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Abstract 

 
BACKGROUND: In 1997 the International Software 
Benchmarking Standards Group (ISBSG) began to 
collect data on software projects. Since then they have 
provided copies of their repository to researchers and 
practitioners, through a sequence of releases of 
increasing size. 
PROBLEM: Questions over the quality and completeness 
of the data in the repository have led some researchers to 
discard substantial proportions of the data in terms of 
observations, and to discount the use of some variables 
in the modelling of, among other things, software 
development effort. In some cases the details of the 
discarding of data has received little mention and 
minimal justification. 
METHOD: We describe the process we used in 
attempting to maximise the amount of data retained for 
modelling software development effort at the project 
level, based on previously completed projects that had 
been sized using IFPUG/NESMA function point analysis 
(FPA) and recorded in the repository.  
RESULTS: Through justified formalisation of the data 
set and domain-informed refinement we arrive at a final 
usable data set comprising 2862 (of 3024) observations 
across thirteen variables. 
CONCLUSION: a methodical approach to the pre-
processing of data can help to ensure that as much data 
is retained for modelling as possible.  Assuming that the 
data does reflect one or more underlying models, such 
retention should increase the likelihood of robust models 
being developed. 
 
Empirical software engineering, ISBSG 
repository, data formalisation, effort prediction, 
regression, FPA 

 

1. INTRODUCTION 
 
In order to understand and improve software engineering 
research and practice we must observe, measure (in a 
broad sense), record, analyse, interpret and act on data 
related to software engineering artefacts arising from 
software engineering activities. There has been 
particularly enduring interest in utilising such data for 
predictive modelling – that is, to use data from completed 
actions and artefacts to estimate the characteristics of 
future actions and artefacts.  In fact, software engineering 
organisations have been encouraged (even implored) to 
implement and sustain software metrics programmes in 
order to systematise the above sequence.  
 
Much of this work in research and practice has been 
directed to the prediction of software development effort, 
using the data collected from completed projects. The 
challenges of data collection and management for 
organisations practising software engineering are 
significant, however [1,2]. First, software projects tend to 
be long running processes – over months or years – hence 
completion is a relatively infrequent event. Second, some 
projects do not actually make it to completion, meaning 
that the data are either lost or not included in associated 
data sets.  Third, project data are seen as commercially 
sensitive and therefore confidential, leading to reluctance 
to share information across organisational boundaries. 
Fourth, relatively few organisations devote sufficient 
effort to the systematic collection and organisation of 
project data. Finally, with fast changing technology, past 
project data can quickly become irrelevant in terms of 
future endeavours. 
 
In order to provide software engineers with an alternative 
means of accessing such data several groups have 
positioned themselves as the keepers of repositories of 
data collected from multiple organisations. These 
repositories have been utilised extensively in research – 

mailto:stephen.macdonell@aut.ac.nz�


many studies have reported using versions of the 
‘Finnish’ data set [3] and the International Software 
Benchmarking Standards Group repository (ISBSG) [4] 
(for example, see [5-7]), among others.  While 
commercial users are normally required to buy the latter 
repository, it is provided free to researchers on 
application. As a result, the ISBSG data set has been 
extensively used and cited by previous research.  It is at 
present the largest multi-organization software 
engineering repository available.  The data is collected 
using questionnaires in accordance with the 
benchmarking group’s pre-defined terms and metrics, 
with records dating back to 1997.  These questionnaires 
enable the collection of data in a section-based structure 
that addresses: the Submitter, the Project, the Process, the 
Technology, the People and their Work Effort, the 
Product, the Project’s Functional Size, and Project 
Completion.  Further details can be found from the 
ISBSG website (isbsg.org), while some of the relevant 
details of the variables collected are discussed in later 
sections. 
 
With respect to the ISBSG repository, however, 
questions over data quality and completeness have meant 
that much of the data potentially available has not 
actually been used in the analyses performed.  For 
instance, all three primary studies reviewed by 
Kitchenham et al. [1] that had used the ISBSG repository 
had discarded data – in some instances significant 
proportions of the original data – if there were missing 
values in observations.  While this step is sometimes 
mentioned, it is not always explained in detail – there 
seems to be a view that this is a necessary but relatively 
incidental element of data preparation.  In other instances 
observations have been discarded if they did not have a 
sufficiently high ISBSG quality grade (see Section 2).  
(On submission, all of the information on a project is 
reviewed and rated in terms of data quality (A to D) by 
ISBSG experts.  In particular, the experts look for 
omissions and inconsistencies in the data that might 
suggest that its reliability could be questioned.)  This is a 
relatively ‘blunt’ approach to data set refinement.  
Furthermore, studies do not then consider the impact of 
such filtering on the population represented by the 
remaining observations.  For the reader, if it is not clear 
what records have been discarded then it is difficult to 
know what the retained data actually represents. 
 
Similarly, in spite of these software engineering 
repositories often comprising very large numbers of 
variables, the actual number of variables retained and 
used in the generated predictive models has generally 
been small. For example, the ISBSG data set contains 
more than 80 variables but just four were used in the final 
model generated in the work of Mendes et al. [8].  It is of 
course entirely reasonable to discard data in certain 
circumstances – as models get larger (in numbers of 

variables) they become increasingly intractable to build, 
and unstable to use.  Furthermore, if accuracy is not 
significantly lower then a smaller model is normally to be 
preferred over a larger alternative, as in the main it would 
be easier to understand.  However, the process of 
discarding data, as an important step in the data handling 
process, should be driven not just in response to missing 
values, or variables with lower correlation to the target 
variable, but also in relation to software engineering 
domain knowledge. 
 
Bearing in mind the issues just described, it is contended 
here that the data selection/discarding process should be 
transparent and robust. That is, decisions taken with 
respect to data handling should have clearly stated and 
justified rationale, taking into account software 
engineering domain knowledge as well as indicators of 
statistical importance. Our specific interest here is in 
using such data for the early-phase prediction of full-
project development effort. This paper therefore 
demonstrates a process through which the retention of 
data from a release of the ISBSG repository can be 
maximised with a view to supporting least-squares 
regression-based prediction of project effort based on 
previously completed projects sized using 
IFPUG/NESMA function point analysis (as a typical 
means of building prediction models). 
 
The remainder of this paper is structured as follows.  The 
next section outlines in general terms the use of the 
ISBSG repository in software engineering research, and 
provides a non-systematic illustration of the treatment of 
the repository in relation to data retention.  The data 
analysis process undertaken for this research is reported 
in Section 3, comprising discussion and demonstration of 
the two steps of data set formalisation and refinement.  
The paper is then concluded in Section 4. 

 
2. RELATED WORK 
 
As stated above, the ISBSG repository has been used 
quite extensively as a data source for empirical software 
engineering research.  A document available from the 
ISBSG website lists 44 past or ongoing research projects 
using the repository. (Note that the projects are listed up 
to 2007, and some known studies (including this one) are 
not included, so the true number is likely to be higher 
than 44.)  A further rough indicator of the level of 
research activity utilising the repository can be drawn 
from the data returned from a query of Google Scholar – 
searching for “isbsg” returns 489 hits (as at March 2008), 
around 450 if citations are excluded.  While this does 
also include items such as conference reports and calls 
for papers, a large proportion of these entries are 
published papers authored by those in the empirical 
software engineering research community. 



We now consider a selection of these papers in addition 
to those reviewed in [1] and mentioned briefly above – 
but we acknowledge that this is a limited review.  The 
intent is to provide an indicative sense of the various 
ways in which the repository data have been pre-
processed by the research community, rather than a 
comprehensive discussion of all such treatments. 
 
A study considering the influence of method and CASE 
tool usage on development effort using Release 8 of the 
ISBSG repository was reported by Cuadrado-Gallego and 
colleagues [9].  After starting with 2028 observations the 
researchers removed those will null or “invalid numerical 
values” for effort or size.  Projects not sized using any of 
the FPA variants of interest were also removed.  This 
appears to result in a data set of just under 1950 projects, 
although this is not stated.  Clustering is then performed 
on the entire database, which we take to mean the 1950 
projects clustered in two-dimensional space considering 
size (in function points) and effort.  Mention is made of 
the removal of “a small number of outliers” but no further 
detail is given.  Further analysis proceeds with much 
smaller data subsets corresponding to the use or non-use 
of methods and CASE tools. 
 
Abran et al. [10] describe a comparison of approaches to 
building size-effort models for projects developed in a 
range of programming languages.  They provide a useful 
description of the filtering required in order to utilise 
relevant data in their analysis.  After starting with 789 
records (from the 1999 release of the repository) they 
removed observations for small (lower effort) projects 
and those for which there was no data on the 
programming language used.  They further removed 
observations for languages with two few samples to 
obtain significance, leaving a total sample of 371 records.  
In their modelling they used one predictor variable 
(having taken language into account) – size in function 
points.  Further reduction of the data set after initial 
analysis involved the removal of 72 (undisclosed) outlier 
observations. 
 
A lesser degree of detail regarding data filtering (perhaps 
due to page restrictions) can be seen in the work of 
Adalier et al. [11]. The study begins with the 3024 
observations available in Release 9 of the repository but 
immediately discards observations rated B through D for 
quality (in contrast to the Abran et al. study [10] which 
appears to treat all observations in the 1999 release as 
valid).  Observations containing missing values are also 
dropped, resulting in a data set of 112 records.  Of the 
many potential predictor variables available, only a 
function point count, source lines of code and normalised 
productivity rate are utilised.  Of note in terms of effort 
estimation (rather than model fitting) is that the latter two 
are available only after a project has been completed. 
 

Gencel and Buglione [12] cite the fact that the repository 
contains many nominal variables “on which mathematical 
operations cannot be carried out directly” as a rationale 
for splitting the data into subsets for processing in 
relation to the size-effort relationship for software 
projects.  An alternative approach would be to treat such 
attributes as dummy variables in a single predictive 
model.  On the basis of two prior studies, they took two 
such attributes into account – application type and 
business area type – but subsequently dropped the latter 
variable along with a measure of maximum team size 
because the values were “missing for most of the projects 
in ISBSG Release 10”.  They also utilised the quality 
ratings as a filter, retaining those observations rated A, B 
or C. 
 
Only projects rated A and B were used in the analysis of 
Release 8 of the repository reported by Xia et al. [13].  
Further filters were applied in relation to FPA-sizing 
method, development type, effort recording and 
availability of all of the components of function point 
counting (the fifteen unadjusted function point 
components and fourteen general system characteristics).  
All other variables appear to be discarded.  As a result 
the original collection of 2027 records is reduced to a set 
of 184 for further processing. 
 
The same quality rating filter is applied by Pendharkar et 
al. [14] in their use of the Release 7 iteration of the 
repository to investigate the link between team size and 
software size, and development effort.  Further, they 
removed observations for which software size, team size 
or work effort values were missing.  This led to the 
original set of 1238 project records being reduced to 540 
observations. 
 
Release 10 of the repository was used as the source of an 
analysis of the relationship between software size and 
development effort reported by Jiang et al. [15].  In this 
case only size in IFPUG/NESMA function points and 
effort in total hours are utilised.  No ‘quality’ filtering is 
performed.  Consequently a large proportion of records 
are retained for modelling – 3433 of 4106. 
 
The above studies appear to reflect a general tendency to 
exclude many of the categorical variables from 
consideration, with analyses relying solely on one or a 
few indicators of software size.  In some cases this is 
entirely justified, in that the other variables are simply 
not relevant to the issue at hand (e.g. in [14]), but in 
others it seems that potential difficulties in processing 
may have discouraged their use.  In contrast, Sentas et al. 
[7] provide what is in our view the most comprehensive 
description of preparation and use of the ISBSG 
repository (and other data sets). Central to their work is 
the pre-processing of several categorical variables in the 
data set, addressing aspects such as the development 



platform and the application type.  Their intent, as is also 
the case here, appears to be to keep for consideration as 
many variables as possible. A differentiating factor is 
their use of ordinal regression which is more readily able 
to consider categorical data. They then filter the data set 
based on quality ratings (A and B only), FPA counting 
method (IFPUG), and aspects of effort recording.  This 
led to a provisional data set of 556 observations (from 
1239 (or 1238 [14]) in the release.) Their discarding of 
observations with missing values, however, saw more 
than 500 of these records removed, resulting in a data set 
of just 52 projects. 
 
There is no question that missingness of data is a problem 
in empirical software engineering, as it is of course in 
other fields. “One of the problems often faced by 
statisticians undertaking statistical analysis in general, 
and multivariate analysis in particular, is the presence of 
missing data” [16].  It is commonly regarded as 
acceptable if the extent of missingness is small (for 
example, 5% or less) because it is normally inevitable to 
encounter missingness in the world of inferential 
statistics, which by its nature attempts to portray the 
characteristics of a population from those of an inherently 
incomplete sample. Furthermore, missingness becomes 
almost more inevitable (if there is such a thing!) when 
statistics are applied in a domain such as software 
engineering because the information being collected and 
analysed could be considered by submitters as 
commercially sensitive. The fact is that the majority of 
the observations in the ISBSG repository will contain 
missing values, due to the design of the data collection 
procedure and the nature of software engineering 
practice.  For example, one of the data elements (or 
potential variables) collected in the ISBSG data set is the 
number of lines of software source code (LOC).  If the 
sizing approach used for a particular project is IFPUG 
FPA, the LOC variable is purposely ignored.  A further 
example is ‘Organization Type’ – some organisations 
might choose to ignore the associated data collection 
question for this variable in an effort to retain 
confidentiality (even though this is assured by the 
ISBSG). 
 
A degree of missingness can be treated through the use of 
missing data techniques (MDTs) which attempt to impute 
the missing values, these methods having received some 
methodological attention in the empirical software 
engineering literature [17-19] and having been used in 
[8]. However, in order to be effective the degree of 
missingness needs to be less than a certain proportion of 
the potential data source – evidence to date suggests that 
40% or 50% would be an upper limit for a data item in 
repository such as that provided by the ISBSG [17,19]. 
 
Finally we note here the work of Liebchen et al. [20] that 
specifically addressed the issue of data quality in 

software engineering data sets and the need to clean, 
filter and polish such data.  We agree that greater 
attention needs to be directed to the pre-processing of 
data and concur with their view that such work has been 
limited to date. 
 
3. DATA ANALYSIS 
 
The particular version of the ISBSG repository used in 
this analysis is Release 9, made available between 2004 
and 2007.  It includes data on 3024 projects.  
 
The data analysis process described here is composed of 
two major steps: 

• Data Set Formalisation: Examination of the data 
reveals that it is neither appropriate nor sensible to 
perform ordinary least-squares (OLS) regression against 
the raw ISBSG repository as a whole.  As a result, the 
raw ISBSG data set must be formalised to be of 
reasonable size and content.  The rules and the rationale 
behind the data set formalisation are therefore explained. 

• Data Set Further Refinement: Even when a formalised 
and ‘full’ data set is acquired, it is still not entirely 
appropriate to perform OLS regression analysis against it 
because of the intended objective of the prediction, the 
computational complexity of regression analysis and the 
expensiveness of acquiring project data for individual 
organizations.  The methodology, rules and rationale of 
the data set further refinement process are explained in 
the second subsection. 
 
3.1 Data Set Formalisation 
 
Despite the fact that OLS regression is reasonably robust, 
the characteristics of the ISBSG repository mean that it is 
not feasible to perform an OLS regression analysis 
against the raw data set.  Nor is this even advisable 
without some consideration of the need for pre-
processing: cleaning, filtering and polishing the data [20], 
in light of the objectives of the particular analysis being 
undertaken, should always precede the analysis itself. 
 
There are a number of issues related to the raw ISBSG 
data that require consideration and, in some cases, action: 

• Some variables are de-normalized.  Some of the 
variables in the raw ISBSG data set are simply 
descriptive strings rather than pre-defined categories.  
For example, for the variable ‘Project Activity Scope’, 
one observation reads: 
“Planning;Specification;Build;Test;Implement;” and 
another observation reads: 
“Specification;Build;Test;Implement;”.  This makes the 
number of distinct levels of the categorical variable very 
large and it is neither practical nor sensible to perform 
regression analysis against it.  To make it (and other 



similar variables) usable in an OLS regression analysis, 
separate dummy variables have to be created with 
different levels of ‘Project Activity Scope’. 

• Some variables are not recorded in a consistent 
format. For example, in the variable ‘Implementation 
Date’, different formats exist for different observations, 
for instance “9-Nov-00” and “prior to Feb-2004”.  This 
makes it impossible for statistical software to recognize 
‘Implementation Date’ as either a continuous or discrete 
variable. 

• Some variables have too many distinct levels.  The 
variable ‘Application Type’ comprises 105 different and 
distinct levels.  If this categorical variable were to be 
included in a predictive regression model as is, 104 
dummy variables would have to be included in the final 
equation. 

• Some variables are a mixture of different contexts.  
For example, ‘Development Techniques’ in the raw 
ISBSG data set contains values such as “Waterfall” and 
“Object-oriented design”.  “Waterfall” is a generic 
development process model description whereas “Object-
oriented design” is one of the activities undertaken if a 
project is implemented using object-oriented methods. 
Another example is the ‘Intended Market’ variable whose 
values inconsistently describe either the location of the 
development (whether developed in-house or externally) 
or the actual intended market (whether developed for an 
internal or external business unit). 

• Some variables are aggregated from other variables. 
For example, the ‘Adjusted Function Points’ is calculated 
from variables such as ‘Input Count’, ‘Output Count’, 
and ‘File Count’. Including both basic and aggregated 
variables contravenes the desire to have only necessary 
and orthogonal factors in a model. 

• Some variables are irrelevant or unavailable for 
predictive modelling. Almost all of the observations in 
the repository were submitted after the relevant project 
was completed.  As a result, some variables that are not 
known at the initialization/specification stage of projects 
are also included; for example, indicators of software 
quality (‘Major Defects’, ‘Minor Defects’), ‘Project 
Inactive Time’ and some productivity variables. 

• Some numerical variables have too few values. For 
example, ‘Maximum Team Size’ has 1918 records out of 
3024 missing.  In this case, even the best MDTs cannot 
be applied because this is far below the minimum 
proportion of non-missing value requirement for MDTs. 
 
A straightforward solution to these issues would be to 
drop the variables affected.  In doing so, however, we 
may be throwing away predictive capability. Instead, 
some elements of the raw data set can be formalised 
through a range of variable transformations.  Table 1 lays 
out the rationale for the formalisation of each variable in 

the raw ISBSG data set, with the variables shown in 
shaded boxes in column two being retained for further 
consideration. (Detailed descriptions of the variables can 
be found at the ISBSG website isbsg.org)  Note that this 
represents a sample treatment of the data – a different 
formalisation may be applied if the research objective is 
different to the one of interest here (that is, estimation of 
project-level development effort).  However, the 
underlying goal of data retention and adherence to the 
principle of transparent pre-processing still hold. 
 
TABLE 1: Formalisation rationale explained for 
variables in the raw ISBSG data set 

Raw ISBSG 
Variable 

Destination 
Variable in 

Formalised Set 

Rationale for the 
transformation 

Project ID Project ID No change – label. 
Data Quality 
Rating 

Data Quality 
Rating 

No change – could be used 
for later filtering. 

UFP rating N/A 
Data quality indicator. Not 
directly related to software 
effort estimation. 

Count Approach Count Approach No change – will be used for 
later filtering.  

Functional Size N/A 

Only ‘Adjusted Function 
Points’ is used; this variable 
is a component of ‘Adjusted 
Function Points’. 

Adjusted 
Function Points 

Adjusted 
Function Points No change. 

Value 
Adjustment 
Factor 

N/A 

Only ‘Adjusted Function 
Points’ is used; this variable 
is a component of ‘Adjusted 
Function Points’. 

Summary Work 
Effort 

Summary Work 
Effort 

No change, the response 
variable. 

Normalised 
Work Effort N/A 

Only ‘Summary Work 
Effort’ is used; while 
potentially useful, the 
extrapolation performed to 
produce this variable is 
arbitrarily applied and relies 
on ‘Project Activity Scope’ 
being recorded, and 
recorded accurately. Median 
difference between 
‘Summary Work Effort’ and 
‘Normalised Work Effort’ is 
zero. 

Reported PDR 
(afp) N/A 

Unrelated to software effort 
estimation at the 
initialization phase of a 
project. 

Project PDR 
(ufp) N/A 

Unrelated to software effort 
estimation at the 
initialization phase of a 
project. 

Normalised PDR 
(afp) N/A 

Unrelated to software effort 
estimation at the 
initialization phase of a 
project. 

Normalised PDR 
(ufp) N/A 

Unrelated to software effort 
estimation at the 
initialization phase of a 
project. 

Project Elapsed 
Time N/A Unrelated to software effort 

estimation at the 



Raw ISBSG 
Variable 

Destination 
Variable in 

Formalised Set 

Rationale for the 
transformation 

initialization phase of a 
project. 

Project Inactive 
Time N/A 

Unrelated to software effort 
estimation at the 
initialization phase of a 
project. 

Implementation 
Date 

‘Implementation 
Start Year’ and 
‘Implementation 
Start Year 
Range’ 

Potentially unrelated to 
software effort estimation at 
the initialization phase of a 
project. The raw data set is 
not in constant format. 
Furthermore, about 20% of 
the data are missing.  
Review data and form two 
variables (details below). 

Project Activity 
Scope N/A 

De-normalised, providing 
too much information in one 
variable. Moreover, this data 
is primarily useful in terms 
of determining ‘Normalised 
Work Effort’, a variable that 
is not to be retained in this 
case. 

Effort Plan N/A 

Only ‘Summary Work 
Effort’ is used; furthermore 
(i)  this can be expensive to 
get for software 
organisations and (ii) there 
could be some question over 
its accuracy. 

Effort Specify N/A Same as previous. 
Effort Design N/A Same as previous. 
Effort Build N/A Same as previous. 
Effort Test N/A Same as previous. 
Effort 
Implement N/A Same as previous. 

Effort Unphased N/A Same as previous. 

Minor defects N/A 

Unrelated to software effort 
estimation at the 
initialization phase of a 
project. 

Major defects N/A Same as previous. 
Extreme defects N/A Same as previous. 
Total Defects 
Delivered N/A Same as previous. 

Development 
Type 

Development 
Type No change. 

Organisation 
Type N/A 

Too many (more than 100) 
distinct levels. Mixed in 
context with ‘Application 
Type’ and ‘Business Area 
Type’. This could involve 
some level of arbitrariness. 

Business Area 
Type 

Business Area 
Type 

Re-categorize missing 
values to "Unspecified" and 
rename the labels according 
to standard sector 
descriptors (details below). 

Application 
Type N/A 

Same issues as for 
‘Organisation Type’, 
therefore it is omitted 

Package 
Customisation 

Package 
Customisation 

Formalise “Unknown" and 
missing values in the raw 
data to "Unspecified" 
(details below). 

Degree of 
Customisation N/A Too many missing values 

(2937 out of 3024, 97%) 

Raw ISBSG 
Variable 

Destination 
Variable in 

Formalised Set 

Rationale for the 
transformation 

and too many distinct levels 
(19). 

Architecture Architecture 

Re-categorize missing 
values to "Unspecified" and 
rename the levels according 
to current mainstream 
standards (details below). 

Client Server? N/A 

Too many missing values 
(1346 out of 3024, 45%). 
Considered in 
‘Architecture’. 

Client roles N/A Too many missing values 
(2968 out of 3024, 98%). 

Server roles N/A Too many missing values 
(2970 out of 3024, 98%). 

Type of server N/A Too many missing values 
(2821 out of 3024, 93%). 

Client/server 
description N/A 

Too many missing values 
(2291 out of 3024, 76%). 
Considered in ‘Architecture’ 
and ‘Web development’ 

Web 
development Is Web 

Re-categorize missing 
values to "Unspecified" 
(details below) 

Plan documents N/A Too many missing values 
(2896 out of 3024, 96%). 

Specify 
documents N/A Too many missing values 

(2897 out of 3024, 96%). 
Specify 
techniques N/A Too many missing values 

(2961 out of 3024, 98%). 
Design 
documents N/A Too many missing values 

(2907 out of 3024, 96%). 
Design 
techniques N/A Too many missing values 

(2970 out of 3024, 98%). 

Build products N/A Too many missing values 
(2895 out of 3024, 96%). 

Build activity N/A Too many missing values 
(2951 out of 3024, 98%). 

Test documents N/A Too many missing values 
(2896 out of 3024, 96%). 

Test activity N/A Too many missing values 
(2984 out of 3024, 99%). 

Implement 
documents N/A Too many missing values 

(2909 out of 3024, 96%). 
Implement 
activity N/A Too many missing values 

(2957 out of 3024, 98%). 

Development 
Techniques 

‘Main 
Development 
Process Model’ 
and ‘Object 
Orientation’ 

Too many different contexts 
are explained in this one 
variable. In this case, two 
variables are extracted from 
the raw variable with 
formalised values (details 
below). 

Functional 
Sizing 
Technique 

N/A 

Unrelated to software effort 
estimation at the 
initialization phase of a 
project. 

FP Standard N/A Same as previous. 
FP Standards all N/A Same as previous. 
Reference Table 
Approach N/A Same as previous. 

Development 
Platform 

Development 
Platform 

Re-categorize missing 
values to "Unspecified" 
(details below). 

Language Type Main Language 
Type 

Re-categorize missing 
values to "Unspecified" 



Raw ISBSG 
Variable 

Destination 
Variable in 

Formalised Set 

Rationale for the 
transformation 

(details below).  

Primary 
Programming 
Language 

N/A 

Mixture of contexts. For 
example some values are 
"3GL” or “4GL" which is 
language type and some 
others are "IIS" which is the 
name of a type of web 
server.  Some values have 
version numbers while some 
others do not. In such a case, 
it is very hard to get a 
sensible category from this 
variable. Furthermore, given 
the ‘Language Type’ the 
specific programming 
language cannot provide too 
much extra information.  

1st Hardware N/A 

Mixture of contexts. For 
example: "Client/Server", 
"Unix" … which are not 
descriptions of hardware. 

1st Operating 
System 

Main Operating 
System 

Distinct values in raw 
dataset to be extracted and 
re-categorized.  Levels are 
minimized according to the 
mainstream operating 
systems (details below). 

1st Language N/A Same as for ‘Primary 
Programming Language’. 

1st Data Base 
System 

Main Database 
System 

Same rationale and process 
as for ‘Main Operating 
System’ (details below). 

1st Component 
Server N/A Too many missing values 

(3001 out of 3024, 99%). 

1st Web Server N/A Too many missing values 
(3003 out of 3024, 99%). 

1st Message 
Server N/A Too many missing values 

(3017 out of 3024, 100%). 
1st Debugging 
tool N/A Too many missing values 

(2786 out of 3024, 92%).  
1st Other 
Platform N/A Too many missing values 

(2189 out of 3024, 72%). 

2nd Hardware N/A Too many missing values 
(3024 out of 3024, 100%). 

2nd Operating 
System N/A Too many missing values 

(2995 out of 3024, 99%). 

2nd Language N/A Too many missing values 
(2963 out of 3024, 98%).  

2nd Data Base 
System N/A Too many missing values 

(3009 out of 3024, 100%). 
2nd Component 
Server N/A Too many missing values 

(3022 out of 3024, 100%). 

2nd Web Server N/A Too many missing values 
(3023 out of 3024, 100%). 

2nd Message 
Server N/A Too many missing values 

(3022 out of 3024, 100%).  
2nd Other 
Platform N/A Too many missing values 

(2993 out of 3024, 99%). 

CASE Tool Used Case Tool Used 
Re-categorize missing 
values to "Unspecified" 
(details below).  

Used 
Methodology N/A 

Unrelated to software effort 
estimation at the 
initialization phase of a 
project. 

How 
Methodology N/A Same as previous. 

Raw ISBSG 
Variable 

Destination 
Variable in 

Formalised Set 

Rationale for the 
transformation 

Acquired 

User Base - 
Business Units N/A Too many missing values 

(2434 out of 3024, 80%). 
User Base - 
Locations N/A Too many missing values 

(2384 out of 3024, 79%). 
User Base - 
Concurrent 
Users 

N/A Too many missing values 
(2408 out of 3024, 80%). 

Intended Market 

‘Developed 
Inhouse’ and 
‘Intended 
Market’ 

The ‘Intended Market’ in the 
raw ISBSG dataset explains 
two aspects of the software 
development process. One is 
the location where the 
project is developed. 
Another is the actual 
intended market. Here the 
variable is separated (details 
below). 

Recording 
Method N/A 

Unrelated to software effort 
estimation at the 
initialization phase of a 
project. 

Resource Level N/A 

Unrelated to software effort 
estimation at the 
initialization phase of a 
project. 

Max Team Size N/A Too many missing values 
(1836 out of 3024, 61%). 

Average Team 
Size N/A Too many missing values 

(1918 out of 3024, 63%). 

Ratio of Project 
Effort: non-
project Effort 

N/A 

Unrelated to software effort 
estimation at the 
initialization phase of a 
project. 

% of uncollected 
Work Effort N/A 

Unrelated to software effort 
estimation at the 
initialization phase of a 
project. 

Input count N/A 

An element of the ‘Adjusted 
Function Points’ already 
included. This variable does 
not provide additional value 
given the focus of most 
studies on project-level 
estimation. 

Output count N/A Same as previous. 
Enquiry count N/A Same as previous. 
File count N/A Same as previous. 
Interface count N/A Same as previous. 
Added count N/A Same as previous. 
Changed count N/A Same as previous. 
Deleted count N/A Same as previous. 

Lines of code N/A 

Lines of code approach, an 
alternative sizing method, is 
not included in the research 
target. Unrelated to software 
effort estimation at the 
initialization phase of a 
project. 

LOC not 
Statements N/A Same as previous. 

 
Table 2 lists the variables drawn from the raw ISBSG 
data set that comprise the ‘full’ scope from which further 
variable selection could be reasonably undertaken.  For 



each of the (reordered) variables, the type of the variable 
(continuous, ordinal or categorical) and the distinct levels 
of the categorical variables are listed. The extraction of 
these variables is informed by the information available 
in the ISBSG data set and ISBSG supplied demographics 
as well as by prior studies and the intended analyses in 
terms of project-level prediction. 
 
Once the set of candidate variables has been selected, a 
rule is defined in order to actually perform the data set 
formalisation.  Before establishing the rules, each distinct 
value for each of the retained variables in the raw ISBSG 
data set is carefully examined in order to minimize 
confusion of concepts and to maximize both consistency 
and numbers of responses for each level. During the 
formalisation process, missing or ambiguous categorical 
values are treated as “Unspecified”. As the whole process 
of defining the formalisation rules is manual, some of the 
definitions and rules could be considered to be arbitrary. 
However, significant effort has been expended in an 
effort to ensure that each decision is defendable and each 
rule applied consistently.  Furthermore, it is contended 
here that retaining data, even if achieved using potentially 
arbitrary rules, is to be preferred over the similarly 
arbitrary dropping of those significant numbers of 
observations that have missing values.  Such a decision 
would see a very large proportion of the data dropped – 
observations without missing values in the estimation-
related variables account for just 20% of the data.  The 
formalisation rules and their rationale are shown in Table 
3. 
 
Note 1: Due to constraints on space it is not possible to 
replicate here the table that details the formalisation of 
‘Business Area Type’, which shows the transformation of 
nearly 100 non-standard descriptions to standard business 
sector labels. The following examples should illustrate 
the process and outcomes, however: 
Telecommunications, Computer Systems and IT, 
Network card administration were all formalised as “IT 
& T”; and Product Distribution, TRANSPORT and 
Transport/Shipping were all formalised as “Logistics”. 
 
The two tables following (4 and 5) define the specific 
formalisation rules for raw variables ‘Intended Market’ 
and ‘Architecture’ based on the principles described in 
Table 3.  Note that instances of ‘Architecture’ with the 
value “Multi-tier/Client server” are coded to the more 
complex “Multi Tier” value in the formalised version of 
the data set, to ensure that the potential complexity is 
accounted for (as it is considered preferable to be 
conservative). 
 
At the conclusion of the formalisation process the data 
set comprises one label variable (Project ID), one 
response variable (Summary Work Effort) and 16 
potential predictor variables, with 2862 complete records 

(i.e. records for IFPUG/NESMA FPA-sized projects, 
with no missing values). 
 
TABLE 2: Extracted candidate variables from the 
ISBSG data set as the ‘full’ data set 
Candidate 
Variable 

Variable 
Type Notes 

Project ID Nominal The unique identifier of the project 
being described. 

Adjusted 
Function 
Points 

Continuous 

Data is complete. The function point 
value of each project must be 
included for all projects using this as 
a counting approach. 

Development 
Type Categorical Data is complete, all levels for this 

variable are provided. 

Business Area 
Type Categorical 

Levels: Health, Insurance, Banking, 
IT & T, Manufacturing, Accounting, 
Transport, Government, Sales and 
Marketing, Other, Unspecified 

Package 
Customisation Categorical Levels: Yes, No, Unspecified 

Developed 
Inhouse Categorical Levels: Yes, No, Partly, Unspecified 

Intended 
Market Categorical Levels: Internal, External, Both, 

Unspecified 
Implementation 
Start Year Ordinal But no validity in its use as a 

numeric predictor. 
Implementation 
Start Year 
Range 

Categorical Levels: 1989-1994, 1995-1999, 
2000-2004, Unspecified. 

Architecture Categorical Levels: Stand Alone, Multi Tier, 
Client Server, Unspecified 

Is Web Categorical Levels: Yes, Unspecified 
Development 
Platform Categorical Levels: PC, Mid-range, Main-frame, 

Multi-platform, Unspecified 
Main Language 
Type Categorical Levels: 2GL, 3GL, 4GL, 5GL, APG, 

Unspecified 
Main Database 
System Categorical Levels: Oracle, DB2, SQL Server, 

Other, Unspecified 
Main 
Operating 
System 

Categorical Levels: Mainframe, DOS, Windows, 
Solaris, Unix, Other, Unspecified 

CASE Tool 
Used Categorical Levels: Yes, No, Don't know, 

Unspecified 
Main 
Development 
Process Model 

Categorical Levels: Waterfall, Iterative, Other, 
Unspecified 

Object 
Orientation Categorical Levels: Yes, Unspecified 

Summary 
Work Effort Continuous The response, with the unit ‘person 

hours’. 
 
TABLE 3: Formalisation rules applied to the raw ISBSG 
data set 
Formalised 
Variable Formalisation Rule Rationale of the 

Formalisation 

Adjusted 
Function 
Points 

No change 

No change needed as the 
variable is compulsorily 
required by ISBSG for 
FPA-based records. 

Development 
Type No change 

No change needed as the 
variable is complete and 
has only 4 distinct levels. 

Business Area 
Type See Note 1 below 

This variable is a mixture 
of organisation type, 
application type and 
business area type.  
Detailed formalisation 



Formalised 
Variable Formalisation Rule Rationale of the 

Formalisation 
rules are utilised, explained 
in brief below to form 11 
levels. 

Package 
Customisation 

Same as ‘Package 
Customisation’. If 
the value is “Don’t 
know” or null then 
“Unspecified” 

To make it more 
appropriate for regression 
analysis by categorising 
empty data into a value 
called “Unspecified”. 

Developed 
Inhouse 

See Table 4 
‘Intended Market’ 

The ‘Intended Market’ 
variable addresses two 
aspects of the software 
development process. One 
is the type of the physical 
location in which the 
project is developed, the 
other is the actual intended 
market.  This variable 
specifies “type of the 
physical location where the 
project is developed”. 

Intended 
Market 

See Table 4 
‘Intended Market’ 

This variable addresses the 
actual intended market as 
indicated from the original 
variable ‘Intended Market’ 
by stripping off the 
information regarding 
‘Developed Inhouse’ 
(Please see previous row 
for more information.) 

Implementation 
Start Year 

Manually convert 
‘Implementation 
Date’ to the specified 
year e.g. 
“24/03/1999” to 
1999 

Manually extract the year 
because values need to 
conform to a constant 
format. (Used only to 
determine next variable.) 

Implementation 
Start Year 
Range 

Convert 
‘Implementation 
Start Year’ to the 
appropriate year 
range: 1989-1994, 
1995-1999, 2000-
2004 

There are more than 500 
missing values out of 2800 
observations in 
‘Implementation Start 
Year’. Furthermore, while 
it might be useful in terms 
of time series analysis it is 
not sensible to use start 
year as a numeric predictor 
variable.  Given that the 
variable may have potential 
worth a categorical version 
can be included.  

Architecture See Table 5 
‘Architecture’   

Is Web 

If ‘Web 
Development’ is 
“Web” then “Yes” 
else “Unspecified” 

The raw data set only 
contains “Yes” and null 
values for this variable. If 
the value is null, no 
assumption can be made 
about the project, thus 
“Unspecified” is used in its 
place. 

Development 
Platform 

Same as 
‘Development 
Platform’. If the 
value is null then 
“Unspecified” 

  

Main Language 
Type 

Same as ‘Language 
Type’. If the value is 
null then 
“Unspecified” 

  

Formalised 
Variable Formalisation Rule Rationale of the 

Formalisation 

Main Database 
System 

If ‘First Database 
System’ contains 
“Oracle” then 
“Oracle” 
else If ‘First 
Database System’ 
contains “DB2” then 
“DB2” 
else If ‘First 
Database System’ 
contains “SQL 
Server” OR “SQL-
Server” OR “MS 
SQL” OR “MSDE” 
then “MS SQL” 
else If ‘First 
Database System’ is 
null then 
“Unspecified”  
else “Other” 

Same reasoning as for 
‘Main Operating System’. 

Main 
Operating 
System 

If ‘First Operating 
System’ contains 
“Windows” OR 
“win” OR “.net” OR 
“SQL-server” OR 
“NT Server” OR 
“NT“ OR “XP” then 
“Windows” 
else If ‘First 
Operating System’ 
contains 
“Mainframe” then 
“Mainframe” 
else If ‘First 
Operating System’ 
contains “DOS” then 
“DOS” 
else If ‘First 
Operating System’ 
contains “Solaris” 
then “Solaris” 
else If ‘First 
Operating System’ 
contains “Unix” then 
“Unix” 
else if ‘First 
Operating System’ is 
null OR contains 
“client/server” OR 
“custom” OR “not 
assessed” OR “not 
recorded” then 
“Unspecified” 
else “Other” 

Distinct values in the raw 
data set are extracted and 
re-categorised.  The levels 
are minimized according to 
the mainstream software 
development operating 
systems. 

CASE Tool 
Used 

Same as ‘Case Tool 
Used’. If the value is 
null then 
“Unspecified” 

  

Main 
Development 
Process Model 

If ‘Development 
Techniques’ contains 
“Waterfall” then 
“Waterfall” 
else If ‘Development 
Techniques’ contains 
“RAD” OR “Rapid 
Application 
Development” OR 
“Prototype” then 

‘Development Techniques’ 
in the raw data set is a 
mixture of ‘Main 
Development Process 
Model’ and ‘Object 
Orientation’ which are two 
entirely different kinds of 
context with different 
criteria. Some of the values 
are actually explaining the 



Formalised 
Variable Formalisation Rule Rationale of the 

Formalisation 
“Iterative” 
else If ‘Development 
Techniques’ is null 
then “Unspecified”  
else “Other” 

detailed steps/activities in 
software development 
processes rather than the 
development process on its 
own. 

Object 
Orientation 

If ‘Development 
Techniques’ contains 
“Object oriented” 
OR “Object-
oriented” OR “OO” 
then “Yes” 
else “Unspecified” 

  

Summary 
Work Effort 

Same as ‘Summary 
Work Effort’  

 
TABLE 4: Formalisation rules applied to ‘Intended 
Market’ in the raw ISBSG data set 

Raw ISBSG Values(Intended 
Market) 

Formalised 
ISBSG 
Values 
(Developed 
Inhouse) 

Formalised 
ISBSG 
Values 
(Intended 
Market) 

Outsourced for internal business 
unit No Internal 

Customer & users 1 org, team in 
another No External 

Customer, users, team in different 
orgs No External 

In-house for internal business unit Yes Internal 
Partly outsourced and partly inhouse Partly Partly 
Customer, users & team in same org Yes Internal 
In-house for all internal business 
units Yes Internal 

Customer & team 1 org, users in 
another Yes External 

In-house for external business unit Yes External 
In-house for internal business unit; 
In-house for external business unit Yes Both 

Dev in-house for use by ext agent 
req to rept to us Yes External 

External for external business unit No External 
Inhouse for bank customers Yes Internal 
NULL (value is missing) Unspecified Unspecified 
 
TABLE 5: Formalisation rules applied to ‘Architecture’ 
in the raw ISBSG data set 
Raw ISBSG Values Formalised ISBSG Values  
Multi-tier / Client server Multi Tier 
Multi-tier Multi Tier 
Multi-tier with web public interface Multi Tier 
Stand alone Stand Alone 
Client server Client Server 
NULL (value is missing) Unspecified 
 
3.2 Further Refinement of the Data Set 
 
To this point, all the appropriate and potentially useful 
variables and observations in terms of project-level 
software effort estimation have been pre-processed from 
the raw ISBSG data. Some values have been modified 
with justification in order to produce sound categorical 

variables for regression analysis and/or to deal with 
missing values. The result is a formalised and ‘full’ data 
set created from the raw ISBSG data repository. The 
following issues then need to be considered: 

• Taking into account the principles and conventions of 
software engineering, it is not meaningful to include 
some of the available variables in an effort estimation 
model. Weisberg [21] argued that “the single most 
important tool in selecting a subset of variables for use in 
a model is the analyst's knowledge of the substantive area 
under study.” He then criticised the action of including 
all variables in multiple regression models as “throwing 
everything in the hopper” simply because they are 
available. 

• It is also difficult to make statistical inference from an 
overly-complicated regression model because it becomes 
difficult to explain and anticipate the impact of the 
overall model given certain input conditions.  As a result 
the model may be problematic to utilize in a production 
environment.  It is also difficult to explain the 
relationship between the response and the many 
independent variables, given that there may be interaction 
effects among the independent variables. 

• The calculation of a regression model can be 
computationally expensive. To illustrate, if all 16 
predictor variables with all the interactions were to be 
included in a model, the number of potential components 
in the final model equation could be (15! + 1).  
Formulating such a model over the potentially large 
number of observations (in this case a data comprising 
more than 2800 observations) would challenge the 
processing limitations of current desktop PCs. 
 
While there is no definitive suggestion as to the 
maximum number of candidate variables that should exist 
in a full data set, there is an accepted trade off between 
accuracy and parsimony.  Finding an optimum model 
should be informed by software engineering principles 
and relevant personal experience.  With this in mind, all 
the variables retained so far are considered to decide 
whether they should be kept in the full data set for further 
study. Two principles inform the decision to keep or drop 
a variable at this point: 

1. A variable should be dropped if too great a degree of 
effort has to be expended in order to decide the value of 
it in the process of software/systems development, given 
that estimates of effort are often first needed in the very 
early stages of development 

2. A variable should be dropped if there is no conceptual 
justification for its contribution to a predictive model of 
software development effort.  
 



In light of the above Table 6 describes the relevant 
‘Keep/Drop’ decisions and the rationale for each, for the 
16 potential predictors. 
 
TABLE 6: Final decisions regarding retention of 
potential predictor variables 
Variable Action Explanation 
Adjusted 
Function 
Points 

Keep 
Indicator of project scale.  Available quite 
early, prior evidence of relationship with 
effort. 

Development 
Type Keep Indicator of project type.  Available early, 

prior evidence of relationship with effort. 

Business Area 
Type Keep 

Indicator of project domain.  Available 
early, prior evidence of relationship with 
effort. 

Package 
Customization Keep Indicator of project type.  Available early, 

possibly related to effort. 
Developed 
Inhouse Keep Indicator of project structure.  Available 

early, possibly related to effort. 
Intended 
Market Keep Indicator of project structure.  Available 

early, possibly related to effort. 
Implementation 
Start Year 
Range 

Keep Indicator of project context. Can be 
estimated early, possibly related to effort. 

Architecture Drop 

In reality, software developers can expend 
substantial effort in order to reach a 
decision as to which architecture to use, 
by investigating the solution domain and 
the availability of current technology. 
Therefore, at the time when effort 
estimates are first needed, decision 
makers may not have decided on the 
architecture to use. 

Is Web Drop 

The levels of this variable are only "Yes" 
and "Unspecified". In reality, a project 
could be a combination of web and other 
types depending on the chosen 
architecture. 

Development 
Platform Keep Indicator of project technology.  

Available early, possibly related to effort. 

Main Language 
Type Keep 

Indicator of project technology.  
Available quite early, possibly related to 
effort. 

Main 
Operating 
System 

Keep 
Indicator of project technology.  
Available quite early, possibly related to 
effort. 

Main Database 
System Drop 

To make the decision as to which 
database system to use, a significant 
amount of effort would normally be 
expended. For example, comparing the 
performance capabilities, benchmarking 
and proof-of-concept documentation. In 
reality, organisations tend to favour one 
or more particular DB systems (as per 
Architecture) but even this varies over 
time and (for bespoke systems) depends 
on customer needs. 

CASE Tool 
Used Keep 

Indicator of project technology.  
Available quite early, possibly related to 
effort. 

Main 
Development 
Process Model 

Keep Indicator of project process.  Available 
early, possibly related to effort. 

Object 
Orientation Drop This decision would normally be made at 

the design phase. 
 

This step represents the end of the data set refinement 
process.  At this point there exists a refined data set that 
is usable in terms of OLS regression analysis, comprising 
one continuous response variable and twelve predictor 
variables (one continuous and eleven categorical).  In our 
processing of Release 9 of the ISBSG repository this 
resulted in the provision of a complete data set still 
including 2862 observations, comprising 673 rated A 
quality, 2006 rated B, 106 rated C and 77 rated D. 
 
4. CONCLUSIONS 
 
We believe that there is a need for greater clarity in 
describing and justifying the pre-processing, discarding 
and retention of data from software engineering data sets. 
In this paper we have illustrated how such clarity can be 
achieved through an example, filtering, formalising and 
refining the data in Release 9 of the ISBSG repository in 
line with an intent to build a predictive model of project-
level development effort for FPA-sized projects. 
 
Note that the above outcomes in terms of the variables 
retained or discarded are not intended to be conveyed as 
‘correct’. Rather, it is intended to be indicative of the 
outcomes that might be achieved given a particular 
research objective while keeping in mind the need to be 
transparent and to retain as much data as possible.  Of 
course there may well be a need for further processing of 
the above data in order to build a specific predictive 
model.  For instance, researcher or practitioner interest 
may be in enhancement-type projects – in that case only 
those projects with a value of “Enhancement” for 
‘Development Type’ would likely be considered. Even if 
that were the case, however, the above process would 
have ensured that as many of these relevant observations 
as possible were available for such an analysis, along 
with a range of potentially influential variables.  
Assuming that the retained data does indeed reflect one 
or more underlying models, such outcomes should 
increase the likelihood of robust models being produced. 
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