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Abstract 

“Machine learning is the process of discovering and interpreting meaningful 

information, such as new correlations, patterns and trends by sifting through large 

amounts of data stored in repositories, using pattern recognition technologies as well 

as statistical and mathematical techniques”  (Larose, 2005).  From my understanding, 

machine learning is a process of using different analysis techniques to observe 

previously unknown, potentially meaningful information, and discover strong 

patterns and relationships from a large dataset.  Professor Kasabov (2007b) classified 

computational models into three categories (e.g. global, local, and personalised) 

which have been widespread and used in the areas of data analysis and decision 

support in general, and in the areas of medicine and bioinformatics in particular.  

Most recently, the concept of personalised modelling has been widely applied to 

various disciplines such as personalised medicine, personalised drug design for 

known diseases (e.g. cancer, diabetes, brain disease, etc.) as well as for other 

modelling problems in ecology, business, finance, crime prevention, and so on.  The 

philosophy behind the personalised modelling approach is that every person is 

different from others, thus he/she will benefit from having a personalised model and 

treatment.  However, personalised modelling is not without issues, such as defining 

the correct number of neighbours or defining an appropriate number of features.  As 

a result, the principal goal of this research is to study and address these issues and to 

create a novel framework and system for personalised modelling.  The framework 

would allow users to select and optimise the most important features and nearest 

neighbours for a new input sample in relation to a certain problem based on a 

weighted variable distance measure in order to obtain more precise prognostic 

accuracy and personalised knowledge, when compared with global modelling and 

local modelling approaches. 
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Chapter 1 

Introduction 

1.1. Motivation 

Professor Kasabov (2007b) classified computational models into three categories: 

global, local, and “personalised”.  The basic philosophy behind personalised modelling 

is every person is different from others, thus he/she needs and deserves a personalised 

model and treatment that best predicts a possible outcome for this person.  A 

personalised model is created for every single new input vector of the problem space 

based on its nearest neighbours.  In contrast, global modelling refers to a model that is 

created for the whole problem space rather than focusing on individual cases, thus this 

model has difficulty undergoing adaptation due to new input vectors.  Local modelling 

refers to a model that is created to calculate the output function that is used to deal with 

a sub-space of the entire problem space.  This approach provides a better explanation 

for individual vectors, and any further new input vectors are much more easily studied 

as well.  These three modelling approaches have been successfully applied to deal with 

a variety of classification and prediction problem tasks, such as handwriting recognition 

(e.g. segment the text into individual characters and classify them), face detection (e.g. 

give an image to classify as face or not face), as well as weather prediction (e.g. predict 

the weather for the next several days) and climate prediction (e.g. temperature and soil 

moisture). 

 
“Personalised modelling” is an emerging approach which has been applied for 

numerous decades to evaluate and deal with a variety of modelling problems.  For 

instance, in the field of personalised healthcare, the knowledge discovered by this 

approach has significantly contributed to prediction, diagnosis and therapy for 

individual patients’ diseases.  This approach has also resulted in improved patient safety 

(Iakovidis, 2007; Baek et al., n.d.).  In the articles by Ginsburg and McCarthy (2001) 

and TEMU (2008), it has been mentioned that providing a personalised therapy for an 

individual patient during the diagnosis timeframe has proved to be very efficient and 

helpful.  Furthermore, given the current advances in networking technologies, 

personalised mobile service provides a more efficient service, which in turn also 

benefits business (Lankhorst, Kranenburg, Salden, & Peddemors, 2002).  Most recently, 

personalised web is an emerging technique that provides users with personalised search 
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and browsing systems (McGowan, Kushmerick & Smyth, 2002; Magoulas & 

Dimakopoulos, 2005).   

 
Nowadays, the concept of personalised medicine is becoming a leading trend in 

medicine, health care and life science.  As presented by Lesko (2007) who is from the 

U.S. Food and Drug Administration, “Personalized medicine can be viewed…as a 

comprehensive, prospective approach to preventing, diagnosing, treating, and 

monitoring disease in ways that achieve optimal individual health-care decisions.” 

Personalised medicine brings many benefits and possibilities to different disciplines.  

For instance, for patients and clinicians, they receive more effective, precise and safer 

diagnosis and treatment; for the pharmaceutical industry, the benefits are efficiently 

improving productivity and the efficiency of product lines; and for society as a whole, 

the benefits are receiving more focused applications of valuable health care resources.  

As stated by the Personalized Medicine Coalition (2008), traditional medicine is 

primarily based on the visible symptoms of the disease, but recently doctors can 

integrate an individual patient’s molecular profile to characterise various forms of 

cancers (e.g. breast cancer, brain cancer, and liver cancer, etc) to make a decision about 

treatment.  Furthermore, according to Ginsburg and McCarthy (2001), the objective of 

personalised medicine is to determine a patient’s disease at the molecular level, so the 

right therapies are able to be applied on the right people at the right time.  Multiple 

examples have significantly proved that the traditional form of medicine is declining in 

favour of more accurate marker-assisted diagnosis and treatment.  In contrast, 

personalised medicine is escalating, being primarily based on an individual patient’s 

molecular profile.  The concept of personalised modelling is worth further investigation 

as it has a vast potential. 

  
During my Master’s study at Auckland University of Technology (AUT), I had an 

opportunity to talk with Professor Kasabov who is the Director and Chief Scientist of 

KEDRI.  As a result, I started to take a further look at the area of “Personalised 

Modelling”. 

   
1.2. Research Scope and Focus 

A good research study should be educational, informative, meaningful and useful.  To 

this end, it is essential to specify the research scope and focus.  Global modelling, local 

modelling, and personalised modelling are the three important categories of learning 



models that can be utilized in the area of data analysis and decision support in general, 

and in the area of medicine and bioinformatics in particular (Kasabov, 2007b).  In this 

research, I particularly concentrated on personalised modelling, especially focusing on 

developing a novel framework and system for personalised modelling by integrating it 

with the Genetic Algorithm that would include: selecting and ranking the most 

important features and nearest neighbours of a new input sample in relation to a certain 

problem based on a weighted variable distance measure.  The main two reasons for this 

are: (1) To provide more accurate and effective accuracy when compared with the 

global modelling and local modelling approaches, and (2) To provide more precise 

personalised knowledge and a better understanding of meaningful information.  The 

research scope and focus are depicted in Figure 1.1. 

 
Fig.1.1: Research scope and focus. 
     

1.3. Research Objective 

The major objective of this research is to develop a novel personalised modelling 

framework and system to select and optimise the most significant features and the 

optimal number of nearest neighbours for a single input sample, corresponding to a 

certain problem, based on a weighted variable distance measure.  The novel framework 

and system might provide more accurate performance and more precise personalised 

knowledge when compared with the global modelling and local modelling approaches.   

 
Additionally, a list of opening questions which need to be addressed and studied in this 

study are as follows: 

Q 1:   Can a GA-based system select optimal nearest neighbours for every new input 

vector?  

 The major reason to define an appropriate number of nearest neighbours is to help 

researchers significantly improve classification or prediction accuracy.  It remains 
3 
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a challenging opening question that needs to be considered and addressed. 

 
Q2:  What features are significant for every new input vector? 

 Feature selection is defined as a simple pre-processing technique for choosing the 

most significant features when creating models.  The reasons for addressing the 

problem of selecting an optimal number of features are: (1) In this way we can 

reduce the number of features and only concentrate on the most important ones, 

thus the possible noise in the data set is significantly reduced and better accuracy 

can be achieved; (2) It allows the building of a model that generalizes better to 

unseen points, and (3) It avoids over-fitting and improves the model’s 

performance. 

 
1.4. Thesis Contribution to Information Science 

Genetic algorithm (GA) is defined as an optimization technique to solve complex 

optimization problems, which are primarily based on the principle of Darwin’s 

“survival of the fittest”.  GA is able to deal with a large problem space efficiently, as 

well as to achieve an optimal or close to optimal solution after a number of iterative 

computations.  As a result, based on the traditional personalised modelling algorithms, 

GA is adopted as a method of optimizing the following parameters in order to deal with 

the questions proposed above: 

 Selection of an optimal number of nearest neighbours for every new input vector. 

 Selection of an optimal set of features that best contribute to the classification and 

prediction tasks. 

 
Thus, a novel GA-based personalised modelling (GAPM) system might provide better 

classification and prediction results when compared with global and local modelling 

approaches.  It also might provide more precise personalised knowledge and a better 

understanding of meaningful information. 

 
Moreover, the novel GAPM system is applied for knowledge discovery on a real-world 

pest-related climate data set.  This data set contains information on pest establishment in 

numerous regions of the world.  This data set was successfully presented in 2004 as a 

technical report to the National Centre of Research Excellence in Bioprotection, which 

is operated by Lincoln University in New Zealand. 
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This paper was presented as a poster at the 15th International Conference on Neuro-

Information Processing of the Asia Pacific Neural Network Assembly in 2008.  This 

paper will also be presented at the 16th International Conference on Neuro-Information 

Processing of the Asia Pacific Neural Network Assembly in 2009. 

 
1.5. Thesis Content 

The entire study is organized into the following chapters: 

Chapter 2 is a literature review of methods of personalised modelling, which includes a 

comparison between inductive modelling and transductive modelling approaches, how 

they work, and their applications.  In addition, the two opening questions proposed 

above (section 1.3) are considered in light of implementation of the transductive 

inference approach.  Both inductive inference and transductive inference methods are 

studied further, including a detailed literature review on global, local and personalised 

modelling approaches. 

 
Chapter 3 reviews a number of techniques involved in GAPM, including an overview of 

feature selection methods, cross-validation techniques, and optimization methods. 

 
Chapter 4 presents a novel GA-based framework and system for personalised modelling 

based on transductive modelling in order to study and address the opening questions 

raised in chapter 1.  This chapter clearly explains: (1) the motivation behind developing 

this novel framework and system; (2) the workings of this novel system with WKNN 

and WWKNN as base models, and (3) the knowledge discovery arising from the novel 

GAPM system. 

 
Chapter 5 firstly presents a graphical user interface (GUI) that demonstrates how the 

novel GAPM system runs using MATLAB.  Secondly, an experiment run on a 

benchmark data set (e.g. Sonar) is performed using NeuCom and the novel GA-based 

personalised modelling system to compare the classification accuracy of different 

algorithms.  The results with their detailed analysis are described in the last section. 

 
Chapter 6 offers a detailed comparative analysis of global and local modelling 

approaches against the personalised modelling approach of GAPM on the leukaemia 

cancer data set.  This chapter contains the  following sections: (1) A problem 

specification section that introduces the basic concepts of leukaemia cancer and the 
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reasons for studying a data set related to this area; (2) A data set section that gives a 

description of the data set and the data pre-processing stages;  (3) An experimental setup 

section that introduces the two pieces of software used in this study, each step of the 

experiments as well as the methodology of each step, and (4) A section that presents the 

experimental results with detailed analysis. 

 
Chapter 7 presents a detailed comparative analysis of global and local modelling 

approaches against the personalised modelling approach using a real world pest-related 

climate data set.  This chapter has the same structure as Chapter 6. 

 
Finally, Chapter 8 presents the conclusions of this study as well as suggestions for 

future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

Methods for Personalised Modelling: A Literature Review 

2.1. Introduction 

Before a detailed literature review on methods for personalised modelling is presented, 

firstly a comparison between inductive modelling and transductive modelling 

approaches, including the theory behind these two approaches, as well as their 

applications are introduced.  Secondly, both inductive inference and transductive 

inference methods are studied further, including a detailed literature review on global, 

local and personalised modelling approaches. 

 
2.2. Inductive versus Transductive Reasoning Approaches 

Up until now, most learning models in the area of artificial intelligence (AI) are 

developed and implemented, especially those employing neural fuzzy inference 

methods, based on either inductive inference or transductive reasoning approaches.  

Figure 2.1 graphically presents the differences between these two reasoning approaches. 

It can be seen that the transductive inference method is associated with both training and 

testing data in a problem space, while the inductive inference method has to induce a 

function from the training data first and then deduct the function and use it to predict the 

testing data (Vapnik, 2005).  Further comparisons between these two reasoning 

approaches are studied in the following section. 

 
Fig.2.1: The overall differences between inductive inference and transductive inference methods. 
 

2.2.1. Inductive Inference Method 

The theory of inductive inference was originally introduced by Ray Solomonoff 

around 1960.  It is defined as a process of inferring a general rule or law from the 

observations of a particular example (Angluin & Smith, 1983).  For instance, for a 

given binary string “100, 111100, 11000, 1110, 1100”, the following rule can be 

inferred; “any number of 1s followed by any number of 0s”.  In general, the 
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inductive inference method is concerned with the creation of a model (generally a 

global model), where the model is created from the all available data.   It focuses 

on the whole problem space. This model can be further adapted to investigate new 

input vectors.  Once a global model is created, no new information about a new 

input vector is taken into account, and the error is calculated to measure how well 

the new input vector can fit into the model.  Figure 2.2 presents an overview of an 

inductive inference method: where a global model M is created built on the data 

set D, and the model is then recalled for every new input vector Vi.  Finally, the 

output (Yi) of each new input vector is calculated using the model. 

 
Fig.2.2: Overview of an inductive inference method. 

 
The inductive inference approach has already been widely applied to develop 

abstract models of the process by which a child acquires its native language, or 

the process of scientific inquiries (Gold, 1967; Putnam, 1975; Wexler & 

Culicover, 1980).  Most recently, a variety of proposals for the inductive inference 

method have been successfully applied to practical systems. One such inductive 

inference method based system is the “Lindenmayer system (L-system)” that 

utilizes tools from formal language theory to represent changes in biological 

organisms over a given time period (Doucet, 1974; Feliciangeli & Herman, 1977).  

The inductive inference method is also potentially useful in automatic program 

synthesis applications and helpful in specifying programming languages.  For 

instance, Biermann and Krishnaswamy (1976) developed a synthesis system that 

uses trace information that is initially provided by users.  Shaw, Swarvout and 

Green (1975) also proposed an interactive system for synthesizing the LISP 

programming language.  The inductive inference method also has applications in 

the field of pattern recognition where the method helps in text categorization and 

recognition.  It determines whether a given input pattern belongs to the specified 

class exactly as according to the given grammar structure. 
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From the above, it can be seen that the inductive inference approach has been 

successfully applied to a variety of disciplines.  However, one of the major 

drawbacks of this approach is that it is only concerned with the evaluation of a 

model based on data from the entire problem space and this can be a difficult task 

and is not really necessary in most cases. 

 
2.2.2. Transductive Inference Method 

The transductive inference approach was originally proposed by Vapnik in 1998.  

It is defined as a method that evaluates the potential value of a model for only an 

individual point of the problem space by using additional information related to 

that single point.  In contrast to the inductive inference approach, the transductive 

inference approach is more concerned with solving an individual given problem 

rather than solving a general problem (Bosnic et al., 2003).  Figures 2.3 and 2.4 

present an overview of a transductive inference approach: every new input vector 

Vi requires investigation for a classification or prediction task which is primarily 

based on its nearest neighbours.  Thus, the nearest neighbours form a sub-data set 

Di that is derived from the original training data set D.  A new local model Mi is 

dynamically created based on these vectors and further adapted to estimate the 

output Yi for every new input vector Vi.  

 
Fig.2.3: Overview of a transductive inference method (a) (modified from Song & Kasabov, 
2005). 
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Fig.2.4: Overview of a transductive inference method (b):V1 and V2 represent the two new 
input vectors which are surrounded by a number of nearest neighbours selected from the 
training data set D and generated from an existing model M (modified from Song & Kasabov, 
2005). 

 
The transductive inference approach has been widely applied to applications very 

much related to clinical or/and medical fields due its focus being primarily 

individual patients.  For instance, this method has been successfully used in the 

area of personalised clinical care, where each patient’s medication is based on 

their personal information and medical condition (Spang, 2003; Williams, 2003; 

Kriete, 2004; Angrist, 2005).  Furthermore, this approach has been widely applied 

in the area of medical disease prediction (Nevins et al., 2003; Pittman et al., 2004; 

Tyrer, Duffy & Cuzick, 2004).  In the article by Weston et al. (2003), the 

transductive inference approach is also thought to be potentially useful in dealing 

with a variety of prediction tasks, such as predicting whether a given drug will 

bind to a target site, as well as providing additional measures to discover the 

reliability of predictions made in medical diagnosis (Kukar, 2003).  This method 

can also be used for solving a variety of classification tasks, such as image 

classification (Proedrou et al., 2002), text classification (Joachims, 1999; Chen, 

Wang & Dong, 2003), heart disease diagnostics (Wu et al., 1999), digit and 

speech recognition (Joachims, 2003), and micro-array gene expression 

classification (Wolf & Mukherjee, 2004). 

 
Most recently, the transductive inference method has been successfully applied in 

the field of bioinformatics using support vector machine (SVM) and the 

experimental results prove that it provides better accuracy than the inductive 

inference method (Kasabov & Pang, 2004).   The main reason for this is the 

transductive inference method exploits the structural information of unlabeled 
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data.  However, one of the drawbacks of the transductive inference approach is 

that it is only efficient when the size of the data set is small.  In addition to this, 

there is a list of opening questions which are raised when implementing the 

transductive modelling approach, including: “How many nearest neighbours 

should be selected for every new input vector?” and “What features are significant 

for every new input vector?”.  These two major questions will be studied and 

addressed in this research. 

 
2.3. Global, Local and Personalised Modelling 

2.3.1. Global Modelling 

In global modelling, a global model is created from the entire data set for the 

whole problem space rather than focusing on individual vectors.  This model is 

usually very difficult to be adapted on new incoming input vectors.  Examples of 

global modelling are: Support Vector Machine (SVM), Multiple Linear 

Regression (MLR), and Multi-Layer Perception (MLP). 

 
In this study, SVM is presented as a popular algorithm for comparison with local 

and personalised modelling algorithms.  One main reason is that it is a fast 

optimization algorithm that can obtain high-quality classification accuracy with 

few training samples.  However, in dealing with a large, high-dimensional data set, 

the kernel computation time for training the SVM classifier is long. 

 
2.3.1.1. SVM  

SVM is a supervised learning algorithm based on small-sample Statistical 

Learning Theory, which was originally proposed by Vapnik (1998) and his 

co-workers.  It has been widely applied to deal with classification and 

regression problems.  In addition, it has been successively extended by 

several other researchers, such as V-SVM (Schölkopf & Snola, 2000), 

Smooth Support Vector Machine (SSVM) (Lee & Mangasarian, 2001), 

Newton Support Vector Machine (NSVM) (Fung & Mangasarian, 2004), 

and Least Square Support Vector Machine (LS-SVM) (Suykens & 

Vandewalle, 1999). 

 
SVM is a powerful tool for separating a set of binary labeled data in a 

feature space using an optimal hyperplane.  The two major types of SVM 



used far and wide, are linear SVM (Vapnik & Lerner, 1963) and non-linear 

SVM (Aizerman & Braverman, 1964).  In cases where the data is linearly 

separable, SVM separates a given set of training data with a hyperplane, 

thus the distance from the hyperplane to the data is maximized (also known 

as “the maximum margin hyperplane”).  If the data is non-linearly separable,   

SVM can work in combination with the non-linear “kernel function” that 

can automatically map the data onto a feature space (possibly a high-

dimensional feature space).  As a result, the hyperplane in the high-

dimensional feature space corresponds to a non-linear decision boundary in 

the original input space.  Figure 2.5 presents an overview of the SVM 

process: exploring an optimal hyperplane to split a set of vectors in such a 

way that vectors within one category are placed on one side of the plane, 

while vectors within other category are placed on the other side of the plane.   

As stated by Noble (2006), the SVM algorithm has been adopted 

increasingly in a wide variety of applications such as the automatic 

classification of micro-array gene expression profiles, as well as identifying 

handwritten digits through studying a large group of scanned images of 

handwritten zeroes, ones, etc. 

  
Fig.2.5: Overview of a simple SVM process. 
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Mathematically, the SVM can be formulated as the following equation 

(Gunn, 1998): suppose we have a two-class classification task 
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where D is the given training data set, x  is the n-dimensional vector, and 

is the class label which indicates which class the y x  belongs to.  Figure 2.6 

illustrates that when the data are linearly separable, the optimal hyperplane 

is defined as:  

1( ,... ) 0
n

T
w w x bw ∗ + =

w

w

                  (2.2)                    

where  is the weight vector, and b  is the scalar.  Therefore, the optimal 

hyperplane separates those vectors belonging to two different classes.  

Furthermore, both  and b can be constrained such that: 

( ) min ( , , )W L wΛ = Λ

L

b                    (2.3) 

where  is the Lagrange function, and Λ  is the Lagrange multiplier.  If we 

want to choose the w  and  to maximize the margin, the hyperplane in 

Equation 2.2 can be re-defined as: 

b

1( ,... ) 1
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T
w w x bw ∗ + =                   (2.4)                     
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T
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It can be seen that if the distance between the vectors belonging to the two 

different classes is maximized, those vectors are optimally separated by the 

hyperplane in Equations 2.4 and 2.5.  With Equation 2.3, the parameters , 

 and the optimal hyperplane are given as: 

w

Λ

1

n

i i i
i

w x y
=

= Λ∑                                             (2.6)                     

Therefore, the classifying function can be defined as: 

1( ,... )( )
n

T
w wf x xw= ∗ b+                (2.7) 

Finally, the result (either 1 or -1) calculated in Equation 2.7 can be further 

adopted to determine the class which x  belongs to. 



 
  Fig.2.6: Overview of a simple linearly separable SVM.  

                              
2.3.2. Local Modelling 

A local model is created to evaluate an output function that is able to deal with a 

sub-space of a problem space.  In other words, the local modelling approach has 

the ability to provide a better explanation and knowledge about individual vectors 

than global modelling.  Moreover, the subsequent new input vectors are much 

easier to be investigated using this model.  Local modelling includes Radial Basis 

Function (RBF), Evolving Classification Function (ECF), and Evolving 

Clustering Method for Classification (ECMC).   

 
In this study, ECF is presented as a popular algorithm for comparison with global 

and personalised modelling algorithms.  The main reason for this choice is that it 

has two special characteristics: (1) It allows fast incremental and online learning, 

and (2) The dynamic allocation of rule nodes helps users to easily understand and 

even verify the model’s functionality (Kasabov, 2007). 

 
2.3.2.1. ECF 

As stated by Arbib (2003), traditional neural network models do not allow 

researchers to discover new patterns from the data as they are seen as “black 

boxes”.  As a result, Kasabov introduced a novel type of neural network 

model in 2003 called evolving connectionist systems (ECOS) that allows for 

fast incremental, online learning, as well as rule extraction and rule 

adaptation.  According to Kasabov (2007a), “Evolving connectionist system 

(ECOS) is a connectionist architecture that facilitates modelling of an 
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evolving process and knowledge discovery”, which represents a new piece 

of “neural network” knowledge.  The concept of evolving classifier function 

(ECF) is a typical implementation of ECOS which has been widely applied 

to pattern classification tasks.  Theoretically speaking, ECF is composed of 

four layers of nodes: (1) input variables, (2) fuzzy membership functions, (3) 

a set centers of data in the input space, and (4) classes (Kasabov, 2007a).  

ECF can produce rule nodes in a multi-dimensional input space and each 

rule node is identified by its radius, center as well as the class it belongs to.  

Figure 2.7 demonstrates an example of the classification task of clusters of 

data: where c is the class, vi is the i-th data vector, oj is the centre of j-th 

node, and rj is the radius of j-th node. 

  
Fig.2.7: An example of clusters evolved in ECF for a classification task in robotics 
(Huang, Song, & Kasabov, 2005). 

 

2.3.3. Personalised Modelling 

The personalised modelling approach is one type of local modelling that is created 

for every single new input vector of the problem space based on its nearest 

neighbours using the transductive reasoning approach (Kasabov, 2007).  K-

nearest neighbor (KNN) is the simplest personalised modelling algorithm and has 

been successfully extended, as Weighted K-Nearest Neighbour (WKNN) (Dudani, 

1976) and Weighted-Weighted K-Nearest Neighbour (WWKNN) (Kasabov, 2007), 

which will be studied further here. 
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KNN is simple, quick, and often effective.  There are many cases in which its 

performance is at least as good as other more sophisticated algorithms.  Based on 

the KNN algorithm, WKNN is created as robust to noisy learning samples as it 

takes the weighted average of k-nearest neighbours to the testing samples, and so 

it can easily smooth out the impact of isolated learning samples (Duda & Hart, 

1973).  In addition, WKNN is able to model complex functions by using a 

collection of less complex approximations (Wagacha, 2003).  However, one major 

drawback of WKNN is that if the distribution of the class labels in the problem 

space is unbalanced, this algorithm may tend to favour the larger class, resulting 

in poor results (Hand & Vinciotti, 2003).  WWKNN is a personalised profile of 

the variable importance that can be derived for every new input vector that 

represents a new piece of personalised knowledge.  However, there are a number 

of opening questions that need to be considered when implementing the 

personalised WWKNN algorithm, such as defining the optimal number of nearest 

neighbours and the optimal number of features. 

 
2.3.3.1. KNN 

KNN is a supervised learning algorithm that has been successfully used for 

classifying sets of samples based on nearest training samples in a multi-

dimensional feature space, and was originally proposed by Fix and Hodges 

in 1951.  The basic idea behind the KNN algorithm is:  

 Firstly, a set of pairs features (e.g. (x1, y1), …, (xn, yn)) are defined to 

specify each data point, and each of those data points are identified by 

the class labels C = {c1, …, cn}. 

 
 Secondly, a distance measure is chosen (e.g. Euclidean distance, or 

Manhattan distance) to measure the similarity of those data points 

based on all their features. 

Euclidean distance: Manhattan distance: 

( ) ( )2

1
,

n

i i
i

D x y x y
=

= −∑
 

( )
1

,
n

i i
i

D x y x y
=

= −∑  

          (2.8) 
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where D(x, y) is the distance between the two objectives x and y; xi 

and yi are the values of attributes i  in cases x and y, respectively; 

to  is a set of attributes in both objectives. 1i = n

 
 Finally, the k-nearest neighbours are found for a target data point by 

analyzing similarity and using the majority voting rule to determine 

which class the target data point belongs to. 

 
Figure 2.8 illustrates an overview of KNN:  if k = 5, the class of the target 

vector v (represented as ) is determined by identifying its five nearest 

neighbours which are classified as  (where  and  represent two 

classes, respectively). 

 
Fig.2.8: An example of the KNN classification task. Each vector is represented by a 
two-dimensional point within a Euclidean space. 

 

2.3.3.2. WKNN 

WKNN is designed based on the transductive reasoning approach, which 

has been widely used to evaluate the output of a model focusing on solely 

an individual point of a problem space using information related to this 

point (Vapnik, 1998).  In the WKNN algorithm, each single vector requires 

a local model that is able to best fit each new input vector rather than a 

global model, thus each those new input vector can be matched to an 

individual model without taking any specific information about existing 

vectors into account.  In contrast to the KNN algorithm, the output of a new 

input vector is calculated not only dependent upon its k-nearest neighbour 

vectors, but also upon the distance between the existing vectors and the new 
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input vector which is represented as a weight vector w, this being the basic 

idea behind the WKNN algorithm. 

 
Mathematically, the WKNN algorithm can be formulated with the equation: 

1,..., i

j j
j k

Output w y
=

= ∑                                       (2.9) 

where  represents the number of nearest neighbours;  denotes the 

weight that is calculated based on the distance from the new input vector: 

ik
jw
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⎤⎦

max( ) ( min( )) / max( )j jd d dw d⎡= − −⎣              (2.10) 

where  represents the distance between the new input vector 

and ; the parameters max(d) and min(d) represent the maximum and 

minimum values in d, respectively. 

1,..., ikd dd ⎡⎣=

ik

 
WKNN has been successfully applied to medical and clinical applications to 

diagnose an individual patient in order to provide an accurate individual 

treatment.  In addition, it is widely applied to the stock market to predict a 

stock index for a single target day. 

 
2.3.3.3. WWKNN 

WWKNN is a novel personalised modelling algorithm which was proposed 

by Professor Kasabov in 2007.  The basic idea behind this algorithm is: the 

output of each new input vector is measured not only dependent upon its k-

nearest neighbours, but also upon the distance between the existing vectors 

and the new input vectors, and also the power of each vector which is 

weighted according to its importance within the sub-space (local space) to 

which the new input vector belongs.  If we assume that all the variables 

from a data set are used and the distance of vectors is calculated in a V-

dimensional space with all input variables having the same impact on the 

output variables.  However, the different variables might vary in importance 

when classifying vectors into classes if these variables are ranked by their 

discriminative power in classifying vectors over the entire V-dimensional 

Euclidean space.  As a result, it can be seen that variables might have a 



different ranking when we measure the discriminative power of the same 

variables for a sub-space of the problem space.  The output of each new 

input vector can be calculated by using this type of ranking within the 

neighbourhood of k-nearest neighbour vectors. 

 
The WWKNN algorithm is based on the following formulas: 

2
, ,

1...
( )

k

j i l l
l n

d c x x
=

= −∑ j l

n

                          (2.11) 

, , ,( , ,... )i i l i l iC c c c=                                                                         (2.12) 

where  is the distance between the new input vector jd ix  and its nearest 

neighbour vector jx , k  represents as the number of nearest neighbours, 

whereas the parameter  is the coefficient weighing variable ,i lc
lx in relation 

to its nearest neighbour vector ix  which is calculated using the Signal-to-

Noise-Ratio (SNR) supervised method to rank each variable across all 

vectors in the neighbourhood data set Di: 

, 1 1/ ( 1, 2,..., )i lC S S l n= =∑                                       (2.13) 

( 1) ( 2) ( 1) ( 2)
1 1 1 1 1/ ( )class class class classS x x Std Std= − +                             (2.14) 

where the parameters and  represent the mean values of 

variable 

( 1
1

classx ) )( 2
1

classx

lx  for the samples from Class 1 and Class 2, respectively.  In 

addition, the parameters and represent the standard 

deviation in data set Di belonging to Class 1 and Class 2, respectively. 

(class1) Std1Std ( 2
1

class )

  
2.4. Personalised Knowledge Discovery Through Personalised Modelling 

The literature suggests that inductive modelling is concerned with the creation of a 

global model which is derived from an entire problem space.  The model obtained is 

then recalled for application to every new input data.  In most cases, a global model is 

developed based on the inductive modelling approach that covers the entire problem 

space and is denoted as a single function.  
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In contrast, transducive modelling is used to create a local model for every new input 

data based on the nearest neighbours within the existing problem space.  The local 

model in this case indicates a sub-space (local space) of the given problem space.  In 

general, personalised modelling is one type of local modelling, where the personalised 

model is developed only for an individual vector of the problem space.  The basic 

philosophy behind the personalised modelling approach is that every person is different 

from all others, thus he/she will benefit from having a personalised model and 

personalised treatment.  Examples of personalised modelling are: KNN (K-nearest 

neighbor), WKNN (Weighted K-Nearest Neighbour), and WWKNN (Weighted-

Weighted K-Nearest Neighbour).  KNN is defined as a method for classifying a set of 

samples based on nearest neighbours in a multi-dimensional feature space.  In contrast, 

in the WKNN algorithm, the output of a new input vector is calculated not only 

dependent upon its nearest neighbours, but also upon the distance between the existing 

vectors and the new input vector (weight vector w).  The WKNN algorithm has recently 

been successfully extended to the WWKNN algorithm (Kasabov, 2007a), where there is 

one more weight is involved, which is the power of each vector which is weighted 

according to its importance within the local space to which the new input vector belongs. 

 
In this study, the personalised modelling is integrated with the GA, which is defined as 

a technique that mimics biological evolution as a problem-solving strategy.  GA is able 

to manipulate many parameters simultaneously, such as the optimal number of 

parameters for: number of threshold, number of nearest neighbours and significant 

features that need to adopted for every personalised model.  The novel GAPM system 

will be applied to a comparative analysis of classification accuracy between GA-based 

personalised modelling (WKNN and WWKNN) and global (SVM) and local modelling 

(ECF) on several data sets.   

 
As mentioned above, under this hypothesis it is assumed that GA-based personalised 

modelling will provide better accuracy than the global and local modelling approaches.  

In addition, the GA-based personalised modelling will provide more precise 

personalised knowledge and a better understanding of meaningful information. 

 
2.5. Summary 

In this chapter, a comparison between the inductive and transductive inference 

approaches was presented, including an introduction to the basic theory behind both 
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approaches, how they work, their areas of application and a description of the various 

algorithms based on these approaches.  Furthermore, a number of opening questions 

that need to be considered when implementing transductive inference models were 

brought forward and these questions will be studied further in the following chapter. 
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Chapter 3 

Feature Selection, Cross-Validation, and Optimization 
Methods: A Review 

 

3.1. Introduction 

Chapter 2 introduced a literature review of personalised modelling methods which 

included a comparison of inductive modelling and transductive modelling approaches, 

how they work, and their applications.  In this chapter, a number of other techniques 

involved in this study are reviewed, including an overview of the feature selection 

procedures, cross-validation techniques, and genetic algorithm. 

 
3.2. Overview of Feature Selection Methods 

During the last few years, feature selection techniques in the machine learning field 

have motivated much study, and have become increasingly necessary to various 

bioinformatics applications especially.  Nowadays, there are a growing number of 

applications for this technique in many different fields, such as data mining (Chen, Han 

& Yu, 1996; Provost & Kolluri, 1999), pattern recognition (Stearns, 1976; Ferri et al., 

1994), and text learning (Yang & Pedersen, 1997).  In general, a feature selection 

technique is defined as a fundamental step of the data mining process to find an optimal 

set of features, using certain learning algorithms from a given set of features.  The 

primary goals of this technique are described as follows: 

 to improve classification or prediction accuracy 

 to speed up and reduce the cost of learning stages 

 to avoid over-fitting and improve classification or prediction model performance 

 to reduce the dimensionality of the feature space and to indentify the relevant 
features to be applied for a successful classification or prediction task. 

 
In order to efficiently and properly achieve the goals, the choice of an appropriate 

feature selection model, to describe a learning system and evaluate the performance of a 

feature subset, is regarded as an important decision in the domain of machine learning.  

In general, feature selection techniques are organized into two common models, 

depending on whether the machine learning algorithm is adopted as a part of the 

selection method: filter and wrapper, which are introduced in the following sections. 

 



 Filter Model 

In the filter model, feature selection and the classifier learning are separated in a feature 

subset, which means features are first selected and then the classification model is 

induced, based on the selected features. This type of feature selection approach is 

independent of any machine learning algorithms.  Figure 3.1 presents the basic structure 

of a simple filter model, where the feature selection process starts with a given training 

set characterized by the full feature set, and then various feature subsets are generated 

and evaluated by using the feature subset generator and evaluator.  The final evaluation 

of a specific feature subset is accomplished by training and testing a specific 

classification model.  Finally, ultimate classification accuracy is estimated based on the 

test set. 
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Fig.3.1: Basic structure of a simple filter model. 
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The filter model is one of the simplest and most commonly used feature selection 

techniques in microarray literature.  The advantages of this model are that there is no 



machine learning process involved while feature selection occurs, and time 

consumption is much lower than the wrapper model.  However, a major drawback of 

this model is that it ignores interaction with classifiers, thus classification performance 

is not optimal. 

 
The principal type of filter model is the Signal-to-Noise Ratio (SNR) ranking procedure.  

SNR is a supervised method, which is defined as a calculated ranking number for each 

variable to identify how well this variable distinguishes two different classes.  Moreover, 

it is able to efficiently reduce the dimensionality of a data set.  The basic idea behind 

this approach is that begins with the evaluation of an individual gene and iteratively 

examines the informative genes in the rest of data set in terms of statistic criterion.  

Mathematically speaking, it can be formulated with the following equation: 
( 1) ( 2) ( 1) ( 2)

1 1 1 1 1/ ( )class class class classS x x Std Std= − +                                      (3.1) 

where the parameters and represent the mean values of variable ( 1
1

classx ) )( 2
1

classx lx  for 

the samples from Class 1 and Class 2, respectively.  In addition, the parameters 

and represent the standard deviation in an available data set that 

belong to Class 1 and Class 2, respectively. 

( 1
1

classStd ) ( 2)ss
1

claStd

 
Most recently, SNR has been successfully applied in the area of molecular classification 

to evaluate the informativeness of each individual gene.  Furthermore, the 

implementation of this approach has been widely used in various novel approaches, 

such as a hybrid method (Goh, Song et al., 2004) and a univariate ranking method (Lai 

et al., 2004).  In this study, the SNR ranking procedure is applied on SVM and ECF 

feature selection process. 

 
 Wrapper Model 

In the wrapper model, a feature subset procedure is defined, and various feature subsets 

are generated and evaluated using a feature subset generator and evaluator.  The 

evaluation of a specific feature subset is accomplished by training and testing with a 

specific classification model.  A search algorithm is then wrapped around the 

classification model to search the space of all feature subsets.  Figure 3.2 demonstrates 

the basic structure of a simple wrapper model. 
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Fig.3.2: Basic structure of a simple wrapper model. 
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The wrapper model is one of the simplest and most commonly used feature selection 

techniques in machine learning applications.  In contrast to the filter model, the 

advantages of the wrapper model are that it has interactions with the classifier while 

selecting features, as well as providing more accurate performance than the filter model.  

However, the disadvantages of this model are that it is very computationally expensive 

when compared with the filter model, and the evaluation results heavily depend on the 

inductive algorithm (also known as the central machine learning algorithm). 
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3.3. Overview of Cross-Validation Techniques 

The choice of an appropriate data splitting/sampling strategy is critical for the 

verification of final experimental results (Braga-Neto, Hashimoto, Dougherty, Nguyen 

et al., 2004; Allison, Cui, Page, & Sabripour, 2006).  Up to now, cross-validation is the 

most popular data splitting method which has been successfully applied in microarray 

data analysis, investigating the performance of neural networks, and estimating the 

generalization ability of a classifier (also known as generalization error).  Cross-

validation (also called “rotation estimation”) is defined as an optimal method for 

measuring how well the results of a statistical analysis can generalize to an independent 

data set.  The main idea behind this method is to split the available training set into two 

parts: one is a training set used to train the model, another is a testing set used for 

estimating the performance of the trained model.  The primary goal of this method is to 

reduce generalization error and the possibility of over-fitting that is generally 

accomplished by sequentially leaving out parts of the original sample in the available 

data set and then performing a multi-variable analysis.  This process goes on till all the 

samples in the data set have been estimated (Ransohoff, 2004). 

 
In GAPM, this method is adopted to collaborate with the WKNN and WWKNN 

algorithms in order to decrease the generalization error in the classification stages, thus 

ensuring the models can provide the best accuracy throughout the experiments.  A brief 

overview of two common cross-validation techniques is described below: 

 K-fold Cross-validation 

In K-fold cross-validation, the entire data set is roughly divided into K equal-sized 

subsets.  For each of K experiments, an individual sub-sample serves as the testing data 

for testing the model, while the remaining K−1 sub-samples serve as training data.  The 

process of cross-validation is repeated by K times/folds (commonly 10-fold is used) 

with each of the K sub-samples being estimated exactly once as the testing data (Figure 

3.3 shows a general K-fold cross-validation process).  Once all samples have been 

estimated, the overall generalization error is calculated as the average error rate across 

all K times experiments. 

 

 

 

 

http://en.wikipedia.org/wiki/Statistics
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Fig.3.3: Overview of a general K-fold cross-validation process. 
 
The advantage of this method is that all samples are used for both training and testing, 

and each sample is used for validation exactly once.  On the other hand, the 

disadvantage of this method is that the training process needs to be repeated by K times 

computations to make an evaluation. 

  
 Leave-One-Out Cross-Validation (LOOCV) 

The leave-one-out cross-validation algorithm was originally proposed by Craven and 

Wahba in 1979, and defined as an almost unbiased validation schema for the optimal 

generalization ability of a classifier.  Leave-One-Out Cross-Validation is in point of fact 

a type of K-fold cross-validation, where the number of folds (K) equals the number of 

samples (N) in an available data set.  The basic idea behind this algorithm is to use N-1 

samples for training and the remaining sample for testing each experiment.  The process 

of LOOCV is repeated by N times, until every sample in the available data has been 

estimated, with all samples being used for training except one which is left out for 

testing (Figure 3.4 shows the general leave-one-out cross-validation process).  Finally, 

the overall result is calculated by taking the average performance of all N times 

experiments. 
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Fig.3.4: Overview of a general leave-one-out cross-validation process. 
 
The advantage of this method is it makes good use of the available data as each pattern 

used is used both as training and testing data.  However, the disadvantage of this 

algorithm is that it is very computationally expensive for use in neural networks due to 

the large amount number of times the training process is repeated. 

 
3.4. Genetic Algorithms as Optimization Methods 

The Genetic Algorithm (GA) is defined as an optimization and machine learning 

technique, which was primarily derived from the principles of natural selection and 

genetics (following the biological evolution theory originally proposed by Charles 

Darwin).  This algorithm has been widely studied, experimented and applied to various 

fields by John Holland in the late 1950s and early 1960s, and one of his students, David 

Goldberg, at the University of Michigan in the 1960s and 1970s (Goldberg, 1989). 

 
GA is an optimal method for solving optimization problems by manipulating from a 

population of chromosomes (e.g. strings of “0’s” and “1’s”) to a new population using 

the principle of natural selection in cooperation with genetic operators like crossover 

and mutation.  In other words, GA investigates a set of points called the population, and 

various biological genetic operators like selection, crossover and mutation are applied 

to the chromosomes in the population in order to provide better output solutions.   In 

general, each chromosome is assigned a fitness value in the current population, which 

depends on how well that chromosome solves the problem.  Figure 3.5 presents a 

flowchart of the basic structure of a typical genetic algorithm: given an initial 

population of chromosomes, GA solves an optimization problem by randomly selecting 
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chromosomes as parents based on their fitness function, the chromosomes with higher 

fitness are more likely to be selected as parents.   Once the parent chromosomes are 

selected, the parents are combined to create offspring, thus n offspring are created 

through recombination/crossover of n parents.  The n offspring are randomly mutated 

and survive to replace the n parents in the population.  The process of reproduction and 

replacement goes on until one or more termination criterions are met (as described in 

section 4.3). 
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Fig.3.5: The basic structure of a simple genetic algorithm. 
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GA has been widely applied to various disciplines, such as science, engineering, 

economics, and political science to solve complex optimization problems.  For instance, 
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GA has been widely utilized in game theory to evolve strategies for the Prisoner's 

Dilemma (which is a simple two−person game developed by Merrill Flood and Melvin 

Dresher in the 1950s), because it is seen as an optimal method for solving real world 

phenomena (Axelrod, 1984; Axelrod & Dion, 1988).  In addition, it has been 

successfully applied in computer science to efficiently evolve sorting networks in the 

1980s (Hillis, 1992).  The reasons why GA has been applied in various fields are: 

 GA performs well with various data, such as experimental data, numerically 
generated data, or analytical functions. 

 
 GA is able to manipulate a large number of parameters simultaneously, including 

continuous and discontinuous parameters. 
 

 GA is parallel, because it has multi-offspring, it can search the output solutions in 
many directions. 

 
 By reason of parallelism, GA can perfectly estimate numerous schema at once, 

thus it performs especially well in solving problems (e.g. non-linear) where the 
space of all potential output solutions are too huge to search exhaustively in any 
reasonable amount of time. 

 
As stated above, GA can be seen as an appropriate and popular method for dealing with 

complex optimization problems.  It cannot only reduce the computational complexity 

and dimensions of the feature space, but it can also increase the performance of the 

classifiers.  As a result, in this study, a typical GA is applied to serve as an optimal 

method to maximize the classification ability of GA-based personalised modelling 

(GAPM) by selecting an optimal number of parameters for: number of threshold, 

number of nearest neighbours and significant features that need to be adopted for every 

personalised model.  In addition, it creates models that can provide the best accuracy 

using a combination of these optimal parameters, and it provides more precise 

personalised knowledge and a better understanding of meaningful information. 

 
3.5. Summary 

This chapter reviewed a set of methods involved in the GAPM, such as feature selection 

procedures, the cross-validation techniques, and genetic algorithm optimization 

technique.  Feature selection refers to a fundamental step in the data mining process 

which selects an optimal set of features under certain learning algorithms.  In this way 

we can efficiently reduce the number of features and only focus on the most important 

ones, thus achieving better accuracy and providing more precise personalised 

knowledge.  Cross-validation is defined as a method to measure how well the results of 
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a statistical analysis can generalize to an independent data set.  This technique is seen as 

a most popular data splitting method which has been successfully applied in various 

fields.  GA is primarily derived from the principles of natural selection and genetics, 

which is seen as an appropriate and popular method for dealing with complex 

optimization problems. 
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Chapter 4 

A Novel Framework and System for Personalised Modelling 

4.1. Introduction 

Chapter 2 presented a review of the transductive modelling approach, including how it 

differs from inductive modelling, how it works, its applications in various areas, as well 

as several opening questions that need to be considered.  In this chapter, a novel GA-

based framework and system for personalised modelling based on the transductive 

modelling approach is introduced in order to study and address the opening questions 

raised in Chapter 2.  This novel system allows users to select and optimise the most 

important features and nearest neighbours for a single sample in relation to a certain 

problem based on a weighted variable distance measure.  Thus, it can ensure greater 

accuracy and personalised knowledge when compared with the global modelling and 

local modelling approaches. 

 
This chapter begins with the motivation behind the development of this novel 

framework and system.  Secondly, a novel system called GA-based Personalised 

Modelling (GAPM) is introduced, and the settings and working of this system with 

WKNN and WWKNN as base models are explained.  Finally, the knowledge discovery 

from the novel GAPM system is presented. 

 
4.2. Motivation 

As stated in Chapter 2, the transductive approach has been successfully implemented in 

medical and clinical decision support systems, time-series prediction problems, etc., 

where a personalised model is created for a single new input vector.  This approach 

provides good accuracy for personalised models.  However, there are a number of 

questions that need to be considered when implementing the transductive inference 

approach, such as “how many nearest neighbours should be selected?”, and “what 

features are important for a specific input vector?”  A novel framework and system for 

personalised modelling are developed to study and address these opening questions 

based on the existing method (see Figure 4.1).  As presented in Figure 4.1, in the novel 

GAPM system, the models, selected features, and the numbers of nearest neighbours are 

integrated into one chromosome and optimized by using genetic algorithms in order to 

significantly improve the accuracy of personalised modelling when compared with the 



global modelling and local modelling approaches.  This can provide a better 

understanding of personalised knowledge.  Theoretically speaking, the accuracy of a 

personalised model largely relies on some specific parameters that might have different 

values for every new input vector, such as the number of nearest neighbours, and 

number of selected features.  As a result, it is essential to optimise those parameters in 

order to effectively improve the accuracy of a personalised model, as well as correctly 

derive personalised knowledge.  Most recently, the genetic algorithm has been 

successfully adopted as an appropriate procedure to efficiently optimise those 

parameters for solving various classification or prediction tasks.  In the next section, the 

novel system called GA-based Personalised Modelling (GAPM) is introduced in detail, 

and the working of this system with WKNN and WWKNN as base models is explained. 

 
Fig.4.1: An overview of the novel GAPM system. 
 

4.3. Settings and Operations of a Novel GAPM Framework and System 

Settings of the Novel GAPM Framework and System 

Before a description of the novel system and its working are given, the five basic 

components of GA in GAPM (chromosome, fitness function, selection/reproduction, 

genetic operators (e.g. crossover and mutation), and termination criteria) are briefly 

introduced. 

(1) Chromosome 

To solve an optimization problem, GA usually begins by defining a population of 

chromosomes (also called genomes), which identifies a possible output solution to the 

problem that GA tries to solve.  A chromosome is a set of parameters, and the parameter 
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set is to be coded as a finite sequence of values.  In general, the chromosome is 

represented as strings of 0’s and 1’s (e.g. 0010110011 – a binary chromosome of length 

10).  Good coding is possibly the most important factor for the performance of a GA.  

Up until now, there have been various coding strategies proposed, but generally binary 

encoding is one of the most common and popular techniques. 

 
In this study, the threshold (T), the total number of samples (K) and the total number of 

features (F) are used as the input parameters needing to be optimized using the proposed 

GAPM.  Figure 4.2 shows the binary chromosome denotes the genotype of these three 

parameters: where , , Tg Kg Fg  indicate the model parameters; , Tn Kn ,  indicate 

the number of bits of the threshold, k-nearest neighbours and feature mask, respectively. 

Fn

 
Fig.4.2: The chromosome comprising three parts: T, K, and F. 
 
One of the most important steps in applying a GA is choosing a suitable encoding 

method to convert the real problem into biological terms.   There are four commonly 

used encoding methods: binary encoding, permutation encoding, direct value encoding 

and tree encoding.  Binary encoding is the most common and simplest method.  In this 

method, every chromosome is represented as a string of bits, 0 or 1.  In this study, the 

parameters {T, K, F} should be converted into phenotype by using the following 

equation: where P is the phenotype of bit string, whereas minp and maxp represent the 

minimum and maximum values of the parameter respectively, d is the decimal value of 

the bit string, and l is the length of the bit string. 

P = minp + ((maxp - minp) * d) / 2l – 1                                     (4.1) 

Generally, GA starts with a group of chromosomes known as the population.  The 

initial population begins with a randomly selected set of bits for threshold, K-value and 

subset of features.  The threshold ranges from a minimum value of 0.1 to the maximum 

value of 1.  The K-value ranges from one to the maximum size of the sample in a 

problem space.  The feature subset is initialized to one feature in each population as the 

starting point, thus the number of populations is equal to the number of features in a 

problem space to ensure that each feature has an equal opportunity of getting selected.  
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In order to efficiently select the most significant features, a genetic feature selection 

procedure is adopted in this study to solve the feature selection problem, employing the 

idea from Siedlecki and Slansky (1989).  Each feature is represented by “0” for rejected 

features and “1” for selected features.  GA is a powerful feature selection technique, 

especially when the dimensions of the original feature space are very high (Siedlecki & 

Sklansky, 1989).  Figure 4.3 presents the number of bits of the threshold, k-nearest 

neighbours and feature mask in GAPM. 

 
 
Fig.4.3: The number of bits of the threshold, k-nearest neighbours and feature mask in the GAPM. 
   
(2) Fitness Function 

Each of the chromosomes in a generation must be evaluated based on the fitness 

function.  A fitness function determines how well each chromosome solves the problem.  

In general, the process of evaluation is accomplished by examining the classification 

accuracy of each chromosome, and averaging the accuracy achieved using a particular 

chromosome with an optimal number of threshold (T), K-value (K) and feature subset 

(F).  A chromosome with a high fitness value has a high probability of being selected in 

the next generation.      

 
(3) Selection 

Selection is defined as a method to select chromosomes from the current population for 

reproduction.  Assume that there is a population of size 4N, the selection procedure 

randomly selects four chromosomes to serve as parents based on their fitness values.  

As a result, four offspring are generated for the new population by using crossover and 

mutation genetic operators (described below). This selection-crossover-mutation cycle 

goes on until the new population contains 4N chromosomes.  The chromosomes have a 

high fitness value and a high probability of being selected for reproduction. 

  
In this study, the most common procedure – roulette wheel selection is adopted to select 

the individual parent chromosomes to be copied over into a new generation.  In roulette 

wheel selection, the individuals are given a probability of being selected that is 
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generally taken to be directly proportional to their fitness value. Figure 4.4 illustrates 

the basic structure of a simple roulette wheel selection algorithm: the wheel has the 

same number of slots as the population size, where the size of each slot is proportional 

to the fitness value of the related chromosome in the population.  A fit chromosome is 

selected by spinning the roulette wheel and noting the position of the arrow when the 

wheel stops. 

 
Fig.4.4: Overview of a simple roulette wheel selection algorithm. 

 
(4) Genetic operators 

Once a pair of fit chromosomes has been selected, they have to be randomly altered in 

order to improve their fitness for the next generation (also known as reproduction).  

There are two basic techniques to accomplish this task: crossover and mutation, which 

are described as follows: 

 Crossover 

The crossover operator is an important feature of GA, utilized to exchange genes 

between a randomly selected a pair of parent chromosomes by recombining parts of 

their genetic material.  This operation is performed probabilistically, combining parts of 

two parent chromosomes to produce offspring.  Generally, three types of crossover 

operator can be adopted to generate offspring from two randomly selected parent 

chromosomes: single-point crossover, two-point crossover, and  uniform crossover. 

 
In this study, the most common type of crossover, single-point crossover is used.  In 

single-point crossover, a random point is chosen (also known as the crossover point) on 

the two selected parents to split the parents at this point.  As shown in Figure 4.5, each 

child takes one part of a chromosome from each parent.  Child 1 takes the head of the 

chromosome of Parent 1 and the tail of the chromosome of Parent 2, while Child 2 takes 

the head of Parent 2’s chromosome and the tail of parent 1’s chromosome.  The 
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crossover rate is defined as a probability that is applied when the search algorithm uses 

a breeding rate to select chromosome(s) for crossover.  In some cases, genetic searches 

begin with a low crossover rate and then increase the crossover rate if the average 

fitness value of the population does not significantly improve over a specified number 

of generations.  In general, a high crossover rate may introduce new strings more 

quickly into the population, while a low crossover rate may sometimes cause stagnation.  

Therefore, it is essential to correctly define the crossover rate that will facilitate optimal 

performance.  A default crossover rate of “0.8” is chosen in this study. 
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Fig.4.5: Example of a single-point crossover scheme. 

 
 Mutation 

Mutation is another major genetic operator utilized to generate new offspring from a 

single parent.  This operation is critical as it ensures that genes are not all exactly the 

same in the new population.  By looping through all alleles, if one allele is selected for 

mutation, it can be changed either by a small amount value or replaced with a new value.  

As shown in Figure 4.6, positions 3 and 7 of the chromosome have been subjected to 

mutation. 

 
The mutation rate is defined as a probability.  It is used when quite high since every 

chromosome is likely to have at least one of its genes modified through a mutation 

technique.  In most cases, the mutation rate should be very low in order to sustain 

genetic diversity but not overwhelm the population with too much noise.  In general, a 

high mutation rate may reduce convergence time, whereas a low mutation rate may 

avoid any bit positions getting stuck to a single value.  In this study, a mutation rate of 

“0.01” has been chosen that has been identified as a default setting in most cases. 

Parent 1 0 00 1 1 0

Cross Point

Parent 2 1 1 0 1

Cross Point

1 0

Child 1 0 1 0 1 1 0

Child 2 1 1 0 0 1 0



 1 1 0 1 0 0 1 0Parent 
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 Child 1 1 1 1 0 0 0 0

Fig.4.6: Example of a simple mutation operation. 

 
(5) Termination Criteria 

In general, the process of chromosome generation goes on until one or more of the 

following termination conditions are met: 

 The use of an allotted amount of CPU time. 
 

 The number of generations is greater than some pre-defined threshold. 
 

 The number of generations has reached maximum-number, maximum-generation, 
and so on. 
 

 The average fitness value of a population becomes more or less constant over a 

particular number of generations. 

 
Once the termination criteria are met, the chromosome with the best fitness value of all 

generations is returned as the best population of the output solution.  In this study, based 

on the maximization of the fitness function, GAPM proceeds via its generations to 

result in an optimal set of values for the number of threshold (T), the number of k-

nearest neighbours (K) and the number of features (F) in a problem space.  The GAPM 

stops running when all generations are complete. 

 
Operation of the Novel GAPM Framework and System 

WKNN and WWKNN are the base models of GAPM.  The discovery of effective 

weight vectors for a WKNN algorithm is a difficult optimization problem with a very 

large search space.  This is just the sort of problem that GA is good at, thus it would 

seem that GA working together with a WKNN algorithm is a strategy for a high-

performance classification algorithm.  In contrast, WWKNN is a novel personalised 

modelling algorithm recently proposed by KEDRI.  The basic idea behind the WWKNN 

algorithm is quite similar to the WKNN algorithm.  As a result, in this study, both 

WKNN and WWKNN algorithms work together with the genetic algorithm to 

efficiently maximize classification performance.  The purpose of this novel GA-based 

personalised modelling system is to allow users to select and optimise the most 
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important features and nearest neighbours of a single sample in relation to a certain 

problem based on a weighted variable distance measure. 

 
There are two major contributions made by this novel GAPM system:  (1) It allows 

users to use GA–optimized WKNN and WWKNN algorithms to create classification 

models to test classification accuracy in order to provide more accurate and predictive 

knowledge and information for investigators, and (2) It also allows users to create 

personalised prediction models for each new individual input vector by using WKNN 

and WWKNN predication algorithms.  However, one limitation is that the genetic 

algorithm does not collaborate with the two base algorithms to create a personalised 

prediction model for a single vector, thus the output of a single target vector might not 

be optimal. 

 
The two contributions of this novel GAPM system are described as follows: 

1) Using GAPM to Create Personalised Classification Models 

Figure 4.7 presents an overview flowchart of GA-based feature selection and parameter 

optimization for WKNN and WWKNN algorithms in GAPM.  The basic steps involved 

to create a personalised classification model are introduced below: 

Step 1: Data splitting.  Firstly, the entire data set is randomly split into two parts: 

“model creation” (e.g. 90%) for training and “model validation” (e.g. 10%) 

for testing using an interleave data splitting method.  The training set (90%) 

is then loaded into the novel GAPM system, the system further randomly 

selects part of the data (e.g. 70%) for training and the remaining (e.g. 30%) 

for testing to train the classifiers.  In contrast, the testing set (10%) is used to 

calculate final overall classification accuracy.  The main advantage of data 

splitting is to ensure a totally unbiased verification process for all 

experiments. 

 
Step 2: Converting genotype to phenotype.  Once the data is loaded, the parameters 

(Threshold (T), k-nearest neighbours (K) and feature mask (F)) need to be 

converted from genotype to phenotype using Equation 4.1. 

 
Step 3: Selecting feature subset.  Once each chromosome is converted into a 

phenotype, an initial subset of features is established. 
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Step 4: Evaluating fitness function.  For each chromosome indicating T, K, and F, 

the training data (e.g. 70%) is used to train the WKNN and WWKNN 

classifiers, while the testing data (e.g. 30%) is used to evaluate classification 

accuracy.  Once accuracy is calculated, each chromosome is evaluated by 

the fitness function. 

 
Step 5: Meeting termination criteria.  If the termination criteria are met, the entire 

process is stopped; otherwise it carries on with the next generation. 

 
Once the termination criteria are met, the optimal number of parameters {T, 

K, F} is further adopted to evaluate the final output by using WKNN and 

WWKNN algorithms that applied to the testing set (10%). 

 
Step 6: Adopting genetic operators.  The GAPM investigates better output solutions 

by using genetic operators, such as selection, crossover, and mutation. 



 
Fig.4.7: Flowchart of GA-based integrated feature selection and parameter optimization for the 
WKNN and WWKNN classifiers. 
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2) Using GAPM to Create Personalised Prediction Models 

The main steps for creating personalised prediction models for an individual input 

vector Xi using WKNN and WWKNN algorithms are presented in Figure 4.8: 

Step 1:  Define the nearest neighbour Ni for a target single vector Xi in a data set D1, 

meaning the target vector Xi is used for testing and the rest are used for 

training.  Therefore, D2 is a new data set which is derived after defining the 

nearest neighbour for the target vector from the data set D1. 

 
Step 2: The system automatically selects the most significant features Vi by using 

the Signal-to-Noise Ratio (SNR) ranking procedures (as described in section 

3.2) built in the D2 data set.  Thus, D3 is a new data set which is derived after 

ranking the most important features from the data set D2. 

 
The entire feature selection process involves several steps: 

(1) Firstly, the process begins by applying SNR ranking procedures to 

arrange all the available features in descending order. 

 
(2) Once all the features are ranked in correct order, the top three features 

are applied to train the WKNN and WWKNN prediction methods in a 

leave-one-out mode (randomly selecting one sample from D3 for 

testing and the rest for training, but without using the target input 

vector Xi) to test the average accuracy of the model built in the D3 data 

set.  Thus, the accuracy obtained from these three features form the 

base classification accuracy. 

 
(3) The next feature from the ranked set is added to the previous three 

features to calculate accuracy, if the accuracy is better than the base 

classification accuracy, then the feature is selected into the selection 

pool. This process goes on iteratively for the remaining features until 

all features are studied. 

 
Step 3: If the accuracy calculated in the Step 2 does not satisfy users, go back to the 

Step 1 to find the neighbourhood of Xi and the feature selection process is 

repeated until the best accuracy is achieved.  In contrast, If the accuracy 

satisfies users, then apply the WKNN and WWKNN prediction algorithm in 



a leave-one-out mode once more (Xi is used for testing, and the entire D3 

data set is used for training) to calculate the output Yi for the target input 

vector Xi by using the optimal number of nearest neighbours Ni and the 

optimal number of features Vi.   

Data set D1 
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Fig.4.8: Flowchart of creating personalised prediction models for a new input vector Xi using the 
WKNN and WWKNN algorithms. 
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4.4. Knowledge Discovery from the Novel GAPM System 

In this research a novel GAPM system based on the transductive reasoning approach 

has been developed. This approach allows selection and ranking of the most important 

features and nearest neighbours for a new input sample in relation to a certain problem 

such as a classification or a prediction task. 

 
This novel system integrates the typical GA with weighted variable distance measure 

approaches, WKNN and WWKNN, to efficiently maximize classification performance.  

The GA has been incorporated into the personalized modelling system as it has the 

potential to generate an optimal number of nearest neighbours, an optimal set of features, 

and simultaneously perform parameter selection for WKNN and WWKNN.  As 

mentioned above, the novel GAPM system is developed under the hypothesis that the 

GAPM system provides better accuracy when compared with global modelling and 

local modelling approaches.  In addition, this novel GAPM system provides more 

precise personalised knowledge and a better understanding of meaningful information. 

 
As stated previously, the crossover rate and mutation rate are two important parameters 

in the GA.  The values are dependent upon the kind of problem given.  In general, the 

performance of a typical GA might be significantly affected by changing the specific 

crossover rate and/or mutation rate.  One limitation of this study is that only one default 

crossover rate (0.8) and mutation rate (0.01) are chosen to investigate the performance 

of a typical GA.  As the right choice of parameter values is an important issue in the GA, 

future research needs to look at the relationship between the crossover and mutation 

rates, and how well a typical GA performs by using a different range of crossover and 

mutation rates. 

 
4.5. Summary 

In this chapter, a novel GA-based framework and system called GAPM was presented.  

This novel system allows users to select and optimise the most important features and 

nearest neighbours of a single sample in relation to a certain problem based on a 

weighted variable distance measure.   The two major hypotheses held here are: (1) the 

novel GAPM system might provide better accuracy when compared with global 

modelling and local modelling approaches, and (2) this novel system might also provide 

more precise personalised knowledge and a better understanding of meaningful 

information.  There is a need to look at the relationship between the crossover and 
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mutation rates, and how well a typical GA performs by using a different range of 

crossover and mutation rates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

Software Implementation of the Novel GAPM System 

5.1. Introduction 

This chapter begins with a presentation of the MATLAB implementation of the novel 

GAPM system.  This is followed by an experiment run on a benchmark data set (e.g. 

Sonar) using NeuCom and the novel GA-based personalised modelling system to 

compare the classification accuracy of different algorithms.  The results with detailed 

analysis are described in the final section. 

 
5.2. MATLAB Implementation of the Novel GAPM System  

The novel framework and system was developed using MATLAB, based on the 

transductive inference approach and the evolutionary algorithms of genetic algorithm 

for parameter optimization.  MATLAB is a high-performance and easy-to-use language 

that has been widely applied to various areas, and it is a standard instructional tool for 

introductory and advanced courses in mathematics, industry, engineering, and science.  

Figures 5.1 and 5.2 present the main graphical user interface (GUI) for GA-optimized 

WKNN and WWKNN algorithms, respectively. 

 
Fig.5.1: Main GUI screenshot for the GA-optimized WKNN algorithm. 
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Fig.5.2: Main GUI screenshot for the GA-optimized WWKNN algorithm. 

 
The main stages for creating personalised classification models and personalised 

prediction models using GAPM are described as follows: 

1) Creating Personalised Classification Models 

Step 1: Load Data Set 

The input data set needs to be pre-processed (e.g. data normalization and data splitting) 

before being loaded into the GAPM.  This ensures that there are no missing values in 

the data set, and that it is a totally unbiased verification process for all experiments.  

Once the data set is pre-processed, it is ready to be loaded into the GAPM in “.txt” 

format.  The system allows users to load a single file (e.g. 70% of randomly selected 

data for training and 30% for testing), as well as allowing users to load multiple files 

(one for training and another for testing).  Once the data set is loaded, it can be 

visualized by clicking the “Visualise PCA” button to see how the entire data (only the 

top two features of samples are displayed) are distributed (see Figure 5.3).  Principal 

Components Analysis (PCA) is a powerful statistical technique used for reducing large 

and high-dimensional data set by removing redundancies and identifying correlation 

among a number of variables.  The applications of this technique have been widely 

adopted in various scientific areas, such as image processing and compression, face 

recognition, and molecular dynamics.  Most recently, this technique has been applied to 
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gene expression analysis to compute an alternative representation of the data by using a 

much smaller set of variables.  

 
Fig.5.3: An example of PCA visualization. 

 
In addition, the system also allows users to view or modify the loaded data set by 

ticking the “Add New Vector” check box and clicking the “View & Add” button (see 

Figure 5.4). 

 
Fig.5.4: View and Modify the loaded data set. 
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Step 2: Parameter Settings 

Once the data set is loaded, it is time to setup parameters for the proposed GAPM 

method, such as initializing the cross-validation times that collaborate with the GA–

optimized WKNN and WWKNN classification algorithms to test classification accuracy.  

At this point, the user will also select the parameters for the genetic algorithms in terms 

of: the number of generations (which represents the termination criteria for the GA), the 

number of populations (which is determined based on the number of features available 

in the loaded data set), the crossover and mutation rates, and the selection procedure 

(see Figures 5.1 and 5.2). 

 
Step 3: Start the Creation Process 

Once the data set is loaded and the parameters are setup, it is time to optimize the 

parameters {threshold (T), k-nearest neighbours (K), feature masks (F)}, and 

simultaneously train the WKNN and WWKNN classifiers by clicking the “Start” button.  

The system operates until one or more termination criteria are met. 

 
Step 4: Results Collection 

Once the system meets the termination criteria, the overall classification accuracy, and 

the optimal number of threshold (T), K-value (K) and feature subset (F) (“0” for rejected 

features and “1” for selected features) are returned into the main GUI screen.  The 

overall accuracy is calculated as:  

1 2 ...
100

Class Accuracy Class Accuracy ClassNAccuracyOvellAccuracy
numClass

+ +
=

∗
              (5.1) 

where the accuracy of each class is calculated as: 

accurate classification inaccurate classification
100

Accuracy
numSample

+
=

∗
                            (5.2) 

Once the optimal number of features is selected, the feature subset can be saved by 

clicking the “Save Feature(s)” button. 

 
As the overall classification accuracy returned to the main GUI screen is only based on 

the training set (90%), the optimal number of {T, K, F} should be further adopted to 

calculate the final output by using WKNN and WWKNN algorithms that are applied to 

the testing set (10%).  The main reason for this is to avoid a biased verification process 

for all of the experiments. 
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Step 5: Clear Screen 

Users can click the “Cancel” button to clear the screen and restart the new model 

creation process. 

 
2) Creating Personalised Prediction Models 

Step 1: Load Data Set 

The same steps are involved to load the data set into GAPM as in the previous section. 

 
Step 2: Find Nearest Neighbours 

A personalised prediction model for an individual new input vector is created based on 

its nearest neighbours.  To do this, users click the “Find Nearest Neighbours” button to 

investigate the nearest vectors to a target individual vector.  As shown in Figure 5.5, 

first of all, users need to initialize the number of k-nearest neighbours for the target 

vector and enter the index number of the target vector.  After doing that, users can 

visualise the selected nearest neighbours in the “Comment Window”, as well as 

visualise these selected vectors in a 3-D problem space by clicking the “Visualise 

Nearest Neighbours” button. 

 
Fig.5.5: The process of finding nearest neighbours for the target vector. 
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Step 3: Start the Creation Process 

Based on the nearest neighbours, a personalised prediction model for an individual 

target vector can be created by clicking the “Create a Prediction Model” button. 

 
Step 4: Results Collection 

Once the personalised prediction model is created, the final output of the target vector is 

returned in the “Command Window” (see Figure 5.6). 

 
Fig.5.6: An example of a prediction output for an individual target vector. 

 
Step 5: Clear Screen 

Users click the “Cancel” button to clear the screen and restart the new prediction models 

creation process. 

 
5.3. Experiment on Sonar Data Set 

In this section, a comparative experiment to compare the classification accuracy 

between the GA-based personalised modelling with global and local modelling 

approaches is performed on the Sonar benchmark data set. 

5.3.1. Data Set 

As presented in Table 5.1, the Sonar data set comprises 208 samples that are 

described as signals obtained from a variety of different aspect angles.  Each 

sample is a set of 60 attributes in the range 0.0 to 1.0.  Each attribute represents 

the energy within a particular frequency band, integrated over a certain period of 

time.  The class label associated with each signal is either 1 representing the 

object’s signals are recorded as a “rock” or class label 2 if recorded as “mine”. 

Table  5.1: Summary of Sonar data set used for experimentation. 
Data Set Name Class 1 vs. Class 2 # of Attributes # of Samples (class 1 / 2) 

Sonar Rock vs. Mine 60 (111 / 97) 208 
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5.3.1.1. Data Pre-Processing  

Firstly, the linear normalisation technique, which is also called the min-

max normalisation approach is applied to normalise the data.  The linear 

normalization refers to the fact that all normalized scores are in the range 

of [0, 1], with the minimal score mapped to 0 and the maximal score to 1.  

Theoretically speaking, it can be formulated by the following equation 

(Wu, Crestani, & Bi, 2001):  

Normalised Value = Vi – min(Vi) / max(Vi) – min(Vi)             (5.3) 

where V indicates the feature, min(Vi) is the minimum value of V, while 

max(Vi) is the maximum value of V.  Secondly, the entire data set is split 

into 90% for training and 10% for testing by using an interleave data 

splitting method.  The training set (90%) is then loaded into the novel 

GAPM system, the system randomly selects 70% of the data to be used 

for training and 30% for testing to train the classifiers.  In contrast, the 

testing set (10%) is used to evaluate the final classification accuracy by 

using WKNN and WWKNN algorithms.  Finally, features are selected 

before investigating the classification accuracy of the global and local 

modelling approaches by using the SNR feature selection method in 

NeuCom. 

 
5.3.2. Experimental Setup 

5.3.2.1. Software 

NeuCom and the novel GA-based personalised modelling (GAPM) 

system are the software used in this experiment.  NeuCom is used to 

evaluate the classification accuracy of the global and local modelling 

approaches.  In contrast, the novel GAPM system is used to calculate the 

classification accuracy of the personalised modelling approach.   

 
5.3.2.2. Experimental Method 

Unbiased verification method is employed in both feature selection and 

classification stages.  The classification accuracies of global, local and 

personalised modelling approaches are all calculated by using the Leave-

One-Out Cross-Validation (LOOCV) method. 

Step 1: Create a global model based on an inductive approach using 
the SVM algorithm in NeuCom. 
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Step 2: Create a local model based on an inductive approach using the 
ECF algorithm in NeuCom. 

Step 3: Create personalised classification models based on a 
transductive approach by running GAPM with GA–optimized 
WKNN and WWKNN algorithms. 

Once all models are created, these four classification models are then 

compared on the basis of their classification accuracy. 

 
5.3.3. Results and Analysis 

As demonstrated in Table 5.2, the SVM, ECF, WKNN and WWKNN 

classification models are investigated in this study.  For both GA-optimized 

WKNN and WWKNN algorithms, 15 populations are used and run for 20 

generations, where the cross-validation method used is 10-fold cross-validation.  

The accuracy achieved by the different models is presented in Table 5.2, where 

K is the number of nearest neighbours used in both WKNN and WWKNN 

algorithms.  The GA-optimized WWKNN algorithm achieves the best overall 

classification accuracy at 81.89% (80.54% for Class 1 and 83.23% for Class 2) 

when compared with other three algorithms.  This accuracy is achieved when the 

value of K is 18 and 33 features are selected.  The GA-optimized WKNN 

algorithm provides its best accuracy at 79.88% (79.32% for Class 1 and 80.45% 

for Class 2) when the value of K is 15 and 32 features are selected.  In contrast, 

the classification accuracy achieved by the SVM global model and the ECF local 

model is 76.19% (66.67% for Class 1 and 83.33% for Class 2) and 67.83% 

(65.65% for Class 1 and 70.00% for Class 2), respectively.  As a result, it can be 

seen that the GA-optimized WKNN and WWKNN algorithms provide better 

results when compared with the global modelling and local modelling 

approaches. 
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Table 5.2: Experimental results of Sonar data set in terms of model classification accuracy 
tested using SVM, ECF, WKNN and WWKNN models. 

 Global Local Personalised 

Model NeuCom NeuCom GAPM GAPM 

Inductive Transductive 

SVM ECF WKNN 

(k=15) 

WWKNN 

(k=18) 

Number of Selected Features 15 20 32 33 

Accuracy of Each Class (%) Class1 66.67 65.65 79.32 80.54 

Class2 83.33 70.00 80.45 83.23 

Overall Accuracy (%) 76.19 67.83 79.88 81.89 

 
5.3.3.1. Knowledge Discovery 

The reasons behind the improved classification accuracy using GA-

optimized WKNN and WWKNN algorithms are: 

Using GAPM to Select an Optimal Number of KNN 

 The GAPM automatically selects an optimal number of K values for each 

new input vector based on its nearest neighbours instead of manually 

selecting a K value.  In GAPM, the K value ranges from one to the 

maximum size of the sample in a problem space. 

 
 Using GAPM to Select an Optimal Set of Important Features 

The process of feature selection is another important reason for improved 

classification performance.  In the case of both GA-optimized WKNN 

and WWKNN algorithms, the features are automatically selected using 

the GAPM to verify the correct range of features.  The frequency of 

feature selection is calculated using the GA-optimized WKNN and 

WWKNN algorithms as shown in Figures 5.7 and 5.8, respectively.  The 

frequency of feature selection is calculated by executing the system 100 

times with fixed GA parameter optimization and cross-validation times 

(10-fold). 



 
Fig.5.7: The frequency of feature selection as calculated using the GA-optimized 
WKNN algorithm (Sonar data set). 

 

 
Fig.5.8: The frequency of feature selection as calculated using the GA-optimized 
WWKNN algorithm (Sonar data set). 
  

As presented in Figures 5.7 and 5.8, the attributes “11”, “12”, and “45” 

are the most frequently selected features using both GA-optimized 

WKNN and WWKNN algorithms after executing the GAPM system 100 

times.  The justification for executing the GAPM system 100 times is to 

investigate whether the order of the selected features remains the same, if 

there is an increase in the selection frequency of each feature.  However, 

since there is no significant increase in selection frequency, the order of 

the selected features remains the same.  Based on this hypothesis, it is 

assumed that the order of the selected features will not be affected by 

increasing the number of GAPM executions. 
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5.4. Summary 

This chapter began with a presentation of the MATLAB implementation of the novel 

GAPM system.  In addition, an experiment was run on the Sonar benchmark data set to 

compare classification accuracy between the GA-based personalised modelling 

approach against global and local modelling approaches.  The results proved that the 

GA-optimized WKNN and WWKNN algorithms provide better accuracy than the 

global and local modelling algorithms.  The reason being the GAPM system 

automatically optimises the number of nearest neighbours and features.  It was 

discovered that the attributes “11”, “12”, and “45” were the most frequently selected 

features using both GA-optimized WKNN and WWKNN algorithms after executing the 

GAPM system 100 times. 
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Chapter 6 

Comparative Analysis of GAPM versus Global and Local 
Modelling Using Leukaemia Cancer Data Set: A Case Study 
 

6.1. Introduction 

In Chapter 4, a novel GA-optimized framework and system for personalised modelling 

called GAPM was introduced which contains two base personalised algorithms: WKNN 

and WWKNN.  In this chapter, a detailed comparative analysis of global and local 

modelling approaches against personalised modelling approach is presented using 

NeuCom and the novel GAPM system on the leukaemia cancer data set.  SVM is the 

global algorithm selected for the comparison with the personalised modelling 

approaches, whereas ECF is the local algorithm selected for comparative analysis with 

personalised modelling. 

 
Firstly, the experiments begin with a problem specification section which introduces the 

basic concept of leukaemia cancer and the reasons for studying a data set related to this 

area.  Secondly, a description of the data set and the data pre-processing stages are 

presented.  This is followed by the experimental setup section which introduces the two 

pieces of software used in this study, as well as all the steps undertaken in the 

experiments with the methodology of each step.  Finally, the experimental results with 

detailed analysis are presented. 

 
6.2. Problem Specification 

In this study, a novel GA-based system for personalised modelling was developed that 

allows users to select and optimise the most important features and nearest neighbours 

for a single sample in relation to a certain problem based on a weighted variable 

distance measure in order to provide more precise accuracy and personalised knowledge 

when compared with global modelling and local modelling approaches.  As a result, the 

principle goal of this empirical study is to compare classification accuracy of global, 

local and personalised modelling approaches as well as to investigate their performance 

on the leukaemia cancer data set.  According to Mitchell (1997), classification accuracy 

is a common performance metric in machine learning and is widely applied to 

investigate the performances of classifiers.   Appropriate measures of classification 

accuracy are able to provide us with a measure of classification performance.  The most 



common tool utilized for defining classification accuracy is a confusion matrix.  A 

confusion matrix presents the number of correct and incorrect predicted classifications 

made by the model compared with the actual classifications in the testing data.  The 

matrix is n x n, where n is the number of classes.  Figure 6.1 illustrates a confusion 

matrix for a binary classification problem: the rows represent the instances in an actual 

class, while the columns represent the the instances in a predicted class. 

 
Fig.6.1: An overview of table of confusion. 
 
Cancer is a complex disease of the cells in the body, which arises from a variety of 

genome-based abnormalities.  For instance, leukaemia is one of the harmful cancer of a 

subset of white blood cells.  As mentioned by Dockerty (2008), leukaemia is the 

commonest cancer in New Zealand, with a significant increase in the incidence rate 

among children aged from 0-14 (4.89/100,000 person/year in 1953-57 to 7.92/100,000 

person/year in 1988-90).  Thus, the Leukaemia & Blood Foundation and the National 

Cancer Registry in New Zealand has commissioned several quality epidemiological 

studies, specifically on patients affected by leukaemia and related blood conditions.  As 

mentioned above, based on previous studies, the purpose of this experimental study is to 

investigate and compare classification accuracy by using different software and 

modelling techniques on the leukaemia cancer data set in order to facilitate new 

knowledge discovery to help developing more innovative and effective therapeutic 

treatments and diagnoses for leukaemia cancer. 

 
6.3. Data Set 

The biological problem on which all experiments were undertaken was to distinguish 

two types of Leukaemia: Acute Lymphoblastic Leukaemia (ALL) and Acute Myeloid 

Leukaemia (AML).  As presented in Table 6.1, the entire data is classified into to two 

datasets: (1) the training data set contains 38 bone marrow samples (27 ALL patients 

and 11 AML patients), obtained from acute leukaemia patients at the time of diagnosis, 

and (2) the testing data contains 34 bone marrow samples (20 ALL patients and 14 

AML patients).  For each patient, the data consists of 7,129 gene expressions. 
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Table 6.1: Summary of leukaemia data set used for experimentation. 
Data Set Class 1 vs. Class 2 # of Genes Training Samples 

(class 1 / 2) 
Testing Samples 

(class 1 / 2) 

Leukaemia ALL vs. AML 7129 (27 / 11) 38 (20 / 14) 34 

 

6.3.1. Data Pre-Processing 

The leukaemia cancer data set does not contain any missing values.  However, it 

is a very high-dimensional data set.  In addition, the data set is divided into two 

data sets.  Therefore, it is essential to pre-process the data before running the 

experiments. 

 
There are four major steps involved in pre-processing the data.  The first is to 

combine the training and testing data sets into one data set.  The second is to 

normalise the data.  A linear normalisation technique is applied to normalise the 

data (there is a detailed explanation in section 5.3.1.1.).  In the third step, the 

entire data set is split into 90% for training and 10% for testing using an 

interleave data splitting method.  The training set (90%) is then loaded into the 

novel GAPM system, and the system randomly selects 70% of the data to be 

used for training and 30% for testing to train the classifiers.  The testing set 

(10%) is used to investigate the final output using WKNN and WWKNN 

algorithms.  Finally, features are selected before investigating classification 

accuracy of the global and local modelling approaches using the SNR feature 

selection method in NeuCom. 

 
6.4. Experimental Setup 

6.4.1. Software 

NeuCom and the novel GAPM system are the pieces of software utilized in this 

study.  NeuCom is used to evaluate the classification accuracy of the global and 

local modelling approaches.  In contrast, the novel GAPM system is used to 

calculate the classification accuracy of the personalised modelling approach. 

 
6.4.2. Experimental Method 

Unbiased verification method is employed in both feature selection and 

classification stages.  The classification accuracies of the global, local and 

personalised modelling approaches are all calculated using the Leave-One-Out 
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Cross-Validation (LOOCV) method: 

Step 1: Create a global model based on an inductive approach using the SVM 
algorithm in NeuCom. 

Step 2: Create a local model based on an inductive approach using the ECF 
algorithm in NeuCom. 

Step 3: Create personalised classification models based on a transductive 
approach by running GAPM with GA–optimized WKNN and 
WWKNN algorithms. 

Once all models are created, these four classification models are then compared 

on the basis of their classification accuracy. 

 
6.5. Results and Analysis 

As shown in Table 6.2, the SVM, ECF, WKNN and WWKNN classification models are 

investigated in this study.  For both the GA-optimized WKNN and WWKNN 

algorithms, 20 populations are used and run for 25 generations, and the cross-validation 

method used is 10-fold cross-validation.  The accuracy achieved by the different models 

is presented in Table 6.2, where K represents the number of nearest neighbours used in 

both the WKNN and WWKNN algorithms.  The GA-optimized WKNN algorithm 

achieves the best overall classification accuracy at 95.10% (95.67% for Class 1 and 

94.53% for Class 2) when compared with other three algorithms.  This accuracy is 

achieved when the value of K is 10 and 32 features are selected.  On the other hand, the 

GA-optimized WWKNN algorithm achieves its best accuracy at 93.18% (94.52% for 

Class 1 and 91.85% for Class 2) when the value of K is 8 and 33 features are selected.  

In contrast, the classification accuracy achieved by the global SVM and local ECF 

algorithms are 90.70% (91.74% for Class 1 and 89.65% for Class 2) and 91.12% 

(92.53% for Class 1 and 89.71% for Class 2), respectively.  It can be seen that the GA-

optimized WKNN and WWKNN algorithms provide better results when compared with 

the global modelling and local modelling approaches. 
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Table 6.2: Results of leukaemia cancer data set in terms of model classification accuracy tested 
using SVM, ECF, WKNN and WWKNN models. 

 Global Local Personalised 

Model NeuCom NeuCom GAPM GAPM 

Inductive Transductive 

SVM ECF WKNN 

(k = 10) 

WWKNN 

(k = 8) 

Number of Selected Features 15 30 32 33 

Accuracy of Each Class (%) Class1 91.74 92.53 95.67 94.52 

Class2 89.65 89.71 94.53 91.85 

Overall Accuracy (%) 90.70 91.12 95.10 93.18 

 
6.5.1. Knowledge Discovery 

The results calculated by these four algorithms are all acceptable for real clinical 

problem of disease diagnosis.  The GA-optimized WKNN and WWKNN 

algorithms provide better results when compared with the SVM and ECF 

algorithms.  The reasons for improved classification accuracy are: 

 Using GAPM to Select an Optimal Number of KNN 

The GAPM automatically selects an optimal number of K values for each new 

input vector based on its nearest neighbours instead of manually selecting a K 

value.  In GAPM, the K value ranges from one to the maximum size of the 

sample in a problem space. 

 
 Using GAPM to Select an Optimal Set of Important Features 

The process of feature selection is another very important reason for improved 

classification performance.  In the case of both GA-optimized WKNN and 

WWKNN algorithms, the features are automatically selected using GAPM to 

ensure the correct range of features that have an effect on prediction. 

 
As the leukaemia cancer data consists of 7,129 genes, it is difficult to investigate 

the frequency of each selected feature as it would mean executing the GAPM 

system over a hundred times.  In Raphael Hu’s study (2006), the experimental 

results showed that the best overall classification result on the testing set  was 



94.12%, when 35 genes were selected for constructing the final optimized 

classifier (see Figure 6.2).  It can be seen that classification accuracy is slightly 

improved by using the novel GAPM system with fewer genes selected when 

compared with Raphael Hu’s study. 

 
Fig.6.2: The classification result from the leukaemia cancer data set using GAGSc method 
(Hu, 2006). 

 

6.6.  Predicting an Individual Patient’s Cancer Type 

6.6.1. Experimental Setup 

In this empirical study, two patients are studied: one is an “ALL” patient (e.g. 

Sample 1 – class label 1), while the other is an “AML” patient (e.g. Sample 22 – 

class label 2).  As stated previously, there has been a significant increase in the 

leukaemia incidence rate among children aged 0-14 (4.89/100,000 person/year in 

1953-57 to 7.92/100,000 person/year in 1988-90) (Dockerty, 2008).  Thus, it is 

important to make further research in the area of leukaemia cancer in order to 

encourage new knowledge discovery, as well as help develop innovative and 

effective therapeutic treatments and diagnoses focused on leukaemia cancer. 

 
6.6.2. Results and Analysis 

Example 1: “ALL” patient (Sample 1 – class label 1) 

As mentioned above, the first step in predicting an individual patient is to define 

its nearest neighbours.  Based on its nearest neighbours, the test vector is 

investigated using the WKNN and WWKNN prediction models, which are 

described as follows: 

1) Using the WKNN Prediction Model 

Figure 6.3 shows that features “2365”, “4849”, and “690” are selected as being 

the most significant features for predicting the test vector.  Furthermore, based 

on its 15 nearest neighbours, the output of the test vector is predicted as “1” 

which accurately matches the actual output class label. 
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Fig.6.3: Output of “ALL” sample predicted using the WKNN prediction model. 
 

 
Fig.6.4: Overview of the nearest neighbours of “ALL” sample using the WKNN algorithm. 
 

2) Using the WWKNN Prediction Model 

Figure 6.5 shows that features “1831”, “3254”, “2365”, and “4952” are selected 

as being the most significant features for predicting the test vector.  Moreover, 

based on its 25 nearest neighbours, the output of the test vector is predicted as 

“1” which accurately matches the actual output class label. 

 
Fig.6.5: Output of “ALL” sample predicted using the WWKNN prediction model. 
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Fig.6.6: Overview of the nearest neighbours of “ALL” sample using the WWKNN 
algorithm. 

 
Knowledge Discovery 

As observed in Figures 6.3 and 6.5, both WKNN and WWKNN prediction 

models give an accurate prediction for an individual “ALL” patient.  As 

mentioned in Chapter 2, the basic idea behind the WWKNN algorithm is the 

output of each new input vector is not only dependent upon the distance between 

the existing vectors and the new input vector, but it is also upon the power of 

each vector as weighted according to their importance within the sub-space to 

which the new input vector belongs.   Figure 6.5 shows the weight of each 

selected feature. 

 
A further investigation on the effects of different threshold settings on the 

accuracy is made.  The number of nearest neighbours is maintained but the 

accuracy based performance evaluation is carried out using different threshold 

values ranging from a minimum value of 0.1 to the maximum value of 1. 

 
Figure 6.7 shows the influence of different threshold settings on the 

classification accuracy obtained using the WKNN algorithm.  Initially, the 

accuracy obtained is 83.33% for threshold values ranging from 0.1 to 0.3, but the 

accuracy drops down to 80.43% when the threshold value is 0.4.  The accuracy 

significantly increases to 86.67% for threshold values ranging from 0.5 to 0.7.  

Finally, the accuracy drops to 83.33% again for threshold values ranging from 

0.8 to 1. 
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Fig.6.7: The threshold settings effect on the accuracy of “ALL” sample obtained using the 
WKNN prediction model. 
 
Figure 6.8 show the influence of different threshold settings on the classification 

accuracy obtained using the WWKNN algorithm.  Initially, the accuracy 

obtained is 89.00% for threshold values ranging from 0.1 to 0.3, but the accuracy 

decreases to 86.33% when the threshold value is 0.4.  Surprisingly, the accuracy 

increases to 92.00% for threshold values ranging from 0.5 to 0.6.  The accuracy 

drops down to 86.33% again for threshold values ranging from 0.7 to 0.8.  The 

accuracy jumps to 89.00% again for threshold values ranging from 0.9 to 1.  

 
Fig.6.8: The threshold settings effect on the accuracy of “ALL” sample obtained using the 
WWKNN prediction model. 
 
As shown in Figures 6.7 and 6.8, threshold values ranging from 0.5 to 0.6 

provide the highest accuracy when using either algorithm. 

 
Example 2: “AML” patient (Sample 22 – class label 2) 

The experiment begins with the definition of the nearest neighbours for the test 

vector.  Based on its nearest neighbours, the test vector is investigated using the 

WKNN and WWKNN prediction models, which are described as follows: 

1) Using the WKNN Prediction Model 

As shown in Figure 6.9, the test vector is predicted as “2” which precisely 

matches the actual output class label, based on its 28 nearest neighours.  The 

features“3254”, “2290”, and “2365” are selected as the most important features 
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for predicting the test vector. 

 
Fig.6.9: Output of “AML” sample predicted using the WKNN prediction model. 
 

 
Fig.6.10: Overview of the nearest neighbours of “AML” sample using the WKNN 
algorithm. 
 

2) Using the WWKNN Prediction Model 

As demonstrated in Figure 6.11, the test vector is predicted as “2” which 

precisely matches its actual output class label, based on its 32 nearest neighours.  

The features“3254”, “2290”, “6283” and “1830” are selected as the most 

important features for predicting the test vector. 

 
Fig.6.11: Output of “AML” sample predicted using the WWKNN prediction model. 
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Fig.6.12: Overview of the nearest neighbours of “AML” sample using the WWKNN 
algorithm. 
 
Knowledge Discovery 

As observed in Figures 6.9 and 6.11, both WKNN and WWKNN prediction 

models give an accurate prediction for an individual “AML” patient.  Figure 

6.11 also shows the weight of each selected feature.  As because in the 

WWKNN algorithm, the output of each new input vector is dependent upon the 

distance between the existing vectors and the new input vector, as well as the 

power of each vector weighted according to their importance within the local 

space to which the new input vector belongs. 

 
The effects of different threshold settings on the overall accuracy are further 

investigated, the number of nearest neighbours is maintained but the 

classification accuracy based performance evaluation is carried out using 

different threshold values ranging from a minimum value of 0.1 to the maximum 

value of 1. 

 
Figure 6.13 shows the influence of different threshold settings on the 

classification accuracy obtained using the WKNN algorithm.  Initially, the 

accuracy achieved is 68.57% for threshold values ranging from 0.1 to 0.2, and 

this increases to 71.43% for threshold values ranging from 0.3 to 0.4.  The 

accuracy significantly increased to 81.43% for threshold values ranging from 0.5 

to 0.8.  However, the accuracy drops down to 71.43% again for threshold values 

ranging from 0.9 to 1. 
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Fig.6.13: The threshold settings effect on the accuracy of “AML” sample obtained using the 
WKNN prediction model. 

 
Figure 6.14 shows the influence of different threshold settings on the 

classification accuracy obtained using the WWKNN algorithm.  Initially, the 

accuracy achieved is 85.26% for threshold values ranging from 0.1 to 0.2, and 

this jumps to 89.00% for threshold values ranging from 0.3 to 0.4.  The accuracy 

slightly increases to 90.88% for threshold values ranging from 0.5 to 0.8.  

However, the accuracy decreases to 89.00% again for threshold values ranging 

from 0.9 to 1.  

 
Fig.6.14: The threshold settings effect on the accuracy of “AML” sample obtained using the 
WWKNN prediction model. 
 
As shown in Figures 6.13 and 6.14, the threshold values ranging from 0.5 to 0.8 

provide the highest accuracy when using either algorithm. 

 
The output for both “ALL” and “AML” patients are accurate using the WKNN 

and WWKNN prediction models.  Two major reasons for this are: 

 Using the k-nearest neighbour (KNN) algorithm with Euclidean distance 

measure to estimate the similarities between the test vector and its nearest 

neighbours.  The KNN algorithm estimates values of a potential model for 

only a single point (new input vector) of the problem space by using 

additional information related to that point (the nearest neighbours of the 
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 Based on the nearest neighbours, the system automatically selects an 
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6.7. Summary 

In this chapter, a detailed comparative analysis of GA-optimized WKNN and WWKNN 

personalised models and global SVM and local ECF models was performed on a 

leukaemia cancer data set.  The experimental results proved that the personalised 

modelling approach provided better classification accuracy when compared with the 

global and local modelling approaches.  In addition, this chapter also presented a 

detailed experimental study on predication for an individual patient using the 

personalised prediction models.  The results proved that both WKNN and WWKNN 

prediction models gave an accurate prediction for an individual “ALL” and “AML” 

patient.  Furthermore, the effects of different threshold settings on overall accuracy were 

investigated using the WKNN and WWKNN algorithms.  The results proved that 

accuracy varies when using different threshold settin
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Chapter 7 

omparative Analysis of GAPM versus Global and Local C
Modelling Using Pest-Related Cl
 

7.1. Introduction 

In Chapter 6, a detailed comparative analysis of GA-based personalised modelling 

against global and local modelling was presented on the leukaemia cancer data set.  In 

this chapter, a performance evaluation of the global and local modelling approaches  

against the GA-based personalised modelling approach is conducted on a real world 

pest-related climate data set which contains information on pest establishment in 

numerous regions of the world.  As stated in the previous experimental study, SVM is 

the global algorithm selected for comp

approaches, and ECF is the local algorithm. 

 
The problem specification section begins the experiment outlining the need for different 

modelling approaches to study the potential of pest establishment in several regions of 

the world.  Secondly, a description of the data set along with the motivation behind 

selection of this data set, as well as the data pre-processing stages is presented.  Thirdly, 

the experimental setup section introduces the two pieces of software used in this study, 

along with all of the steps included in the experiments with a meth

Finally, detailed experimental re

 
7.2. Problem Specification 

Jones and Kitching (1981) define “pest” as an organism, which has the potential to 

destroy products, damage crops, cause or transmit diseases, or have serious impact on 

flora and fauna.  Most pest species arrive into an area either on purpose or accidentally, 

and reproduce quickly until they occupy large areas, thus badly impacting local, native 

ecosystems (Sailer, 1983; Pimentel, 1986; Worner, 1994).  Therefore, pest invasions 

have been seen as a major cause of environmental and economic harm.  Horticultural 

and agricultural products provide important earnings for New Zealand.  A New Zealand 

government annual report states that the direct economic expense caused by pests is 

approximately 880 million NZD per year, including the cost of eradicat

programmes and losses of agricultural products (Barlow & Goldson, 2002). 
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 model is created for every single new input vector of the problem space, 

based on its nearest neighbours, more precise results than both global and local models 

 modelling approaches in order to prove that personalised modelling is 

ore suitable for monitoring, controlling and investigating pests’ establishment 

 comprises 844 pest 

species (followed by an output class label: 0 and 1 indicating the absence or presence of 

each species in each geographical area) for 459 geographical areas. 

One of the best methods of minimizing the impact of pest invasions is to control their 

establishment.  In 2002, Stynes suggested that an appropriate way to solve this problem 

is to predict the probability of a pests’ establishment when they arrive into a new area.  

However, this is not a comprehensive solution for the problem.  It is better to find the 

factors that have an impact on the pests’ establishment in a certain area.  Generally, a 

pests’ establishment in a new area primarily dependent upon both biotic and abiotic 

factors, such as climate and specific environmental conditions (Mooney & Drake 1989).  

Recently, a variety of computer-based techniques have been applied to monitor and 

control these factors in order to prevent pest establishment.  These techniques include 

multiple linear regression (MLR), correlation analysis, artificial neural networks (ANN) 

(Brosse et al., 1999).  Kasabov, Pang, Soltic, Worner and Peackok (2004) extracted 

rules from data related to pest establishment in different regions that were integrated 

using local models based on data with similar characteristics instead of using global 

models from the data of several regions.  Their experimental results prove that local 

models provide better accuracy than global models.  However, there is a growing 

interest in using personalised models to focus on an individual species of pest.  Because 

a personalised

are provided. 

 
As mentioned above, in this experimental study, I compare the global, local and 

personalised

m

prognosis. 

 
7.3. Data Set 

This pest-related climate data set is extracted with permission of the Crop Protection 

Compendium which contains a wide range of information about all aspects of crop 

protection (e.g. pests, crops, and diseases, etc.) associated with most of the geographical 

areas of the world.  As presented in Figure 7.1, the entire data set



 
Fig.7.1: Overview of all pest species represented in the data set. 
 

Due to the time and size limitations of this study, it is too difficult to investigate all pest 

species, and so only one species CERTCA- ceratitis capitata is studied.  As shown in 

Table 7.1, the data set used for the experiments contained 459 samples (356 absence of 

species (Class1) and 103 presence of species (Class 2)) with 69 features (as described in 

Figure 7.2).  In this study, all of the 69 features in the problem space are used to 

perform a comparative analysis of the global, local and personalised modelling 

approaches. 

Table  7.1: Summary of pest-related climate data set used for experimentation. 
Data Set Name Class 1 vs. Class 2 # Genes # Samples (class 1 / 2) 

Pest-Related Climate Absence vs. Presence 69 (356 / 103) 459 
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Fig.7.2: Overview of the pest-related climate data set used for experimentation. 
 
The reasons for selecting this data set are described as follows: 

1) The data set does not contain any missing or noise values. 

2) This data set is selected by reason of instant availability and accessibility. 

3) Because the data set contains 459 samples, it is not too small to give a good 

overview of the nature of the problem in hand and it is not too large to cause 

problems with respect to time and computational complexity. 

 
7.3.1. Data Pre-Processing  

The pest-related climate data set does not contain any missing or noise values.  

However, it is still necessary to pre-process the data before running the 

experiments in order to achieve better classification accuracy throughout 

experiments.  Firstly, the linear normalisation technique is applied to normalise 

the data as was adopted for the previous experiments (introduced in section 

5.3.1.1.).  Moreover, the entire data set is randomly split into 90% of the data for 

training and 10% for testing using an interleave data splitting method.  The 

training set (90%) is then loaded into the novel GAPM system, and the system 

randomly selects 70% of the data for training and 30% for testing to train the 
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classifiers.  In contrast, the testing set (10%) is utilized to investigate the final 

output using WKNN and WWKNN algorithms.  Finally, features are selected 

before investigating classification accuracy of the global and local modelling 

approaches by using the SNR feature selection method in NeuCom. 

 
7.4. Experimental Setup 

7.4.1. Software 

In this experimental study, NeuCom is selected to calculate classification 

accuracy of the global and local modelling approaches.  The novel GAPM 

system is applied to evaluate classification accuracy of the personalised 

modelling approach. 

  
7.4.2. Experimental Method 

Unbiased verification method is employed in both the feature selection and 

classification stages.  The classification accuracy of global, local and 

personalised modelling approaches is all calculated using the Leave-One-Out 

Cross-Validation (LOOCV) method: 

Step 1:  Create a global model based on an inductive approach using the SVM 
algorithm in NeuCom. 

Step 2:  Create a local model based on an inductive approach using the ECF 
algorithm in NeuCom. 

Step 3: Create personalised classification models based on a transductive 
approach by running GAPM with GA–optimized WKNN and 
WWKNN algorithms. 

Once all four classification models are created, they are then compared on the 

basis of their classification accuracy. 

 
7.5. Results and Analysis 

As demonstrated in Table 7.2, the SVM, ECF, WKNN and WWKNN classification 

models are investigated in this study.  For both the GA-optimized WKNN and 

WWKNN algorithms, 20 populations are used and run for 30 generations, and the cross-

validation method used is 10-fold cross-validation.  The accuracy achieved by the 

various models is presented in Table 7.2, where K is the number of nearest neighbours 

used in both the WKNN and WWKNN algorithms.  The GA-optimized WWKNN 

algorithm achieves the best overall classification accuracy at 83.64% (88.73% for Class 
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1 and 78.55% for Class 2) when compared with other three algorithms.  This accuracy is 

achieved when the value of K is 17 and 36 features are selected.  The GA-optimized 

WKNN algorithm achieves its best accuracy at 82.15% (86.61% for Class 1 and 77.76% 

for Class 2) when the value of K is 11 and 35 features are selected.  In contrast, the 

classification accuracy achieved by the SVM global model and the ECF local model is 

77.18% (79.65% for Class 1 and 74.72% for Class 2) and 79.96% (83.57% for Class 1 

and 76.36% for Class 2), respectively.  As a result, it can be seen that the GA-optimized 

WKNN and WWKNN algorithms provide better results when compared with the global 

and local modelling approaches. 

Table 7.2: Results of pest-related climate data set in terms of model classification accuracy tested 
using SVM, ECF, WKNN and WWKNN models. 

 Global Local Personalised 

Model NeuCom NeuCom GAPM GAPM 

Inductive Transductive 

SVM ECF WKNN 

(k = 11 ) 

WWKNN 

(k = 17) 

Number of Selected Features 12 18 35 36 

Accuracy of Each Class (%) Class1 79.65 83.57 86.61 88.73 

Class2 74.72 76.36 77.76 78.55 

Overall Accuracy (%) 77.18 79.96 82.15 83.64 

 
7.5.1. Knowledge Discovery 

The reasons for improved classification performance when using both of the 

GA-optimized WKNN and WWKNN algorithms are: 

Using GAPM to Select an Optimal Number of KNN 

 The GAPM automatically selects an optimal number of K values for each new 

input vector based on its nearest neighbours instead of manually selecting a K 

value.  In GAPM, the K value ranges from one to the maximum size of the 

sample in a problem space. 

 
 Using GAPM to Select an Optimal Set of Important Features  

The process of feature selection is another important reason for improved 



classification performance.  In the case of both GA-optimized WKNN and 

WWKNN algorithms, the features are automatically selected using the GA-

based system to ensure the correct range of climatic factors that have an effect 

on determining the potential establishment of pest in several regions of the world.  

The frequency of feature selection is investigated using GA-optimized WKNN 

and WWKNN algorithms are shown in Figures 7.3 and 7.4, respectively.  The 

frequency of feature selection is ranked by executing the system 100 times with 

fixed GA parameter optimization and cross-validation times (10-fold). 

 
Fig.7.3: The frequency of feature selection using the GA-optimized WKNN algorithm 
(Pest-related climate data set). 
 

 
Fig.7.4: The frequency of feature selection using the GA-optimized WWKNN algorithm 
(Pest-related climate data set). 
 
As presented in Figures 7.3 and 7.4, features “1” (Temperature (celsius) for 

month of January), “2” (Temperature (celsius) for month of February), and “12” 

(Temperature (celsius) for month of December) are the top three features 

selected using GA-optimized WKNN, whereas features “2” (Temperature 

(celsius) for month of February), “12” (Temperature (celsius) for month of 
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December), and “11” (Temperature (celsius) for month of November) are the top 

three features selected using the GA-optimized WWKNN algorithm after 

executing the GAPM system 100 times.  The reason behind executing the 

GAPM system 100 times is to investigate whether the order of the selected 

features remains the same, if there is an increase in the selection frequency of 

each feature.  However, since there is no significant increase in the selection 

frequency, the order of the selected features remains the same.  Based on this 

hypothesis, it is assumed that the order of the selected features will not be 

affected by increasing the number of GAPM executions. 

 
7.6. Predicting the Establishment of an Individual Pest Species 

7.6.1. Experimental Setup 

Due to time and size limitations of this study, only one sample / region is studied 

in this experiment.  The sample “306” is selected as the test vector, which 

represents the region of New Zealand.  Two pest species are used for prediction 

in this experiment: one is an absence of species in New Zealand (e.g. 

acanthocoris scabrator (ACACS1) - class label 0); while the other is a presence 

of species in New Zealand (e.g. ceratitis capitata (CERTCA) - class label 1). 

 
7.6.2. Results and Analysis 

Example 1: Absence of species (class label 0) 

As mentioned previously, the first step to predicting the establishment of an 

individual pest species is to define its nearest neighbours. Based on its nearest 

neighbours, the establishment of an individual pest species is further investigated 

using the WKNN and WWKNN prediction models, described as follows: 

1) Using the WKNN Prediction Model 

As shown in Figure 7.5, the test vector is predicted as “0” which precisely 

matches the actual output class label based on its 20 nearest neighours.  The 

features“40” (Rainfall (mm) for the first summer month), “47” (Rainfall (mm) 

for the second winter month), and “48” (Rainfall (mm) for the third winter 

month) are selected as being the most important climatic factors for predicting 

the test vector. 



 
Fig.7.5: Output of absence of species predicted using the WKNN prediction model. 

 

 
Fig.7.6: Overview of the nearest neighbours of absence of species using the WKNN 
algorithm. 

 

2) Using the WWKNN Prediction Model 

As demonstrated in Figure 7.7, the test vector is predicted as “0” which precisely 

matches the actual output class label based on its 30 nearest neighours.  The 

features“40” (Rainfall (mm) for the first summer month), “47” (Rainfall (mm) 

for the second winter month), and “48” (Rainfall (mm) for the third winter 

month) are selected as being the most important climatic factors for predicting 

the test vector. 

 
Fig.7.7: Output of absence of species predicted using the WWKNN prediction model. 
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Fig.7.8: Overview of the nearest neighbours of absence of species using the WWKNN 
algorithm. 

 
Knowledge Discovery 

As observed in Figures 7.5 and 7.7, both WKNN and WWKNN prediction 

models give an accurate prediction for an individual absence of species.  The 

features “40” (Rainfall (mm) for the first summer month), “47” (Rainfall (mm) 

for the second winter month), and “48” (Rainfall (mm) for the third winter 

month) are selected as the most important climatic factors for predicting the test 

vector using both the WKNN and WWKNN prediction models.  Moreover, 

Figure 7.7 also shows the weight of each selected feature.  This is because, in the 

WWKNN algorithm, the output of each new input vector is dependent upon the 

distance between the existing vectors and the new input vector, and the power of 

each vector is weighted according to its importance within the local space to 

which the new input vector belongs. 

 
To further investigate the effects of different threshold settings on overall 

accuracy, the number of nearest neighbours is kept the same but the accuracy 

based performance evaluation is carried out using different threshold values 

ranging from a minimum value of 0.1 to the maximum value of 1. 

 
Figure 7.9 shows the influence of different threshold settings on the overall 

accuracy achieved using the WKNN algorithm.  Initially, the accuracy achieved 

is 88.42% for threshold values ranging from 0.1 to 0.4.  The accuracy increases 

to 90.67% for threshold values ranging from 0.5 to 0.8.  However, the accuracy 

decreases to 88.42% again for threshold values ranging from 0.9 to 1. 
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Fig.7.9: The threshold settings effect on the accuracy of absence of species obtained using 
the WKNN prediction model. 

 
Figure 7.10 shows the influence of different threshold settings on the overall 

accuracy achieved using the WWKNN algorithm.  Initially, the accuracy 

achieved is 78.32% for threshold values ranging from 0.1 to 0.2, and increases to 

81.33% for threshold values ranging from 0.3 to 0.4.  The accuracy significantly 

increases to 89.54% for threshold values ranging from 0.5 to 0.7.  However, the 

accuracy drops down to 81.33% for threshold values ranging from 0.8 to 0.9, 

and further decreases to 78.32 when the threshold value is 1. 

 
Fig.7.10: The threshold settings effect on the accuracy of absence of species obtained using 
the WWKNN prediction model. 
 
As shown in Figures 7.9 and 7.10, the threshold values ranging from 0.5 to 0.7 

provide the highest accuracy when using either algorithm. 

 
Example 2: Presence of species (class label 1) 

Firstly, the experiments begin with definition of the nearest neighbours for the 

test vector.  Based on its nearest neighbours, the establishment of an individual 

presence of species is investigated using the WKNN and WWKNN prediction 

models, described as follows: 

1) Using the WKNN Prediction Model 
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Figure 7.11 shows that features “3” (Mean temperature (celsius) for month of 

March), “14” (Mean temperature (celsius) for the second summer month), and 



“4” (Mean temperature (celsius) for month of April) are selected as being the 

most significant climatic factors for predicting the test vector.  Furthermore, 

based on its 30 nearest neighbours, the output of the test vector is predicted as 

“1” which accurately matches the actual output class label. 

 
Fig.7.11: Output of presence of species predicted using the WKNN prediction model. 

 

 
Fig.7.12: Overview of the nearest neighbours of presence of species using the WKNN 
algorithm. 
 
2) Using the WWKNN Prediction Model 

Figure 7.13 shows that features “3” (Mean temperature (celsius) for month of 

March), “14” (Mean temperature (celsius) for the second summer month), and 

“4” (Mean temperature (celsius) for month of April) are selected as being the 

most significant climatic factors for predicting the test vector.  Moreover, based 

on its 30 nearest neighbours, the output of the test vector is predicted as “1” 

which accurately matches the actual output class label. 
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Fig.7.13: Output of presence of species predicted using the WWKNN prediction model. 

  

 
Fig.7.14: Overview of the nearest neighbours of presence of species using the WWKNN 
algorithm. 

 
Knowledge Discovery 

As observed in Figures 7.11 and 7.13, both WKNN and WWKNN prediction 

models give an accurate prediction for an individual presence of species.  The 

features “3” (Mean temperature (celsius) for month of March), “14” (Mean 

temperature (celsius) for the second summer month), and “4” (Mean temperature 

(celsius) for month of April) are selected as being the most important climatic 

factors for predicting the test vector using both the WKNN and WWKNN 

prediction models.  Figure 7.13 also shows the weight of each selected feature.  

As because in the WWKNN algorithm, the output of each new input vector is 

dependent upon the distance between the existing vectors and the new input 

vector, as well as the power of each vector is weighted according to its 

importance within the local space to which the new input vector belongs. 

   
The effects of different threshold settings on the overall accuracy is also 

investigated, the number of nearest neighbours is kept the same but the accuracy 
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based performance evaluation is carried out using different threshold values 

ranging from a minimum value of 0.1 to the maximum value of 1. 

 
Figure 7.15 shows the influence of different threshold settings on the overall 

accuracy achieved using the WKNN algorithm.  Initially, the accuracy achieved 

is 67.34% for threshold values ranging from 0.1 to 0.2, and jumps to 70.33% for 

threshold values ranging from 0.3 to 0.4.  The accuracy significantly increases to 

83.00% for threshold values ranging from 0.5 to 0.7.  However, accuracy 

decreases to 73.00% again for threshold values ranging from 0.8 to 1. 

 
Fig.7.15: The threshold settings effect on the accuracy of presence of species obtained using 
the WKNN prediction model. 

 
Figure 7.16 shows the influence of different threshold settings on the overall 

accuracy achieved using the WWKNN algorithm.  Initially, the accuracy 

achieved is 78.25% for threshold values ranging from 0.1 to 0.2, but decreases to 

70.33% for threshold values ranging from 0.3 to 0.4.  The accuracy significantly 

increases to 85.00% for threshold values ranging from 0.5 to 0.8.  However, the 

accuracy drops down to 70.33% again for threshold values ranging from 0.9 to 1. 

 
Fig.7.16: The threshold settings effect on the accuracy of presence of species obtained using 
the WWKNN prediction model. 
 
As shown in Figures 7.15 and 7.16, the threshold values ranging from 0.5 to 0.7 

provide the highest accuracy when using either algorithm. 
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As demonstrated above, the results prove that both absence and presence of 

species are accurately predicted using the WKNN and WWKNN prediction 

models.  The two major reasons for this are: 

 Using k-nearest neighbour (KNN) algorithm with Euclidean distance 

measure, similarities between the test vector and its nearest neighbours are 

investigated.  The KNN algorithm estimates values of a potential model for 

an individual point (new input vector) of the problem space using additional 

information related to that point (the nearest neighbours of the test point). 

  
 Additionally, the system automatically selects an optimal set of features to 

verify the correct range of climatic factors that effect on determining the 

potential establishment of pest species. 

 
7.7. Summary 

In this chapter, a detailed comparative analysis of GA-optimized WKNN and WWKNN 

personalised models and global SVM and local ECF models was performed on a real 

world pest-related climate data set.  The experimental results proved that the 

personalised modelling approach gave better classification accuracy when compared 

with the global and local modelling approaches.  In addition, this chapter also presented 

a detailed experimental study on predicating the establishment of an individual pest 

species using personalised prediction models.  The results proved that the output for an 

individual absence and presence of species were accurately predicted using the WKNN 

and WWKNN prediction models.  The effects of different threshold settings on the 

overall accuracy of WKNN and WWKNN algorithms were also investigated.  The 

results of this presented that accuracy subject to different threshold settings.  The best 

accuracy was obtained using threshold values ranging from 0.5 to 0.7. 
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Chapter 8  
Conclusions and Future Directions  

8.1. Conclusions 

The concept of personalised modelling has its roots in machine learning technologies 

that have been utilized for numerous decades to understand, evaluate and solve a variety 

of modelling problems in the fields of personalised medicine, personalised drug design 

as well as problems in business, finance, crime prevention, and so on.  However, 

personalised modelling is not without issues, such as defining the correct number of 

neighbours, and defining an appropriate number of features.  For this reason, the goal of 

this research is to study and address these issues by creating a novel framework and 

system for personalised modelling that allows users to select and optimise the most 

important features and nearest neighbours in relation to a certain problem based on a 

weighted variable distance measure in order to provide more precise accuracy and 

personalised knowledge when compared with the global modelling and local modelling 

approaches.  In this study, the genetic algorithm (GA) is adopted and integrated with the 

WKNN and WWKNN classifiers to solve the parameter optimization and feature 

selection problems, based on the idea originally from Siedlecki and Slansky (1989).   

 
The proposed GA-based personalised modelling (GAPM) system has two major 

contributions, which are briefly presented as follows: 

(1) It allows users to use the GA–optimized WKNN and WWKNN algorithms to 

create classification models that test classification accuracy in order to provide 

more accurate and predictive knowledge and information for investigators. 

 
(2) It also allows users to create personalised prediction models for each new 

individual input vector using the WKNN and WWKNN predication algorithms.  

One drawback is that the genetic algorithm does not collaborate with the two base 

algorithms, thus the output of a single target vector might not be optimal. 

 
This novel GAPM is first adopted to perform a comparative analysis of global and local 

modelling approaches against personalised modelling approach to compare the 

classification accuracy.  The experiments are run on a benchmark data set (Sonar, which 

was cited from the UCI-Repository), a leukaemia cancer data set and a real world pest-

related climate data set, respectively.  All the experimental results prove that the GA-
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optimized WKNN and WWKNN algorithms provide better results when compared with 

the global (SVM) and local modelling (ECF) approaches.  Secondly, this novel GAPM 

is used for prediction of an individual sample from the leukaemia cancer data set and 

the pest-related climate data set.  The results prove that the output for an individual 

target vector is accurate using both the WKNN and WWKNN prediction models.   As 

mentioned above, the concept of personalised modelling is worth further investigation 

and it has vast scope for future development. 

 
8.2. Strengths of this Study 

 In this study, GA is adopted to optimize various parameters (optimal threshold, 

optimal number of nearest neighbours for every new input vector, and an optimal 

set of features contribute most towards the classification task) in order to deal 

with the opening questions: “How many nearest neighbours should be selected for 

every new input vector?” and “What features are significant for every new input 

vector?”  GA is an optimal method to solve complex optimization problems after 

a number of iterative computations, as well as being able to deal with a large 

problem space efficiently. 

 
 This study performs two case studies to compare the classification accuracy 

between the personalised modelling approach and the global and local modelling 

approaches using the proposed GAPM.  The case studies involve two data sets 

and in different fields, the leukaemia cancer data set is from the health and clinical 

area, while the real world pest-related climate data set is from the ecological area.  

The experimental results facilitate new knowledge discovery that may help 

develop more innovative and effective therapeutic treatments for leukaemia 

cancer patients, as well as to effectively and precisely monitor, control and predict 

the establishment of pests. 

 
 One of the main strengths of the GAPM system is its performance in comparison 

to the global and local modelling approaches.  In addition, the novel system 

provides more precise personalised knowledge and a better understanding of 

meaningful information. 

 
 In this study, a graphical user interface (GUI) for both GA-optimized WKNN and 

WWKNN algorithms is designed using MATLAB, which are easy to use (see 
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Figures 5.1 and 5.2).  

 
 The proposed GAPM also comprises other functions, such as allowing users to 

visualize how the entire data is distributed (see Figure 5.3), to view or modify the 

loaded data set (see Figure 5.4), or to visualise the nearest neighbours of an 

individual vector in a 3-D problem space (see Figure 5.5). 

 
8.3. Limitations of this Study 

 When creating personalised prediction models for an individual input vector, the 

genetic algorithm is not integrated with the WKNN and WWKNN algorithms, 

thus the final output for an individual input vector may not be optimal. 

  
 In this study, only the default crossover rate (0.8) and mutation rate (0.01) are 

chosen to investigate the performance of a typical GA. 

 
 In addition, only one data splitting / sampling technique (cross-validation) is used 

to measure how well the results of a statistical analysis can generalize to an 

independent data set.  The cross-validation method is very computationally 

expensive due to the large number of times the training process is repeated. 

 
8.4. Future Directions 

As mentioned above, there are a number of areas where future work is required: 

 In order to significantly improve the performance of an individual input vector, 

the genetic algorithm needs to be integrated with the WKNN and WWKNN 

classifiers to create personalised prediction models. 

 
 In the future, different data splitting / sampling techniques can be used to estimate 

the generalization error for feature selection.  For instance, “Bootstrap” is another 

simple, but powerful data sampling method to evaluate the statistical accuracy. 

 
 As the right choice of parameter values is an important issue in the GA, in order 

to improve accuracy and provide more precise personalised knowledge, the 

relationship between crossover and mutation rates, and how well a typical GA 

performs using different range of crossover and mutation rates needs to be looked 

at. 

 

http://en.wikipedia.org/wiki/Statistics
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 In this study, the global model and local model are created based on the inductive 

approach using the SVM algorithm and the ECF algorithm in NeuCom.  In future 

study, both the SVM and ECF parameters will be optimized using GA, and a 

comparative analysis of GA-based personalised modelling as opposed to GA-

based global and GA-based local modelling will be presented. 

 
 In addition, new methods can be used for personalised modelling in the future, 

such as the transductive neuro-fuzzy inference model with weighted data 

normalization (TWNFI).  TWNFI is a dynamic neuro-fuzzy system with local 

generalization, in which, either the Zadeh-Mamdani type fuzzy inference engine 

or the Takagi-Sugeno fuzzy inference engine is applied.  This approach not only 

results in a “personalised” model with better accuracy of prediction for an 

individual new input vector, but also presents the most significant features for the 

model that may be used for personalised medicine. 

 
 Nowadays, computer and information technology is playing an increasingly 

critical role in medicine, health and life sciences research.  In the future, a further 

study in the area of personalised medicine, especially investigating various forms 

of cancer (e.g. breast cancer, brain cancer, and liver cancer) will be conducted.  It 

can provide more precise personalised prediction, diagnosis, prognosis tracking, 

and targeted therapy. 

 
In my PhD study, two new methods will be adopted and further developed for 

personalised modelling which are “Probabilistic Evolving Spiking Neuron Networks 

(peSNN)” and “Quantum-inspired GA (QiGA)”.  As spiking processes in biological 

neurons are stochastic by nature and much has become known about these, it would be 

possible to add new information processing functionality to a neuronal model through 

introducing probabilistic parameters.  However, one challenge is what method to use to 

deal with these probabilistic parameters for efficient learning and generalization to take 

place.   In my PhD study, the peSNN will be combined with a QiGA to optimize 

features and parameters of a peSNN for classification, exploring quantum parallelism 

based on probabilistic superposition of states.  In this way, the input features as well as 

information spikes will be represented by quantum bits that result in exponentially 

faster feature selection and model learning.  The methods will be first applied on 

synthetic data and real Brain injury data for a personalised outcome prediction. 
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Appendices 

Appendix A: Overview of NeuCom 

 
Fig. A1: Overview of NeuCom. 
 
NeuCom is a New Generation Computer Environment 

NeuCom is a self-learning, reasoning and programmable computer environment 

which is based on the theory of Evolving Connectionist Systems (ECOS) as proposed 

by Professor Kasabov (2004).  It has the ability to learn from data, hence it is always 

developing new connectionist modules.  The modules have the capability of adopting 

new data in a life-long learning, on-line incremental mode, and might extract 

valuable and meaningful rules in order to help users discover new knowledge in their 

individual fields. 

 
NeuCom can be used to Solve Complex Problems 

NeuCom can solve complex problems including classification, clustering, prediction, 

pattern recognition, and adaptive control from databases in a multi-dimensional and 

probably changing the data environment.  In the recent, NeuCom has been widely 

adopted in different areas such as education, science, business, medicine, and 

bioinformatics. 
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