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Abstract— The demand for organic Rankine cycle (ORC)
systems to be efficient and economically competitive drives
the need for a reliable and robust modeling approach that
is suitable for optimization. However existing commercial
simulation software is not typically tailored for optimization
and they generally cannot guarantee global optimum. This
paper proposes a modeling approach to approximate a rigorous
simulation model that is suitable for global optimization.
This involves a combination of regression and thermodynamic
analysis, in addition to integer programming techniques. Three
different solvers, COBYLA, SCIP, and BARON are used to
optimize the ORC model and are compared against each other
to demonstrate the prospect of achieving the global optimum
using this approach. In addition, this paper also presents a
technique to improve the model accuracy by using a piecewise
fit to approximate the output characteristic of the ORC unit
operations.

I. I NTRODUCTION

With the inevitability of the world’s non-renewable re-
sources becoming scarcer and the progressive pressure for the
power generation sector to reduce greenhouse gases emission
and pollutants, there has been a massive growth in renewable
power generation technologies. Geothermal energy is one
example of a reliable source of sustainable energy. As of
2010, there are 24 countries that have used geothermal
energy for electricity generation [1]. Of all the geothermal
power plants (GPP), organic Rankine cycle (ORC) power
plants are the most common type of geothermal power plants
in the world with 203 units in operation as of December
2014, constituting to over 35% of all geothermal units [2].

Given the large number of ORC systems around the world
and the potential for more to be installed due to the relatively
abundant low-temperature geothermal resources, there is a
considerable amount of literature on ORC modeling and
optimization. Often these ORC plants are simulated using
the sequential modular approach, via a standard modeling
software such as Aspen Plus [3] or GateCycle [4], and
then are subsequently optimized using heuristic methods or
sophisticated algorithms [5], [6].

However, one major concern with using this approach lies
in the robustness and efficiency of the model when it is used
in optimization problems. Therefore, this paper will discuss
the limitations of sequential modular models and propose
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a modeling approach for ORC systems that is intended for
efficient global optimization.

II. SEQUENTIAL MODULAR MODEL AND

EQUATION-ORIENTED MODEL

Traditionally, GPPs are often modeled using the sequential
modular (SM) approach where unit operation modules (or
functions) are linked together in the flow order through the
plant. The output of each module is calculated from the
output of the previous module in the flowsheet; therefore, the
stream information, i.e. mass flows, temperatures, enthalpies,
etc., will propagate from the beginning of the plant’s process
through to the end of the flowsheet.

However, there are some key limitations to using the
SM approach, especially when dealing with optimization
problems. Many of the derivative optimization solvers, like
fmincon(MATLAB’s solver) [7] or IPOPT [8], that require
the first and/or second derivatives of the objective function
and constraints, will struggle to find accurate derivativesfrom
SM models due to complex thermodynamics and/or internal
model iterations. Consequently, the derivatives are approxi-
mated using finite differences leading to various optimization
problems such as convergence issues and long computation
times [9]. Furthermore, it is recognized that optimization
problems are solved more accurately and efficiently if the
analytical derivative functions are provided, [10], [11]. In
addition, solvers that are compatible with the SM model
structure cannot guarantee that the optimum found is the
global optimum, which might be a disadvantage in today’s
competitive market.

An alternative method is to use the equation-oriented
(EO) approach, where systems are represented as a set of
equations that are solved simultaneously. In contrast, to the
SM approach, EO approach allows standard optimization
problems to be formulated relatively efficiently from the
model structure, and the mass and energy balance equations
are solved simultaneously with the optimization problem
[12]. In addition, provided that if all the equations are alge-
braic and analytically differentiable, some global optimizers
(white-box optimizers) can exploit this algebraic structure
and analytically calculate the required derivatives for opti-
mization. This means that the numerical issues discussed
above can be bypassed or reduced. Thus, this paper aims
to demonstrate how an ORC system can be modeled and
optimized using an algebraic EO approach and using white-
box global solvers, namely SCIP [13] and BARON [14],
to deterministically find the global optimum of the plant.



Furthermore, the results will be compared with a black-
box optimizer, namely COBYLA [15] (supplied by NLopt
[16]), that cannot guarantee global optimality to highlight
the difference between the two optimization techniques. The
novelty of this research is the application of the proposed
modeling framework to an ORC system to address the issues
associated with the conventional SM optimization approach
and to provide an efficient model that is tailored for global
optimization.

III. M ODELING AN ORC SYSTEM

This paper illustrates the proposed modeling approach
using a simple four-unit-operation ORC system. Fig. 1 shows
the process flow diagram (PFD) of the ORC system, which
consists of a cycle including a turbine, condenser, feed pump,
and an evaporator. The topology of this ORC system has been
analyzed extensively in many academic papers [17]–[19] and
in many standard thermodynamic textbooks such as [2], [20].

A. Model Description

The specific ORC system described in [19] was used
to demonstrate the proposed modeling approach with plant
parameters labeled in Fig. 1. Since this research focuses
mainly on the modeling and optimization aspect of an ORC
system, and not the effect of different working fluids, only
R227ea (1, 1, 1, 2, 3, 3, 3-Heptafluoropropane) was used due
to its favorable thermodynamic properties.

In addition, the ORC system was assumed as a steady-
state and steady-flow process; whereby changes in kinetic
and potential energy were neglected, and losses induced by
friction were neglected. The thermodynamic and transport
properties of the brine were considered to be the same
as water; chemical substances and non-condensible gases
were neglected. Furthermore, the pressure drops across heat
exchangers and pipelines were neglected.

B. High Fidelity SM Model

The high fidelity SM model in this research was con-
structed using JSteam MATLAB Toolbox v1.70 [21]. The
construction of the model used unit operation function calls

Fig. 1. The process flow diagram of a basic organic Rankine cycle system.

and the current REFPROP (version 9.1) thermodynamic
package [22], which were considered as the “gold standard”
for the purposes of this study.

As previously mentioned, these high fidelity SM models
are not tailored for optimization. Therefore, this model was
not built to be optimized but instead was used to validate
the approximate EO model since it provides a very accurate
representation of the ORC system. This is an important
part of this proposed modeling framework, as it will show
the reliability and accuracy of the approximate EO model
to the original system. Once the model is constructed and
solved using a nonlinear system solver (such asfsolve in
MATLAB), it can be used as initial guess for the optimization
problem discussed in Section III-C. Since different initial-
ization values can result in different optimization times and
solutions, it is important that a feasible initial guess is used
for the optimization problem. Therefore, for this research, the
initialization values were taken from the base case scenario
[19] that was solved in the SM model to minimize the issues
associated with a poor initial guess.

In order to keep this paper concise, the construction of this
model will not be discussed but a similar system is detailed
in the tutorial section of the JSteam software, [21].

C. Approximate EO Model

As mentioned in Section II, in order to utilize SCIP and
BARON solvers, an algebraic description of the ORC model
is required. The task of constructing the EO model of an
ORC systems amounts to deriving a set of deterministic
algebraic equations describing the process of the system and
approximating the output characteristic of the unit operations
using regression and thermodynamic analysis. The following
subsections will discuss how this model was constructed and
the compromise between the accuracy of the model and the
computational complexity of the optimization problem.

1) Objective Function:For this optimization problem, the
objective function was to maximize the gross power output
of the plant, which is defined as

j = (h1 − h2)ṁ1 (1)

whereh is the enthalpy value anḋm is the mass flow rate
of the working fluid associated with the turbine in Fig. 1.

Note that this model is not limited to the gross power
output; the objective function can be the net power output,
the mass flow of the working fluid, or even a weighted
economic analysis of the plant.

2) Mass and Energy Balance:The first set of equations
is the mass and energy balance equations, which can be
derived based on the first law of thermodynamics. Referring
to Fig. 1, the following mass and energy balance equations
are associated with the numbers labeled on the diagram,
whereṁ is the mass flow rate,h is the enthalpy value,̇Wpump

is the pump input power,̇Wturb is the turbine output power,



B is the brine and CW is the cooling water.

ṁ1 − ṁ2 = 0

ṁ2 − ṁ3 = 0

ṁ3 − ṁ4 = 0

ṁ4 − ṁ1 = 0

(2)

ṁ1h1 − Ẇturb − ṁ2h2 = 0

ṁCWinhCWin + ṁ2h2 − ṁCWouthCWout − ṁ3h3 = 0

ṁ3h3 + Ẇpump− ṁ4h4 = 0

ṁBinhBin + ṁ4h4 − ṁBouthBout − ṁ1h1 = 0

(3)

From the fixed parameters mentioned in Section III-A,
the following constants were calculated using REFPROP:
ṁBinhBin is 30144 kJ/kg,ṁBouthBout is 19133kJ/kg,hCWin is
29.288kJ/kg,hCWout is 62.832kJ/kg. Note that while there is
enough information to calculateh1, it was intentionally kept
as a decision variable in order to show how the turbine unit
operation can be approximated using this modeling approach
(see Section III-C.4). All the other variables in (2) and (3)are
decision variables and will be calculated by the optimizer.

3) Operational Constraints:In addition to the mass and
energy balance equations, there are operational constraints
to consider. These are subcooling requirements, the pressure
drop across heat exchangers, heat loss, etc. However, in
compliance with [19] specifications and assuming that state
3 can operate between 283 K and the saturated temperature
at 0.6 MPa, only the state of the working fluid entering the
pump was of concern for this example, which needs to be
greater or equal to 283 K.

Equation (4)
h3 ≥ hf@283 K (4)

ensures that state 3 will always be greater or equal to the
enthalpy value at saturated temperature of 283 K, which can
be calculated directly using REFPROP.

Whereas Equation (5)

h3 ≤ 162.362P3
0.301 + 100.620 (5)

ensures that state 3 will always be lower or equal to the
enthalpy value at saturated liquid pressure ranging from 0.1
to 0.6 MPa, whereP3 is the pressure at state 3. The right
hand side of (5) was derived using a curve fitting tool,optifit
[21], that fitted a curve to a set of saturated liquid enthalpy
values ranging from 0.1 to 0.6 MPa, as shown in Fig. 2. In
this case, the fitting model was a power function.

4) Unit Operation Approximations:Since the rigorous
unit operation functions cannot be used in this EO model,
the two expressions, namelẏWturb andẆpump, in (3) need to
be approximated as a function of enthalpy and/or pressure,
hence the name approximate EO model.

The pump input power is defined in (6), where∆h
pump
isen is

the isentropic pump work,ηpump is the isentropic efficiency
and ṁ3 is the mass flow rate. Since we assume that there
are no pressure drops across the heat exchangers, i.e.P3 =
P2 ∈ [0.1, 0.6] MPa andP4 = P1 = 1 MPa, and knowing that
the quality of the working fluid will always be 0 across the
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Fig. 2. Regressed fit for approximating the saturated liquidenthalpy value
as a function of pressure.

pump, a set of isentropic pump work values can be calculated
at various input pressures. The correlation between isentropic
pump work and the inlet pressure can then be approximated
via regression analysis, as shown in Fig. 3. The fitting model
that was used to approximate the isentropic pump work was
a quadratic polynomial curve. As a result, the pump input
power now becomes

Ẇpump =
∆h

pump
isen ṁ3

ηpump
, (6)

where

∆h
pump
isen = −0.271P3

2 − 0.389P3 + 0.626. (7)

A similar approach can also be applied to the turbine
output power; however, there are now two independent
variables, namely the inlet enthalpy and the outlet pressure.
Equation (9) defines the turbine output power, where∆hturb

isen
is the isentropic turbine work,ηturb is the isentropic efficiency
and ṁ1 is the mass flow rate. Assuming that the inlet
temperature can vary between 383 K and the saturated vapor
temperature at 1 MPa, and the outlet pressure can vary
between 0.1 to 0.6 MPa, a set of isentropic turbine work
values can be calculated, as shown by the black dots in
Fig. 4. Since there are no explicit temperature terms in (3),
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Fig. 3. Regressed fit for approximating the isentropic pump work as a
function of the inlet pressure.



Fig. 4. Regressed fit for approximating the isentropic turbine work as a
function of the inlet enthalpy and outlet pressure. (See also Fig. 5.)

the respective inlet enthalpy values were calculated for the
inlet temperatures. Using a surface fitting tool, a correlation
between the isentropic turbine work, the inlet enthalpy, and
the outlet pressure can be approximated as a quadratic
polynomial surface,

∆hturb
isen= 76.439P3

2 − 0.203P3h1

− 23.942P3 + 0.151h1 − 16.436.
(8)

So the turbine output power is now given by

Ẇturb = ∆hturb
isenηturbṁ1. (9)

5) Bounds: In order to constrain the search region and
decrease the execution time, all the decision variables need
to be bounded within a sensible range. For this particular
optimization problem, these bounds corresponded to: 1 to
100 kg/s forṁ; 1 to 500 kg/s forṁCWin ; 0.1 to 0.6 MPa for
P3; 1 to 1000 kJ/kg forh; andhg@1MPa to h@363 K, 1 MPafor h1.
Once all the bounds, constraints and unit operation approxi-
mations have been established, the optimization problem can
be constructed, which should follow the general nonlinear
programming format.

6) EO Model Validation: In order to ensure that the
approximate model is an accurate representation of the
original ORC system, the optimized results were substituted
into the high fidelity model (discussed in Section III-B). This
validates that all our approximations are within reasonable
tolerance and that the optimum results have not violated
any thermodynamic laws or have not deviated too much
from the actual thermodynamic properties. Table I, under
the Quadratic Surface Fit column, shows the relative errors
between the SM and EO models, and the average time it
took for each respective optimizer to solve the optimization
problem. In addition, Table I also shows the relative errors
between the SM and EO models where a piecewise fit was
used to approximate the turbine output power, instead of a
quadratic polynomial surface fit. The rationale behind this
alternative approach will be discussed in Section IV.

The discrepancies between the high fidelity SM model and
the approximate EO model for all the solvers are reasonable,
with the highest error being only 2.08%, thus indicates that

TABLE I

THE RELATIVE ERROR[%] BETWEEN THE APPROXIMATEEO MODEL

AND THE HIGH FIDELITY SM MODEL.

Quadratic Surface Fit Piecewise Fit
Parameter COBYLA SCIP BARON SCIP BARON
P3 0.00 0.00 0.00 0.00 0.00
h1 0.00 0.00 0.00 0.00 0.00
h2 0.09 0.06 0.06 0.01 0.01
h3 0.00 0.00 0.00 0.00 0.00
h4 0.00 0.00 0.00 0.00 0.00
Turbine Power 1.99 1.53 1.53 0.26 0.26
Pump Power 0.12 0.12 0.12 0.12 0.12
Cooler Duty 0.20 0.16 0.16 0.03 0.03
Heater Duty 0.00 0.00 0.00 0.00 0.00
Working Fluid 0.00 0.00 0.00 0.00 0.00
Cooling Water 0.20 0.16 0.16 0.03 0.03
Thermal Efficiency 2.08 1.61 1.61 0.26 0.27
Solver Time [s] 5.53 14.61 0.91 20.67 1.08

the approximate model is a fairly sensible representation of
the original ORC system. However, it is possible to further
improve the accuracy of the ORC model and, in some cases,
reduce the complexity (order) of the fitted function by using
a piecewise fit instead of a single surface fit.

IV. PIECEWISE FIT APPROXIMATION

From just visually inspecting the surface regression in
Fig. 4, there are regions that the surface fit overestimates the
isentropic turbine work, which can lead to large discrepancies
if the plant were to operate in those regions. An alternative
method is to use a piecewise fit to approximate the isentropic
turbine work, as shown in Fig. 5. This allows for a more
accurate fit and also could conceivably reduce the complexity
of the fitting model. The aim here is to get a fit that has
the lowest order (degree) possible without sacrificing the
accuracy of the model. Thus, in this research, we have
developed an algorithm that automatically optimizes the
position of the breaks (the location where the surfaces are
joined together, i.e. the solid lines in Fig. 5) in order to
minimize the sum squared error (SSE) for a given number
of breaks.

Just visually comparing the two figures, there is an obvious

Fig. 5. Regressed fit for approximating the isentropic turbine work as a
function of the inlet enthalpy and outlet pressure, using a piecewise fit. The
solid lines indicate the breaks between two adjacent functions.



accuracy improvement in using a piecewise fit. For this
particular case, there are three breaks and four quadratic
polynomial surface fits, which constituted to an SSE of
42.32, whereas with a single quadratic polynomial surface
fitting model, the SSE was 1835.2. Note that the color axes
of the error plot in Fig. 5 are deliberately set the same as
for Fig. 4 to highlight the significant improvement in the
accuracy of the turbine model.

Mathematically, the isentropic turbine work now becomes

∆hturb
isen=















∆h
pw
isen1

, 0.10 ≤ P3 ≤ 0.17
∆h

pw
isen2, 0.17 < P3 ≤ 0.26

∆h
pw
isen3, 0.26 < P3 ≤ 0.39

∆h
pw
isen4, 0.39 < P3 ≤ 0.60

(10)

where each sub-function represents the mathematical expres-
sion for each fitted surface. For example

∆h
pw
isen1

= 373.431P3
2 − 0.203P3h1

− 130.973P3 + 0.151h1 − 7.204

∆h
pw
isen2

= 153.721P3
2 − 0.203P3h1

− 57.527P3 + 0.151h1 − 13.342

∆h
pw
isen3

= 67.274P3
2 − 0.203P3h1

− 12.476P3 + 0.151h1 − 19.212

∆h
pw
isen4

= 31.328P3
2 − 0.203P3h1

+ 15.806P3 + 0.151h1 − 24.775

(11)

In order to incorporate the piecewise fit into the optimization
problem, abinary variable is added to each piecewise sub-
function. However it is inefficient to multiply a binary
variable with another variable because it introduces extra
nonlinearity into the optimization problem. Therefore, to
get around this, a modified integer programming technique
from AIMMS modeling guide was implemented (in Section
7.7) [23] and applied it to this problem. This is done by
introducing a new variabley and equate it to the product
yi = ∆h

pw
isenibi, wherebi is the binary variable. To enforceyi

to take the value of∆h
pw
iseni

bi, the following linear constraints
need to be added for each of the sub-function:

yi ≤ uibi

yi ≤ ∆h
pw
iseni +M(1− bi)

yi ≥ ∆h
pw
iseni −M(1− bi)

yi ≥ libi

(12)

where ui ∈ {35.03, 27.58, 20.90, 14.49} and li ∈
{23.28, 17.29, 11.87, 6.63} are the sensible upper and lower
bounds of∆h

pw
iseni , and M is the big-M constant that is

equal to 100ui for this particular optimization problem.
Consequently, the turbine output power now becomes

Ẇturb = ηturbṁ1

4
∑

i=1

yi. (13)

In addition, respective binary variables need to be added to
P3 as well so that they can restrict the pressure value to

comply with the conditions of the piecewise function in (10).

P3 ≥ 0.10b1 + 0.17b2 + 0.26b3 + 0.39b4

P3 ≤ 0.17b1 + 0.26b2 + 0.39b3 + 0.60b4
(14)

Since only one sub-function can be selected, this can be
enforced as follows

b1 + b2 + b3 + b4 + b5 = 1, bi ∈ {0, 1} (15)

Consequently, the overall accuracy of the approximate EO
model has increased significantly and has reduced the dis-
crepancies between SM model and the EO model to no
more than 0.3%, as shown in Table I. However, since there
are now more variables and constraints in this proposed
formulation, it is reasonable to result in a longer optimization
time for both SCIP and BARON. However, while this can
be viewed as a disadvantage, in some cases the difference
is rather small, namely BARON, and does not outweigh
the significant improvement in the accuracy of the ORC
model that this approach offers. Note that the optimizer
COBYLA cannot be used on this problem, as it cannot solve
integer programming problems, illustrating a limitation in
some conventional black-box optimization schemes.

V. RESULTS

The approximate EO model was optimized using three
different solvers, namely one black-box solver (COBYLA)
and two white-box solvers (SCIP and BARON). The opti-
mized results were validated/solved in the SM model and
then compared to each other, as shown in Table II.

All three optimizers managed to find a better solution
than the base case scenario, which was taken directly from
[19] and solved in the SM model. Both SCIP and BARON
found the highest optimum of 1063.2 kW, whereas COBYLA
converged to a local optimum of 1026.2 kW. This consti-
tutes to an increase of around 4.46% and 0.82% in the
gross power output for the global optimum and the local
optimum, respectively. Evidently, this shows a significant
contribution in implementing global white-box solvers (SCIP
and BARON) that can guarantee the global optimum, as
opposed to a suboptimal solution obtained by black-box
solvers (COBYLA).

TABLE II

COMPARISON BETWEEN THE BASE CASE AND THE OPTIMIZEDEO

MODEL RESULTS THAT WERE SOLVED IN THESM MODEL.

Variable Base Case COBYLA SCIP BARON
P3 [MPa] 0.2781 0.2782 0.2782 0.2782
h1 [kJ/kg] 393.38 387.12 356.82 356.82
h2 [kJ/kg] 376.59 370.78 342.82 342.82
h3 [kJ/kg] 211.11 211.11 211.11 211.11
h4 [kJ/kg] 211.77 211.77 211.77 211.77
ṁ1 [kg/s] 60.624 62.79 75.903 75.903
ṁ2 [kg/s] 60.624 62.79 75.903 75.903
ṁ3 [kg/s] 60.624 62.79 75.903 75.903
ṁ4 [kg/s] 60.624 62.79 75.903 75.903
ṁCWin [kg/s] 299.09 298.88 298.04 298.04
Gross Power [kW] 1017.8 1026.2 1063.2 1063.2
Solver Time [s] - 5.53 14.61 0.91



While the proposed ORC system could be solved using
built-in tools in commercial software, such as sequential
quadratic programming (SQP) method in Aspen Plus, these
conventional black-box SM (flowsheet) optimization frame-
works require the derivatives of the objective function and
constraints that are generally hard to obtain accurately due
to the use of complex external thermodynamic packages and
rigorous unit operation modules. Consequently, this can lead
to inefficient optimization and convergence issues if finite
difference is used to approximate the derivatives, especially
for large-scale and complex systems [11]. In addition, SM
optimization requires the entire flowsheet to be solved re-
peated, which can be significantly slower and problematic
to the optimization if the flowsheet fails to converge. For
this example, it took both COBYLA andfminconrelatively
longer to optimize the SM model (around 7.25s and 6.51s,
respectively) than to optimize the EO model (around 5.53s
and 1.70s, respectively). Furthermore, it is important to note
that while both COBYLA andfmincondid manage to find
the global optimum of 1063.2 kW using the SM approach
for this ORC system, this SM model is only restricted to
black-box solvers and cannot assure global optimality.

VI. CONCLUSION

This paper has detailed a modeling approach for ORC
systems that is tailored to two advanced white-box global
optimization solvers which can deterministically find the
global optimum. The paper has demonstrated that both model
accuracy and global optimum can be achieved by carefully
approximating the output characteristics of the ORC unit
operations using reasonable regression and thermodynamic
analysis. The approximate EO model was optimized using
three optimizers and then validated against a high fidelity
model that was built using the JSteam modeling framework.
As expected both SCIP and BARON found the global
optimum, while COBYLA found a local optimum. Using
the proposed approach to model an ORC system allowed
for exact derivatives to be calculated, which aided in the
accuracy of white-box optimizers in locating the global
solution. In addition, the paper has shown that by using a
piecewise fit, instead of a single fit function, a more accurate
model approximation can be achieved without significantly
compromising on the performance of the solver.
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[20] Y. A. Çengel and M. A. Boles,Thermodynamics: An Engineering
Approach, 6th ed. New York: McGraw-Hill, 2008.

[21] Industrial Information & Control Centre, “Software,”2015.
[Online]. Available: http://www.i2c2.aut.ac.nz/Resources/Software.
html [Accessed: 2015-09-11]

[22] National Institute of Standards and Technology, “REFPROP Version
9.1. NIST Standard Reference Database 23,” 2015. [Online].
Available: http://www.nist.gov/srd/nist23.cfm [Accessed: 2016-02-05]

[23] J. Bisschop, “Integer Linear Programming Tricks,” inAIMMS: Opti-
mization Modeling. AIMMS B.V., 2016, ch. 7, pp. 75–85.


