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Abstract— The demand for organic Rankine cycle (ORC) a modeling approach for ORC systems that is intended for
systems to be efficient and economically competitive drives efficient global optimization.
the need for a reliable and robust modeling approach that
is suitable for optimization. However existing commercial

simulation software is not typically tailored for optimization Il. SEQUENTIAL MODULAR MODEL AND

and they generally cannot guarantee global optimum. This EQUATION-ORIENTED MODEL

paper proposes a modeling approach to approximate a rigoros

simulation model that is suitable for global optimization. Traditionally, GPPs are often modeled using the sequential

This involves a combination of regression and thermodynanai modular (SM) approach where unit Operation modules (Or

analysis, in addition to integer programming techniques. Tiree ; ; ;
different solvers, COBYLA, SCIP. and BARON are used to functions) are linked together in the flow order through the

optimize the ORC model and are compared against each other plant. The OUIqu of each mpdule is calculated from the
to demonstrate the prospect of achieving the global optimum output of the previous module in the flowsheet; therefore, th

using this approach. In addition, this paper also presents a stream information, i.e. mass flows, temperatures, ent®lp
technique to improve the model accuracy by using a piecewise etc., will propagate from the beginning of the plant's pce
fit to approximate the output characteristic of the ORC unit through to the end of the flowsheet.
operations. However, there are some key limitations to using the
. INTRODUCTION SM approach, especially when dealing with optimization
) o problems. Many of the derivative optimization solversglik
With the |ney|tab|I|ty of the world’s non?renewable e~ fmincon (MATLAB's solver) [7] or IPOPT [8], that require
sources becoming scarcer and the progressive pressureforg,e first and/or second derivatives of the objective fumctio
power generation sector to reduce greenhouse gases emissjQy consraints, will struggle to find accurate derivatives
and pollutants, there has been a massive growth in renewaklgy nodels due to complex thermodynamics and/or internal
power generation technologies. Geothlermal €nergy 1S ORfqdel iterations. Consequently, the derivatives are agipro
example of a reliable source of sustainable energy. As @faieq using finite differences leading to various optindaat
2010, there are 24 countries that have used geothermalyems such as convergence issues and long computation
energy for electricity generation [1]. Of all the geothefmay g [9]. Furthermore, it is recognized that optimization
power plants (GPP), organic Rankine cycle (ORC) powefpiems are solved more accurately and efficiently if the
plants are the most common type of geothermal power planig oy tica| derivative functions are provided, [10], [11]. In
in the World, W,'th 203 units in operation as of De(,:embe'éddition, solvers that are compatible with the SM model
2014, constituting to over 35% of all geothermal units [2]. gyrycture cannot guarantee that the optimum found is the
Given the large number of ORC systems around the worlglopa| optimum, which might be a disadvantage in today’s
and the potential for more to be installed due to the relbtive competitive market.

abundant low-temperature geothermal resources, there is 3\n alternative method is to use the equation-oriented
considerable amount of literature on ORC modeling ar;g

R of h ORC bl imulated usi O) approach, where systems are represented as a set of
optlmlzat|0n._ ten these P an_ts are simulate USINYyuations that are solved simultaneously. In contrastheo t
the sequential modular approach, via a standard modeli

-, h | | approach, EO approach allows standard optimization
software such as Aspen Plus [3] or GateCycle [4], an roblems to be formulated relatively efficiently from the

then are subseque_ntly optimized using heuristic methods of, e structure, and the mass and energy balance equations
sophisticated algont.hms [5]. [6]. ) , , _are solved simultaneously with the optimization problem

_ However, one major concern with using this approach lié§ 51 | addition, provided that if all the equations areelg

n the_ro_bus_tness and efficiency of the model wher_1 Itis usfaic and analytically differentiable, some global optiaris

n op_tln_wlzz_mon problems. Therefore, this paper will dissu (white-box optimizers) can exploit this algebraic struetu

the limitations of sequential modular models and PropoSgng analytically calculate the required derivatives foti-op

) N . . mization. This means that the numerical issues discussed
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land University of Technology, Auckland, New Zealand; eilma above can be bypassed or reduced. Thus, this paper aims
vam@ut . ac. nz to demonstrate how an ORC system can be modeled and
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Furthermore, the results will be compared with a blackand the current REFPROP (version 9.1) thermodynamic
box optimizer, namely COBYLA [15] (supplied by NLopt package [22], which were considered as the “gold standard”
[16]), that cannot guarantee global optimality to hightighfor the purposes of this study.

the difference between the two optimization technique® Th As previously mentioned, these high fidelity SM models
novelty of this research is the application of the proposegre not tailored for optimization. Therefore, this modekwa
modeling framework to an ORC system to address the issugét built to be optimized but instead was used to validate
associated with the conventional SM optimization approadfie approximate EO model since it provides a very accurate
and to provide an efficient model that is tailored for globalepresentation of the ORC system. This is an important
optimization. part of this proposed modeling framework, as it will show
the reliability and accuracy of the approximate EO model
to the original system. Once the model is constructed and
This paper illustrates the proposed modeling approadblved using a nonlinear system solver (suchfsmve in
using a simple four-unit-operation ORC system. Fig. 1 ShowgATLAB), it can be used as initial guess for the optimization
the process flow diagram (PFD) of the ORC system, whicproblem discussed in Section II-C. Since different iritia
consists of a cycle including a turbine, condenser, feed@umization values can result in different optimization timesla
and an evaporator. The topology of this ORC system has beggslutions, it is important that a feasible initial guess s®di
analyzed extensively in many academic papers [17]-[19] afgr the optimization problem. Therefore, for this reseatble
in many standard thermodynamic textbooks such as [2], [2Qhijtialization values were taken from the base case scenari
[19] that was solved in the SM model to minimize the issues
- _ _ associated with a poor initial guess.
The specific ORC system described in [19] was used |, orger to keep this paper concise, the construction of this

to demonstrate the proposed modeling approach with plagiy e will not be discussed but a similar system is detailed
parameters labeled in Fig. 1. Since this research focusgsiha tutorial section of the JSteam software, [21].
mainly on the modeling and optimization aspect of an ORC

system, and not the effect of different working fluids, only
R227ea (1,1, 1, 2, 3, 3, 3-Heptafluoropropane) was used dge Approximate EO Model
to its favorable thermodynamic properties.

In addition, the ORC system was assumed as a steady-As mentioned in Section I, in order to utilize SCIP and
state and steady-flow process; whereby changes in kineBARON solvers, an algebraic description of the ORC model
and potential energy were neglected, and losses induced ibyrequired. The task of constructing the EO model of an
friction were neglected. The thermodynamic and transpo@RC systems amounts to deriving a set of deterministic
properties of the brine were considered to be the sanadgebraic equations describing the process of the systeim an
as water; chemical substances and non-condensible gaspproximating the output characteristic of the unit operest
were neglected. Furthermore, the pressure drops across hgsing regression and thermodynamic analysis. The follgwin
exchangers and pipelines were neglected. subsections will discuss how this model was constructed and

] o the compromise between the accuracy of the model and the
B. High Fidelity SM Model computational complexity of the optimization problem.

The high fidelity SM model in this research was con- 1) Opjective FunctionFor this optimization problem, the

structed using JSteam MATLAB Toolbox v1.70 [21]. Thegpjective function was to maximize the gross power output
construction of the model used unit operation functionscallpf the plant, which is defined as

IIl. M ODELING AN ORC SYSTEM

A. Model Description

363K J = (hy = ha)rin @)
R227ea o 1 MPa
Turbine
l - whereh is the enthalpy value anth is the mass flow rate
tvaporator L "G) Cenerator of the working fluid associated with the turbine in Fig. 1.
—> Q—:[cﬂ Note that this model is not limited to the gross power
O output; the objective function can _be the net power putput,
the mass flow of the working fluid, or even a weighted
Pump n,=75% 283K . .
o - economic analysis of the plant.
\ 4
— 2) Mass and Energy Balancerfhe first set of equations
—_— o Cooling Water Coolng Water is the mass and energy balance equations, which can be
Geofluid Geofluid 280K 288K derived based on the first law of thermodynamics. Referring
Inlet Outlet 0.5 MPa 0.5 MPa . . .
369K 331K to Fig. 1, the following mass and energy balance equations
iy e el are associated with the numbers labeled on the diagram,

wherer is the mass flow raté, is the enthalpy valud/,'[/pump
Fig. 1. The process flow diagram of a basic organic Rankineesstem. s the pump input powefVyp is the turbine output power,



B is the brine and CW is the cooling water. o — T T
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From the fixed parameters mentioned in Section III-A_ d it § imating the saturated liaxithal |
the following constants were calculated using REFPROIgég52{“ngﬁ)g,:eosfssresléu?é_apprOX'ma 1o The saturated Ipialpy value
mBthm is 30144 kJ/kg,77'”L|30uth|30ut is 19133 kJ/kg.hcwm is
29.288kJ/kghcw,, is 62.832kJI/kg. Note that while there is
enough information to calculate, it was intentionally kept pump, a set of isentropic pump work values can be calculated
as a decision variable in order to show how the turbine uniit various input pressures. The correlation between isgiatr
operation can be approximated using this modeling approapmp work and the inlet pressure can then be approximated
(see Section 11I-C.4). All the other variables in (2) and§8} via regression analysis, as shown in Fig. 3. The fitting model
decision variables and will be calculated by the optimizer. that was used to approximate the isentropic pump work was
3) Operational Constraintsin addition to the mass and a quadratic polynomial curve. As a result, the pump input
energy balance equations, there are operational cortstraipower now becomes
to consider. These are subcooling requirements, the pressu

pump .
drop across heat exchangers, heat loss, etc. However, in Woump = M7 (6)
compliance with [19] specifications and assuming that state Tlpump

3 can operate between 283K and the saturated temperatiyigere

at 0.6 MPa, only the state of the working fluid entering the pump )

pump was of concern for this example, which needs to be Ahigen = —0.271P5" — 0.389P5 + 0.626. @)
greater or equal to 283 K.

A similar approach can also be applied to the turbine
Equation (4) PP PP

output power; however, there are now two independent

hs 2 R fgzeax (4) variables, namely the inlet enthalpy and the outlet pre&ssur

ensures that state 3 will always be greater or equal to tfduation (9) defines the turbine output power, whae,

enthalpy value at saturated temperature of 283K, which ca®the isentropic turbine workyur, is the isentropic efficiency

be calculated directly using REFPROP. and 7, is the mass flow rate. Assuming that the inlet
Whereas Equation (5) temperature can vary between 383K and the saturated vapor
temperature at 1 MPa, and the outlet pressure can vary

hy < 162.362P3" " +100.620 (5)  between 0.1 to 0.6MPa, a set of isentropic turbine work

ensures that state 3 will always be lower or equal to th%alues can be calculated, as shown by the black dots in

enthalpy value at saturated liquid pressure ranging fram OFlg. 4. Since there are no explicit temperature terms in (3),
to 0.6 MPa, whereP; is the pressure at state 3. The right
hand side of (5) was derived using a curve fitting tagtifit

[21], that fitted a curve to a set of saturated liquid enthalpy
values ranging from 0.1 to 0.6 MPa, as shown in Fig. 2. In
this case, the fitting model was a power function.

4) Unit Operation Approximations:Since the rigorous
unit operation functions cannot be used in this EO model,
the two expressions, namel/ym and Wpump, in (3) need to
be approximated as a function of enthalpy and/or pressure,
hence the name approximate EO model.

The pump input power is defined in (6), whedhlo"" is
the isentropic pump workjyump is the isentropic efficiency
and s is the mass flow rate. Since we assume that there
are no pressure drops across the heat exchanger#si=e.

P, €[0.1, 0.6]MPa and’s = P, = 1 MPa, and knowing that Fig. 3. Regressed fit for approximating the isentropic pungskwas a
the quality of the working fluid will always be 0 across thefunction of the inlet pressure.
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TABLE |

\ THE RELATIVE ERROR[%] BETWEEN THE APPROXIMATEE O MODEL
o \ y AND THE HIGH FIDELITY SM MODEL.
g% TS g Quadrafic Surface Fit Piecewise Fit
3%20 Sii Parameter COBYLA | SCIP | BARON | SCIP | BARON
251 %0 % P 0.00 0.00[ 0.0 | 0.00 0.0
] \ h1 0.00 0.00 0.00 0.00 0.00
- 01 ha 0.09 0.06 0.06 0.01 0.01
5 Absolute Error h3 0.00 0.00 0.00 0.00 0.00
3 360 | 0 ] hy 0.00 0.00 0.00 0.00 0.00
z T : Turbine Power 1.99 1.53 1.53 0.2b 0.2
£ 380 0 Pump Power 0.12 0.12 0.12 0.12 0.17
a [ A -1 Cooler Duty 0.20 0.16 0.16 0.0 0.03
T 06 05 04 03 o2 04 Heater Duty 0.00 0.00 0.00 0.00 0.00
Inlet Pressure [MPa] Work|ng Fluid 0.00 0.00 0.00 0.0d 0.00
Cooling Water 0.20 0.16 0.16 0.08 0.03
Th | Effici 2. 1.61 1.61 .26 .27
Fig. 4. Regressed fit for approximating the isentropic nebwork as a Sosg:e%im‘;c[lse]ncy 5 528 14 gl 0 961 28 6? 1008
function of the inlet enthalpy and outlet pressure. (See Eig. 5.) : - - : :

the respective inlet enthalpy values were calculated fer thhe approximate model is a fairly sensible representatfon o
inlet temperatures. Using a surface fitting tool, a corfetet the original ORC system. However, it is possible to further

between the isentropic turbine WOI‘k, the inlet enthalpyj animprove the accuracy of the ORC model and' in some cases,
the outlet pressure can be approximated as a quadrafiGjuce the complexity (order) of the fitted function by using
polynomial surface, a piecewise fit instead of a single surface fit.

ARE® — 76.439 P3* — 0.203 P3h,

(8) IV. PIECEWISEFIT APPROXIMATION
—23.942P5 4+ 0.151h1 — 16.436. . . . . . .
From just visually inspecting the surface regression in
So the turbine output power is now given by Fig. 4, there are regions that the surface fit overestimates t

isentropic turbine work, which can lead to large discrejgsic
if the plant were to operate in those regions. An alternative
5) Bounds: In order to constrain the search region andnethod istouse a pieceV\_/ise _fit to approximate the isentropic
decrease the execution time, all the decision variabled nef/rbine work, as shown in Fig. 5. This allows for a more
to be bounded within a sensible range. For this particul&ccurate fitand also could conceivably reduce the complexit
optimization problem, these bounds corresponded to: 1 & the fitting model. The aim here is to get a fit that has
100kg/s forr; 1 to 500kg/s formcw, ; 0.1 to 0.6 MPa for the lowest order (degree) poss[ble wlthout sacrificing the
Ps; 1to 1000 kJ/kg forh; andfyy, e, 10 h@3esk, 1mpafor hy. accuracy of the quel. Thus, in thIS. research, we have
Once all the bounds, constraints and unit operation appro{eéveloped an algorithm that automatically optimizes the
mations have been established, the optimization problem cRosition of the breaks (the location where the surfaces are
be constructed, which should follow the general nonlinedfined together, i.e. the solid lines in Fig. 5) in order to
programming format. minimize the sum squared error (SSE) for a given number
6) EO Model Validation: In order to ensure that the ©f Preaks. _ . _ _
approximate model is an accurate representation of theJust visually comparing the two figures, there is an obvious
original ORC system, the optimized results were substitute
into the high fidelity model (discussed in Section I1I-B).i$h
validates that all our approximations are within reasoaabl
tolerance and that the optimum results have not violated
any thermodynamic laws or have not deviated too much
from the actual thermodynamic properties. Table I, under
the Quadratic Surface Fit column, shows the relative errors
between the SM and EO models, and the average time it
took for each respective optimizer to solve the optimizatio
problem. In addition, Table | also shows the relative errors
between the SM and EO models where a piecewise fit was
used to approximate the turbine output power, instead of a .. A S W
qguadratic polynomial surface fit. The rationale behind this 06 05 0.4 0.3 02 0.1
alternative approach will be discussed in Section IV. et Pressure [Pel

The d|sc_repanC|es between the hlgh ﬂde“ty SM model angg. 5. Regressed fit for approximating the isentropic fughbwork as a
the approximate EO model for all the solvers are reasonablgnction of the inlet enthalpy and outlet pressure, usingeagwise fit. The
with the highest error being only 2.08%, thus indicates thaplid lines indicate the breaks between two adjacent fansti

VVturb = Ahitgg%nturbml . (9)
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accuracy improvement in using a piecewise fit. For thisomply with the conditions of the piecewise function in (10)
particular case, there are three breaks and four quadratic

polynomial surface fits, which constituted to an SSE of P3 2 0.10b1 +0.17b2 +0.26b3 +0.39b4 (14)
42.32, whereas with a single quadratic polynomial surface P < 0.17by +0.26b2 + 0.39b3 4 0.60b4

fitting model, the SSE was 1835.2. Note that the color axesjnce only one sub-function can be selected, this can be
of the error plot in Fig. 5 are deliberately set the same agnforced as follows

for Fig. 4 to highlight the significant improvement in the

accuracy of the turbine model. b1+ by + b3+ by + b5 =1, b; € {0,1} (15)

Mathematically, the isentropic turbine work now m .
athematically, the isentropic turbine work now beco e%:onsequently, the overall accuracy of the approximate EO

Ahﬂ‘gm 0.10< P <0.17 model has increased significantly and has reduced the dis-

wrb Ahips‘gw 0.17 < P3 < 0.26 crepancies between SM model and the EO model to no
Ahigen = ARPY 0.26 < P; < 0.39 (10) " more than 0.3%, as shown in Table I. However, since there
Ahf;"g:, 0.39 < P; < 0.60 are now more variables and constraints in this proposed

formulation, it is reasonable to result in a longer optirtiza
where each sub-function represents the mathematical®xpréme for both SCIP and BARON. However, while this can

sion for each fitted surface. For example be viewed as a disadvantage, in some cases the difference
ow ) is rather small, namely BARON, and does not outweigh
Ahisen = 37343157 — 0.203 P37, the significant improvement in the accuracy of the ORC
—130.973P5 + 0.151hy — 7.204 model that this approach offers. Note that the optimizer
Ahgvgw — 153.721P52 — 0.203Psh, COBYLA cannot be used on this problem, as it cannot solve

integer programming problems, illustrating a limitatiom i

— 5 —
BT.527F; 4 0.151hy — 13.342 (11) some conventional black-box optimization schemes.

AR = 67.274P5% — 0.203Psh,

iserny
—12.476P5 4+ 0.151hy — 19.212
Ahipsvgm — 31.328P5% — 0.203Psh, The approximate EO model was optimized using three
- different solvers, namely one black-box solver (COBYLA)
+15.8065% + 0.151hy — 24.775 and two white-box solvers (SCIP and BARON). The opti-
In order to incorporate the piecewise fit into the optimiaati Mized results were validated/solved in the SM model and

problem, abinary variable is added to each piecewise subthen compared to each other, as shown in Table II.
function. However it is inefficient to multiply a binary Al three optimizers managed to find a better solution

variable with another variable because it introduces extthan the base case scenario, which was taken directly from
nonlinearity into the optimization problem. Therefore, tol19] and solved in the SM model. Both SCIP and BARON
get around this, a modified integer programming techniqu@und the highest optimum of 1063.2 kW, whereas COBYLA
from AIMMS modeling guide was implemented (in Sectionconverged to a local optimum of 1026.2 kW. This consti-
7.7) [23] and applied it to this problem. This is done byfutes to an increase of around 4.46% and 0.82% in the
introducing a new variablg and equate it to the product 9r0ss power output for the global optimum and the local
y; = ARPY b, whereb; is the binary variable. To enforeg optimum, respectively. Evidently, this shows a significant

isen

to take the value oARP" b, the following linear constraints Contribution in implementing global white-box solvers (8C

V. RESULTS

need to be added for each of the sub-function: and BARON) that can guarantee the global optimum, as
opposed to a suboptimal solution obtained by black-box
Yi < uib; solvers (COBYLA).
yi < Ahfee, + M(1—b;) 12)
yi > Ahfse, — M(1—1b;) TABLE Ii
Yi > lzb1 COMPARISON BETWEEN THE BASE CASE AND THE OPTIMIZEEO
MODEL RESULTS THAT WERE SOLVED IN THESM MODEL.
where u; € {35.03,27.58,20.90,14.49} and [; ¢ Variable Base Case|] COBYLA| SCIP | BARON
{23.28,17.29,11.87,6.63} are the sensible upper and lower | P [[Ilz/"/?ka]] 0.2781 0.2782 | 0.2782  0.2781
pw - . ; hy [kd/kg 393.38 387.12 | 356.82  356.81
bounds ofAhisen, anq M is. the big M _con.stant that is ha [kI/kg] 37659 37078 | 34280 34281
equal to 10@; for this particular optimization problem. | n; [kikg] 211.11 21111 | 21111  211.11
Consequently, the turbine output power now becomes ha [kI/kg] 211.77 21177 | 2117y 211.7]
m1 [kg/s] 60.624 62.79 75.908  75.903
4 g [kg/s] 60.624 62.79 75.903  75.903
T . 4 s [kg/s] 60.624 62.79 75.903  75.903
Wiurp = nrurbtiny Z Yi- (13) 1 [Kals] 60.624 62.79 | 75.908  75.903
i=1 mew,, [kg/s] 299.09 298.88 | 298.04 298.04
. . . . Gross Power [K 1017.8 1026.2 | 1063.2 1063.7
In addition, respective binary variables need to be added tbsgyer Time [S[,]W] - 553 1461 001 .

P3; as well so that they can restrict the pressure value to



While the proposed ORC system could be solved using2] R. DiPippo, Geothermal Power Plants Principles, Applications, Case
built-in tools in commercial software, such as sequential
quadratic programming (SQP) method in Aspen Plus, thesg;
conventional black-box SM (flowsheet) optimization frame-

works require the derivatives of the objective function and

(4

constraints that are generally hard to obtain accurate¢/ du
to the use of complex external thermodynamic packages and

rigorous unit operation modules. Consequently, this cad le

Studies and Environmental Impacéth ed.  Waltham, MA: Joe

Hayton: Elsevier, 2016. ) )
AspenTech, “Aspen Plus,” 2015. [Online]. Available: tgit/www.

aspentech.com/products/engineering/aspen-plus/ seck 2015-08-
24]

Electric General, “GateCycle,” 2014. [Online]. Avdile: https:
Ilgetotalplant.com/GateCycle/docs/GateCycle/index.h [Accessed:
2016-08-10]

] H. Ghasemi, M. Paci, A. Tizzanini, and A. Mitsos, “Modlj

to inefficient optimization and convergence issues if finite
difference is used to approximate the derivatives, esfhgcia
for large-scale and complex systems [11]. In addition, SMi]
optimization requires the entire flowsheet to be solved re-
peated, which can be significantly slower and problematic

to the optimization if the flowsheet fails to converge. Forl”

this example, it took both COBYLA anfininconrelatively

(8l

longer to optimize the SM model (around 7.25s and 6.51s,
respectively) than to optimize the EO model (around 5.53§9]

and 1.70s, respectively). Furthermore, it is importantdten
that while both COBYLA andmincondid manage to find
the global optimum of 1063.2 kW using the SM approacILfL

for this ORC system, this SM model is only restricted to

black-box solvers and cannot assure global optimality.
VI. CONCLUSION

[11]

This paper has detailed a modeling approach for org?
systems that is tailored to two advanced white-box globad3]
optimization solvers which can deterministically find the
global optimum. The paper has demonstrated that both mod&f!
accuracy and global optimum can be achieved by carefully
approximating the output characteristics of the ORC unltS]
operations using reasonable regression and thermodynamic
analysis. The approximate EO model was optimized usings]

three optimizers and then validated against a high fidelitﬁ/
model that was built using the JSteam modeling framework:

As expected both SCIP and BARON found the global

optimum, while COBYLA found a local optimum. Using

the proposed approach to model an ORC system allow:
for exact derivatives to be calculated, which aided in the
accuracy of white-box optimizers in locating the global
solution. In addition, the paper has shown that by using a
piecewise fit, instead of a single fit function, a more acairafi9)
model approximation can be achieved without significantly

compromising on the performance of the solver.
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