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Data Warehouses are widely used for supporting decision making. On Line Analytical 
Processing or OLAP is the main vehicle for querying data warehouses. OLAP operations 
commonly involve the computation of multidimensional aggregates. The major bottleneck in 
computing these aggregates is the large volume of data that needs to be processed which in turn 
leads to prohibitively expensive query execution times. On the other hand, Data Analysts are 
primarily concerned with discerning trends in the data and thus a system that provides 
approximate answers in a timely fashion would suit their requirements better. 
 
In this chapter we present the Prime Factor scheme, a novel method for compressing data in a 
warehouse. Our data compression method is based on aggregating data on each dimension of the 
data warehouse.  
 
Extensive experimentation on both real-world and synthetic data have shown that it outperforms 
the Haar Wavelet scheme with respect to both decoding time and error rate, while maintaining 
comparable compression ratios (Pears and Houliston, 2007). One encouraging feature is the 
stability of the error rate when compared to the Haar Wavelet. Although Wavelets have been 
shown to be effective at compressing data, the approximate answers they provide varies widely, 
even for identical types of queries on nearly identical values in distinct parts of the data. This 
problem has been attributed to the thresholding technique used to reduce the size of the encoded 
data and is an integral part of the Wavelet compression scheme. In contrast the Prime Factor 
scheme does not rely on thresholding but keeps a smaller version of every data element from the 
original data and is thus able to achieve a much higher degree of error stability which is 
important from a Data Analysts point of view.  
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INTRODUCTION 
 
Data Warehouses are increasingly being used by decision makers to analyze trends in data 
(Cunningham, Song and Chen, 2006, Elmasri and Navathe, 2003). Thus a marketing analyst is 
able to track variation in sales income across dimensions such as time period, location, and 
product on their own or in combination with each other. This analysis requires the processing of 
multi-dimensional aggregates and group by operations against the underlying data warehouse. 
Due to the large volumes of data that need to be scanned from secondary storage, such queries, 
referred to as On Line Analytical Processing (OLAP) queries, can take from minutes to hours in 
large scale data warehouses (Elmasri, 2003, Oracle 9i).   
 
The standard technique for improving query performance is to build aggregate tables that are 
targeted at known queries (Triantafillakis, Kanellis, and Martakos 2004; Elmasri, 2003). For 
example the identification of the  top ten selling products can be speeded up by building a 
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summary table that contains the total sales value (in dollar terms) for each of the products sorted 
in decreasing order of  sales value. It would then be a simple matter of querying the summary 
table and retrieving the first ten rows. The main problem with this approach is the lack of 
flexibility. If the analyst now chooses to identify the bottom ten products an expensive re-sort 
would have to be performed to answer this new query. Worst still, if the information is to be 
tracked by sales location then the summary table would be of no value at all. This problem is 
symptomatic of a more general one where Database Systems which have been tuned for a 
particular access pattern perform poorly as changes to such patterns occur over a period of time. 
In their study (Zhen and Darmont, 2005) showed that database systems which have been 
optimized through clustering to suit particular query patterns rapidly degrade in performance 
when such query patterns change in nature. 
 
The limitations in the above approach can be addressed by a data compression scheme that 
preserves the original structure of the data. The chapter is organized as follows. In the next 
section we review related work. The next section introduces the Prime Factor Compression (PFC) 
approach. We then present the algorithms required for encoding and decoding with the PFC 
approach. The On Line reconstruction of Queries is discussed thereafter. Implementation related 
issues are then discussed, followed by a performance evaluation of PFC and a comparison with 
the Haar Wavelet algorithm. We then discuss future trends in optimizing multi-dimensional 
queries in the light of the results of this research. We conclude with a summary of the main 
achievements of the research.  
 
BACKGROUND 

Previous research has tended to concentrate on computing exact answers to OLAP queries (Ho, 
and Agrawal, 1997, Wang 2002). Ho describes a method that pre-processes a data cube to give a 
prefix sum cube. The prefix sum cube is computed by applying the transformation: 
P[Ai]=C[Ai]+P[Ai-1] along each dimension of the data cube, where P denotes the prefix sum 
cube, C the original data cube, Ai denotes an element in the cube, and i is an index in a range 
1..Di (Di is the size of the dimension Di). This means that the prefix cube requires the same 
storage space as the original data cube.  
 
The above approach is efficient for low dimensional data cubes. For high dimensional 
environments, two major problems exist. Firstly, the number of accesses required is d2 (Ho et al, 
1997), which can be prohibitive for large values of d (where d denotes the number of 
dimensions). Secondly, the storage required to store the prefix sum cube can be excessive. In a 
typical OLAP environment the data tends to be massive and yet sparse at the same time. The 
degree of sparsity increases with the number of dimensions (OLAP) and thus the number of non 
zero cells may be a very small fraction of the prefix sum cube, which by its nature has to be dense 
for its query processing algorithms to work correctly. 
 
Another exact technique is the Dwarf cube method (Sismannis and Deligiannakis, 2002) which 
seeks to eliminate structural redundancies and factor them out by coalescing their store. Pre-fix 
redundancy arises when the fact table contains a group of tuples having a prefix of redundant 
values for its dimension attributes. On the other hand, suffix redundancy occurs when groups of 
tuples contain a suffix of redundant values for its dimension attributes. Elimination of these 
redundancies has been shown to be effective for dense cubes. Unfortunately, in the case of sparse 
cubes with a large number of dimensions the size of the fact table can actually increase in size 
(Sismannis et al, 2002), thus providing no gains in storage efficiency. 
 



In contrast to exact methods, approximate methods attempt to strike a good balance between the 
degree of compression and accuracy. Query performance is enhanced by storing a compact 
version of the data cube. A histogram based approach was used by (Matias and Vitter, 1998), 
(Poosala and Gnati, 1999), (Vitter et al, 1998), to summarize the data cube. However, histograms 
too suffer from the curse of high dimensionality, with both space and time complexity increasing 
exponentially with the number of dimensions (Matias et al, 1998). 
 
The Progressive Approximate Aggregate approach (Lazaridis and Mehrotra, 2001) uses a tree 
structure to speed up the computation of aggregates. Aggregates are computed by identifying tree 
nodes that intersect the query region and then accumulating their values incrementally. All tree 
nodes that are fully contained in the query region provide an exact contribution to the query 
result, whereas nodes that have a partial intersection provide an estimate. This estimation is based 
on an assumption of spatial uniformity of attribute values across the underlying data cube. In 
practice this assumption may be invalid as with the case of the real-world data (US Census) that 
we experimented with in our study. In contrast, our method makes no such assumptions on the 
shape of the source data distribution. Another issue with the above scheme is that it has a worst 
case run time performance that is linear in the number of data elements covered by the query, as 
observed by (Chen and Chen, 2003). This has negative implications for queries that span a large 
fraction of the underlying data cube, particularly since compression is not utilized to store source 
data. 
 
Sampling is another approach that has been used to speed up aggregate processing. Essentially, a 
small random sample of the database is selected and the aggregate is computed on this sample. 
The sampling operation can be done off-line, whereby the sample is extracted from the database 
and all queries are run on this single extracted sample. On the other hand, in on-line sampling 
data is read randomly from the database each time a query is executed and the aggregate 
computed on the dynamically generated sample (Hellerstein et al, 1996). The very nature of 
sampling makes it very efficient in terms of run time, but its accuracy has been shown to be a 
limiting factor in its widespread adoption (Vitter and Wang, 1999). 
 
Vitter et al, use the wavelet technique to transform the data cube into a compact form. It is 
essentially a data compression technique that transforms the original data cube into a Wavelet 
Transform Array (WTA) which is a fraction of the size of the original data cube. In their research 
Matias et al show that wavelets are superior to the histogram based methods, both in terms of 
accuracy and storage efficiency. Wavelets have also been shown to provide good compression 
with sparse data cubes, unlike the Dwarf compression method. 
 
Given the wavelet’s superior performance over its rivals and the fact that it is an approximate 
technique, it was an ideal choice for comparison against our Prime Factor scheme which is also 
approximate in nature. The next section provides a brief overview of the encoding and decoding 
procedures used in wavelet data compression. 
 
In principle, any data compression scheme can be applied on a data warehouse For example, a 3-
dimensional warehouse that tracks sales by time period, location and products can be compressed 
along all three dimensions and then stored in the form of “chunks” (Sarawagi and Stonebraker, 
1994). Chunking is a technique that is used to partition a d-dimensional array into smaller d-
dimensional units.  
 
However a high compression ratio is needed to offset the potentially huge secondary storage 
access times. This effectively ruled out standard compression techniques such as Huffman 
Coding (Cormack, 1985), LZW and its variants (Lempel and Ziv, 1977; Hunt 1998) as well as 



Arithmetic Coding (Langdon, 1984). These schemes enable decoding to the original data with 
100% accuracy, but suffer from modest compression ratios (Ng and Ravishankar, 1997). On the 
other hand the trends analysis nature of decision making means that query results do not need to 
reflect 100% accuracy. For example, during a drill-down query sequence in ad-hoc data mining, 
initial queries in the sequence usually determine the truly interesting queries and regions of the 
database. Providing approximate, yet reasonably accurate answers to these initial queries gives 
users the ability to focus their explorations quickly and effectively, without consuming inordinate 
amounts of valuable system resources (Hellerstein, Haas and Wang, 1997). 
  
This means that lossy schemes which exhibit relatively high compression and near 100% 
accuracy would be the ideal solution to achieving acceptable performance for OLAP queries. 
This chapter investigates and presents the performance of a novel scheme, called Prime Factor 
Compression (PFC) and compares it against the well known Wavelet approach (Vitter and Wang, 
1998; Vitter and Wang 1999, Chakrabarti and Garofalakis, 2000). Recent results have indicated 
that the Prime Factor Compression scheme outperforms the Wavelet scheme in terms of error 
stability, maintaining a very low and virtually constant level of accuracy irrespective of the size 
of the query (Pears and Houliston, 2007). This is in marked contrast to the Wavelet scheme 
which exhibits large swings in accuracy with varying query size. This problem has been 
attributed to the thresholding technique used to reduce the size of the encoded data (Garofalakis 
and Gibbons, 2004) and is an integral part of the Wavelet compression scheme. The Prime Factor 
scheme, on the other hand does not rely on thresholding but keeps a smaller version of every data 
element from the original data and is thus able to achieve a much higher degree of error stability 
which is important from a Data Analysts point of view.  
 
In this chapter we provide a fuller exploration of the PFC scheme, including detailed results on 
various different types of datasets and a formal evaluation of its performance on sparse data.  
 
Wavelet Data Compression Scheme 

The Wavelet scheme compresses by transforming the source data into a representation (the 
Wavelet Transform Array or WTA) that contains a large number of zero or near-zero values. The 
transformation uses a series of averaging operations that operate on each pair of neighboring 
source data elements. In this manner the original data is transformed into a data set (the Level 1 
transform set) that contains the averages of pairs of elements from the original data set.  The pair-
wise averaging process is then applied recursively on the Level 1 transform set. The process 
continues in this manner until the size of the transformed set is equal to 1. In order to be able to 
reconstruct the original data the pair-wise differences between neighbors is kept in addition to the 
average. The WTA array then consists of all pair-wise averages and differences accumulated 
across all levels.  
 
A thresholding function is then applied on the WTA to remove a large fraction of array elements 
which are small in value. The thresholding function applies a weighting scheme on the WTA 
elements as those elements at the higher levels play a more significant role in reconstruction than 
their counterparts at the lower levels. For details of the wavelet encoding and decoding 
techniques the reader is referred to (Vitter et al, 1999).  
 
Wavelet Decoding 
 
The decoding process reconstructs the original data by using the truncated version of the WTA. 
The decoding process is best illustrated with the following example. Figure 1 shows how the 



coefficients of the original array are reconstructed from the WTA (the C coefficients hold the 
original array while the S coefficients hold the WTA). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Figure 1: The Wavelet Reconstruction Process 
 
Any coefficient C(i) is reconstructed by using its ancestor S coefficients in the path from the root 
node to itself. Thus for example, C(0) = S(0) +S(1)+S(2) +S(4) and C(1) = S(0)+S(1)+S(2)-S(4). 
 
 Consider a scenario where S(4), although relatively large in comparison to S(0), S(1) and S(2),  
is thresholded out due to its lower weighting, thus leading to inaccuracies in the estimation of 
C(0) and C(1). This is symptomatic of the general case where the lower level coefficients are 
significant contributors to the reconstruction process but are thresholded out to make way for 
their more highly weighted ancestor coefficients. The problem is especially acute in the case of 
data that is both skewed and have a high degree of variability. 
 
THE PRIME FACTOR SCHEME 
 
In response to the problems associated with wavelets, we present the “Prime factor Scheme”. The 
scheme works broadly on the same lines as the Wavelet technique in the sense that data 
compression is used to reduce the size of the data cube prior to processing of OLAP queries. 
OLAP queries are run on the compressed data, which is decoded to yield an approximate answer 
to the query.   
 
Our encoding scheme uses pre-processing to reduce the degree of variation in the source data 
which results in better compression. An overview of the encoding process is given in the 
following section. 
 
Overview of Prime Factor Encoding Scheme 
 
The data is first scaled using the standard min-max scaling technique . With this technique, any 
value V in the original cube is transformed into V’, where V’ =(V-min)*(nmax-nmin)/(max-
min)+nmin, where min, max represent the minimum and maximum values respectively in the 
original data cube; nmin and nmax are the corresponding minimum and maximum values of the 
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scaled set of values. Each scaled value V’ is then approximated by its nearest prime number in 
the scale range [nmin, nmax]. 
 
The choice of nmin and nmax influences both the degree of compression and the error rate as we 
shall show later in the “Experimental Setup” section. The rationale behind the scaling is to induce 
a higher degree of homogeneity between values by compressing the original scale [min, max] 
into a smaller scale [nmin, nmax], with nmin ≥  min and nmax < max. In doing so, this pre-
processing step improves the degree of compression.  
 
The scaled data cube is then partitioned into equal sized chunks.  The size of the chunk c 
represents the number of cells that are enclosed by the chunk. The size of the chunk affects the 
decoding (query processing) time. Higher values mean fewer chunks need to be decoded, thus 
reducing the decoding time (see Theorem 3 in the section on “On line Reconstruction of 
Queries”).  
 
Each chunk is encoded by the prime factor encoding algorithm which yields an array containing 
2c cells. Although the encoded version has twice the number of cells it is much smaller in size 
since each cell is very small in numerical value.  In fact, our experimental results reveal that the 
vast majority of values are very small integers (see Figures 13a and 13b in the “Experimental 
Setup” section). Figure 2 below summarizes the Prime Factor encoding process. 
 
In addition to transforming values to very small integers, the other major benefit of the algorithm 
is that the integers are highly skewed in value towards zero. For example, on the Census data set 
(US Census) with a chunk size of 64, over 75% of the values turned out to be zero. These results 
were also borne out with the synthetic data sets that we tested our scheme on. The source 
(original) data in some of these data sets were not skewed in nature, showing that the skew was 
induced, rather than being an inherent feature of the original data. 
 
 
 
 
 
 
 
 
 
 
 
 
                                                    Figure 2: Overview of the Prime Factor Scheme 
 
We exploited the skewed nature of the encoded data by using the Elias variable length coding 
scheme (Elias, 1975). Elias encoding works by encoding smaller integers in a smaller number of 
bits, thus further improving the degree of compression. 
 
The next section will describe the details involved in step 3 of the above process, the PFC 
encoding algorithm. 
 
The Prime Factor Encoding Algorithm 
 
The algorithm takes as its input the scaled set of values produced by the min-max scaling 
technique. For each chunk, every scaled value is converted into the prime number that is closest 
to it. We refer to each such prime number as a prime factor. The algorithm makes use of two 
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operators which we define below. Both operators α and β take as their input a pair of prime 
factors Vk and Vk+1.  
 
Definition 1: The operator α is defined by α(Vk ,V k+1) =   nearest prime (Vk +V k+1  +I(V k+1)- 
I(Vk)), where I(V k+1),  I(Vk) denote the ordinal (index) positions of V k+1 and Vk  on the prime 
number scale. The operator takes two primes (Vk ,V k+1)  adds them together with the difference 
in index positions between the 2nd prime and the 1st prime and converts the sum obtained to the 
nearest prime number. 
Definition 2: The operator β is defined by β(Vk ,V k+1) =   nearest prime(Vk +V k+1 ) 
 
The α operator is applied pair-wise across all values (a total of c prime factors) in the chunk. This 
yields a stream of c/2 prime factors. The α operator is then applied recursively on the processed 
stream until a single prime factor is obtained. This recursive procedure gives rise to a tree of 
height log2c where c is the chunk size. We refer to this tree as the Prime Index Tree.   
In parallel with the construction of the prime index tree we construct another tree, called the 
Prime Tree. The prime tree is constructed in the same manner as its prime index counterpart 
except that we apply the β operator, instead of the α operator.  
 
We illustrate the construction of the trees with the help of the following example.  For the sake of 
simplicity we take the cube to be of size 4, the chunk size c to be 4 (i.e. we have only one chunk) 
and the scale range [nmin, nmax] to be [0, 101]. 
 
 
 
 
 
 
 
 
 
 
 
 
Figu 
 
Figure 3a: The construction of the Prime Index Tree           Figure 3b: The construction of the Prime Tree  
 
For the prime index tree (Figure 3a), the prime values 37 and 2 at the leaf level are summed as 
37+2+I(2)-I(37), which is transformed to its nearest prime number, 29. Similarly 71 and 97 when 
processed yield the prime number, 173. The node values 29 and 173 in turn yield a root value of 
233.  
 
As shown in Figure 3b, the leaf values 37 and 2 when summed and converted into its nearest 
prime yields a value of 37. Following the same process, we obtain values of 167 and 199 for the 
remaining nodes.  
 
We annotate each internal node by its corresponding index value. The encoded array E now 
consists of the differences in index positions across corresponding positions in the two trees. 
These differences are referred to as differentials. For the example above the array turns out to be 
E = {5, -2, 1}. We also store the index value of each prime tree root separately in another array R.  
Each chunk gives rise to its own prime tree root, and for the simple example above, since we 
have only one chunk, this results in a single value {47} for R. 
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Decoding requires the use of the two arrays E and R. We start with the first value in array R, 
which is 47, and then add it to the first value in array E which is 5, yielding the value 52. We use 
52 as an index into a table of primes (this table has the pseudo prime 0 added to it with index 
value 0) and extract 233 as the corresponding prime value. We now search for pairs of primes 
(P1, P2) which satisfy the condition:  
α(P1, P2) = 233, β(P3, P4) = 199, I(P3) = I(P1+2) and I(P4) = I(P2-1)  --------(1), where P3, P4 are the 
corresponding nodes to P1, P2 in the prime tree        
 
This search in general would yield a set S of candidate pairs for (P1, P2) rather than a single pair. 
In order to extract the correct pair, we associate an integer with each internal node of the Prime 
Index tree which records the ordinal position within the set S which would enable us to descend 
to the next level of the tree. In this case this integer turns out to be 0 since there is only one pair 
that satisfies condition (1).  These integers are collectively referred to as offsets. The complete set 
of offsets for the tree above is {0, 0, 0}. The complete version of E contains the sequence of 
differentials followed by the sequence of offsets. Thus for our example we have E = {5,2,-
1,0,0,0}. We are now able to decode by descending both trees in parallel and recover the original 
set of leaf values 37, 2, 71 and 97. 
 
For ease of understanding, the encoding process above has been described for a 1-d dimensional 
case. The extension to d dimensions follows naturally by encoding along each dimension in 
sequence. For example, if we have a 2 dimensional cube <D1, D2 > we would first construct 2- 
dimensional chunks. With a chunk size of 16 and the use of equal width across each dimension, 
each chunk would consist of a 4 by 4 2-d array. We first run the encoding process across 
dimension D1. This would yield a 1-dimensional array consisting of 4 prime root values for each 
chunk. The differentials and offsets that result from this encoding are stored in a temporary 
cache. The 4 prime root values from encoding on D1 are then subjected to the encoding process 
across dimension D2 to yield the final encoding. The differentials and offsets that result from 
encoding along D2 are merged with those from encoding along dimension D1 to yield the final set 
of encoded values. 
 
Encoding Performance 
 
The encoding takes place in four steps as given in Figure 2. Steps 1 and 2, involving scaling and 
chunking can be done together. As data is read it can be scaled on the fly with the chunking 
process. If the original data is stored in dimension order (D1, D2, ……Dd) with the rightmost 
indices changing more rapidly, then it can be shown the I/O complexity involved in chunking is 















B
Nlog

B
NO

B
M , where M is the available memory size and B is the block size of the underlying 

database system. The reader is referred to [Vitter 1999] for a proof. The I/O complexity of steps 3 

and 4 is 







B
NO . Thus the I/O complexity is bounded by the 















B
Nlog

B
NO

B
M term required for the 

chunking step.  
 
However it should be noted that this only reflects a one time cost in reorganizing the data from 
dimension order to chunked format. Once this is done, no further chunking is required as updates 
to values do not affect the chunk structure. Thus the time complexity on a regular basis would be 
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either grow or shrink as a result. This would require repetition of the chunking step. 
 



 
 
 
The Rationale behind the Prime Factor Scheme 
 
Prime numbers provide us with a natural way of constraining the search space since they are 
much less dense than ordinary integers. The first 100 positive integers are distributed across only 
25 primes. At the same time the primes themselves become less dense as we move up the integer 
scale (Andrews, 1994). The next 900 positive integers after 100 only contain 143 primes. This 
means that the prime number encoding technique has good scalability with respect to data value 
size. From the error point of view the use of primes introduces only small errors as it is possible 
to find a prime in close neighborhood to any given integer (Andrews, 1994). Theorem 1 below 
gives the distribution of primes in the general case. 
 
Theorem 1 
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Proof: The reader is referred to (Andrews, 1994) for a proof. 
Theorem 1 reinforces the observations made above. Firstly, the division by the logarithm term 
ensures that the primes are less dense that ordinary integers. Secondly, the average gap between a 
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average. These properties make prime numbers an attractive building block for encoding 
numerical data. 
 
The basic idea that we utilize is to convert a stream of primes into a single prime, the Prime Tree 
root value  by a series of pair wise add operations. We then augment the root value with a set of 
coefficients to enable us to decode. The use of prime numbers enables us to drastically reduce the 
search space involved in decoding and as a consequence reduce the space required to store the 
encoded data. As an example consider the prime root value of 29. In order to decode (assuming 
that we simply use the Prime Tree) to the next level we have to consider just eight combinations 
(5,23), (23,5), (7,23), (23,7), (11,19), (19,11) , (13, 17) and (17,13). On the other hand if prime 
numbers were not used as the basis, then we would have a total of 30 combinations to consider – 
in general, if N were the prime root, then N+1 combinations would have to be tested.   
 
The use of the Prime Index tree in conjunction with the Prime Tree enables us to constrain the 
search space even further. With the introduction of the former we are able to distinguish between 
pairs such as (5,23) and (23,5). The pair (5,23) encodes as 31 in the Prime Index tree and 29 in 
the Prime tree, whereas (23,5) encodes as 23 in the Prime Index tree and 29 in the Prime tree. 
Apart from this, the other major benefit of growing two trees instead of one is that we can encode 
taking the differentials between corresponding nodes across the two trees rather than node values 
themselves. Since the two trees evolve from a common set of leaf values, the α and β operators 
evaluate to approximately the same values which in turn causes the differentials to be much 
smaller than the node values themselves (see Figure 13a in the “Experimental Setup” section). 
 



Comparison of the Wavelet and Prime Factor Schemes 
 
The wavelet and prime factor schemes both use the concept of reducing the original data to 
differentials between progressively increasing sub sets. However one major difference is that that 
the Wavelet scheme uses thresholding to drop some of the differentials. As noted before, this 
makes it unstable with respect to the error rate (Garofalakis and  Gibbons, 2004) and this is 
confirmed by our results which we present later. In contrast, the Prime Factor scheme does not 
use thresholding but exploits the skew induced by the prime factor transformation to encode the 
resulting coefficients using an Elias code. This means that every value in the original data set is 
represented in the encoded version which results in much greater stability over the Wavelet 
scheme. 
 
Another major difference is that the encoded data in the Wavelet scheme are represented as 
relational tuples in the form <i1, i2, …id, c> where each ik (in the range 1 to d) identifies the index 
position within dimension k in which the surviving coefficient with value c is located. For large 
values of d, the degree of compression obtained can degrade quite severely as each index takes up 
additional storage. In contrast, the Prime Factor scheme does not require any such indexes as 
thresholding is not used and thus we would expect it to have relatively better compression for 
high dimensionality data. 
 
The Prime Factor scheme also copes well in the case of sparse data. All zero values in the 
original data will scale to 0 with the scaling scheme that we use. Let us consider an example 
where we have a run of six zero’s followed by the primes 101 and 61 in the scaled data set and 
suppose that we use a chunk size of 8. Since we have extended the prime number set to include 
the pseudo prime 0, the 0 values encode to 0 and this results in a left prefix tree where we have 
non-zero values preceded by a run of zero values. Figures 4a and 4b below show the resulting 
trees. 
 
 
  
 

 
 
 
 
 
 
 
  
 
 

Figure 4a:  Left Prefix Prime Index Tree           Figure 4b: Left Prefix Prime Tree 
 
 
Similarly, when the original data stream consists of a sequence of non zero values followed by a 
run of zero values, we obtain a right prefix tree after encoding, where a non zero internal node 
has a zero valued node as its sibling in each of the Prime Index and Prime trees. 
 
The left and right prefix trees can be “collapsed” and stored compactly as indicated by the 
following Lemma and Theorem 2. 
 
Lemma 1 If β(P1, P2) = 0, then we must have P1+P2=0.  
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Proof: From the definition of β, we have β(P1, P2) = P1+P2+s = 0  -------(1), where s is an integer 
that rounds the sum of P1+P2 to the nearest prime factor. Suppose that s ≠ 0. We now consider 
two cases, s>0 and s<0. 
 
Case 1 s<0. Since s<0, it follows that P1+P2<1------(2), otherwise, it will be impossible to round 
the sum of P1+P2 to 0. We also have P1+P2≥0 -----(3) since P1≥0, P2≥0. From (2) and (3) it 
follows that P1+P2=0. 
 
Case 2 s>0.  The proof is similar to Case 1 above.   
 
Since s >0, the only way that we can satisfy (1) is for P1+P2≤0 ---(4), in order to have any chance 
of rounding to 0.  
 
From (3) and (4) it follows that P1+P2=0. 
 
Theorem 2 If in a left prefix or right prefix tree a given node encodes to zero, then it follows that 
the entire sub tree under that node and its associated leaf values must be zero valued. 
 
Proof: We use the proof by contradiction method as a proof sketch. We start with a pair of leaf 
nodes having values P1 and P2. Suppose that P1≠0, P2≠0. Foe the prime index tree, we have    
α(P1, P2) = P1+P2+I(P2)-I(P1)+r =0 ---------(5), where r is an integer that rounds the value of the 
sum of the preceding terms to the nearest prime factor.   
 
From Lemma 1 we have P1+P2=0. Substituting this in (5), we have α(P1, P2) = I(P2)-I(P1)+r =0. 
Thus I(P1)=I(P2)+r. Thus, if r>0, we have I(P1)>I(P2), which in turn means that P1>P2. With 
P1>P2 and P1, P2≥0, we have P1+P2>0, which leads to a contradiction. Similarly, with r<0, we 
have P2>P1, which again leads to P1+P2>0. Thus, in either case, our original assumption of P1≠0, 
P2≠0 must be in error and we have P1=0 and P2=0. A similar proof holds for the prime tree. 
 
This means that any node with a value of 0 must give rise to a pair of zero valued child nodes 
(this is true of both the Prime Index and Prime trees). Each of these zero valued child nodes in 
turn will yield children who have zero valued. This completes the proof sketch. 
 
We now return to the example in Figures 4a and 4b. In Figure 4a we can collapse the tree by 
pruning all branches for the sub trees rooted at nodes N1 and N2. This means that we only need to 
store a total of six coefficients, made up of 3 differentials and 3 offsets (as opposed to a total of 
14 for the non-sparse case). 
 
Thus it can be seen that the Prime Factor scheme adapts to a sparse data set without the need to 
keep explicit indexes to keep track of the zero values in the data set. 
 
Encoding Error Rate for the Prime Factor Algorithm 
 
In this section we present a formal analysis for the average relative error involved in decoding 
with the Prime Factor scheme. Theorem 2 below quantifies this error rate. 
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Proof Sketch:  
 
Consider the Prime tree given in Figure 5 below with chunk size 8. 
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Thus it can be seen that a parent node’s value is given by the sum of the values of the leaf node 
values that can be reached by the parent node plus the error terms at the intermediate node levels.  
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The above result captures the relationship between the error rate, chunk size and scale range. As 
the chunk size increases, the error rate grows as a log function. This is shown visually in Figure 
11b, whereby the average error rate increases sub linearly with respect to increasing chunk size.   
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ON LINE RECONSTRUCTION OF QUERIES 
 
In this section we examine how multi-dimensional range sum queries are answered with the 
Prime Factor scheme. These queries are of the form: 
 
{li≤Di≤hi| li, hi ∈ {0,1,……, │ Di│-1}, hi= li+∆i}, where ∆i is a positive integer. 
 
We will first derive an expression for the time complexity involved in answering a 1-dimensional 
query as some of the concepts involved are shared with the general the n-dimensional case. 
 



Answering One Dimensional Range Sum Queries 
 
In this case we need to consider three regions R1, R2 and R3 as shown in Figure 6 below. The 
query requires the sum of all elements in the 1-dimensional cube which are in the range [l1, h1], 
with l1= 22 and h1=690. The bulk of the query resides in region R2 (the shaded region) which is 
aligned with the chunk structure. The sum across this region can be answered very efficiently by 
taking the sum of the root values for the chunks that span this region, thus avoiding the need for 
decoding across a large portion of the query. Since each of these values corresponds to the root 
associated with the Prime tree they are a close approximation to the sum contained within a 
chunk.   
 
 
 
 
 
                                  Figure 6 Decoding and answering a 1 dimensional query 
 
Furthermore, with a large enough chunk size we would expect that the root values comprise a 
very small fraction of the size of the original cube and thus be either held in memory or stored on 
a small number of blocks on secondary storage (with a chunk size of 256 for example, these root 
values comprise just 1/256 of the number of elements within the original cube). Note that this is 
true irrespective of the dimensionality of the query or that of the cube.  
 
The only decoding that is necessary is for the two chunks at the “ends” of the query, i.e. regions 
R1 and R3. Thus it can be seen that the chunking has helped to minimize the effort involved in 
decoding. It is also important to note that the decoding effort is dependent on the dimensionality 
of the query involved and not on the dimensionality of the cube. For example, for a query such as 
[l3, h3] (say with l3 = 22 and h3 = 690) on dimension 3 of a 5-dimensional cube, the number of 
chunks to be decoded is still 2 since we only need to consider the one dimensional slice along 
dimension 3 which is aggregated across dimensions 1, 2, 4 and 5. Again, this observation holds 
for the general case as well. However, the amount of effort (in terms of the number of chunks to 
be decoded) involved will depend on the dimensionality of the query as we shall see in the next 
section. 
 
In the next section we will present an expression for the general case, involving queries on n 
dimensions. 
 
The n-Dimensional Case 
 
Suppose that the query spans n dimensions. On each of these dimensions we can define three 
regions, the two regions at the ends of the query and the “middle” region which is aligned with 
the chunk structure. This leads to a total of n3 regions. Out of these the majority of the query is 
aligned with the chunk structure in a single contiguous region in n-dimensional space, thus 
requiring decoding across 13 −n regions. Each of these regions is on a boundary of the query in n-
dimensional space and thus tends to be small in size. Theorem 4 below quantifies the amount of 
decoding effort involved in the general case. 
 
Theorem 4 The total number of chunks to be decoded for an n-dimensional query is  
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Proof Sketch:  We will first consider the regions on the “corners” of the cube defined by the 
query. There are n2  such corners. Each of these corner regions are contained in exactly one 
chunk. This leaves a total of 1)n2n(3 −−  regions, occurring along n dimensions. Each of these 
regions along dimension i will span 2)(di −  chunks, since 2 of the total number comprises the 

corner chunks. Thus the total number of these chunks is ∑
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must add the n2  corner regions. This completes the proof. 
 
 
 
 
 
 
 
 
 
 
 
 
          
            Figure 7a: The Region aligned with                                       Figure 7b: Regions bounded 
                             the chunk structure                                                                    by a 2-dimensional query 
 
Figures 7a and 7b provide a geometrical explanation for the 2D case. Figure 7a illustrates the 
region that requires no decoding, and it can be seen that it covers the bulk of the query space. 
Figure 7b gives a complete breakdown of regions bounded by the query. The region R7 
corresponds to the shaded region in Figure 7a; R1, R2, R3, R4 represent the four corner regions 
that each require decoding a single chunk; the regions R5, R6, R8 and R9 in general span larger 
regions containing multiple chunks that require decoding. 
 
Theorem 5 For a given query dimensionality n, the chunking scheme improves decoding 

efficiency by a minimum factor of 
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Proof Sketch: Follows from Theorem 4 above and the fact that an n-dimensional query requires 
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1i id  chunks if aggregate sums (prime tree root values) are not stored at chunk level.  

 
IMPLEMENTATION CONSIDERATIONS 
 
In this section we will provide a brief overview of the implementation of some of the major 
components of PFC.  The system was implemented entirely in Java. We made use of a table of 
prime numbers (Alfeld) readily available from the Web. All other functionality was custom built.  
 
Encoding 
 
The three main functions that were used extensively with respect to encoding were 
Find_Nearest_Prime(N), Evaluate_Alpha(N, M) and Evaluate_Beta(N, M). The 
Find_Nearest_Prime(N) function was fairly straightforward to implement as the use of the prime 
table meant that the complexity of testing for primes was avoided. The other two functions, 
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Evaluate_Alpha(N, M) and Evaluate_Beta(N, M), formed the core of the PFC scheme and were 
used to build the Prime Index and Prime Trees respectively. These functions essentially took two 
prime numbers as their arguments and converted their sum to the nearest prime number (the 
Evaluate_Alpha function also added a component that involved the difference in index positions 
between the two given primes). Thus these two functions were quite straightforward to 
implement as well, as they only involved simple computations.  
 
Decoding 
 
With respect to decoding there were two cases to consider. The first case involved chunks that 
required no recovery of the individual leaf nodes within the chunk. This case covers a large 
fraction of the chunks involved in a query, as quantified by Theorem 4. For these chunks all that 
was required was extraction of the prime tree root value and subsequent re-scaling to transform 
the value back to the original source data scale range.  
 
The second case involved chunks that required actual decoding and this was accomplished 
through a function, Descend_Prime_Tree(N), that was used to descend one level down the Prime 
Tree. Basically, this function took a prime number denoting the ancestor node in the 
corresponding tree as its argument, and then returned a set containing pairs of primes that were 
candidates for the child nodes.  We used a heuristic to speed up the generation of these candidate 
sets. For a given ancestor node, with prime value N, we extracted the prime number M that is 
nearest to N/2 .  The pair (M, M) is guaranteed to be a candidate for the Prime Tree child nodes. 
This pair was used as a starting point for the generation of the rest of the pairs. Figure 8 below 
illustrates the algorithm used for generating the Prime Tree candidate set.  
 
             
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to further speed up the process of decoding we cached the prime pairs for a given integer 
N. The decoding process benefits from such a cache as prime tree nodes with a given value N are 
likely to recur many times across different chunks. In such cases, the process of generating prime 
pairs is reduced to a fast in-memory table lookup. Our experiments show that this cache occupied 
less than 1% of the storage of the original source data.  

Descend_Prime_Tree (N) 
{ 
     C={}; 
     ( )  ; N/2  = imenearest_prM  
     C = C ∪ {(M, M)}; 
      Indx = I(M);                 // the index value of prime M 
      U = M;  
      L = nearest_prime(P[Indx-1]);          // the largest prime less than M 
      while (L ≤ nmin and U ≥ nmax)       // [nmin..nmax] represents the scale range 
       { 
           V = β(U, L); 
           if (V = = N) then  
           { 
                 C = C ∪ {(L, U), (U, L)}; 
                 U = nearest_prime(P[I[U]+1]);  // increase upper value in prime pair 
            }       
            else if (V <N) then  
                 U = nearest_prime(P[I[U]+1]);   // increase upper value in prime pair 
            else L = nearest_prime(P[I[L]-1]);   // decrease lower value in prime pair 
       } 
} 
 

Figure 8: Algorithm for generating Candidate Prime Pairs 
 



 
With the compilation of the candidate prime pairs, the decoding process reduces to applying the 
differential and offset coefficients to descend both trees in parallel to extract the leaf level values, 
as described earlier in the section on “The Prime Factor Encoding Algorithm”. 
 
EXPERIMENTAL SETUP 
 
In this section we describe the experiments we carried out with the Prime Factor and Wavelet 
schemes. The experimentation could be broadly divided into two main categories:  
 

• A performance comparison between the two schemes,  
• An investigation into the performance of the PFC scheme with respect to key parameters 
 

We use two metrics, Compression Ratio, and Relative Error to quantify the degree of 
compression and error respectively. The compression ratio (cr) is defined by: cr = encoded data 
size in bytes/size of original data set in bytes, while the relative error (re) is given by: re = |S-
R|/S, where S represents sum of the query on the original (un-encoded) data set, and R is the 
reconstructed sum after decoding has been carried out with the Prime Factor or Wavelet schemes.   
 
Comparison of the Prime Factor and Wavelet Schemes  
 
In this section we focus on a performance comparison between the Prime Factor and Wavelet 
schemes on a range of different data sets. We used both real-world data from the (US Census) 
that was used in (Vitter et al, 1998; 1999, Chakrabarti et al, 2000) as well as synthetic data sets 
for this purpose.  
 
The synthetic data sets were modeled on the criteria used in (Ng and Ravishankar, 1997). Two 
parameters, degree of skew and degree of variation were used in their generation. The degree of 
skew was taken to be high when 70 percent of the data elements were drawn from 30% of the 
domain value range, with the other 30% of the data drawn from a uniform data distribution in the 
domain value range. On the other hand, the degree of variation was taken to be high when the 
difference in data element values is more than 100% of the average data element value. When the 
differences in data element values was no more than 10% of the average data element value, then 
the data variation was taken to be low. Variation in the value of these two parameters gave rise to 
four different data sets: (No Skew, Low Variance), (High Skew Low Variance), (No Skew, High 
Variance) and (High Skew, High Variance). 
 
Decoding Time 
 
The first experiment was run on the US Census data and was designed to gain an insight into how 
the decoding times varied with the size (i.e. the portion of the data that the query retrieved, 
expressed as a percentage) of the query posed. We used a chunk size of 64 and a scale range of 
[0..307] for the PFC and a threshold of  7 % for the Wavelet. These parameter settings ensured 
that the two schemes produced roughly the same degree of compression in order to isolate the 
effect of encoded file size on the timings. At each value of query size we ran 50 tests, consisting 
of a batch of 10 for each value of the query dimensionality parameter which ranged from 1 to 5, 
and the average time was recorded across the 50 runs. 
 
Figure 9 shows that the Prime Factor outperformed the Wavelet scheme in the entire range tested. 
The two curves start at roughly the same point at the lower end of the size scale, but diverge quite 



rapidly as the query size increases. The good performance of the Prime Factor scheme can be 
attributed to two factors.  
 
Firstly, its lower average (taken across the entire range of query size) decoding time per data 
element was 0.0021 ms versus 0.0057 ms for the Wavelet.  In the case of the Prime Factor 
scheme the information (i.e. the decoding coefficients) necessary for decoding a data element is 
localized within the chunk that encapsulates it. There is no concept of a single global tree, since 
each chunk is encoded separately, thus giving rise to a collection of independent trees. This 
means that chunks can be decoded independently from each other, and only those coefficients 
belonging to chunks that require decoding need to be examined. On the other hand, the Wavelet 
scheme encodes using a single tree and thus query processing involves searching through the 
entire set of wavelet coefficients to determine the contributions made by each individual 
coefficient (Vitter, 1999). 
  
Secondly, PFC decodes a much smaller number of data elements, as only chunks along the 
boundaries of a query need to be decoded (as proved by Theorem 5).  
 

Prime Factor vs Wavelet Decoding Time
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        Figure 9: Effect of Query Size on Decoding Time 
 
 
Error Rates 
 
In the next set of experiments we compared the two schemes on error rate. As before we varied 
the query size in steps of 5 in the range 5% to 90% and measured the relative error at each step. 
For each size value we ran 10 tests, with each test retrieving data from different regions in the 
data set. For each batch of 10 runs we measured the minimum, maximum and average relative 
error values (all expressed as percentages) for the PFC (with scale range of [0..307]) and the 
Wavelet (with thresholding set at 7%).  
 
As can be seen from Tables 1 and 2 for roughly the same compression ratio the two schemes 
have significantly different error throughout the range tested. The PFC scheme exhibits a small 
average error rate of around 0.3% right up to the 90% mark (this was true for higher percentages 
of the query size parameter - up to 99% which we have omitted for reasons of brevity). As 
Theorem 2 demonstrates the average error rate for the PFC is essentially dependent on the scale 
range and the chunk size used and is not a function of query size.  
 
The differential between the average error rates for the two schemes is much higher at the lower 
end of the query size range (e.g. from 5% to 55%) than at the upper end. At the upper end of the 
query size range the Wavelet’s performance improves as the top level wavelet coefficient 
representing the overall mean of the data set assumes more importance in reconstruction. 



The relative error for the PFC scheme is remarkably stable throughout the query size range. The 
minimum, average and maximum values are much closer together than its Wavelet counterparts. 
With the Wavelet scheme we have significant deviations between the minimum and maximum 
error values in the entire size range. This is in line with previous research (Vitter et al, 1999), 
(Garofalakis et al, 2004). In practice error stability is important as this would inspire more 
confidence in users of the accuracy of results to ad-hoc OLAP queries.  
 
We cross checked these results with the synthetic data sets that we generated and observed the 
same trends.  

 
 
  
 
 

Table 1: Comparative Compression Rates 
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Table 2: Comparative error rates 

  
                
Sensitivity of Prime Factor Performance on Key Parameters 
 
We investigated the effects of scale range size and chunk size on performance. We also looked at 
the distributions of the encoded coefficients in order to gain an insight into whether the Elias 
code would be an effective representation mechanism. The experiments were conducted on the 
real world US Census data set.  
 
Effect of Scale Range Size 
 
In this set of experiments we tested the effect of scale range on both compression ratio and 
accuracy. We kept the lower bound of the scale at 0, and varied the upper bound from 101 to 
1009 in approximate steps of 100. Figures 10a and 10b track the effects of this variation on 
compression ratio and relative error. We measured the relative error on queries that randomly 
picked a 20% sample of the data (in actual fact the relative error was obtained by averaging 
across 10 runs for each value of the scale range parameter).       

 
Compression 
Ratio 

PF 307 8.05 
Wavelet (7%) 7.37 

Query 
Size 
(%) Relative Error (%) 

 

Min 
PFC  
307 

Min 
Wavelet 

Avg 
PFC 
307 

Avg 
Wavelet 

Max PF 
307 

Max 
Wavelet 

5% 0.104 0.479 0.292 6.046 0.453 15.446 
10% 0.151 0.181 0.280 4.738 0.424 16.541 
15% 0.172 0.012 0.345 1.932 0.438 5.063 
20% 0.144 0.136 0.291 2.210 0.418 5.868 
25% 0.167 0.483 0.317 2.994 0.410 5.568 
30% 0.211 0.282 0.328 2.275 0.454 4.993 
35% 0.230 0.706 0.341 2.785 0.390 5.672 
40% 0.249 0.074 0.326 0.934 0.371 5.071 
45% 0.263 0.011 0.347 0.728 0.402 1.168 
50% 0.286 0.195 0.338 0.559 0.394 1.539 
55% 0.326 0.001 0.361 0.535 0.386 1.102 
60% 0.305 0.046 0.342 0.351 0.402 0.932 
65% 0.311 0.327 0.332 0.524 0.360 0.958 
70% 0.315 0.214 0.334 0.635 0.380 1.006 
75% 0.321 0.067 0.356 0.515 0.382 0.877 
80% 0.317 0.041 0.339 0.382 0.372 0.713 
85% 0.314 0.045 0.328 0.349 0.343 0.759 
90% 0.320 0.007 0.329 0.206 0.342 0.507 
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        Figure 10a: Effects on Compression Ratio                                                   Figure 10b: Effects on Relative Error 
 
As shown in Figure 10a the compression ratio decreases as the scale range widens. It decreases 
steadily from a maximum of 18.4 at the narrow range of [0..101] and tends to flatten out at wider 
ranges (i.e. at [0..701] and beyond). At low scale ranges values the data tends to have a low 
degree of variation in value and this in turn induces a large number of zero or near zero 
coefficients after encoding. Widening of the scale produces the opposite effect, resulting in 
relatively low compression. 
 
We would also expect a trade-off between the degree of compression and accuracy. At higher 
compression ratios the error rate would tend to be higher than at lower degrees of compression. 
Figure 10b exhibits this trade-off. As the scale widens we see a steady drop in relative error until 
the scale range value of [0..503] is reached, and thereafter the error continues to drop but at a 
much lower rate. At the narrow scale ranges the prime factors obtained by rounding off the scaled 
values tends to produce a much coarser approximation than at the wider scale ranges, and this has 
the effect of inflating the error at the lower scale ranges. 
 
Effect of Chunk Size 
 
The total size of the root values produced by the chunks is also of interest as this affects the 
efficiency of decoding. As we saw in earlier in the section on “On Line Reconstruction of 
Queries” a large portion of the query can be answered by simply summing up the root values 
produced by the chunks. A smaller root file (used to store the root values of the chunks) size 
would thus greatly speed up the decoding process. We thus experimented with differing chunk 
sizes to test the effect on the root file size. We would expect the root file size to decrease 
monotonically with an increase in chunk size. Figure 11a below confirms that this is the case.  
However, we also wanted to test whether or not larger chunk sizes have an adverse effect on 
accuracy. Figure 11b below shows that the relative error decreases slightly in the range 256 to 64 
and then decreases more rapidly thereafter. Thus we have a basic trade-off between root file size 
and accuracy. Figure 11b shows that the decrease in the error is not significant until we reach a 
chunk size of 16 or smaller. Thus from a practical viewpoint a larger chunk size of 256 or 128 
would yield a very small root file size (approximately 0.32% of the original data set size for a 
chunk size of 256) and a reasonable level of accuracy. We repeated this experiment on different 
data sets and found a similar trend. 
 
We would thus expect that in most cases that the root file would be small enough to be cached in 
memory when using a chunk size of 256 or greater.  
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 Figure 11a: Effect of Chunk Size on Root File Size                  Figure 11b: Effect of Chunk Size on Relative Error 
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Figure 12a: Simultaneous Effects of Chunk Size   Figure 12b: Simultaneous Effects of Chunk Size  
and Scale Range on Relative Error (Census Data Set)      and Scale Range on Relative Error (High Variance High Skew  
        Data Set) 
 
Having established the effects of the individual effects of chunk size and scale range on the error 
rate, we next investigated the simultaneous effects of both these parameters on the relative error. 
The 3D surface plot in Figure 12a clearly illustrates two facts: firstly, the error rate is sensitive to 
both scale range and chunk size (in accordance with the results presented in Figures 10b and 
11b); secondly, the two parameters interact with each other. With larger values of scale range, for 
example (2..1009), variation in chunk size produces an increase of only 0.05% in the relative 
error rate, whereas the corresponding increase at the low end of the scale range, (2..101) was 
0.6%. Figure 12b shows similar trends for the (High Variance, High Skew) synthetic data set. 
Results for the other three synthetic data sets had similar behavior.   
 
Effect of Elias Coding on Prime Factor Performance 
 
We next conducted an experiment to test the effect of Elias coding on the coefficients produced 
by the PFC scheme. We plotted a histogram of the distributions of the differential (we plotted the 
absolute values, as a differential can take a negative value) and offset coefficients to test whether 
these would be skewed. A high degree of skew would mean that the Elias code would be able to 
perform better by encoding the most frequent symbols in the smallest number of bits thus 
improving the compression ratio. 
 
Figures 13a and 13b show that there is a high degree of left skew, i.e. the coefficients tend to be 
clustered around the smaller values.  These results show that a good variable length encoder such 
as the Elias coder would be successful in further compressing the raw output of the Prime Factor 
scheme (i.e. the differential and offset coefficients). This helps to explain the good compression 
ratios that we obtain from the Prime Factor scheme (see Figure 10a). 



 

 
       
              Figure 13a: Distribution of Differentials                                                            Figure 13b: Distribution of Offsets 
 
Experimentation on Synthetic Data 
 
In order to gain an insight into how the Prime Factor scheme performs with different types of 
data sets, we generated synthetic data with varying degrees of skew and variability in the data. 
We adopted the framework provided in (Ng and Ravishankar, 1997) to quantify the skew and 
data variability parameters as follows: 
 

• The data variance is low when the data is spread so that the values are clustered at a 
distance no more than 10% from the mean value. It is high when the spread is more than 
100% from the mean. 

• The distribution of values is skewed when 70% of the values were drawn from 30% of the 
value domain. When values were drawn randomly from the value domain, then no skew 
was registered. 

 
These two parameters lead to the generation of four types of data sets: Low Variance and no 
skew, Low Variance with High Skew, High Variance with no skew and finally High Variance 
with Skew. We ran the Prime Factor and Wavelet schemes on each of these four data sets and 
measured the compression ratio. For the Prime Factor scheme we used three different scale range 
settings: [0..101] (i.e. PF 101), [0..307] (PF 307) and [0..1009] (PF 1009).  
 

 
Low 
Variance 

Low 
Variance 
Skew 

High 
Variance 

High 
Variance 
Skew 

PF 101 12.47 17.30 7.77 7.53 
PF 307 10.96 12.32 6.45 6.19 
PF 1009 8.04 9.76 5.15 4.73 
Wavelet 7.49 7.52 7.00 6.73 

 
               Table 3 Comparative Compression Ratios 
 
Table 3 above shows that for the synthetic data, the relationship between width of scale range and 
compression ratio mirrors what was obtained with the real-world data. The results with respect to 
respect to Relative Error also exhibit the same trend as with the real-world data with the Prime 
Factor for scale ranges [0..307] and [0..1009] performing better than the Wavelet for query sizes 
up to 80%, and maintaining an error rate of less than 0.1% thereafter. 
 
Table 3 also shows other interesting trends. First of all, we can see the effects of data variability 
on compression. Across both schemes it is clear that a low degree of variability allows for better 
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compression performance. This is consistent across all variants of the Prime Factor scheme as 
well as the Wavelet scheme. At the same time skewness in the data impacts on compression 
performance, especially with the Prime Factor scheme. In the case of low variability in the data a 
high degree of skew has a positive effect on compression performance whereas with a higher 
degree of data variability skew seemed to have the opposite effect. These results are in line with 
those reported by Ng and Ravishankar.  
 
With a low degree of data variability, the data elements are clustered in value space and leads to a 
higher proportion of encoded coefficients with smaller values which helps both the Prime Factor 
and Wavelet schemes. The degree of data skew now has a positive effect on the Prime Factor 
compression performance. The skew amplifies the clustering effect as a large percentage of data 
elements occur in a small value domain thus making the encoded coefficients smaller in value. 
On the other hand when the data variability is high the data elements are spread far apart in value 
space and thus the skew does not increase the inherent level of value clustering in the source data. 
 
 
FUTURE TRENDS 
 
One of the main issues facing contemporary Database Systems in general and Data Warehouses 
in particular, is performance. Given that data storage volumes are increasing rapidly and that 
much of this information is being incorporated into Data Warehouses, it becomes incumbent that 
an optimization strategy that scales well with storage volume is put in place. Data compression is 
one of the most important tools that have been used to combat this problem of increasing storage.  
 
In parallel with this we foresee an increasing research effort directed towards answering multi-
dimensional queries more efficiently with the use of novel indexing schemes that are tailored to 
queries that are typically expressed in data warehouses (Albrecht et al 2000). At the same time 
we also see a sustained interest in caching synopses of multi-dimensional queries (Shim et al, 
2004, Park and Lee, 2005, Gemulla et al 2007) so that parts of the cache can be re-used across 
several such queries. We see the work presented in this chapter as complementing the research 
effort in such query optimization strategies. Albrecht el al report that cost reductions of up to 
60% was obtained with the use of the cache. Data Compression can be used to leverage the 
benefits of caching synopses of data by reducing the storage size, thereby improving the cost 
reduction efficiency. The same holds true for indexing structures such as bitmap indexes. Once 
again, compression can be applied to further improve the cost benefits of using bitmap indexes 
for aggregate queries. 
 
CONCLUSION 
 
We have demonstrated the effectiveness of the Prime Factor Compression (PFC) scheme in 
answering OLAP queries against a data warehouse. In this chapter we presented a detailed design 
of the PFC scheme, and formulated analytic proofs of several aspects of its performance, 
including optimizations suitable for use with sparse data. We also presented an implementation 
strategy for encoding and decoding with the PFC scheme. Finally, we conducted a detailed 
experimental study on both real-world and synthetic data that reinforced some of the theoretical 
proofs that were derived. 
 
The PFC scheme is able to achieve a very high degree of error stability because it uses 
information from every source data element (albeit in a condensed form), unlike its Wavelet 
counterpart. This aspect is important to Data Analysts as the answers to their queries are within a 
predictable and small margin from the true values. 



 
The scheme as presented here was customized to answer multi-dimensional aggregate queries 
efficiently through the use of a chunking technique. The chunks stored aggregate sums which 
removed the need for decoding large sections of the query.  
 
However the basic compression algorithm that we presented can be used in other contexts such as 
Image data compression. Image data is interesting as pixel values in close proximity tend to be 
highly clustered in value space and so we would expect to obtain higher data compression ratios 
than with numeric warehouse data. Another area for future investigation would be to test the 
effect of replacing the Elias coder with other variable length encoders in the post-processing 
phase of the PFC encoding scheme.  
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