
Full citation: Gray, A.R., & MacDonell, S.G. (1999) Fuzzy logic for software metric models throughout
the development life-cycle, in Proceedings of the Annual Meeting of the North American Fuzzy
Information Processing Society (NAFIPS'99). New York, USA, IEEE Computer Society Press, pp.258-
262.
http://dx.doi.org/10.1109/NAFIPS.1999.781694

Fuzzy Logic for Software Metric Models throughout the Development Life-Cycle

Andrew R. Gray and Stephen G. MacDonell
Department of Information Science

University of Otago, PO Box 56, Dunedin, New Zealand
fagraygfstevemacg@infoscience.otago.ac.nz

Abstract
One problem faced by managers who are using project
management models is the elicitation of numerical inputs.
Obtaining these with any degree of confidence early in a
project is not always feasible. Related to this difficulty is
the risk of precisely specified outputs from models leading
to overcommitment. These problems can be seen as the
collective failure of software measurements to represent
the inherent uncertainties in managers’ knowledge of the
development products, resources, and processes. It is
proposed that fuzzy logic techniques can help to overcome
some of these difficulties by representing the imprecision
in inputs and outputs, as well as providing a more expert-
knowledge based approach to model building. The use of
fuzzy logic for project management however should not be
the same throughout the development life cycle. Different
levels of available information and desired precision
suggest that it can be used differently depending on the
current phase, although a single model can be used for
consistency.

1. INTRODUCTION
Fuzzy logic modeling techniques have been shown to

be a useful addition to the existing statistical and machine-
learning techniques used for modeling software
development [3]. Aside from theoretical reasons preferring
fuzzy logic in some circumstances, several papers have
shown favorable empirical comparisons supporting its
usefulness by using software metric data sets to compare
the predictive accuracy of various techniques [2, 5, 7]. In
addition, fuzzy logic modeling software has been
especially developed for supporting the project estimation
process [6, 7].

A recent survey of New Zealand project managers
found them to have considerable interest in using fuzzy
logic techniques [7]. This survey found that 31 out of the

44 responding information system managers had heard of
fuzzy logic (70.5%). For the 36 managers who were
actively involved in managing development projects, 11
(31%) were interested in using fuzzy logic techniques, 23
(64%) stated that they would need to know more about the
technique before making a decision, and only two (6%)
did not think that fuzzy logic techniques would be useful
to them as part of their management activities.

In addition to assessing the managers’ perceptions of
the worth of fuzzy logic, the survey also investigated
which advantages of fuzzy logic were felt to be important.
The three choices of being able to use expert knowledge,
having linguistic inputs, and producing linguistic outputs
were all rated roughly the same (with 19, 19, and 21
respondents citing each as important respectively).

As the level of commercial interest in using this
technique “in anger” grows it becomes necessary to
provide well-documented and replicable standards for its
implementation. The most successful software metric
model for effort estimation is Function Point Analysis [1],
and a hallmark of this has been its carefully documented
procedures (in both standards and many publications),
certification, and workshops. While it would be premature
to impose such restrictions on the use of fuzzy logic
techniques at this early stage of its adoption in this field, it
does seem prudent to outline some general skeleton
guidelines to encourage the, somewhat inconsistent, goals
of experimentation and rigor. In this paper, the selection of
input and output precision levels based on the stage of the
development life cycle is discussed.

2. THE SOFTWARE DEVELOPMENT
LIFE-CYCLE
Many alternative representations have been proposed

for how software is, and ought to be, developed [9].
Different models exist for different types of system, such
as object-oriented systems, where the idealized

http://dx.doi.org/10.1109/NAFIPS.1999.781694�

development process is considered by some to be
fundamentally different to other types of development.
Similarly, the use of prototypes (both low-and high-
fidelity), customer reviews, and other activities may differ
from one organization to the next.

Here we consider only the fundamental phases of
development that are ubiquitous to almost all such models
found in practice and the literature. Namely, the analysis,
design, coding, testing, and maintenance phases. Each
phase is briefly defined below (in deliberately vague terms
to encompass common usage as widely as possible). These
phases can also be shown graphically as in Figure 1, which
also indicates the common notion of iteration and feedback
between consecutive phases.

2.1. Analysis

This is the first stage of the development process and
starts with the problem being defined and initial user
requirements being collected. This phase can include the
construction of simple prototypes used to determine or
fine-tune the requirements, but should not involve any
detailed design or real coding.

Very little information beyond the high-level functions
required of the system is available this early in the
project’s life-cycle. Unfortunately, this is also the phase
where planning is most crucial in terms of both time-to-
delivery and financial cost estimation. Such information is
necessary for contract negotiation (both inter-and intra-
organizational) and strategic planning.

In this and the next two stages (design and coding) the
main emphasis of software metric models is the prediction
of development effort, and from this some estimates of
cost and duration. While other dependent variables can be
of interest, the focus in this paper is with this primary
application of effort estimation. Similar ideas can be easily
generalized for other metric applications.

2.2. Design

The requirements must then be translated closer to the
actual implementation. This is when the system
specifications are developed (for example, Entity-
Relationship Diagrams, Data Flow Diagrams, Structure
Charts, and pseudo code routines). Ideally, the system
should be understood to a high degree at this stage, with
the coding stage involving the implementation of the
necessary functions.

2.3. Coding

Actual source code is written during the coding phase
(including visually generated code and automatic template
code). This may also include ever more sophisticated
prototypes that evolve (at least partially) into the final
system.

2.4. Testing
Testing can be performed concurrently with

development, or may occur after most code has been
written. When the system is tested metric models may be
used for estimating testing effort or for predicting the
number of defects remaining. This phase includes
functionality and usability testing and in many cases this is
the first time the user sees the actual system properly
executing. At this stage the system should be complete in
terms of functionality so a large amount of information
about it is available for modeling.

Figure 1. Stages in a generic life-cycle model

2.5. Maintenance
When the system is modified to add new functionality

or correct defects after it has been released to the customer
some estimate of maintenance effort may be made. Unlike
the effort estimates for the previous four phases, which can
all be combined to give the total for the system, effort on
maintenance is often treated separately. Estimates can be
made for the entire maintenance process if this is
sufficiently trivial, or this phase can be treated as a new
development process itself.

3. ADVANTAGES OF FUZZY LOGIC FOR

SOFTWARE METRIC MODELS
Fuzzy logic modeling techniques offer several potential

advantages over more traditional techniques for software
metric models. These have already been discussed at
considerable length in the literature and so are only briefly
mentioned here for reference purposes. The interested
reader is referred to [2, 3, 5] for more detailed discussion.

3.1. Data requirements
Fuzzy logic allows model development with little or

even no data. This is a considerable boon given the
problems with data gathering in software metrics research
and practice. The collection of homogeneous data sets is
complicated by rapidly changing technologies and a
reluctance for inter-organizational sharing of metrics data.
Even within a single organization there can be
considerable pressure from programmers and managers
against measurement collection.

3.2. Robustness

Software metric data sets are likely to contain unusual
systems that result from a variety of causes and may
reduce the generalisability of any empirically derived
model [8]. Some of these problems include different
development practices, developer learning, and
unmeasured (and perhaps unmeasurable) influences. By
developing models with considerable expert involvement,
where the model can be interpreted and checked for
reasonableness, some of the problems with non-
representative data corrupting empirically tuned models
can be reduced or perhaps even avoided.

3.3. Organizational process learning and
communication

The use of fuzzy logic models provides an opportunity
to learn from the resulting models that is less evident with
regression and (even more so) neural network models. A
linguistically-based model can also be seen as a useful
communication tool. For example, a programmer pointing
out that complexity for a particular module is very high
and may need rework may be considerably more
meaningful to a manager than them stating that the
module’s cyclomatic complexity is 55. In addition, since
the models are relatively easily understood by
management there is a greater chance of management
support, which is essential for the success of any metrics
program.

4. FUZZY LOGIC MODELS

THROUGHOUT THE DEVELOPMENT
LIFE-CYCLE
One of the important benefits of fuzzy logic for

software engineering project management is the flexibility
available in terms of the types of input and output
variables. Input variables can be expressed as simple fuzzy
labels (a large number of entities in the data model), fuzzy
numbers (about 250 entities), or using precise values (265
entities). Similarly, the output can be expressed in the
same way, as a label (a short development time), fuzzy
number (about 400 developer-hours), or precise values
(378 developer-hours).

Table 1. Suggested levels of precision across the
life-cycle when estimating development effort

Perhaps the greatest benefit from this approach is that
the same model (the membership functions and rules) can
be used throughout the development process, simply
changing the levels of precision as required. This has
several advantages over multiple model methods including
the improved consistency of predictions, centralized model
building and implementation, model building effort
minimization, and knowledge gathering over the entire
development process.

The following subsections discuss the representation of
independent and dependent metric variables using fuzzy
logic. Table 1 and Figure 2 show a summary of these
suggestions.

Where a context is necessary in the discussion below,
the most common task for metric models is used. That is
development effort prediction based on system
characteristics (including the product, process, and
associated resources). The standard inputs into such a
model are generally one or more size and complexity
measures, with perhaps some developer productivity
adjustment. Developer effort may be estimated on the
basis of the entire system, a specified component of the
system, for a particular phase, or for both a component and
phase together.

It should also be noted, that as the development process
is enacted, more is known about the actual effort which is
generally a component of the effort being estimated. As
such the expectation is that model performance will
improve roughly monotonically irrespective of the
modeling technique used.

4.1. Analysis

The analysis phase is one of the most difficult times to
make predictions. This is because almost all existing
software metric models assume that precise values relating
to the system specification are available as independent
variables. For example, Function Point Analysis assumes
that the numbers of external inputs, external outputs,
external inquiries, external files, and internal files are all
known. It also requires each to be individually rated as
simple, average, or complex. Optionally, some subjective

technical complexity factors can be used to further refine
the estimated size (which is usually translated into an
effort estimate using a developer hour per function point
approach) [1].

Figure 2. Different levels of input and output precision with the same set of membership functions and rules

However, in many cases the numbers of these system

components, and even more so their specific complexities,
are not known with any degree of certainty until the design
phase is almost finished, let alone during the analysis phase
itself. This is one area where the natural uncertainty of fuzzy
logic provides a useful means of representing the
approximate numbers of components and their average
complexity (or whatever other metrics are used). While
managers can try to provide precise values for standard
models, such results are unlikely to be taken seriously given
the obvious guesswork and there is a natural reluctance to
provide values to a level of precision beyond the estimator’s
capabilities.

Of course, different models could be used at each phase
of development with regression or neural network
techniques. Earlier models could use categorical labels for
the number of functions, for example. However, this then
leads to the problems with multiple models that have already
been discussed above in 4.

Similarly, the outputs from software metric models are
usually numerical values, such as 5251 developer hours.
This can introduce problems with over-commitment where
the estimate becomes a sacred number. When the estimate is
later revised, perhaps due to more knowledge becoming
available, changes can be seen as reflecting instability in the
estimation process or the project itself. Increasing the
estimated cost and duration is often associated with
problematic projects, which could lead to a politically-
motivated reluctance to update estimates as frequently as
may be beneficial to the organization. If estimates were
instead expressed as fuzzy labels, such as this is a high effort
project, then commitment to precise values can be delayed

until these values can be estimates with enough accuracy to
be meaningful.

Of course, predictions from standard models can be
rounded if this is desired. However, rounding a value to the
nearest thousand hours does not guarantee that it will be
seen as an estimate plus or minus 500 hours.

It is this stage, and the following design phase, that seem
most suited to fuzzy logic modeling since actual numerical
values are generally not available and exact estimates of
effort can potentially even be harmful.

4.2. Design

During design the system specifications should be drafted
and reviewed. This may include Entity-Relationship
Diagrams showing the numbers of entities, relationships, and
elements; Data Flow Diagrams showing the data sources,
sinks, and flows; Functional Decomposition Charts showing
the breakdown of the system into actual functions; and
pseudo-code showing the algorithms and program logic from
a higher level perspective [9]. All of these are commonly
used as part of software metric models [1].

Since the specifications, and thus the measurements, are
not available in their final form until the end of this phase,
and are subject to subsequent changes due to the dynamism
of customer requirements or for technical reasons, it makes
sense to represent the measures as approximate values. It is
suggested that fuzzy numbers are useful for this purpose,
allowing both the center (best estimate) and the degree of
confidence (spread) to be represented. For example, the data
model complexity may be assessed as about 50 1-m
relationships or very close to 55 1-m relationships depending

on the manager’s confidence in the estimate.
In the same way, estimates of development effort can be

made using fuzzy numbers, with any desired level of
linguistic precision. For example, approximately 5000
developer-hours or almost exactly 5125 developer hours.

4.3. Coding

By the coding stage most common metric models can be
used with actual values from the system specification and
the use of fuzzy logic seems less useful. At this point, using
exact values as inputs into the model seems far more
sensible if they are indeed available.

However, some use of fuzzy logic estimates for
subjective concepts, such as program complexity, can still be
used [4]. Such concepts are often captured by a series of
arbitrary measurements that can be difficult to obtain,
whereas human experts may be able to quickly and
accurately ascribe a fuzzy value to them.

Fortunately, as noted earlier the same fuzzy logic model
can still be used here irrespective of the actual precisions
used. Fuzzy numbers may still be preferred for outputs even
though exact inputs are being used in order to maintain the
appearance of uncertainty.

4.4. Testing

Testing effort metric models can depend on either
specification or code-based measurements, so such
predictions may be performed using either fuzzy logic or
crisp values depending on availability. As with coding,
fuzzy logic estimates may be superior to numerical estimates
for some concepts, such as complexity. Again, fuzzy
numbers for outputs may be a useful way to keep the
uncertainty in the estimate clear.

4.5. Maintenance

As was mentioned above, maintenance projects can be
either run as single entities, or may be treated as new
development projects (with the other phases included within
them). The choice of precision will obviously depend on the
scale of the project.

5. CONCLUSIONS
Give its ability to represent differing levels of uncertainty

for inputs and outputs whilst still basing inference on the
same model, fuzzy logic is well suited to a life-cycle
approach to software metric modeling. This is a unique
opportunity not previously available from standard software
metric models that are primarily developed using
measurements from a single phase in a project’s life. The
ensuing consistency, communicatability, and economy make
this an attractive modeling technique for such applications as
effort estimation.

The other advantages of data-free (or data-poor) model
building, more robust models, and improved communication
further enhance the opportunities from using fuzzy logic for
software metrics. We are currently entering a phase of
industrial collaboration with several large New Zealand
commercial organizations where the ideas discussed in this
paper will be trialled and refined.

REFERENCES
[1] N. E. Fenton and S. L. Pfleeger. Software Metrics: A

Rigorous & Practical Approach. PWS, 1997.
[2] A. Gray and S. MacDonell. Applications of fuzzy

logic to software metric models for development effort
estimation. In Proceedings of the 1997 Annual meeting
of the North American Fuzzy Information Processing
Society -NAFIPS’97, pages 394–399. IEEE, 1997.

[3] A. Gray and S. MacDonell. A comparison of model
building techniques to develop predictive equations for
software metrics. Information and Software Technology,
39:425–437, 1997.

[4] R. Kilgour, A. Gray, P. Sallis, and S. MacDonell. A
fuzzy logic approach to computer software source code
authorship analysis. In Proceedings of the 1997
International Conference on Neural Information
Processing and Intelligent Information Systems, pages
865–868. Springer-Verlag, 1997.

[5] S. MacDonell and A. Gray. A comparison of
modeling techniques for software development effort
prediction. In Proceedings of the 1997 International
Conference on Neural Information Processing and
Intelligent Information Systems, pages 869–872.
Springer-Verlag, 1997.

[6] S. G. MacDonell and A. R. Gray. Fulsome: a
fuzzy logic modeling tool for software metricians. In this
volume.

[7] S. G. MacDonell, A. R. Gray, and J. Calvert. Fulsome: A
fuzzy logic toolbox for software metric practitioners and
researchers. Submitted to ICONIP’99.

[8] Y. Miyazaki, M. Terakado, K. Ozaki, and N. Nozaki.
Robust regression for developing software estimation
models. Journal of System and Software, 27:35–16,
1994.

[9] R. S. Pressman. Software Engineering: A Practitioner’s
Approach. McGraw-Hill, fourth edition, 1997.

