
Full citation: Deng, K., & MacDonell, S.G. (2008) Maximising data retention from the ISBSG
repository, in Proceedings of the Twelfth International Conference on Evaluation and Assessment in
Software Engineering (EASE2008). Bari, Italy, British Computer Society, pp. on CD-ROM.

Maximising data retention from the ISBSG repository

Kefu Deng and Stephen G. MacDonell

SERL, School of Computing and Mathematical Sciences, Auckland University of Technology,
Private Bag 92006, Auckland 1142, New Zealand

stephen.macdonell@aut.ac.nz (corresponding author)

Abstract

BACKGROUND: In 1997 the International Software
Benchmarking Standards Group (ISBSG) began to
collect data on software projects. Since then they have
provided copies of their repository to researchers and
practitioners, through a sequence of releases of
increasing size.
PROBLEM: Questions over the quality and completeness
of the data in the repository have led some researchers to
discard substantial proportions of the data in terms of
observations, and to discount the use of some variables
in the modelling of, among other things, software
development effort. In some cases the details of the
discarding of data has received little mention and
minimal justification.
METHOD: We describe the process we used in
attempting to maximise the amount of data retained for
modelling software development effort at the project
level, based on previously completed projects that had
been sized using IFPUG/NESMA function point analysis
(FPA) and recorded in the repository.
RESULTS: Through justified formalisation of the data
set and domain-informed refinement we arrive at a final
usable data set comprising 2862 (of 3024) observations
across thirteen variables.
CONCLUSION: a methodical approach to the pre-
processing of data can help to ensure that as much data
is retained for modelling as possible. Assuming that the
data does reflect one or more underlying models, such
retention should increase the likelihood of robust models
being developed.

Empirical software engineering, ISBSG
repository, data formalisation, effort prediction,
regression, FPA

1. INTRODUCTION

In order to understand and improve software engineering
research and practice we must observe, measure (in a
broad sense), record, analyse, interpret and act on data
related to software engineering artefacts arising from
software engineering activities. There has been
particularly enduring interest in utilising such data for
predictive modelling – that is, to use data from completed
actions and artefacts to estimate the characteristics of
future actions and artefacts. In fact, software engineering
organisations have been encouraged (even implored) to
implement and sustain software metrics programmes in
order to systematise the above sequence.

Much of this work in research and practice has been
directed to the prediction of software development effort,
using the data collected from completed projects. The
challenges of data collection and management for
organisations practising software engineering are
significant, however [1,2]. First, software projects tend to
be long running processes – over months or years – hence
completion is a relatively infrequent event. Second, some
projects do not actually make it to completion, meaning
that the data are either lost or not included in associated
data sets. Third, project data are seen as commercially
sensitive and therefore confidential, leading to reluctance
to share information across organisational boundaries.
Fourth, relatively few organisations devote sufficient
effort to the systematic collection and organisation of
project data. Finally, with fast changing technology, past
project data can quickly become irrelevant in terms of
future endeavours.

In order to provide software engineers with an alternative
means of accessing such data several groups have
positioned themselves as the keepers of repositories of
data collected from multiple organisations. These
repositories have been utilised extensively in research –

mailto:stephen.macdonell@aut.ac.nz�

many studies have reported using versions of the
‘Finnish’ data set [3] and the International Software
Benchmarking Standards Group repository (ISBSG) [4]
(for example, see [5-7]), among others. While
commercial users are normally required to buy the latter
repository, it is provided free to researchers on
application. As a result, the ISBSG data set has been
extensively used and cited by previous research. It is at
present the largest multi-organization software
engineering repository available. The data is collected
using questionnaires in accordance with the
benchmarking group’s pre-defined terms and metrics,
with records dating back to 1997. These questionnaires
enable the collection of data in a section-based structure
that addresses: the Submitter, the Project, the Process, the
Technology, the People and their Work Effort, the
Product, the Project’s Functional Size, and Project
Completion. Further details can be found from the
ISBSG website (isbsg.org), while some of the relevant
details of the variables collected are discussed in later
sections.

With respect to the ISBSG repository, however,
questions over data quality and completeness have meant
that much of the data potentially available has not
actually been used in the analyses performed. For
instance, all three primary studies reviewed by
Kitchenham et al. [1] that had used the ISBSG repository
had discarded data – in some instances significant
proportions of the original data – if there were missing
values in observations. While this step is sometimes
mentioned, it is not always explained in detail – there
seems to be a view that this is a necessary but relatively
incidental element of data preparation. In other instances
observations have been discarded if they did not have a
sufficiently high ISBSG quality grade (see Section 2).
(On submission, all of the information on a project is
reviewed and rated in terms of data quality (A to D) by
ISBSG experts. In particular, the experts look for
omissions and inconsistencies in the data that might
suggest that its reliability could be questioned.) This is a
relatively ‘blunt’ approach to data set refinement.
Furthermore, studies do not then consider the impact of
such filtering on the population represented by the
remaining observations. For the reader, if it is not clear
what records have been discarded then it is difficult to
know what the retained data actually represents.

Similarly, in spite of these software engineering
repositories often comprising very large numbers of
variables, the actual number of variables retained and
used in the generated predictive models has generally
been small. For example, the ISBSG data set contains
more than 80 variables but just four were used in the final
model generated in the work of Mendes et al. [8]. It is of
course entirely reasonable to discard data in certain
circumstances – as models get larger (in numbers of

variables) they become increasingly intractable to build,
and unstable to use. Furthermore, if accuracy is not
significantly lower then a smaller model is normally to be
preferred over a larger alternative, as in the main it would
be easier to understand. However, the process of
discarding data, as an important step in the data handling
process, should be driven not just in response to missing
values, or variables with lower correlation to the target
variable, but also in relation to software engineering
domain knowledge.

Bearing in mind the issues just described, it is contended
here that the data selection/discarding process should be
transparent and robust. That is, decisions taken with
respect to data handling should have clearly stated and
justified rationale, taking into account software
engineering domain knowledge as well as indicators of
statistical importance. Our specific interest here is in
using such data for the early-phase prediction of full-
project development effort. This paper therefore
demonstrates a process through which the retention of
data from a release of the ISBSG repository can be
maximised with a view to supporting least-squares
regression-based prediction of project effort based on
previously completed projects sized using
IFPUG/NESMA function point analysis (as a typical
means of building prediction models).

The remainder of this paper is structured as follows. The
next section outlines in general terms the use of the
ISBSG repository in software engineering research, and
provides a non-systematic illustration of the treatment of
the repository in relation to data retention. The data
analysis process undertaken for this research is reported
in Section 3, comprising discussion and demonstration of
the two steps of data set formalisation and refinement.
The paper is then concluded in Section 4.

2. RELATED WORK

As stated above, the ISBSG repository has been used
quite extensively as a data source for empirical software
engineering research. A document available from the
ISBSG website lists 44 past or ongoing research projects
using the repository. (Note that the projects are listed up
to 2007, and some known studies (including this one) are
not included, so the true number is likely to be higher
than 44.) A further rough indicator of the level of
research activity utilising the repository can be drawn
from the data returned from a query of Google Scholar –
searching for “isbsg” returns 489 hits (as at March 2008),
around 450 if citations are excluded. While this does
also include items such as conference reports and calls
for papers, a large proportion of these entries are
published papers authored by those in the empirical
software engineering research community.

We now consider a selection of these papers in addition
to those reviewed in [1] and mentioned briefly above –
but we acknowledge that this is a limited review. The
intent is to provide an indicative sense of the various
ways in which the repository data have been pre-
processed by the research community, rather than a
comprehensive discussion of all such treatments.

A study considering the influence of method and CASE
tool usage on development effort using Release 8 of the
ISBSG repository was reported by Cuadrado-Gallego and
colleagues [9]. After starting with 2028 observations the
researchers removed those will null or “invalid numerical
values” for effort or size. Projects not sized using any of
the FPA variants of interest were also removed. This
appears to result in a data set of just under 1950 projects,
although this is not stated. Clustering is then performed
on the entire database, which we take to mean the 1950
projects clustered in two-dimensional space considering
size (in function points) and effort. Mention is made of
the removal of “a small number of outliers” but no further
detail is given. Further analysis proceeds with much
smaller data subsets corresponding to the use or non-use
of methods and CASE tools.

Abran et al. [10] describe a comparison of approaches to
building size-effort models for projects developed in a
range of programming languages. They provide a useful
description of the filtering required in order to utilise
relevant data in their analysis. After starting with 789
records (from the 1999 release of the repository) they
removed observations for small (lower effort) projects
and those for which there was no data on the
programming language used. They further removed
observations for languages with two few samples to
obtain significance, leaving a total sample of 371 records.
In their modelling they used one predictor variable
(having taken language into account) – size in function
points. Further reduction of the data set after initial
analysis involved the removal of 72 (undisclosed) outlier
observations.

A lesser degree of detail regarding data filtering (perhaps
due to page restrictions) can be seen in the work of
Adalier et al. [11]. The study begins with the 3024
observations available in Release 9 of the repository but
immediately discards observations rated B through D for
quality (in contrast to the Abran et al. study [10] which
appears to treat all observations in the 1999 release as
valid). Observations containing missing values are also
dropped, resulting in a data set of 112 records. Of the
many potential predictor variables available, only a
function point count, source lines of code and normalised
productivity rate are utilised. Of note in terms of effort
estimation (rather than model fitting) is that the latter two
are available only after a project has been completed.

Gencel and Buglione [12] cite the fact that the repository
contains many nominal variables “on which mathematical
operations cannot be carried out directly” as a rationale
for splitting the data into subsets for processing in
relation to the size-effort relationship for software
projects. An alternative approach would be to treat such
attributes as dummy variables in a single predictive
model. On the basis of two prior studies, they took two
such attributes into account – application type and
business area type – but subsequently dropped the latter
variable along with a measure of maximum team size
because the values were “missing for most of the projects
in ISBSG Release 10”. They also utilised the quality
ratings as a filter, retaining those observations rated A, B
or C.

Only projects rated A and B were used in the analysis of
Release 8 of the repository reported by Xia et al. [13].
Further filters were applied in relation to FPA-sizing
method, development type, effort recording and
availability of all of the components of function point
counting (the fifteen unadjusted function point
components and fourteen general system characteristics).
All other variables appear to be discarded. As a result
the original collection of 2027 records is reduced to a set
of 184 for further processing.

The same quality rating filter is applied by Pendharkar et
al. [14] in their use of the Release 7 iteration of the
repository to investigate the link between team size and
software size, and development effort. Further, they
removed observations for which software size, team size
or work effort values were missing. This led to the
original set of 1238 project records being reduced to 540
observations.

Release 10 of the repository was used as the source of an
analysis of the relationship between software size and
development effort reported by Jiang et al. [15]. In this
case only size in IFPUG/NESMA function points and
effort in total hours are utilised. No ‘quality’ filtering is
performed. Consequently a large proportion of records
are retained for modelling – 3433 of 4106.

The above studies appear to reflect a general tendency to
exclude many of the categorical variables from
consideration, with analyses relying solely on one or a
few indicators of software size. In some cases this is
entirely justified, in that the other variables are simply
not relevant to the issue at hand (e.g. in [14]), but in
others it seems that potential difficulties in processing
may have discouraged their use. In contrast, Sentas et al.
[7] provide what is in our view the most comprehensive
description of preparation and use of the ISBSG
repository (and other data sets). Central to their work is
the pre-processing of several categorical variables in the
data set, addressing aspects such as the development

platform and the application type. Their intent, as is also
the case here, appears to be to keep for consideration as
many variables as possible. A differentiating factor is
their use of ordinal regression which is more readily able
to consider categorical data. They then filter the data set
based on quality ratings (A and B only), FPA counting
method (IFPUG), and aspects of effort recording. This
led to a provisional data set of 556 observations (from
1239 (or 1238 [14]) in the release.) Their discarding of
observations with missing values, however, saw more
than 500 of these records removed, resulting in a data set
of just 52 projects.

There is no question that missingness of data is a problem
in empirical software engineering, as it is of course in
other fields. “One of the problems often faced by
statisticians undertaking statistical analysis in general,
and multivariate analysis in particular, is the presence of
missing data” [16]. It is commonly regarded as
acceptable if the extent of missingness is small (for
example, 5% or less) because it is normally inevitable to
encounter missingness in the world of inferential
statistics, which by its nature attempts to portray the
characteristics of a population from those of an inherently
incomplete sample. Furthermore, missingness becomes
almost more inevitable (if there is such a thing!) when
statistics are applied in a domain such as software
engineering because the information being collected and
analysed could be considered by submitters as
commercially sensitive. The fact is that the majority of
the observations in the ISBSG repository will contain
missing values, due to the design of the data collection
procedure and the nature of software engineering
practice. For example, one of the data elements (or
potential variables) collected in the ISBSG data set is the
number of lines of software source code (LOC). If the
sizing approach used for a particular project is IFPUG
FPA, the LOC variable is purposely ignored. A further
example is ‘Organization Type’ – some organisations
might choose to ignore the associated data collection
question for this variable in an effort to retain
confidentiality (even though this is assured by the
ISBSG).

A degree of missingness can be treated through the use of
missing data techniques (MDTs) which attempt to impute
the missing values, these methods having received some
methodological attention in the empirical software
engineering literature [17-19] and having been used in
[8]. However, in order to be effective the degree of
missingness needs to be less than a certain proportion of
the potential data source – evidence to date suggests that
40% or 50% would be an upper limit for a data item in
repository such as that provided by the ISBSG [17,19].

Finally we note here the work of Liebchen et al. [20] that
specifically addressed the issue of data quality in

software engineering data sets and the need to clean,
filter and polish such data. We agree that greater
attention needs to be directed to the pre-processing of
data and concur with their view that such work has been
limited to date.

3. DATA ANALYSIS

The particular version of the ISBSG repository used in
this analysis is Release 9, made available between 2004
and 2007. It includes data on 3024 projects.

The data analysis process described here is composed of
two major steps:

• Data Set Formalisation: Examination of the data
reveals that it is neither appropriate nor sensible to
perform ordinary least-squares (OLS) regression against
the raw ISBSG repository as a whole. As a result, the
raw ISBSG data set must be formalised to be of
reasonable size and content. The rules and the rationale
behind the data set formalisation are therefore explained.

• Data Set Further Refinement: Even when a formalised
and ‘full’ data set is acquired, it is still not entirely
appropriate to perform OLS regression analysis against it
because of the intended objective of the prediction, the
computational complexity of regression analysis and the
expensiveness of acquiring project data for individual
organizations. The methodology, rules and rationale of
the data set further refinement process are explained in
the second subsection.

3.1 Data Set Formalisation

Despite the fact that OLS regression is reasonably robust,
the characteristics of the ISBSG repository mean that it is
not feasible to perform an OLS regression analysis
against the raw data set. Nor is this even advisable
without some consideration of the need for pre-
processing: cleaning, filtering and polishing the data [20],
in light of the objectives of the particular analysis being
undertaken, should always precede the analysis itself.

There are a number of issues related to the raw ISBSG
data that require consideration and, in some cases, action:

• Some variables are de-normalized. Some of the
variables in the raw ISBSG data set are simply
descriptive strings rather than pre-defined categories.
For example, for the variable ‘Project Activity Scope’,
one observation reads:
“Planning;Specification;Build;Test;Implement;” and
another observation reads:
“Specification;Build;Test;Implement;”. This makes the
number of distinct levels of the categorical variable very
large and it is neither practical nor sensible to perform
regression analysis against it. To make it (and other

similar variables) usable in an OLS regression analysis,
separate dummy variables have to be created with
different levels of ‘Project Activity Scope’.

• Some variables are not recorded in a consistent
format. For example, in the variable ‘Implementation
Date’, different formats exist for different observations,
for instance “9-Nov-00” and “prior to Feb-2004”. This
makes it impossible for statistical software to recognize
‘Implementation Date’ as either a continuous or discrete
variable.

• Some variables have too many distinct levels. The
variable ‘Application Type’ comprises 105 different and
distinct levels. If this categorical variable were to be
included in a predictive regression model as is, 104
dummy variables would have to be included in the final
equation.

• Some variables are a mixture of different contexts.
For example, ‘Development Techniques’ in the raw
ISBSG data set contains values such as “Waterfall” and
“Object-oriented design”. “Waterfall” is a generic
development process model description whereas “Object-
oriented design” is one of the activities undertaken if a
project is implemented using object-oriented methods.
Another example is the ‘Intended Market’ variable whose
values inconsistently describe either the location of the
development (whether developed in-house or externally)
or the actual intended market (whether developed for an
internal or external business unit).

• Some variables are aggregated from other variables.
For example, the ‘Adjusted Function Points’ is calculated
from variables such as ‘Input Count’, ‘Output Count’,
and ‘File Count’. Including both basic and aggregated
variables contravenes the desire to have only necessary
and orthogonal factors in a model.

• Some variables are irrelevant or unavailable for
predictive modelling. Almost all of the observations in
the repository were submitted after the relevant project
was completed. As a result, some variables that are not
known at the initialization/specification stage of projects
are also included; for example, indicators of software
quality (‘Major Defects’, ‘Minor Defects’), ‘Project
Inactive Time’ and some productivity variables.

• Some numerical variables have too few values. For
example, ‘Maximum Team Size’ has 1918 records out of
3024 missing. In this case, even the best MDTs cannot
be applied because this is far below the minimum
proportion of non-missing value requirement for MDTs.

A straightforward solution to these issues would be to
drop the variables affected. In doing so, however, we
may be throwing away predictive capability. Instead,
some elements of the raw data set can be formalised
through a range of variable transformations. Table 1 lays
out the rationale for the formalisation of each variable in

the raw ISBSG data set, with the variables shown in
shaded boxes in column two being retained for further
consideration. (Detailed descriptions of the variables can
be found at the ISBSG website isbsg.org) Note that this
represents a sample treatment of the data – a different
formalisation may be applied if the research objective is
different to the one of interest here (that is, estimation of
project-level development effort). However, the
underlying goal of data retention and adherence to the
principle of transparent pre-processing still hold.

TABLE 1: Formalisation rationale explained for
variables in the raw ISBSG data set

Raw ISBSG
Variable

Destination
Variable in

Formalised Set

Rationale for the
transformation

Project ID Project ID No change – label.
Data Quality
Rating

Data Quality
Rating

No change – could be used
for later filtering.

UFP rating N/A
Data quality indicator. Not
directly related to software
effort estimation.

Count Approach Count Approach No change – will be used for
later filtering.

Functional Size N/A

Only ‘Adjusted Function
Points’ is used; this variable
is a component of ‘Adjusted
Function Points’.

Adjusted
Function Points

Adjusted
Function Points No change.

Value
Adjustment
Factor

N/A

Only ‘Adjusted Function
Points’ is used; this variable
is a component of ‘Adjusted
Function Points’.

Summary Work
Effort

Summary Work
Effort

No change, the response
variable.

Normalised
Work Effort N/A

Only ‘Summary Work
Effort’ is used; while
potentially useful, the
extrapolation performed to
produce this variable is
arbitrarily applied and relies
on ‘Project Activity Scope’
being recorded, and
recorded accurately. Median
difference between
‘Summary Work Effort’ and
‘Normalised Work Effort’ is
zero.

Reported PDR
(afp) N/A

Unrelated to software effort
estimation at the
initialization phase of a
project.

Project PDR
(ufp) N/A

Unrelated to software effort
estimation at the
initialization phase of a
project.

Normalised PDR
(afp) N/A

Unrelated to software effort
estimation at the
initialization phase of a
project.

Normalised PDR
(ufp) N/A

Unrelated to software effort
estimation at the
initialization phase of a
project.

Project Elapsed
Time N/A Unrelated to software effort

estimation at the

Raw ISBSG
Variable

Destination
Variable in

Formalised Set

Rationale for the
transformation

initialization phase of a
project.

Project Inactive
Time N/A

Unrelated to software effort
estimation at the
initialization phase of a
project.

Implementation
Date

‘Implementation
Start Year’ and
‘Implementation
Start Year
Range’

Potentially unrelated to
software effort estimation at
the initialization phase of a
project. The raw data set is
not in constant format.
Furthermore, about 20% of
the data are missing.
Review data and form two
variables (details below).

Project Activity
Scope N/A

De-normalised, providing
too much information in one
variable. Moreover, this data
is primarily useful in terms
of determining ‘Normalised
Work Effort’, a variable that
is not to be retained in this
case.

Effort Plan N/A

Only ‘Summary Work
Effort’ is used; furthermore
(i) this can be expensive to
get for software
organisations and (ii) there
could be some question over
its accuracy.

Effort Specify N/A Same as previous.
Effort Design N/A Same as previous.
Effort Build N/A Same as previous.
Effort Test N/A Same as previous.
Effort
Implement N/A Same as previous.

Effort Unphased N/A Same as previous.

Minor defects N/A

Unrelated to software effort
estimation at the
initialization phase of a
project.

Major defects N/A Same as previous.
Extreme defects N/A Same as previous.
Total Defects
Delivered N/A Same as previous.

Development
Type

Development
Type No change.

Organisation
Type N/A

Too many (more than 100)
distinct levels. Mixed in
context with ‘Application
Type’ and ‘Business Area
Type’. This could involve
some level of arbitrariness.

Business Area
Type

Business Area
Type

Re-categorize missing
values to "Unspecified" and
rename the labels according
to standard sector
descriptors (details below).

Application
Type N/A

Same issues as for
‘Organisation Type’,
therefore it is omitted

Package
Customisation

Package
Customisation

Formalise “Unknown" and
missing values in the raw
data to "Unspecified"
(details below).

Degree of
Customisation N/A Too many missing values

(2937 out of 3024, 97%)

Raw ISBSG
Variable

Destination
Variable in

Formalised Set

Rationale for the
transformation

and too many distinct levels
(19).

Architecture Architecture

Re-categorize missing
values to "Unspecified" and
rename the levels according
to current mainstream
standards (details below).

Client Server? N/A

Too many missing values
(1346 out of 3024, 45%).
Considered in
‘Architecture’.

Client roles N/A Too many missing values
(2968 out of 3024, 98%).

Server roles N/A Too many missing values
(2970 out of 3024, 98%).

Type of server N/A Too many missing values
(2821 out of 3024, 93%).

Client/server
description N/A

Too many missing values
(2291 out of 3024, 76%).
Considered in ‘Architecture’
and ‘Web development’

Web
development Is Web

Re-categorize missing
values to "Unspecified"
(details below)

Plan documents N/A Too many missing values
(2896 out of 3024, 96%).

Specify
documents N/A Too many missing values

(2897 out of 3024, 96%).
Specify
techniques N/A Too many missing values

(2961 out of 3024, 98%).
Design
documents N/A Too many missing values

(2907 out of 3024, 96%).
Design
techniques N/A Too many missing values

(2970 out of 3024, 98%).

Build products N/A Too many missing values
(2895 out of 3024, 96%).

Build activity N/A Too many missing values
(2951 out of 3024, 98%).

Test documents N/A Too many missing values
(2896 out of 3024, 96%).

Test activity N/A Too many missing values
(2984 out of 3024, 99%).

Implement
documents N/A Too many missing values

(2909 out of 3024, 96%).
Implement
activity N/A Too many missing values

(2957 out of 3024, 98%).

Development
Techniques

‘Main
Development
Process Model’
and ‘Object
Orientation’

Too many different contexts
are explained in this one
variable. In this case, two
variables are extracted from
the raw variable with
formalised values (details
below).

Functional
Sizing
Technique

N/A

Unrelated to software effort
estimation at the
initialization phase of a
project.

FP Standard N/A Same as previous.
FP Standards all N/A Same as previous.
Reference Table
Approach N/A Same as previous.

Development
Platform

Development
Platform

Re-categorize missing
values to "Unspecified"
(details below).

Language Type Main Language
Type

Re-categorize missing
values to "Unspecified"

Raw ISBSG
Variable

Destination
Variable in

Formalised Set

Rationale for the
transformation

(details below).

Primary
Programming
Language

N/A

Mixture of contexts. For
example some values are
"3GL” or “4GL" which is
language type and some
others are "IIS" which is the
name of a type of web
server. Some values have
version numbers while some
others do not. In such a case,
it is very hard to get a
sensible category from this
variable. Furthermore, given
the ‘Language Type’ the
specific programming
language cannot provide too
much extra information.

1st Hardware N/A

Mixture of contexts. For
example: "Client/Server",
"Unix" … which are not
descriptions of hardware.

1st Operating
System

Main Operating
System

Distinct values in raw
dataset to be extracted and
re-categorized. Levels are
minimized according to the
mainstream operating
systems (details below).

1st Language N/A Same as for ‘Primary
Programming Language’.

1st Data Base
System

Main Database
System

Same rationale and process
as for ‘Main Operating
System’ (details below).

1st Component
Server N/A Too many missing values

(3001 out of 3024, 99%).

1st Web Server N/A Too many missing values
(3003 out of 3024, 99%).

1st Message
Server N/A Too many missing values

(3017 out of 3024, 100%).
1st Debugging
tool N/A Too many missing values

(2786 out of 3024, 92%).
1st Other
Platform N/A Too many missing values

(2189 out of 3024, 72%).

2nd Hardware N/A Too many missing values
(3024 out of 3024, 100%).

2nd Operating
System N/A Too many missing values

(2995 out of 3024, 99%).

2nd Language N/A Too many missing values
(2963 out of 3024, 98%).

2nd Data Base
System N/A Too many missing values

(3009 out of 3024, 100%).
2nd Component
Server N/A Too many missing values

(3022 out of 3024, 100%).

2nd Web Server N/A Too many missing values
(3023 out of 3024, 100%).

2nd Message
Server N/A Too many missing values

(3022 out of 3024, 100%).
2nd Other
Platform N/A Too many missing values

(2993 out of 3024, 99%).

CASE Tool Used Case Tool Used
Re-categorize missing
values to "Unspecified"
(details below).

Used
Methodology N/A

Unrelated to software effort
estimation at the
initialization phase of a
project.

How
Methodology N/A Same as previous.

Raw ISBSG
Variable

Destination
Variable in

Formalised Set

Rationale for the
transformation

Acquired

User Base -
Business Units N/A Too many missing values

(2434 out of 3024, 80%).
User Base -
Locations N/A Too many missing values

(2384 out of 3024, 79%).
User Base -
Concurrent
Users

N/A Too many missing values
(2408 out of 3024, 80%).

Intended Market

‘Developed
Inhouse’ and
‘Intended
Market’

The ‘Intended Market’ in the
raw ISBSG dataset explains
two aspects of the software
development process. One is
the location where the
project is developed.
Another is the actual
intended market. Here the
variable is separated (details
below).

Recording
Method N/A

Unrelated to software effort
estimation at the
initialization phase of a
project.

Resource Level N/A

Unrelated to software effort
estimation at the
initialization phase of a
project.

Max Team Size N/A Too many missing values
(1836 out of 3024, 61%).

Average Team
Size N/A Too many missing values

(1918 out of 3024, 63%).

Ratio of Project
Effort: non-
project Effort

N/A

Unrelated to software effort
estimation at the
initialization phase of a
project.

% of uncollected
Work Effort N/A

Unrelated to software effort
estimation at the
initialization phase of a
project.

Input count N/A

An element of the ‘Adjusted
Function Points’ already
included. This variable does
not provide additional value
given the focus of most
studies on project-level
estimation.

Output count N/A Same as previous.
Enquiry count N/A Same as previous.
File count N/A Same as previous.
Interface count N/A Same as previous.
Added count N/A Same as previous.
Changed count N/A Same as previous.
Deleted count N/A Same as previous.

Lines of code N/A

Lines of code approach, an
alternative sizing method, is
not included in the research
target. Unrelated to software
effort estimation at the
initialization phase of a
project.

LOC not
Statements N/A Same as previous.

Table 2 lists the variables drawn from the raw ISBSG
data set that comprise the ‘full’ scope from which further
variable selection could be reasonably undertaken. For

each of the (reordered) variables, the type of the variable
(continuous, ordinal or categorical) and the distinct levels
of the categorical variables are listed. The extraction of
these variables is informed by the information available
in the ISBSG data set and ISBSG supplied demographics
as well as by prior studies and the intended analyses in
terms of project-level prediction.

Once the set of candidate variables has been selected, a
rule is defined in order to actually perform the data set
formalisation. Before establishing the rules, each distinct
value for each of the retained variables in the raw ISBSG
data set is carefully examined in order to minimize
confusion of concepts and to maximize both consistency
and numbers of responses for each level. During the
formalisation process, missing or ambiguous categorical
values are treated as “Unspecified”. As the whole process
of defining the formalisation rules is manual, some of the
definitions and rules could be considered to be arbitrary.
However, significant effort has been expended in an
effort to ensure that each decision is defendable and each
rule applied consistently. Furthermore, it is contended
here that retaining data, even if achieved using potentially
arbitrary rules, is to be preferred over the similarly
arbitrary dropping of those significant numbers of
observations that have missing values. Such a decision
would see a very large proportion of the data dropped –
observations without missing values in the estimation-
related variables account for just 20% of the data. The
formalisation rules and their rationale are shown in Table
3.

Note 1: Due to constraints on space it is not possible to
replicate here the table that details the formalisation of
‘Business Area Type’, which shows the transformation of
nearly 100 non-standard descriptions to standard business
sector labels. The following examples should illustrate
the process and outcomes, however:
Telecommunications, Computer Systems and IT,
Network card administration were all formalised as “IT
& T”; and Product Distribution, TRANSPORT and
Transport/Shipping were all formalised as “Logistics”.

The two tables following (4 and 5) define the specific
formalisation rules for raw variables ‘Intended Market’
and ‘Architecture’ based on the principles described in
Table 3. Note that instances of ‘Architecture’ with the
value “Multi-tier/Client server” are coded to the more
complex “Multi Tier” value in the formalised version of
the data set, to ensure that the potential complexity is
accounted for (as it is considered preferable to be
conservative).

At the conclusion of the formalisation process the data
set comprises one label variable (Project ID), one
response variable (Summary Work Effort) and 16
potential predictor variables, with 2862 complete records

(i.e. records for IFPUG/NESMA FPA-sized projects,
with no missing values).

TABLE 2: Extracted candidate variables from the
ISBSG data set as the ‘full’ data set
Candidate
Variable

Variable
Type Notes

Project ID Nominal The unique identifier of the project
being described.

Adjusted
Function
Points

Continuous

Data is complete. The function point
value of each project must be
included for all projects using this as
a counting approach.

Development
Type Categorical Data is complete, all levels for this

variable are provided.

Business Area
Type Categorical

Levels: Health, Insurance, Banking,
IT & T, Manufacturing, Accounting,
Transport, Government, Sales and
Marketing, Other, Unspecified

Package
Customisation Categorical Levels: Yes, No, Unspecified

Developed
Inhouse Categorical Levels: Yes, No, Partly, Unspecified

Intended
Market Categorical Levels: Internal, External, Both,

Unspecified
Implementation
Start Year Ordinal But no validity in its use as a

numeric predictor.
Implementation
Start Year
Range

Categorical Levels: 1989-1994, 1995-1999,
2000-2004, Unspecified.

Architecture Categorical Levels: Stand Alone, Multi Tier,
Client Server, Unspecified

Is Web Categorical Levels: Yes, Unspecified
Development
Platform Categorical Levels: PC, Mid-range, Main-frame,

Multi-platform, Unspecified
Main Language
Type Categorical Levels: 2GL, 3GL, 4GL, 5GL, APG,

Unspecified
Main Database
System Categorical Levels: Oracle, DB2, SQL Server,

Other, Unspecified
Main
Operating
System

Categorical Levels: Mainframe, DOS, Windows,
Solaris, Unix, Other, Unspecified

CASE Tool
Used Categorical Levels: Yes, No, Don't know,

Unspecified
Main
Development
Process Model

Categorical Levels: Waterfall, Iterative, Other,
Unspecified

Object
Orientation Categorical Levels: Yes, Unspecified

Summary
Work Effort Continuous The response, with the unit ‘person

hours’.

TABLE 3: Formalisation rules applied to the raw ISBSG
data set
Formalised
Variable Formalisation Rule Rationale of the

Formalisation

Adjusted
Function
Points

No change

No change needed as the
variable is compulsorily
required by ISBSG for
FPA-based records.

Development
Type No change

No change needed as the
variable is complete and
has only 4 distinct levels.

Business Area
Type See Note 1 below

This variable is a mixture
of organisation type,
application type and
business area type.
Detailed formalisation

Formalised
Variable Formalisation Rule Rationale of the

Formalisation
rules are utilised, explained
in brief below to form 11
levels.

Package
Customisation

Same as ‘Package
Customisation’. If
the value is “Don’t
know” or null then
“Unspecified”

To make it more
appropriate for regression
analysis by categorising
empty data into a value
called “Unspecified”.

Developed
Inhouse

See Table 4
‘Intended Market’

The ‘Intended Market’
variable addresses two
aspects of the software
development process. One
is the type of the physical
location in which the
project is developed, the
other is the actual intended
market. This variable
specifies “type of the
physical location where the
project is developed”.

Intended
Market

See Table 4
‘Intended Market’

This variable addresses the
actual intended market as
indicated from the original
variable ‘Intended Market’
by stripping off the
information regarding
‘Developed Inhouse’
(Please see previous row
for more information.)

Implementation
Start Year

Manually convert
‘Implementation
Date’ to the specified
year e.g.
“24/03/1999” to
1999

Manually extract the year
because values need to
conform to a constant
format. (Used only to
determine next variable.)

Implementation
Start Year
Range

Convert
‘Implementation
Start Year’ to the
appropriate year
range: 1989-1994,
1995-1999, 2000-
2004

There are more than 500
missing values out of 2800
observations in
‘Implementation Start
Year’. Furthermore, while
it might be useful in terms
of time series analysis it is
not sensible to use start
year as a numeric predictor
variable. Given that the
variable may have potential
worth a categorical version
can be included.

Architecture See Table 5
‘Architecture’

Is Web

If ‘Web
Development’ is
“Web” then “Yes”
else “Unspecified”

The raw data set only
contains “Yes” and null
values for this variable. If
the value is null, no
assumption can be made
about the project, thus
“Unspecified” is used in its
place.

Development
Platform

Same as
‘Development
Platform’. If the
value is null then
“Unspecified”

Main Language
Type

Same as ‘Language
Type’. If the value is
null then
“Unspecified”

Formalised
Variable Formalisation Rule Rationale of the

Formalisation

Main Database
System

If ‘First Database
System’ contains
“Oracle” then
“Oracle”
else If ‘First
Database System’
contains “DB2” then
“DB2”
else If ‘First
Database System’
contains “SQL
Server” OR “SQL-
Server” OR “MS
SQL” OR “MSDE”
then “MS SQL”
else If ‘First
Database System’ is
null then
“Unspecified”
else “Other”

Same reasoning as for
‘Main Operating System’.

Main
Operating
System

If ‘First Operating
System’ contains
“Windows” OR
“win” OR “.net” OR
“SQL-server” OR
“NT Server” OR
“NT“ OR “XP” then
“Windows”
else If ‘First
Operating System’
contains
“Mainframe” then
“Mainframe”
else If ‘First
Operating System’
contains “DOS” then
“DOS”
else If ‘First
Operating System’
contains “Solaris”
then “Solaris”
else If ‘First
Operating System’
contains “Unix” then
“Unix”
else if ‘First
Operating System’ is
null OR contains
“client/server” OR
“custom” OR “not
assessed” OR “not
recorded” then
“Unspecified”
else “Other”

Distinct values in the raw
data set are extracted and
re-categorised. The levels
are minimized according to
the mainstream software
development operating
systems.

CASE Tool
Used

Same as ‘Case Tool
Used’. If the value is
null then
“Unspecified”

Main
Development
Process Model

If ‘Development
Techniques’ contains
“Waterfall” then
“Waterfall”
else If ‘Development
Techniques’ contains
“RAD” OR “Rapid
Application
Development” OR
“Prototype” then

‘Development Techniques’
in the raw data set is a
mixture of ‘Main
Development Process
Model’ and ‘Object
Orientation’ which are two
entirely different kinds of
context with different
criteria. Some of the values
are actually explaining the

Formalised
Variable Formalisation Rule Rationale of the

Formalisation
“Iterative”
else If ‘Development
Techniques’ is null
then “Unspecified”
else “Other”

detailed steps/activities in
software development
processes rather than the
development process on its
own.

Object
Orientation

If ‘Development
Techniques’ contains
“Object oriented”
OR “Object-
oriented” OR “OO”
then “Yes”
else “Unspecified”

Summary
Work Effort

Same as ‘Summary
Work Effort’

TABLE 4: Formalisation rules applied to ‘Intended
Market’ in the raw ISBSG data set

Raw ISBSG Values(Intended
Market)

Formalised
ISBSG
Values
(Developed
Inhouse)

Formalised
ISBSG
Values
(Intended
Market)

Outsourced for internal business
unit No Internal

Customer & users 1 org, team in
another No External

Customer, users, team in different
orgs No External

In-house for internal business unit Yes Internal
Partly outsourced and partly inhouse Partly Partly
Customer, users & team in same org Yes Internal
In-house for all internal business
units Yes Internal

Customer & team 1 org, users in
another Yes External

In-house for external business unit Yes External
In-house for internal business unit;
In-house for external business unit Yes Both

Dev in-house for use by ext agent
req to rept to us Yes External

External for external business unit No External
Inhouse for bank customers Yes Internal
NULL (value is missing) Unspecified Unspecified

TABLE 5: Formalisation rules applied to ‘Architecture’
in the raw ISBSG data set
Raw ISBSG Values Formalised ISBSG Values
Multi-tier / Client server Multi Tier
Multi-tier Multi Tier
Multi-tier with web public interface Multi Tier
Stand alone Stand Alone
Client server Client Server
NULL (value is missing) Unspecified

3.2 Further Refinement of the Data Set

To this point, all the appropriate and potentially useful
variables and observations in terms of project-level
software effort estimation have been pre-processed from
the raw ISBSG data. Some values have been modified
with justification in order to produce sound categorical

variables for regression analysis and/or to deal with
missing values. The result is a formalised and ‘full’ data
set created from the raw ISBSG data repository. The
following issues then need to be considered:

• Taking into account the principles and conventions of
software engineering, it is not meaningful to include
some of the available variables in an effort estimation
model. Weisberg [21] argued that “the single most
important tool in selecting a subset of variables for use in
a model is the analyst's knowledge of the substantive area
under study.” He then criticised the action of including
all variables in multiple regression models as “throwing
everything in the hopper” simply because they are
available.

• It is also difficult to make statistical inference from an
overly-complicated regression model because it becomes
difficult to explain and anticipate the impact of the
overall model given certain input conditions. As a result
the model may be problematic to utilize in a production
environment. It is also difficult to explain the
relationship between the response and the many
independent variables, given that there may be interaction
effects among the independent variables.

• The calculation of a regression model can be
computationally expensive. To illustrate, if all 16
predictor variables with all the interactions were to be
included in a model, the number of potential components
in the final model equation could be (15! + 1).
Formulating such a model over the potentially large
number of observations (in this case a data comprising
more than 2800 observations) would challenge the
processing limitations of current desktop PCs.

While there is no definitive suggestion as to the
maximum number of candidate variables that should exist
in a full data set, there is an accepted trade off between
accuracy and parsimony. Finding an optimum model
should be informed by software engineering principles
and relevant personal experience. With this in mind, all
the variables retained so far are considered to decide
whether they should be kept in the full data set for further
study. Two principles inform the decision to keep or drop
a variable at this point:

1. A variable should be dropped if too great a degree of
effort has to be expended in order to decide the value of
it in the process of software/systems development, given
that estimates of effort are often first needed in the very
early stages of development

2. A variable should be dropped if there is no conceptual
justification for its contribution to a predictive model of
software development effort.

In light of the above Table 6 describes the relevant
‘Keep/Drop’ decisions and the rationale for each, for the
16 potential predictors.

TABLE 6: Final decisions regarding retention of
potential predictor variables
Variable Action Explanation
Adjusted
Function
Points

Keep
Indicator of project scale. Available quite
early, prior evidence of relationship with
effort.

Development
Type Keep Indicator of project type. Available early,

prior evidence of relationship with effort.

Business Area
Type Keep

Indicator of project domain. Available
early, prior evidence of relationship with
effort.

Package
Customization Keep Indicator of project type. Available early,

possibly related to effort.
Developed
Inhouse Keep Indicator of project structure. Available

early, possibly related to effort.
Intended
Market Keep Indicator of project structure. Available

early, possibly related to effort.
Implementation
Start Year
Range

Keep Indicator of project context. Can be
estimated early, possibly related to effort.

Architecture Drop

In reality, software developers can expend
substantial effort in order to reach a
decision as to which architecture to use,
by investigating the solution domain and
the availability of current technology.
Therefore, at the time when effort
estimates are first needed, decision
makers may not have decided on the
architecture to use.

Is Web Drop

The levels of this variable are only "Yes"
and "Unspecified". In reality, a project
could be a combination of web and other
types depending on the chosen
architecture.

Development
Platform Keep Indicator of project technology.

Available early, possibly related to effort.

Main Language
Type Keep

Indicator of project technology.
Available quite early, possibly related to
effort.

Main
Operating
System

Keep
Indicator of project technology.
Available quite early, possibly related to
effort.

Main Database
System Drop

To make the decision as to which
database system to use, a significant
amount of effort would normally be
expended. For example, comparing the
performance capabilities, benchmarking
and proof-of-concept documentation. In
reality, organisations tend to favour one
or more particular DB systems (as per
Architecture) but even this varies over
time and (for bespoke systems) depends
on customer needs.

CASE Tool
Used Keep

Indicator of project technology.
Available quite early, possibly related to
effort.

Main
Development
Process Model

Keep Indicator of project process. Available
early, possibly related to effort.

Object
Orientation Drop This decision would normally be made at

the design phase.

This step represents the end of the data set refinement
process. At this point there exists a refined data set that
is usable in terms of OLS regression analysis, comprising
one continuous response variable and twelve predictor
variables (one continuous and eleven categorical). In our
processing of Release 9 of the ISBSG repository this
resulted in the provision of a complete data set still
including 2862 observations, comprising 673 rated A
quality, 2006 rated B, 106 rated C and 77 rated D.

4. CONCLUSIONS

We believe that there is a need for greater clarity in
describing and justifying the pre-processing, discarding
and retention of data from software engineering data sets.
In this paper we have illustrated how such clarity can be
achieved through an example, filtering, formalising and
refining the data in Release 9 of the ISBSG repository in
line with an intent to build a predictive model of project-
level development effort for FPA-sized projects.

Note that the above outcomes in terms of the variables
retained or discarded are not intended to be conveyed as
‘correct’. Rather, it is intended to be indicative of the
outcomes that might be achieved given a particular
research objective while keeping in mind the need to be
transparent and to retain as much data as possible. Of
course there may well be a need for further processing of
the above data in order to build a specific predictive
model. For instance, researcher or practitioner interest
may be in enhancement-type projects – in that case only
those projects with a value of “Enhancement” for
‘Development Type’ would likely be considered. Even if
that were the case, however, the above process would
have ensured that as many of these relevant observations
as possible were available for such an analysis, along
with a range of potentially influential variables.
Assuming that the retained data does indeed reflect one
or more underlying models, such outcomes should
increase the likelihood of robust models being produced.

ACKNOWLEDGEMENT

We thank the ISBSG for providing the data that enabled
this work to be carried out.

6. REFERENCES

[1] Kitchenham, B., E. Mendes and G.H. Travassos, “A
systematic review of cross- vs. within-company cost
estimation studies”, Proc. 10th Intl Conf Empirical
Assessment in Soft Eng 2006.

[2] MacDonell, S.G., and M.J. Shepperd, “Comparing
local and global software effort estimation models –
reflections on a systematic review”, Proc. 1st Intl Symp
Empirical Soft Eng & Measmt 2007, 401-409.

[3] Experience Pro - Software Technology Transfer
Finland, http://www.sttf.fi/eng/indexEnglish.htm

[4] International Software Benchmarking Standards
Group, http://www.isbsg.org

[5] Briand, L.C., K. El Emam, D. Surmann, I. Wieczorek
and K. Maxwell, “An assessment and comparison of
common software cost estimation modeling techniques”,
Proc. 21st Intl Conf Soft Eng 1999, 313-322.

[6] Jeffery, R., M. Ruhe and I. Wieczorek, “Using public
domain metrics to estimate software development effort”,
Proc. 7th Intl Soft Metrics Symp 2001, 16-27.

[7] Sentas, P., L. Angelis, I. Stamelos and G. Bleris,
“Software productivity and effort prediction with ordinal
regression”, Information and Software Technology 47,
2005, 17-29.

[8] Mendes, E., C. Lokan, R. Harrison and C. Triggs, “A
replicated comparison of cross-company and within-
company effort estimation models using the ISBSG
database”, Proc. 7th Intl Soft Metrics Symp 2005.

[9] Cuadrado-Gallego, J.J., M.-A. Sicilia, M. Garre and
D. Rodriguez, “An empirical study of process-related
attributes in segmented software cost-estimation
relationships”, Journal of Systems & Software 79, 2006,
353-361.

[10] Abran, A., I. Ndiaye and P. Bourque, “Evaluation of
a black-box estimation tool: a case study”, Software
Process Improvement and Practice 12, 2007, 199-218.

[11] Adalier, O., A. Uğur, S. Korukoğlu and K. Ertaş, “A
new regression based software cost estimation model
using power values”, IDEAL 2007, Lecture Notes in
Computer Science 4881, 2007, 326-334.

[12] Gencel, C., and L. Buglione, “Do different
functionality types affect the relationship between
software functional size and effort?”, Proc. 2007 Intl
Workshop Soft Measmt, 2007, 235-246.

[13] Xia, W., D. Ho and L.F. Capretz, “Calibrating
function points using neuro-fuzzy technique”, Proc. 21st
Intl Forum COCOMO and Softw Cost Modeling, 2006.

[14] Pendharkar, P.C., J.A. Rodger and G.H.
Subramanian, “An empirical study of the Cobb–Douglas
production function properties of software development
effort”, Information and Software Technology, In Press.

[15] Jiang, Z., P. Naudé and B. Jiang, “The effects of
software size on development effort and software
quality”, Proc. World Academy Sci, Eng and Tech 23
2007, 363-367.

[16] Everitt, B.S., and G. Dunn, Applied Multivariate
Data Analysis, Second Edition, 2001.

[17] Twala, B., M. Cartwright and M. Shepperd,
“Comparison of various methods for handling incomplete

data in software engineering databases”, Proc. Intl Symp
Empirical Soft Eng 2005, 105-114.

[18] Jonsson, P., and C. Wohlin, “An evaluation of k-
nearest neighbour imputation using Likert data”, Proc.
10th Intl Soft Metrics Symp 2004, 108-118

[19] Li, J., A. Al-Emram and G. Ruhe, “Impact analysis
of missing values on the prediction accuracy of analogy
based software effort estimation method AQUA”, Proc.
1st Intl Symp Empirical Soft Eng & Measmt 2007, 126-
135.

[20] Liebchen, G., B. Twala, M. Shepperd, M.
Cartwright and M. Stephens, “Filtering, robust filtering,
polishing: techniques for addressing quality in software
data”, Proc. 1st Intl Symp Empirical Soft Eng & Measmt
2007, 99-106.

[21] Weisberg, S., Applied Linear Regression, John
Wiley & Sons. New York, 1985.

	1. Introduction
	2. RELATED WORK
	3. DATA ANALYSIS
	4. Conclusions

