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Abstract 

The recent advancement and development of human-activity recognition 

technology has led to the gradual entrance of smart home induction systems into residents' 

lives, stimulating the demand for associated products and services. With these 

developments, human activity recognition based on deep learning models has earned an 

increasing share of attention.  

This research evaluates the ability of nine baseline deep-learning models to 

classify five CASAS datasets. The study aims to find the baseline deep learning model 

that best recognises resident activity, and to establish methods that improve the 

performance of baseline deep-learning models. Specifically, we hypothesise that the 

bidirectional and hybrid architectures will improve the performance of classifying 

residential activity. To test this hypothesis, we incorporate the hybrid architecture into 

the convolutional neural network (CNN), and the bidirectional architecture into the long 

short-term memory and gated recurrent unit (GRU) classifiers. We then verify whether 

these extensions improve the performances of the baseline models. Finally, we alter the 

groupings and compare the performances of the baseline deep learning models by 

different evaluation metrics and the Friedman test. 

Among the nine deep-learning models tested, the BI-GRU model best recognised 

various human activities. Our hypothetical improvement method, the bidirectional 

architecture, significantly improved the model's performance. 
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Chapter 1 
Introduction 

 
The first chapter consists of five parts. The first part 
provides the background of the research. The second part 
clarifies the motivation of this research project. The third 
and fourth parts introduce the research questions and 
contributions of the thesis, respectively. Finally, the thesis 
structure is presented. 
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1.1 Background and Motivation 

Nowadays, the rapid increase in the world’s ageing population. Requires a lot of 

attention and dedication in the care of elderly dependent people, as the lifestyle and health 

of older people are affected by these things. Dementia-related problems in the elderly are 

generating (Umphred, Lazaro, Roller, & Burton, 2013), which has become the major 

challenge worldwide. Due to this fact, some problems affect physical and mobility. Such 

as writing, walking and more complex activities (cooking, cleaning, taking medication, 

etc.) 

The continued rapid increase in the world's ageing population has increased the 

demand for HAR in smart environments and assisted living in smart homes. Increasing 

numbers of people are interested in smart-home HAR, which can improve the life quality 

of residents through the information collected by sensors in the smart home (Chen, Hoey, 

Nugent, Cook, & Yu, 2012) .  A smart home learns the daily habits of the residents, 

providing an independent and comfortable living environment. HAR can intelligently 

build the data in the intelligent environment into sophisticated modelling, reasoning and 

decision-making procedures (Aztiria, Augusto, Basagoiti, Izaguirre, & Cook, 2013). 

Human activity recognition (HAR) is an important research component of human 

activity analysis and human–computer interactions. Human activities such as walking, 

drinking, driving, and more complex activities can be recognised by different machine 

learning algorithms. HAR is also vital for maintaining the health of elderly persons 

performing daily activities. Particularly, it can help in detecting and diagnosing serious 

illness in the elderly. Various types of datasets collected from different sensors are 

available for detecting human activities and human health states (Cao, Wang, Zhang, Jin, 

& Vasilakos, 2018). HAR obtains temporal and spatial information through visual or non-

visual sensory data, and identifies simple or complex human behaviours and activities in 

real life (Ranasinghe, Machot, & Mayr, 2016). The adopted sensors can be fused into the 

living environment by direct connection to the detected objects, or can be worn by the 

residents. Unlike wearable sensors, object or environmental sensors indirectly detect the 
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activities of residents and distinguish their similar actions, and does not affect the normal 

activities of residents (Zolfaghari, Zall, & Keyvanpour, 2016). HAR is applied in three 

main areas: health care surveillance (Chang, Krahnstoever, Lim, & Yu, 2010), indoor and 

outdoor activity monitoring (Paola, Naso, Milella, Cicirelli, & Distante, 2008), and active 

and assisted living (AAL) systems for smart homes (Okeyo, Chen, & Wang, 2014). In 

recent years, HAR has been increasingly implemented by deep learning technologies 

(Liciotti, Bernardini, Romeo, & Frontoni, 2019), which learn the sensor data through 

multiple hidden layers. The advantage of deep learning models is that feature extraction 

and transformation are performed directly without prior knowledge. 

Research on HAR can be divided into these broad categories based on the 

devices, sensors, and data used for detecting the activity details. Sensors include video-

based sensors, wearable sensors, and sensors for mobile phones. Video-based sensors 

capture the daily activities from images, sounds, or video/surveillance camera functions 

(Onofri, Soda, Pechenizkiy, & Iannello, 2016).Wearable and embedded sensors placed 

on different sites of the body can analyse the details and movement patterns of human 

activities. These sensors are becoming more common with modern advances in mobile 

phones and wearable sensor technologies. 

HAR is a typical pattern recognition (PR) problem. The traditional methods for 

PR problems are based on machine learning algorithms such as decision trees, support 

vector machines (SVMs), naive Bayes and hidden Markov models (Lara & Labrador, 

2013). Machine learning algorithms deliver excellent performance in HAR problems 

such as disease detection. However, as human knowledge is limited, machine learning 

algorithms rely excessively on manual feature extraction. These restrictions prevent 

machine learning models from learning the deep features and performing unsupervised 

learning. Traditional PR methods have limited classification accuracy and model 

performance, and are of limited applicability in HAR. 

In recent years, deep learning algorithms have rapidly progressed as alternatives 

to traditional PR methods. Deep learning algorithms achieve higher performance in HAR 
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applications than traditional PR. In particular, deep learning reduces the design workload 

and learns more functions and more advanced functions through deep learning models 

(Wang, Chen, Hao, Peng, & Hu, 2018). The present research evaluates the ability of 

different deep learning models to classify human activities; that is, to model the datasets 

obtained by smart home sensors. The goal is not merely to find the baseline deep-learning 

model that best classifies human activities, but also to improve the baseline deep-learning 

model by a simple method. Ultimately, the most appropriate model for classifying human 

activities is obtained. 

To the best of my knowledge, the performance of the deep learning models on 

HAR sensor datasets remains is a good research topic. Researchers so far studied single-

type deep learning model and improvements (Liciotti, Bernardini, Romeo, & Frontoni, 

2019). We propose to evaluate the six baseline deep learning models and three improved 

deep learning models on HAR sensor datasets. 

 

1.2 Research Questions 
 

With the continuous progress of deep learning technology, HAR technology has 

improved the lives of residents in smart houses. The major goal in this thesis is evaluating 

the performance of several popular deep learning models for HAR. The questions to be 

discussed can be summarized as follows: 

Which of the baseline deep learning models achieves the best performance for 

HAR? 

In this thesis, the resident activities were extracted from CASAS datasets. Five 

CASAS datasets were analysed by the six most popular baseline deep-learning models 

including Convolution Neural Network (CNN), Long Short-Term Memory (LSTM), 

Gated Recurrent Units (GRU), Deep Neural Network (DNN), Autoencoder, and Sparse 

Coding. The results were evaluated by the accuracy, precision, recall, F-score and area-

under-curve (AUC) measures. The optimal general deep learning model was determined 

in a statistical analysis. 
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Which of the baseline models can be improved to achieve the best performance? 

Although deep learning techniques are applicable to resident activity recognition, 

their performance can be improved. We therefore pose the following two hypotheses. 

1) Among the six baseline models, we expect that CNN, LSTM and GRU will 

optimise the resident activity recognition. Hence, the improved model is 

based on these three outstanding models. 

2) We expect that the bidirectional and hybrid architectures will improve the 

performances of the selected deep learning methods. We therefore improve 

the CNN, LSTM and GRU by developing bidirectional and hybrid models.  

In the end, we verify whether these two methods can improve the 

performance of the models. 

1.3 Contributions 
  

This research aims to evaluate different deep learning models for classifying 

human activities; that is, their ability to process the datasets obtained by smart home 

sensors. Besides finding the baseline deep learning model that is most suitable for 

classifying human activities, it attempts to improve the baseline deep-learning model by 

a simple method, and thereby obtain the most appropriate model for classifying human 

activities. This thesis performs 1) data pre-processing, 2) HAR by baseline deep-learning 

models, 3) HAR by improved baseline deep- learning models, and 4) an evaluation 

analysis. Chapter 2 summarises existing deep learning algorithms and evaluation 

methods. Chapter 3 provides the deep learning methods and the theoretical basis of 

assessment methods. Chapter 4 shows and analyses the results. 

The overall contributions of this thesis are threefold: 1) we propose HAR based 

on baseline deep learning, 2) we improve the existing baseline deep-learning models, and 

3) we study the applicability of deep learning models to our datasets. Our results meet the 

current developmental needs of HAR based on deep learning. 
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1.4 Thesis structure 

This thesis consists of five chapters: 

Chapter 2 introduces related work in a literature review. We first introduce HAR 

and its related fields. We then introduce each of the popular deep learning algorithms and 

HAR models, and systematically discuss the advantages, disadvantages and related work 

of deep learning methods. Finally, we introduce the evaluation methods and datasets of 

HAR. In Chapter 2, we learn the results and experience of previous researchers that will 

guide our following experimental work. 

Chapter 3 is dedicated to the methodology of our work, including the collected 

datasets, data pre-processing, classification models, evaluations, and statistical tests. 

Chapter 3 introduces our research design, research methods and experimental procedure. 

Chapter 4 presents the experimental results and discussion, including the training 

and test results of different datasets in each deep learning model, and the analysis of the 

experimental results. We intuitively explain the obtained figures and tables. Finally, we 

analyse and discuss the experimental results and compare them among the models, 

thereby identifying which baseline models deliver the best performance and which 

baseline models can be improved. 

Chapter 5 concludes the study, discusses its limitations, and proposes ideas for 

future work. 
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Chapter 2 
Related Work 

 
 

 
This chapter evaluates deep learning models for classifying 
human activity. By reviewing the past literature and related 
theories of previous researchers, we can improve our 
research design and experimental methods. We can also 
obtain a more comprehensive understanding of the HAR 
field. In this chapter, we introduce various models and 
evaluation methods of HAR. 
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2.1 Introduction 
 

With the continuous development of artificial intelligence (AI) technology, deep 

learning has become the essence of analysis and recognition (Bharkad, 2013). To 

understand deep learning techniques for HAR and the best approach to the research, we 

must study related works. In addition to understanding the technical support of HAR, we 

need to study the advantages and disadvantages of the different baseline deep-learning 

algorithms and models. Finally, we need to consider which evaluation method and 

datasets are suitable for our purpose. 

This Chapter, we first introduce overview of HAR. Next, we discuss the most 

popular deep learning models of structure and application. Next, we present the 

evaluation method and statistical test for performance of the deep learning models. 

Finally, we describe the datasets of HAR. 

2.2 Human Activity recognition (HAR) 
 

Increasingly, technology is the medium through which healthcare is integrated 

with society. HAR provides various technical supports that improve residents’ quality of 

life. High-demand areas such as home automation and convenience services are 

continually growing as the population ages (Röcker, Ziefle, & Holzinger, 2011). HAR 

processes the data collected from wearable sensors, video frames, or images (Jobanputra, 

Bavishi, & Doshi, 2019). Accordingly, HAR can monitor and analyse human life 

information, and thereby introduce more features that provide independence and comfort 

to the residents (van Kasteren, Englebienne, & Kröse, 2011). 

HAR is performed on three main data types: sensor-based, vision-based and 

radio-based (Mohamad, Sayed-Mouchaweh, & Bouchachia, 2019). The first 

feasibility studies on activity recognition using body-worn sensors were 

conducted at the end of the 1990s (Bulling, Blanke, & Schile, 2014). Sensor-based 

data collection is a traditional method reliant on large volumes of raw input 

collected from several types of sensors. The features of raw data are manually 
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extracted based on human knowledge. Finally, these features are employed to 

train or develop techniques in real HAR tasks (Wang, Chen, Hao, Peng, & Hu, 

2018). Vision-based data collection uses image sequences labelled with action 

tags for action recognition (Poppe, 2010). Radio-based activity recognition is a 

new approach that utilizes body attenuation and/or channel fading of wireless 

radio. This method aims for high recognition accuracy while preserving the user’s 

privacy (Wang & Zhou, 2015).   

Various state-of-the-art methods have been proposed for activity recognition 

tasks. Figure 1 summarises the techniques applied in HAR. The traditional HAR models 

employ machine learning algorithms such as decision trees, SVMs (Erfani, Rajasegarar, 

Karunasekera, & Leckie, 2016), naive Bayes, and hidden Markov models (HMMs). 

These methods are widely used in HAR and similar researches. 

 

Figure 1 Several state-of-the-art methods for HAR 

Data for monitoring purposes are collected by advanced sensor technologies with 

excellent performance, low weight, and low power consumption. However, the current 

machine learning technology of HAR depends on human skill prior to the training phase, 

so is costly and unreliable in non-stationary environments (Mohamad, Sayed-

Mouchaweh, & Bouchachia, 2019). The replacement of traditional sensors with 
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smartphones for HAR has greatly improved the functionality of HAR devices. The 

smartphone era has ushered in mobile-phone motion sensors, which have become a 

popular choice for collecting the physiological signals of daily human activities (Duffner, 

Berlemont, Lefebvre, & Garcia, 2014). Smartphones can collect and monitor the daily 

life information of users automatically and without interference. However, their detection 

ability is limited; that is, mobile phone sensors cannot reliably recognise activities such 

as drinking, eating and typing, as they are normally stored in pockets or equivalent 

positions. To recognise relatively complex activities, the signals from two or more motion 

sensors at different positions must be evaluated in combination (Shoaib, Bosch, Incel, 

Scholten, & Havinga, 2016).  

The learned results of traditional machine learning results are not entirely 

satisfactory, because feature extraction heavily relies on human knowledge or experience. 

In more general environments and tasks, human knowledge limits the success of a 

recognition system.  Moreover, training the model requires a large amount of well-

labelled data, whereas most of the data in real-world applications are unlabelled, causing 

unexpected performance of the model in unsupervised learning tasks (Wang, Chen, Hao, 

Peng, & Hu, 2018). Motivated by the desire to improve human lifestyles, researchers have 

recently developed HAR with higher recognition and classification accuracy under more 

realistic settings than previous efforts (Wang, Cang, & Yu, 2019). Modern deep-learning 

approaches can extract HAR features in an unsurprised manner (Wiretunga & Cooper, 

2017), by techniques such as natural language processing and image pattern recognition. 

2.3 Deep learning Models 
 

Feature extraction by current HAR relies on handcrafted and human knowledge, 

so cannot identify complex activities among the current influx of data from multimodal, 

high dimensional sensors (Nweke, Teh, Al-garadi, & Alo, 2018). Recently, deep learning 

and AI methods have overcome these challenges by automatically extracting the diverse 

representation of HAR features. CNNs, recurrent neural networks (RNNs) and deep 
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belief networks (DBNs) have delivered especially promising results (Hammerla, Halloran, 

& Ploetz, 2016). 

Deep learning methods are based on neural networks with multiple processing 

layers, which automatically discover the required representations through multiple levels 

of abstraction. A deep learning machine is fed by raw input and automatically extracts 

the features for detection or classification. Obviously, deep learning enables advanced 

problem solving, which has resisted the best attempts of AI for many years (LeCun, 

Bengio, & Hinton, 2015). 

In applications that produce big data, such as Internet-of-Things (IoT), deep 

learning brings important improvements over traditional machine learning approaches. 

Deep learning models improve the recognition accuracy by extracting features other than 

handcrafted and human-derived features (Mohammadi, Al-Fuqaha, Sorour, & Guizani, 

2018). Deep learning has also benefitted from advanced tools developed for analysing 

large volumes of raw business data. Deep learning algorithms extract the high-level, 

complex abstractions of data by a hierarchical learning process with a system for 

collecting massive amounts of information for Big Data Analytics (Najafabadi, et al., 

2015).  

Deep learning operates through a series of consecutive artificial neural networks 

(ANNs). Deep learning architectures typically contain dozens or even hundreds of 

consecutive processing layers. Each layer processes data with different functions, 

resulting in increasingly rich information results (Mohammadi, Al-Fuqaha, Sorour, & 

Guizani, 2018). A deep learning architecture composed of many different systems has 

now been proposed. These models can have the same kind of stack or a stack with 

different architectures to improve the architecture functionality. Deep learning provides 

powerful system performance, flexibility and functionality. CNNs and recursive upgrade 

networks are very popular in HAR (Nweke, Teh, Al-garadi, & Alo, 2018). 

Many deep learning methods have been proposed (LeCun, Bengio, & Hinton, 

2015). The popular deep leaning methods adopted in HAR are classified into three broad 
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categories: generative models, discriminative models and hybrid models (see Fig. 2). 

Generative models include the three most common methods: restricted Boltzmann 

machines, autoencoders, and sparse coding. Generative models are graphical models that 

generate data distributions with random variance, either independently or dependently. 

The discriminative models are CNN (the most popular discriminative model), RNN, and 

deep neural models. The third category, hybrid models, includes convolutional sparse 

coding and recurrent CNN (Nweke, Teh, Al-garadi, & Alo, 2018). These models combine 

generative and discriminative models, and also involve the pre-training data. The various 

deep learning methods in each category are outlined in Fig. 2. 

 
Figure 2. Deep learning method classification based on (Nweke, Teh, Al-garadi, & Alo, 2018). 

2.3.1 Discriminative Deep Learning Models 

Discriminative feature learning models are modelled with posterior distribution 

classes to boost their classification and recognition powers (Nweke, Teh, Al-garadi, & 

Alo, 2018). In recent years, discriminative deep learning methods based on CNNs, RNNs 

and similar approaches have been applied in activity recognition. In this section, we 

discuss these applications for HAR. 
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2.3.1.1 Convolutional Neural Network （CNNs） 

CNN performs convolution operations to extract features from large-scaled input 

data (M.Sarigui, B.M.Ozyildirim, & M.Avci, 2019). Like ordinary neural networks, 

CNNs are composed of neurons with learnable weights and biases (see Fig. 3). A CNN 

contains an input layer, one or more convolution and pooling layers, and one or more 

fully connected layers (Yang, Nguyen, San, Li, & Krishnaswamy, 2015). Each 

convolutional layer in a CNN consists of several convolutional units. The convolution 

budget must extract the different features from the dataset. Low-level features are 

generally extracted by the first convolutional layer, and more complex features are 

extracted by increasingly higher convolution layers. The pooled layer following the 

convolutional layer increases the size of the extracted features. CNNs are popularly used 

to convolve data sets. They have been widely applied in image recognition, speech 

recognition, and HAR (Liu, Liang, Lan, Hao, & Chen, 2016). 

 

 

Figure 3. Structure of a convolutional neural network 

Ha etc.team (2015) proposed an activity recognition method using a CNN model 

with a 2D kernel (Ha, Yun, & Choi, 2015). The activity information in their dataset was 

collected from multiple sensors. Data preprocessing enabled the 2D kernel model to 

identify the dataset. The data of the various sensors were separated by padding zeros. The 
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human activity identification performances were compared among CNN with a 2D kernel, 

CNN with a 1D kernel, CNN–pf (In the first convolutional layer,  partial weight sharing, 

and  in the second convolutional layer, full weight sharing.  ), CNN–pff (In the first 

convolutional layer, partial and full weight sharing, and in second convolutional layer, 

full weight sharing), and mechanical learning. The CNN achieved higher performance 

with fewer parameters and more effective multi-mode data than mechanical learning (Ha 

& Choi, 2016).  

The Stefan team proposed a CNN-based method that classifies 3D gestures using 

mobile devices. The sensed dataset is compiled into a matrix-data input model of fixed 

sized by accelerating the instrument and the gyroscope. The results of different settings 

and different datasets were evaluated in a comparative study. The obtained results were 

at least equal to the state-of-the-art method at that time (Duffner, Berlemont, Lefebvre, 

& Garcia, 2014). Zeng (2014) proposed a CNN-based method that automatically extracts 

the discriminative features in three classes of human activities learned from three public 

datasets: Skoda (for assembly line activities), Opportunity (for dishwashing, cooking, and 

other householder activities), and Actitracker (jogging, walking, and other outdoors 

activities). They exploited the local dependency and scale invariance of CNN, and 

improved the accelerometer signals by partial weight-sharing technology (Zeng, et al., 

2014). Liu, Ying, Han, and Ruan (2018) proposed a HAR for analysing video data. They 

detected four behavioural activities (walking, running, punching, and tripping) by the 

Bayes classifier and CNN. The input data were extracted from the KTH dataset, and the 

extracted features (length-width ratio, entropy, and Hu invariant moment) were detected 

by a Kalman filter. The accuracy of CNN exceeded that of the Bayes Classifier (Liu, Ying, 

Han, & Ruan, 2018 ). 

The Kyoung–Soub team proposed a new method that classifies real-time motions 

by CNN-based HAR. The HAR dataset they selected is about one healthy subject and 

five rehabilitation motions. They built an intelligent system that collects data from 

smartphones and smart watches, and segments the data by a time window. The 
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performances of each CNN were compared by 5-fold cross-validation technology. Finally, 

the motion information was classified by the CNN, and the optimal time-window size 

yielding the highest HAR accuracy was determined. The classification ability of the HAR 

was found to be improved by only minimizing the sample size (Lee, Chae, & Park, 2019). 

2.3.1.2 Recurrent Neural Networks（RNNs） 

An RNN combines recurrent paths, meaning that the recurring process is a path 

of information flow. RNN maps the previous input history information to the target vector 

that can be processed by an internal sequence in memory. Accordingly, the RNN is 

suitable for unsegmented, continuous handwriting recognition and speech recognition. 

Whereas the traditional neural network only establishes the connections between adjacent 

layers, the RNN also establishes connections between the units in directed loops. The 

advantage of this model is the identification of continuous sequence data (Ye, Yang, Chen, 

& Wang, 2019). The loops in an RNN store the information in the network structure, 

enabling connection of the previous information to the execution and analysis of the 

current task. (Schrauwen, 2013). These connections cannot be made by traditional 

neural networks. As shown in Fig. 4, the RNN is expanded over time. The neurons 

between the input and output layers of the RNN contain a non-linear (Mohammadi, Al-

Fuqaha, Sorour, & Guizani, 2018). 



 
 

17 
 

 

Figure 4. Structure of the RNN, adapted from Mohammadi, Al Fuqaha, Sorour, and Guizani (2018).  

2.3.1.2.1 Long Short-Term Memory (LSTM) 
 

RNN has recently achieved great success in various fields. These success factors 

are mainly attributed to LSTM, an extension of RNN that solves the long-term 

dependency problem in RNN. The LSTM processes and predicts data with very long 

delays in time-series intervals (Chen, Baca, & Tou, 2017). In addition to the feedback 

path that stores information, LSTM embeds an input gate, an output gate, and a forgotten 

gate in each neuron. Figure 5 shows the cell structure of LSTM (Mohammadi, Al-Fuqaha, 

Sorour, & Guizani, 2018). 
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Figure 5. Cell structure of LSTM (Mohammadi, Al-Fuqaha, Sorour, & Guizani, 2018) 

LSTM outperforms the RNN model in the analysis of input sensor data. For 

example, LSTM maintains the time gradient flow by a forgetting gate that does not decay 

over time. However, the binding efficiency of related data in the LSTM structure is very 

low (Park, Jang, & Yang, 2018).The output of any neuron is determined by the input of 

the previous neuron.  An RNN stores the previously learned information. During training, 

a traditional RNN may develop a vanishing or exploding gradient phenomenon, causing 

diminishment or rapid growth of the error function, respectively. This phenomenon 

destroys the identification ability of the RNN. LSTM avoids this problem by the memory 

in each LSTM unit, which can be used by the gate to store, delete or update prior 

information as needed. Each gate has different weights, biases and activation functions. 

Bi-directional LSTM achieves superior recognition performance because its neuronal 

connections can proceed in the backward and forward directions, instead of only to 

previous cells (Sarma, Chakraborty, & Banerjee, 2019). 

 Chen etc. team (2017) analysed the HAR data collected by accelerometers and 

gyroscopes by LSTM. The training model was learned by a deep CNN. The data were 

images collected from wearable cameras. To mitigate the degradation of the final 

recognition accuracy by the dynamics and uncertainty of human activities, they replaced 

the error information by the location information (Chen, Baca, & Tou, 2017). Carfi etc. 
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team (2018) proposed a recognition method that explains the information delivered by 

gestures, a type of natural human communication. Gesture interpretation is important for 

communications between humans and robots. They proposed the SLOTH classifier, a 

probabilistic classifier that detects 15 gesture sequences based on LSTM analysis of data 

from a wearable triaxial accelerometer. This system is advantaged by 1) high recognition 

accuracy, 2) immediate system reaction, and 3) continuous gesture detection (Carfi, 

Motolese, Bruno, & Mastrogiova, 2018). Li etc. team (2019) researched a bi-directional 

LSTM using the MOCAP dataset from Carnegie Mellon University which contains high-

resolution radar range profiles. They selected six human activities for identification and 

classification. Although bi-directional LSTM outperforms unidirectional LSTM, its 

results are sensitive to the length of the data. The best duration of data is around 0.6 S (Li, 

He, Yang, Hong, & Jing, 2019). Pham and colleagues (2017) developed deep-care LSTM 

for predicting diabetic disease, and compared its performance with that of Markovian and 

support vector machine approaches (Pham, Tran, Phung, & Venkatesh, 2017). 

A HAR method based on smart phones was proposed by Yu and Qin (2018). 

Collecting data from a user’s cellphone reduces the inconvenience of wearing multiple 

sensors. Activity recognition was performed by a bi-directional LSTM structure that 

analyses data from an accelerometer sensor and a gyro sensor in the smartphone. Their 

network proved superior to other models (machine learning models, DBN and baseline 

LSTM), reaching accuracies of up to 93.79% (Yu & Qin, 2018).Although HAR has been 

widely accepted, the spatial complexity and long-time span of human activities have 

defied many traditional machine learning methods. Accordingly, deep learning 

algorithms have largely replaced machine learning algorithms. LSTM is ideally suited to 

processing time series data. Increasing the depths of the LSTM model, the gradient 

vanishing arises. LSTM recognition minimizes the pre-processing of the raw data, and 

reduces the versatility of the model in reducing the experimental error (Yu, 2018). 
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2.3.1.2.2 Gated Recurrent Units (GRU) 
 

Identifying human activities from multimodal human sensor data is a very 

effective care technique for the elderly or disabled in smart medical environments. 

Traditional machine learning techniques with a single induction method are unsuitable 

for medical care. A method that builds simple recurrent units (SRUs) with the GRU of 

neural networks has been proposed. The SRU processes a multi-mode data series through 

internal storage states and stores the past states of information in the deep GRU for 

analysis of future states. GRU resolves the instability and gradient issues, and 

outperforms currently available state-of-the-art methods (Gumaei, Hassan, Alelaiwi, & 

Alsalman, 2019).  

GRUs do not recognise human activities, but group each human into a local group 

that represents his or her relationship in the entire scene. The important movement 

information is maximized by modelling both the individual human motions and the local 

group relationships.  Using a GRU model, Lee, Kim and Lee (2017) captured multiple-

relationship time dynamics of multiple lengths. Their method outperformed the Group 

Interaction Zone (GIZ) and Gaussian Process Dynamical Model (GPDM) methods 

developed without local grouping (Lee, Kim, & Lee, 2017). He etc. team (2018) proposed 

a unified architecture based on CNN and GRU for classifying medical relationships in 

Chinese and English clinical records. Their model uses bi-directional GRU to capture the 

long-term dependencies of phrase-level features (He, Guan, & Dai, 2018). 

Hao etc. team studied a variant GRU with an encoder that preprocesses the data 

of payload-aware intrusion detection. The payload is extracted from raw traffic data, 

which is split into individual fixed-length packets. They compared the abilities of two 

variant GRUs which are encoded gated recurrent unit (E-GRU) and encoded binarized 

gated recurrent unit (E-BinGRU) and other algorithms in learning network packets. Both 

variant algorithms provided accurate network-packet rules without requiring human 

experience, and automatically generated those rules in the correct format (requiring no 
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format conversion). The detection accuracy of E-GRU and E-BinGRU exceeded 99% 

(Hao, Sheng, & Wang, 2019). 

Compagnon et al. (2019) proposed an activity classification pipeline based on 

GRU and inertial sequences. They exploited the feature-extraction capabilities of the 

neural network instead of manually defining the rules or extracting artificial features. 

Their method resamples the dataset and designs a new GRU model with improved 

performance. The dataset consisted of two major groups: 1) five common behavioural 

postures (sitting, lying, standing, walking, and transfer), and 2) activities of daily living 

(ADL) and falling mishaps provided by the MobiAct V2 dataset. In experimental 

assessments, the new GRU model improved the performance and enhanced the system 

deployment potential (Compagnon, Lefebvre, Duffner, & Garcia, 2019). 

2.3.1.3 Deep Neural Networks (DNNs) 

DNNs are developed through ANNs, but (unlike ANNs) possess many hidden 

layers. Increasing the number of hidden layers increases the recognition ability of a DNN. 

DNNs are typically applied as dense layers in other network models (Wang, Chen, Hao, 

Peng, & Hu, 2018). A model with a 5-layer hidden layer improves the classification 

performance by automatic feature extraction and classification. The authors demonstrated 

that a larger number of hidden layers improves the recognition performance of the model 

when identifying complex HA data (Hammerla, Halloran, & Ploetz, 2016). 

Amroun et al. (2017) developed an activity that distinguishes between calling 

and management using a smart phone and a remote control. The performance of the DNN 

algorithm was compared with that of decision tree and SVM. By removing the need for 

data preprocessing, DNN improves the recognition accuracy (Amroun, Temkit, & Ammi, 

2017). Later, Amroun et al. (2017) presented a HAR method based on DNN, decision 

tree and SVM, which analyses the data of smart watches, smartphones and remote 

controls while the user performs four types of movement (walking, standing, sitting, and 

lying). The DNN algorithm improved the recognition rate of the system (Amroun, 
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Temkit, & Ammi, 2017). Hayashi etc. team (2015) proposed a DNN-based method for 

daily HAR which identifies multi-mode signals (ambient sound and object acceleration). 

Over a 72-h period, they recorded real data for a comparative experiment of the DNN 

algorithm, SVM, and other algorithms. In the evaluation, the DNN algorithm 

outperformed the other algorithms (SVM, K-nearest neighbour, decision tree) (Hayashi, 

Nishida, Kitaoka, & Takeda, 2015).Cheng etc. team (2017) proposed a DNN-based HAR 

model that monitors the activity status of patients with early Parkinson's disease. They 

found significant differences in the percentage of walking time and the frequency of 

posture changes between the Parkinson’s patients and healthy controls (Cheng, Scotland, 

Lipsmeier, & Kilchenman, 2017). 

The configurability and scalability of the DNN classifier in HAR has also been 

investigated. Bhat’s model (2019) inputs the number of inputs, weights, and 

characteristics of the neurons, and parameterises the multiply accumulated block, weight 

store, rectified linear unit and MAX functions. As the parameterised neurons are derived 

from the hidden and output layers, the parametrisation affects the architecture of the 

hidden DNN. Eventually, the authors designed an activity-aware 2-level HAR engine that 

recognises two types of recognition activities. This method improves the recognition 

accuracy while reducing the power consumption of the HAR engine (Bhat, Tuncel, An, 

Lee, & Ogras, 2019). 

2.3.2 Generative Deep Learning Models 

Generative deep learning models extract the features from the data by identifying 

their associated statistical distribution. In the past few years, many HAR studies have 

applied generative deep learning models. In this section, we introduce related 

experiments that have been previously studied using this model. 
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2.3.2.1 Autoencoder  

Autoencoder is a type of self-monitoring neural network model. Autoencoders 

are often used in feature extraction, rebuilding data from corrupted data, and other tasks. 

Conventional autoencoders have fully connected input layers and output layers of the 

same size and a fully connected hidden layer of smaller size. Autoencoder algorithms 

have been used in recommendation systems (Liu, Qiu, Ma, & Wu, 2019). Autoencoders 

generate feature learning, and are superior to the feature extraction methods of principle 

component analysis (PCA) and empirical cumulative distribution function (ECDF) 

(Plötz, Hammerla, & Olivier, 2011). Feng etc. team (2018) proposed a method that 

improves the efficiency of Autoencoder and avoids falling into a local optimum (Feng, 

Chen, & Fu, 2018). Their method can be implemented in conjunction with quantum 

particle swarm optimisation and autoencoder algorithms. Autoencoder includes two main 

functions: an encoder and a decoder. The encoder accepts the input data and converts it 

into a new representation. This step is often referred to as code or latent variable. The 

decoder receives the new code generated by the encoder and converts it into the original 

input form. Figure 6 shows the main structure of Autoencoder. The basic autoencoder has 

many extensions such as denoising Autoencoder, sparse Autoencoder and variant 

Autoencoder (Mohammadi, Al-Fuqaha, Sorour, & Guizani, 2018) . 
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Figure 6. Structure of an Autoencoder network (Xu, Wu, Yang, & Zhang, 2017) 

Zhou etc. team (2018) proposed a method for embedding a local autoencoder into 

an architecture. Local embedding on each cluster-based subgraph tightly integrates the 

LAN embedding and graph clustering through mutual enhancement, thus saving memory 

(Zhou, et al., 2018). Zhang etc. team (2018) proposed an Autoencoder-based speech 

recognition system in noisy environments. This system identifies speech in noisy 

environments and also the noise features by a multitasking autoencoder combining a 

denoising autoencoder and a de-speeching autoencoder (Zhang, Liu, Inoue, & Shinoda, 

2018). 

Fraiwan and Lweesy (2017) identified the sleep states of newborn infants using 

an Autoencoder. The identification system performs feature extraction and classification. 

As the statistical parameters to be extracted in the time and spectral domains, they 

selected 29 EEG records (14 preterm and 15 full-term). To improve the results, they used 

two autoencoder layers and one softnet output layer, and applied the10-fold cross 

validation technique. The recognition accuracy was 0.804 (Fraiwan & Lweesy, 2017). 

Autoencoder is an important branch of deep learning in tasks such as denoising hybrid 

noises in images. Ye etc. team (2015) removed hybrid noises in images using a sparse 

denoising autoencoder. The model achieved good performance in single noise 

recognition and demonstrated outstanding performance in mixed noise. Autoencoder 
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algorithms are widely used in feature extraction programs because they properly 

represent the input data (Ye, Wang, Xing, & Huang, 2015). 

Denoising autoencoders (DAE) and stacked autoencoders (SAE) have been 

proposed for low- accuracy acquisition of voices in noisy environments. Autoencoders 

are powerful tools for extracting and recognising sound features. To improve the accuracy 

of classifying speech conversations, Janod etc. Team (2017) proposed a method of 

obtaining combined feature extraction with manual and automatic transcription functions. 

Exploiting the bottleneck features of Autoencoder, this function combines the advantages 

of both noisy and clean transcription to improve the robustness of error-prone 

representations (Janod, Morchid, Dufour, Linarès, & Mori, 2017). 

 Fournier and Aloise (2019) proposed an autoencoder algorithm that reduces the 

dimensions of high-dimensional data (images, sentences or recordings).  Autoencoder is 

widely used because it is more flexible than PCA and isometric feature mapping 

(LSOMAP). They applied four dimension-reduction algorithms to three commonly used 

image datasets (MINST, Fashion-MNIST and CIFAR-10), and projected the data into a 

low-dimensional space for identification. For the three datasets classified by k-nearest 

neighbour, the recognition accuracies of PCA and Autoencoder were almost identical, 

but PCA greatly reduced the computational time and resource use (Fournier & Aloise, 

2019). Badem, Caliskan, Basturk, and Yuksel (2016) proposed a HAR method using two 

autoencoder layers and one softmax layer. When tested on common datasets of HAR 

using smartphones, the proposed method achieved better classification results than other 

techniques (k-nearest neighbour, naive Bayes, and decision tree). (Badem, Caliskan, 

Basturk, & Yuksel, 2016).  

Gu etc. team (2018) identified indoor positioning and navigation-related 

activities by a method based on stacked denoising autoencoders. They used four sensors 

(accelerometers, gyroscopes, magnetometers and barometers) to collect the data. The 

advantages of this method are high recognition accuracy and no manual feature 
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extraction. The algorithm demonstrated high performance in identifying acceleration data 

(Gu, Khoshelham, Valaee, Shang, & Zhang, 2018). 

2.3.2.2 Sparse Coding 

Sparse coding is a deep learning algorithm proposed by Olshausen team 

(Olshausen & Field, 1997). This method well extracts the characteristics of a dataset. 

Diego, Reichinnek, Both, and Hamprecht (2013) proposed a method based on sparse 

coding, which analyses and recognises neuronal activity in calcium imaging data for 

neuronal activity studies. They used wavelet changes and watersheds to identify the 

image segmentation of a single unit, and sparse coding to analyse the transient signals. 

The sensitivity of this method is approximately 94%, significantly higher than those of 

other published algorithms (Diego, Reichinnek, Both, & Hamprecht, 2013). Manifold 

regularized sparse coding, which include sparse representations and manifold structures, 

delivers high performance in motion recognition. Liu etc. team (2016) proposed p-

Laplacian regularized sparse coding (pLSC) for HAR, which preserves the local shape 

by p-Laplacian regularisation. They also proposed a fast-iterative contraction enthalpy 

algorithm to optimise the pLSC. This method was evaluated in HAR experiments using 

the non-structural social activity attribute dataset HMDB51 (a human motion database). 

The pLSC algorithm achieved higher recognition performance than traditional Laplacian 

regularity, sparse coding and the Hessian regularisation sparse coding algorithm (Liu, 

Zha, Wang, Lu, & Tao, 2016). 

Umakanthan etc. team (2015) proposed sparse coding for identifying actions. In 

a comparison study of sparse coding and three other algorithms (SRC, Shared Dictionary 

+ SVM, Class Dictionary + SVM), sparse coding delivered the highest recognition 

accuracy (96.8%) (Umakanthan, Denman, Fookes, & Sridharan, 2015). Wang and Wang 

(2018) proposed an improved topology-based sparse coding (ITSC) that recognises 

Alzheimer's disease signals in magnetic resonance imaging (MRI) data sourced from the 

ADNI dataset. The method is divided into four steps: 1) data preprocessing (such as 



 
 

27 
 

correction, registration, segmentation), 2) training of the ITSC datasets, 3) optimisation 

by an iterative algorithm, and 4) identification of the MRI data using a SoftMax classifier 

and the auxiliary fine-tuning method. This method is superior to PCA and a self-learning 

neural network (Wang & Wang, 2018). Zhang and Ma (2012) proposed a new image 

classification framework that leverages low-rank sparse matrix decomposition and group 

sparse coding. The local features of the image are decomposed into a low-rank matrix 

and a sparse matrix by local feature extraction (related terms and specific terms) of 

adjacent faces of the image. When trained on the low-rank and sparse parts of the datasets, 

the recognition accuracy of this method was 75.83% ± 0.71% (Zhang & Ma, 2012). 

2.3.2.3 Restricted Boltzmann Machine (RBM) 

An RBM contains two layers: a stochastic hidden layer and a stochastic visible 

layer. Each neuron in an RBM is assigned an energy. As shown in Figure 7, the nodes in 

each layer are connected only to nodes which have no connection and are conditionally 

independent between the layers (Fang & Hu, 2014). 

 

 
Figure 7. Structure of a Restricted Boltzmann Machine, adapted from Fang and Hu (2014)  

Katsageorgiou, Zanotto, Tucci, Murino, and Sona (2017) analysed 

electrophysiological data using RBMs. Using a latent variable model and a mean-

covariance RBM, they found a meaningful configuration corresponding to regularities in 

the input data. (Katsageorgiou, Zanotto, Tucci, Murino, & Sona, 2017). 

RBMs have demonstrated outstanding performance in video detection, behaviour 

recognition, and other fields. Ajmal etc.team(2019) proposed to identify identified and 



 
 

28 
 

evaluated the interactions between people or between people and objects on a surveillance 

video dataset based on an RBM. In terms of recognition accuracy, this method 

outperformed the latest technology on an actual monitoring dataset (Ajmal, Ahmad, 

Naseer, & Jamjoom, 2019). Phan, Dou, Piniewski, and Kil (2015) developed a social 

RBM that identifies human modeling and predictions in healthy social networks. The 

model consists of three layers: historical layers, visible layers, and hidden layers. 

Experiments confirmed the superiority of RBM over divergence and backpropagation 

algorithms (Phan, Dou, Piniewski, & Kil, 2015). 

Lei and Todorovic (2016) proposed a conditional deep Boltzmann machine that 

detects the remote motions of an active 3D human skeleton. Their model extends the 

conditional RBM and the factored conditional RBM by introducing additional hidden 

layers and removing the style layer, while retaining high computational efficiency. The 

new hidden variables can properly capture the spatiotemporal interactions between 

human joints, enabling simulations of 3D motion sequences without active and motion 

patterns (Lei & Todorovic, 2016). 

2.3.3 Hybrid Deep Learning Models 

Hybrid deep learning methods consist of multiple subsystems, usually controlled 

by two or three algorithms (Yinghao Chu, 2018). In the HAR literature, the recognition 

accuracy of hybrid algorithms is usually better than those of single algorithms of the same 

type. 

Akkad and He (2019) estimated the remaining useful life (RLU) of industrial 

machinery by a hybrid deep learning algorithm. Their hybrid algorithm combines long- 

and short-term memory and CNNs. They entered the data into the first layer (a one-

dimensional convolution layer with 3 filters and a kernel size of 1), and obtained a 3-

dimensional tensor feature map by a convolution operation. The feature map generated 

from the convolutional layer was then input to the LSTM layer. The second and third 
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layers were LSTM layers with 100 and 50 hidden units, respectively. Finally, the RUL 

was estimated through the dense layer (Akkad & He, 2019).  

Zhang etc. team (2019) proposed a facial expression recognition method based 

on a hybrid deep learning model. They processed static facial images and optical flow 

images by two separate CNNs. The processed segment-level spatial and temporal features 

were input to the DBN model and a deep fusion network was constructed. Finally, the 

facial expressions were classified by an SVM) (Zhang, Pan, Cui, Zhao, & Liu, 2019).  

Li etc. team (2017) proposed a multi-sensor identification method based on a 

hybrid deep learning algorithm that combines CNN and LSTM. They input the captured 

spatial features into the CNN layer and the time-extraction features into the LSTM layer. 

The extracted features were then merged, and a decision was made. This model is scalable 

and is easily trained and deployed (Li, et al., 2017). Ordóñez and Roggen (2016) also 

proposed an activity recognition architecture based on CNN and LSTM, which is 

applicable to multi-mode wearable sensors, naturally fuses the different sensor data, 

requires no artificial feature extraction, and clarifies the time dynamics of modeling 

feature activation (Ordóñez & Roggen, 2016). 

RBMs can effectively represent complex data in feature extraction from scenes. 

However, RBMs are unsuitable for processing large images because the calculation 

becomes very complex. Gao etc.team (2016) proposed a hybrid method called centered 

convolutional restricted Boltzmann machines (CCRBM) for scene recognition. This 

method redefines the visible units of the network using a central factor. The hidden 

function is learned by a distribution function and a modified energy function. The learned 

hidden unit is used to rebuild the visible unit, and the CCDBN is used for greedy 

stratification training. Finally, scene recognition is performed by SoftMax regression. 

Exploiting the convolution characteristics, the CCDBN achieves excellent stability and 

generalization, and is applicable to discriminative methods for natural scene image 

recognition (Gao, Yang, Wang, & Li, 2016). 
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2.4 Evaluation Method and Statistical Test 

In this section, we introduce the related work of evaluation method and statistical 

test for evaluate performance of deep learning models. First, we describe the evaluation 

metric for deep learning models in recent years. Second, we discuss the statistical tests of 

performance of deep learning models. 

2.4.1 Evaluation Method 

The functional performance of HAR is evaluated by preset evaluation techniques 

such as accuracy, computational time and complexity, robustness, diversity, data size, 

scalability, and types of sensors. By evaluating deep learning methods, we can understand 

how parameter changes affect the performance of the model during training. (Nweke, 

Teh, Al-garadi, & Alo, 2018) 

Hold-out cross-validation technology is also one of the Evaluation techniques. 

Hold-out cross-validation technology can be used to test the performance of models on 

different datasets. Hold-out cross-validation techniques include: leave one-out, leave one 

person out when testing the performance of single-user, 10-fold cross validation and so 

on (Hammerla, et al., 2015). 

The most common performance metrics are accuracy, accuracy, recall, confusion 

matrix, Area Under the Curve (AUC) and Receiver Operating Characteristics (ROC)ROC 

curve is a performance graph that demonstrates whether the classification model falls 

below the classification threshold. The ROC curve is also called the precision-recall rate. 

The ROC curve can compare the true positive rate with the true negative rate give as 

(FPR). However, the ROC curve is only applicable to the detection model; It cannot be 

used in the imbalanced datasets commonly used in human activity recognition based on 

deep learning. (Nweke, Teh, Al-garadi, & Alo, 2018) 
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2.4.2 Statistical Test 

 Analysis of Variance (ANOVA) 
 

The one-way ANOVA determines whether data from different groups have the 

same mean. Whether the averages of the population differ is assessed by checking the 

internal variation in each sample (relative to the amount of change between samples). 

Therefore, the one-way ANOVA calculates two variances: the variance between samples 

and the variance inside the sample. The two estimated population variances are then 

compared using the significance value (p value) of the F-test. Kolekar's team proposed 

human activity recognition based on hidden Markov models. They analyzed the features 

through the ANOVA test and result of the p-value is 0.04, indicating that the features are 

valid (Kolekar & Dash, 2016). 

The Friedman test is a non-parametric statistical test of multiple sets of measures. 

It can be used to approve the null hypothesis that multiple groups of measures have the 

same variance at a certain level of significance. On the other hand, failure to approve null 

hypotheses indicates that they have different values of variance. Oda etc. team introduced 

the application of neural network (NN) for user identification in the Tor network. They 

use the Friedman test to analyze the data result. From the results, they adopt null 

hypothesis H  for all activation functions since p < 0.05. Since the activation function of 

softsign/x has the smallest p-value. Then, the softsign/x is moistest suitable for bad user 

identification in Tor networks (Oda, et al., 2016). The Kaur team proposes to use six 

machine learning models to predict the software quality of five open-source software. 

They compare machine learning models results by Friedman's test. The Friedman test 

can indicate whether there is a statistical difference between the classifiers used (Kaur & 

Kaur, 2018). 
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2.5 Datasets 

Datasets are important for human activity recognition for evaluate the 

performance of deep learning. In fact, many data sets can be used in activity recognition. 

HAR benchmark datasets based on deep learning include data collection schemes which 

can be divided into two parts (Wang, Chen, Hao, Peng, & Hu, 2018):  self-data collection 

(Bhattacharya & Lane, 2016) and public datasets (Hammerla, Halloran, & Ploetz, 2016). 

Self-data collection is performed their own data collection, but it is rather tedious to 

process the collected data. Public datasets are adopted by most researchers. In human 

activity recognition. most the researchers choose Opportunity Dataset, ARAS datasets 

and CASAS datasets. 

OPPORTUNITY Dataset (Rogge, et al., 2010) is a complex and hierarchical 

dataset which is the activity of daily living that collects from multiple sensors of different 

modalities, collect relevant data on the human body and in the environment by using 

different kinds of sensors. The OPPORTUNITY dataset includes composed of sessions, 

daily living activities and drills. In the activities of daily life, the subjects were required 

to perform kitchen-related activities (drinking coffee, eating, opening and closing the 

refrigerator, etc.). While in the drill session, each action requires 20 repetitive activities 

for 20 hours. The OPPORTUNITY dataset includes a total of 17 activities and 12 

subjects. ARAS human activity dataset (Benmansour, Bouchachia, & Feham, 2015) 

collected from two real-life with two pairs of residents. The first pair is two males and 

the second pair is a couple. ARAS data can better study and compare activity recognition 

algorithms. The critical feature of ARAS data is that it contains a variety of human 

activities, and a large number of activities occur. A total of 27 activities were carried out. 

The center for advanced studies in adaptive systems (CASAS) dataset collects 

information on the behavior and environmental status of residences surrounding 

Washington State University. Sensors in the houses collect the relevant data as the 

residents perform their daily work and life activities. Through these datasets, the research 

team can realize the automation of smart homes that satisfy human needs (Cook & Das, 
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Smart Environments: Technology, Protocols, and Applications, 2014). The apartment of 

CASAS project has one bathroom, one living room, three bedrooms and one kitchen. The 

sensors are evenly distributed throughout the apartment. The sensor can be divided into 

several categories:1) motion sensor.2) item sensor for selected items in the Specific area 

(living room, kitchen).4) experimenter switch (manual trigger such as light switch, fan) 

and so on. Each different sensor can collect different information (Power consumption, 

times, status, etc.) 

Kyoto (Singla, Cook, & Schmitter-Edgecombe, 2010) (Tested on 2009-2012) 

and Aruba (Cook, 2010) (Tested on 2010-2012) are most referenced of the CASAS 

datasets. Kyoto include variety of daily activities (such as filling medication dispenser, 

setting out ingredients for dinner, reading a magazine, simulating the payment of an 

electric bill, gathering food for a picnic, retrieving dishes from a kitchen cabinet and 

packing supplies in the picnic basket and etc.) from two resident. Kyoto dataset collected 

from environment sensors (motion, item, cabinet, water, burner, phone and temperature 

sensors), this one contains information include the date and time of each event, the sensor 

ID and value (binary or numeric) of each sensor activated during the event. Aruba 

contains activities collected from an older volunteer woman, and her children and 

grandchildren which includes movement from bed to bathroom, eating, getting home, 

housework, leaving home, preparing food, relaxing, sleeping, washing dishes and 

working. The Aruba datasets contains information which are the date and time of each 

event, the sensor ID and value (binary or numeric) of each sensor activated during the 

event. In the works of activity recognition, the most referenced CASAS datasets are 

ARAS, Cairo, Aruba, Kyoto, DOMUS and Tokyo. The most work about these datasets 

is used different classification models were used to compare the one or more datasets 

(De-La-Hoz-Franco, Ariza-Colpas, Quero, & Espinilla, 2018). 

Fahad team (Fahad, Tahir, & Rajarajan, 2015) propose an activity recognition 

which can improved the performance of daily activities performed in a smart home, the 

datasets they selected are Kyoto1, Kyoto7, Kasteren7 and Kasteren10. The accuracy of 
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Evidence Theoretic K-Nearest Neighbors (ET-KNN) achieve 97%. Fang team (Fang, 

Srinivasan, & Cook, 2012) propose three probabilistic models (Naive Bayes, Forward 

procedure of a Hidden Markov Model and Viterbi algorithm based on HMM) recognize 

human activities in smart home environment. The selected smart apartment dataset is 

CASAS dataset. 

Twomey team (Twomey, Diethe, Craddock, & Flach, 2017)propose two methods 

that is attempt automatically learn about the sensor network topology, and shown how 

adjacency matrices between sensors can be constructed. They selected CASAS twor.2009 

dataset, because which is multi-class and multi-resident problem with a high proportion 

of the data annotated. 

2.6 Summary 

This chapter mainly review the past literature. It introduces several of the most 

popular deep learning models available today, analyses the framework of several deep 

learning models, and discusses the applications of related fields. Our experience of model 

architectures, evaluation methods and datasets guide our subsequent experimental design 

and project research. 
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Chapter 3 
Methodology 

 
This chapter introduces the specific methodology of our 
project. We first introduce the necessity and process of the 
research design, dataset selection and data preprocessing. 
Next, we introduce the six baseline deep-learning models. 
Three of these baseline models are selected for extension 
and improvement. Finally, we describe the evaluation and 
statistical test for analysing the model performance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

37 
 

3.1 Introduction 

Through studying the published literature and related works, we gain a general 

understanding of HAR based on deep learning. This chapter introduces the research 

design, dataset selection, data preprocessing, classification models, evaluation methods 

and statistical test. 

3.2 Research Design 

The main aim of this thesis is to evaluate the performance of deep learning 

models in HAR. Project design is a necessary prerequisite of project development. Figure 

8 shows the project flow of the present study. Our specific research structure consists of 

three main steps which are datasets processing, deep learning models implemented and 

deep learning models evaluation. 

 
Figure 8. Stepwise evaluation of deep learning models 
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The first step selects the datasets (Cairo, Kyoto7, Kyoto8, Kyoto11 and Milan) 

of human activities and determines the data pre-processing. The second step trains the six 

baseline deep-learning models (CNN, LSTM, GRU, DNN, Autoencoder and sparse 

coding) to classify the five CASAS datasets, and presumes which baseline deep learning 

models will deliver excellent HAR performance. These deep learning models are selected 

for improvement, obtains the three improved baseline deep learning models (BI-LSTM, 

BI-GRU and LSTM+CNN). Trains the three improved baseline deep learning models to 

classify these datasets. The third step divides the deep learning models into three groups 

for evaluation: baseline deep-learning models, improved baseline deep-learning models, 

and all deep learning models. The training results are analysed by their accuracy, 

precision, recall, F-measure, AUC, and statistical analysis (Friedman). 

3.3 Datasets  

The CASAS datasets (Cook, n.d.) were collected by Washington State 

University's smart apartment research project. The CASAS Smart Home Project collects 

the daily life information of residents from different types of sensors (e.g., motion 

sensors, temperature sensors, kitchen-selected item sensors, and electricity sensors) 

installed in smart apartments. All CASAS datasets contain the date and time of the 

sensor's data collection, the type of sensor, and the status or value of the sensor. Among 

the many CASAS datasets, we selected the Cairo, Kyoto7, Kyoto8, Kyoto11 and Milan 

datasets. Table 1 shows the contents of a portion of the Kyoto8 raw dataset. 

Table 1. Part of the Kyoto8 Datasets 

DATE AND TIME SENSOR STATE/VALUE 
   
2009-05-29 
00:11:27.054181 

T004 26 

2009-05-29 
00:11:28.014679 

T002 23 

 2009-05-29 
00:11:28.737119 

T003 25 

2009-05-29 
00:11:29.249039 

T001 22.5 

2009-05-29 
00:11:29.083165 

T005 27.5 
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2009-05-29 
00:15:36.024549 

P001 547 

2009-05-29 
00:16:10.343369 

M047 ON 

2009-05-29 
00:16:11.938839 

M047 OFF 

2009-05-29 
00:16:12.766999 

M047 ON 

2009-05-29 
00:16:13.027624 

M048 ON  

   
The Cairo dataset was collected from the sensors of two adult volunteers 

(residents R1 and R2). The “residents” of the house were men, women, dogs and children 

entering the house at least once. The sensor types are motion sensors (indicated by "M") 

and temperature sensors (indicated by "T"). Eleven different activities (wake, night 

wandering, work in office, laundry, take medicine, sleep, leave home, breakfast, dinner, 

lunch, bed to toilet) were recorded. Figure 9 depicts the specific deployment of sensors 

in this room. 

 

Figure 9. Sensor deployment in Cairo dataset (WSU CASAS Datasets, 2009) 

The Kyoto 7, 8, and 11 datasets recorded the daily lives of residents R1 and R2 

in their apartment. These three datasets detect signals from the same sensors (motion 

sensor M, sensor I for the kitchen, door sensor D, temperature sensor T, burner sensor 

AD1-A, hot water sensor AD1-B, cold water sensor AD1-C and electricity sensors P001), 
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but recognise different types of activity (see Table 2).  Figure 10 is sensor deployment in 

Kyoto dataset. 

 
Figure 10 Sensor deployment in Kyoto dataset (WSU CASAS Datasets, 2009) 

The Milan dataset is also collected from sensors in smart apartments. Refer to 

Figure 11. The Milan dataset records the data of two humans (an adult woman and her 

child) and a dog. The woman’s child visited the woman several times. The data are 

recoded from motion sensors (M), door sensors (D), and temperature sensors (T). 

 
Figure 11 Sensor deployment in Milan dataset. (WSU CASAS Datasets, 2009) 

Table 2 summarises the residents, sensors types, activities and activity types of 

the five CASAS datasets. 
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Table 2. Contents of the CASAS Dataset  

3.4 Data pre-processing 

As high-quality data sets can effectively improve the training results of deep 

learning, data preprocessing is a necessary prerequisite to data training and analysis. Data 

preprocessing renders a more suitable dataset format for deep learning models. The 

process consists of three steps: deleting errors and missing data, reclassifying the dataset, 

Casas 
Dataset 

Cairo Kyoyo7 Kyoto8 Kyoto11 Milan 

Residents R1, R2, 
pet 

R1, R2 R1, R2 R1, R2 R1, R2, pet 

Sensors 
Types 

M, T M, D, T, I, 
AD1A/B/C, P001 

M, D, T, 
I, 

AD1A/B/
C, P001 

M, D, T, I, 
AD1A/B/C, P001 

M, D, T 

Activities 13 13 12 25 15 

Types of 
Activity 

R1 wake, 
R2 wake, 
Night 
Wanderin
g, 
R1 work 
in office, 
Laundry, 
R2 take 
medicine, 
R1 sleep, 
R2 sleep, 
Leave 
home, 
Breakfast, 
Dinner, 
Lunch, 
Bed to 
toilet 

R1-Bed to Toilet, 
R2-Bed to Toilet, 
Meal Preparation, 
R1-Personal 
Hygiene, 
R2-Personal 
Hygiene, 
Watch TV, 
R1-Sleep, 
R2-Sleep, 
Clean,  
R1-Work, 
R2-Work, 
Study, 
Wash-Bathtub      

 

R1_show
er, 
R2_show
er, 
Bed toilet 
transition, 
Cooking, 
R1-sleep, 
R2-sleep, 
Cleaning, 
R1-work, 
R2-work, 
Grooming
, 
R1-
wakeup, 
R2-
wakeup, 

R1-Wandering in 
room, 
R2-Wandering in 
room, 
R1-Work, 
R2-Work, 
R1-Housekeeping, 
R1-Sleeping Not in 
Bed, 
R2-Sleeping Not in 
Bed, 
R1-Sleep, 
R2-Sleep, 
R1-Watch TV, 
R2-Watch TV, 
R1-Personal 
Hygiene, 
R2-Personal 
Hygiene, 
R1-Leave Home, 
R2-Leave Home, 
R1-Enter Home, 
R2-Enter Home, 
R1-Eating, 
R2-Eating, 
R1-Meal Preparation, 
R2-Meal Preparation, 
R1-Bed Toilet 
Transition, 
R2-Bed Toilet 
Transition, 
R1-Bathing, 
R2-Bathing 

Master Bedroom 
Activity, 
Meditate, 
Chores, 
Desk Activity, 
Morning Meds, 
Eve Meds, 
Sleep, 
Read, 
Watch TV, 
Leave Home, 
Dining Rm Activity, 
Kitchen Activity, 
Bed to Toilet, 
Master Bathroom, 
Guest Bathroom 
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and transforming the dataset format. The analysis and evaluations of each step are 

described below: 

 Step 1 browses the entire data set and removes the erroneous and missing 

data to ensure the correctness and integrity of the dataset. 

 Step 2 reclassifies the entire dataset into 11 activity categories. As shown 

in Table 3, each CASAS dataset (Cairo, Kyoto7, Kyoto8, Kyoto11 and 

Milan) records various types of activities, which inconveniences the 

overall comparison and analysis of results. For an effective analysis, we 

re-classified the original datasets into 11 activities category of daily life 

(work, take medicine, sleep, leave home, eat, bed-to-toilet, bathing, enter 

home, personal hygiene and other). These activities are summarised in 

Table 3. The “other” category accumulates the specific activities that 

cannot be included in any other category. Activities unrelated to the 

datasets are labelled as "-". 

 Step 3 converts the dataset format from the original data format “. excel” 

(which is a large dataset) to the smaller-volume “. npy” format.  

Table 3. Details of the Cairo, Kyoto and Milan datasets 

 Cairo Kyoyo7 Kyoto8 Kyoto11 Milan 
Other R1-wake, 

R2-wake, 
Night 
wandering 

Study,  
Wash Bathtub 
 

Bed toilet 
transition, 
 Grooming,  
R1-wakeup,  
R2-wakeup 
 

R1-Wandering in 
room, 
R2-Wandering in room 

Master Bedroom 
Activity, 
Meditate 

Work R1-work 
in office, 
Laundry 

Clean,  
R1-Work, 
R2-Work 

Cleaning, 
R1-work, 
R2-work 

R1-Work, 
R2-Work, 
R1-Housekeeping 

Chores,  
Desk Activity 

Take 
medicine 

R2-take 
medicine, - - - 

Morning Meds, 
Eve Meds 

Sleep R1-sleep 
R2-sleep 

R1-Sleep, R2-
Sleep 

R1-sleep,  
R2-sleep 

R1-Sleeping Not in 
Bed,  
R2-Sleeping Not in 
Bed,  
R1-Sleep, 
R2-Sleep 

Sleep 

Leave 
Home 

Leave 
home - - 

R1-Leave Home,  
R2-Leave Home 

Leave Home 
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Eat Breakfast, 
Dinner, 
Lunch 

- - 
R1-Eating,  
R2-Eating 

Dining Rm Activity 

Bed to 
toilet 

Bed to 
toilet 

R1-Bed to 
Toilet,  
R2-Bed to Toilet 

- 
R1-Bed Toilet 
Transition,  
R2-Bed Toilet 
Transition 

Bed to Toilet 

Bathing - - 
R1-shower,  
R2-shower 

R1-Bathing, 
R2-Bathing 

Master Bathroom, 
Guest Bathroom 

Enter 
home 

- - - 
R1-Enter Home,  
R2-Enter Home - 

Personal 
hygiene 

- 
R1-Personal 
Hygiene, 
R2-Personal 
Hygiene 

- 
R1-Personal Hygiene, 
R2-Personal Hygiene - 

Relax - 
Watch TV - 

R1-Watch TV, 
R2-Watch TV 

Read, Watch TV 

Cook - 
Meal Preparation Cooking R1-Meal Preparation, 

R2-Meal Preparation 
Kitchen Activity 

 

3.5 Deep learning Models 

This section introduces the structure, parameters and formulas of the six-baseline 

deep- learning models selected in this thesis: CNN, LSTM, GRU, Autoencoder, Sparse 

Coding and DNN. We also introduce the structure, parameters and formulas of the three 

improved baseline deep-learning methods, namely, LSTM+CNN, bi-directional LSTM 

(BI-LSTM) and bi-directional GRU (BI-GRU). The selected baseline deep-learning 

models are the most popular deep learning models in HAR research. Three of these 

baseline deep-learning models were then selected for extension and improvement.  

3.5.1 Baseline Deep-learning Models 

After reviewing the previous literature, we selected six baseline deep-learning 

models for evaluation. These baseline deep-learning models are separately described in 

the following sections. 
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3.5.1.1 Convolutional Neural Network (CNN) 

The CNN extracts hierarchies from sensor data, while maintaining invariant 

features during the conversion process. Figure 12 shows the architecture and parameters 

of our five-layer CNN model (Zeng, et al., 2014)`.  

 
Figure 12 Architecture of the CNN 

 
 Input layer 

The first layer of the CNN structure is the input layer, which accepts the data. 

The format of the input data must be consistent with the requirements of the neural 

network. 

 Convolution layer 

The convolutional layer is the feature-extraction layer of the CNN. In this layer, 

the input data are passed through a feature filter that performs local filters and inner 

product operations on the input data. The output is converted to its corresponding value 

in the convolution output matrix for the next operation. We assume an N-unit input layer 

and a filter size of m. The output value is sized (N – m + 1) units. The convolution layer 

is formulated as 

             𝑥 ,
= 𝑓(∑ 𝑤 𝑥

,
+ 𝑏 )  .                                            （3.1） 

where 𝑥
,

is the output of the 𝑗th feature map in the 𝑖th unit of convolutional layer l, 𝑤  

defines the convolutional kernel matrix, and 𝑏  denotes the bias in the convolutional 

feature maps. The weight is obtained by summing the bias and the result of the 
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convolution operation on the output feature map of the previous layer. The nonlinear 

mapping is then performed by an activation function f. 

 Maximum pooling layer 

The maximum pooling layer performs sparse processing on the feature map. 

When a convolutional layer detects a particular feature, it needs only to retain its 

approximate position relative to other features (no exact location is required). The 

maximum pooling layer reduces the sensitivity of the output and the amount of data 

calculation. 𝑥
,

 Indicates the output after the pooling process. r is the size of the pooled 

kernel. The activation function of the largest pooling layer in the CNN is given by 

           𝑥 ,
= 𝑚𝑎𝑥 , (𝑥 , ) .                                                  （3.2） 

 Fully connected layer 

The fully connected layer re-fits the extracted features to prevent loss of feature 

information. 

 Output layer 

The target result of the output layer for preparing the output 

As shown in Figure 12, the CNN model consists of two identical convolutional 

layers. In each convolutional layer, the filter size is 64 and the kernel size is 3. The size 

of the maximum pooling layer is 2. The classifier is SoftMax. 

3.5.1.2 Long Short-Term Memory (LSTM) 

The LSTM model performs well in complex activities and related datasets with 

dynamic time (Nweke, Teh, Al-garadi, & Alo, 2018). LSTM is one of our selected 

baseline deep-learning models. The most important structural units of LSTM are the gates 

that store the long-term states. The main components of the LSTM model are the input 

gate, output gate and forget gate. Each gate allows the selective transmission of 

information through a neural layer with sigmoidal functions and point-by-point 
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multiplication operations. Figure 13 illustrates the structure of an LSTM. The functions 

and conversion equations of each gate are described below. 

 
Figure 13 Structure of an LSTM, based on Liciotti (2019) 

 
 Input Gate 

 The input gate decides how much of the current network input is saved to the 

cell state. Let 𝑥  be the current input, and ℎ  be the previous state. When the current 

input and the previous state enter the input gate at the same time, the calculation result is 

multiplied by the weight matrix and passes through a sigmoid or a tanh layer to determine 

which information needs to be updated. We define the input gate by 𝑖 , the internal 

memory cell state by Ct, and the weight matrix by W. 𝜎 is the sigmoid function, and tanh 

is the hyperbolic tangent activation function. The related equations (Li, Wang, Liu, & 

Chen, 2018) are given as 

𝑖 = 𝜎(𝑊 ∗ [ℎ , 𝑥 ] + 𝑏 ) ,     （3.3） 

𝐶 = 𝑡𝑎𝑛 ℎ(𝑊 ∗ [ℎ , 𝑥 ] + 𝑏 ).     （3.4） 

 Forget Gate 
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The forget gate decides which cells of the upper layer should be forgotten in the 

current layer, and saves the remaining cells to the current cell state. The forget gate gets 

the current input 𝑥  and the previous state  ℎ , then outputs a probability in the range 

0–1.  An output of 0 or 1 means complete abandonment and complete reservation, 

respectively. 𝑓  is the output gate. The related equation (Li, Wang, Liu, & Chen, 2018) is 

as follows: 

𝑓 = 𝜎(𝑊 ∗ [ℎ , 𝑥 ] + 𝑏 )  ,    （3.5） 

𝐶 = 𝑓 ∗ 𝐶 + 𝑖 ∗ 𝐶 .     （3.6） 

 Output Gate 

The output gate is the output of the cell with the new state. The sigmoid layer 

determines the parts of the cell to be exported, and the cell state is input to the tanh layer 

which outputs a probability from -1 to 1. Finally, the probability values are multiplied 

by the output of the sigmoid layer. 𝑜  is the output gate. The related equations are given 

by (Li, Wang, Liu, & Chen, 2018): 

𝑜 = 𝜎(𝑊 ∗ [ℎ , 𝑥 ] + 𝑏 )  ,    （3.7） 

ℎ = 𝑜 ∗ 𝑡𝑎𝑛 ℎ(𝐶 ).       （3.8） 

3.5.1.3 Gated Recurrent Unit (GRU) 

The GRU is one of the deep learning models that we selected for data training. 

GRU is an improved version of standard RNN (itself a simplified version of LSTM), and 

appears to perform comparably to LSTM but with a simpler structure and lower 

computational complexity. The internal modellings of GRU and LSTM are similar, being 

composed of different gates, but unlike LSTM, GRU has no separate storage unit. GRU 

has two gates, a reset gate and an update gate. 

The reset gate defines the combination of the previous memory and the new 

input, which is applied directly to the previous state. The reset gate mainly determines 

whether the current state needs to be combined with previous information. The update 
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gate combines the functions of the input and forget gates to determine the information to 

be discarded and the information to add into memory.  

 

 
Figure 14 . Structure of a GRU cell (Deng, Wang, Jia, Tong, & Li, 2019) 

Figure 14 is a schematic of a GRU cell. At time interval t, the reset gate 𝑟   adjusts 

the incorporation of the new input with the previous memory. The reset gate corresponds 

with the weight matrices 𝑊 ⃗ and 𝑊 ⃗ , and with the bias 𝑏⃗. Once the reset gate is 

closed, all information that is irrelevant to the current hidden state is discarded. 

Meanwhile, the update gate  𝑧⃗  determines how much of the information from the 

previous state flows to the current hidden state. The update gate corresponds with weight 

matrices 𝑊 ⃗  and 𝑊 ⃗, and with the bias  𝑧⃗ . The candidate cell state  𝑔⃗ is dictated by 

the previous cell state  ℎ ⃗ and the input vectors  𝑥  . It corresponds with the weight 

matrices  𝑊 ⃗ and 𝑊 ⃗, and with the bias  𝑏⃗ . The  final cell state  ℎ⃗ is determined in 

two parts: one part calculated by the elementwise product of (1 − 𝑧⃗) and  ℎ ⃗, the other 

part calculated by the elementwise product of  𝑧⃗ and  𝑔⃗ . During time step t, the cell 

states of a GRU are calculated as (Deng, Wang, Jia, Tong, & Li, 2019): 
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𝑟 = 𝜎 𝑊 ⃗𝑥 + 𝑊 ⃗ℎ + 𝑏⃗ ,                                  （3.9） 

𝑍⃗ = 𝜎 𝑊 ⃗𝑥 + 𝑊 ⃗ℎ + 𝑏⃗ ,                                 （3.10） 

𝑔⃗ = 𝑡𝑎𝑛ℎ 𝑊 ⃗𝑥 + 𝑊 ⃗(𝑟 ⊙ ℎ ) + 𝑏⃗ ,                                                  （3.11） 

ℎ⃗ = (1 − 𝑧⃗) ⊙ ℎ + 𝑧⃗ ⊙ 𝑔⃗.                                 （3.12） 

In the above expressions, 𝑊 ⃗ , 𝑊 ⃗, and 𝑊 ⃗ are the weight matrices for connection to 

the input vector 𝑥 . 𝑊 ⃗, 𝑊 ⃗ and  𝑊 ⃗ are the weight matrices for connection to the state 

vector  ℎ ⃗ of the previous cell, and 𝑏⃗,  𝑏⃗ and  𝑏⃗ are the bias vectors. All of the above 

weight matrices and biases are shared by all time steps and are learned during the model 

training.  The σ and tanh are nonlinear activation functions. Specifically, σ is a logistic 

sigmoid (𝜎(𝑥) = (1/1 + 𝑒 )) and tanh is the hyperbolic tangent function (tanh(𝑥) =

(𝑒 − + 𝑒 )). The elementwise product of two vectors is denoted by ⊙. 

3.5.1.4 Autoencoder 

Another of our selected deep learning methods is Autoencoder, an unsupervised 

learning algorithm often used in dimensionality reduction or feature learning. 

Autoencoder is a multi-layered neural network containing an input layer, a hidden layer, 

and an output layer. Like other deep learning methods, the input and output layers accept 

the input data and dispense the output data, respectively. The input and output layers of 

an autoencoder have the same number of dimensions, but the dimensionality of the 

middle layer (hidden layer) is set low to achieve the desired dimensional reduction. The 

hidden layer has two partial encoders and decoders which pass the input dataset to the 

output layer. Figure 15 is the structure of an Autoencoder network. The mapping 

functions of the encoder and decoder are described below. 
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Figure 15 Structure of an Autoencoder network based on (Mohammadi, Al-Fuqaha, Sorour, & Guizani, 2018)  

 

 Encoder 

The hidden layer compresses the input data vectors 𝑥 ∈ 𝑅  into 𝑚(𝑚 < 𝑑) 

neurons. The activation equation for the neurons is given by (Chen, Yeo, Lee, & Lau, 

2018) 

ℎ = 𝑓 (𝑥) = 𝑠(∑ 𝑊 𝑥 + 𝑏 ) .   （3.13） 

In Eq. (3.13), 𝑥  is the input data, and 𝜃   represents the parameter {𝑊 , 

𝑏 )}. 𝑊 is the weight matrix of the encoder, and 𝑏 is an m-dimensional deviation 

vector. This equation transforms the input data into low-dimensionality data through 

the encoder. 

 

 Decoder 

The following equation decodes the data through the hidden layer into the 

original input space. The decoder parameters are Whidden and bhidden. The decoding 

equation is given by (Chen, Yeo, Lee, & Lau, 2018) 

𝑥 = 𝑔 (ℎ) = 𝑠 ∑ 𝑊 𝑥 + 𝑏 .   （3.14） 
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3.5.1.5 Sparse Coding 

Sparse coding is an unsupervised learning method that seeks a set of base vectors 

by learning the dataset. The base vectors provide an efficient representation of the sample 

data. One assessment criterion is the extent to which the code describes the input. This 

can be measured by the squared error between the input and its reconstruction by the 

network (Li, Shi, Li, & Shi, 2009): 

𝐸𝑟𝑟𝑜𝑟(𝐴, 𝑆) = ∑ [𝐼(𝑥, 𝑦) − ∑ 𝑎 𝛷 (𝑥, 𝑦)], .  （3.15） 

The cost of seeking sparse codes (called the sparseness) is an additional standard 

of sparse coding. The sparse cost is calculated as 

𝑆𝑝𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠(𝐴, 𝑆) = ∑ 𝑆( ),    （3.16） 

where S(x) is a nonlinear function. The Sparseness tries to minimise the number of non-

zero coefficients. The found coefficients are statistically independent of each other. Any 

higher-order statistical structure in the input data can be captured by the following 

sparsity cost function: 

𝐸(𝑎, 𝛷) = ∑ [𝐼(𝑥, 𝑦) − ∑ 𝑎 𝛷 (𝑥, 𝑦)], + 𝜆 ∑ 𝑆( ). （3.17） 

3.5.1.6 Deep Neural Network (DNN) 

A DNN contains an input layer, two or more hidden layers, and an output layer. 

A DNN has more parameters than traditional three-layer ANN because it contains more 

hidden layers and more units per hidden layer. Owing to the large number of parameters, 

a DNN can automatically learn the suitable classification functions from raw sensor data. 

The parameters of a DNN include weights and biases. The data vector of a frame is fed 

into the input units of the DNN. The activation probability 𝑦  of hidden unit j is calculated 

using the inputs from the previous layer. The equation is as follows (Zhang, Wu, & Luo, 

2015): 
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𝑦 =  , 𝑚 = 𝑏 + ∑ 𝑦 𝑤 ,     

 （3.18） 
 

where 𝑏  is the bias of unit 𝑗, 𝑖 indexes the unit of the previous layer, and 𝑦  is the input 

of unit 𝑖 in the previous layer. 𝑤  is the weight between unit 𝑖  and unit 𝑗. In multi-

category classification, the SoftMax function in output unit 𝑗 converts the input of the 

previous layer to a class probability 𝑝 , calculated as follows (Zhang, Wu, & Luo, 2015): 

 

𝑝 =
∑

 , 𝑚 = 𝑏 + ∑ 𝑦 𝑤  ,                  

（3.19） 

 
             where 𝑘 indexes the classes.  

3.5.2 Improved baseline deep-learning models  

After investigating previous related papers, we noted that CNN, LSTM and GRU 

performed well in HAR applications. In a CNN architecture, Zebin, Scully, and Ozanyan 

(2017) identified multi-channel lines of time series (human behaviour recognition) 

acquired from a set of wearable sensors. The classification accuracy reached 97.01%. Yu, 

Chen, Yan, and Liu (2018) classified human activities in an LSTM network, achieving a 

classification accuracy of 94.34%.  Compagnon, Lefebvre, Duffner, and Garcia (2019) 

classified the common postures of five people by GRU. The identification accuracy of 

their method was 91.1%. 

We assume that CNN, LSTM and GRU will deliver excellent performance in 

HAR of residents in the CASAS dataset. These three methods are expected to outperform 

DNN, Autoencoder and sparse coding. We hope to optimise CNN, LSTM and GRU by 

changing the architecture of the model. We therefore improve the CNN and LSTM by 

developing hybrid models, and obtain CNN+LSTM. We also improve the LSTM and 

GRU by developing bidirectional, obtain BI-LSTM and BI-GRU. This section introduces 

the three improved deep model architecture of CNN, LSTM and GRU. 
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3.5.2.1 Bi-directional Long Short-Term Memory (BI-LSTM) 

LSTM can solve gradient disappearances and explosion problems to some extent. 

Time-dependent learning on long-term axes can be simplified when the LSTM reaches a 

sufficient depth. However, the CASAS datasets record the continuous activity tracks of 

the residents, and LSTM may be unable to accurately predict the current state based on 

the previous information. To resolve this problem, we apply the BI-LSTM model, which 

predicts the current state not only from the previous information, but also from the 

subsequent information (Yu & Qin, 2018). 

The BI-LSTM can obtain information from different directions, meaning that 

past and future information can be obtained horizontally. Moreover, the information of 

the lower layer can be obtained from the vertical direction. Figure 16 shows the 

architecture of our bidirectional LSTM.  

 

Figure 16 Bidirectional LSTM architecture based on Liciotti (2019).   

Let 𝑖 denote the input data. The first layer of BI-LSTM is the input layer, which 

receives the preprocessed data. The entered data are then input to the hidden layer, which 

contains a forward sequence ℎ⃗ and a backward sequence ℎ⃖. The forward and backward 
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dotted arrows show the left-to-right and right-to-left directions of reading the input data 

i, respectively. The final predicted output is the weighted sum of the two predicted scores 

(forward and backward tracks). From left to right, the time sequence is 𝑡-1, 𝑡, 𝑡 + 1.The 

forward sequence, backward sequence, and input layer are respectively calculated as (Yu 

& Qin, 2018): 

ℎ⃗ = 𝑔(𝑈 ⃗𝑥 + 𝑊 ⃗ℎ⃗ + 𝑏 ⃗),    （3.20） 

ℎ⃖ = 𝑔 𝑈⃖ 𝑥 + 𝑊⃖ ℎ⃖ + 𝑏⃖ ,    （3.21） 

𝑦 = 𝑔(𝑉⃗ℎ⃗ + 𝑉⃖ ℎ⃖ + 𝑏 ).      （3.22） 

3.5.2.2 Bi-directional Gated Recurrent Unit (BI-GRU) 

In theory, GRU accurately classifies long-term datasets. However, the 

performance of GRU may degrade during actual experiments, because the GRU can only 

access past information, not the future information. To solve this limitation problem of 

the GRU model, Deng, Wang, Jia, Tong, and Li (2018) proposed Bi-GRU, which 

simultaneously learns the past and future information in the sequence to understand the 

meaning of the sequence. 

 
 
 

 
Figure 17 Structure of BI-GRU (Deng, Wang, Jia, Tong, & Li, 2018) 
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Figure 17 shows the framework of our adopted BI-GRU model. When data are 

input to the BI-GRU, the output depends on the states of the previous frame t-1 and the 

next frame t+1. The BI-GRU then extracts the available information from the 

bidirectional data. As shown in Figure 17, when one GRU is flowing forward and 

calculating the forward hidden state (→, →, →, ..., ), the other GRU flows backwards 

and calculates the backward hidden layer state (←, ← , ← , ..., ). The final output of the 

BI-GRU is calculated from the hidden states in both directions. The complete hidden 

element of the BI-GRU, represented by ℎ , is the concatenated vector of the outputs in 

the forward and backward directions as follows: 

ℎ = ℎ ⃗ ⊕ ℎ⃖  .                                                                                        （3.23） 

3.5.2.3 Long Short-Term Memory + Convolutional Neural Network 

(LSTM+CNN) 

LSTM excels in time-related datasets, and CNN performs excellently in feature 

extraction. Wu, Zheng, & Zhao (2019) proposed an L-CNN model that combines an 

LSTM layer and a CNN layer. The model is combined into a new model through the 

complementarity of CNN and LSTM. Here, we combine CNN and LSTM into a new 

hybrid model based on the deep models in section 3.5.1. Figure 18 shows the structure of 

our proposed LSTM+CNN. The time information in the signal is extracted by the LSTM 

layer. The CNN model performs the feature extraction and behaviour classification on 

the LSTM output. 
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Figure 18 Structure of LSTM+CNN (Wu, Zheng, & Zhao, 2019) 

As shown in Figure 18, the LSTM-CNN model consists of eight layers. The data 

are received by the input layer of the LSTM, and are output after passing through the 

hidden layer of the LSTM. The data leaving the output layer of the LSTM are input to the 

first and second convolutional layers for convolution. Next, they are operated by the max-

pooling layer and transferred to the fully connected layer. Finally, the classification result 

is output through SoftMax. 
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3.6 Evaluation Method 

Many evaluation algorithms are available for deep learning algorithms. In this 

project, the performances of the nine models were evaluated by the accuracy, precision, 

recall, F-measure and AUC.  

The evaluation methods require four values: True positives (TP), true negatives 

(TN), false positives (FP) and false negatives (FN). When an activity is correctly 

identified, the number of classes reduces to two: TP and TN. When an activity is 

misclassified, it can be FP or FN. The meanings and calculation formulae of each 

evaluation method are outlined below. 

 Accuracy 

Accuracy provides the number of correctly classified instances. Accuracy equals 

the sum of the correct classification divided by the total number of classifications. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =       （3.24） 

 Precision 

Precision defines the number of correct positive predictions among the total 

number of positive predictions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =       （3.25） 

 Recall 

Recall defines the number of correct predictions among the forward data 

𝑅𝑒𝑐𝑎𝑙𝑙 =        （3.26） 

 F-measure 

The F-measure is the weighted harmonic average of precision and recall 

𝐹 − 𝑚𝑒𝑎𝑠𝑟𝑒 = 2 ∗
∗

    （3.27） 

 AUC 
 
The AUC defines the two-dimensional area under the ROC curve. This 

performance indicator is constant for unequal error costs and unbalanced class sample 
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sizes. The AUC of the basic classifier is 0.5. An AUC of 1.0 indicates an ideal classifier. 

The AUC is calculated as follows (Moin & Parviz, 2009): 

𝐴𝑈𝐶 =
∑ ∑ ( ( ) ( ))

| || |
 ,    （3.28） 

 
where |𝑋 |  and |𝑋 | represent the number of instances of each class in binary 

classification problem, and 𝐼(𝑢) is the indicator function. 

3.7 Statistical Test   

Data analysis comprehensively checks the results of the data. The useful data and 

information can then be integrated into the evaluation results. Statistical inference is an 

important tool for evaluating sample datasets collected through research and experiments. 

Referring to Demšar (2016), I compared the performances of the selected classifiers by a 

statistical test. Specifically, I benchmarked multiple classifiers on multiple datasets by 

the Friedman test.  

The Friedman test analyses the deep learning models based on their ranks 

on each dataset. Given 𝑛 datasets and 𝑚 deep learning models, each deep learning 

model is individually ranked on each dataset based on its evaluation metric 

(accuracy, precision, recall, F-score and AUC). For instance, if the performance 

accuracy pa of learning model 𝑀  on dataset 𝐷  satisfies 𝑝𝑎 > 𝑝𝑎   ∀𝑗 , 𝑗, 𝑗 ∈

{1,2, … , 𝑘}, 𝑗 ≠ 𝑗′ , then model 𝑀  is Rank 1.Under the null hypothesis, all 

classifiers perform equivalently, The Friedman test is calculated as follows: 

𝑋 =
∗

( )
(∑ 𝑅 − (

( )
)) ,   （3.29）                     

where 𝑋  has 𝑚 − 1 degrees of freedom. 
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3.8 Summary 
 

This section introduced the source and content of the datasets and our pre-

processing of the data. The section on the models introduced the basic framework, 

mathematical equations and parameters of each deep learning algorithm. Next, we 

introduced the evaluation methods and statistical test. The next chapter presents and 

summarises our experimental results. 
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Chapter 4 
Results and Discussion 

 
This chapter focusses on the evaluation results of each 
deep learning model for HAR. These results discuss in 
three parts.  First, we discuss the six baseline models. 
Second, we discuss the three improved baseline models. 
Finally, we comprehensively compare the nine deep 
learning models. 
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4.1 Introduction 
 

In the previous chapter, we introduced the research design, dataset selection and 

data preprocessing, and provided the structure of each deep learning model. After training 

these deep learning models, we obtained the evaluation results, namely, the accuracy, 

precision, recall, F-score, and AUC. The evaluation results were statistically analysed by 

the Friedman test. This chapter presents and analyses the evaluation results. 

4.2 Experimental Results 
 

To ensure a fair evaluation, the nine deep learning models (six baseline models 

and three improved baseline models) were tested under the same experimental settings. 

First, the experimental dataset was preprocessed by the method introduced in Section 3.4. 

The stability and correctness of the evaluation was checked by a 5-fold cross-validation 

program. The evaluation result was the average of all folds. In this thesis, the 

experimental parameters were decided as follows: seeds = 7, units = 64, epochs = 200. 

Twenty percent of the training data were reserved as the verification data in the 

experimental dataset. 

4.2.1 Baseline models 

In this section, we show and discuss the evaluation results and statistical results 

of the six baseline deep learning models on the five selected CASAS datasets. First, we 

introduce the evaluation metrics of each baseline deep learning model on five CASAS 

datasets. Second, we discuss the Friedman test results of the six baseline deep learning 

models. 

4.2.1.1 Evaluation  

This section, we show the evaluation results of the six baseline deep learning 

models on five CASAS datasets (Cairo, Kyoto7, Kyoto8, Kyoto11 and Milan). 
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Figure 19. Evaluation results of CNN 

Figure 19 shows the evaluation results of the CNN model on the five selected 

CASAS datasets (Cairo, Kyoto7, Kyoto8, Kyoto11 and Milan). The highest value of 

each evaluation measure is enclosed within a red rectangle. Based on the results, the 

following conclusions were drawn: 

 CNN achieved the highest accuracy, precision, recall, F1-score and AUC on the 

Cairo dataset. The classification accuracy of CNN reached 0.957, the precision 

of CNN is 0.425, the recall of CNN is 0.370, the F1-score is 0.385 and the AUC 

of CNN achieve 0.636. 

 CNN was less successful at classifying the Kyoto8 and Kyoto11 datasets. The 

recognition accuracy was lowest (0.726) on Kyoto11. 

 The precision (0.280), recall (0.275), F1-score (0.275) and AUC (0.550) of CNN 

were lowest on the Kyoto8 dataset. 

 CNN is the most suitable classifier of Cairo, and is unsuitable for classifying 

Kyoto8. 

 

 

Accuracy Precision Recall F1-score AUC

Cairo 0.957 0.425 0.370 0.385 0.636

Kyoto7 0.880 0.310 0.315 0.305 0.603

Kyoto8 0.859 0.280 0.275 0.275 0.550

Kyoto11 0.726 0.310 0.275 0.280 0.604

Milan 0.867 0.340 0.280 0.300 0.604

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CNN

Cairo Kyoto7 Kyoto8 Kyoto11 MilanDatasets
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Figure 20. Evaluation result of LSTM 

Figure 20 shows the performances of the LSTM classifiers on the five CASAS 

datasets. The highest value of each evaluation measure is enclosed within a red rectangle. 

It is observed that 

 LSTM achieved the highest accuracy (0.929) on the Kyoto8 and Milan datasets. 

Although the precision (0.825) was also maximised on Milan, the recall , F1-

score and AUC were lower on Milan than on Kyoto8.  The recall (0.795), F1-

score (0.800) and AUC (0.877) of LSTM were highest on the Kyoto8 dataset. 

 The accuracy, precision, recall, F1-score and AUC of LSTM were lowest on the 

Kyoto7 dataset, the classification accuracy of LSTM is 0.781. 

 The classification performance of LSTM was highest on the Kyoto8 dataset, the 

lowest performance of LSTM was classifying on Kyoto7. 

 

Accuracy Precision Recall F1-score AUC

Cairo 0.873 0.685 0.700 0.685 0.829

Kyoto7 0.781 0.620 0.610 0.605 0.772

Kyoto8 0.929 0.805 0.795 0.800 0.877

Kyoto11 0.868 0.780 0.745 0.755 0.864

Milan 0.929 0.825 0.760 0.785 0.873

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

LSTM

Cairo Kyoto7 Kyoto8 Kyoto11 MilanDatasets
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Figure 21. Evaluation results of GRU 

Figure 21 shows the evaluation results of the GRU classifier on the five CASAS 

datasets. The highest value of each measure is enclosed within a red rectangle. From this 

figure, we observe that: 

 GRU achieved the highest accuracy (0.961), precision (0.820), recall (0.770), 

F1-score (0.785) and AUC (0.880) on the Milan dataset. 

 The accuracy on the Kyoto8 dataset was equal to that of Milan, but the precision, 

recall, F1-score and AUC were lower on Kyoto8 than on Milan. 

 The classification performance of GRU was lowest on the Kyoto7 dataset. The 

accuracy, precision, recall, F1-score and AUC of GRU were lowest on the 

Kyoto7 dataset. 

 The accuracy of GRU on five CASAS datasets was higher than 0.880. GRU 

performed better on the Milan dataset than on the other datasets. 

 

 

 

 

 

Accuracy Precision Recall F1-score AUC

Cairo 0.917 0.725 0.715 0.710 0.834

Kyoto7 0.884 0.650 0.640 0.640 0.789

Kyoto8 0.961 0.790 0.750 0.765 0.854

Kyoto11 0.946 0.760 0.745 0.750 0.862

Milan 0.961 0.820 0.770 0.785 0.880

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

GRU

Cairo Kyoto7 Kyoto8 Kyoto11 MilanDatasets
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Figure 22. Evaluation results of Autoencoder 

Figure 22 shows the evaluation results of Autoencoder on the five CASAS 

datasets. The highest value of each evaluation measure is enclosed by a red rectangle. 

From this figure, we conclude that: 

 The recognition accuracy of Autoencoder was highest (0.906) on the Milan 

dataset. 

 The accuracy of Autoencoder on the other datasets was lower than 0.65. 

 The precision (0.370), recall (0.335), F1-score (0.340) and AUC (0.648) of 

Autoencoder were highest on Kyoto11. The accuracy, precision, recall, F1-score 

and AUC of GRU were lowest on the Kyoto7 dataset. 

 The statistics indicate that Autoencoder accurately classifies the Kyoto 11 

dataset, but performs comparatively poorly on Kyoto7. 

 

Accuracy Precision Recall F1-score AUC

Cairo 0.633 0.090 0.140 0.110 0.499

Kyoto7 0.307 0.040 0.140 0.070 0.498

Kyoto8 0.513 0.100 0.200 0.140 0.500

Kyoto11 0.602 0.370 0.335 0.340 0.648

Milan 0.906 0.340 0.300 0.310 0.614

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AutoEncoder

Cairo Kyoto7 Kyoto8 Kyoto11 MilanDatasets
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Figure 23. Evaluation results of Sparse Coding 

Figure 23 shows the Sparse Coding evaluations on the five CASAS datasets. The 

highest value of each evaluation measure is enclosed within a red rectangle. This figure 

shows that: 

 The recognition accuracy of Sparse Coding was highest (0.627) on the Cairo 

dataset, and lowest (0.298) on the Kyoto7 dataset. 

 The precision (0.320), recall (0.295), F1-score (0.300) and AUC (0.613) were 

highest on the Kyoto11 dataset. 

 On the Cairo, Kyoto7 and Kyoto8 datasets, the AUC was only 0.5. The accuracy, 

precision, recall and F1-score of sparse coding were lowest on Kyoto7. 

 Sparse Coding performed better on the Kyoto11 dataset than on the other 

datasets. 

 

 
 
 

Accuracy Precision Recall F1-score AUC

Cairo 0.627 0.160 0.145 0.115 0.500

Kyoto7 0.298 0.040 0.140 0.070 0.500

Kyoto8 0.507 0.100 0.200 0.140 0.500

Kyoto11 0.576 0.320 0.295 0.300 0.613

Milan 0.608 0.295 0.265 0.270 0.594

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sparse Coding

Cairo Kyoto7 Kyoto8 Kyoto11 MilanDatasets
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Figure 24. Evaluation result of DNN 

Figure 24 shows the DNN evaluation results on the five CASAS datasets. The 

highest value of each measure is enclosed within a red rectangle. We conclude that: 

 DNN achieved the highest recall (0.295) and F1-score (0.280) on the Cairo 

dataset, the highest precision (0.310) on the Kyoto11 dataset, and the highest 

accuracy (0.903), AUC (0.280)and F1-score (0.600) on the Milan dataset (note 

that the F1-scores were identical on the Milan and Cairo datasets). 

 The accuracy, precision, recall and F1-score of DNN were lowest on the Kyoto7 

dataset. 

 Overall, the classification performance of DNN was highest on the Milan dataset. 

DNN is unsuitable for classifying Kyoto7. 

 

Accuracy Precision Recall F1-score AUC

Cairo 0.846 0.280 0.295 0.280 0.589

Kyoto7 0.315 0.070 0.170 0.085 0.516

Kyoto8 0.513 0.180 0.220 0.180 0.515

Kyoto11 0.510 0.310 0.255 0.255 0.591

Milan 0.903 0.285 0.275 0.280 0.600

0.0
0.10.2
0.3
0.40.5
0.6
0.70.8
0.91.0

DNN

Cairo Kyoto7 Kyoto8 Kyoto11 MilanDatasets
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Table 4. Evaluation results of the six baseline deep-learning models on each dataset 

 
 

Table 4 summarises the evaluation results of the six models on the five CASAS 

datasets. The highest evaluation results on each dataset are highlighted in red font. We 

conclude that: 

 On the Cairo dataset, the highest recognition accuracy (0.957) was achieved by 

CNN, but the highest precisions (0.725), recall (0.715), F1-score (0.710) and 

AUC (0.834) were achieved by GRU. The top three performers on the Cairo 

Accuracy Precision Recall F1-score AUC

CNN 0.957 0.425 0.370 0.385 0.636
LSTM 0.873 0.685 0.700 0.685 0.829
GRU 0.917 0.725 0.715 0.710 0.834
Autoencoder 0.633 0.090 0.140 0.110 0.499
Sparsecoding 0.627 0.160 0.145 0.115 0.500
DNN 0.846 0.280 0.295 0.280 0.589
CNN 0.880 0.310 0.315 0.305 0.603
LSTM 0.781 0.620 0.610 0.605 0.772
GRU 0.884 0.650 0.640 0.640 0.789
Autoencoder 0.307 0.040 0.140 0.070 0.498
Sparsecoding 0.298 0.040 0.140 0.070 0.500
DNN 0.315 0.070 0.170 0.085 0.516
CNN 0.859 0.280 0.275 0.275 0.550
LSTM 0.929 0.805 0.795 0.800 0.877
GRU 0.961 0.790 0.750 0.765 0.854
Autoencoder 0.513 0.100 0.200 0.140 0.500
Sparsecoding 0.507 0.100 0.200 0.140 0.500
DNN 0.513 0.180 0.220 0.180 0.515
CNN 0.726 0.310 0.275 0.280 0.604
LSTM 0.868 0.780 0.745 0.755 0.864
GRU 0.946 0.760 0.745 0.750 0.862
Autoencoder 0.602 0.370 0.335 0.340 0.648
Sparsecoding 0.576 0.320 0.295 0.300 0.613
DNN 0.510 0.310 0.255 0.255 0.591
CNN 0.867 0.340 0.280 0.300 0.604
LSTM 0.929 0.825 0.760 0.785 0.873
GRU 0.961 0.820 0.770 0.785 0.880
Autoencoder 0.906 0.340 0.300 0.310 0.614
Sparsecoding 0.608 0.295 0.265 0.270 0.594
DNN 0.903 0.285 0.275 0.280 0.600

kyoto11

milan

Metric 
Dataset Model 

kyoto7

Cairo

kyoto8
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datasets were GRU, LSTM and CNN. Autoencoder has worst performance on 

the Cairo dataset. 

 On the Kyoto7 dataset, the highest values of all five metrics were achieved by 

GRU which, so the GRU is obviously the best classifier of this dataset. The top 

three of the six models on Kyoto7 were GRU, LSTM and CNN. Autoencoder 

and Sparse coding are unsuitable for classifying Kyoto7. 

 On the Kyoto 8 dataset, the highest recognition accuracy (0.961) was achieved 

by GRU, but the precision (0.805), recall (0.795), F1-score (0.800) and AUC 

(0.877) were maximised by the LSTM classifier.  LSTM also achieved the second 

highest accuracy (0.929) on Kyoto8. We conclude that LSTM is the best 

classifier of the Kyoto8 dataset. The top performers on the Kyoto8 datasets were 

GRU, LSTM and CNN. Sparse coding has worst performance on the Kyoto8 

dataset. 

 On the Kyoto11 dataset, the top performers were the LSTM and GRU classifiers. 

GRU achieved the highest accuracy (0.946) and the highest recall (0.745) among 

the classifiers, while LSTM maximised the precision (0.780), recall (0.745), F1-

score (0.755) and AUC (0.864). The top three performers on the Kyoto11 dataset 

were GRU, LSTM and CNN. DNN has worst performance on the Kyoto11 

dataset. 

 On the Milan dataset, the highest accuracy (0.961), recall (0.770), F1-score 

(0.785) and AUC (0.880) were achieved by GRU. Meanwhile, the LSTM 

maximised the precision (0.825) and F1-score (0.785). In fact, the LSTM and 

GRU evaluation results were quite similar on this dataset. The CNN and DNN 

evaluation results were also comparatively similar. The top four performers on 

the Milan dataset were GRU, LSTM, CNN and DNN. Sparse coding has worst 

performance on the Milan dataset. 

 Based on the above analyses of the CASAS datasets, the top three models among 

the six baseline deep learning models were identified as GRU, LSTM and CNN, 
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consistent with our assumptions in Section 3.5.2. The remaining three models are 

unsuitable for classifying CASAS datasets. 

4.2.1.2 Statistical analysis and Comparison 

Table 5 displays the Friedman test results of the six baseline deep-learning 

models classifier on the five CASAS datasets.  The table of Friedman test consists of two 

parts. The mean ranks (upper part of Table 5) indicate the actual differences between the 

models. The test statistics (lower part of Table 5) indicate whether the mean ranks of the 

different evaluation methods are significantly different. The highest mean rank of each 

evaluation measure is highlighted in red font. From Table 5, we drew the following 

conclusions: 

Table 5. Friedman test results of the six baseline deep-learning models 

 

 The accuracy statistics yielded χ2 = 20 and p (Asymp.Sig) = 0.00125 (< 0.05), 

implying that the mean-rank accuracies of the six baseline deep learning models 

were statistically different. The highest mean rank of the accuracy (5.8) was 

obtained by the GRU and the lowest mean rank of the accuracy (1.2) was Sparse 

Coding. 

 The precision statistics yielded χ2 =19.239 and p (Asymp.Sig) = 0.00173 (< 0.05), 

implying that the mean-rank precisions of the six baseline deep learning models 

Accuracy Precision Recall F1-score AUC

CNN 4.2 3.4 3.4 3.4 3.4

LSTM 4.6 5.6 5.3 5.5 5.4

GRU 5.8 5.4 5.7 5.5 5.6

AutoEncoder 2.7 2.3 2.4 2.4 2.3

SparseCoding 1.2 2 1.8 1.8 1.9

DNN 2.5 2.3 2.4 2.4 2.4

N 5 5 5 5 5

Chi-Square 20 19.23977 19.47674 19.36047 19.02299

df 5 5 5 5 5

Asymp. Sig. 0.00125 0.001734 0.001566 0.001646 0.001903

Mean Rank

Friedman Test

Test Statisticsa

Models
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were statistically different. The highest mean rank of the precision (5.6) was 

obtained by LSTM. The lowest mean rank of the precision (2) was Sparse 

Coding. 

 The recall statistics yielded χ2 =19.477 and p (Asymp.Sig) = 0.00157 (< 0.05), 

confirming significant differences among the mean-rank recalls of the six 

baseline deep learning models. The highest mean rank of the recall (5.7) was 

obtained by GRU. The lowest mean rank of the recall (1.8) was Sparse Coding. 

 The F1-score statistics yielded χ2 =19.360 and p (Asymp.Sig) = 0.00165 (< 0.05), 

implying significant differences among the mean-rank F-scores of the six deep 

learning models. The highest mean rank of the F1-score (5.5) was jointly 

achieved by LSTM and GRU. The lowest mean rank of the F1-score (1.8) was 

Sparse Coding. 

 The AUC statistics yielded χ2 =19.023 and p (Asymp.Sig) = 0.00190 (< 0.05), 

implying that the mean rank AUCs of the six models were significantly different. 

The highest mean tank of the AUC (5.6) was obtained by GRU. The lowest mean 

rank of the AUC (1.9) was Sparse Coding. 

 The GRU model achieved the highest mean ranks for accuracy, recall, F1-score 

and AUC, whereas the LSTM model achieved the highest mean ranks for 

precision and F1-score. Overall, GRU outperformed LSTM in terms of mean 

rank. The Sparse Coding model obtained the worst mean-rank values among the 

baseline deep learning models. 

4.2.2 Improved baseline models 

In this section, we show and discuss the evaluation result and statistical result of 

the three improved baseline deep learning models on the five selected CASAS datasets. 

We first introduce the evaluation metric of each improved baseline deep learning model 

on five CASAS datasets. Next, we discuss the Friedman test result of the three improved 

baseline deep learning models. 
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4.2.2.1 Evaluation  

This section, we show the evaluation results of each improved baseline deep 

learning model (BI-LSTM, BI-GRU, LSTM-CNN) on the five CASAS datasets (Cairo, 

Kyoto7, Kyoto8, Kyoto11 and Milan). 

 
Figure 25. Evaluation results of BI-LSTM 

Figure 25 presents the evaluation results of the BI-LSTM classifications on the 

five CASAS datasets (Cairo, Kyoto7, Kyoto8, Kyoto11 and Milan). The highest 

evaluations are enclosed in red rectangles. From Figure 25, we conclude the following: 

 The accuracy, precision, recall, F1-score and AUC of BI-LSTM were highest on 

the Milan dataset. The accuracy and AUC of BI-LSTM on this dataset reached 

0.946 and 0.875, respectively. 

 The accuracy of BI-LSTM was lowest (0.830) on the Kyoto7 dataset. 

 The accuracy, precision, recall, F1-score and AUC of BI-LSTM were lowest on 

the Kyoto7 dataset.  BI-LSTM was a good classifier of the Milan dataset. The 

lowest performance of BI-LSTM was classifying on Kyoto7. 

 

 

Accuracy Precision Recall F1-score AUC

Cairo 0.912 0.740 0.700 0.710 0.826

Kyoto7 0.830 0.670 0.665 0.665 0.804

Kyoto8 0.941 0.800 0.745 0.765 0.852

Kyoto11 0.884 0.795 0.745 0.760 0.864

Milan 0.946 0.845 0.760 0.790 0.875

0.0
0.2
0.4
0.6
0.8
1.0

BI-LSTM

Cairo Kyoto7 Kyoto8 Kyoto11 MilanDatasets
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Figure 26. Evaluation results of BI-GRU 

Figure 26 shows the evaluation results of BI-GRU on the five CASAS datasets. 

The highest evaluation results are enclosed in red rectangles. It can be concluded that 

 BI-GRU achieved its highest accuracy, precision, recall, F1-score, and AUC on 

the Milan dataset. The accuracy of BI-GRU reached 0.979 on this dataset,the 

precision of BI-GRU is 0.810, the recall of BI-GRU is 0.800, the F1-score is 

0.800 and the AUC of BI-GRU achieve 0.895. 

 The accuracy of BI-GRU exceeded 0.9 on all five datasets. The lowest accuracy 

was 0.911 on the Kyoto7 dataset. 

 The accuracy, precision, recall, F1-score and AUC of BI-GRU were lowest on 

the Kyoto7 dataset. The BI-GRU classification was most successful on the Milan 

dataset. The lowest performance of BI-GRU was classifying on Kyoto7. 

Accuracy Precision Recall F1-score AUC

Cairo 0.959 0.725 0.740 0.730 0.844

Kyoto7 0.911 0.605 0.610 0.605 0.774

Kyoto8 0.975 0.790 0.745 0.760 0.850

Kyoto11 0.967 0.765 0.750 0.760 0.866

Milan 0.979 0.810 0.800 0.800 0.895

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

BI-GRU

Cairo Kyoto7 Kyoto8 Kyoto11 MilanDatasets
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Figure 27. Evaluation results of LSTM-CNN 

Figure 27 shows the evaluation results of LSTM-CNN on the five CASAS 

datasets. The highest evaluation results are enclosed in red rectangles. From this figure, 

we draw the following conclusions: 

 The accuracy of LSTM-CNN was highest (0.954) on the Kyoto8 dataset. 

However, the precision (0.740), recall (0.720), F-score (0.725) and AUC (0.850) 

were highest on the Milan dataset. 

 The lowest accuracy, precision, F1-score and AUC were on the Kyoto7 dataset, 

and the lowest recall was on the Cairo dataset. 

  The classification performance of LSTM-CNN was highest on the Milan dataset, 

the lowest performance of LSTM-CNN was classifying on Kyoto7. 

 

 

Accuracy Precision Recall F1-score AUC

Cairo 0.911 0.645 0.620 0.625 0.781

Kyoto7 0.824 0.630 0.625 0.625 0.784

Kyoto8 0.954 0.680 0.665 0.670 0.799

Kyoto11 0.862 0.700 0.670 0.675 0.821

Milan 0.922 0.740 0.720 0.725 0.850

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

LSTM-CNN

Cairo Kyoto7 Kyoto8 Kyoto11 MilanDatasets
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Table 6. Evaluation results of the three improved baseline deep-learning models on each dataset 

 

Table 6 presents the evaluation results of the three improved models on the five 

CASAS datasets (Cairo, Kyoto7, Kyoto8, Kyoto11 and Milan).  The highest evaluation 

values of each dataset are highlighted in red font. The results of the individual datasets 

are described below. 

 On the Cairo dataset, the BI-GRU achieved the highest accuracy (0.959), recall 

(0.740), F1-score (0.730) and AUC (0.844), and BI-LSTM achieved the highest 

precision which is 0.740. Although LSTM-CNN was the worst performer on this 

dataset, its recognition accuracy still exceeded 0.9. Among the three improved 

models, BI-GRU has best performance classifier on the Cairo dataset. 

 On the Kyoto7 dataset, BI-GRU achieved the highest accuracy (0.911), but BI-

LSTM exhibited the highest precision (0.670), recall (0.665), F1-score (0.665) 

and AUC (0.804). On this dataset, Bi-LSTM and LSTM+CNN were the most and 

least effective classifiers, respectively.  

 On the Kyoto8 dataset, BI-LSTM and BI-GRU outperformed LSTM+CNN. BI-

GRU achieved the highest accuracy (0.975), and BI-LSTM yielded the highest 

precision (0.800), F-score (0.765) and AUC (0.852). The highest recall score 

Accuracy Precision Recall F1-score AUC
Bi-LSTM 0.912 0.740 0.700 0.710 0.826
Bi-GRU 0.959 0.725 0.740 0.730 0.844
LSTM+CNN 0.911 0.645 0.620 0.625 0.781
Bi-LSTM 0.830 0.670 0.665 0.665 0.804
Bi-GRU 0.911 0.605 0.610 0.605 0.774
LSTM+CNN 0.824 0.630 0.625 0.625 0.784
Bi-LSTM 0.941 0.800 0.745 0.765 0.852
Bi-GRU 0.975 0.790 0.745 0.760 0.850
LSTM+CNN 0.954 0.680 0.665 0.670 0.799
Bi-LSTM 0.884 0.795 0.745 0.760 0.864
Bi-GRU 0.967 0.765 0.750 0.760 0.866
LSTM+CNN 0.862 0.700 0.670 0.675 0.821
Bi-LSTM 0.946 0.845 0.760 0.790 0.875
Bi-GRU 0.979 0.810 0.800 0.800 0.895
LSTM+CNN 0.922 0.740 0.720 0.725 0.850

Kyoto11

Milan

Metric 
Dataset Model 

Cairo

Kyoto7

Kyoto8
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(0.745) was shared by BI-LSTM and BI-GRU. In general, BI-LSTM and 

LSTM+CNN were the most and least suitable classifiers of Kyoto8, respectively.  

 On the Kyoto11 dataset, BI-LSTM achieved the highest precision (0.795), 

however BI-GRU yielded the highest accuracy (0.967), recall (0.750) and AUC 

(0.866). BI-LSTM and BI-GRU conjointly achieved the highest F1-score which 

is 0.760. Overall, Bi-GRU was the most suitable classifiers of the Kyoto11 

dataset and LSTM+CNN was least suitable classifiers of the Kyoto11 dataset.  

 On the Milan dataset, Bi-LSTM achieved the highest precision (0.845), however 

BI-GRU yielded the highest accuracy (0.979), recall (0.800), F-score (0.800) and 

AUC (0.895). Overall, BI-GRU and LSTM+CNN were the best and worst 

classifiers of the Milan dataset, respectively. 

 Comparing the performances of the improved models on the various datasets, the 

BI-GRU achieved the highest evaluation score on the Milan dataset, meaning that 

BI-GRU is the best classifier of Milan. BI-GRU and BI-LSTM provided good 

performance on all five CASAS datasets, whereas LSTM + CNN performed 

comparatively poorly. 

4.2.2.2 Statistical analysis and Comparison 

Table 7 presents the Friedman test results of the three improved baseline deep 

learning models. Table 7 is divided into two parts: the different mean ranks of the related 

deep-learning models (upper part), and the test statistics indicating whether the 

differences were statistically significant (lower part). The highest mean rank in each 

evaluation is highlighted in red font. From Table 7, we observe that: 
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Table 7. Friedman test results of the three improved baseline deep-learning models 

 
 

 The accuracy statistics yielded χ2 = 8.4 and p (Asymp.Sig) = 0.0149 (< 0.05), 

implying that the mean-rank accuracies of the three improved models were 

significantly different. The highest mean rank of the accuracy (3) was obtained 

by the BI-GRU and the lowest mean rank of the accuracy (1.2) was LSTM+CNN. 

 The precision statistics yielded χ2 = 8.4 and p (Asymp.sig) = 0.0149 (< 0.05), 

indicating that the mean-rank precisions of the three improved models were 

significantly different. The highest mean rank of the precision (3) was obtained 

by the BI-LSTM and the lowest mean rank of the precision (1.2) was 

LSTM+CNN. 

 The recall statistics yielded χ2 = 5.158 and p (Asymp.sig) = 0.0759 (> 0.05), 

indicating no significant differences among the mean-rank recalls of the three 

improved models. The highest mean rank of the recall (2.5) was obtained by the 

BI-GRU and the lowest mean rank of the recall (1.2) was LSTM+CNN. 

 The F-score statistics yielded χ2 = 5.158 and p (Asymp.sig) = 0.0759 (> 0.05), 

indicating no significant differences among the mean-rank F-scores of the three 

improved models. The highest mean rank of the F-score (2.5) was obtained by 

the BI-GRU and the lowest mean rank of the recall (1.2) was BI-LSTM. 

 The AUC statistics yielded χ2 = 4.8 and p (Asymp.Sig) = 0.0907 (> 0.05), 

indicating no significant differences among the mean-rank AUCs of the three 

Accuarcy Precision Recall F1-score AUC
BI-LSTM 1.8 3 2.3 1.2 2.4
BI-GRU 3 1.8 2.5 2.5 2.4
LSTM-GRU 1.2 1.2 1.2 2.3 1.2

N 5 5 5 5 5

Chi-Square 8.4 8.4 5.15789474 5.157894737 4.8

df
2 2 2 2 2

Asymp. Sig. 0.014996 0.014996 0.075854 0.075854 0.090718

Test Statisticsa

Friedman Test

Models
Mean Rank
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improved models. The highest mean rank of the AUC (2.4) were obtained by the 

BI-LSTM and BI-GRU and the lowest mean rank of the AUC (1.2) was LSTM-

CNN. 

 Comparing the Friedman test result of three improved baseline deep learning 

models, the BI-LSTM model achieved the highest mean ranks of precision and 

AUC, but BI-GRU obtained the highest mean ranks of accuracy, recall, F-score 

and AUC. Overall, BI-GRU outperformed BI-LSMT in terms of mean rank. 

 LSTM-CNN obtained the lowest mean ranks among the three improved models. 

4.2.3 Comprehensive comparison 

In this section, we show and discuss the evaluation result and statistical result of 

the nine baseline deep learning models on the five selected CASAS datasets. First, we 

show training times of each baseline deep learning model classifying five CASAS 

datasets. Second, we discuss the statistical analysis and comparison of the evaluation 

result of the nine baseline deep learning models. 

4.2.3.1 Training time 

Table 8 compares the training times of the nine deep learning methods on the five 

CASAS datasets. The training time is the total time of training the deep learning models 

on all five datasets. All experiments were run on an Intel Core i7-4710 CPU 2.50 GHz 

with 16 GB of RAM, and were assessed by 5-fold cross-validation. Therefore, the data in 

Table 8 are the summed training times of two experiments which are improved models 

(upper part) and baseline models (lower part). We observe that: 
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Table 8. Training times of the deep learning models 

 

 Compare the training time of Baseline models, the LSTM required the longest 

training time (25 hours). The BI-LSTM required the longest training time (150 

hours) in nine deep learning models, whereas Autoencoder and DNN required 

only a very short training time (five minutes). 

 The improved baseline models required a longer training time than the baseline 

models, therefore, we conclude that the training time increased with increasing 

complexity of the model.   

4.2.3.2 Statistical analysis and Comparison of the evaluation results 

This section, we first show summary of improved result (Table 9) for three 

baseline deep learning models and three improved baseline deep learning models. Then 

we show the summary of improved result (Table 10), evaluated by the Friedman test. 

Next, we compare the classification evaluation results (Table 11) of the nine deep 

learning models on the five CASAS datasets. Finally, shows the Friedman test results 

(Table 12) of the nine deep learning models. 

 

 

 

 

 

 

Models Types Deep Learning models Times
BI-LSTM 150 hours
BI-GRU 126 hours
LSTM+CNN 29 hours
LSTM 25 hours
GRU 23 hours
CNN 52 mins
Sparse Coding 15 mins
Autoencoder 5 mins
DNN 5 mins

Improved baseline Models

Baseline Models
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Table 9.  Summary of the improved results 

 

As shown in Table 9, we compared the evaluation results of three baseline models 

(CNN, LSTM and GRU) and three improved baseline models (LSTM+CNN, BI-LSTM 

and BI- GRU). The best measures on each dataset are highlighted in red font. We first 

compared the metrics of the baseline models and their improved versions on each dataset. 

Second, we compared the overall metrics of each model, and highlighted the model with 

the better overall evaluation result. The findings are summarised below. 

 On the Cairo dataset, the performances of LSTM+CNN, BI-LSTM and BI-GRU 

were generally improved over their base models, but the accuracy of CNN 

decreased from 0.957 to 0.911 in LSTM+CNN. However, the performances of 

Accuracy Precision Recall F1-score AUC

Base CNN 0.957 0.425 0.370 0.385 0.636

Improved LSTM+CNN 0.911 0.645 0.620 0.625 0.781

Base LSTM 0.873 0.685 0.700 0.685 0.829

Improved Bi-LSTM 0.912 0.740 0.700 0.710 0.826

Base GRU 0.917 0.725 0.715 0.710 0.834

Improved Bi-GRU 0.959 0.725 0.740 0.730 0.844

Base CNN 0.880 0.310 0.315 0.305 0.603

Improved LSTM+CNN 0.824 0.630 0.625 0.625 0.784

Base LSTM 0.781 0.620 0.610 0.605 0.772

Improved Bi-LSTM 0.830 0.670 0.665 0.665 0.804

Base GRU 0.884 0.650 0.640 0.640 0.789

Improved Bi-GRU 0.911 0.605 0.610 0.605 0.774

Base CNN 0.859 0.280 0.275 0.275 0.550

Improved LSTM+CNN 0.954 0.680 0.665 0.670 0.799

Base LSTM 0.929 0.805 0.795 0.800 0.877

Improved Bi-LSTM 0.941 0.800 0.745 0.765 0.852

Base GRU 0.961 0.790 0.750 0.765 0.854

Improved Bi-GRU 0.975 0.790 0.745 0.760 0.850

Base CNN 0.726 0.310 0.275 0.280 0.604

Improved LSTM+CNN 0.862 0.700 0.670 0.675 0.821

Base LSTM 0.868 0.780 0.745 0.755 0.864

Improved Bi-LSTM 0.884 0.795 0.745 0.760 0.864

Base GRU 0.946 0.760 0.745 0.750 0.862

Improved Bi-GRU 0.967 0.765 0.750 0.760 0.866

Base CNN 0.867 0.340 0.280 0.300 0.604

Improved LSTM+CNN 0.922 0.740 0.720 0.725 0.850

Base LSTM 0.929 0.825 0.760 0.785 0.873

Improved Bi-LSTM 0.946 0.845 0.760 0.790 0.875

Base GRU 0.961 0.820 0.770 0.785 0.880

Improved Bi-GRU 0.979 0.810 0.800 0.800 0.895

Metric 
Dataset

Cairo

Kyoto7

Kyoto8

Model 

Kyoto11

Milan
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LSTM +CNN were dropped compare with LSTM, although the accuracy of the 

LSTM+CNN was improved from 0.873 to 0.911 in LSTM. 

 On the Kyoto7 dataset, the performances of CNN and LSTM rose in their 

respective improved models. However, the performance of the GRU model 

dropped in the improved model, although the accuracy increased from 0.884 to 

0.911. The precision, recall, F1-score and AUC all decreased in the improved 

GRU model. The performances of LSTM+CNN were improved compare with 

LSTM, all five metrics are increased.   

 On the Kyoto8 dataset, only the performance of CNN increased in the improved 

model. Although the accuracies of the LSTM and GRU increased in their 

respective improved versions, the precision, recall, F1-score and AUC of these 

base models dropped or remained unchanged after improvement. The 

performances of LSTM +CNN were dropped compare with LSTM, although the 

accuracy of the LSTM+CNN was improved from 0.929 to 0.954 in LSTM. 

 On the Kyoto11 dataset, the performances of all baseline models were increased 

in their improved models, although the recall and AUC of the LSTM model were 

not improved in BI-LSTM. The performances of LSTM +CNN were dropped 

compare with LSTM, all five metrics are decreased.   

 On the Milan dataset, the performances of all baseline models were increased in 

their improved versions, but the precision of GRU dropped from 0.820 to 0.810 

in BI-GRU, and the recall of LSTM was not improved in BI-LSTM. The 

performances of LSTM +CNN were dropped compare with LSTM, all five 

metrics are decreased. 

 Overall, the performances of the improved models (LSTM+ CNN, Bi-LSTM and 

Bi-GRU) on the Cairo, Kyoto11 and Milan datasets were significantly improved 

after improvement. However, the performances of BI-GRU and BI-LSTM on the 

Kyoto7 and Kyoto8 datasets were reduced from those of the GRU and LSTM 
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baseline models, respectively. In addition, the performances of LSTM +CNN 

were rose compare with LSTM on the Kyoto7.  

Table 10. Summary of the improved results, evaluated by the Friedman test 

   

As shown in Table 10, we compared the improved results evaluated by the 

Friedman test of three baseline models (CNN, LSTM and GRU) and three improved 

baseline models (LSTM+CNN, Bi-LSTM and Bi- GRU). The best measures on each 

dataset are highlighted in red font. The results are summarised below. 

 The performances of LSTM+CNN are generally improved compare with CNN. 

However, the performances of LSTM +CNN were dropped compare with LSTM, 

although the accuracy of the LSTM+CNN was improved in LSTM. 

 The performances of BI-LSTM are significantly improved compare with LSTM, 

the mean ranks of all five metrics are increased. 

 The performances of BI-GRU are generally improved over GRU, but the 

precision of GRU dropped from 7 to 6.4 in BI-GRU, and the recall of GRU was 

not improved in BI-GRU. 

 

 

 

 

 

 

Accuracy Precision Recall F1-score AUC
CNN 5 3.4 3.4 3.4 3.4
LSTM-CNN 5.4 5.4 5.4 5.4 5.4
LSTM 5 7.4 6.9 6.8 6.9
BI-LSTM 6.4 8.8 7.1 8.1 7.3
GRU 7.8 7 7.8 7.1 7.6
BI-GRU 9 6.4 7.8 7.6 7.8

Friedman Test

Models
Mean Ranks
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Table 11. Evaluation results of the nine deep learning models 

.  

Accuracy Precision Recall F1-score AUC

CNN 0.957 0.425 0.370 0.385 0.636

LSTM 0.873 0.685 0.700 0.685 0.829

GRU 0.917 0.725 0.715 0.710 0.834

Autoencoder 0.633 0.090 0.140 0.110 0.499

Sparsecoding 0.627 0.160 0.145 0.115 0.500

DNN 0.846 0.280 0.295 0.280 0.589

Bi-LSTM 0.912 0.740 0.700 0.710 0.826

Bi-GRU 0.959 0.725 0.740 0.730 0.844

LSTM+CNN 0.911 0.645 0.620 0.625 0.781

CNN 0.880 0.310 0.315 0.305 0.603

LSTM 0.781 0.620 0.610 0.605 0.772

GRU 0.884 0.650 0.640 0.640 0.789

Autoencoder 0.307 0.040 0.140 0.070 0.498

Sparsecoding 0.298 0.040 0.140 0.070 0.500

DNN 0.315 0.070 0.170 0.085 0.516

Bi-LSTM 0.830 0.670 0.665 0.665 0.804

Bi-GRU 0.911 0.605 0.610 0.605 0.774

LSTM+CNN 0.824 0.630 0.625 0.625 0.784

CNN 0.859 0.280 0.275 0.275 0.550

LSTM 0.929 0.805 0.795 0.800 0.877

GRU 0.961 0.790 0.750 0.765 0.854

Autoencoder 0.513 0.100 0.200 0.140 0.500

Sparsecoding 0.507 0.100 0.200 0.140 0.500

DNN 0.513 0.180 0.220 0.180 0.515

Bi-LSTM 0.941 0.800 0.745 0.765 0.852

Bi-GRU 0.975 0.790 0.745 0.760 0.850

LSTM+CNN 0.954 0.680 0.665 0.670 0.799

CNN 0.726 0.310 0.275 0.280 0.604

LSTM 0.868 0.780 0.745 0.755 0.864

GRU 0.946 0.760 0.745 0.750 0.862

Autoencoder 0.602 0.370 0.335 0.340 0.648

Sparsecoding 0.576 0.320 0.295 0.300 0.613

DNN 0.510 0.310 0.255 0.255 0.591

Bi-LSTM 0.884 0.795 0.745 0.760 0.864

Bi-GRU 0.967 0.765 0.750 0.760 0.866

LSTM+CNN 0.862 0.700 0.670 0.675 0.821

CNN 0.867 0.340 0.280 0.300 0.604

LSTM 0.929 0.825 0.760 0.785 0.873

GRU 0.961 0.820 0.770 0.785 0.880

Autoencoder 0.906 0.340 0.300 0.310 0.614

Sparsecoding 0.608 0.295 0.265 0.270 0.594

DNN 0.903 0.285 0.275 0.280 0.600

Bi-LSTM 0.946 0.845 0.760 0.790 0.875

Bi-GRU 0.979 0.810 0.800 0.800 0.895

LSTM+CNN 0.922 0.740 0.720 0.725 0.850

Dataset Model 
Metric 

Cairo

Kyoto7

Kyoto8

Kyoto11

Milan
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Table 11 compares the classification evaluation results of the nine deep learning 

models on the five CASAS datasets (Cairo, Kyoto7, Kyoto8, Kyoto11 and Milan). The 

highest evaluation values of each dataset are highlighted in red font. The results are 

summarised below. 

 On the Cairo dataset, BI-LSTM achieved the highest precision (74.00%), but BI-

GRU obtained the highest Accuracy, Recall, F1-score and AUC (95.90%, 

74.00%, 73.00% and 84.41%, respectively). The BI-GRU model optimised the 

classification of the Cairo dataset. 

 On the Kyoto7 dataset, BI-LSTM obtained the highest precision, recall, F1-score 

and AUC (67.00%, 66.5%, 66.5% and 80.40%, respectively), but BI-GRU 

maximise the accuracy (91.10%). The optimal deep learning model on the 

Kyoto7 dataset is BI-LSTM.  

 On the Kyoto8 dataset, LSMT achieved the highest precision, recall, F1-score 

and AUC (80.50%, 79.5%, 80.00% and 87.70%, respectively). However, BI-

GRU yielded the highest accuracy (97.50%). LMST was the most suitable deep 

learning model for classifying the Kyoto8 dataset. 

 On the Kyoto 11 dataset, BI-GRU achieved the highest accuracy, recall, F1-score 

(first equal with BI-LSTM) and AUC (96.70%, 75.00%, 76.00% and 86.60%, 

respectively), although BI-LSMT maximised the precision (79.5%). BI-GRU 

was the most suitable deep learning model for classifying the Kyoto11 dataset. 

 On the Milan dataset, BI-LSMT achieved the highest precision (84.50%). 

However, BI-GRU delivered the highest accuracy, recall, F1-score and AUC 

(97.90%, 80.00%, 80.00% and 89.50%, respectively). BI-GRU optimised the 

deep learning on the Milan dataset. 
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Table 12. Friedman test results of the nine deep learning models 

 

Table 12 shows the Friedman test results of the nine deep learning models. The 

upper part of this table displays the mean ranks showing how the results differed among 

the models. The lower part displays the test statistics, which determine whether the 

differences were statistically significant. The highest rank in each evaluation method is 

highlighted in red font. The results are explained below. 

 The accuracy statistics yielded χ2 = 34.684 and p (Asymp.Sig) = 3.05E-05 (much 

less than 0.05). Therefore, we can confidently assume significant differences 

between the mean-rank accuracies of the deep learning models. The highest mean 

rank of the accuracy was 9.0, obtained by BI-GRU. 

 The precision statistics yielded χ2 = 35.327 and p (Asymp.Sig) = 2.33E-05 (much 

less than 0.05). Therefore, we can confidently assume significant differences 

between the mean-rank precisions of the deep learning models. The highest mean 

rank of the precision was 8.8, obtained by BI-LSTM. 

 The recall statistics yielded χ2 = 34.020 and p (Asymp.Sig) = 4.03E-05 (much 

less than 0.05). Therefore, the mean-rank recalls of the nine deep learning models 

Accuracy Precision Recall F1-score AUC
BI-LSTM 6.4 8.8 7.1 8.1 7.3
BI-GRU 9 6.4 7.8 7.6 7.8
LSTM-CNN 5.4 5.4 5.4 5.4 5.4
CNN 5 3.4 3.4 3.4 3.4
LSTM 5 7.4 6.9 6.8 6.9
GRU 7.8 7 7.8 7.1 7.6
Autoencoder 2.7 2.3 2.4 2.4 2.3
SparseCoding 1.2 2 1.8 1.8 1.9
DNN 2.5 2.3 2.4 2.4 2.4

N 5 5 5 5 5
Chi-Square 34.684 35.327 34.020 34.064 33.365

df 8 8 8 8 8
Asymp. Sig. 3.05E-05 2.33E-05 4.03E-05 3.96E-05 5.29E-05

Models
Mean Ranks

Test Statisticsa

Friedman Test
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are significantly different. The highest mean rank of the recall was 7.8, jointly 

achieved by BI-GRU and GRU. 

  The F-score statistics yielded χ2 = 34.064 and p (Asymp.Sig) = 3.96E-05 (much 

less than 0.05). Therefore, the mean-rank F-scores of the nine deep learning 

models are significantly different. The highest mean rank of the F-score was 8.1, 

achieved by BI-LSTM. 

 The AUC statistics yielded χ2 = 33.365 and p (Asymp.Sig) = 5.29E-05 (much less 

than 0.05), implying that the mean-rank AUCs are significantly different among 

the nine deep learning models. The highest mean rank of the AUC was 7.8, 

obtained by the BI-GRU model. 

 The GRU model maximised the recall, whereas Bi-LSTM maximised the 

precision and F1-score. However, the BI-GRU model obtained the highest mean-

rank values of the accuracy recall, and AUC. In a comprehensive mean-ranking, 

BI-GRU outperformed the other deep learning models. 

 Sparse Coding obtained the lowest mean rank values among the baseline deep 

learning models. 

4.3 Discussion 
 

In this thesis, we evaluated the classification performances of nine deep learning 

models on five HAR datasets. To verify the performances of these models, we cycled 

through all training sequences using 5-fold cross-validation and reported the mean 

evaluation results. As the evaluation metrics, we selected the accuracy, precision, recall, 

F-score and AUC. Considering all of these metrics, the improved baseline deep-learning 

model BI-GRU exhibited the highest classification performance on the five CASAS 

datasets, especially on the Milan dataset, where the accuracy reached 97.90%. The 

Friedman test results confirmed that BI-GRU and BI-LSTM were the best choices for 

classifying the CASAS datasets.  BI-GRU obtained the highest mean ranks of the 

accuracy, recall and AUC measures, whereas BI-LSTM achieved the highest mean-rank 
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precision and F1-score. Note that the performance gap between BI-GRU and BI-LSTM 

is not very obvious. 

The BI-GRU model extends the unidirectional GRU model by adding a second 

layer. For each training sequence, the forward and backward GRUs of the BI-GRU are 

connected to an output layer. The BI-GRU structure provides complete past and future 

contextual information at each point in the input sequence of the output layer. The model 

uses this past and future information to classify data, which may explain (at least partly) 

its high performance in identifying human activities. Meanwhile, BI-LSTM extends the 

unidirectional LSTM network pair, also by introducing a second layer. For each training 

sequence, the forward and backward LSTMs are connected to an output layer. Like BI-

GRU, the BI-LSTM model classifies data based on the past and future information. 

However, the LSTM model is more complicated than the GRU model and requires more 

parameters, so takes longer to iterate. Specifically, the training time of the BI-LSTM 

model (on five datasets) was 150 hours, versus 126 hours for BI-GRU. Give its high 

performance and higher efficiency than BI-LSTM, we conclude that BI-GRU is the best 

model for classifying the five CASAS datasets. 

In Chapter 3.5. we hypothesize that the bidirectional and hybrid architectures 

would improve the performances of these deep learning models (CNN, LSTM, GRU). 

Comparing the improved result, the performances of the improved models are on the 

Cairo, Kyoto11 and Milan datasets were significantly improved after improvement. The 

improved result by the Friedman test confirmed that the bidirectional architectures can 

significantly improve the performance of LSTM and GRU, the hybrid architectures can 

significantly improve the performance of CNN. However, the performance of the 

improved model (LSTM + CNN) on CASAS datasets reduced from LSTM baseline 

models. Overall, the bidirectional architecture can effectively improve the performance 

of deep learning models, the effect of hybrid architectures on improved models requires 

more experiments to verify. 
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4.4 Summary 
 

In this chapter, we reported the evaluation results and analysed them by statistical 

methods. We divided the models into three groups for comparison. The first group 

comprised the six baseline deep-learning models. In a comparison study of this group, 

the GRU and LSTM demonstrated excellent performance on the five CASAS datasets. 

The second group comprised the three improved baseline models. Among these models, 

the BI-GRU delivered excellent performance on the CASAS datasets. The third group 

consisted of all nine deep learning models (the six baseline models and the three improved 

models). A comprehensive performance comparison of the nine deep learning models 

confirmed that BI-GRU is most suitable for HAR, and the bidirectional architecture can 

effectively improve the performance of deep learning models. 
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Chapter 5 
Conclusions and Future Work 

 
 
 

In this thesis, we separately evaluated the performances of 
nine deep learning models. A Friedman test confirmed that 
the improved baseline model BI-GRU was the most 
suitable classifier of HAR. This chapter summarises the 
research contributions, mentions the limitations of the 
study, and suggests ideas for future improvements. 
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5.1 Summary of Contributions 

In recent years, deep learning technology has made significant progress. Many 

research teams have begun to focus on human activity recognition based on deep learning 

models， especially in smart environments, Human activity recognition based on sensor 

data and activity recognition technology .In this thesis, we propose an empirical 

evaluation of six baseline deep learning models (Convolution Neural Network, Long 

Short-Term Memory, Gated Recurrent Units, Deep Neural Network, Autoencoder, 

Sparse Coding) and three improved baseline deep learning models (Bi-directional LSTM, 

Bi-directional GRU, LSTM and CNN) for five resident activity recognition datasets with 

evaluation methods and statistical test. 

In Chapter 1, we introduced the research background, research motivation, 

research questions, contribution and thesis structure. In Chapter 2, we summarize a large 

number of research thesis on human activity recognition and deep learning models which 

provide an essential theoretical basis for research design. We also study the related work 

of evaluation method, statistical test and datasets. In this process, we found a large 

number of baseline deep learning models and improved methods. This provided us with 

evidence for the evaluation and performance improvement of deep learning models, and 

guided our subsequent research work. In Chapter 3, we introduced the study design, 

datasets selection, data preprocessing, and our hypotheses. Firstly, we hypothesize that 

the performance of CNN, LSTM and GRU is optimal for the five resident activity 

recognition datasets. We improve baseline models is based on CNN, LSTM and GRU. 

Secondly, we hypothesize that the bi-directional models and hybrid model can improved 

performance. Then the improved baseline deep learning models are Bi-directional LSTM, 

Bi-directional GRU, LSTM and CNN. In Chapter 4, we evaluation the performance of 

six baseline deep learning models and three improved baseline deep learning models for 

five resident activity datasets with evaluation methods and statistical test. We find the 

performance of Bi-directional GRU is optimal and bi-directional models can effectively 
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improve model’s performance. In Chapter 5, we found the limitations of the research, 

Meanwhile, we also propose future research work. 

The overall contribution of this thesis is to explore the classification performance 

of multiple baseline deep learning models in human activity recognition and methods to 

improve model performance. We used a total of six baseline deep learning models and 

three improved baseline deep learning models. By comparing the experimental results of 

different deep learning models, we found that BI-GRU has better performance in classify 

activity recognition datasets. The bi-directional models can effectively improve the 

performance of models. 

5.2 Limitations 

In this research, we compared and analysed the performances of several baseline 

deep- learning models and their improved versions. Although the deep learning models 

were successfully evaluated on HAR, we must be aware of four limitations: 1) The 

datasets record only the simple daily activities collected from embedded sensors; 2) More 

comprehensive data preprocessing is required; 3) The training of complex deep learning 

models is time-consuming; 4) The tested deep learning algorithms are unsophisticated. 

Each limitation is discussed below.   

 The HAR datasets record only simple daily activities. 

In applications, HAR must detect not only simple activities (eating, working, and 

sleeping), but also more complex activities.  Therefore, when evaluated on these 

simple datasets, the deep learning models cannot obtain comprehensive results. 

The models should be evaluated on more sophisticated datasets in the future. 

 The data preprocessing methods are conventional methods 

The data preprocessing in this thesis proceeded in three steps: 1) remove the 

errors and any lost data, 2) reclassify the activity categories, and 3) convert the 

file formats. These data preprocessing methods are conventional methods. The 

lack of any particular data preprocessing may have caused the poor performance 
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of some models in the evaluation results. Improving the performance of the deep 

learning models is another future task.  

 Complex deep learning models require a long training time 

The training times of the discriminative and hybrid deep-learning models 

exceeded 24 hours. Complex deep learning models are flexible, requiring a large 

number of architectures and node types to classify a large number of datasets. 

Therefore, they are time-consuming and demand high-end computer hardware. 

We trained the models on a CPU, which extended the training time. Reducing 

the training time in future will be important for improving the efficiency of the 

evaluation. 

 The deep learning algorithms were uncomplicated. 

The baseline deep-learning models and their improved versions were 

oversimplified for HAR. These uncomplicated deep learning models should be 

replaced with more complex deep learning models in future experiments. 

5.3 Future Work 

In this thesis, we evaluated the classification results of the baseline deep-learning 

models and their improved versions on residential living activities. This research provides 

a deep understanding of each model. However, the research questions need to be refined 

and upgraded in future work. 

The limitations of the research were discussed in the previous section. Based on 

these limitations, this section presents some research avenues requiring further 

exploration. Open to discussion are evaluations on complex high-level activity datasets, 

more sophisticated data pre-processing, reducing the training time, and employing more 

complex deep learning models. The research directions on these critical themes are 

suggested below: 

 More complex high-level activity datasets 
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In this study, behaviour recognition was learned on simple daily activity datasets 

acquired from embedded sensors. In future work, behaviours should be learned 

from complex high-level activity datasets collected from hybrid sensors and from 

mobile and wearable devices. The deep learning algorithms should also be 

evaluated on mobile and wearable devices, which collect complex datasets. To 

improve the evaluation results, we need to adjust the parameters of the deep 

learning model.  

 Data pre-processing 

Data preprocessing is only one of the important steps in HAR. In future work, we 

should evaluate the effect of data preprocessing on the deep learning algorithm. 

This analysis will reveal the impact of the data preprocessing method on the 

calculation time, classification accuracy and learning method performance. For 

this purpose, we should try different preprocessing methods such as 

normalisation, standardisation and different dimensionality reduction methods. 

 Reduce the training time 

The training time is one performance criterion of deep learning models. This 

thesis recorded the training time of each model. The complex deep learning 

models required an unrealistically long training time. In future work, the training 

efficiency should be improved by improving the hardware, optimising the model, 

and simplifying the datasets.  

 Evaluation of more complex deep learning models 

More complex deep learning models, such as Fast R-CNN and Faster R-CNN, 

should be evaluated for HAR in future work. 
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