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Abstract  
One problem faced by managers who are using project 
management models is the elicitation of numerical inputs. 
Obtaining these with any degree of confidence early in a 
project is not always feasible. Related to this difficulty is 
the risk of precisely specified outputs from models leading 
to overcommitment. These problems can be seen as the 
collective failure of software measurements to represent 
the inherent uncertainties in managers’ knowledge of the 
development products, resources, and processes. It is 
proposed that fuzzy logic techniques can help to overcome 
some of these difficulties by representing the imprecision 
in inputs and outputs, as well as providing a more expert-
knowledge based approach to model building. The use of 
fuzzy logic for project management however should not be 
the same throughout the development life cycle. Different 
levels of available information and desired precision 
suggest that it can be used differently depending on the 
current phase, although a single model can be used for 
consistency.  
 

1. INTRODUCTION  
Fuzzy logic modeling techniques have been shown to 

be a useful addition to the existing statistical and machine-
learning techniques used for modeling software 
development [3]. Aside from theoretical reasons preferring 
fuzzy logic in some circumstances, several papers have 
shown favorable empirical comparisons supporting its 
usefulness by using software metric data sets to compare 
the predictive accuracy of various techniques [2, 5, 7]. In 
addition, fuzzy logic modeling software has been 
especially developed for supporting the project estimation 
process [6, 7].  

A recent survey of New Zealand project managers 
found them to have considerable interest in using fuzzy 
logic techniques [7]. This survey found that 31 out of the 

44 responding information system managers had heard of 
fuzzy logic (70.5%). For the 36 managers who were 
actively involved in managing development projects, 11 
(31%) were interested in using fuzzy logic techniques, 23 
(64%) stated that they would need to know more about the 
technique before making a decision, and only two (6%) 
did not think that fuzzy logic techniques would be useful 
to them as part of their management activities.  

In addition to assessing the managers’ perceptions of 
the worth of fuzzy logic, the survey also investigated 
which advantages of fuzzy logic were felt to be important. 
The three choices of being able to use expert knowledge, 
having linguistic inputs, and producing linguistic outputs 
were all rated roughly the same (with 19, 19, and 21 
respondents citing each as important respectively).  

As the level of commercial interest in using this 
technique “in anger” grows it becomes necessary to 
provide well-documented and replicable standards for its 
implementation. The most successful software metric 
model for effort estimation is Function Point Analysis [1], 
and a hallmark of this has been its carefully documented 
procedures (in both standards and many publications), 
certification, and workshops. While it would be premature 
to impose such restrictions on the use of fuzzy logic 
techniques at this early stage of its adoption in this field, it 
does seem prudent to outline some general skeleton 
guidelines to encourage the, somewhat inconsistent, goals 
of experimentation and rigor. In this paper, the selection of 
input and output precision levels based on the stage of the 
development life cycle is discussed.  
 

2. THE SOFTWARE DEVELOPMENT 
LIFE-CYCLE  
Many alternative representations have been proposed 

for how software is, and ought to be, developed [9]. 
Different models exist for different types of system, such 
as object-oriented systems, where the idealized 
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development process is considered by some to be 
fundamentally different to other types of development. 
Similarly, the use of prototypes (both low-and high-
fidelity), customer reviews, and other activities may differ 
from one organization to the next.  

Here we consider only the fundamental phases of 
development that are ubiquitous to almost all such models 
found in practice and the literature. Namely, the analysis, 
design, coding, testing, and maintenance phases. Each 
phase is briefly defined below (in deliberately vague terms 
to encompass common usage as widely as possible). These 
phases can also be shown graphically as in Figure 1, which 
also indicates the common notion of iteration and feedback 
between consecutive phases.  
 
2.1. Analysis  

This is the first stage of the development process and 
starts with the problem being defined and initial user 
requirements being collected. This phase can include the 
construction of simple prototypes used to determine or 
fine-tune the requirements, but should not involve any 
detailed design or real coding.  

Very little information beyond the high-level functions 
required of the system is available this early in the 
project’s life-cycle. Unfortunately, this is also the phase 
where planning is most crucial in terms of both time-to-
delivery and financial cost estimation. Such information is 
necessary for contract negotiation (both inter-and intra-
organizational) and strategic planning.  

In this and the next two stages (design and coding) the 
main emphasis of software metric models is the prediction 
of development effort, and from this some estimates of 
cost and duration. While other dependent variables can be 
of interest, the focus in this paper is with this primary 
application of effort estimation. Similar ideas can be easily 
generalized for other metric applications.  
 
2.2. Design  

The requirements must then be translated closer to the 
actual implementation. This is when the system 
specifications are developed (for example, Entity-
Relationship Diagrams, Data Flow Diagrams, Structure 
Charts, and pseudo code routines). Ideally, the system 
should be understood to a high degree at this stage, with 
the coding stage involving the implementation of the 
necessary functions.  
 
2.3. Coding  

Actual source code is written during the coding phase 
(including visually generated code and automatic template 
code). This may also include ever more sophisticated 
prototypes that evolve (at least partially) into the final 
system.  

2.4. Testing  
Testing can be performed concurrently with 

development, or may occur after most code has been 
written. When the system is tested metric models may be 
used for estimating testing effort or for predicting the 
number of defects remaining. This phase includes 
functionality and usability testing and in many cases this is 
the first time the user sees the actual system properly 
executing. At this stage the system should be complete in 
terms of functionality so a large amount of information 
about it is available for modeling.  
 

 
Figure 1. Stages in a generic life-cycle model  

2.5. Maintenance  
When the system is modified to add new functionality 

or correct defects after it has been released to the customer 
some estimate of maintenance effort may be made. Unlike 
the effort estimates for the previous four phases, which can 
all be combined to give the total for the system, effort on 
maintenance is often treated separately. Estimates can be 
made for the entire maintenance process if this is 
sufficiently trivial, or this phase can be treated as a new 
development process itself.  

 
3. ADVANTAGES OF FUZZY LOGIC FOR 

SOFTWARE METRIC MODELS  
Fuzzy logic modeling techniques offer several potential 

advantages over more traditional techniques for software 
metric models. These have already been discussed at 
considerable length in the literature and so are only briefly 
mentioned here for reference purposes. The interested 
reader is referred to [2, 3, 5] for more detailed discussion. 
 

 



3.1. Data requirements  
Fuzzy logic allows model development with little or 

even no data. This is a considerable boon given the 
problems with data gathering in software metrics research 
and practice. The collection of homogeneous data sets is 
complicated by rapidly changing technologies and a 
reluctance for inter-organizational sharing of metrics data. 
Even within a single organization there can be 
considerable pressure from programmers and managers 
against measurement collection.  
 
3.2. Robustness  

Software metric data sets are likely to contain unusual 
systems that result from a variety of causes and may 
reduce the generalisability of any empirically derived 
model [8]. Some of these problems include different 
development practices, developer learning, and 
unmeasured (and perhaps unmeasurable) influences. By 
developing models with considerable expert involvement, 
where the model can be interpreted and checked for 
reasonableness, some of the problems with non-
representative data corrupting empirically tuned models 
can be reduced or perhaps even avoided.  
 
3.3. Organizational process learning and 
communication  

The use of fuzzy logic models provides an opportunity 
to learn from the resulting models that is less evident with 
regression and (even more so) neural network models. A 
linguistically-based model can also be seen as a useful 
communication tool. For example, a programmer pointing 
out that complexity for a particular module is very high 
and may need rework may be considerably more 
meaningful to a manager than them stating that the 
module’s cyclomatic complexity is 55. In addition, since 
the models are relatively easily understood by 
management there is a greater chance of management 
support, which is essential for the success of any metrics 
program.  
 
4. FUZZY LOGIC MODELS 

THROUGHOUT THE DEVELOPMENT 
LIFE-CYCLE  
One of the important benefits of fuzzy logic for 

software engineering project management is the flexibility 
available in terms of the types of input and output 
variables. Input variables can be expressed as simple fuzzy 
labels (a large number of entities in the data model), fuzzy 
numbers (about 250 entities), or using precise values (265 
entities). Similarly, the output can be expressed in the 
same way, as a label (a short development time), fuzzy 
number (about 400 developer-hours), or precise values 
(378 developer-hours).  

 

 
Table 1. Suggested levels of precision across the 
life-cycle when estimating development effort   

Perhaps the greatest benefit from this approach is that 
the same model (the membership functions and rules) can 
be used throughout the development process, simply 
changing the levels of precision as required. This has 
several advantages over multiple model methods including 
the improved consistency of predictions, centralized model 
building and implementation, model building effort 
minimization, and knowledge gathering over the entire 
development process.  

The following subsections discuss the representation of 
independent and dependent metric variables using fuzzy 
logic. Table 1 and Figure 2 show a summary of these 
suggestions.  

Where a context is necessary in the discussion below, 
the most common task for metric models is used. That is 
development effort prediction based on system 
characteristics (including the product, process, and 
associated resources). The standard inputs into such a 
model are generally one or more size and complexity 
measures, with perhaps some developer productivity 
adjustment. Developer effort may be estimated on the 
basis of the entire system, a specified component of the 
system, for a particular phase, or for both a component and 
phase together.  

It should also be noted, that as the development process 
is enacted, more is known about the actual effort which is 
generally a component of the effort being estimated. As 
such the expectation is that model performance will 
improve roughly monotonically irrespective of the 
modeling technique used.  
 
4.1. Analysis  

The analysis phase is one of the most difficult times to 
make predictions. This is because almost all existing 
software metric models assume that precise values relating 
to the system specification are available as independent 
variables. For example, Function Point Analysis assumes 
that the numbers of external inputs, external outputs, 
external inquiries, external files, and internal files are all 
known. It also requires each to be individually rated as 
simple, average, or complex. Optionally, some subjective 



technical complexity factors can be used to further refine 
the estimated size (which is usually translated into an 
effort estimate using a developer hour per function point 
approach) [1].  
 

 
 

 

 
Figure 2. Different levels of input and output precision with the same set of membership functions and rules  

 
However, in many cases the numbers of these system 

components, and even more so their specific complexities, 
are not known with any degree of certainty until the design 
phase is almost finished, let alone during the analysis phase 
itself. This is one area where the natural uncertainty of fuzzy 
logic provides a useful means of representing the 
approximate numbers of components and their average 
complexity (or whatever other metrics are used). While 
managers can try to provide precise values for standard 
models, such results are unlikely to be taken seriously given 
the obvious guesswork and there is a natural reluctance to 
provide values to a level of precision beyond the estimator’s 
capabilities.  

Of course, different models could be used at each phase 
of development with regression or neural network 
techniques. Earlier models could use categorical labels for 
the number of functions, for example. However, this then 
leads to the problems with multiple models that have already 
been discussed above in 4.  

Similarly, the outputs from software metric models are 
usually numerical values, such as 5251 developer hours. 
This can introduce problems with over-commitment where 
the estimate becomes a sacred number. When the estimate is 
later revised, perhaps due to more knowledge becoming 
available, changes can be seen as reflecting instability in the 
estimation process or the project itself. Increasing the 
estimated cost and duration is often associated with 
problematic projects, which could lead to a politically-
motivated reluctance to update estimates as frequently as 
may be beneficial to the organization. If estimates were 
instead expressed as fuzzy labels, such as this is a high effort 
project, then commitment to precise values can be delayed 

until these values can be estimates with enough accuracy to 
be meaningful.  

Of course, predictions from standard models can be 
rounded if this is desired. However, rounding a value to the 
nearest thousand hours does not guarantee that it will be 
seen as an estimate plus or minus 500 hours.  

It is this stage, and the following design phase, that seem 
most suited to fuzzy logic modeling since actual numerical 
values are generally not available and exact estimates of 
effort can potentially even be harmful. 
 
4.2. Design  

During design the system specifications should be drafted 
and reviewed. This may include Entity-Relationship 
Diagrams showing the numbers of entities, relationships, and 
elements; Data Flow Diagrams showing the data sources, 
sinks, and flows; Functional Decomposition Charts showing 
the breakdown of the system into actual functions; and 
pseudo-code showing the algorithms and program logic from 
a higher level perspective [9]. All of these are commonly 
used as part of software metric models [1].  

Since the specifications, and thus the measurements, are 
not available in their final form until the end of this phase, 
and are subject to subsequent changes due to the dynamism 
of customer requirements or for technical reasons, it makes 
sense to represent the measures as approximate values. It is 
suggested that fuzzy numbers are useful for this purpose, 
allowing both the center (best estimate) and the degree of 
confidence (spread) to be represented. For example, the data 
model complexity may be assessed as about 50 1-m 
relationships or very close to 55 1-m relationships depending 



on the manager’s confidence in the estimate.  
In the same way, estimates of development effort can be 

made using fuzzy numbers, with any desired level of 
linguistic precision. For example, approximately 5000 
developer-hours or almost exactly 5125 developer hours.  
 
4.3. Coding  

By the coding stage most common metric models can be 
used with actual values from the system specification and 
the use of fuzzy logic seems less useful. At this point, using 
exact values as inputs into the model seems far more 
sensible if they are indeed available.  

However, some use of fuzzy logic estimates for 
subjective concepts, such as program complexity, can still be 
used [4]. Such concepts are often captured by a series of 
arbitrary measurements that can be difficult to obtain, 
whereas human experts may be able to quickly and 
accurately ascribe a fuzzy value to them.  

Fortunately, as noted earlier the same fuzzy logic model 
can still be used here irrespective of the actual precisions 
used. Fuzzy numbers may still be preferred for outputs even 
though exact inputs are being used in order to maintain the 
appearance of uncertainty.  
 
4.4. Testing  

Testing effort metric models can depend on either 
specification or code-based measurements, so such 
predictions may be performed using either fuzzy logic or 
crisp values depending on availability. As with coding, 
fuzzy logic estimates may be superior to numerical estimates 
for some concepts, such as complexity. Again, fuzzy 
numbers for outputs may be a useful way to keep the 
uncertainty in the estimate clear.  
 
4.5. Maintenance  

As was mentioned above, maintenance projects can be 
either run as single entities, or may be treated as new 
development projects (with the other phases included within 
them). The choice of precision will obviously depend on the 
scale of the project.  
 

5. CONCLUSIONS  
Give its ability to represent differing levels of uncertainty 

for inputs and outputs whilst still basing inference on the 
same model, fuzzy logic is well suited to a life-cycle 
approach to software metric modeling. This is a unique 
opportunity not previously available from standard software 
metric models that are primarily developed using 
measurements from a single phase in a project’s life. The 
ensuing consistency, communicatability, and economy make 
this an attractive modeling technique for such applications as 
effort estimation.  

The other advantages of data-free (or data-poor) model 
building, more robust models, and improved communication 
further enhance the opportunities from using fuzzy logic for 
software metrics. We are currently entering a phase of 
industrial collaboration with several large New Zealand 
commercial organizations where the ideas discussed in this 
paper will be trialled and refined. 
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