Precision Vs Nodes (at 50)

Precision Vs Nodes (at 100)

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

 A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

Precision Vs Nodes (at 50)

100)

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

Precision Vs Nodes (at 50)

100)

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

Precision Vs Nodes (at 50)

100)

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

100)

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

of the nodes to recognize

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

of the nodes to recognize the

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

the

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

the

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

the curren

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

curren

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

curren

methodology for its accuracy. Irrespective of the number of deployed nodes to

ment, a minimum of 20 nodes are required to get at least 0.5oC of

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

curren

methodology for its accuracy. Irrespective of the number of deployed nodes to

C of

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

94

curren

methodology for its accuracy. Irrespective of the number of deployed nodes to

C of

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

94

current

methodology for its accuracy. Irrespective of the number of deployed nodes to

C of

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

94

t

methodology for its accuracy. Irrespective of the number of deployed nodes to

C of

A number of nodes greater

But this should be dependent on

, size of the space and also the thermal profile.

The nodes minimization and their location are important for any application

study further. The optimization of nodes can

their location information by

considering the aspects including the room space, location constraints with an

95

Chapter 7

7 Cool Storage in a Meat Plant: A Case

Study

New Zealand is a world leader in farming for lamb and beef production. The New

Zealand economy derives $3.8 billion from meat exports. The meat companies have

to maintain high quality to meet the market demands. The temperature variation in

cool store has a significant effect on meat tenderness, colour and on the microbial

status of the meat. Hence the thermal mapping during the chilling process and

further shipment in real time is very vital.

7.1 Introduction

In a dynamic environment, the temperature varies with time and that reflects the

characteristic within the meat. The real time monitoring of the meat temperature

gradient will further assist to predict the food quality. Figure 7.1 shows the

temperature variation of beef at its surface, middle and core within 24hrs time in

cool store [111].

Figure 7.1 Thermal profile of a beef within the first 24hrs

96

The meat pH and tenderness are also affected with the temperature variation as

shown in Figure 7.2 and Figure 7.3 [111]. This reflects the importance of monitoring

the thermal exposure history when precision is required in identifying the quality

status.

7.2 Modeling Scenario in a Cool Storage

In this modeling scenario, the carcass hangers are used as sensor holder. Each

sensor node (a portable node) is attached to a carcass for measuring the nearby

Figure 7.2 pH variation of a beef carcass

Figure 7.3 Tenderness variation of a beef carcass

97

environmental temperature while it is transported on an overhead conveyor. The

sensor nodes feed temperature data to their cluster head (one of the infrastructural

nodes) for processing.

The neural net algorithm is embedded in each cluster head to compute the thermal

map. Figure 7.4 shows the schematic diagram of a cold storage for nWSN. The top

layer shows the infrastructural and portable nodes placement in a given space. The

surface temperature of the carcass in a cold storage changes from 30oC to 4oC

within a period of five hours as shown in Figure 7.1. This is a rapid change at the

beginning of the process before it comes to a steady state. The temperature

monitoring during this period is vital for overall coverage of the space and to

identify the hotspots.

7.3 Simulation environment setup and experimentation

A model is designed within a discrete event simulation environment to test the

nWSN architecture using the NMi model. For the experiment, we assume a cold

storage where the temperature distributed with minimum and maximum ranges

between -2oC to 8oC. A dynamic behaviour is introduced within the modelling

environment by varying the temperature profile at all points between ±2oC with the

simulation time. There are 174 beef carcasses used in the model. A simulation

Figure 7.4 Schematic diagram of the cool storage

98

model is constructed with a space volume 20x20x3 m3. A GUI is built to ease the

use of the experimental setup as shown in Figure 7.5.

Four different scenarios have been analysed. The subsections are divided as

follows. A dynamic temperature of ±2oC is used for sections A, B, C and the

section D is used with an increased temperature to ±4oC.

1) Section A: The prediction of the temperature for better coverage within the

confined space by placing sensor nodes in three layers. Based on the

methodology described in chapter 4, as shown in Figure 4.8, the space is

divided into a number of vertical layers. The three layers are divided for

better coverage to place the sensor nodes.

2) Section B: The temperature variation analysis at the surface of the each

subspace. The infrastructural nodes placed on the inner surface of the space

can cover a subspace described in Figure 4.10. The overlap among the

subspaces is analysed to study the variation of temperature at the surface of

each subspace.

3) Section C: The prediction analysis where the number of carcasses is reduced

to 86, while all other parameters are unchanged. In this scenario, the inter-

arrival time of each carcass is increased, hence reflected into a reduced

number of carcasses to 86 to fill the given space on the overhead conveyor.

4) Section D: Thermal mapping of the space where the dynamic temperature

behaviour is taken between ±4oC. In this section, the temperature fluctuation

is increased to ±4oC per hour. This is due to test the feasibility of the nWSN,

where the application involves a rapid fluctuation in temperature.

Figure 7.5 GUI to setup experimentation

99

These different scenarios have been constructed to study the viability of the model.

The estimated time to fill the carcasses in the meat cool store is about 5 hours for 174 and

same for 86 but the inter-arrival time is increased from 120 seconds to 240 seconds for the

given 180 meters of the overhead conveyor.

7.3.1 (A) Predicting the temperature for better coverage by placing nodes in three

layers.

All the parameters of the model can be configured using the GUI including

deploying the infrastructural nodes at specific locations around the wall. The

temperature fluctuation is considered between ±2oC with the simulation time. The

temperature fluctuation is assumed as a sinusoidal form of cycling with a period of

1 hour.

The space can be fully occupied with 174 carcasses which are equally distributed

and hanging on the overhead conveyor. The conveyor moves the carcasses with a

constant speed. The schematic diagram of the conveyor arrangement within the

cold storage is given by Figure 7.6. The infrastructural nodes 3, 8, 13 and 18 are

placed in the middle of the four side walls of the room. Each carcass that entered

the cool storage is attached to a portable node. The interaction between the carcass

node and infrastructural node is essential for effective coverage of operational

requirement of nWSN.

The carcass node joins the nearest infrastructural node for information sharing as

soon as it enters that particular infrastructural node’s domain. The NMi modes act

upon joining of any portable node into any infrastructural node as a cluster head.

Figure 7.6 Schematic arrangement of infrastructural sensor nodes

100

The portable nodes are placed on a carcass where they can form three layers (Layer

1, Layer 2 and Layer 3) as shown in Figure 7.7. This placement strategy has been

chosen to identify the better coverage of the overall space for thermal tracking.

While the carcass is moving from one location to the other on the overhead

conveyor, the portable node joins and leaves the infrastructural nodes one after the

other. The model continuously drives the nWSN to train the system. In order to test

the performance assessment of the nWSN architecture, an MAE is measured. The

minimum statistical measurement of error reflects the viability of the model. Hence

the estimated temperature and actual temperature at any arbitrary points within the

space are measured. The temperature precision data is collected at two different

conditions of the thermal profile. The profile at Dip and Peak conditions are

considered when collecting three layer nodes temperature data. The volumetric

rendered temperature precision data is shown in Figure 7.8 for the Layer 1, Layer 2

and Layer 3 when the temperature profile level went down (dip).

Figure 7.7 Portable node layers within the cool store

Figure 7.8 Volumetric temperature precision at dip

101

Figure 7.9 shows the volumetric rendered temperature precision data for Layer 1,

Layer 2 and Layer 3 when the temperature profile level is up (peak). It can be easily

distinguished by looking at these two volumetric maps that the Layer 2 nodes have

a greater coverage than the Layer 1 and Layer 3. The temperature profile of the cold

storage within the simulation environment is the actual temperature and the

estimated temperature is calculated from the nWSN. Arbitrary testing points are

considered to verify the model at infrastructural nodes 3, 8, 13 and 18.

Figure 7.10 represents the MAE at Peak and Dip for infrastructural sensor nodes 3,

8, 13 and 18. The temperature precision is higher at the layer 2 for both peak and

dip. The MAE of ±0.5oC is observed among all the infrastructural nodes. This

clearly states that the nWSN model prediction for temperature variation in a

dynamic environment is suitable for meat industry applications. However, the

feasibility of the nWSN using the NMi model would raise further more challenging

issues to be tackled in the future work. A maximum error presents at node 8 and

node 13 at peak in addition to node 3 and node 13 at dip as shown in Figure 7.11 and

Figure 7.12.

Figure 7.9 Volumetric temperature precision at peak

Figure 7.10 MAE at peak and dip for Inf. sensor nodes

Node Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

SNode3 -0.02764 -0.27374 -0.19867 -0.6174 -0.09339 -0.15047

SNode8 -0.58955 0.016004 0.361476 0.025936 -0.02975 0.025783

SNode13 -0.61867 0.135717 -0.01649 -0.55477 -0.03517 0.393174

SNode18 -0.0564 0.061493 -0.00487 -0.05323 0.010505 0.190446

MAE at Peak MAE at Dip

102

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

3 8 13 18

M
e

a
n

 A
b

so
lu

te
 E

rr
o

r
(o

C
)

At Infrastructural Node 3, 8, 13 and 18

MAE at Node 3, 8, 13, 18 - Peak

Layer 1

Layer 2

Layer 3

This is due to the overhead conveyor design and flow direction of the carcasses.

The conveyor layout factor also affects the error, since the number of carcasses that

join and leave the infrastructural nodes varies. On the other hand, the location of the

infrastructural nodes also affects the MAE of the model. These experiments identify

future directions where nWSN with NMi model can be deployed for real time

measurements.

7.3.2 (B) Thermal analysis at the subspace surface region.

We have examined the thermal variability of the surface of each subspace in each

cluster head discussed in the chapter 4. The experimental results show that the

MAE is considerably high at these regions for both peak and dip conditions as

shown in Figure 7.13.

Figure 7.11 MAE at nodes 3, 8, 13, 18 at peak

Figure 7.12 MAE at nodes 3, 8, 13, 18 at dip

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

3 8 13 18

M
e

a
n

 A
b

so
lu

te
 E

rr
o

r
(o

C
)

At Infrastructural Node 3, 8, 13 and 18

MAE at Node 3, 8, 13, 18 - Dip

Layer1

Layer 2

Layer 3

103

Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

SNode3 1.060 1.070 0.800 -1.600 0.140 -0.420

SNode8 1.160 0.840 0.980 -1.560 -1.430 0.560

SNode13 1.230 1.020 0.680 -1.570 0.170 -0.200

SNode18 1.410 0.460 0.820 -1.350 -0.260 -1.110

MAE at Peak MAE at Dip

The MAE of ±1.5oC is observed among all the infrastructural nodes. The maximum

error presents at node 3, 8 and 13 at peak and dip as shown in Figure 7.14 and Figure

7.15.

The volumetric rendered temperature precision data is shown in Figure 7.16 for

Layer 1, Layer 2 and Layer 3 when the temperature profile level went up. Figure

7.17 shows the volumetric rendered temperature precision data for Layer 1, Layer 2

and Layer 3 when the temperature profile level went down.

Figure 7.13 MAE at peak and dip for Inf. sensor nodes

Figure 7.14 MAE at nodes 3, 8, 13, 18 at peak

Figure 7.15 MAE at nodes 3, 8, 13, 18 at dip

-0.400

-0.200

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

3 8 13 18

M
e

a
n

 A
b

so
lu

te
 E

rr
o

r
(o

C
)

At Infrastructural Node 3, 8, 13, 18

MAE at Node 3, 8, 13, 18 - Peak

Layer1

Layer2

Layer3

-2.000

-1.500

-1.000

-0.500

0.000

0.500

1.000

3 8 13 18

M
e

a
n

 A
b

so
lu

te
 E

rr
o

r
(o

C
)

At Infrastructural Node 3, 8, 13, 18

MAE at Node 3, 8, 13, 18 - Dip

Layer1

Layer2

Layer3

104

It can be easily distinguished by comparing the maps that there is an error around

the subspaces. Hence the integration of multiple subspaces needs to be addressed to

map the thermal influence precisely.

7.3.3 (C) Thermal analysis at increased carcass inter-arrival time. i.e. Carcass

count reduced to 86.

In this scenario the inter-arrival rate of the carcass is increased, as a result of which,

the carcass count is reduced to 86 in the cool storage. Therefore, all the carcasses

are evenly distributed in the plant. All other parameters are similar to section (A).

Three sensor node layers are considered in the model. The experimental result

shows that there is a greater increase in MAE for both peak and dip conditions.

The outcome clearly identifies the insufficient training data set for the neural net.

The Figure 7.18 and Figure 7.19 shows volumetric rendered temperature precision

data for Layer 1, Layer 2 and Layer 3 at peak and dip, respectively.

Figure 7.16 Volumetric temperature precision at peak

Figure 7.17 Volumetric temperature precision at dip

105

A MAE of ±2oC is observed and Layer 2 has recorded more errors than other

layers. Hence, it is important to consider and re-evaluate the algorithm in these

conditions. Evaluating other neural net architectures for these types of conditions

especially where there is less training data available may be worth considering.

Future studies need to address these challenges.

7.3.4 (D) Thermal mapping of the space where the temperature fluctuation is

taken between ±4
o
C.

The dynamic behaviour within the cool storage is introduced by fluctuation of the

temperature between ±4oC with the simulation time. In all the scenarios we have a

temperature fluctuation of ±2oC. In this scenario, we deliberately introduced more

rapid temperature change to study the behaviour of the model. However, a

temperature change of ±4oC in a one hour period may not be a common situation in

a cold storage environment.

Figure 7.18 Volumetric temperature precision at peak

Figure 7.19 Volumetric temperature precision at dip

106

Nevertheless, in our study, it was an interesting task as it may reflect the viability of

the neural net for some kind of applications. The experimental results show that

there is a rapid increase of MAE for both peak and dip conditions. Figure 7.20 and

Figure 7.21 show that the volumetric rendered temperature precision data for Layer

1, Layer 2 and Layer 3 at peak and dip, respectively. There is an MAE of ±4oC is

observed at node 13 and 18 at dip and peak, respectively. Figure 7.22 and Figure

7.23 show the variation of MAE between the infrastructural nodes 3, 8, 13 and 18 at

Layer 1, Layer 2 and Layer 3.

Figure 7.20 Volumetric temperature precision at peak

Figure 7.21 Volumetric temperature precision at dip

107

This variation clearly identifies that the system is unstable in conditions of very

rapid temperature changes. The temperature at any arbitrary points varies rapidly

and hence the prediction error reflects the same. The mean temperature variation is

very high between any two points within the space. Using WSN to respond to a

very rapid dynamic environment with the nWSN architecture may be challenging

and will need to be addressed in future studies.

Figure 7.22 MAE at nodes 3, 8, 13, 18 at peak

Figure 7.23 MAE at nodes 3, 8, 13, 18 at dip

-1.000

0.000

1.000

2.000

3.000

4.000

5.000

6.000

3 8 13 18

M
e

a
n

 A
b

so
lu

te
 E

rr
o

r
(o

C
)

At Infrastructural Node 3, 8, 13, 18

MAE at Node 3, 8, 13, 18 - Peak

Layer1

Layer2

Layer3

-4.500

-4.000

-3.500

-3.000

-2.500

-2.000

-1.500

-1.000

-0.500

0.000

3 8 13 18

M
e

a
n

 A
b

so
lu

te
 E

rr
o

r
(o

C
)

At Infrastructural Node 3, 8, 13, 18

MAE at Node 3, 8, 13, 18 - Dip

Layer1

Layer2

Layer3

108

Chapter 8

8 Conclusions and Future Directions

This chapter concludes the work that has been achieved by the research objectives

specified in the first chapter. We have defined the motivation of the current

research work, contributions and the approach in the same chapter. This chapter

concludes the overall work which includes the various scenarios built to analyse the

results based on the methodologies implemented. Future work and directions are

discussed in a later section.

8.1 Conclusions

The focus of this work is to develop a method and system towards building an

object-centric environment using WSNs for spatial environmental mapping. A

thorough study of the background in the field of WSNs, ANNs and thermal

mapping is discussed in the earlier chapters. It is also identified from the literature

that the research on thermal mapping using ANN and WSN areas is not mature and

need further attention.

Thermal mapping is not a new area of research and there are several conventional

methods that are published including CFD and FEM [45, 46]. Most of these

methods require intensive computational power and hence are not suitable for the

limited resources of wireless sensors. The data loggers are the most convenient

devices to log the temperature data for the applications that include food and

agricultural industries. These devices can’t provide any real time thermal mapping

to identify the hotspots. There is a demand for applications that allow for real time

thermal analysis and also to predict the temperature at any arbitrary position. On the

other hand, WSN are becoming very popular and they decrease in size and increase

in computational power with a lower price. The soft computing methods, which are

ANN and their applications are explored and used to address the research problem.

Hence, our research is focussed on identifying the methodologies that can fulfil

these requirements in the WSN area.

109

Initially the proof of concept is designed to compare the prediction error between

the Shepard’s algorithm and the ANN approaches in relation to spatial analysis and

thermal mapping. The ANN approach resulted in mean absolute error of 0.35 oC

compared to 0.8 oC with Shepard’s algorithm with modified Euclidian distance.

The sensing points are located based on a distribution pattern within the given

space. The neural parameters are compared to identify the best network for training.

Randomly placed sensing points are also analysed to verify the prediction analysis.

Further viability scenarios are examined by varying the confined space, number of

infrastructural nodes and the number of portable nodes. It has been observed that

there is a drop in RMS error while increasing the number of portable nodes at a

given room volume and the infrastructural nodes deployed on inner side of the

boundary, but there is a maximum number of portable nodes beyond which the

error does not improve. The infrastructural nodes deployed on the inner surface of

the boundary have an impact on the thermal prediction.

The core module of this research is the implementation of nWSN architecture and

its components for building an object centric thermal mapping environment. The

NMi model is developed to organize the communication between the infrastructural

nodes and portable nodes. A QnDP algorithm is proposed to fulfil the data

synchronization for training in a dynamic environment. A volumetric temperature

precision is given to compare the data among synchronous and asynchronous input.

Larger errors are recorded when the data is asynchronously submitted into the

model. This work disclosed the viability of nWSN architecture to execute further

on a real time test bed.

A test bed is constructed at SeNSe lab using Atmel’s RZUSBSTICK as a gateway

and AVRRAVEN as motes to conduct the experiments. This experimental test bed

has confirmed the viability of the proof of concept. The deployed nodes have given

a great correlation on volume rendered maps and these results revealed a good

accuracy between the testing and predicted data sets.

The nodes minimization approach is proposed to identify the number of nodes

required in a given space. The K-Nearest Neighbour Algorithm has been used

together with Bayesian maps for evaluating more influenced nodes. This work

exploits a spatial correlation of temperature data in a given space. The minimum

number of nodes can be identified for any given space.

110

Finally we have analysed a meat industry case study to mimic a cool storage where

the temperature varies with time. We have used 174 carcasses in the model and the

experimental scenarios are categorized broadly into four sections:

1) The first scenario describes the placement of nodes at three different layers

in the space to identify the nodes deployment for better coverage. A

dynamic temperature is introduced at each point where it fluctuates between

±2oC with the simulation time. At both peak and dip, the layer 2 nodes

deployment has given a high correlation compared to the layer 1 and layer

3.

2) The second scenario focussed on the temperature variation analysis at the

surface of the each subspace based on the modularization of the space into

sub-spaces. There is more error recorded around the subspace. Hence the

integration of multiple subspaces needs to be addressed.

3) In the third scenario, the inter-arrival time of the carcasses is increased,

which reduced the number of carcasses to 86. This result clearly identified

inadequate training data at each infrastructural node/cluster head for the

given space.

4) The final scenario has looked into an increase of dynamic temperature

variation to ±4oC with the simulation time to identify the effect on the

prediction. The system became very unstable at this rapid change in

temperature and reflected an increased prediction error at all the

infrastructural nodes.

The concept development and the test bed analysis showed that there is an

influence of the nodes placement and the number of training datasets. The results of

the various scenarios built lead to the conclusion that the concept is valid for a

similar kind of applications.

8.2 Future Work and Directions

The nWSN architecture has delivered promising results for further execution in real

time domains. During the implementation of this research, a few assumptions were

introduced to allow assessment and development of the concept and some of these

111

required for further attention. In this section some of these areas will be discussed

as a potential future work.

1. Neural parameters: The neural network architectures need to be reviewed for

other applications. Other than the location and temperature, the variables like the air

flow direction could influence the thermal profile predictions. In the Heating,

Ventilation and Air-Conditioning (HVAC) systems, we can identify the nearby

locations of the source to deploy the sensor nodes for the overall coverage of the

space. The temperature gradients vary rapidly towards the direction of the air flow.

Hence, the direction of the air flow would give a high precision mapping for

applications that require greater accuracies.

2. Fault detection and isolation: The training data received from the portable nodes

should be identified at the cluster node level to determine, if any wrong information

was provided by the node. For example, if nodes fail to detect or sense the

temperature, this leads to generating incorrect data in the training process. Hence

the implementation of the AI at the cluster node level can block the transmission of

erroneous data for further training or validation.

3. Time synchronization: The inclusion of time as a neural parameter could resolve

the time synchronization issue which is required within a transient space where the

portable nodes move with time. The time as an input parameter would give a fourth

dimensional mapping of the space.

4. Shelf life prediction: Implement and test better models for shelf life prediction

during transportation of goods. Tracing and tracking systems during transportation

would help taking certain decisions. This would require implementation of the real

time data streaming algorithms.

4. Optimization algorithms: The minimum number of nodes that are required to

map the given space is analysed by using k-NNA along with Bayesian maps to

identify the influenced nodes in this work. This analysis has given the minimum

nodes for the defined configuration. But it depends on the spatial distribution of the

nodes, size of the space and thermal profile. Locating the nodes is an important

criterion along with the number of nodes. In an ideal condition, we assume that

112

there are no obstacles within the space. But in real world scenarios there might be

walls, pillars in the middle of the space. The optimal nodes placement varies from

one infrastructure to the other. Hence, the sensor nodes placement needs to be

modified for a given infrastructure. An optimization problem needs to be

constructed with an objective function to minimize the prediction error and

considering all the constraints. Optimization algorithms would be required for

future study.

4. Data mining: In this study we have used the nWSN modularized system where

the space is divided into subspaces. A cluster head is responsible for each subspace.

When dealing with greater number of modularized systems, it is important to focus

on data streaming for the query system to identify the hot spots and also trigger the

alarm for the given thermal boundaries of any individual subspace.

5. Portable Nodes: In the experimental scenarios, we have used the motes from

Atmel Corporation. These motes may not be suitable for the portable nodes, based

on their size and power requirements. Hence it is important to give a focus on

hardware development that is suitable to work in any environment.

113

9 References

[1] D. Estrin, D. Kuller, K. Pister, and G. Sukhatme, “Connecting the physical

world with pervasive networks,” IEEE Pervasive Computing, vol. 1, pp. 59-69,

2002.

[2] J.J Garrahan, P.A. Russo, K. Kitami, and R. Kung, “Intelligent network

overview,” IEEE Communication Magazine, vol. March, pp. 30-36, 1993.

[3] J. Stankovic, T. Abdelzaher, C. Lu, L.Sha and J. Hou, “Real-time

communication and coordination in embedded sensor networks,” Proceedings of

the IEEE, vol. 91, pp. 1002-1022, 2003.

[4] C.Y. Chong and S. Kumar, “Sensor networks: evolution, opportunities, and

challenges,” Proceedings of the IEEE, vol. 91, pp. 1247-1256, 2003.

[5] F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayircia, “Wireless Sensor

Networks: A survey,” Computer networks, vol.38, issue.4 pp.393-422, March 2002.

[6] E. Yoneki, “Evolution of ubiquitous computing with sensor networks in urban

environments,” Ubicomp-Workshop on Metapolis and Urban life, pp. 56-60,

September 2005.

[7] B. Hong and V.K. Prasanna, “Constrained flow optimization with applications

to data gathering in sensor networks,” First International workshop on Algorithmic

Aspects of Wireless Sensor Networks, 2004.

[8] L. Huang-Chen, “Towards a general wireless sensor network platform for

outdoor environment monitoring,” IEEE Sensors , pp.1-5, October 2012.

[9] S. Qimgshan, L. Ying, D. Gareth, and D. Brown, “Wireless Intelligent Sensor

Networks for Refrigerated Vehicle,” IEEE Symposium on Emerging Technologies:

Mobile and Wireless Communication, China, 2004.

114

[10] N. Wang, N. Zhang, and M. Wang, “Wireless sensors in agriculture and food

industry – Recent development and future perspective,” Computer and Electronics

in Agriculture, vol.50, issue.1, pp.1-14, January 2006.

[11] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring and D.

Estrin, “Habitat monitoring with sensor networks,” Journal of Communications,

vol.47, no. 6, pp. 34–40, 2004.

[12] Z. Butler, P. Corke, R. Peterson, and D. Rus, “Networked Cows: Virtual

Fences for Controlling Cows,” The International Journal of Robotics Research,

vol. 25, no. 5, pp. 485-508, 2006.

[13] A. Ipema, D. Goense, P. Hogewerf, W. Houwers, and H. Roest van, “Real-

time monitoring of the body temperature with a rumen bolus,” 4th international

workshop on smart sensors in livestock monitoring, pp. 13-14, 2006.

[14] M. Schwager, D.M. Anderson, Z. Butler and D, Rus, “Robust classification of

animal tracking data,” Journal of Computers and Electronics in Agriculture, vol.56,

no.1, pp. 46–59, 2007.

[15] Wireless medium access control (MAC) and physical layer (PHY)

specifications. Specifications for Low-Rate Wireless Personal Area Networks (LR-

WPANs), IEEE Standard 802.15.4, The institute of Electrical and Electronics

Engineers Inc, 2003.

[16] J.N. Burdon and A.F. Bollen, “Hort 16A Coolchain,” Report prepared by the

Horticulture and Food Research Institute of New Zealand Ltd (HortResearch),

January 2002.

[17] D. Tanner and N.D. Amos, “Modelling product quality changes as a result of

temperature variability in shipping systems,” International Congress of

Refrigeration, Washington, D.C, 2003.

115

[18] J. Choi, M. Bouchard, and T. Yeap, “Decision feedback recurrent neural

equalization with fast convergence rate,” IEEE Transactions on Neural Networks,

vol.16, pp. 699–708, 2005.

[19] A.C. Tsoi and A. Back, “Locally recurrent globally feedforward networks: a

critical review of architectures,” IEEE Transactions on Neural Networks, vol. 5, no.

2, pp. 229–239, 1994.

[20] J. Perez-Ortiz, J. Calera-Rubio and M. Forcada, “A comparison between

recurrent neural architectures for real-time nonlinear prediction of speech signals,”

Neural Networks for Signal Processing XI, pp. 73–81, 2001.

[21] D. C. Psichogios and L. H. Ungar, “A hybrid neural network-first principles

approach to process modeling,” AIChE Journal, vol. 38, pp. 1499 – 1511, 2004.

[22] Y. Yao, G. Marcialis, M. Pontil, P. Frasconi, and F. Roli, “Combining flat and

structured representations for fingerprint classification with recursive neural

networks and support vector machines,” Pattern Recognition, vol. 36, pp. 397–406,

2003.

[23] E. J. Hartman, J. D. Keeler and J. Nowalski, “Layered neural networks with

Gaussian hidden units as universal approximations,” Neural Computation, vol. 2,

pp. 210–215, 1990.

[24] K. Watanabe, J. Tang, M. Nakamura, S. Koga and T. Fukuda, “Fuzzy-

Gaussian neural network and its application to mobile robot control,” IEEE

Transactions on Control Systems Technology, vol. 4, pp. 193–199, 1996.

[25] P. Angeline, G. Saunders and J. Pollack, “An evolutionary algorithm that

constructs recurrent neural networks,” IEEE Transactions on Neural Networks, vol.

5, pp. 54–65, 1994.

116

[26] J. Sum, C. Leung, G. H. Young and W. Kan, “On the Kalman filtering method

in neural network training and pruning,” IEEE Transactions on Neural Networks,

vol. 10, pp. 161-166, 1999.

[27] J. Sum, L. wan Chan, C. sing Leung and G. H. Young, “Extended Kalman

filter-based pruning method for recurrent neural networks,” Neural Computations,

vol. 10, no. 6, pp. 1481-1505, 1998.

[28] Y. Sarig, “Traceability of Food Products,” Agricultural Engineering

International: Journal of Scientific Research and Development, vol. 5, 2003.

[29] I. Gustafsson, “Information for transparency in transport chains,” Doctoral

Thesis, Blekinge Institute of Technology, Sweden.

[30] R. Van Hoek, “Using information technology to leverage transport and

logistics service operations in the supply chain: An empirical assessment of the

interrelation between technology and operations management,” Journal of

International Technology and Information Management, vol.1, no.1, pp. 115-130,

July 2002.

[31] L. Ruiz Garcia, P. Barreiro and J.I. Robla, “Monitoring intermodal refrigerated

fruit transport using sensor networks: A review,” Journal of Agricultural Research,

vol.5, issue.2, June 2007.

[32] M. F. Weinhaus and D. Vankat, “Texture mapping 3D models of real-world

scenes,” ACM Computing Surveys (CSUR), Vol 29, Issue 4, pp.325-365, 1997.

[33] K. Kristian, “Spatial sampling and interpolation methods – comparative

experiments using simulated data,” Computer Vision and Media Technology

Laboratory, Aalborg University, 2003.

[34] Lu X, “Modeling heat and moisture transfer in buildings – (I) model program,”

Energy Build 34, pp. 1033-1043, 2002.

117

[35] V. T. Thanh, V. Eric and B. Daniel, “Data-based mechanistic modeling of

three-dimensional temperature distribution in ventilated rooms filled with

biological material,” Journal of Food Engineering 86, pp.422-432, 2007.

[36] C. Tedoisu, R. Hohota, G. Rusaouen and M. Woloszyn, “Numerical prediction

of indoor air humidity and its effect on indoor environment,” Build Environ 38(5),

pp.655-664, 2003.

[37] A.E. Ruano, E.M. Crispim and Lucio, “Prediction of buildings temperature

using neural networks models,” Energy Build 38, pp.682-694, 2006.

[38] I. Maqsood, M.R. Khan and A. Abraham, “Intelligent weather monitoring

systems using connectionist models,” International Journal of Neural, Parallel and

Scientific Computations, v.10, pp.157-178, 2000.

[39] M. Hayayi, T.Yousefi, M.Ashjaee, A.S. Hamidi and Y.Shirvany, “Application

of Artificial Neural Network for Prediction of Natural Convection Heat Transfer

from a Confined Horizontal Elliptic Tube,” International Journal of Applied

sciences, Engineering and Technology, 4(3), pp.157-162, 2007.

[40] Z. Shimeld, J.Willianson, M. and J. Katsube, “Permeability prediction with

artificial neural network modeling in the Venture gas field,” Offshore eastern

Canada: Geophysics, v.61, no.2, pp. 422-436, 1996.

[41] H. Salu, and J. Tilton, “Classification of multi-spectral image data by the

binary diamond neural network and by nonparametric, pixel by pixel methods,”

IEEE Trans. Geo-science, Remote Sens., v.31, no.3, pp. 606-617, 1993.

[42] D.M. Miller, E.J. Kaminsky and S. Rana, “Neural network classification of

remote-sensing data,” Computers & Geosciences, v.21, no.3, pp.337-386, 1995.

[43] I.K. Kapageridis and B. Denby, “Ore grade estimation with modular neural

network system: A case study,” Information technologies in the mineral industry,

pp.52, 1998.

118

[44] M. Kanevsky, R. Arutyunyan, L. Bolshov, V. Demyanov and M. Maignan,

“Artificial neural networks and spatial estimations of Chernobyl fallouts,”

Proceedings IAMG Annual conference, Osaka, Japan, pp.27-29, 1995.

[45] S. Gendelis and A. Jakovics, “Numerical Modelling of Airflow and

Temperature Distribution in a Living Room with Different Heat Exchange

Conditions,” Latvian Journal of Physics and Technical Sciences, v.47(4), pp.27-43,

2005.

[46] S. E. Ozcan, C. Ozlem, V. Erik and D. Berckmans, “Predicting 3D spatial

temperature uniformity in food storage systems from inlet temperature

distribution,” Postharvest Biology and Technology, vol. 37, pp. 186-194, 6 April

2005.

[47] R. Beckwith, D. Teibel, and P. Bowen, “Unwired wine: sensor networks in

vineyards,” Sensors, 2004. Proceedings of IEEE, vol.2, pp.561,564, 24-27 Oct.

2004.

[48] Y.A.L. Borgne, M. Moussaid and G. Bontempi, “Simulation architecture for

data processing algorithms in wireless sensor networks,” 20th International

Conference on Advanced Information Networking and Applications, v.2, pp.5, 18-

20 April 2006.

[49] H. Zhang, Jose M. F. Moura, and B. Krogh, “Estimation in Sensor Networks:

A Graph Approach,” Information Processing in Sensor Networks, pp. 203-209,

2005.

[50] F. Hugo Uchida and J. G. Pieters, “Medelling greenhouse temperature using

system identification by means of neural networks,” Neurocomputing, v.56, pp.

423-428, 2004.

[51] S. Qingshan, L. Ying and D. Garath, “Wireless intelligent sensor networks for

refrigerated vehicle,” In IEEE 6th Symposium on Emerging Technologies Mobile

and Wireless Communication, v.2, pp. 525-528, 2004.

119

[52] L. A. Zadeh, “Fuzzy Sets,” Information and Control. 8(3), pp.338-353, 1997.

[53] P. P. Bonissone, “Soft Computing: The Convergence of Emerging Reasoning

Technologies,” Soft Computing. Springer-Verlag, v.1(1), 1997.

[54] B. Cheng and D. Titterington, “Neural Networks: a Review from a Statistical

Perspective,” Statistical Science. vol. 9, pp.2-54, 1994.

[55] S. V. Kartalopoulos, “Understanding Neural Networks and Fuzzy Logic: Basic

Concepts and Applications,” IEEE Press, 1996.

[56] M. Kanevsky, R. Arutyunyan, L. Bolshov, V. Demyanov, and M. Maignan,

“Artificial neural networks and spatial estimations of Chernobyl fallouts,”

Proceedings IAMG Annual conference, Osaka, Japan, pp.27-29, 1995.

[57] I. Seginer, “Some artificial neural network applications to greenhouse

environmental control,” Computer and Electronics in Agriculture, v.18 (2-3),

pp.167-186, 1997.

[58] P.M Ferreira, E.A. Faria and A.E. Ruano, “Neural network models in

greenhouse air temperature prediction,” Neurocomputing, v.43 (1-4), pp. 51-75,

2002.

[59] Y. Huang, “Advances in artificial neural networks-Methodological

development and applications,” Algorithms 2009, v.2, pp.973-1007, 2009.

[60] Y. Radhika and M. Shashi, “Atmospheric temperature prediction using support

vector machines,” International Journal of Computer Theory and Engineering,

v.1(1), pp. 55-58, 2009.

[61] Z. Jun, L. Chunbo, G. Jianhua, W. Daojun and S. Tao, “A distributed

computing service for neural networks and its application to flood peak

forecasting,” Proceedings ICONIP 2006, Part II, pp. 890-896, 2006.

120

[62] U. Lotrič and A. Dobnikar, “Parallel implementations of feed-forward neural

network using MPI and C# on .NET platform,” Adaptive and Natural Computing

Algorithms, Part VI, pp.534-537, 2005.

[63] M. Hamidreza and M. Alireza, “XDANNG: XML based distributed artificial

neural network with globus tooklit,” International Journal of Computer Science

and Information Security, v.2(1), pp.39-41, 2009.

[64] L. Cristaldi, M. Faifer, F. Grande and R. Ottoboni, “An Improved M2M

Platform for Multi-Sensors Agent Application,” Sensors for Industry Conference,

pp.79-83, Feb 2005.

[65] L.B. Ruiz, F.A. Silva, T.R.M. Braga, J.M.S. Nogueira and A.F. Loureiro, “On

Impact of Management in Wireless Sensors Networks,” Network Operations and

Management Symposium, v.1, pp.657–670, 19-23 April 2004.

[66] K. H. Hiramatsu, T. Yamada and T. A. Okadome, “Finding Small Changes

using Sensor Networks,” Smart Object Systems (in conjunction with

Ubicomp2005), pp. 37-44, 2005.

[67] J. Heidemann, W. Ye, J. Wills, A. Syed and Y. Li, “Research challenges and

applications for underwater sensor networking,” IEEE Wireless Communications

and Networking Conference, pp.228-235, April 2006.

[68] F.L. Lewis, “Wireless sensor networks,” Smart Environments: Technologies,

Protocols, and Applications, pp.1-17, 2004.

[69] B. Son, Y. Her and J. Kim, “A design and implementation of forest-fires

surveillance system based on wireless sensor networks for South Korea

mountains,” IJCSNS International Journal of Computer Science and Network

Security, v.6, pp.124-130, 2006.

[70] G. Vellidis, M. Tucker, C. Perry, C. Wen and C. Bednarz, “A real-time

wireless smart sensor array for scheduling irrigation,” Computers and Electronics

in Agriculture, v.61, pp. 44-50, 2008.

121

[71] G. Liu and Y. Ying, “Application of Bluetooth technology in greenhouse

environment, monitor and control,” Journal of Zhejiang University (Agriculture &

Life Science Edition), v.29, pp. 329-334, 2003.

[72] L. Gonda and C.E. Cugnasca, “A proposal of greenhouse control using

wireless sensor networks,” In computers in Agricultural and Natural Resources,

4th world Congress Conference, pp. 18-21, 2006.

[73] M. Umer, L. Kulik, and E. Tanin, “Optimizing query processing using

selectivity-awareness in Wireless sensor networks,” Computers, Environment and

Urban Systems 33, pp.79-89, 2009.

[74] H. Wu, Q. Luo and W. Xue, “Distributed cross-layer scheduling for in network

sensor query processing,” IEEE International Conference on Pervasive Computing

and Communications(PerCom), pp.179-189, 2006.

[75] J. Gehrke and S. Madden, “Query processing in sensor networks,” IEEE CS

and IEEE ComSoc, pp.46-55, 2004.

[76] K. Xing, X. Cheng, J. Li and M. Song, “Location-centric storage and query in

wireless sensor networks,” Wireless Networks, pp.955-967, 2010.

[77] Chi-yin Chow, Mohamed F. Mokbel and Tian He, “Tinycasper: a privacy

preserving aggregate location monitoring system in wireless sensor,” International

Conference on Management of Data – SIGMOD, pp.1307-1310, 2008.

[78] S. Tian, S. M. Shatz, Y. Yu and J. Li, “Query sensor networks using ad hoc

mobile devices: A two-layer networking approach,” AdHoc Networks, v.7, pp.1014-

1034, 2009.

[79] K Wang-il H, Jeongsik In and NhoKyung Park, “A design and implementation

of wireless sensor gateway for efficient querying and managing through world wide

web,” IEEE Transactions on Consumer Electronics, v.49(4), pp.1090-1097, 2003.

122

[80] S. Chatterjea and P. Havinga, “A Dynamic Data Aggregation Scheme for

Wireless Sensor Networks,” 14th Workshop on Circuits, Systems and Signal

Processing (ProRISC), 26-27 November 2003.

[81] W. Hejun and Q. Luo, “Adaptive holistic scheduling for query processing in

sensor networks,” Journal of Parallel and Distributed Computing, v. 70(6), pp.

657-670, 2010.

[82] X. Zhang, X. Yu and X. Chen, “Inter-query data aggregation in wireless sensor

networks,” International Conference on Wireless Communications, Networking and

Mobile Computing, pp. 930-933, 2005.

[83] R.I. da Silva and V. Del Duca Almeida, “Spatial query processing in wireless

sensor network for disaster management,” 2nd IFIP Wireless Days (WD), pp.1-5,

2009.

[84] S. Spanache, T. Escobet, et al. “Sensor Placement Optimization Using Genetic

Algorithms,” Proceedings DX-2004, 15th International Workshop on Principles of

Diagnosis, France. June 2004.

[85] H. Gonzalez-Banos and J.-C. Latombe, “A randomized art-gallery algorithm

for sensor placement,” In Proceedings of the 17th Annual Symposium on

Computational Geometry (SoCG), pp. 232-240, 2002.

[86] A. Birchall, “A microcomputer algorithm for solving compartmental models

involving radionuclide transformations,” Health Physics 50 (3), pp. 389-397, 1986.

[87] A. Birchall and A.C. James. “A microcomputer algorithm for solving first-

order compartmental models involving recycling,” Health Physics 56 (6), pp. 857-

868, 1998.

[88] F. Gelbard, J.E. Brockmann, K.K. Murata and W.E. Hart, “An algorithm for

locating sensors in a large multi-room building,” Tech. Rep. SAND2000-0851,

Sandia National Laboratories, 2000.

123

[89] Y.O. Deog and C.N. Hee, “Determination of the minimal number and optimal

sensor location in a nuclear system with fixed incore detectors,” Nuclear

Engineering and Design, Volume 152(1-3), pp. 197-212, Nov 1994.

[90] S. Dhillon, K. Chakrabarty, and S. S. Iyengar, “Sensor placement for grid

coverage under imprecise detections,” Proceedings of the 5th ISIF International

Conference on Information Fusion, pp. 1581-1587, July 2002.

[91] K. Flouri, B. Beferull-Lozano and P. Tsakalides, “Optimal gossip algorithm

for distributed consensus SVM training in wireless sensor networks,” 16th

International Conference on Digital Signal Processing, pp.1-6, 2009.

[92] A. Pozdo, L. Foresti and M. Kanevski, “Data-driven topo-climatic mapping

with machine learning methods,” Natural Hazards: Journal of the International

Society for the Prevention and Mitigation of Natural Hazards, v.50, pp.497-518,

2009.

[93] A. Kulakov, D. Davcev and G. Trajkovski, “Application of wavelet Neural-

Networks in Wireless Sensor Networks,” Proceedings of the Sixth International

Conference on Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing, pp.262-267, 2005.

[94] V. Lakshmi Narasimhan, A. Alex, Arvind and Ken Bever, “Greenhouse asset

management using wireless sensor actor networks”, International Conference on

Mobile Ubiquitous Computing, Systems, Services and Technologies, pp. 9-14, 2007.

[95] L. Bottou, “On-line learning in neural networks,” International Conference on

On-line learning and stochastic approximations, Cambridge University Press, pp.

9-42, 1998.

[96] A. Sharma, T. Banerjee and D. P. Agarwal, “Exploiting Spatial Correlation in

a three dimensional Wireless Sensor Network,” Mobile Adhoc and Sensor Systems,

pp. 1-6, 2007.

124

[97] L.B. Yann-Ael, M. Moussaid and G. Bontempi, “Simulation Architecture for

Data Processing Algorithms in Wireless Sensor Networks,” In Proceedings of the

20th International Conference on Advanced Information Networking and

Applications (AINA '06), 2006.

[98] M. Kolahdouzan and C. Shahabi, “Voronai-Based K Nearest Neighbor Search

for Spatial Network Databases,” Proceedings of the 30th VLDB Conference,

Toronto, Canada, pp. 840-851, 2004.

[99] B. Zhang and S.N. Srihari, “A Fast Algorithm for Finding k-Nearest

Neighbors with Non-metric Dissimilarity,” Proceedings of the Eighth International

workshop on Frontiers in Handwriting Recognition (IWFHR’02), pp.13-18, 2002.

[100] A. I. Manjula, L.T. Watson and M.W. Berry, “SHEPPACK: A Fortran 95

package for Interpolation using the Modified Shepard Algorithm,” ACM SE’06,

Florida, USA, pp. 476-481, 2006.

[101] H. Ledoux, “Computing the 3D Voronoi Diagram Robustly: An Easy

Explanation,” 4th International Symposium on Voronoi Diagrams in Science and

Engineering, pp.117-129, 9-11 July 2007.

[102] W.C.M. Van Beers and J.P.C. Kleijnen, “Kriging interpolation in simulation:

a survey,” Simulation Conference, Proceedings of the 2004, v.1, pp.121, 5-8 Dec

2004.

[103] Z. Song and R. Nick, “K-Nearest neighbor search for moving query point,”

7th International Symposium on Advances in spatial and temporal databases, pp.

79-96, July 2001.

[104] Flexsim simulation environment http://www.flexsim.com

[105] Adaptive systems development environment http://www.peltarion.com

125

[106] Alyuda neural network software http://www.alyuda.com

[107] M. Artur, “Three-Dimensional wave polynomials”, Mathematical problems

in Engineering, pp.583-598, 2005.

[108] K.N. Jainendra, “An analytical technique for 3-dimensional interpolation”,

Journal of BIT Numerical mathematics, Vol 24(1), pp.119-122, 1984.

[109] L.B. Chandrajit, “Multi-dimensional Hermit interpolation and approximation

for modelling and visualization”, ICCG Proceedings of the CSI international

conference on Computer graphics, pp.335-348, 1993.

[110] IBM’s Mote Runner Software http://www.zurich.ibm.com/moterunner/

[111] A report submitted to Auckland Meat Processing (AMP) plant, Auckland –

Carne Technologies http://www.carnetech.co.nz

126

A. Appendices

The implementation of the nWSN architecture involves the software user interface

and hardware that needs to be customized to mimic the real-time environment. We

have used RZUSBSTICK and AVRRAVEN from Atmel to test the developed

concepts. The effort towards building a three dimensional virtual reality

environment to run the experiments has been successfully implemented within the

simulation modeling. This appendices section gives all about the interfaces and

coding.

A.1 Hardware Environment:

The hardware environment from Atmel Corporation allows the programmers to use

object-oriented languages such as C# and Java to develop portable WSN

applications that can be dynamically distributed, loaded and updated even after the

deployment. The developed code is embedded into the infrastructural node and

portable nodes. The QBnWSN uses the time synchronization for the synchronized

data input to the cluster head. The code for these nodes is given here.

IBMs Mote Runner Implementation:

Batch file to compile the assembly (start.bat)

mrgac --del Inode-6.0
mrgac --del Pnode-6.0

mrc --assembly=Inode-6.0 Inode.java
mrc --assembly=Pnode-6.0 Pnode.java

mrgac --copy Inode-6.0.sba
mrgac --copy Pnode-6.0.sba

mrsh.exe

Simulation initialization code (run.mrsh):

saguaro-start
lip-enu

127

lip-create -p 02-00-00-00-A8-A8-D2-12
sleep 3000
l0 mote-reset
sleep 3000
l0 wlip-setup
sleep 3000

lip-create -p 02-00-00-00-2F-5B-50-04
sleep 3000
l1 mote-reset
sleep 3000
l1 moma-delete Inode-6.0
l1 moma-load Inode-6.0
sleep 3000
wlip-appeal
socket-bind -s collect.js collect
socket-send collect 1 00

package coord;

import com.ibm.saguaro.system.*;

public class Inode {

private static final int GATEWAY = 0x5678;

private static final int PANID = 0x1234;

private static byte[] data = new byte[LIP.PAYLOAD + 10];

static {

Radio.acquire();

Radio.setShortAddr(GATEWAY);

Radio.setPanId(PANID, false);

Assembly.setDataHandler(new DataHandler(null) {

@Override
public int invoke(int info, byte[] data, int len) {

return onSerialData(info, data, len);

}

});

Radio.setRxDone(new RadioDone(null) {

@Override

public void invoke(int info) {

onRxDone(info);

}

});

Radio.setRxHandler((byte)0, new RadioRxPdu(null) {

@Override

public void invoke(byte[] data, int len, long time, int quality) {

onWirelessData(data, len, time, quality);

A.1.1 Infrastructural node

128

}

});

Radio.enableRx(Time.currentTicks() +

Time.toTickSpan(Time.SECONDS, 20));

}

private static void onWirelessData(byte[] pdu, int len, long time, int
quality) {

Util.copyData(pdu, 9, data, LIP.PAYLOAD, 10);

LIP.send(data, 0, LIP.PAYLOAD + 10);

}

private static int onSerialData(int info, byte[] buf, int len){

Util.copyData(buf, 0, data, 0, LIP.PAYLOAD);

return len;

}

private static void onRxDone(int info) {

Radio.enableRx(Time.currentTicks() +

Time.toTickSpan(Time.SECONDS, 20));

}

}

package snode;

import com.ibm.saguaro.system.*;

public class Pnode {

private static final int PANID = 0x1234;

private static final int GATEWAY = 0x5678;

private static byte[] header = new byte[11];

private static byte[] data = new byte[10];

private static Timer timer = new Timer();
private static long INTERVAL = Time.toTickSpan(Time.SECONDS,

10);

private static boolean started = false;

private static byte[] extendedAddress = new byte[8];

private static int shortAddress;

private static int xval;
private static int yval;
private static int zval;
private static int temp;

static {

Assembly.setDataHandler(new DataHandler(null) {

public int invoke(int info, byte[] data, int len) {

return onWLIPData(info, data, len);

}

});

A.1.2 Portable node

129

Assembly.setSystemInfoCallback(new SystemInfo(null) {

public int invoke(int type, int info){

return onSystemEvent(type, info);

}

});

}

private static int onWLIPData(int info, byte[] data, int len) {

WLIP.shutdown();

return 0;

}

private static int onSystemEvent(int type, int info) {

// system notification that WLIP has been shutdown
if (type == WLIP.SYSEV_WLIP_DOWN)

start();
return 0;

}

static private void start() {

Radio.acquire(); // before we can use the radio we need to acquire
it
Radio.getExtAddr(extendedAddress, 0);

shortAddress = Util.get16le(extendedAddress, 0);

Radio.setShortAddr(shortAddress);

Radio.setPanId(PANID, false);

header[0] = Radio.FCF_DATA | Radio.FCF_ACKRQ;

header[1] = Radio.FCA_SRC_SADDR |
Radio.FCA_DST_SADDR;

header[2] = 1; // sequence number
// destination
Util.set16le(header, 3, PANID);

Util.set16le(header, 5, GATEWAY);

// source
Util.set16le(header, 7, PANID);

Util.set16le(header, 9, shortAddress);

timer.setCallback(new TimerEvent(null) {

public void invoke(byte param, long time) {

onTimeout(param, time);

}

});

// delay acquiring the radio so that the loading would not fail
timer.setAlarmTime(Time.currentTicks() + INTERVAL);

}

static void onTimeout(byte param, long time) {

try {

xval = 500;

yval = 500;

zval = 10;

Util.set16be(data, 0, xval);

130

Util.set16be(data, 2, yval);
Util.set16be(data, 4, zval);
SimpleDevices.read(SimpleDevices.MOTE_TEMP, 0, 0, data, 6,

2);

}

catch (MoteException e) {

LED.setState((byte) 2, (byte) 1);

}

Radio.transmit(Radio.TXMODE_CSMA, header, 11, data, 0, 8, null);

timer.setAlarmTime(time + INTERVAL);

}

}

User.collect = {

onData: function(blob) {

var ret = "";

if (blob.data.length == 0){

ret = "Connected.\n";

}

else if (blob.data.length == 10){

var tmp = Formatter.unpack("2uL2u2u2u2u", blob.data);

var src = tmp[0];

var xloc = tmp[1];

var yloc = tmp[2];

var zloc = tmp[3];

var T = tmp[4];

var temp= T; //* 0.09-45;
var file;

if(src == 33089) //Node 1
{

file = IO.File.fopen("D:/1/SeNSe/fuswid/Pnode1.txt", "w+");

IO.File.fwrite(file, "" + temp);

}

if(src == 17941) //Node 2
{

file = IO.File.fopen("D:/1/SeNSe/fuswid/Pnode2.txt", "w+");

IO.File.fwrite(file, "" + temp);

}

if(src == 31147) //Node 3
{

file = IO.File.fopen("D:/1/SeNSe/fuswid/Pnode3.txt", "w+");

IO.File.fwrite(file, "" + temp);

}

if(src == 8902) //Node 4
{

file = IO.File.fopen("D:/1/SeNSe/fuswid/Pnode4.txt", "w+");

A.1.3 Java script file for web-based data monitoring

131

IO.File.fwrite(file, "" + temp);

}

if(src == 57811) //Node 5
{

file = IO.File.fopen("D:/1/SeNSe/fuswid/Pnode5.txt", "w+");

IO.File.fwrite(file, "" + temp);

}

if(src == 21966) //Node 6
{

file = IO.File.fopen("D:/1/SeNSe/fuswid/Pnode6.txt", "w+");

IO.File.fwrite(file, "" + temp);

}

if(src == 31293) //Node 7
{

file = IO.File.fopen("D:/1/SeNSe/fuswid/Pnode7.txt", "w+");

IO.File.fwrite(file, "" + temp);

}

if(src == 11374) //Node 8
{

file = IO.File.fopen("D:/1/SeNSe/fuswid/Pnode8.txt", "w+");

IO.File.fwrite(file, "" + temp);

}

IO.File.fclose(file);

var currentTime = new Date();

var hours = currentTime.getHours();

var minutes = currentTime.getMinutes();

if (minutes < 10){

minutes = "0" + minutes;

}

//var tm = sprintf(hours + ":" + minutes + " \n");
ret = sprintf("Time= %d:%d, SensorID = %X, X = %d, Y = %d, Z = %d,
Temperature =
%.2f C\n", hours, minutes, src, xloc, yloc, zloc, temp);

}

else {

var tmp = Formatter.binToHex(blob.data);

//var tmp = blob.data.length;
ret = sprintf("Data = %s\n", tmp);

//ret = "ERROR: unexpexted length \n";
}

return ret;
},

send: function(dstport, dstmote, argv) {

return "";

},

broadcast: function(dstmote, dstport, argv) {

return "";

},

onClose: function(status) { }

};

132

namespace com.ibm.moterunner.nwsn {

internal sealed class HDEFS {

internal HDEFS () {} // Default CTOR
internal const byte APPLICATION_OFF = 0x00000002;

internal const byte CHANNEL = 0x00000003;

internal const byte CMD_OFF = 0x00000001;

internal const byte CMD_UPDT = 0x00000002;

internal const byte CMD_WLIP = 0x00000001;

internal const uint GATEWAY = 0xD1D1;

internal const byte MAX_DEVICES = 0x00000008;

internal const byte MOTEID_OFF = 0x00000007;

internal const uint PANID = 0x4ACE;

internal const byte PORT = 0x0000006F;

internal const byte RATE = 0x00000005;

internal const byte RATE_OFF = 0x00000003;

internal const byte STATUS_OFF = 0x00000000;

internal const byte TEMP_CURR_OFF = 0x00000010;

internal const byte TEMP_HIGH_OFF = 0x00000006;

internal const byte TEMP_LOW_OFF = 0x00000004;

internal const byte WDATA_LEN = 0x00000026;

internal const byte WPAYLOAD_OFF = 0x00000009;

}

}

namespace com.ibm.moterunner.nwsn {

using com.ibm.saguaro.system;

#if DEBUG
using com.ibm.saguaro.logger;
#endif
public class nWSN {

//internal static uint lip;
// temporary data to be sent to motes
internal static byte[] pendingData;

internal static uint pending;

// list of all known mote ids
internal static uint[] knownMotes;

internal static uint knownNum = 0;

// buffer for sending radio messages
//internal static byte[] radioMessage;
internal static byte[] lipBuffer;
internal static int handleLIP (int info, byte[] data, uint len){

// remember senders address

A.1.4 Time synchronization – QBnWSN framework:

initialization

A.1.5 Time synchronization – QBnWSN framework:

infrastructural node

133

Util.copyData(data, 0, lipBuffer, 0, LIP.PAYLOAD);

// simply attach message
if (len <= LIP.PAYLOAD + 1)

return -1;

// proper message
// add pending data to forward the data to the specified mote
addPendingData(data, LIP.PAYLOAD, len - LIP.PAYLOAD);

return -1;

}

internal static void onRxPdu (byte[] pdu, uint len, long time, uint
quality) {

// we just received some data from a mote
uint moteAddr = Util.get16le(pdu, HDEFS.MOTEID_OFF);

#if DEBUG
Logger.appendString(csr.s2b("rx - moteAddr:"));

Logger.appendHexInt(moteAddr);
Logger.flush(Mote.ERROR);

#endif
// check whether the mote has some pending data
// and forward data from mote to the webapp
checkAndForwardPendingData(moteAddr);
// forward data from packet to webapp
Util.copyData(pdu, HDEFS.WPAYLOAD_OFF-2, lipBuffer,
LIP.PAYLOAD, len+2-HDEFS.

WPAYLOAD_OFF);

LIP.send(lipBuffer, 0, LIP.PAYLOAD+HDEFS.WDATA_LEN);

}

static nWSN () {

/*uint lip =*/ LIP.open(HDEFS.PORT, handleLIP);

// initialize data
pendingData = new byte[HDEFS.MAX_DEVICES *

HDEFS.WDATA_LEN];

knownMotes = new uint[HDEFS.MAX_DEVICES];

lipBuffer = new byte[LIP.PAYLOAD +

HDEFS.WDATA_LEN];

// no pending data
pending = 0x00;

Radio.acquire();

Radio.setChannel(HDEFS.CHANNEL);

// set addresses for radio filter
Radio.setShortAddr(HDEFS.GATEWAY);

Radio.setPanId(HDEFS.PANID, false);

// enable receiver
Radio.setRxDone(onRxDone);

Radio.setRxHandler(/*backlog*/0,onRxPdu);

Radio.enableRx(Time.currentTicks() + 0xEEEEEE);

}

internal static uint getMoteIndex (uint moteAddr) {

uint index = 0;

134

for (; index < HDEFS.MAX_DEVICES ; index++)

if (knownMotes[index] == moteAddr)
return index;

return index;

}

internal static void checkAndForwardPendingData (uint moteAddr) {

uint moteIdx = getMoteIndex(moteAddr);
if (moteIdx >= HDEFS.MAX_DEVICES) {

// we do not know this mote
knownNum++;

if (knownNum == HDEFS.MAX_DEVICES)

knownNum = 0;

knownMotes[knownNum]=moteAddr;
moteIdx = knownNum;

}

#if DEBUG
Logger.appendString(csr.s2b("moteIdx: "));

Logger.appendInt((int)moteIdx);

Logger.flush(Mote.ERROR);

Logger.appendString(csr.s2b("pending: "));

Logger.appendHexInt(pending);

Logger.flush(Mote.ERROR);

#endif
if ((pending & (1<<(byte)moteIdx)) != 0){

pending &= ~((uint)(1<<(byte)moteIdx)); // clear pending bit
uint off = moteIdx * HDEFS.WDATA_LEN;

LED.setState(0,1); // yellow LED used for marking transmissions
from gateway
to packet
Radio.transmit(Radio.TXMODE_CSMA, pendingData, off,
HDEFS.WDATA_LEN, onTxDone
);

}

}

internal static void onTxDone(byte[] pdu, uint len, int status, long
txend) {

LED.setState(0,0);

}

internal static void addPendingData (byte[] data, uint offset, uint len){

uint moteAddr = Util.get16le(data, offset);
#if DEBUG
Logger.appendString(csr.s2b("addPendingData:"));

Logger.appendHex(data, 0, len + LIP.PAYLOAD);

Logger.flush(Mote.ERROR);

#endif
uint moteIdx = getMoteIndex(moteAddr);
#if DEBUG
Logger.appendString(csr.s2b("pend - moteAddr:"));

Logger.appendHexInt(moteAddr);

135

Logger.flush(Mote.ERROR);

#endif
if (moteIdx >= HDEFS.MAX_DEVICES) {

LED.setState(2,1); // red LED unknown mote
// we do not know this mote
return;

}

#if DEBUG
Logger.appendString(csr.s2b("... we know it:"));

Logger.flush(Mote.ERROR);

#endif
uint off = moteIdx * HDEFS.WDATA_LEN;

Util.copyData(data, offset+2, pendingData, off +

HDEFS.WPAYLOAD_OFF, len-2);

// fix header
pendingData[off+0/*FCF*/] = Radio.FCF_DATA |
Radio.FCF_ACKRQ | Radio.FCF_NSPID;

pendingData[off+1/*FCA*/] = Radio.FCA_SRC_SADDR |
Radio.FCA_DST_SADDR;

pendingData[off+2/*SEQNO*/] = 0xDD;

Util.set16le(pendingData, off+3, HDEFS.PANID);

Util.set16le(pendingData, off+5, moteAddr);
Util.set16le(pendingData, off+7, HDEFS.GATEWAY);

// mark that data is pending for this mote
pending |= (uint)(1<<(byte)moteIdx);

}

internal static void onRxDone (uint info){

Radio.enableRx(Time.currentTicks() + 0xEEEEEE);

}

}

}

namespace com.ibm.moterunner.nwsn {

using com.ibm.saguaro.system;

#if DEBUG
using com.ibm.saguaro.logger;
#endif
public class Packet {

[Immutable]

internal static readonly byte[] persistentData = {1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1,

A.1.6 Time synchronization – QBnWSN framework:

portable node

136

1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1
}; // 32 bytes
// data used to send to gateway
internal static byte[] data;

internal static byte status;

internal static byte rate_sec = HDEFS.RATE;

internal static long rate_ticks;

internal static byte application = 0;

// temperature thresholds
internal static uint temp_low = 4;

internal static uint temp_high = 30;

// Temperature Average
internal static uint count;
internal static uint temp;

internal static uint temp_qry;

internal static uint temp_min=0;

internal static uint temp_max=0;

internal static uint temp_avg;

internal static uint timebefore = 0;

internal static uint trcounter = 0;

internal static byte radiostatus;

//internal static uint nwsnTemp;
internal static uint[] tempdata = new uint[12];

internal static Timer timer;
// Timer at sensor node
internal static Timer mytimer;
internal static long rate_myticks;

internal static uint numSecs = 0;

internal static uint numMins = 0;

internal static uint numHours = 0;

internal static uint xval = 3;

internal static uint yval = 7;

internal static uint zval = 2;

internal static byte seqno;

internal static uint shortAddr;

static Packet () {

status = 0;

// turn off all leds
LED.setState(0,0);

LED.setState(1,0);

LED.setState(2,0);

// check whether we have some persisten data
if (persistentData[HDEFS.CMD_OFF] == HDEFS.CMD_UPDT){

#if DEBUG
Logger.appendString(csr.s2b("we have persistent"));

Logger.flush(Mote.ERROR);

#endif
// we have persistent data

137

application = persistentData[HDEFS.APPLICATION_OFF];

rate_sec = persistentData[HDEFS.RATE_OFF];

// thresholds
temp_low = Util.get16be(persistentData,

HDEFS.TEMP_LOW_OFF);

temp_high = Util.get16be(persistentData,

HDEFS.TEMP_HIGH_OFF);

}

rate_ticks = Time.toTickSpan(Time.SECONDS, rate_sec);

Assembly.setSystemInfoCallback(onSystemEvent);
// use a timer to start the application after ~ 2s
timer = new Timer();
timer.setAlarm(initialStart, Time.currentTicks() + 2000000);

rate_myticks = Time.toTickSpan(Time.SECONDS, 1);

// Use a timer to count the TIME in an ARRAY
mytimer = new Timer();
mytimer.setAlarm(myTimeRun, rate_myticks);

}

internal static void initialStart (byte param, long time) {

WLIP.shutdown();

}

internal static int onSystemEvent (int type, int info) {

if (type == WLIP.SYSEV_WLIP_DOWN){

LED.setState(0,0); // end of maintenance yellow off
start(); // we can now start the application

}

return 0;

}

internal static void start () {

Radio.acquire();

Radio.setChannel(HDEFS.CHANNEL);

Radio.setRxDone(onRxDone);

Radio.setRxHandler(/*backlog*/0,onRxPdu);

data = new byte[HDEFS.WDATA_LEN];

Radio.getExtAddr(data, 0); // use data for temporary read of
extended address
shortAddr = Util.get16le(data, 0);

// set addresses for radio filter
Radio.setShortAddr(shortAddr);
Radio.setPanId(HDEFS.PANID, false);

// set up radio message frame
// 1 1 | 1 | 2 | 2 | 2 | ... | # bytes
//+-----+-----+-------+--------+---------+--------+---------+-------------
-+
//| FCF | FCA | SEQNO | DSTPAN | DSTADDR |SRCADDR |
payload | field name
//+-----+-----+-------+--------+---------+--------+---------+-------------
-+

138

data[0/*FCF*/] = Radio.FCF_DATA | Radio.FCF_ACKRQ |
Radio.FCF_NSPID;

data[1/*FCA*/] = Radio.FCA_SRC_SADDR |
Radio.FCA_DST_SADDR;

data[2/*SEQNO*/] = seqno;

Util.set16le(data, 3, HDEFS.PANID);

Util.set16le(data, 5, HDEFS.GATEWAY);

Util.set16le(data, 7, shortAddr);
rate_ticks = Time.toTickSpan(Time.SECONDS, rate_sec);

// start a timer based on the persistent values
timer.setAlarm(sense, Time.currentTicks() + rate_ticks);

mytimer.setAlarm(myTimeRun, 1);

tempdata[0] = 6000;

}

internal static void onRxPdu (byte[] pdu, uint len, long time, uint
quality) {

#if DEBUG
Logger.appendString(csr.s2b("we got message"));

Logger.flush(Mote.ERROR);

#endif
uint off = HDEFS.WPAYLOAD_OFF;

// what command did we receive
byte cmd = pdu[off + HDEFS.CMD_OFF];

if (cmd == HDEFS.CMD_WLIP){

// we need to switch to management mode
// --
// we will be notified with a sysev_wlip_down event
LED.setState(0,1); // maintenance = yellow on
timer.cancelAlarm();

Radio.release();

WLIP.activate(onSystemEvent, false /*keep WLIP up
even if no gateway found
the first time*/);
return;

}

if (cmd == HDEFS.CMD_UPDT){

// we need to update our persistent parameters
Util.updatePersistentData(pdu, off, persistentData, 0,

HDEFS.WDATA_LEN);

// and current application parameters
application = pdu[off+HDEFS.APPLICATION_OFF];

// rate
rate_sec = pdu[off+HDEFS.RATE_OFF];

rate_ticks = Time.toTickSpan(Time.SECONDS, rate_sec);

timer.cancelAlarm();

timer.setAlarmTime(Time.currentTicks() + rate_ticks);

// thresholds
temp_low = Util.get16be(pdu, off+HDEFS.TEMP_LOW_OFF);

139

temp_high = Util.get16be(pdu,

off+HDEFS.TEMP_HIGH_OFF);

#if DEBUG
Logger.appendString(csr.s2b("temp low = "));

Logger.appendInt((int)temp_low);

Logger.appendString(csr.s2b("temp high = "));

Logger.appendInt((int)temp_high);

Logger.appendInt((int)temp_avg);

Logger.flush(Mote.ERROR);

#endif
return;

}

}

internal static void onRxDone (uint info){

// nothing to do
}

internal static void sense (byte param, long time)

{

LED.setState(1,(byte)(LED.getState(1)^1)); // toggle green LED
uint off = HDEFS.WPAYLOAD_OFF;

try { // Sample sensors directly into current data message
// temperature
SimpleDevices.read(SimpleDevices.MOTE_TEMP, 0, 0,

data, off+HDEFS.TEMP_CURR_OFF, 2);

temp = Util.get16be(data, off+HDEFS.TEMP_CURR_OFF);

if(temp_min == 0 || temp_max ==0)

{

temp_min = temp;

temp_max = temp;

temp_avg = temp;

}

if(temp <= temp_min)

temp_min = temp;

if(temp >= temp_max)

temp_max = temp;

// check the status for the application

switch (application)

{

case 0:

temp_qry = temp_min;

radiostatus = 0;

if (temp >= temp_low && temp <= temp_high)

status = 0;

else status = 1;

break;

140

case 1:

temp_qry = temp_max;

radiostatus = 0;

status = 0;

break;

case 2:

temp_qry = temp_avg;

radiostatus = 1;

status = 0;

break;

}

}

catch (MoteException) {

LED.setState(2,1); // signal failed sensing with red LED
}

Radio message payload PARAMS
1 | 1 | 1 | 1 | ... | # bytes
#+--------+---------+-------------+------+--------------+ ===========
#| status | command | application | rate | thresholds | field name
#+--------+---------+-------------+------+--------------+ ============
Radio message payload (continued) THRESHOLDS
2 | 2 | 2 | 2 | 2 | 2
| # bytes
#+-----------+-----------+-----------+------------+-----------+------------+
============
#| temp low | temp high |
field name
#+-----------+-----------+-----------+
Radio message payload (continued) CURRENT DATA
2 | 2 | 2 | # bytes
#+-----------+------------+------------+
#| temp curr | field name
#+-----------+------------+------------+
// we already have the status
data[off] = status; off++; //status
data[off] = HDEFS.CMD_UPDT; off++; // cmd
data[off] = application; off++; // application
data[off] = rate_sec; off ++; // rate
// also send thresholds
Util.set16be(data, off, tempdata[timebefore]); off += 2;

Util.set16be(data, off, temp_high); off += 2;

Util.set16be(data, off, numHours); off += 2;

Util.set16be(data, off, numMins); off += 2;

count = count+1;

trcounter = trcounter+1;

Util.set16be(data, off, numSecs); off += 2;

Util.set16be(data, off, temp_qry); off += 2;

uint sid = shortAddr & 7;

switch (sid) {

case 2:

xval = 10;

141

yval = 15;

zval = 5;

Util.set16be(data, off+5, xval);
Util.set16be(data, off+7, yval);
Util.set16be(data, off+9, zval);

break;

case 3:

xval = 5;

yval = 20;

zval = 5;

Util.set16be(data, off+5, xval);
Util.set16be(data, off+7, yval);
Util.set16be(data, off+9, zval);

break;

case 4:

xval = 20;

yval = 10;

zval = 5;

Util.set16be(data, off+5, xval);
Util.set16be(data, off+7, yval);
Util.set16be(data, off+9, zval);

break;

case 5:

xval = 5;

yval = 15;

zval = 5;

Util.set16be(data, off+5, xval);
Util.set16be(data, off+7, yval);
Util.set16be(data, off+9, zval);

break;

}

// transmit with CSMA to avoid collisions with other packets
Radio.transmit(Radio.TXMODE_CSMA, data, 0,
HDEFS.WDATA_LEN, onTxDone);
if(trcounter<=10 || radiostatus == 1)
{

RadioTransmit();
}
data[2] = ++seqno; // always increment sequence number
// set up a new timer for sensing data
timer.setAlarmTime(Time.currentTicks() + rate_ticks);

}

internal static void RadioTransmit(){

// transmit with CSMA to avoid collisions with other packets
Radio.transmit(Radio.TXMODE_CSMA, data, 0,

HDEFS.WDATA_LEN, onTxDone);

}

internal static void myTimeRun (byte param, long time)

{

try {

142

uint temp_numSecs =

(uint)Time.currentTime(Time.SECONDS);

numSecs = temp_numSecs%60;

numMins = temp_numSecs/60;

numHours = numMins/60;

if(numMins%5==0)

{

myTempRotate ();
}

}

catch (MoteException) {

LED.setState(2,1);

}

mytimer.setAlarmTime(Time.currentTicks() + rate_ticks);

}

internal static void myTempRotate ()
{

try {

for(uint x=11; x>0; x--)

{

tempdata[x] = tempdata[x-1];

}

tempdata[0] = temp;

}

catch (MoteException) {

LED.setState(2,1);

}

}

internal static void onTxDone(byte[] pdu, uint len, int status, long
txend) {

// enable receiver for a very short time
Radio.enableRx(Time.currentTicks() + 100000);
}

}

}

143

A.2 Simulation Environment:

Three Dimensional Virtual Reality Environments:

A three dimensional virtual reality space is designed in Flexsim to build the thermal

map within that. The red and blue colored nodes are infrastructural nodes having

one red node at each side acting as a cluster head. Apart from these nodes situated

on the inner surface of the space, the portable nodes can be deployed anywhere in

the space by using a designed GUI that controls the model. The designed space

volume is 20x20x5 m3 and this can be altered by the interface to conduct various

scenarios.

144

//Temperature Limits
double
Temp_min=getnodenum(node("MAIN:/project/model/Tools/globaldata/Tmin"));
double
Temp_max=getnodenum(node("MAIN:/project/model/Tools/globaldata/Tmax"));

//Spatial Coordinates
double X_loc=getnodenum(node("MAIN:/project/model/Tools/globaldata/X"));
double Y_loc=getnodenum(node("MAIN:/project/model/Tools/globaldata/Y"));
double Z_loc=getnodenum(node("MAIN:/project/model/Tools/globaldata/Z"));

//Initialization
int knn=getnodenum(node("MAIN:/project/model/Tools/globaldata/kcount"));
int
Nodes=getnodenum(node("MAIN:/project/model/Tools/globaldata/numnodes"));
double
Threshold=getnodenum(node("MAIN:/project/model/Tools/globaldata/Threshval")
);

 treenode SLocTable = reftable("LocTable");
 string StrNodes=numtostring(Nodes,0,0);
 int LocTableCols=gettablecols(SLocTable);
 int ColRepeat;
 int ColCount;
 int ColNext;
 double XLoc;
 double YLoc;
 double ZLoc;
 int ColRepeatFlag=0;

 int nCount = round(Nodes/8) + 1;
 int nFFRows=0;

//Generate Inf. Nodes and locate in its position and set Temperature label
for(int InfN=1;InfN<=Nodes;InfN++)
{
 XLoc=gettablenum("NodeTable",InfN,1);
 YLoc=gettablenum("NodeTable",InfN,2);
 ZLoc=gettablenum("NodeTable",InfN,3);

 int
InfNrows=getnodenum(node("MAIN:/project/model/Tools/globaldata/numnodes"))
;
 dropuserlibraryobject(node("MAIN:/project/userlibrary/WSN/SNode"));
 setname(last(model()),concat("SNode",numtostring(InfN,0,0)));
 setloc(last(model()),XLoc,YLoc,ZLoc);
 setlabelnum(last(model()),"Temperature",temp_at(XLoc,YLoc,ZLoc));

A.2.1 Nodes deployment in simulation environment

145

 //Identify and set color to Fully functional node
 if(Nodes/4 == 0 || fmod((Nodes/4),2) == 1)
 {
 if(InfN == nCount)
 {
 setcolor(last(model()),255,0,0);
 nCount = nCount + Nodes/4;

 //Update FFNodes table Data
 nFFRows = nFFRows+1;
 settablesize("FFNodes",nFFRows,5);
 settablestr("FFNodes",nFFRows,1,getname(last(model())));
 settablenum("FFNodes",nFFRows,2,xloc(last(model())));
 settablenum("FFNodes",nFFRows,3,yloc(last(model())));
 settablenum("FFNodes",nFFRows,4,zloc(last(model())));

 settablenum("FFNodes",nFFRows,5,getlabelnum(last(model()),"Temperature"));
 }
 }

}

//Generate Temp values in Grid Table (NNgrid)
settablesize("NNgrid",1,4);
int rowcount=1;
for(int xval=0;xval<=X_loc;xval++)
 {
 for(int yval=0;yval<=Y_loc;yval++)
 {
 for(int zval=0;zval<=Z_loc;zval++)
 {
 settablesize("NNgrid",rowcount,4);
 settablenum("NNgrid",rowcount,1,xval);
 settablenum("NNgrid",rowcount,2,yval);
 settablenum("NNgrid",rowcount,3,zval);
 double Tempval=temp_at(gettablenum("NNgrid",rowcount,1),

 gettablenum("NNgrid",rowcount,2),

 gettablenum("NNgrid",rowcount,3));
 settablenum("NNgrid",rowcount,4,Tempval);
 rowcount++;
 }
 }
 }

for(int x=1;x<=Nodes;x++)
{
 XLoc=uniform(0,X_loc,1);
 YLoc=uniform(0,Y_loc,2);
 ZLoc=uniform(0,Z_loc,3);
 dropuserlibraryobject(node("MAIN:/project/userlibrary/WSN/SNode"));

146

 setname(last(model()),concat("SNode",numtostring(x,0,0)));
 setloc(last(model()),XLoc,YLoc,ZLoc);
 setlabelnum(last(model()),"Temperature",NNtempXYZ(XLoc,YLoc,ZLoc));

 //Create Table and set the node data
 treenode SNodesTable = reftable("NodesTable");
 settablesize(SNodesTable,x,5);
 settableheader(SNodesTable, 1, x, concat("SNode",numtostring(x,0,0)));
 settablenum(SNodesTable,x,1,XLoc);
 settablenum(SNodesTable,x,2,YLoc);
 settablenum(SNodesTable,x,3,ZLoc);
 settablenum(SNodesTable,x,4,NNtempXYZ(XLoc,YLoc,ZLoc));//Temperature
Val

}
//Generate Temp values in Grid Table (NNgrid)
settablesize("NNgrid",1,4);
int rowcount=1;
for(int xval=0;xval<=X_loc;xval++)
 {
 for(int yval=0;yval<=Y_loc;yval++)
 {
 for(int zval=0;zval<=Z_loc;zval++)
 {
 settablesize("NNgrid",rowcount,4);
 settablenum("NNgrid",rowcount,1,xval);
 settablenum("NNgrid",rowcount,2,yval);
 settablenum("NNgrid",rowcount,3,zval);
 double
Tempval=NNtempXYZ(gettablenum("NNgrid",rowcount,1),

 gettablenum("NNgrid",rowcount,2),

 gettablenum("NNgrid",rowcount,3));
 settablenum("NNgrid",rowcount,4,Tempval);
 rowcount++;
 }
 }
 }
//Generate Nodes and locate in its position and set Temperature label
for(int x=1;x<=Nodes;x++)
{
 //For data/location consistency maintain another location table
 //to keep the location constant whenever choosing the same number of nodes
 int colflag;
 if(ColRepeatFlag==1)
 colflag=1;
 else
 colflag=0;

 //Set Temperature value
 double TempVal=uniform(Temp_min,Temp_max,1);

147

 //Check if the number of nodes already exists so that can't repeat another set of
coordinates for the same no. of nodes
 for(int cols=1;cols<=LocTableCols;cols++)
 {
 string ColName=gettableheader(SLocTable,2,cols);
 if(comparetext(StrNodes,ColName)==1)
 {
 ColRepeat=1;
 ColCount=cols;
 break;
 }
 else
 {
 ColRepeat=0;
 }
 }

 //Check the no. of nodes are repeating no need to verify the next column to start
 if(ColRepeat==0)
 {
 for(int colsnext=1;colsnext<=LocTableCols;colsnext++)
 {
 string ColNextName=gettableheader(SLocTable,2,colsnext);
 if(comparetext("Col",stringcopy(ColNextName,1,3))==1)
 {
 ColNext=colsnext;
 break;
 }
 }
 }

 //Repeat the same coordinate set for the given node numbers ELSE generate new
set of coordinates for given no.of nodes
 if(ColRepeat==1&&colflag==0)
 {
 XLoc=gettablenum(SLocTable,x,ColCount);
 YLoc=gettablenum(SLocTable,x,ColCount+1);
 ZLoc=gettablenum(SLocTable,x,ColCount+2);
 ColNext=ColCount;
 }
 else
 {
 ColRepeatFlag=1;
 XLoc=uniform(0,X_loc,1);
 YLoc=uniform(0,Y_loc,2);
 ZLoc=uniform(0,Z_loc,3);
 }

 //Fill the coordinates in location table to keep track of the data for next time use.

 settableheader(SLocTable,2,ColNext,numtostring(Nodes,0,0));

148

 settablenum(SLocTable,x,ColNext,XLoc);
 settableheader(SLocTable,2,ColNext+1," ");
 settablenum(SLocTable,x,ColNext+1,YLoc);
 settableheader(SLocTable,2,ColNext+2," ");
 settablenum(SLocTable,x,ColNext+2,ZLoc);

 dropuserlibraryobject(node("MAIN:/project/userlibrary/WSN/SNode"));
 setname(last(model()),concat("SNode",numtostring(x,0,0)));
 setloc(last(model()),XLoc,YLoc,ZLoc);
 setlabelnum(last(model()),"Temperature",TempVal);

 //Create Table and set the node data
 treenode SNodesTable = reftable("NodesTable");

 settablesize(SNodesTable,x,5);
 settableheader(SNodesTable, 1, x, concat("SNode",numtostring(x,0,0)));
 settablenum(SNodesTable,x,1,XLoc);
 settablenum(SNodesTable,x,2,YLoc);
 settablenum(SNodesTable,x,3,ZLoc);
 settablenum(SNodesTable,x,4,TempVal);//Temperature Val

}

//Calculate k-Nearest Nodes to each node and set their distances into labels
for(int y=1;y<=Nodes;y++)
{
 treenode
SenNodeCur=node(concat("MAIN:/project/model/","SNode",numtostring(y,0,0)));
 treenode Stable=reftable("SortTable");
 for(int z=1;z<=Nodes;z++)
 {
 treenode
SenNodeTo=node(concat("MAIN:/project/model/","SNode",numtostring(z,0,0)));
 settablesize(Stable,z,2);
 double dist=sqrt(sqr(xloc(SenNodeCur)-
xloc(SenNodeTo))+sqr(yloc(SenNodeCur)-
yloc(SenNodeTo))+sqr(zloc(SenNodeCur)-zloc(SenNodeTo)));
 settablenum(Stable,z,1,dist);
 settablestr(Stable,z,2,getname(SenNodeTo));
 }
 sorttable(Stable,1);
 treenode knode=node(">labels/knn",SenNodeCur);

 for(int k=1;k<=knn;k++)
 {
 setnodename(rank(knode,k),gettablestr(Stable,k+1,2));
 setnodenum(rank(knode,k),gettablenum(Stable,k+1,1));
 }
}

//Set OptTable Size and Fill Datatype
treenode OpNodesTable = reftable("OptTable");

149

for(int Op=1;Op<=Nodes+1;Op++)
{
 treenode
OpNodeCur=node(concat("MAIN:/project/model/","SNode",numtostring(Op,0,0)))
;

 settablesize(OpNodesTable,Nodes,Nodes,DATATYPE_NUMBER);
 settableheader(OpNodesTable, 1, Op, concat("SNode",numtostring(Op,0,0)));
 settableheader(OpNodesTable, 2, Op, concat("SNode",numtostring(Op,0,0)));
 if(Op==Nodes+1)
 {

 settablesize(OpNodesTable,Nodes+1,Nodes+1,DATATYPE_NUMBER);
 settableheader(OpNodesTable, 1, Op, "WNodes");
 settableheader(OpNodesTable, 2, Op, "INodes");
 }
}
//Find the first 2 nearest nodes in each node and set "1" in opttable
for(int F2kn=1;F2kn<=Nodes;F2kn++)
{
 treenode
k2SenNodeCur=node(concat("MAIN:/project/model/","SNode",numtostring(F2kn,
0,0)));
 for(int k2Temp=1;k2Temp<=2;k2Temp++)
 {
 string
Op2KnodeTo=getname(rank(node(">labels/knn",k2SenNodeCur),k2Temp));
 for(int Rowt=1;Rowt<=Nodes;Rowt++)
 {

 if(comparetext(gettableheader("OptTable",1,Rowt),Op2KnodeTo)==1)
 {
 settablenum("OptTable",Rowt,F2kn,1);
 break;
 }
 }
 }
}

//Evaluate all nodes and compute its Temperature if that node is absent
for(int j=1;j<=Nodes;j++)
{
 treenode
CSenNode=node(concat("MAIN:/project/model/","SNode",numtostring(j,0,0)));
 double PredTemp=TempXYZ(CSenNode);
 setlabelnum(CSenNode,"PTemp",PredTemp);
}

//Refresh the window to update all the labels
forobjecttreeunder(node("VIEW:/1"))
{
repaintview(a);

150

}
repaintall();

//Destroy the nodes created from deployment
int index;
treenode objtree=node("MAIN:/project/model");
int Totnodes=content(objtree);
int
Numnodes=getnodenum(node("MAIN:/project/model/Tools/globaldata/numnodes"
));
for(int Ntimes=1;Ntimes<=Numnodes;Ntimes++)
{
 for(index = 1; index <= Totnodes; index++)
 {
 string nodename=stringcopy(getname(rank(objtree,index)),1,5);
 if(comparetext("SNode", nodename))
 {
 destroyobject(rank(objtree,index));
 }
 Totnodes=content(objtree);
 //pd(index);pr();
 }
}
//Delete table rows
treenode SNodesTable = reftable("NodesTable");
settablesize(SNodesTable,1,5);
clearglobaltable(SNodesTable);

settablesize("NNRandData",1,4);

//Set Min nodes to Zero
setnodenum(node("MAIN:/project/model/Tools/globaldata/Optnum"),0);
//Set Hotspot temp table (NodeTable)
int
Infnodes=getnodenum(node("MAIN:/project/model/Tools/globaldata/numnodes"));
//Spatial Coordinates
double X_loc=getnodenum(node("MAIN:/project/model/Tools/globaldata/X"));
double Y_loc=getnodenum(node("MAIN:/project/model/Tools/globaldata/Y"));
double Z_loc=getnodenum(node("MAIN:/project/model/Tools/globaldata/Z"));
settablesize("NodeTable",Infnodes,5);
int Infcase=1;
int casein=1;
int noddiv=Infnodes/4+1;
for(int Infrow=1;Infrow<=Infnodes;Infrow++)
{
 settableheader("NodeTable", 1, Infrow,
concat("InfNode",numtostring(Infrow,0,0)));

A.2.2 Nodes reset to initialize code

151

 switch(Infcase)
 {
 case 1:
 {
 settablenum("NodeTable",Infrow,1,(casein/noddiv)*X_loc);
 settablenum("NodeTable",Infrow,2,0*Y_loc+0.1);
 settablenum("NodeTable",Infrow,3,(1/2)*Z_loc);

 settablenum("NodeTable",Infrow,4,temp_at(gettablenum("NodeTable",Infrow,1
),

 gettablenum("NodeTable",Infrow,2),

 gettablenum("NodeTable",Infrow,3)));
 settablenum("NodeTable",Infrow,5,1);
 casein++;
 break;
 }
 case 2:
 {
 settablenum("NodeTable",Infrow,1,(casein/noddiv)*X_loc);
 settablenum("NodeTable",Infrow,2,1*Y_loc);
 settablenum("NodeTable",Infrow,3,(1/2)*Z_loc);

 settablenum("NodeTable",Infrow,4,temp_at(gettablenum("NodeTable",Infrow,1
),

 gettablenum("NodeTable",Infrow,2),

 gettablenum("NodeTable",Infrow,3)));
 settablenum("NodeTable",Infrow,5,1);
 casein++;
 break;
 }
 case 3:
 {
 settablenum("NodeTable",Infrow,1,0*X_loc+0.1);
 settablenum("NodeTable",Infrow,2,(casein/noddiv)*Y_loc);
 settablenum("NodeTable",Infrow,3,(1/2)*Z_loc);

 settablenum("NodeTable",Infrow,4,temp_at(gettablenum("NodeTable",Infrow,1
),

 gettablenum("NodeTable",Infrow,2),

 gettablenum("NodeTable",Infrow,3)));
 settablenum("NodeTable",Infrow,5,1);
 casein++;
 break;
 }
 case 4:
 {

152

 settablenum("NodeTable",Infrow,1,1*X_loc);
 settablenum("NodeTable",Infrow,2,(casein/noddiv)*Y_loc);
 settablenum("NodeTable",Infrow,3,(1/2)*Z_loc);

 settablenum("NodeTable",Infrow,4,temp_at(gettablenum("NodeTable",Infrow,1
),

 gettablenum("NodeTable",Infrow,2),

 gettablenum("NodeTable",Infrow,3)));
 settablenum("NodeTable",Infrow,5,1);
 casein++;
 break;
 }
 default:
 {
 break;
 }

 }
 if(fmod(Infrow,Infnodes/4)==0)
 {
 Infcase++;
 casein=1;
 }
}

settablesize("NNgrid",1,4);
treenode Optr=node("MAIN:/project/model/Operator");
setloc(Optr,0,0,0);

//Reset FFNodes Table//
settablesize("FFNodes",1,5);

//Fixed Temp location setting
treenode FixedT = reftable("FixedTemp");

settablenum(FixedT,1,1,0);
settablenum(FixedT,1,2,0);
settablenum(FixedT,1,1,Z_loc/2);
settablenum(FixedT,2,1,X_loc/2);
settablenum(FixedT,2,2,0);
settablenum(FixedT,2,3,0);
settablenum(FixedT,3,1,X_loc/2);
settablenum(FixedT,3,2,0);
settablenum(FixedT,3,3,Z_loc);
settablenum(FixedT,4,1,X_loc);
settablenum(FixedT,4,2,0);
settablenum(FixedT,4,3,Z_loc/2);
settablenum(FixedT,5,1,X_loc);
settablenum(FixedT,5,2,Y_loc/2);
settablenum(FixedT,5,3,0);

153

settablenum(FixedT,6,1,X_loc);
settablenum(FixedT,6,2,Y_loc/2);
settablenum(FixedT,6,3,Z_loc);
settablenum(FixedT,7,1,X_loc);
settablenum(FixedT,7,2,Y_loc);
settablenum(FixedT,7,3,Z_loc/2);
settablenum(FixedT,8,1,X_loc/2);
settablenum(FixedT,8,2,Y_loc);
settablenum(FixedT,8,3,0);
settablenum(FixedT,9,1,X_loc/2);
settablenum(FixedT,9,2,Y_loc);
settablenum(FixedT,9,3,Z_loc);
settablenum(FixedT,10,1,0);
settablenum(FixedT,10,2,Y_loc);
settablenum(FixedT,10,3,Z_loc/2);
settablenum(FixedT,11,1,0);
settablenum(FixedT,11,2,Y_loc/2);
settablenum(FixedT,11,3,0);
settablenum(FixedT,12,1,0);
settablenum(FixedT,12,2,Y_loc/2);
settablenum(FixedT,12,3,Z_loc);

forobjecttreeunder(node("VIEW:/1"))
{
repaintview(a);
}
repaintall();

//Generating Grid Table coords based on grid size and number of points required
double gridsize;
double locx;
double locy;
double locz;
int gridpoints=5;
treenode objectview=node("VIEW:/active/ortho",views());
if(objectexists(objectview))
{
 gridsize=getnodenum(gridx(objectview));
pf(gridsize);pr();
}
else
{
 gridsize=1;
}
treenode firstobject=node("MAIN:/project/model/Node1",model());
if(objectexists(firstobject))
{
 locx=xloc(firstobject);

A.2.3 Grid generation code in simulation

154

 locy=yloc(firstobject);
 locz=zloc(firstobject);
}
else
{
 locx=0;locy=0;locz=0;
}

int cols=gridpoints;
int rows=gridpoints;
//Coordinate phase change matrix
int numbox=gridpoints-1;
intarray phasechange=makearray(numbox);

for(int fcount=1;fcount<=numbox;fcount++)
{
 phasechange[fcount]=numbox*fcount-1;
}
//Fill total grid matrix
int totgridpoints=cols*rows;
//Create array to store temperature data
doublearray tempdata = makearray((cols+1)*(rows+1));

int pointcount=1;
for(int rowcount=1;rowcount<=rows;rowcount++)
{
 for(int colcount=1;colcount<=cols;colcount++)
 {
 settablenum("GridTable",pointcount,1,locx);
 settablenum("GridTable",pointcount,2,locy);
 settablenum("GridTable",pointcount,3,locz);

 settablenum("GridTable",pointcount,4,temp_at(gettablenum("GridTable",pointc
ount,1),

 gettablenum("GridTable",pointcount,2),

 gettablenum("GridTable",pointcount,3)
));
 locx=locx+gridsize;
 pointcount++;
 }
 locx=0;
 locy=locy+gridsize;
}

double x=parval(1);
double y=parval(2);
double z=parval(3);

A.2.4 Internal functions code

155

double dist;
double sum_Invdist;
double prod_DT;
double temp_Point;
int numtabrows=gettablerows("FixedTemp");
doublearray sq_dist_array=makearray(numtabrows);
doublearray inv_dist_array=makearray(numtabrows);

for(int j=1; j<=numtabrows;j++)
{
 if(gettablenum("FixedTemp",j,5)==1)
 {
 dist=sqrt(sqr(gettablenum("FixedTemp",j,1)-
x)+sqr(gettablenum("FixedTemp",j,2)-y)+sqr(gettablenum("FixedTemp",j,3)-z));
 sq_dist_array[j]=sqr(dist);
 if(dist==0)
 {
 inv_dist_array[j]=10000000;
 }
 else
 {
 inv_dist_array[j]=1/dist;
 }
 sum_Invdist=sum_Invdist+inv_dist_array[j];
 Gsum_Invdist=sum_Invdist;
 }
 else
 {
 dist=0;
 sq_dist_array[j]=sqr(dist);

 inv_dist_array[j]=0;
 sum_Invdist=sum_Invdist+inv_dist_array[j];
 Gsum_Invdist=sum_Invdist;

 }

}
//pf(Gsum_Invdist);pr();
doublearray weight_array=makearray(numtabrows);
for(int k=1;k<=numtabrows;k++)
{
 if(gettablenum("FixedTemp",k,5)==1)
 {
 weight_array[k]=inv_dist_array[k]/Gsum_Invdist;
 }
 else
 {
 weight_array[k]=inv_dist_array[k]/Gsum_Invdist;
 }

}

156

for(int l=1;l<=numtabrows;l++)
{
 if(gettablenum("FixedTemp",l,5)==1)
 {
 prod_DT=prod_DT+weight_array[l]*gettablenum("FixedTemp",l,4);
 }
 else
 {
 prod_DT=prod_DT+weight_array[l]*gettablenum("FixedTemp",l,4);
 }
}
return prod_DT;

treenode Snode=parnode(1);
int KNcount=parval(2);

double xi=xloc(Snode);
double yi=yloc(Snode);
double zi=zloc(Snode);

double Sdist;
double inv_dist;
double sum_Invdist;
double weight_node;
double TempVal;

treenode knode=node(">labels/knn",Snode);
int numlabelrows=content(knode);
int Rlabelrows;
for(int Vn=1;Vn<=numlabelrows;Vn++)
{
 if(getnodenum(rank(knode,Vn))>0)
 {
 Rlabelrows=Rlabelrows+1;
 }
 else
 {
 break;
 }
}

//Calculate denominator(sum of inverse distances) of weight function
for(int ji=1; ji<=KNcount;ji++)
{
 Sdist=getnodenum(rank(knode,ji));
 inv_dist=1/Sdist;
 sum_Invdist=sum_Invdist+inv_dist;

A.2.5 Nodes minimization approach

157

}

//Calculate weights for each node
doublearray weight_array=makearray(KNcount);
for(int ki=1;ki<=KNcount;ki++)
{
 Sdist=getnodenum(rank(knode,ki));
 inv_dist=1/Sdist;
 weight_array[ki]=inv_dist/sum_Invdist;
}

//Calculate estimated temperature at X,Y,Z
for(int li=1;li<=KNcount;li++)
{
 treenode Tnode=node(concat("/",getname(rank(knode,li))),model());
 double NodeTempVal=getlabelnum(Tnode,"Temperature");
 TempVal=TempVal+weight_array[li]*NodeTempVal;
}
return TempVal;

treenode current = ownerobject(c);
treenode view = parnode(1);

/**Update Node data*/
//Set the node Info...Temperature and Spatial data...
int nodes = 3;
string SNodeName=getname(current);
treenode SNodeTableRow=
node(concat("MAIN:/project/model/Tools/GlobalTables/NodesTable>variables/dat
a/",SNodeName));

//Set label status for Running/Redundant
setnodenum(rank(SNodeTableRow,5),getlabelnum(current,"status"));

treenode displaynodes = objectinfo(current);
while(nodes>content(displaynodes))
{
 nodeinsertinto(displaynodes);
}

while(nodes<content(displaynodes))
{
 destroyobject(last(displaynodes));
}

if(getlabelnum(current,"status")==1)
{
 setname(rank(displaynodes,1),concat("Status: ","Running"));

A.2.6 Portable nodes object’s update

158

 setcolor(current,0,0,255);
}
else
{
 setname(rank(displaynodes,1),concat("Status: ","Stopped"));
 setcolor(current,255,0,0);
}

setname(rank(displaynodes,2),concat("Temp:
",numtostring(getlabelnum(current,"Temperature"),0,2)));
setname(rank(displaynodes,3),concat("X:",numtostring(xloc(current),0,2)," ",

 "Y:",numtostring(yloc(current),0,2)," ",

 "Z:",numtostring(zloc(current),0,2)
));

double x_grid=0;
double y_grid=0.5;
double gridcount=1/y_grid;
drawtomodelscale(current);

glBegin(GL_LINES);
double xs=x_grid;
double ys=y_grid;
double ks=0;

for(int k=0;k<=4;k++)
{
 for(int j=1;j<=4;j++)
 {
 glColor3d(color_at(gettablenum("GridTable",1,4),1),color_at(gettablenum("Gri
dTable",2,4),2),color_at(gettablenum("GridTable",3,4),3));

 glVertex3d(xs,0,-ks);
 glVertex3d(ys,0,-ks);
 glVertex3d(ys,0,-ks-y_grid);
 glVertex3d(xs,0,-ks-y_grid);
 xs=xs+y_grid;
 ys=ys+y_grid;
 }
 xs=x_grid;
 ys=y_grid;
 ks=k*ys;
}
glEnd();

159

A.3 GUI for Nodes Minimization

A.4 GUI for Setup Scenarios

