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Abstract: Wireless sensor networks are usually deployed for monitoring given physical
phenomena taking place in a specific space and over a specific duration of time. The
spatio-temporal distribution of these phenomena often correlates to certain physical events.
To appropriately characterise these events-phenomena relationships over a given space for a
given time frame, we require continuous monitoring of the conditions. WSNs are perfectly
suited for these tasks, due to their inherent robustness. This paper presents a subtractive fuzzy
cluster means algorithm and its application in data stream mining for wireless sensor systems
over a cloud-computing-like architecture, which we call sensor cloud data stream mining.
Benchmarking on standard mining algorithms, the k-means and the FCM algorithms, we
have demonstrated that the subtractive fuzzy cluster means model can perform high quality
distributed data stream mining tasks comparable to centralised data stream mining.
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1. Introduction

Wireless sensor networks (WSNs) are usually deployed to measure given physical phenomena over
a certain space, within a specific time frame. The spatio-temporal distribution of these phenomena
often correlates with certain physical events. To appropriately characterise these events-phenomena
relationships over a given space for a specific time frame, continuous monitoring of the conditions is



Sensors 2014, 14 18961

required. WSNs are perfectly suited for these tasks due to their inherent robustness. For instance,
spatio-temporal distribution of weather conditions over a forestry area closely correlate with the
likelihood of forest fire events in the area. WSNs can be deployed to continuously measure the
weather conditions at very precise time and space-scales. WSNs can feed the current levels of these
conditions into forest fire event monitoring and prediction algorithms. As a result, the computation of
the likelihood of these events can be automated and graphically presented. This problem falls under the
general category of multivariate spatial condition mapping, with the added complexity of continuously
streaming data.

The physical sensor cloud’s ability to run the computation of a given task distributed over a number
of wirelessly connected nodes in parallel over a coordinated network platform resembles the cloud
computing architecture. In this paper, we propose a subtractive fuzzy cluster means algorithm and its
application in data stream mining for wireless sensor systems over a physical cloud-computing-like
architecture, which we call sensor cloud data stream mining.

The motivational example for our paper arises from wildfire event mapping experiences. Wildfires
play an important role in the structure and functioning of many of of the world’s ecosystems [1]. The
wildfire activity patterns that generally characterise a given area change with alterations in temperature
and precipitation conditions under climate change [2,3]. Therefore, there is a need to characterise the
complex relationship between wildfires, climate, vegetation and human activities at fine scales.

The Canadian Fire Weather Index (FWI) system is an example of such a system. The FWI system is
an estimation of the risk of wildfire based on the empirical model developed by Van Wagner [4]. FWI
is used to estimate fuel moisture content and generate a series of relative fire behaviour indices based
on weather observations. The fuel moisture and fire behaviour indices are used by operational personnel
to aid in the estimation of expected daily fire occurrence, potential fire behaviour and the difficulty of
suppression across a fire management district, region or province [5]. The complex relationship between
forest weather variables and the forest floor moisture profiles is modelled by the FWI system. The system
represents the forest floor moisture profile by a set of codes and indexes known as fuel moisture codes
and fire behaviour indexes. We use the FWI indexes for producing spatial maps of wildfire events, as
shown in Figure 1.

Figure 1. Spatial map of weather variables and the fire weather index (FWI).
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1.1. Spatial Condition Clustering

Given a set of data, clustering is the method of categorizing data into groups based on similarity. It
has been used in exploratory data analysis to find unexpected patterns in datasets. It is also referred
to as unsupervised learning or data mining. Clustering is inherently an ill-defined problem. Input
data to the clustering algorithm is usually a vector (also known as “tuple” or “record”), which may
be numerical, categorical or Boolean. Clustering algorithms must include a method for computing
the similarity of or distance between vectors. Distance is the most natural method for numerical data
similarity measurement. Lower values indicate more similarity. Common distance metrics include
Euclidean distance and Manhattan distance. However, the distance metric does not generalise well
to non-numerical data. The detailed description of basic clustering concepts, including major phases
involved in clustering a dataset and examples from various areas, including biology, healthcare, market
research, etc. can be found in [6]. k-means and fuzzy c-means (FCM) clustering algorithms have been
two of the most popular algorithms in this field.

k-means [7] is one of the simplest unsupervised learning algorithms that solves the well-known
clustering problem. Given a set of numeric points in d-dimensional space and an integer, the k-means
algorithm generates k or fewer clusters by assigning all points to a cluster at random and repetitively
computes the centroid for each cluster, reassigning each point to the nearest centroid until all clusters are
stable. The major limitation of k-means is that the parameter k must be chosen in advance.

Fuzzy c-means (FCM) is a method of clustering developed by Dunn [8] and later improved by
Bezdek [9]. FCM allows a piece of data to belong to two or more clusters with varying degrees
of membership. In real applications, there is often no sharp boundary present between neighbouring
clusters. This leads to fuzzy clustering being better suited to the data. Membership degrees between
zero and one are used in fuzzy clustering instead of crisp assignments of the data to clusters. The
most prominent fuzzy clustering algorithm is the fuzzy c-means, a fuzzification of k-means. A detailed
description of the fundamentals of fuzzy clustering, basic algorithms and their various realisations, as
well as cluster validity assessment and result visualisation are provided in [10]. Similar to k-means,
a major drawback of FCM in exploratory data analysis is that it requires the number of clusters
within the data space to be known beforehand. When the purpose of clustering is to automatically
partition multivariate data coming from a dynamic source, the number of partitions in the data space is
typically unknown. Hence, in this research, subtractive clustering and FCM algorithms are combined
to implement an algorithm that does not require prior information of the number of clusters in the data
space. The proposed algorithm is called the subtractive fuzzy cluster means algorithm (SUBFCM) [11].

1.2. Data Stream Mining Algorithm

Data stream mining is the process of extracting knowledge structures from continuous data streams.
A data stream is an ordered sequence of instances that in many applications of data stream mining
can only be read a few times using limited computing and storage capabilities. Examples of data
streams include among others, computer network traffic, phone conversations, ATM transactions, web
searches and sensor data. In data mining, we are interested in techniques to find and describe structural
patterns in the data, as a tool to help explain the data and make predictions from it [12]. One of the
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popular data mining techniques in a centralised environment is data clustering. The general goal of
the clustering technique is to decompose or partition datasets into groups, such that both intra-group
similarity and inter-group dissimilarity are maximised [13]. WSNs can benefit a great deal from stream
mining algorithms in terms of energy conservation and efficient services. However, for WSNs to
achieve significant energy conservation, the data stream mining has to be performed distributed within
the network, due to their resource constraints [11,14]. In a distributed (non-centralised) computing
environment, the most prominent works include the state-of-the-art in learning from data streams [15],
dynamic learning models in non-stationary environments [16] and incremental or evolving clustering
methods [17–19]. Data mining applications place special requirements on clustering algorithms available
to the WSN nodes, including the ability to find clusters embedded in subspaces of high dimensional data
and scalability. The algorithm is also required to produce frequent summaries of the corresponding inputs
from the network sensor nodes. In stream mining [20,21], WSN data mining applications further place
strict requirements on the underlying algorithm. Collecting data generated in a WSN to a central location
and performing data mining is undesirable, due to the energy and bandwidth limitations. Therefore, the
data mining algorithm has to perform in-network and autonomously on limited resource applications.
The algorithm has to converge as fast as possible over the limited datasets to ensure that the processor
can take on the next set of streams. The novelties of this work lie in concurrently addressing these WSN
requirements, namely in-network computing, autonomously deciding the number of cluster centres,
limited utilisation and high rate of convergence.

1.3. Subtractive Clustering Method

The subtractive clustering method was developed by Chiu [22]. It is a modification of mountain
clustering [23] with improved computational complexity. This clustering method assumes that each data
point is a potential cluster centre (prototype). A data point with more neighbouring data will have a
higher potential to become a cluster centre than points with fewer neighbouring data. In subtractive
clustering method, the computation is proportional to the number of data points and is independent of
the dimension of the problem. Subtractive clustering considers a data point with the highest potential as
a cluster centre and penalises data points close to the new cluster centre to facilitate the emergence of
new cluster centres. Based on the density of surrounding data points, the potential value for each data
point is calculated as follows:

poti =
m∑
j=1

e−α‖ui−uj‖
2

(1)

where ui, uj are data points and α = 4
r2a

and ra is a positive constant defining a neighbourhood. Data
points outside this range have little influence on the potential. Following the potential calculation of
every data point, the point with the highest potential is chosen as the first cluster centre. Let uk be the
location of the first cluster centre and potk be its potential value. The potential of the remaining data
points ui is then revised by:

poti = poti − potke−β‖ui−uk|
2

(2)

where β = 4
r2b

and rb is a positive constant (rb > ra).
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Thus, the data points near the first cluster centre will have greatly reduced potential and, therefore, are
unlikely to be selected as the next cluster centre. The constant rb is the neighbourhood defining radius
and will have a significant reduction in potential. rb is set to be greater than ra to avoid closely-spaced
centres. The ratio between ra and rb is called the squash factor (SF), which is a positive constant greater
than one. The subtractive clustering algorithm is shown in Algorithm 1.

Algorithm 1. Subtractive clustering algorithm.

Inputs: {u1, u2, u3, ...ui} Outputs: {c1, c2, c3, ...cC}
Initialise: ra, rb, AR,RR

1. Calculate potential of each data point, Equation (1)
2. Set the maximum potential as potk
3. choose the the data point corresponding to potk as a cluster centre candidate
4. If poti > AR ∗ potk, then accept ui as a cluster centre
5. Update the potential of each point using Equation (2) and continue
6. Else if poti < RR ∗ potk, then reject ui as a cluster centre
7. Else
8. Let dr be relative distance
9. If drra + potk

poti
≥ 1 accept ui as a cluster centre

10. Update the potential of each point using Equation (2) and continue
11. else
12. reject ui and set the potential poti = 0

13. Select the data point with the next highest potential as the new candidate and re-test
14. end if
15. end if

The potential update process (2) will continue until no further cluster centre is found. The parameters
known as the accept ratio (AR) and reject ratio (RR) together with the influence range and squash
factor set the criteria for the selection of cluster centres. The accept ratio and reject ratio are the upper
acceptance threshold and lower rejection threshold, respectively, and they take a value between zero and
one. The accept ratio should be greater than the reject ratio.

First criteria: If the potential value ratio of the current data point to the original first cluster centre is
larger than the accept ratio, then the current data point is chosen as a cluster centre.

Second criteria: If the potential value falls in between that of the accept and reject ratios, then the
compensation between the magnitude of that potential value and the distance from this point to all of the
previous chosen cluster centres (relative distance) is taken into consideration. If the sum of the potential
value and the ratio of the shortest distance between the current data point and all other previously found
cluster centres to the influence range is greater than or equal to one, then the current data point is accepted
as a cluster centre.

Third criteria: If the sum of the potential value and the ratio of the shortest distance between the
current data point and all other previously found cluster centres to the influence range is less than one,
then the current data point is rejected as a cluster centre.
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Forth criteria: If the potential value ratio of the current data point to the original first cluster centre is
less than the reject ratio, then the potential value of the current data point is revised to zero and the data
point with the next highest potential is tested.

1.4. Fuzzy C-Means Clustering

Fuzzy clustering algorithms are based on minimisation of the fuzzy c-means objective function
formulated as:

Jo =
C∑
c=1

m∑
i=1

(vci)
θ ‖ui − vi‖2A (3)

where vci is a fuzzy partition matrix of u,

v = [v1, v2, v3, ...vc] (4)

is a vector of cluster centres, which have to be determined,

d2ciA = ‖ui − vi‖2A = (ui − vi)T A (ui − vi) (5)

is a squared inner-product distance norm and

θ ∈ [1,∞] (6)

is a parameter that determines the fuzziness of the resulting clusters.
The conditions for a fuzzy partition matrix are given as:

vci ∈ [0, 1], 1 ≤ c ≤ i, 1 ≤ i ≤ n (7)

c∑
i=1

vci = 1, 1 ≤ i ≤ n (8)

0 <
n∑
i=1

vci < N, 1 ≤ i ≤ c (9)

The value of the objective function (3) can be seen as a measure of the total variance of ui from vi.
The minimisation of the objective function (3) is a non-linear optimisation problem that can be solved
by iterative minimisation, simulated annealing or genetic algorithm methods. The simple iteration
method through the first-order conditions for stationary points of (3) is known as the fuzzy c-means
(FCM) algorithm.

The stationary points of the objective function (3) can be found by adjoining the constraint (8) to Jo
by means of Lagrange multipliers:

J =
C∑
c=1

m∑
i=1

(vci)
θd2ciA +

n∑
i=1

λi

[
c∑
i=1

vci − 1

]
(10)

and by setting the gradient of J with respect to the fuzzy partition matrix u, the vector of cluster matrix v
and λ to zero.
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Now, if d2ciA > 0, λi, c and θ > 1, then (u, v) may minimise the objective function (3) only if:

vci =
1

c∑
j=1

(dciA/dcjA)2/(θ − 1)
, 1 ≤ j ≤ c, 1 ≤ i ≤ n (11)

and:

vi =

n∑
i=1

(vci)
θui

n∑
i=1

(vci)θ
; 1 ≤ i ≤ c (12)

This solution also satisfies the Equations (7) and (9). Equations (11) and (12) are the first-order
necessary conditions for stationary points of the objective function (3). The FCM algorithm iterates
through Equations (11) and (12). The sufficiency of the necessary Equations (11) and (12), as well as
the convergence of the FCM algorithm is proven in [24].

Before using the FCM algorithm, the parameters are: the number of clusters, C, the fuzziness
exponent, θ, the termination tolerance, ε, and the norm-inducing matrix, A. The fuzzy partition matrix,
u, must also be initialised. Note that the FCM algorithm converges to a local minimum of the objective
function (3); hence, different initialisations may lead to different results. The Fuzzy c-means algorithm
is shown in Algorithm 2.

Algorithm 2. Fuzzy c-means clustering algorithm.

Inputs: {c1, c2, c3, ...cC} {u1, u2, u3, ...ui}
Outputs: vi, i = 1, 2, 3, ...C Ui,j , i = 1, 2, ..C, j = 1, 2, ...n

Initialise: ε, θ, A

1. For, l = 1, 2, 3, ... Repeat
2. Compute cluster centres (prototypes):

3. vi =

n∑
i=1

(vci)
θui

n∑
i=1

(vci)θ
; 1 ≤ i ≤ c

4. Compute distances:
5. d2ciA = (ui − vi)TA(ui − vi), 1 ≤ c ≤ C, 1 ≤ i ≤ n
6. Update the partition matrix:
7. For 1 ≤ i ≤ n
8. If dciA > 0 for all c = 1, 2, ..., C

9. vic =
1

C∑
j=1

(dciA/dcjA)2/(θ−1)

10. Else

11. vci = 0 if dci > 0 and vci 3 [0, 1] with
C∑
i=1

vci = 1

12. until ‖v(l)ci − v
(l−1)
ci ‖ < ε
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1.5. The SUBFCM Algorithm

Embedding an autonomous cluster mining algorithm in WSN nodes requires that the algorithm take
datasets as input and generates output without data preprocessing. In applications where the number
of clusters in a dataset must be discovered, the FCM algorithm cannot be used directly. For clustering
WSN data autonomously, the number of cluster prototypes (categories) has to be determined from the
datasets. Hence, in this research, subtractive clustering and FCM algorithms are combined to implement
an algorithm that determines the number of clusters in the data space from the input datasets: subtractive
fuzzy cluster means (SUBFCM).

The SUBFCM algorithm uses a subtractive clustering approach to determine the number of cluster
prototypes C and the prototype centres c. The algorithm then partitions the stream into C fuzzy clusters
using the prototype centres from the above step as initial fuzzy cluster centres.

Initially, the SUBFCM algorithm assumes each D-dimensional data point ui, i = 1, 2, 3, ...,m as a
potential cluster centre with a measure of the potential (pot) of data points in the stream as:

poti =
m∑
j=1

e−α‖ui−uj‖
2

(13)

where α = 4
r2a

and ra is a positive constant defining the cluster radius. A large value of ra results in fewer
large clusters, while smaller values result in more smaller diameter clusters. ‖‖ Denotes the Euclidean
distance, which defines the distance between two points ui(x1, y1, z1) and u2(x2, y2, z2) as being equal
to the length of the vector.

‖X1 −X2‖ =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (14)

where

X1 ≡

 x1

y1

z1


and

X2 ≡

 x2

y2

z2


The measure of potential for a given data point is a function of its distances to all other points. A data

point with many neighbouring points will have a high potential value. After computing the potential for
every point, the point uk with the highest potential potk will be selected as the first cluster centre c1. The
potential for every other point is then updated by Equation (15):

poti = poti − potke−β‖ui−uk‖
2

(15)

where β = 4
r2b

and rb is a positive constant that can be set to a value that is greater than ra. After the first
cluster centre is determined, the value of rb determines the potential of data points becoming subsequent
cluster centres. Setting rb > ra reduces the potential of data points close to the first cluster centre and,
hence, avoids closely-spaced cluster centres [25]. The parameter α is a stopping criterion and should be
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selected within (0, 1) [26]. α with a value close to zero will result in a large number of hidden centres,
whereas α close to one leads to a small network structure.

Following the update process, the data point with the highest remaining potential is selected as the
next cluster centre c2, and the process repeats until a given threshold ε for the potential is reached and C
such centres are computed. SUBFCM then uses the clustering criterion of squared distance d2ci between
the i− th stream sample and the c− th prototype and defines the objective function (J0) as:

J0 =
C∑
c=1

m∑
i=1

vθcid
2
ci (16)

where the squared distance function is given as:

d2ci = ‖ui − Cc‖
2 (17)

where vci represents the membership degree of the i− th stream sample to the c− th cluster.
Membership is determined under the conditions:

vci ∈ [0, 1] , c = 1, 2, 3, ..., C i = 1, 2, 3, ...m (18)

and:
C∑
c=1

vci = 1, i = 1, 2, 3, ...,m (19)

where θ is a weighing exponent or fuzziness measure. If θ = 1, the clustering model is reduced to the
hard k-means model. The larger the θ, the fuzzier the memberships is. θ is usually set to two [24].

The stream partitioning takes place by optimizing the criterion function (16) through iteration,
updating the cluster prototype centres cj and the membership function vci as Equations (20) and (21)
respectively:

cj =

m∑
i=1

(vij)
θui

m∑
i=1

(vij)θ
(20)

vci =

(
C∑
l=1

(
‖ui − cj‖
‖ui − cl‖

)2/(θ−1)
)−1

(21)

The iteration should stop when:

max =
{∣∣∣v(l+1)

ci − v(i)ci
∣∣∣} < ε (22)

where ε is the termination criterion, 0 < ε < 1 and l is the iteration step.
SUBFCM takes the fuzzy radius ra and fuzziness measure θ as inputs and autonomously reveals

the structures in the data stream space. The parameter ra determines the granularity of the structures.
The smaller it is, the higher the resolution of the structures and the more computational overhead. The
SUBFCM algorithm is shown in Algorithm 3.



Sensors 2014, 14 18969

Algorithm 3. The subtractive fuzzy cluster means (SUBFCM) algorithm.

Inputs: {u1, u2, u3, ...ui}
Outputs: vi, i = 1, 2, 3, ...C Ui,j , i = 1, 2, ..C, j = 1, 2, ...n

Initialise: ε, θ, ra, α

1. For, i = 1← to m Repeat
2. Compute potential (poti) using Equation (13):
3. Set cj = potk

4. Do
5. For i = 1← to m− 1

6. Compute poti using Equation (15)
7. Set cj+1 = potk

8. while poti > α

9. Do
10. For, i = 1← to m

11. Compute dci using Equation (17)
12. Set vci = dci

13. Compute cj using Equation (20)
14. Compute vci using Equation (21)

15. while v
(l+1)
ci − v(l)ci > ε

2. Simulation and Analysis

Both the SUBFCM algorithm and the target application performances are evaluated based on
simulations using TrueTime, a MATLAB/Simulink-based simulator for real-time control network
systems. TrueTime facilitates co-simulation of task execution in real-time kernels, network transmissions
and continuous system dynamics. The TrueTime kernel block and wireless network blocks parameters
are tuned for a small-scale physical WSN deployment.

2.1. SUBFCM Performance Characterisation

A database consisting of 200 instances, each containing weather parameters, are clustered using the
SUBFCM algorithm. Each instance of the database has its classification of the fire weather index
(FWI) rating. There are four FWI ratings in each instance of the database: low, moderate, high and
extreme. Each of the FWI ratings present in the database has 50 examples that, in total, summarise the
200 instances of the database. The graphs below (Figures 2 and 3) show the classification of each instance
by comparing each pair of attributes present in the database. The SUBFCM algorithm-generated classes
are shown in different colors; blue for a low FWI class, red for a moderate FWI class, green for a high
FWI class and magenta for an extreme FWI class. The database contains four attributes: temperature,
relative humidity, wind speed and rain fall. The different clusters do not seem to be well separated in 2D
depictions. However, they are clearly separate clusters in a 3D graph.
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Figure 2. 2D classification of the weather database.
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Figure 3. 3D classification of the weather database.
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3. Results and Discussion

The results presented in this section regarding performance evaluation of the application and the
network services are based on averages of 10 to 15 simulation runs with realistic parameters obtained
from experimental tests. For the purpose of evaluating the system, we consider two parts: the evaluation
of sensor cloud data stream mining quality and evaluation of network services quality. The dataset that
we used contains 10-minute weather observations of 200 days in Sydney, Australia, recorded from June
2011, to January 2012 [27]. Each day is regarded as a data stream, and each stream has 144 points
(24 × 60/10). Each data stream instance consists of temperature, relative humidity, wind speed and
rainfall. The data streams are known to represent three levels of forest fire danger ratings (low, moderate
and high) on the McArthur Fire Danger Index (FDI) scale [28]. Initially, we evaluate the cluster quality
of the sensor cloud model using benchmark standard clustering algorithms; the k-means and the FCM.
Using the same data stream sets, we vary the stream dimension and stream periods to investigate the
nature and the complexity of streams that can be handled by the model. The first set of simulation
considers the system performance on different stream dimensionality and stream rates. Stream sets with
single to four dimensions are used to investigate the mining performance with respect to the benchmark
models. Sources generating streams as slow as every minute to as fast as every second are used to
investigate the effect on cluster quality and validity.

3.1. One-Dimensional (1D) Stream Results

Figure 4a shows a snapshot of the first eight elements to have arrived at the cluster heads, Ch1 to Ch3.
This makes up the first sliding window of the first three cluster head streams on which the SUBFCM
algorithm runs and extracts local cluster models. Analysis of clusters obtained from the SUBFCM
system taking into account 144 simulation steps in Figure 4b shows that the temperature cluster centres
obtained deviate by 0.4241 ◦C and 0.2113 ◦C, on average, in reference to the central k-means and FCM
systems, respectively. The maximum cluster centre displacements observed are 0.59 ◦C and 0.46 ◦C
compared to k-means and FCM systems, respectively. The maximum deviation is only 2.8% of the
maximum temperature in the stream.

Figure 4. One-dimensional stream results. (a) Snapshot of the first values of member nodes;
(b) average cluster deviations.
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3.2. Two-Dimensional (2D) Stream Results

Figure 5a–c shows a snapshot of the first sliding windows of cluster head one to three. The first
stream set, taken at the first simulation step, along with the cluster centres obtained using the distributed
SUBFCM system and reference systems; k-means and FCM. Analysis of the results obtained shows that
the distributed system cluster centres deviate by 3.86% and 1.46% of the cluster radius, on average, with
respect to the k-means and FCM cluster centres, respectively. The maximum cluster deviation observed
in this simulation is 13.22% with respect to k-means and 5.16% with respect to FCM, as shown in
Figure 6.

Figure 5. A snapshot of the first sliding windows of cluster heads, one to three. (a) snapshot
of the first sliding windows of cluster head one; (b) snapshot of the first sliding windows of
cluster head two; (c) snapshot of the first sliding windows of cluster head three.
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Figure 6. Stream sets and clusters from the first simulation step.
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3.3. Three-Dimensional (3D) Stream Results

Three-dimensional stream analysis simulation considers three variables (temperature, relative
humidity and wind speed) from the same data sources used in previous simulations. Figure 7a–c shows
stream sets and clusters for the first three stream sets. Simulation result analysis shows that the average
cluster deviations of the distributed SUBFCM system is 11.63% and 6.05% compared to the k-means
and FCM systems, respectively. The maximum observed cluster deviation is 15.52% compared to the
k-means system. Figure 8 shows average cluster deviations for the 144 simulation runs with respect to
k-means and FCM, respectively.

Figure 7. Stream sets and clusters for the first three stream sets. (a) Stream sets and clusters
for the first stream set; (b) stream sets and clusters for the second stream set; (c) stream sets
and clusters for the third stream set.
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Figure 8. Average cluster deviations with respect to k-means and FCM for 3D streams.
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3.4. Stream Rate Results

This simulation involves varying the stream periods. The simulation is then repeated for the different
stream dimensions discussed in previous sections. We simulated stream periods of 20 s, 15 s, 10 s,
5 s and 1 s. The effect of stream periods on cluster deviation is shown in Figure 9. The streams with
the higher dimensions show higher deviations, as a function of stream period. 4D stream sets show the
highest standard deviation of 3.23 around the mean deviation of 10.13%, while 1D stream sets exhibit
the least standard deviation of 0.85 with a mean cluster deviation of 2.42%. The results indicate that
when the data streams consist of higher than 2D elements, the average cluster deviations increase with
the increase in the stream periods.

Figure 9. Average cluster deviation variation with stream period.
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3.5. Cluster Density

The second set of simulations investigates the effect of network architectural variances on the mining
performance. The variables considered in this simulation are cluster density, local model drift threshold
(i.e., the maximum amount of local model drift before the system starts updating the global model)
and non-uniform clusters. Simulations reveal that the optimum cluster density for the best clustering
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results under the given network architecture is 40 nodes per cluster. The ability of the model to handle
data streams arriving in periods of longer than one second is also observed. The stream period of one
second or lower is, however, too fast for the model, as manifested in the relatively higher average cluster
deviations, as shown in Figures 10 and 11. High cluster deviations at a very low number of nodes per
cluster in all simulations point to the fact that by dividing a given large quantity of datasets into smaller
sets, mining these smaller sets at distributed locations simultaneously and incrementally extracting the
hidden global structures can yield results comparable to that of mining the whole dataset at a central
location. However, as the number of divisions increase, the number of distributed mining locations
increases with very small sub-sets of data, and the mining results start to degrade in comparison to the
central mining results.

Figure 10. Average cluster deviation with varying cluster densities. (a) Average cluster
deviation with varying cluster densities in a 1-s stream period; (b) average cluster deviation
with varying cluster densities in a 5-s stream period.
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Figure 11. Average of cluster deviations for different stream periods.
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3.6. Non-Uniform Cluster Density

For the case of non-uniform cluster density, the average cluster deviation as a function of the local
model drift threshold for the different stream periods is plotted in Figure 12. The cluster deviations are
generally higher compared to the uniform node densities per cluster. The stream periods exhibit different
minimum and maximum cluster deviations for different local model drift thresholds. The irregular cluster
deviation pattern is due to the assignment of the same stream period for clusters of different densities.

Figure 12. Average cluster deviation for non-uniform cluster density.
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3.7. Network Quality of Service Results

The third and final set of simulation considers the impact of the model by evaluating the network
services behavior. This evaluation considers the average energy consumption, the average data delivery
delay and the packet delivery ratio.

3.7.1. Average Energy Consumption

The average energy consumption of a typical node taking the average of all nodes in a cluster for a
single step of simulation run is shown in Figure 13a. Similarly, the average energy consumption of a
typical cluster head taking the average of all cluster heads in the network for a single simulation step is
shown in Figure 13b. The average energy consumption for the entire simulation run can be found by
multiplying this with the number of simulation steps. The average energy consumption of the sensor
nodes and the cluster heads largely vary with the stream periods and node densities per cluster. The
results in Figure 13a show that streams with shorter periods result in higher average energy consumption
than those with longer periods. This is because for longer stream periods, the nodes spend more time
in sleep mode. The sensor nodes and cluster heads consume above 90% less energy when mining
data streams with a period of 20 seconds compared to mining the same data streams with a period
of one second. This could also be due to a higher packet collision and lower data delivery ratio at such
fast speeds.
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Figure 13. The average energy consumption of the sensor nodes and the cluster
heads. (a) Sensor node average energy consumption; (b) cluster head average energy
consumption.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Node density per cluster

A
ve

ra
ge

 E
ne

rg
y 

(m
Jo

ul
e)

sensor node average energy

 

 5sec
10sec
15sec
20sec
1sec

(a)

0 20 40 60 80 100
0

0.5

1

1.5

2

Node density per cluster

A
ve

ra
ge

 E
ne

rg
y 

(m
Jo

ul
e)

Cluster head average energy

 

 

1sec
5sec
10sec
15sec
20sec

(b)

3.7.2. Average Data Delivery Delay

The packet delivery delay is defined as the time elapsing between the instant at which a packet is
generated at a source and the instant at which a copy of the packet is first received to a destination [29].
In our model, we define the data delivery delay as the time elapsed between the instant a data packet
is generated at a source and the instant at which the local cluster models generated at the cluster heads,
corresponding to the data packet, arrive at the sink. The average data delivery delay of a typical sensor
node is shown in Figure 14. We can observe that the average data delivery delay increases as the number
of nodes per cluster increases. For a stream period of one second, the average data delivery delay exceeds
the stream period when more than 40 nodes exist per cluster. This situation indicates saturation of the
system due to streams arriving at a rate higher than the rate at which the system can process them.
However, for stream periods of five seconds or more, the average data delivery delays are well below
500 ms, with the exception of a five-second stream period at more than 50 nodes per cluster density.

Figure 14. Packet delivery delay variation with cluster density.
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3.7.3. Packet Delivery Ratio

The packet delivery ratio is the ratio of packets received at the sink to the packets generated by all
other nodes [30]. In our model, using cluster architecture and in-network processing, we define two
packet delivery ratios; the sensor node-to-cluster head packet delivery ratio and the cluster head-to-sink
packet delivery ratio. The former is the ratio of packets received by cluster heads to the packets sent
by cluster members; whereas the later is the ratio of packets received by the sink to the packets sent
by the cluster head. The packets delivery ratios are observed to vary with stream period and cluster
density variations. Packet delivery ratios of between 96.7%–99% are observed when every cluster
contains less than 20 nodes, no matter what the stream periods are, as exhibited in Figure 15a. However
packet delivery ratios drop rapidly to as low as 93.7% to 96.8% when the node density is increased to
50 nodes per cluster, especially at faster stream periods. The stream periods have a significant impact
on the rate of the packet delivery ratio drop as node density increases. This indicates that for optimal
performance, applications utilizing the distributed model should limit the cluster density to below 20 if
a packet delivery ratio of above 96% is desired. The packet delivery ratios of cluster head-to-sink are
shown in Figure 15b. Packet delivery ratios with a drop of 99.5–96.5 are observed for node densities of
eight to 50 nodes per cluster for all stream periods, except for a one-second stream period, which further
drops to 96%. The lower packet deliver ratio observed is about 96% for a node density of 100 nodes
per cluster. For the case of cluster head-to-sink packet delivery ratio, the stream periods do not show
a significant impact on the rate of the packet delivery ratio drops, as in the sensor node-to-cluster head
packet delivery ratio drops. Applications that can tolerate stream packet delivery ratios as low as 94%
for the sensor node-to-cluster head ratio and 96% for the cluster head-to-sink ratio can deploy as much
as 100 nodes per cluster given that the increased energy consumption, and data delivery delays, as a
consequence, are acceptable.

Figure 15. The packet delivery ratios of node-to-cluster head and cluster
head-to-sink. (a) Packet delivery ratio of sensor node-to-cluster head; (b) packet delivery
ratio of cluster head-to-sink node.
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4. Conclusions

The SUBFCM algorithm is a light unsupervised method for the analysis of data and the formulation of
empirical models from the gathered data. It has been shown that a systematic combination of subtractive
clustering and fuzzy c-means clustering algorithms, SUBFCM, is a light data clustering algorithm
computationally suited for low resource systems, like WSN. The sensor cloud data stream mining WSN
model is evaluated through simulations. The robustness of the model to different data stream dimensions
and data stream rates is demonstrated through the first set of simulations. Benchmarking on standard
mining algorithms, the k-means and the FCM algorithms, we have demonstrated that the model can
perform high quality distributed data stream mining tasks, comparable to centralised data stream mining.
The second set of simulations have shed light on the network architectural design guidelines required
to satisfy desirable application demands without compromising the distributed data stream mining task
integrity. The third and final set of simulations has also discussed the energy cost and network quality of
service impacts for optimal system performance.
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