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Abstract: In order to solve various security risks faced by image privacy protection, we propose a 3D
cuboid image encryption scheme based on message-encoded controlled alternate quantum walks.
Firstly, we calculated the initial parameters of the quantum system and performed a one-dimensional
quantum walk to generate a probability distribution sequence. Secondly, we encoded the sequence
into a quaternary message using multiple sets of encoded messages to control the alternate quantum
walk model, generating a 3D probability amplitude matrix and 3D probability distribution matrix
to obtain the 3D quantum hash sequence through the 3D probability distribution matrix. Then,
the image was divided into blocks and integrated into a cuboid. The image cuboid was scrambled
between layers using the probability value sequence, and the 3D probability distribution matrix was
used to complete the scrambling of the cross-section between layers. Finally, we converted each
pixel value of the scrambled cuboid into a binary cube and controlled it to perform the rotation
operation through the 3D probability magnitude matrix, then used the 3D quantum hash sequence
to XOR the obtained cuboid image and tilted it to obtain the final encrypted image. The simulation
results show that the image encryption scheme can resist various typical attacks and has good
security performance.

Keywords: image encryption; message encoding; controlled alternate quantum walk; 3D quantum
hash sequence

MSC: 68W01

1. Introduction

With the development and rise of 5G, more and more devices are connected to a
mobile network, and the data traffic on mobile networks has increased dramatically. In
daily life, people process and transmit digital information on mobile networks through
various devices every day, among which, digital image information accounts for a large
proportion. Preventing digital images from being stolen and tampered with by attackers
and ensuring information security is a research topic that cannot be ignored.

People can intuitively obtain a lot of information through images. To prevent image
information from being attacked and tampered with, digital watermarking and image
encryption technologies can be used to secure data [1-4]. It is necessary to encrypt images
according to their characteristics that are different from text: reduce the amount of data
contained in images, break the strong correlation between adjacent pixels, and reduce infor-
mation redundancy [5,6]. Based on this idea, combined with chaos, DNA coding, and other
theories, many researchers have proposed a variety of image encryption algorithms [7-16].
Mansouri et al. [17] proposed a one-dimensional chaotic mapping amplifier (1-DCMA) and
used its generated chaotic sequence to design an asymmetric image encryption scheme
which uses a key to add rows and implements a new index representation (IR) concept
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using a shift sequence to manipulate the position and value of pixels synchronously. Cao
et al. [3] proposed a 2D infinite collapse map and compared it with the existing 2D chaotic
maps.Two-dimensional ICM has better ergodicity, hyper chaos, unpredictability, and a
wider chaotic region. The image is encrypted by 2D-ICM, which makes the system more
secure. Wang et al. [18] used the chaotic sequences generated by the Chen hyperchaotic
system for interblock index scrambling and intrablock Fisher—Yates scrambling, and then
diffused by different DNA encoding rules and different operating rules corresponding
to the chaotic sequences, thereby improving the algorithm security. Encryption methods
based on chaotic mapping have better performance. However, one-dimensional chaos-
based ones only have a very limited range of parameters. Although hyperchaotic ones
have a wider range of chaotic regions, most suffer from high-computational cost. In ad-
dition, researchers have proposed new methods for image encryption models based on
fractal theory [19-21], optical theory [22,23], neural network models [4,24-27], compressed
sensing [28,29], optimization algorithms [30-32], and quantum theory [33,34].

Quantum walks are divided into two models: continuous and discrete. Discrete
quantum walks are nonlinear mappings between quantum operators and the probability of
their occurrence positions and are extremely sensitive to the initial state. A discrete quantum
walk ensures the security performance of the system through the infinite possibility of the
initial state. It has similar characteristics to the chaotic dynamics in determining the walk
state in the system, so it is used by researchers in image encryption models [35-37]. Yang
et al. [38] used the nonlinear chaotic dynamic performance of a quantum walk (QW) to
construct a key generator with good performance, and based on this, they proposed an
image encryption algorithm that combines quantum computing with image encryption,
which has better security. In addition, Yang et al. [39] designed a quantum hash function
based on one-dimensional controlled alternating quantum walks and applied it to image
encryption. Abd EL-Latif et al. [40] designed an image encryption mechanism based on
the controlled alternating quantum walk model. The replacement and scrambling stages
are based on independently calculated quantum walks, which well protect the patient
privacy in the medical system. However, the initial parameters of the quantum wander
described above are fixed, and the quantum wander key is fixed for different images,
which has low security and poor key sensitivity. When performing a controlled alternating
quantum wander, its controlled coin operator is relatively single, and the redundancy
of binary messages is high. At the same time, it only encrypts the original image in the
two-dimensional plane using the probability matrix, which has a limited effect on image
dislocation and diffusion.

Based on the above research questions, in this paper, we propose a new 3D cuboid
image encryption algorithm based on message-encoded controlled alternating quantum
walks. In order to solve the problem of fixed initial parameters of quantum wandering,
we designed a key set with good security that can calculate the initial parameters of the
quantum system and perform a one-dimensional quantum walk to generate a probability
distribution sequence. In order to avoid excessive message redundancy, we encoded this
sequence into a quaternary message and used multiple sets of encoded messages to control
the alternate quantum walk model. Meanwhile, we divided the plane image into blocks
and converted it into a three-dimensional cuboid image for processing. Combined with the
quantum mechanical properties of the quantum walk model, our scheme has good security
performance and can effectively prevent digital image information from being stolen and
tampered with by attackers.

The rest of this paper is organized as follows: Section 2 presents one-dimensional
discrete quantum walks and controlled alternating quantum walks on circles. Section 3
presents 3D cuboid image encryption based on the message-encoded controlled alternating
quantum walks model. The fourth section introduces the security performance analysis
and testing of this model. The last section is the conclusion.
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2. Preliminary Works

The quantum walk model is a quantization of the classical random walk model by
using a quantized description of the position of the particle to construct the entanglement
between the particle position and the quantized Markov state variable [35]. There are two
models of quantum walks: discrete QWs and continuous QWs. Discrete quantum walks
determine the motion state of the system and have similar properties to chaotic dynamics,
which can be used in the process of image encryption algorithms. The discrete QWs model
consists of two parts: the coin and the walker. The coin and the walker are in a Hilbert
space Hy = Hs ® H,. By applying a conditional shift operator to the coin operator, the
moving state of the walker is changed. On an odd circle with T nodes, the probabilities at
all points are essentially nonzero whent > T — 1.

2.1. One-Dimensional Discrete Quantum Walks (1DQWs) on Circles

A one-dimensional discrete quantum walk on a circle [38] whose initial state of the
coin operator O is |0) = x|0) + |1), where « and f are the amplitudes of the initial coin
operator which satisfy the normalization equation |« |2 + \ﬁ|2 = 1. During the evolution of
the quantum system, the quantum walk is realized by applying the shift operator to the coin
operator, which is represented by the global unitary operator M, such as in Equation (1):

M=N(I®0) 1)

where N represents the shift operator, and its expression is Equation (2):

N = Z(| (x +1)mod T,0)(x,0| + | (x — 1)mod T,1)(x,1]) )
X
[ represents the identity matrix. O represents the coin operator, and its expression is
Equation (3):
A cosf sinf
0= (sine — cos 9> ®)

where § € [0, 5].
After t steps, the final state of the entire quantum system is Equation (4):

ot
) = (M) ) )
After t steps, the probability of finding a walker at position x is Equation (5):
~ Lt 2
P(x,t) =} [{x,cl(M) )]

ce{0,1}

©)

The general situation of the probability distribution of one-dimensional discrete quan-
tum walks on a circle (number of nodes 75; 0y = % ; step count k = 165; the initial coin

operator is ¢ = \% B] ) is shown in Figure 1.
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Figure 1. 1D discrete quantum walk probability distribution on a circle.

2.2. Controlled Alternate Quantum Walks (CAQWs) on Circles

A controlled alternate quantum walk process on a circle has a string of messages
controlling the transform operator at each step [41]. When the ¢-th bit of the message is zero
or one, the evolution operator M or Mj is applied to the coin operator, which is expressed

as Equations (6) and (7):
My = Ny(l ® Og) Ny (I ® Oyp) 6)
M1 :Ny(i®él)Nx(i®Ol) (7)

where N, Ny represent the shift operators acting in the x and y directions, respectively,
which are expressed as Equations (8) and (9):

T

N, = Z(|(x +1)mod T,y,0)(x,y,0| + |(x — 1)mod T,y,1)(x,y,1]|) 8)
XY

. T

Ny, =Y (|x, (y + 1)mod T,0)(x,y,0| + |x, (y — 1)mod T, 1)(x,y,1|) )
XY

[ represents the identity matrix. Op, O; represent two alternating coin operators,
whose construction is in the following Equations (10) and (11):

A [cosBy sinfy
Qo = (sin 0y — cos 90> (10)
A (cosB; sinf
Or = (sin 61 —cos 91> (1)

After t steps, the final state of the entire quantum system is Equation (12):

), = (N)'[9), (12)

After t steps, the magnitude of the probability of finding a walker at position (x, y) is
Equation (13). The probability is Equation (14):

Fry, )= Y (0 ycl (M) |p), (13)
ce{0,1}
Ploy, )= Y [y cl () 9),] (14)

ce{0,1}
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The probability distribution of quantum walks controlled by binary message string
M on a circle (number of nodes: 19; 6y = %; 6; = Z; the initial coin operator is ¢ =

% [ﬂ ; message = [01000000111101010101010010100000011110101010101001]), as is shown

in Figure 2.

Probability distribution- Controlled Alternating Quantum Walk
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Figure 2. Controlled alternate quantum walk probability distribution on a circle.

3. Proposed Method
In the following subsections, we describe our proposed encryption algorithm in detail.

3.1. Generate Initial Key

Our key consists of four parts: initial parameters d; ~ dg, sumP of plaintext image
pixel values, image block size Bsize, supplementary parameters M1,N1, and the number of
blocks Brum.

3.1.1. Initial Parameters d; ~ dg

We took a plaintext image as the input of SHA-512 and obtained a 128-bit hexadecimal
sequence which was divided into 64 groups of sequences k; ~ kgs. Each group was an
8-bit byte sequence. According to the 64 groups of sequences, we calculated and generated
initial parameters d; ~ dg and use them as keys, such as in Equation (15), the specific steps
are as follows:

Step one: Convert ky ~ k3, to binary sequence.

Step two: Convert k33 ~ kg4 into a decimal sequence and take the entire sequence
modulo 8 to obtain the cyclic shift bits of the sequence k; ~ k3;.

Step three: According to k33 ~ kg4, we need to rotate k; ~ kzp, convert it into a decimal
sequence, and calculate the initial parameters d; ~ ds.

k1 < mod (ks3,8) +hky<<mod(ksa,8)+ks<<mod(kss,8)+ky<<mod(kse,8)
4x256+1
ks <<mod(k37,8) +k6<<mod(k38,8) +k7>>m0d(k39,8) +kg>>m0d(k40,8)

dy =
dy =

_ ko>mod(ks 8 )+k10>>m0d(k4z, )+k11>>mod(k43, )tkio>mod (kyy,8)

k13<<mod(k45, @k14<<mod(k46, ®k15<<mod 8 ®k16<<mod k48 )

(15)

_ kiy>mod (ks 8 @k18>>mod(k50, EBk19>>mod 1,8) Dkog>>mod(ksp,8)

)
)
)
)

k25>>mod(k57, @k26>>mod(k58, @k27>>mod 8)+kpg<<mod

(kg7,8) (kys,

(k51,8) (

@kz3<<m0d(k55,8)®k24<<m0d(k56,8)

(ks9,8) (keo,8)
2%256-+1

_ kog>mod(ke1,8)Bkao>mod (kep,8) +ka1 <mod (kes,8) bkap <mod (kes,8)

2x256+1

ds

dy )

ds )

de _ ky1>mod(ks3,8 )+k22<<m0d(k54,
dy )

ds )
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where < represents a cyclic left shift to the binary sequence, >> represents a cyclic right
shift to a binary sequence, and & represents the exclusive-or operator.

3.1.2. Sum of Plaintext Image Pixel Values sumP

Accumulate and sum all pixel values of the plaintext image to obtain the key sumP,
whose expression is Equation (16):

sumP = i i P(x,y) (16)

x=1y=1
where P(x,y) represents the pixel value at the (x, y) position.

3.1.3. Image block size Bsize

First, select the short side of the image, and assume M is the short side. Then, divide M
by an odd number within 11~30, and select the odd number corresponding to the number
with the largest fractional part from the result as the block size Bsize.

3.1.4. Supplementary Parameters M1, N1 and Number of Blocks Bnum

According to the block size Bsize, the rows and columns of the image are filled with
numbers that are divisible by Bsize, and the number of rows M1 and the number of
columns N1 of the supplementary element 0 are used as the key. The calculation formula is
Equation (17):

M1 = mod(M, Bsize); N1 = mod (N, Bsize) (17)

where mod represents the modulo, M and N are the number of rows and columns of the
original image, and Bsize is the block size.

After adding elements to the original image, its row and column are M2 and N2, and
the number of blocks is calculated by the following Equation (18):

M2 N2

*

1
Bsize Bsize (18)

Bnum =

3.2. Generating 3D Probability Magnitude Matrix, 3D Probability Distribution Matrix, and 3D
Quantum Hash Sequence by Using Quantum Walks

We used a one-dimensional quantum walk to generate a one-dimensional probability
distribution sequence, then encoded the probability distribution sequence to generate a
quaternary message and performed controlled alternating quantum walks by encoding the
message. Finally, it generated the probability amplitude matrix and probability distribu-
tion matrix of multiple CAQWSs by combining a 3D probability amplitude matrix and 3D
probability distribution matrix and then generated a 3D quantum hash sequence according
to the probability distribution matrix. We applied the generated one-dimensional proba-
bility distribution sequence, 3D probability amplitude matrix, 3D probability distribution
matrix, and 3D quantum hash sequence to the three-dimensional cuboid image encryption
algorithm.

3.2.1. Generation of Initial Parameters for 1IDQWs

(1) Number of nodes on the circle

According to the key sumP generated in Section 3.1.2, the ten-digit number SP of the
sum of pixel values is calculated by Equation (19). Then calculate the length Imess of the
message through the parameter d; in Section 3.1.1, as shown in Equation (20). If sumP = 0,
then the length of the message Imess1 is Equation (21). Finally, the number of nodes TC of
the circle is given by Equation (22).

SP = floor(log,,sumP) (19)
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Imess = mod (floor(sumP % dy * 10'5757),25) 4-1 + Bsize (20)

Imess1 = 13 + Bsize (21)

TC = Imessl x Bnum (22)

where floor means rounding down, logyg is a logarithmic function with base 10, and mod
means a modulo operation.

(2) Coin parameter ¢
The coin parameter 6 is calculated by the parameter d, of Section 3.1.1, as shown in
Equation (23).
0 = mod(dy + 10'5 (% +2), g) (23)

where mod represents the modulo operation.
(3) The initial state of the coin

The initial state of the coin is «|0) + B|1). We used the parameters d3 and dj in
Section 3.1.1 to generate the initial state of the coin &, B, a, B is expressed as the following

Equation (14). Because the coin operator needs to satisfy |ch|2 + | ,B|2 =1, we constructed
the quadratic equation of one variable of Equation (25) to calculate the initial state of the

generated coins.

oc:d3+(%)i;[5 _ (%)+xi (24)

2 2
f=1—( d§+<d§)2) —( (‘;4)2+x2) 0 5)

where «, § are the amplitude and phase of the initial state (complex number), i represents
the complex unit, f represents the quadratic equation to be solved, and x represents the
unknown parameter.

3.2.2. Generation of Initial Parameters of CAQWs

(1) The number of nodes on the circle of CAQWs is equal to the block size Bsize.
(2) Coin parameters 6y, 61

The coin parameters 6y, 01 are calculated by the parameters dy and dg in Section 3.1.1,
as shown in Equations (26) and (27)

6o = mod(dy  10'° + (g +2), g) (26)

0, — mod(dg + 101° + (% +0.1), g) (27)

(3) Initial state of the coin

Similar to the initial state of the coin of 1DQWs, the expressions of a1, B1 are Equation
(28). Because the coin operator needs to satisfy la1|® + | /31|2 = 1, we constructed the
quadratic equation of one variable of Equation (29) to calculate the initial state of the
generated coins.

ds.. ..  ,des )
E)z,ﬁl = <?) + x1i (28)

2 2
f1=1—( <‘§>2+<‘§>2) —( <d;>2+x12) =0 )

where a1, 81 are the amplitude and phase of the initial state (complex number), i represents
the complex unit. f1 represents the quadratic equation to be solved, and x1 represents the
unknown parameter.
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3.2.3. Generating Probability Distribution Sequences Using 1DQWSs

According to the initial parameters, we performed a 1D discrete quantum walk [38].
After t steps, the probability of finding a walker at position x is Equation (30), and we
denoted this sequence of probability distributions as Qum1D.

Pty = Y | cl(80) (g}, (30)

ce{0,1}
where P(x, t) represents the probability of finding a walker at x after ¢ steps.

3.2.4. Message Encoding

We mapped the probability distribution sequence Qum1D generated by 1DQWs to
values 0-255, as shown in Equation (31), and quaternary encoded it and the encoded
message as the message.

message = mod(mod( floor(Qum1D % 10%%°),256), 4) (31)
where mod represents the modulo operation, and floor represents the rounding down.

3.2.5. Controlled Alternate Quantum Walks for Message Encoding

In the proposed image encryption algorithm, we improved the two-dimensional
controlled alternating walk model and encoded the sequence generated by 1DQWs into
a quaternary sequence as a control message. We also applied the quaternary message
encoding to the evolution process of the quantum system [40] by using Equation (32) to
represent the global unitary operators My, My, My, M.

Mo = Ny (I® Og)Nx (I ® Oy)
N = Ky (f @ O1) Ry (f @ O)
Mg, = Ny(f® Ol)Nx(f(X)Ol)

Assuming that the message string generated by 1DQWs is “320102”, the state of the
entire system can be expressed as Equation (33):

)6 = MaMoM MM Ms| ), (33)
After t steps, the final state of the entire quantum system is Equation (34):

9), = (M) [9), (34)

After t steps, the probability amplitude of finding a walker at position (x, y) is Equation
(35), and the probability is Equation (36):

Feoyt)= Y (xy,c(M)]9), (35)
ce{0,1}

Ploy, )= Y [y c () 9),) (36)
ce{0,1}

3.2.6. Three-Dimensional Probability Amplitude Matrix and Three-Dimensional
Probability Distribution Matrix

According to the number of blocks Bnum in Section 3.1.4, we divided the message
encoding message into Bnum groups and used Section 3.2.2 to calculate the generated
initial parameters of the system. According to the corresponding message encoding, we
performed Bnum times of message encoding-controlled alternate quantum walks on the
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circle and finally generated a 3D probability amplitude matrix fre of size 2 * (Bsize *
Bsize) *« Bnum, whose expression is Equation (37). At the same time, a 3D probability
distribution matrix Qum?2D of size Bsize * Bsize * Bnum was generated, and its expression
is Equation (38).

fre(2, Bsize x Bsize,i) = ¢(F(x,y,t), message(i))i =1,..., Bnum (37)

where ¢(F(x,y,t), message(i)) represents the probability amplitude matrix which gener-
ated under the control of the i — th group of message encoding messages.

Qum2D(Bsize, Bsize,i) = w(P(x,y,t), message(i))i =1,..., Bnum (38)

where w(P(x,y,t), message(i)) represents the probability matrix which generated under
the control of the i — th group of message encoding messages.

3.2.7. Three-Dimensional Quantum Hash Sequence

Quantum hash sequences have chaotic-dynamics-like properties and can be used to
generate pseudorandom numbers. We converted the 3D probability distribution matrix
Qum2D, which was generated in Section 3.2.6, into a binary string using Equations (39)
and (40) and finally obtained the 3D quantum hash sequence Btest. In the diffusion stage,
we used the 3D quantum hash sequence Btest to complete the diffusion operation.

B = mod(floor(Qum2D * 10'°),256) (39)

Btest = dec2bin(B) (40)

where dec2bin means converting a decimal number to binary.

3.3. Image Encryption Process

Combining the discrete quantum walk model, we propose a three-dimensional cuboid
image encryption algorithm with two rounds of scrambling and two rounds of diffusion
operations. First, we used 1IDQWs to generate a probability value sequence Qum1D, then
encoded Qum1D into a quaternary message message. Then, we used the encoded message
to control the alternate quantum walk model to generate a 3D probability amplitude matrix
and 3D probability distribution matrix. Finally, we used the 3D probability distribution
matrix obtain the 3D quantum hash series. The operation is shown in Algorithm 1. We used
the probability value sequence Qum1D and 3D probability distribution matrix to complete
the image scrambling and used the 3D probability magnitude matrix and 3D quantum hash
series to diffuse the image to obtain the final encrypted image. The operation is shown in
Algorithm 2. The following are the specific steps of our proposed encryption scheme, and
its flow chart is shown in Figure 3.

Algorithm 1. Sequence generation.

Input: Original image(PlainImg)

Output: dy ~ ds, QumlD, message, fre, Qum2D, Btest

1 k1 ~ kgg < SHA-512(PlainImg)

2 dy ~ dg < Generate initial key parameters based on k; ~ kg4

3 Calculation of 1IDQWs and 2DCAQWs

4 QumlD <+ 1DQWs(TC,t,0,a, B) // 1IDQWSs on a circle with node number TC

5 message < encoding(Qum1D) // Quadratic encoding

6 fre(2, Bsize x Bsize,i) < ¢(F(x,y,t), message(i))i = 1,..., Bnum;

7 Qum2D(Bsize, Bsize, i) < w(P(x,y,t), message(i))i =1,...,Bnum // Alternating quantum
walks with Bnum sub-message encoding control on a circle

8 Btest <— dec2bin(Qum2D) // Complete diffusion operation using 3D quantum hash sequence
Btest
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Algorithm 2. Encryption algorithms.

Input: Original image(Plainlmg), Qum1D, message, fre, Qum2D, Btest
Output: Encrypted images(En)

1 Image block ( Bsize * Bsize * Bnum) < chunking the image

2 Plain3D < Integrating image blocks as rectangles

3 prml1Dt < sum(reshape(QumlD, Imess, Bnum)); / /Group summation
4 [~, prm1Dindex] < sort(prm1Dt) // Sort

5 PrmP3D < Displacement between layers according to its index sequence prm1Dindex for the
image rectangle Plain3D

6 Prm2 < Sorting and dislocation inside each depth layer using Qum2D
7 forj < 1 to B_num

8  BinP3 = dec2bin(Prm2);

9 fori<-1tox * ydo

10 BinP3_t <« reshape(BinP3)

11 IfA>B

12 Bin_P3<—rot90(BinP3 _t Upper)// Upper layer rotated 90 degrees counterclockwise
13 else

14 Bin_P3< rot90(BinP3 _t Lower) //Lower layer rotated clockwise by 90 degrees

15 end

16 P3bin(i,:) = reshape(Bin_P3);

17 end

18 P3binl = bin2dec(P3bin);

19 P3bin2 = reshape(P3binl, x, y);

20 end

21 Ctest = bitxor(Btest, P3bin2) // Global xor
22 En < Tiling the image block Ctest

Plainimg

SHA-512—

Calculate initial
value

3D image
cuboid

Generate
1 DQE—> message, initial
value

Scrambling 2DCAQWs I

between layers

Top-
°F 3D probability
down,scrambling - P N
laver distribution matrix
layer by layer

e i

Scrambled Image 3D probability
Cuboid magnitude matrix

QHF sequence

Binary cube
rotation

3D binary image

A

A

Global XOR QHF cube

Diffusion

Figure 3. A 3D Cuboid Image Encryption Framework Based on Message-Encoded Controlled
Alternate Quantum Walks.
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3.3.1. Generation of Image Cuboid

Step one: Image segmentation

According to the supplementary parameters M1 and N1 generated in Section 3.1.4,
the plaintext image blocks were supplemented with zero elements in row M1 and column
N1, and then according to the image block size Bsize generated in Section 3.1.3 and the
number of blocks Bnum generated in Section 3.1.4, we divided the filled image into image
blocks whose size is Bsize * Bsize, Bnum number.

Step two: Combine into a 3D image cuboid

The Bnum image blocks generated by Step One were converted into a three-dimensional
image cuboid plain3D with the size of Bsize x Bsize x Bnum, line by line, from left to right,
and from top to bottom, as shown in Figure 4.

leize N1
Bsize : 0 Bnym
: P
’ Combination 0
. 0
) WAL
3D Image Cuboid
M1 —‘_n 0 0 0 0 0 0

Supplementary elements and chunking
Figure 4. Generation of image cuboid.

3.3.2. Two Rounds of Scrambling

Step one: Interlayer scrambling based on one-dimensional quantum walk.

According to Equation (41), we divided the probability distribution sequence Qum1D
generated in Section 3.2.3 into Bnium groups and then summed the sequences of each group
to obtain the sequence prm1Dt. The operation process is shown in Figure 5.

umlD

Q
(T I I ]

Bnum groups
A

[TTT] [TT0] (10 [IT0 [0 [TT0
;v_l

Imess

LT

Index sequence prm1Dt1

Figure 5. Generation of index sequence prm1Dt.

Then, Equation (42) was used to sort prm1Dt from small to large, and the image cuboid
Plain3D was scrambled between layers according to its index sequence prm1Dindex to
obtain the scrambled image block PrmP3D between layers, as shown in Figure 6.

prm1Dt = sum(reshape(QumlD, lmess, Bnum)) (41)

where reshape is an array reconstruction function, Imess represents the message length,
Bnum represents the number of blocks, and sum represents the sum of the array by columns.

[~, prm1Dindex| = sort(prm1Dt) (42)
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where sort is the sorting function and prm1Dindex is the sequence of index sorting.

Vo rsrrd o rrsrd

SN 11 B 11 N | T () [ () N

L ddda A

Plain3D PrmP3D

5(3[116|2|4

Index sequence prm1Dt1

Figure 6. Interlayer scrambling of image cuboids.

Step Two: Layer-by-layer scrambling based on 3D probability distribution matrix

The three-dimensional probability distribution matrix Qum2D generated in
Section 3.2.6 sorted the image block from smallest to largest in order from top to bot-
tom in each depth layer and used the index sort matrix generated at each layer. The image
block PrmP3D was scrambled layer by layer to obtain a new image block Prm2, as shown
in Figure 7.

Bnum
Bsize -

A11 A
Qumzp| 3| b 3| o Bsize - PrmP3D
4 ﬂ [

Bnum B
Bsize y Lt
> Bsize

Bsize Bsize - Prm2

3D probability
distribution matrix

Figure 7. Top-down layer-by-layer scrambling based on 3D probability distribution matrix.
3.3.3. Two Rounds of Diffusion

Step one: Binary cube rotation based on probability magnitude matrix

As shown in Figure 8, each 0-255 pixel value of the image block Prm2 obtained by
scrambling in Section 3.3.2 was operated from left to right, layer by layer. Then, we operated
it from back to front and top to bottom and encoded as a binary cube. According to the 3D
probability amplitude matrix obtained in Section 3.2.6, the binary cube was rotated. We
divided the probability amplitude into A direction and B direction. If A > B, the upper layer
of the binary cube was rotated 90 degrees counterclockwise; otherwise, the lower layer of
the binary cube was rotated 90 degrees clockwise. Finally, the binary cube corresponding
to each pixel value was converted into a binary sequence, and we obtained the 3D image
block P3bin after the binary cube rotation operation.

CI 1_
| > . —

0
<«

Pixel binary cube rotation

3D pixel block

Figure 8. Binary cube rotation based on probability magnitude matrix.
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Step two: Diffusion based on 3D quantum hash sequence

By using the 3D quantum hash series Btest obtained in Section 3.2.7, we performed a
global bitwise XOR operation with the 3D image block P3bin according to Equation (43).
We converted it into a decimal sequence and obtained the image block Ctest. Then, we tiled
the image block Ctest to obtain the final encrypted image En.

Ctest = bitxor(Btest, P3bin) (43)
where bitxor means bitwise exclusive or.

3.4. Image Decryption Process

The image decryption process is the reverse operation of the encryption process, and
the steps are as follows:

Step one: According to the key Bsize in Section 3.1.3 and the key Bnum in Section 3.1.4,
we divided the encrypted image En into blocks and then combined them into cubes De3D.

Step two: We converted each pixel value of the cube De3D into a binary sequence and
performed a global bitwise XOR operation with the 3D quantum hash series Btest which
was obtained in Section 3.2.7 to acquire the image block Del.

Step three: Each pixel value of image block Del was encoded into a binary cub, and
a reverse rotation operation was performed on the binary cube according to the three-
dimensional probability amplitude matrix obtained in Section 3.2.6. This operation is a
reverse of Section 3.3.3, resulting in an image block De2.

Step four: The 3D probability distribution matrix Qum2D generated in Section 3.2.6
was sorted by index for each layer, in the order from the top to the bottom. The image block
De2 was inversely indexed and scrambled layer by layer according to the index order to
obtain De3.

Step five: According to the index prmlDindex generated in Section 3.3.2, De3 was
scrambled with interlayer inverse index to obtain De4.

Step six: By tiling the image block De4 obtained in the previous step and removing
the supplementary zero elements by row and column according to the keys M1 and N1
obtained in Section 3.1.4, we obtained the final decrypted image De.

4. Simulation Results and Security Analysis

In order to test the security performance of the proposed image encryption scheme,
we used MATLAB R2020b software to conduct simulation experiments on a computer
with Windows 10 system, 16 GB memory, and i5-10500 CPU. The images we used in
testing included 256 * 256 square images (Lena, Baboon, Peppers, White, Black), 512 * 512
square images (Barbara, Cameraman, Livingroom), irregular Lena image, and images from
standard 25 grayscale images of the USC-SIPI image database.

4.1. Encryption and Decryption Results

In this paper, 256 * 256, 512 * 512 square images and irregular Lena image were used
for testing. The test results of 256 * 256 images (Lena, Baboon, Peppers, White, Black) are
shown in Figure 9. The encryption and decryption results of 512 x 512 images (Barbara,
Cameraman, Livingroom) and irregular Lena images are shown in Figure 10. The encrypted
images shown in the figure cannot show any meaningful information, and the original
images with rich information can be obtained by decrypting with the correct key.
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Ic)

(i)

(n) (0)

Figure 9. Simulation results (256 * 256): (a—e) original images; (f—j) encrypted images; (k—0) decrypted
images.

() () (k) M

Figure 10. Simulation results (512 x 512 and irregular): (a—d) original images; (e-h) encrypted images;

(i-1) decrypted images.
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4.2. Histogram Analysis

The pixel histogram shows the distribution of different pixel values in the image. We
tested and analyzed the histogram of encrypted images. The histogram analysis results of
256 * 256 size images are shown in Figure 11, and the histogram analysis results of 512 *
512 size images and irregular Lena image are shown in Figure 12. It can be seen that the
distribution frequency of pixel values in the encrypted images is relatively uniform, and
the trend of the histogram is stable, which has a good ability to resist statistical attacks.
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Figure 11. Histogram Analysis (256 * 256): (a—c) original images; (d-f) encrypted image.
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Figure 12. Histogram Analysis (512 * 512 and irregular): (a-d) original images; (e-h) encrypted
image.
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4.3. x? Test

We use the x? test to describe the distribution of the pixel histogram [42], whose
formula is Equation (44):

a1

255 L 2
XZ _ (vl UO) (44)
£ 09

I
_

where x? represents the value of the chi-square test, i represents the pixel value, v; represents
the frequency of the pixel value 7 in the image, and v represents the expected frequency of
the pixel value i, vy = (M * N)/256. The smaller the value of the x? test, the more uniform
the pixel distribution. When the confidence is @ = 0.05, the condition for passing the test is
that x?2 is less than 293.24783.

Table 1 (Lena, Baboon, Peppers, White, Black) and Table 2 (Barbara, Cameraman,
Livingroom, Irregular Lena) show the test results of plaintext images and the results in
comparison with others” methods. The images were encrypted with different sizes, and all
results passed the test conditions, which shows that our algorithm has a good ability to
resist statistical attacks.

Table 1. x? test (256 * 256).

Image Lena Baboon Peppers White Black Avg. Ref. [9] Ref. [33]
Plaintext 39,868.727  44,739.305  26,311.578 16,711,680 16,711,680 - - -
Ciphertext 219.269 216.589 225.765 259.881 241.390 232.579 244.159 254.078
Table 2. x? test (512 * 512 and irregular).
Image Barbara Cameraman Livingroom Irregular Lena Avg. Ref. [18]
Plaintext 14,4101.119 418,530.147 276,815.883 74,075.357 - -
Ciphertext 238.454 250.778 245.376 250.828 246.359 260.400

4.4. Correlation Coefficient Analysis

There is a strong correlation between the adjacent pixels of the original image, and the
lower the correlation of the ciphertext image, the stronger the resistance of the algorithm to
statistical attacks. The calculation formula of pixel correlation is such as Equations (45)-(47):

oy = B =G~ E() s

D(x)D(y)

1 N
E(x) = N 2 X (46)

i (xi — E(x))°
N

where 7,y is the pixel correlation coefficient, and E(x) and D(x) are the expectation and
variance.

We selected 2000 pairs of pixels on the horizontal, vertical, and diagonal lines of the
image for 30 tests and took the average value. Figure 13 shows the correlation distribution
of the horizontal, vertical, and diagonal lines of the images in the USC-SIPI image database,
and their values all hovered around zero. For example, the correlations in the horizontal,
vertical, and diagonal directions are shown in Figures 14-16. Table 3 shows the results of
ours and the comparison with others” methods, bold indicates the average of pixel correla-
tion coefficients in different directions of the image, and the pixel correlation coefficient is
much lower than that of the plaintext image, which fully shows that our method has strong
resistance to statistical analysis.

D(x) = @7)
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Figure 14. Adjacent pixel correlation of image 5.1.09: (a—c) original image; (d—f) encrypted image.
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Figure 15. Adjacent pixel correlation of image 5.2.08: (a—c) original image; (d-f) encrypted image.
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Figure 16. Adjacent pixel correlation of image 5.3.01: (a—c) original image; (d—f) encrypted image.
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Table 3. Pixel correlation in different directions.
Image Plain Image Cipher Image Ref. [11]
H A% D H A% D H A% D
5.1.09 0.9026 0.9406 0.9098 0.0005 0.0027 —0.0023 0.0031 —0.0016 0.0014
5.1.10 0.9016 0.8688 0.8311 —0.0001 1(1)%1,96 % 0.0007 0.0044 —0.0006 —0.0052
5.1.11 0.9574 0.9480 0.8966 —0.0046 —0.0038 —0.0003 0.0005 —0.0019 —0.0049
5.1.12 0.9576 0.9741 0.9408 0.0069 0.0039 0.0048 0.0068 —0.0002 —0.0055
5.1.13 0.8804 0.8497 0.7419 —0.0024 —0.0027 —0.0019 5.76 x 107° 0.0017 —0.0072
5.1.14 0.9522 0.9018 0.8589 0.0015 —0.0057 0.0038 —0.0056 0.0001 0.0044
5.2.08 0.9289 0.8784 0.8472 —0.0014 —0.0057 0.0011 0.0028 0.0006 —0.0027
5.2.09 0.9059 0.8701 0.8122 —0.0013 —0.0035 —0.0017 0.0006 —0.0123 0.0001
5.2.10 0.9409 0.9274 0.8948 0.0019 0.0002 —0.0026 —0.0024 —0.0005 0.0031
5.3.01 0.9756 0.9811 0.9669 —0.0004 —0.0006 0.0017 0.0015 443 x 107> —0.0017
5.3.02 0.9154 0.9053 0.8608 0.0004 —0.0020 0.0015 —0.0024 —0.0011 0.0008
7.1.01 0.9635 0.9194 0.9080 —0.0015 —0.0033 0.0021 —0.0021 0.0011 0.0067
7.1.02 0.9468 0.9478 0.9032 —0.0008 0.0009 —0.0007 0.0084 0.0017 0.0021
7.1.03 0.9410 0.9306 0.8998 —0.0016 0.0005 0.0033 0.0045 8.67 x 107° —0.0056
7.1.04 0.9762 0.9646 0.9546 0.0007 —0.0006 0.0003 —0.0031 0.0073 0.0002
7.1.05 0.9449 0.9193 0.8983 0.0005 0.0024 —0.0008 —0.0040 —0.0004 —0.0002
7.1.06 0.9378 0.9004 0.8791 0.0025 0.0023 —0.0001 0.0002 —0.0014 —0.0057
7.1.07 0.8872 0.8735 0.8296 —0.0003 0.0004 75138,25 x 0.0020 —0.0009 —0.0160
7.1.08 0.9563 0.9335 0.9245 —0.0007 0.0010 0.0014 0.0083 —0.0008 0.0057
7.1.09 0.9667 0.9277 0.9160 —0.0010 —0.0008 0.0004 0.0007 —0.0005 0.0063
7.1.10 0.9659 0.9497 0.9341 0.0001 —0.0008 0.0007 0.0058 —0.0001 0.0050
7.2.01 0.9670 0.9468 0.9463 —0.0011 0.0002 —0.0018 —0.0008 —0.0031 —0.0044
boat.512 0.9371 0.9722 0.9220 —0.0006 —0.0013 —0.0005 0.0024 7?65,37 x —0.0036
gray21.512  0.9965 0.9998 0.9963 —0.0010 0.0008 0.0004 0.0011 0.0007 —0.0056
ruler.512 0.4332 0.5068 —0.0207 —0.0015 0.0022 —0.0002 0.0007 0.0120 3.59 x 107°
Mean 0.9215 0.9095 0.8581 —0.0014 0.0019 0.0014 0.0013 0.0020 0.0042

4.5. Information Entropy Analysis

Information entropy can be used to measure the randomness of information [43]. Its
calculation formula is Equation (48):

H(m) =

255

i=0

— ) P(x;) x logP(x;)

(48)

where H(m) represents the information entropy, m represents the information source, x;
represents the gray value of the pixel value i, and P(x;) represents the probability of the
gray value.

The closer the information entropy is to eight, the stronger the randomness of the image
and the higher the security performance of its encryption algorithm. We selected multiple
sets of images from the USC-SIPI image database for testing, and Table 4 is a comparison of
our results with other methods, bold indicates indicators of better performance. The results
show that the entropy of the images encrypted by our method is closer to eight.
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Table 4. Information entropy of encrypted images.
Cipher Image

Images Size Plain Image
Ref. [6] Ref. [12] Ours
5.1.09 256 * 256 6.7093 7.9973 7.9971 7.9970
5.1.10 256 * 256 7.3118 7.9973 7.9974 7.9977
5.1.11 256 * 256 6.4523 7.9970 7.9969 7.9974
5.1.12 256 * 256 6.7057 7.9975 7.9972 7.9974
5.1.13 256 * 256 1.5483 7.9972 7.9969 7.9974
5.1.14 256 * 256 7.3424 7.9970 7.9974 7.9977
5.2.08 512 % 512 7.5237 7.9992 7.9993 7.9994
5.2.09 512 % 512 6.9940 7.9994 7.9993 7.9993
5.2.10 512 % 512 5.7056 7.9993 7.9993 7.9993
5.3.01 1024 * 1024 7.5237 7.9998 7.9998 7.9998
5.3.02 1024 = 1024 6.8303 7.9998 7.9998 7.9997
7.1.01 512 % 512 6.0274 7.9993 7.9991 7.9993
7.1.02 512 % 512 4.0045 7.9993 7.9992 7.9994
7.1.03 512 x 512 5.4957 7.9993 7.9993 7.9994
7.1.04 512 % 512 6.1074 7.9992 7.9993 7.9993
7.1.05 512 % 512 6.5632 7.9993 7.9992 7.9993
7.1.06 512 x 512 6.6953 7.9992 7.9993 7.9993
7.1.07 512 % 512 5.9916 7.9993 7.9993 7.9992
7.1.08 512 % 512 5.0534 7.9994 7.9993 7.9992
7.1.09 512 x 512 6.1898 7.9993 7.9992 7.9994
7.1.10 512 % 512 5.9088 7.9993 7.9993 7.9993
7.2.01 1024 * 1024 5.6415 7.9998 7.9998 7.9998
boat.512 512 % 512 7.1914 7.9993 7.9994 7.9994
gray21.512 512 % 512 4.3923 7.9992 7.9994 7.9993
ruler.512 512 % 512 0.5000 7.9993 7.9992 7.9993
Mean of 256 * 256 256 * 256 - 7.9972 7.9972 7.9974
Mean of 512 * 512 512 % 512 - 7.9993 7.9993 7.9993
Mean of 1024454, 1004 - 7.9998 79998 7.9998

1024

4.6. Antidifferential Attack (NPCR and UACI Standard Evaluation)

Differential attack is to change specific elements of the plaintext image, corresponding
to the degree of influence of different ciphertexts, to obtain as much of the key as possible.
The ability of an encryption algorithm to resist differential attacks can be measured by two
important parameters: number of pixel change rate (NPCR) and uniform average change
intensity (UACI) [44], which are calculated as Equation (49)—(51):

[0, if Ti(i,)) = Ta(i,j)
D=1 i Tin 7T )

=1 L1 €0, ))

NPCR = T % 100% (50)
I - .
x| Th(i,]) — Ta(i,

UACI = == 1215;) X(m]i . Gl x 100% (1)

where m and n are the height and width of the image, and T; and T, represent the encrypted
ciphertext images of two different original images.

In the paper [44], we can see the theoretical values of the three levels of NPCR and
UACI for images of different sizes. We chose the confidence level to be 0.05 and tested the
images in the USC-SIPI image database. The results are shown in Table 5, which shows
that our results are in line with the theoretical expectations, underlined data indicates that
the test did not pass, so our algorithm can resist differential attacks.
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Table 5. NPCR and UACI for different images (%).

Image NPCR UACI

« =0.05 Ref. [6] Ref. [7] Ref. [8] Proposed Ref. [6] Ref. [7] Ref. [8] Proposed

256 * 256 Theoretical NPCR 99.5693 Theoretical UACI 33.2824~33.6447
5.1.09 99.6109 99.603 99.5124 99.5787 33.4475 33.552 33.5214 33.3580
5.1.10 99.5972 99.636 99.6121 99.6565 33.4846 33.453 33.4215 33.5306
5.1.11 99.5865 99.942 99.5943 99.5860 33.4482 33.586 33.4014 33.5725
5.1.12 99.6323 99.792 99.5811 99.5992 33.4453 33.453 33.4158 33.5240
5.1.13 99.6216 99.792 99.5963 99.5802 33.4531 33.520 33.4236 33.4265
5.1.14 99.6078 99.621 99.5945 99.5831 33.4293 33.440 33.3951 33.5393

512 % 512 Theoretical NPCR 99.5893 Theoretical UACI 33.3730~33.5541
5.2.08 99.6105 99.960 99.5878 99.6136 33.5035 33.692 33.3978 33.5362
5.2.09 99.6033 99.876 99.5812 99.6022 33.4674 33.548 33.4182 33.3835
5.2.10 99.6101 99.654 99.6100 99.6147 33.4253 33.454 33.4263 33.4199
7.1.01 99.6136 99.957 99.6028 99.6310 33.4885 33.648 33.4474 33.5258
7.1.02 99.6040 99.918 99.6078 99.6151 33.4508 33.465 33.4326 33.4589
7.1.03 99.6101 99.849 99.5811 99.6124 33.4352 33.273 33.4836 33.4771
7.1.04 99.6178 99.991 99.5946 99.5930 33.5024 33.202 33.4782 33.4340
7.1.05 99.5979 99.942 99.5937 99.6136 33.4739 33.830 33.4716 33.4699
7.1.06 99.6269 99.670 99.5912 99.6041 33.4764 33.627 33.4365 33.4511
7.1.07 99.6193 99.983 99.6014 99.5995 33.4310 33.609 33.4313 33.4637
7.1.08 99.5979 99.818 99.6013 99.6170 33.4997 33.375 33.4460 33.4841
7.1.09 99.6113 99.874 99.6148 99.6109 33.4630 33.530 33.3856 33.4925
7.1.10 99.6166 99.697 99.6097 99.6079 33.4701 33.438 33.3941 33.4423

boat.512 99.6227 99.715 99.6101 99.6212 33.4448 33.374 33.3973 33.4156

gray21.512 99.6067 99.643 99.6034 99.5946 33.5113 33.507 33.4089 33.4367
ruler.512 99.6124 99.637 99.5945 99.6056 33.4620 33.415 33.4635 33.4649
1024 % 1024 Theoretical NPCR 99.5994 Theoretical UACI 33.4183~33.5088
5.3.01 99.6067 99.950 99.6032 99.6294 33.5013 33.508 33.4392 33.5005
5.3.02 99.6015 99.982 99.6108 99.6128 33.4255 33.514 33.4547 33.4263
7.2.01 99.6005 99.980 99.6036 99.6088 33.4438 33.487 33.4301 33.4511
Mean 99.6098 99.8192 99.5957 99.6076 33.4634 335 33.4329 33.4674
Std 0.0103 0.2665 0.0200 0.0173 0.0268 0.0459 0.0328 0.0518
Pass/All 25/25 25/25 22/25 25/25 25/25 17/25 25/25 25/25

4.7. Anticlipping and Noise Attacks

When the image information is transmitted on the channel, the image information
may be subjected to cropping attacks, noise attacks, and other attack methods by the
attacker so that the transmitted image information is damaged, and the useful information
cannot be obtained after decryption with the correct key. Therefore, we conducted cropping
attack and noise attack tests on the images respectively to check the robustness of our
algorithm. We used the peak signal-to-noise ratio (PSNR) between the ciphertext image
and the plaintext image as a standard [45], and its calculation formula is as Equations (52)
and (53):

Y Y (Ta(iyf) = Tali, )

mXxXn

255

MSE =

(52)

(53)

where m x n is the image size, and T; (7, j) and T, (i, j) represent the original image and the
encrypted image.

We cropped the image by 1/16,1/8,1/4, and 1/2, and set the pixel value of these parts
to zero. Table 6 shows the peak signal-to-noise ratio (PSNR) of different degrees of cropping
attack; Figure 17 shows the decrypted image after the ciphertext is subjected to different
degrees of cropping attack. We can see that the general information of the decrypted image
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can still be identified after being subjected to different degrees of cropping attack; therefore,
our algorithm is resistant to clipping attacks.

Table 6. PSNR of different degrees of clipping attack.

Area 1/16 1/8 1/4 1/2
PSNR 21.314192 18.380856 15.342343 12.250188

Cropted Chiper Image Cropted Chiper Image Cropted Chiper Image Cropted Chiper Image

(a) (b) (c) (d)

Decryped Cropted Image

Decryped Cropted Image Decryped Cropted Image Decryped Cropted Image

(e) () (8) (h)

Figure 17. Decrypted images for varying degrees of cropping attacks: (a) 1/16 crop; (b) 1/8 crop; (c)
1/4 crop; (d) 1/2 crop; (e-h) decrypted images of (a—d).

Then, we applied noise of 0.01, 0.05, and 0.15 intensity to the ciphertext image and
decrypted it with the correct key. The PSNR of the decrypted image is shown in Table 7,
and the decrypted image is shown in Figure 18, which means that our algorithm is also
resistant to noise attacks.

Table 7. PSNR for noise attack.

Noise Level 0.01 Level 0.05 Level 0.1 Level
PSNR 28.971428 22.408105 19.258843
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Decryped noisy Image

Decryped noisy Image

@ : . () R ¥ n

Figure 18. Noise attack test results: (a—c) noisy cipher image of different noise level; (d-f) decrypted
noisy image.

4.8. Key Space Analysis

When the key space is large enough, the algorithm can resist brute force attack. The
key in this paper has four parts: initial parameters d; ~ dg, sumP of plaintext image pixel
values, image block size Bsize, supplementary parameters M1, N1, and the number of
blocks Bnum. The calculation accuracy is 10~1°. Taking a 256 * 256 image as an example,
the main key space is Equation (54):

keyspace = 10" x 8 + 10% + 10 + 20 + 10% > 21 (54)

2100

Its key space is much larger than 2'*", so it can resist brute force attacks [46].

4.9. Key Sensitivity Analysis

An encryption algorithm is sufficiently secure when it is sensitive to subtle changes
in the key, so we tested this on the peppers images. Since our main initial keys d; ~ dg
are generated by the SHA-512 function, we randomly selected the correct key key, then
increased the last digit sequence value generated by SHA-512 by 1, and then calculated
and generated a new initial key key1, which was only slightly different from the correct key.
Figure 19 shows the results of decryption with the changed key, indicating that our method
has better key sensitivity.

key hash value = (275afc80927870608dfa79743a56d02e3{f7d009aa78655e9aftbcb25e74el
ce102df926£fe0670ca599cc5ef2d57299429bfba3d45b66143fb075b69e590896);

key = (0.385365853658537, 0.412682926829268, 0.578536585365854, 0.237354085603113,
0.038910505836576, 0.578947368421053, 0.578947368421053, 0.290448343079922);

keyl hash value = (275afc80927870608dfa79743a56d02e3ff7d009aa78655e9affbcb25e74
elcel02df926ffe0670ca599cc5ef2d57299429bfba3d45b66143fb075b69e590897);

keyl = (0.385365853658537, 0.412682926829268, 0.578536585365854, 0.237354085603113,
0.038910505836576, 0.578947368421053, 0.426900584795322, 0.391812865497076);
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Figure 19. Decryption result of correct key key and changed key key1.

4.10. Computational Complexity

Our computational complexity is divided into three parts: generation of initial values,
disorder, and diffusion. In the process of generating initial values, we computed them
within a constant value O(m x n), where m and n denote images and rows and columns,
respectively. In the process of dislocation, we dislocated between Bnum layers and Bisze
layers, and its computational complexity is a constant value O(b), where b denotes the
corresponding maturity. In the process of diffusion, we performed cubic diffusion, whose
computational complexity O(x * y * z), x, , z are the sizes of the three dimensions of the
probability amplitude matrix. With the change of image size and resolution, its computa-
tional complexity is O(m * n) + O(x * y * z), which is roughly the same for different images.
Therefore, it can be better implemented in practical applications.

5. Conclusions

In this paper, we propose a 3D cuboid image encryption scheme based on message-
encoded controlled alternate quantum walks. We used SHA-512 to obtain the key set and
used the key set to generate the system parameters of a one-dimensional discrete quantum
walk and controlled alternate quantum walk on a circle. Then, we used the one-dimensional
discrete quantum walk model and controlled alternating quantum walk model encrypted
image to design a three-dimensional cuboid image encryption algorithm. In the scrambling
stage, the image was scrambled between layers and layer-by-layer cross-sections; in the
diffusion stage, the pixel binary cube was rotated first and combined with the 3D quantum
hash, then XORed with the 3D quantum hash sequence and tiled to obtain the encrypted
image. Simulation results and image data tests show that the scheme can resist various
typical attacks and has good security performance. In the future, we plan to introduce
advanced, new technologies and methods [47-52], such as deep learning models, neural
networks, some concepts of image fusion and recognition, etc. into image encryption and
further propose new algorithms with better encryption effects.
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