
Synthetic Minority Over-sampling TEchnique 
(SMOTE) for Predicting Software Build Outcomes 

 

Russel Pears & Jacqui Finlay 
School of Computing & Mathematical Sciences 

Auckland University of Technology 
Auckland, New Zealand 
russel.pears@aut.ac.nz 

Andy M. Connor 
Colab 

Auckland University of Technology 
Auckland, New Zealand 

andrew.connor@aut.ac.nz
 
 

Abstract— In this research we use a data stream approach to 
mining data and construct Decision Tree models that predict 
software build outcomes in terms of software metrics that are 
derived from source code used in the software construction 
process. The rationale for using the data stream approach was to 
track the evolution of the prediction model over time as builds 
are incrementally constructed from previous versions either to 
remedy errors or to enhance functionality. As the volume of data 
available for mining from the software repository that we used 
was limited, we synthesized new data instances through the 
application of the SMOTE oversampling algorithm. The results 
indicate that a small number of the available metrics have 
significance for prediction software build outcomes. It is observed 
that classification accuracy steadily improves after 
approximately 900 instances of builds have been fed to the 
classifier. At the end of the data streaming process classification 
accuracies of 80% were achieved, though some bias arises due to 
the distribution of data across the two classes over time. 

Keywords- SMOTE, Data Stream Mining, Jazz, Software 
Metrics, Software Repositories. 

I.  INTRODUCTION 

The Mining Software Repositories (MSR) field analyses the 
rich data available in software repositories to uncover 
interesting and actionable information about software systems 
and projects. This enables researchers to reveal interesting 
patterns and information about the development of software 
systems. MSR has been a very active research area since 2004 
[4]. Until the emergence of MSR as a research endeavor, the 
data from software repositories were mostly used as historical 
records for supporting development activities. Analysis of 
MSR research has shown that the approach of extracting 
knowledge from a repository has the potential to be a valuable 
method for analyzing the software development process for 
many domains [5]. However there are a number of data related 
challenges, one of which is how to deal with repositories that 
contain insufficient or imbalanced data because the project is 
still immature or because the development environment is such 
that data is discarded over time. 

Our previous work [21] developed an approach for 
applying data stream mining techniques to overcome the 
challenge of discarded data utilizing the Jazz repository [1]. 
The Jazz repository stores data, including source code, related 
to each software build attempt and retains the build outcome, 

categorized as success or failure. As the volume of data 
associated with each build is large only a limited number of 
build instances are actually stored in the repository on a first-in, 
first-out basis. Traditional data mining methods are tailored to 
static data environments where the data is retained. The first 
major challenge in mining software repositories is dealing with 
dynamic data that arrives on a continuous basis. Our previous 
work [21] addressed this challenge by modeling the 
development process as a data stream to deal with software 
project data that is produced continuously and accumulated 
over a period of time before being discarded. The data stream 
mining approach was shown to be effective at maintaining 
knowledge related to the development project even after the 
data is discarded.  

This paper attempts to extend our work to address the 
second challenge, namely to deal with the limited volume of 
data and improve the accuracy of the prediction event. In order 
to boost the training power of the limited quantity of available 
data the SMOTE [2] oversampling algorithm was applied to 
synthesize new data instances from the available instances prior 
to inducing a decision tree model implemented via the 
Hoeffding [3] tree method. For the simulation to be realistic the 
naturally occurring distribution of successful and failed build 
instances occurring in the original population was maintained 
in the oversampling process.  

The dynamic nature of software and the resulting changes 
in software development strategies over time causes changes in 
the patterns that govern software project outcomes. This 
phenomenon has been recognized in many other domains and 
is referred to as concept drift. Changes in a data stream can 
evolve slowly or quickly and rates of change can be queried 
within stream-based tools. This paper describes an attempt to 
improve build outcome prediction accuracies for the Jazz 
project by synthetically creating data to boost the training 
power of the data stream mining approach while taking into 
account concept drift that occurs as part of the stream. 

II. BACKGROUND AND RELATED WORK 

This research draws from multiple areas to inform the 
direction of inquiry, in particular it is placed in the context of 
other research related to Mining Software Repositories 
research, specifically in the context of the Jazz repository. In 
addition, it uses experience gained applying data stream mining 



and synthetic data generation in other domains to improve the 
prediction models developed for the Jazz project. 

A. Mining the Jazz Repository 

The Jazz development environment has been recognized as 
offering new opportunities in terms of MSR research because it 
integrates the software source code archive and bug database 
by linking bug reports and source code changes with each other 
[6]. Whilst this provides much potential in gaining valuable 
insights into the development process of software projects, 
such potential is yet to be fully realized. To date, much of the 
work focused on the Jazz repository is related to predicting 
build success, either through social network analysis [7] or 
source code metrics [21, 22]. As is common with much MSR 
research, the goal of working with the Jazz repository is in line 
with a key direction identified in the field [23], which is the 
transformation of software repositories from static record-
keeping ones into active repositories in order to guide decision 
processes in modern software projects. 

B. Data Stream Mining 

The mining of data streams has arisen as a necessity due to 
advances in hardware/software that have enabled the capture of 
different measurements of data in a wide range of fields [24]. 
Data streams are typically generated continuously and have 
very high fluctuating data rates. The storage, querying and 
mining of such data sets are computationally challenging tasks 
[24]. Research problems and challenges that have been arisen 
in mining data streams can be solved using well-established 
statistical and computational approaches that can be 
categorized as either data-based or task-based ones. In data-
based solutions, only a subset of the whole dataset is examined 
or the data is transformed to an approximate smaller size 
representation. Task-based solutions involve applying 
techniques from computational theory to achieve time and 
space efficient solutions. Data-based solutions include 
Sampling, Load Shredding, Sketching and Aggregation. Task-
based solutions include Approximation Algorithms and Sliding 
Window approaches, all of which have received considerable 
attention by researchers [28]. The discarding of data from the 
Jazz environment and the relatively low data rate lends itself to 
a Sliding Window solution.  

In addition, various data mining approaches can be applied 
to mining data streams, including clustering, frequency 
counting and classification. The nature of the data, which 
includes a classifiable attribute in terms of build outcome, lends 
itself to a classification method. In this work, we have applied 
the Hoeffding tree incremental learner in conjunction with the 
Adaptive Sliding Window (ADWIN) concept drift detector. 
ADWIN is a parameter-free adaptive sliding window drift 
detector that compares all adjacent sub-windows in given data 
window in order to detect a concept drift point [29]. This 
method is recognized to produce high true positive and low 
false positives rates while, having low detection delay times in 
comparison to other drift detectors proposed in the data mining 
literature [29]. 

C. Synthetic Data Generation 

Many of the challenges associated with data stream mining 
are related to dealing with high volumes of data in relatively 

short timescales. It therefore seems counter-intuitive to deploy 
synthetic data generation techniques in conjunction with a data 
stream mining approach. However, the discarding of data from 
Jazz does not encourage the use of static classification 
approaches in practice, even though such approaches can be 
deployed on any given snapshot of the repository [22]. 
Deploying a data stream method in conjunction with synthetic 
data generation allows a consistent approach to be used in 
practice for new projects. Synthetic data can be generated from 
the limited quantity of actual data that is available in the early 
stages of development, and a gradual phasing out of such 
synthetic data can be carried out when larger volumes of real 
data become available. Such consistency is important if data 
mining approaches are to become useful to software 
practitioners. 

Synthetic data generation has been a research area for some 
time, with the literature containing many examples of random 
or pseudo-random data generation [25]. However, the goal of 
our research is such that synthetic data must be representative 
of the real data and therefore a more refined generation 
approach is required. Such approaches include DataBoost-IM 
[26], ADASYN [27] and SMOTE [2] to name but a few. Many 
of these approaches are based on similar sampling algorithms 
and in this work we have elected to apply the standard SMOTE 
algorithm as it has been effectively applied in many domains. 

III. THE JAZZ DATASET 

IBM Jazz is a fully integrated software development tool 
that automatically captures software development processes 
and artifacts. The Jazz repository contains real-time evidence 
that allows researchers to gain insights into team collaboration 
and development activities within software engineering 
projects [1, 7]. The Jazz repository artifacts include work items, 
build items, change sets, source code files, authors and 
comments. A work item is a description of a unit of work, 
which is categorized as a task, enhancement or defect. A build 
item is compiled software to form a working unit. A change set 
is a collection of code changes in a number of files. In Jazz a 
change set is created by one author only and relates to one 
work item. A single work item may contain many change sets. 
Source code files are included in change sets and over time can 
be related to multiple change sets.  

One of the challenges associated with working with the 
Jazz repository is that the data contains holes and misleading 
elements which cannot be removed or identified easily. This is 
because the Jazz environment has been used within the 
development of itself; therefore many features provided by Jazz 
were not implemented at early stages of the project. This 
sparseness of the data has driven the decision to focus on using 
software metrics as the predictor attributes. Whilst features of 
the Jazz environment may not have been present during early 
phases of development, there has always been source code and 
therefore a consistent set of data can be created. 

IV. THEORETICAL FOUNDATIONS 

Software metrics have been generated in order to deal with 
the sparseness of the data. Metric values can be derived from 
extracting development code from software repositories. Such 
metrics are commonly used within model-based project 



management methods. Software metrics are used to measure 
the complexity, quality and effort of a software development 
project [8-12]. In the Jazz repository each software build 
contains change sets that indicate the actual source code files 
that are modified during the implementation of the build. 
Source code metrics for each file are computed using the IBM 
Software Analyzer tool. The builds after state was utilized in 
order to ensure that the source code snapshot represented the 
actual software artifact that either failed or succeeded. 

The Jazz repository consists of various types of software 
builds. Included in this study were continuous builds (regular 
user builds), nightly builds (incorporating changes from the 
local site) and integration builds (integrating components from 
remote sites). As a result the following basic, average basic, 
dependency, complexity, cohesion and Halstead software 
metrics were derived from the source code files for each build: 

 Basic Software Metrics: 
 Number of Types Per Package, Number of Comments, Lines of Code, 

Comment/Code Ratio, Number of Import Statements, Number of 
Interfaces, Number of Methods, Number of Parameters, Number of Lines, 
Average Number of Attributes Per Class, Average Number of Constructors 
Per Class, Average Number of Comments, Average Lines of Code Per 
Method, Average Number of Methods, Average Number of Parameters. 

 Dependency Metrics: 
 Abstractness, Afferent Coupling, Efferent Coupling, Maintainability index, 

Instability, Normalized Distance. 

 Complexity Metrics: 
 Average Block Depth, Average Cyclomatic Complexity. 

 Cohesion Metrics: 
 Lack of Cohesion 1 (LCOM1), Lack of Cohesion 2 (LCOM2), Lack of 

Cohesion 3 (LCOM3). 

 Halstead Metrics: 
 Number of Operands, Number of Operators, Number of Unique Operands, 

Number of Unique Operators, Program Volume, Difficulty Level, Effort to 
Implement, Number of Delivered Bugs, Time to Implement, Program 
Length, Program Level, Program Vocabulary Size. 

A. Synthetic Minority Over-sampling TEchnique (SMOTE) 

When working with real world data it is often found that 
data sets are heavily comprised of "normal" instances with only 
a small percentage representing interesting findings. As a result 
the "abnormal" instances have a negative impact on a models' 
performance as they have a greater probability of 
misclassification using data mining methods [2, 13]. Data 
instances that introduce noise within the data are often found 
within the minority class [14, 15]. In order to overcome this 
limitation synthetically under-sampling the majority class may 
improve a classifiers' performance. However, in doing so 
valuable data may be lost and model over-fitting may occur, 
resulting in majority instances being wrongly classified as 
minority instances when new, unseen data is presented to the 
classifier model that was induced [14]. Another solution is to 
provide the classifier with more complete regions within the 
feature space via creation of new instances that are synthesized 
form existing data instances.  

SMOTE enables a data miner to over sample the minority 
class to achieve potentially better classifier performance 
without loss of data [2, 13]. While other over-sampling 
methods exist, such as Rippers Loss Ratio and Naive Bayes 
methods, SMOTE provides better levels of performance as it 

generates more minority class samples for a classifier to learn 
from, thereby allowing broader decision regions and coverage 
[13]. SMOTE has been utilized within the software research 
community and compared with other sampling techniques in 
software quality modeling (random under-sampling, random 
oversampling, cluster-based oversampling and Borderline-
SMOTE) and has yielded encouraging results [5, 8]. SMOTE 
has also been applied as a sampling strategy for software defect 
prediction where data sets from NASA software project data 
sets [10,16-18] and fault-prone module detection using the MIS 
telecommunication systems [24]. For this work SMOTE is 
applied as a supervised instance filter using the Weka [19] 
machine learning workbench. 

In order to avoid the over-fitting problem while expanding 
minority class regions SMOTE generates new instances by 
operating within the existing feature space. New instance 
values are derived from interpolation rather than extrapolation, 
so they still carry relevance to the underlying data set. For each 
minority class instance SMOTE interpolates values using a k-
nearest neighbor technique and creates attribute values for new 
data instances [8]. For each minority data a new synthetic data 
instance (I) is generated by taking the difference between the 
feature vector of I and its nearest neighbor (J) belonging to the 
same class, multiplying it by a random number between 0 and 
1 and then adding it to I. This creates a random line segment 
between every pair of existing features from instances I and J, 
resulting in the creation of a new instance within the data set 
[13]. This process is repeated for the other k-1 neighbors of the 
minority instance I. As a result SMOTE generates more general 
regions from the minority class and decision tree classifiers are 
able to use the data set for better generalizations. 

B. Hoeffding Tree 

The Hoeffding tree is an incremental decision tree 
induction method. Using the Hoeffding bound, it ascertains the 
number of instances that are needed to split a given (decision) 
node of a tree and operates within a certain precision that can 
be predetermined [3]. This method has potential in terms of 
predicting future outcomes of software builds with high 
accuracy while working with real-world data. Rather than using 
training and test sets, instances are represented as streams. The 
Hoeffding tree is commonly used for classifying high speed 
data streams. The algorithm that it uses generates a decision 
tree from data incrementally by inspecting each instance within 
a stream without the need to store instances for later retrieval. 
The tree resides in memory during each iteration and stores 
information in its branches and leaves, potentially growing 
from "learning" every new instance. The decision tree itself can 
be inspected at any time during the streaming process. The 
quality of the tree itself is comparable to that used by 
traditional mining techniques, even though instances are 
introduced in an incremental manner.  

Just as with traditional decision tree learners, the Hoeffding 
tree is easy to interpret, making it easier to understand how the 
model works. In addition to this, decision tree learners have 
proven to provide accurate solutions to a wide range of 
problems that are based on multi-dimensional data. For 
Hoeffding trees each node of a decision tree undergoes a test 
which may result in it being split into two or more child nodes 



and sending each instance down a relevant branch to its 
destination child node, depending on the values of its attributes. 
The split test is implemented through the use of the Hoeffding 
bound which is expressed as: 

 

∈	ൌ ඨܴ
ଶ ln ቀ

1
ቁߜ

2݊
 

 

(1) 

The Hoeffding bound expressed in (1) above states that 
with confidence (1- ߜሻ, the population mean of R lies in the 
interval, ሾܴ	ഥ -∈, ܴ	ഥ+∈ሿ, where	 തܴ is the sample (observable) mean 
of the random variable R. In the context of decision tree 
induction R refers to information gain. The Information gain 
function ranges in value from 0 to ݈݃݋ଶܿ , where c is the 
number of classes. Since c=2 in the mining problem that we 
undertake (since only the outcomes, success and failure are 
possible), R reduces to 1. The variable n refers to the number of 
data instances seen up to the point that the test was carried out. 
The bound holds is true irrespective of the underlying data 
distribution generating the values and only depends on a range 
of values, number of observations made and a split confidence 
level. The Hoeffding tree uses the Hoeffding bound to 
determine whether an existing (leaf) node should be split as 
follows. Suppose that after n data instances have arrived, the 
difference in information gain between the two highest ranking 
attributes Xa and Xb with	∆̅ܩ ൌ 	 ሺܺ௔ሻܩ̅ െ ሺܺ௕ሻܩ̅ ൐ ߬ (i.e. Xa is 
the attribute with the highest information gain), then with 
confidence (1- ߜሻ,  the Hoeffding bound guarantees that the 
correct choice to spilt the given leaf node is attribute Xa if 
ܩ̅∆ ൐∈, where ߬ is a tie threshold parameter. 

In this research we use the Hoeffding tree implementation 
from MOA [13], a real time analytics tool for data streams was 
used for mining data streams. 

V. EXPERIMENTAL STUDY 

The original software metric data set consists of 199 Jazz 
build instances. From these instances there are 127 successful 
builds and 72 failed builds. Build instances are sorted by date 
to ensure accurate simulation of a development team working 
over time. SMOTE is then applied twice at 900%, increasing 
the number of instances to 1,990 (1270 successful builds and 
720 failed builds). The first application increases the number of 
minority class instances (failed builds) and the second 
application increases the temporarily "new" number of 
minority class instances (successful builds). The instances are 
then encoded into data streams which are utilized by the 
Hoeffding tree for the data mining process. Three parameters 
were set for the tree induction. The Hoeffding tree uses a grace 
period parameter which stipulates the frequency with which 
checks for leaf node splits are carried out, the greater the value 
the higher the efficiency of the process. We use a setting of 200 
for the grace period parameter. The tie threshold parameter, ߬ 
that controls the degree of splitting, was set to 0.05. 

Presented in Figure 1 is the classification accuracy obtained 
with the use of after state metrics for builds. The classification 
accuracy at the start of the time series was 65.2% and at the end 
of the stream the accuracy grew to 80.25%. The average overall 
accuracy over the entire time series was 70%. This indicates 

that the there is potential for the accuracy of prediction to 
improve as more real data emerges. 

 
Figure 1.  Hoeffding Tree Overall Classification Accuracy.  

The initial instability in classification accuracy is an 
interesting phenomenon, given the initial grace period of 200 
builds is intended to provide stability in the emerging model. 
Upon examination of the synthetic data it can be observed that 
the data maintains comparable instances of each class up until 
900 builds. After 900 builds, the data contains an increasing 
proportion of successful builds. This is shown in Figure 2. 

 

Figure 2.  Build Distribution over Time 

Figure 3 presents the classification accuracies of successful 
builds. It is observed that the general trend for classifying 
success initially declines to reach a minimum at approximately 
900 instances, after which there is a gradual improvement that 
appears to be trending towards a stable value of around 80%. 
Figure 4 displays the sensitivity ratings for successful builds 
over time. For successful builds the accuracy at the beginning 
of the data stream time series was 66.38% and ended with 
79.1% (with an average of 64%). 

 
Figure 3.  Hoeffding Tree Classification Accuracy for Successful Builds.  

40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

A
cc

u
ra

cy
 (

%
)

No. of Trained Instances

0
200
400
600
800

1000
1200
1400

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00C
u

m
u

la
te

 N
o.

 o
f 

B
u

il
d

s

No. of Trained Instances

Failed
Successful

40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

A
cc

ur
ac

y 
(%

)

No. of Trained Instances



 
Figure 4.  Hoeffding Tree Sensitivity Measurements for Successful Builds.  

Presented in Figure 5 are the classification accuracies over 
time for failed builds and the corresponding sensitivity ratings 
for failed builds are presented in Figure 6. Classification 
accuracy for failed builds started at 63.5% and at the end of the 
time series was 82.2% (with an average of 78%). The false 
positive values between 700 to 1000 trained instances appear to 
peak when classifying failed builds, due to over-fitting the 
model at earlier time segments. The false positive value then 
proceeds to decrease over time 

 
Figure 5.  Hoeffding Tree Classification Accuracy for Failed Builds.  

 
Figure 6.  Hoeffding Tree Sensitivity Measurements for Failed Builds.  

Interestingly, the distribution of build instances across the 
two classes has marginal impact on the overall classification 
accuracy when compared to the impact it has on the individual 
classes themselves. When the distribution of classes in the 
synthetic data is roughly equal there is an increase in the 
classification accuracy of failed builds that is accompanied by a 
decrease in classification accuracy of successful builds. This 
seems at odds with the observation of previous work [21, 22, 

30] that suggests that failed builds are harder to classify than 
successful builds. This work suggests that failed builds may be 
harder to classify when there is a significantly larger number of 
successful builds that dominate the classification model.  

Figure 7 illustrates the final decision tree using the 
Hoeffding Tree stream mining technique on the extended RSA 
after state software metrics data set. In this case the tree is 
larger than the previous software metric based Hoeffding tree, 
with a depth of 7. Upon inspecting the tree there are common 
sense classifications being made, for example a higher number 
of interfaces tend to be associated with failure. This is intuitive 
because if there are too many Java interfaces it can become 
tedious when debugging an error as the actual implementation 
of the error may be in an obscure location. Interfaces also add 
to the collection of files within the system and if an interface is 
"dead" (not used) and not removed it leads to a less elegant 
system design. The number of interfaces has a direct influence 
on dependency metrics, i.e. Abstractness.  

 
Figure 7.  Final Hoeffding Tree for After State Software Metrics.  

VI. LIMITATIONS AND FUTURE WORK 

The Jazz repository contains holes and misleading elements 
which cannot be removed or identified easily. There is a great 
challenge in dealing with such inconsistency and the 
methodology has adopted an approach that delves further down 
the artifact chain than most previous work using Jazz. It is a 
premise that the early software releases were functional, so 
whilst the project “meta-data” may be missing details (such as 
developer comments) the source code should represent a stable 
system that can be analyzed to gain insight regarding the 
development project. Even when comparing to other Jazz 
studies there are concerns over validity that arise from the 
possibility of different extraction techniques being applied. 
However, the approach for creating a predictive model by 
mining data streams that relate to software data can be applied 
to other repositories and as such is a generalizable process. 
Similarly, the process of using the predictive model to identify 
build outcome risk and proactively manage the build scope and 
activities is equally applicable to other projects. The actual 
prediction models are likely to be very different for other 
projects, but the techniques for developing them are entirely 
generic. Other limitations from this study are products of the 
relatively small sample size of build data from the Jazz project 
combined with the sparseness of the data itself. For example, 
the ratio of metrics (42) to builds (199) is such that it is difficult 
to truly identify significant metrics. Even though a sampling 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

S
en

si
ti

vi
ty

 R
at

in
g

No. of Trained Instances

truePositive
falsePositive

40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

A
cc

ur
ac

y 
(%

)

No. of Trained Instances

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

S
en

si
ti

vi
ty

 R
at

in
g

No. of Trained Instances

truePositive

falsePositive



technique (SMOTE) is applied to increase the number of 
instances, it is not possible to assess the extent to which the 
generated data reflects real-world data as there is the likelihood 
of unpredictable events in software development projects. 

VII. CONCLUSIONS 

The goal of synthetically generating data was to explore 
what might happen if there was more data available for mining, 
more specifically to see if classification of builds improved 
with more data. While the use of SMOTE may not be a “true” 
representation of future real world data, it does however 
interpolate values between existing instances to generate new 
data that may be considered at representative of existing data. 
This provides insights into what may occur if there were no 
"new" anomalies encountered during the project. This may not 
be entirely realistic given that the causes of failure are not 
predictable and that new failure modes are likely to appear over 
time.  From previous data mining experiments it was observed 
that build failure metrics were often overlapped in value with 
those of successful builds, thus challenging the ability of a 
classifier to distinguish between these two types of build 
outcomes. This indicates that if more data is available accuracy 
for classifying builds may improve over time. The results 
obtained during this phase support other studies where software 
build outcome prediction accuracy and stability both increased 
when adopting the use of SMOTE [10, 11, 20] on other project 
software metrics. While this research has gone some way to 
addressing the challenges associated with data mining software 
repositories, there is still much potential for future work in 
understanding evolving success and failure patterns found 
within the SDLC. 

REFERENCES 
[1] Nguyen, T., Schröter, A., & Damian, D. "Mining Jazz: An experience 

report". Proceedings of the Infrastructure for Research in Collaborative 
Software Engineering Conference, 2008 

[2] Chawla, N., Bowyer, K., Hall, L. and Kegelmeyer, W. "SMOTE: 
Synthetic Minority Over-sampling TEchnique." Journal of Artificial 
Intelligence Research, vol. 16, pp. 341-378, 2002. 

[3] Giannella, C., Han, J., Pei, J., Yan, X., and Yu, P. S. "Mining frequent 
patterns in data streams at multiple time granularities". Next generation 
data mining, pp. 191-212, 2003. 

[4] Kagdi, H., Collard, M., and Maletic, J. "A survey and taxonomy of 
approaches for mining software repositories in the context of software 
evolution". Journal of Software Maintenance and Evolution: Research 
and Practice, vol. 19, pp. 77 - 131, 2007. 

[5] Poncin, W., Serebrenik, A., and Brand, M. "Process mining software 
repositories". 15th European Conference In Software Maintenance and 
Reengineering (CSMR), pp. 5-14, 2011. 

[6] Herzig, K., and Zeller, A. "Mining the Jazz Repository: Challenges and 
Opportunities". Mining Software Repositories MSR '09. 6th IEEE 
International Working Conference, pp. 159-162, 2009. 

[7] Wolf, T., Schroter, A., Damian, D., and Nguyen, T. "Predicting build 
failures using social network analysis on developer communication". 
Proceedings of the IEEE International Conference on Software 
Engineering (ICSE), 2009. 

[8] Drown, D. J., Khoshgoftaar, T.M. Seliya, N. "Evolutionary Sampling 
and Software Quality Modeling of High-Assurance Systems." Systems, 
Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions, 
vol. 39, pp. 1097-1107, 2009. 

[9] Manduchi,G. and Taliercio, C. "Measuring software evolution at a 
nuclear fusion experiment site: a test case for the applicability of OO and 
reuse metrics in software characterization", Information and Software 
Technology, vol. 44, pp. 593-600, 2002. 

[10] Pelayo, L. and Dick, S. "Applying novel resampling strategies to 
software defect prediction." In Fuzzy Information Processing Society, 
2007. NAFIPS'07. Annual Meeting of the North American IEEE, pp. 69-
72, 2007. 

[11] Shatnawi, R. "Improving software fault-prediction for imbalanced data." 
Paper presented at the Innovations in Information Technology (IIT), 
International Conference, 2012. 

[12] Kamei, Y., Monden, A., Matsumoto, S., Kakimoto, T., and Matsumoto, 
K. I. "The effects of over and under sampling on fault-prone module 
detection". First International Symposium on Empirical Software 
Engineering and Measurement, pp. 196-204, 2007. 

[13] Bifet, A., Holmes,G., Kirkby, R. and Pfahringer, B. "MOA: Massive 
Online Analysis." In Journal of Machine Learning Research, vol. 11, pp. 
1601-1604, 2010. 

[14] Haibo, H. and Garcia, E. A. "Learning from Imbalanced Data". IEEE 
Transactions on Knowledge and Data Engineering, vol. 21, 1263-1284, 
2009. 

[15] Jeatrakul, P., Kok Wai, W., Chun Che, F. and Takama, Y. 
"Misclassification analysis for the class imbalance problem". Paper 
presented at the World Automation Congress (WAC), 2010. 

[16] Gray, D., Bowes, D., Davey, N., Sun, Y. and Christianson, B. "Using the 
Support Vector Machine as a Classification Method for Software Defect 
Prediction with Static Code Metrics. Engineering Applications of Neural 
Networks", pp. 223-234, 2009. 

[17] Jiang, Y., Li, M., and Zhou, Z. H. "Software defect detection with 
ROCUS". Journal of Computer Science and Technology, vol. 26, pp. 
328-342, 2011. 

[18] Seliya, N., Khoshgoftaar, T. M. and Hulse, J. V. "Predicting Faults in 
High Assurance Software". Paper presented at the Proceedings of the 
2010 IEEE 12th International Symposium on High-Assurance Systems 
Engineering, 2010. 

[19] Hall, M., Frank, E. Holmes, G., Pfahringer, B., Reutemann, P. and 
Witten, I. H. "The WEKA Data Mining Software: An Update;" SIGKDD 
Explorations, vol. 11, pp. 10-18, 2009. 

[20] Kehan, G., Khoshgoftaar, T. M., and Napolitano, A. "Impact of Data 
Sampling on Stability of Feature Selection for Software Measurement 
Data". Paper presented at the Tools with Artificial Intelligence (ICTAI), 
2011 23rd IEEE International Conference, 2011 

[21] Finlay, J., Pears, R. & Connor, A.M. “Data stream mining for predicting 
software build outcomes using source code metrics”, Information & 
Software Technology, 56(2), 183-198, 2014. 

[22] Finlay, J., Connor, A.M. & Pears, R. “Mining software metrics from 
Jazz”, Software Engineering Research,Management and Applications 
2011, Springer Berlin / Heidelberg. 377: 95-111, 2011. 

[23] Hassan, A.E., “The road ahead for Mining Software Repositories” 
Frontiers of Software Maintenance, 2008. FoSM 2008. pp.48,57, Sept. 
28 2008-Oct. 4 2008 

[24] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali 
Krishnaswamy. 2005. Mining data streams: a review. SIGMOD Rec. 34, 
2 (June 2005), 18-26. 

[25] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and 
Peter J. Weinberger. 1994. Quickly generating billion-record synthetic 
databases. SIGMOD Rec. 23, 2 (May 1994), 243-252. 

[26] Hongyu Guo and Herna L. Viktor. 2004. Learning from imbalanced data 
sets with boosting and data generation: the DataBoost-IM approach. 
SIGKDD Explor. Newsl. 6, 1 (June 2004), 30-39. 

[27] Haibo He; Yang Bai; Garcia, E.A.; Shutao Li, "ADASYN: Adaptive 
synthetic sampling approach for imbalanced learning," Neural Networks, 
2008. IJCNN 2008. (IEEE World Congress on Computational 
Intelligence). IEEE International Joint Conference on , vol., no., 
pp.1322,1328, 1-8 June 2008 

[28] Aggarwal, C. C. (Ed.). (2007). Data streams: models and algorithms 
(Vol. 31). Springer. 

[29] Bifet, A., Adaptive learning and mining for data streams and frequent 
patterns. SIGKDD Explor. Newsl., 2009. 11(1): p. 55-56. 

[30] Connor, A.M., Finlay, J.A. and Pears, R. “Mining Developer 
Communication Data Streams”. Proceedings of the Fourth International 
Conference on Computer Science and Information Technology, 2014.


