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Summary 

     Internet of ‘Things’ (IoT), an extension of localised ‘Wireless’ Sensor Networks (WSN), 

has been employed to realize a multitude of smart, intelligent and pervasive Cyber Physical 

System (CPS) infrastructures. CPS encompasses a host of technological and architectural 

challenges like low-power communication, protocol conversions, data transport and the ability 

to interoperate with other IoT technologies. This makes CPS significantly complex and reduces 

its flexibility to adapt. A typical IoT-based sensor network may to a certain extent, lack key 

softwarization-enabled operational drivers that may introduce significant constraints on its 

ability to flexibly engage with its external surroundings.  

     Flexible re-orchestration of such complex IoT based sensor networks, however, is vital 

towards aligning system ‘dynamics’ with that of a monitored ‘physical’ phenomenon while 

operating in dynamic physical environments (for example WSNs deployed for outdoor 

applications such as forest fire monitoring). Arguably, considerable levels of operational 

flexibility can be achieved through a cloud-based architectural framework that hosts the 

required operating tools to allow for software-defined network virtualization that enable 

suitable re-orchestrations of the related physical network. 

     In a nutshell, research work documented within this thesis endeavours towards rendering a 

sensor network capable of undergoing desired flexible re-orchestrations via converging upon a 

novel architectural proposition inclusive of modularization, cloud-based virtualization, 

software control via ‘command-driven reconfigurability’, and maintenance of a library for 

additional firmware modules (for each of the nodes at the physical level), among others. Other 

equally noteworthy and innovative contributions of this thesis pertain to outlining of a 

seemingly logical strategy for the sensor network ‘re-orchestration’ process (that spans across 

‘three’ phases of, ‘Data Analysis and Event-Identification’, ‘Re-orchestration-Planning’ and 

‘Re-orchestration-Execution’) as well as both determining and formulating a generic model for 

the latency associated with the same. 

     The approach adopted herein is to allow for the underlying physical layer to undergo desired 

node and network-level (including topological) re-orchestrations (based on the outcomes 

derived from the cloud) in a flexible and expeditious manner during run-time through a 

‘Command-driven’ re-configurability approach. This relatively simplistic yet expedient 

approach involves loading of a ‘unified firmware’ (i.e., one encompassing the requisite, ‘well-

defined’ software modules) onto nodes (assumed to be capable of accommodating for and 

executing the corresponding functional roles owing to the enhanced capabilities ushered in by 

the advancements attained in the field of SoC and Embedded Systems technologies) to allow 

for conditional execution of the same remotely by means of ‘commands’. In order to augment 

the flexibilities that could be offloaded by the node over time based on the service requirements, 

a library of ‘reusable firmware modules’ (within which the requisite new functional modules 

could be integrated from time-to-time) could be maintained to be readily accessible by the main 

firmware.  

     In regard to the above context, it is deemed worthy to reiterate that the thesis underscores 

the key prerequisites for the above prior to laying the concept in chapter four. Firstly, this 

includes identifying and clearly defining the core functional components (constituting any IoT-



based sensor network organization viz., ‘leaf’, router and ‘Gateway’ functionalities) as 

‘modules. The second prerequisite pertains to modularization of the core functional 

components that have been identified and defined. Virtualization of the core functional 

modules so identified and thereby the entire network (essentially, cloud-level Network 

Virtualization i.e., ‘NV’) that ‘logically’ (i.e., from a software standpoint) mimics the 

operational dynamics of the underlying physical network functions will form the third 

prerequisite. As alluded to earlier, the fourth prerequisite refers to the library of reusable 

‘firmware modules’ at the node level (for augmented flexibility).      

     The thesis is sectioned into seven different chapters, each accounting for a specific element 

of the overall work. The first chapter provides an overview of the various technological 

domains and aspects associated with this research work, whilst laying out the necessary 

background, vision and motivation behind the same. The second chapter accounts for a review 

of the existing literature pertaining to the various elements associated with this research viz., 

WSN virtualization, softwarization, re-orchestration and associated network downtime (as well 

as other architectural frameworks designed with relatively similar motives in mind). 

Information pertaining to the tools employed for virtualization and hardware implementation 

purposes are provided in the third chapter. As elaborated above, Chapter 4 firstly spells out the 

key perquisites for the proposed architecture prior to describing the same, along with its internal 

components. It then outlines the strategy adopted for the re-orchestration process, including 

formulation of a generic model for the latency that the network may experience as a result of 

the same. By means of certain pertinent example cases of software-defined sensor network re-

orchestrations, chapter 5 details the specifics of both virtual and physical implementations, 

conducted via utilizing the Contiki-oriented virtual platform of the Cooja simulator as well as 

the Contiki-ported Texas Instruments CC2538 wireless transceivers respectively. It also brings 

to the fore the practicability of employing Contiki as a tool for software development that 

allows for precise replication of the codes employed for physical motes at the virtual level, 

whilst leveraging on the same to better analyse and conduct more accurate performance 

evaluations pertaining to the re-orchestration process. As a means to demonstrate the 

workability of the proposed concept with respect to a real-life scenario, chapter 6 deals with 

the use case pertaining to forest fire monitoring wherein dynamic re-orchestration of sensor 

network so deployed could significantly aid (pre-emptive) re-routing of network dataflow 

and/or maintenance of network connectivity in the event of network fragmentation emanating 

out of rapidly spreading uncontained fire outbreaks. Chapter 7 puts forth the conclusion of this 

thesis work, along with the future course of work to be undertaken. 
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Chapter 1 

Research Motivation, Direction and Thesis Organization 

1.1 Introduction 

     This chapter commences with a generic overview of wireless sensor networks and the 

typical ‘underlying’ structural approach adopted whilst ensuing upon practical 

implementations for the same. It then delves into the analysis of certain such sensor network 

implementations, mainly from a topological standpoint, besides highlighting some of the 

variances at the functional level. Based on this analysis, the core functional components that 

constitute any sensor network organization are identified and put forth. The motivation behind 

driving towards formulation of a dynamically flexible WSN that could have the ability to re-

orchestrate its operational behavior at the node and network levels, so as to cope with dynamic 

service and re-orchestration demands, has been emphasized by means of an example 

application of forest fire monitoring. Certain factors associated with conventional WSN 

architectures which tend to hinder their flexible operation are stated before laying the research 

question. Subsequently, the aim of the research work along with the relevant objectives to be 

pursued towards execution of the same are stated. The latter stages of the chapter are devoted 

towards brief discussions on the objectives so specified towards realization of a Software-

Defined Wireless Sensor Network (SDWSN) organization. These include modularization of 

the core WSN functionalities so identified, virtualization of the functions so modularized, re-

usabilty of the modular functions as a means to pave the way for ‘re-configurability’ approach 

and finally, maintainence of an evolvable ‘library’ of such re-usable modules towards further 

augmenting the flexibility that could be offerred by the proposed WSN organization. This is 

followed by the conclusion of the chapter.  

 

1.2 ‘Wireless Sensor Networks’ 

     ‘Wireless Sensor Networks’ (WSNs) are typically constituted of power-constrained sensor 

devices that may be deployed in low, medium or high volume for capturing requisite 

environmental i.e., physical data from its surroundings[1-10]. Each such independent sensor-

transceiver node consists of an in-built wireless (transceiver) communication module or 

interface, enabling it to communicate and exchange the acquired sensed data with other 

constituent nodes. The individual sensor nodes constitute a network amongst themselves so as 

to perform or execute a WSN monitoring or sensing task in a collaborative manner. The logical 

operation executed by a wireless transceiver depends on the function (or software code) with 

which it (i.e., the microcontroller within it is) is configured.  

     Continual advancements in the fields of digital IC and SoC technology have considerably 

contributed to conceiving more powerful microcontroller chips, capable of wirelessly 

communicating the sensed radio-data packets over the Internet. This major technological 

breakthrough has paved the way for incorporation of IoT as a prospective solution for pervasive 

WSN monitoring[11-15]. This serves as the basis for IoT-based sensor networks, wherein 
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Gateways, via performing the requisite protocol conversion, could escalate the sensed data to 

a remotely governing cloud server, wirelessly over the Internet[16-20]. 

1.3 Typical WSN Implementations (Structural Standpoint) 

     WSN deployments, in general, tend to adhere to a common structural formation but may 

differ from a topological standpoint depending on factors such as the application for which 

they are employed [21] (to a certain extent,), the nature of deployment (dense or sparse). 

     Large-scale WSN organizations, such as those deployed for forest fire monitoring tend to 

encompass a multi-layered hierarchical architecture, involving aspects such as clustering 

(including multiple levels of clusters, especially within tree-based topological orientations), 

multi-hopping, such as on depicted in figure 1-1. 

 

 

Figure 1-1 Underlying structural approach adopted for practical WSN implementations. 

      

     Herein, spatially distributed nodes (denoted in blue) that are equipped with both sensing’ 

and communication capabilities capture the physical, real-world data from their surroundings 

and transmit it over to an upper layer node, in accordance with the protocol employed. These 

nodes are referred to as ‘leaf’ nodes and are generally grouped (mostly based on geographical 

vicinity) to form ‘clusters’ within the overall network.   

     Each such ‘cluster’ is governed by an upper-layer ‘router’ node that tends to act as a cluster-

head for the constituent nodes within its cluster and routes the data acquired from them either 

to the gateway or a higher-level router node.  

     The network depicted in figure 1 is an example of a ‘multi-hop’ network since sensed data 

packets emanating from a leaf node traverse through multiple nodes, including multiple levels 

of ‘routing’ nodes prior to reaching the gateway node. 
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     Nodes configured with the ‘Gateway function’ serve as a ‘sink’ for the incoming ‘sensed’ 

data relayed by all the routers nodes present within the network. After the requisite protocol 

conversion, the gateway-node then escalates the sensed data over to the remote cloud server 

over the Internet. In other words, it serves as an access point to the remote cloud server via 

acting as a bridge between the leaf sensors and the cloud platform (for both upstream flow of 

the sensed data and downstream reconfiguration of PSC end devices over the Internet). 

     A large-scale WSN may consist of more than one node configured as a gateway. The motive 

behind having in place multiple gateway nodes emanates from multiple network performance-

associated aspects. The presence of multiple gateways allows for distributed flow of data over 

the Internet, thereby significantly mitigating the perennial issues of excessive communication 

overhead and data congestion and/or collision, detrimentally plaguing the performance of 

large-scale IoT sensor networks. Besides preventing rapid energy consumption of the gateway-

configured nodes, it improves the reliability via eliminating the risk associated with a singular 

(or small number of) points of failure.  

     It can be argued that structural formations (wherein the flow of data originating from leaf 

nodes reach the gateway node via the respective router nodes and eventually the remote cloud 

server) depicted in figure 1-1 can be generically applied to any WSN implementations for 

fulfilling any sensor network monitoring or service requirement. Examples of allied structural 

formations, varying in their topological standpoint that have been adopted for practical WSN 

implementations are described with their pros and cons below. 

     Certain precision agriculture-based sensor network implementations, such as the one 

deployed by [22], adopted a star-topological approach for monitoring and control of 

environmental parameters. Herein, light, temperature and humidity data captured by the leaf 

nodes are forwarded to a centrally located intermediate router-node, which in turn, forwards 

the data to a ‘Gateway’ node, as shown in figure 1-2 [22] below.  

Figure 1-2 Star topology-based WSN implementation for precision agriculture-based 

application. 

https://www.hindawi.com/journals/js/2016/9857568/abs/
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     As compared to a star topological framework, a tree-topology based network tends to offer 

increased coverage owing to the presence of multiple routers acting as cluster heads for their 

respective cluster of leaf nodes. By means of multi-hop communication amongst routers 

present at the various levels of the tree-structure (with the router closest to the Gateway being 

the upper or primary level router, second closest to the gateway being the middle or secondary 

level router, lower level router and so on) [22], data sensed by the leaf nodes are escalated to 

the gateway node. This topological arrangement, however, suffers from the disadvantage of 

heightened complexity and greater energy consumption [23]. Such topological 

implementations are well suited for applications requiring a sizeable area to be monitored e.g., 

forest fire monitoring. Ammar and Souissi [24] adopt a Zigbee-based tree-topological 

framework for their real-life testbed to detect forest fire outbreak(s), as shown in figure 1-3 

[24]. 

 

 

Figure 1-3 Tree topology based WSN implementation for forest fire detection.  

http://downloads.hindawi.com/journals/js/2016/9857568.pdf
http://downloads.hindawi.com/journals/js/2016/9857568.pdf
http://downloads.hindawi.com/journals/js/2016/9857568.pdf
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     It is important to bear in mind that all leaf nodes may or may not be endowed with 

6LoWPAN or allied IP capability (depending upon the resources encompassed within their 

hardware and/or software architecture). Figure 1-4 presents example of mesh-topology based 

network wherein certain leaf nodes capable of communicating directly with the cloud over the 

Internet could do so by virtue of the 6LoWPAN protocol (embedded within them). The non-IP 

based sensor nodes could forward their data to such 6LoWPAN-enabled counterpart leaf nodes 

so that their sensed data too, could be escalated over to the cloud over the Internet. 

Figure 1-4 An example of a mesh-topology based WSN with certain 6LoWPAN enabled sensor 

leaf nodes. 

     Based on the above account, it can be quite discernibly stated that regardless of the 

topological variations, any WSN organization tends to be composed of the three key 

fundamental, standalone functional components, namely the Gateway-function, Router-

function and Leaf-function [25-26].  

1.4 Motivation for Driving Towards a Dynamically Flexible WSN 

     WSNs are employed for a variety of applications, viz., environmental, industrial, healthcare 

monitoring [27-36], etc. The nature of service requirements entailed by such applications 

dictates the nature of WSN deployments with respect to factors such as volume, density, 

topology, among others, such as channel access method, routing mechanism, sensing and data 

acquisition requirements. Each of the application-specific service requirements, however, 
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along the dynamics of the monitored physical phenomenon, may vary dynamically in an 

unpredictable manner necessitating duly responsive monitoring capabilities on part of the WSN 

employed. Furthermore, network fragmentation events arising out of events such as node-death 

caused by low battery power (or say, departure of a mobile node away from the network-

connectivity chain) that could adversely impact the flow of data within network or result in 

loss of data, must be resolved in a seamless manner. WSNs, thus, ought to be able to undergo 

flexible re-orchestrations so as to adequately cope with the diverse service requirements 

emanating out of variable dynamics of the monitored phenomenon, as well as network re-

organizational requirements, whilst engaging with physical environments.  

     Consider the example application of forest fire monitoring wherein flexible operation of the 

large-scale WSN deployment is crucial towards real-time response to a fire outbreak event so 

as to prevent its uncontrolled spread. Flexible re-orchestration of such implementations from a 

topological standpoint is also of critical value towards overcoming network fragmentations that 

may be encountered from time to time.  Upon detection of a fire outbreak, the leaf nodes 

deployed in vicinity must be able to undergo requisite re-orchestration with respect to their 

node-operational parameters viz., data buffering size, data communication rate, amongst 

others, to be able to capture vital information during very initial stages. Besides these node-

intrinsic adjustments, the entire cluster of leaf nodes within that particular location of the 

monitored region, along with their respective router-cluster head node, could switch to a 

favourable channel-access method like sensor-data polling or a multiple access scheme like 

time division multiple access (TDMA)-based channel access. Such a network-level re-

orchestration could further expedite the flow of data to the remote cloud server via the gateway. 

In the event of network fragmentations caused either due to depletion of battery power of any 

of the intermediate router nodes or as a result of any of them suffering fire damage, the most 

suitable node nearby must be able to undergo functional re-orchestration to take up the role as 

a replacement router. If need be, the entire network as a whole, may need to dynamically adapt 

to a different topological orientation to maintain network connectivity. The aforementioned 

possible scenarios that the WSN deployed for forest fire monitoring may be required to adapt 

to, from time to time, highlight the demand for flexible re-orchestration across multiple levels 

within the network. 

Figure 1-5 Scope for flexible re-orchestration across multiple levels within a WSN. 
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     Depending on the scenario necessitating re-orchestration, a WSN must be able to undergo 

flexible re-orchestration at the node-operational, node-functional (leaf, router, gateway or 

functional), network operational levels (e.g., channel access methods) and topological levels 

(star, mesh and tree topological formations. amongst others), as depicted in figure 1-5. 

     Node-level re-orchestrations imply manipulation of solely the intrinsic node-operational 
parameters pertaining to a given WSN function (via software control) which neither implicate 
in any way on the functional role being executed by it nor at the network or topological levels. 
For example, node-operational parameters pertaining to. say, a leaf node that could be re-
orchestrated via software control include selection of the requisite sensor (provided the node 
has multiple different sensors at its disposal, acquisition of the sensed data, buffering, 
computation, allocation of requisite channel, (radio) transmission power and data -
communication rate. 

     Re-orchestration at the node-functional level could be facilitated through reconfiguration 

(e.g., transformation of leaf node either to a router node or gateway node or vice-versa, or 

execution of multiple functionalities simultaneously during running condition, provided the 

hardware is capable of accommodating for and executing them). In certain cases, such node-

functional transformation results in the topological re-orchestration of the network including 

its inherent dataflow. Figure 1-6 [25-26] depicts some of the topological variations of a given 

9-node WSN, emanating as a result of software-defined re-orchestrations. Consider figure 1-

6a. Node-functional reformulation of node 4 via software control to that of a router node, results 

in overall network topological re-orchestration (of the IoT-based sensor network) from being 

a star-network (as shown in figure 6a to a tree-network (as illustrated in figure 1-6 b). In a 

similar fashion, the IoT based network could (be made to) undergo certain other software-

defined re-orchestrations to assume mesh and multi-hop network topologies, as represented by 

figures 1-6c and 1-6d, (respectively). In all the topological orientations, the three core functions 

remain an integral (consistent) part of the WSN in consideration. 

 

 

                  (a)                                          (b)                                      (c)                                          (d) 

Figure 1-6 Certain example topologies an IoT-based sensor network could be re-orchestrated 

to, by means of software control: (a) Star-network ‘topology’; (b) Tree-network topology; (c) 

Mesh-network topology; (d) Multi-hop-network topology. 

 

     Network-level re-orchestrations do not implicate in any way on the topological orientation 

of the network but tend to significantly alter the nature of flow of data taking place within the 

network. For example, manipulation of the relevant parameters residing within the MAC layer 

may cause the network to switch its operation in accordance with a different channel access 

method (e.g., switching to a TDMA-based channel access method from a CSMA-based one). 
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     Traditional WSN architectures tend to suffer from a plethora of deficiencies ranging from 

lack of operational flexibility, complex maintenance and management, time-consuming 

implementation processes, amongst certain other factors, to no scope for remote configurability 

owing to lack of centralized control [25]. Besides these, time and labour costs associated with 

manual reconfiguration, along with network downtime arising out of such disruptions render 

such a prospect infeasible [37].  

     With regard to the above, flexible operation of such WSN deployments, backed by the 

intelligence and softwarization offered by a cloud platform, is of vital importance as it engages 

with its physical surroundings. Incorporation of the ideology proffered by the emerging 

softwarization paradigm of SDN tends to be prospective in this regard. Owing to the separation 

of the data plane from control plane, as well as provisioning for centralized control and 

intelligence, certain principle advantages offered by the SDN include flexible configuration 

control, time-efficient implementation and operation and low maintenance and management 

costs, coupled with remote configurability[26,38-39]. 

    By means of relying upon a software solution, as opposed to hardware solutions through 

incorporation of an enabling technology such as virtualization, (including provisioning for 

pertinent soft-trialling of numerous re-orchestration scenarios,) an SDWSN could lend itself as 

a viable solution towards seamlessly resolving dynamic re-orchestration and service demands 

in real-time.   

1.5 Research Questions, Aims & Objectives 

The above account leads to the following question that has acted as the driving force for this 

particular research work: 

What would be the architectural organization for a typical large-scale WSN that offer flexible 

re-orchestration(s) and able to react to dynamic service demands? 

The ‘aim’ of this ‘research’ work, therefore is ‘To converge upon a cloud-based software-

defined sensor network organization’. 

The (research) objectives towards executing the aforementioned aim are as follows: 

• To identify and define the generic WSN functional components so as to render them as

software modules that could constitute a firmware (either individually or as a

combination of multiple such software modules).

• To virtualize the software modules so defined.

• To identify, justify and implement the approach (or method) that is probably the best

suited for realizing flexible WSN re-orchestration at both physical and virtual levels in

a responsive manner.

• To establish a cyber-physical architectural organization that could facilitate for the

necessary soft trials of the virtualized software modules so as to converge upon and

implement the most suitable re-orchestration onto the physical WSN
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1.6 Thesis Organization 

     The thesis comprises of a total of seven chapters, each offering information pertaining to a 

specific aspect of the research work. Chapter 1 lays the necessary background, vision, 

motivation and direction behind the research work undertaken. A review of the related 

literature pertaining to the important elements associated with this research viz., WSN 

softwarization, virtualization, re-orchestration (including the downtime associated with the 

same) as well as similar other ‘architectural’ frameworks (designed with relatively similar 

objectives in mind) have been documented within chapter 2. Chapter 3 offers information on 

the virtualization and hardware tools employed towards concept simulation, (implementation) 

and testing purposes. Chapter 4 revolves around the development of the proposed ‘Software-

Defined Wireless Sensor Network’ (SDWSN) concept. It firstly spells out the pre-requisites 

for the same prior to delving into the key aspects of the core modular WSN functional 

components, SDWSN approach adopted and virtualization, among others. The proposed 

architectural organization is described herein, after which the strategy adopted for the re-

orchestration process (including formulation of a generic model for the latency that the network 

may experience as a result of the same) is laid out. Based on certain example cases of (node 

and network-level) software-defined re-orchestrations depicted in chapter 4, chapter 5 offers 

information on aspects pertaining to the physical and virtual implementations of the same. 

Contiki-oriented pseudo codes of the firmware developed and employed for configuring both 

the real-life Contiki-ported Texas Instruments CC2538 wireless transceivers as well as the 

virtual Cooja motes within the Cooja virtualization platform (offered by Contiki) have been 

put forth. The intention herein was to put forth the viability of employing Contiki as a firmware-

development tool that caters for virtualization as well, thereby enabling convergence of suitable 

re-orchestrations via conduction of soft-trials (at the virtual level). Chapter 6 puts forth a use 

case related to forest-fire monitoring in an attempt to demonstrate the applicability of the 

proposed concept in a real-world setting or situation. Herein, it is elaborated that re-

orchestration demands arising out network fragmentation events could be resolved via re-

orchestration (in accordance with the re-configurability approach) of the requisite constituent 

node(s). The conclusion of the research work, along with a section devoted to the future work, 

is documented in chapter 7.  

1.7 Research Outcomes - Publications Based on the Thesis Work 

     A total of six papers have been published over the course of this PhD research work. Five 

of these have been published within conference proceedings of reputed international publishers 

such as IEEE, ACM, SciTePress while one of them was published within the prestigious IEEE 

‘Internet of Things’ journal. The conceptual basis behind the proposition advanced within this 

research work (that of driving towards a cloud-based software-defined sensor network 

organization as well as aspects pertaining to its implementation and performance) has been 

reflected within these publications. The conference publication presented remotely within the 

online streaming-based event of the 9th International Conference on Smart Cities and Green 

ICT Systems (SMARTGREENS 2020) was adjudged to be the ‘best student paper’.  
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1.8 Conclusion  

     Flexibility is critical to any WSN organization’s utility as an autonomous monitoring 

resource. WSNs ought to be able to satisfactorily adapt to the dynamic service requirements 

whilst engaging with a given monitored phenomenon necessitating flexible operability at both 

node and network levels, including that from a topological standpoint. Development of a cloud-

based software-defined sensor network organization that allows for virtualization and soft-

trialling of numerous re-orchestration scenarios has been deemed as a viable solution in this 

regard. Besides obviating the requirement of the underlying physical network for testing 

purposes (and thereby eliminating any disruption to the ongoing sensing and data acquisition 

process ensuing within the physical layer), such a cloud-supported WSN organization could 

also offer information pertaining to the implications of imposition of a certain re-orchestration 

outcome on the physical network, prior to the actual implementation. Prior to realization of the 

proposed organization, the three functionalities integral to any WSN organization are identified 

through relevant literature analysis of structural approach, adopted for typical WSN 

implementation. The key pre-requisites entailed by the aforementioned proposition viz., 
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modularization, virtualization, approach adopted for flexible re-orchestration i.e., Re-

configurability and maintenance of a library of software modules (for augmenting the 

flexibility of the given WSN) are laid out.  
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Chapter 2 

Literature Review 

2.1 Introduction 

     Lack of software control, coupled with ad-hoc mode of operation may exacerbate non-

adaptive operational dysfunctionalities leading to significant performance degradation in 

conventional Wireless Sensor Networks (WSNs), especially when operating within a dynamic 

IoT environment. Flexibility of complex IoT-enabled sensor network infrastructures is an 

important requirement as it engages with its physical surroundings [25, 39-40].  As discussed 

in chapter 1, WSNs deployed for dynamic outdoor applications such as forest fire monitoring 

ought to not only detect and swiftly react to fire outbreaks but also adaptively resolve network 

fragmentation events that it may encounter from time to time. In order to adequately comply 

with such demanding service requirements, WSN organizations ought to be able to flexibly re-

orchestrate their operational behaviour both at the node and network-operational levels, 

including their topological orientation. As a means to achieve this, it is imperative to exert 

software control over the operational parameters available at the node and network levels. To 

a certain extent, IoT-based cloud computing platforms tend to act as a viable solution in this 

regard since it encompasses a multitude of software-based configuration capabilities, including 

virtualization, data storage, data analytics, etc., which can potentially facilitate optimal remote 

configuration of the low-power nodes over the Internet [25-26, 41-51]. A cloud-based solution, 

inclusive of virtualization and requisite software control can significantly lean out the WSN 

network configuration process, thereby making a worthy contribution towards the flexibility 

and swiftness of the network in reacting and capturing random physical events [41, 52-55]. 

     This chapter offers an account of the existing state-of-the-art pertaining to related aspects 

like virtualization, softwarization, and re-orchestration (as applied to Cloud-based architectural 

frameworks) that a typical software-defined sensor network organization may tend to entail.  

Specific focus is laid on the aspects of flexibility proliferation and latency reduction brought 

about via incorporation of such cloud-facilitated technological assets, whilst attempting to 

scrutinize the extent of their effectiveness. Based on the analysis, the novelty of the proposed 

paradigm in advancing the state-of-the-art is highlighted including identification of certain key 

constituent elements/conceptual pre-requisites. 

2.2 WSN Virtualization 

     The term Virtualization implies abstraction of the underlying physical functionalities into 

logical or virtual functionalities, allowing them to be utilized in an efficient manner [56-57]. 

This technological asset tends to offload numerous significant benefits when incorporated or 

applied within both wired and wireless networking environments viz., increased flexibility, 

running multiple applications at the same time on the same infrastructure [57-59], 

manageability, etc. [59]. Within the context of WSN, by virtue of allowing for exact replication 

of the logical facet of the underlying physical function, it opens the door for conduction of 
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near-accurate soft-trials, thereby virtually completely obviating physical hardware nodes for 

testing purposes. This serves towards easing out of the complexities associated with conduction 

of testing or trials involving real-life networks besides reducing the service and/or operational 

costs, time, and labour associated with WSN reconfiguration, in general to a significant extent. 

Khan et. al [57-58] duly highlight the need for virtualization of WSNs deployed for real-world 

applications such as forest fire monitoring, citing the aforesaid reason pertaining to enabling 

multiple users to access the common ‘resource’ or ‘infrastructure’ in a simultaneous fashion. 

Certain state-of-the art tools available nowadays such as Contiki’s Java-based Cooja network 

simulator can be utilized as virtualization platforms, albeit for selected target hardware (motes 

e.g., Texas Instruments’ CC2538 Evaluation Module). Broadly speaking, WSN virtualization 

could be classified into the two different categories of ‘Node’ and ‘network-level’ 

virtualization [59-60]. 

 

2.2.1 ‘Node-Level’ WSN Virtualization  

     Node-level virtualization involves enablement of multiple applications, operating in a 

virtualized environment, in isolation from the physical node [60]. Herein, the middleware 

provisions for creation of such multiple software instances at the virtual level based on the 

capabilities possessed by the physical node [60]. This has parallels with the concept of Sensor 

Function Virtualization and has been looked at to avail the desirable features pertaining to multi-

serviceability, flexible operability and concurrency. However, the work is not supported by any 

virtual or physical implementation. 

     Akram and Gokhale [61] highlight a host of prospective advantages that can be achieved 

through virtualization of the sensor functions. These include concurrent multitasking 

capability, scalability, elasticity, elimination of hardware requirement, and most importantly, 

flexibility. The authors opine that since conception of ‘Sensor Function Virtualization’ (SFV) 

within a virtualization environment allows for flexible trialling of the various software 

instances of the virtual functions, the process of execution a variety of sensing operations, as 

well as sensing service alteration, becomes quite straightforward. 

    In a bid to enhance distributed processing and intelligence capabilities of network systems 

operating in IoT environments, Van den Abeele et. al [62] harness the concept of SFV. The 

authors advocate enhancement of distributed processing by means of transferring functionality 

of the low power nodes to either a single virtual entity, such a virtual gateway, or to the access 

network. A shift of functionality to the unconstrained domain of cloud-virtualization results in 

the advantages of scalability and elasticity. The concept is harnessed by the authors within their 

proposed flexible architecture wherein on-the-fly deployable, modularized sensor virtual 

function packages enable real time re configurability. SFV has also been adopted by Van 

den Abeele et. al [62] to alleviate deficiencies such as lack of edge-processing capability and 

low scalability affecting DTLS i.e., Datagram Transport Layer Security within their ‘IETF-

IoT’ stack-based WSAN. The authors, however, do acknowledge that incorporation of SFV for 

the real-life physical nodes may result in limited flexibility.   
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    Within their multi-tier architectural system, Li et. al. [63] employ the concept of SFV to 

virtualize the physical level so as to project a single physical component as being capable of 

offering a multitude of services. 

2.2.2 ‘Network-Level’ WSN-Virtualization 

     While node-level virtualization allows for several applications running their tasks 

concurrently on a given node [64] (based on the resources encompassed by it) [65], network-

level virtualization allows for multiple VSNs (Virtual Sensor Networks) to run on the 

underlying network, each VSN running a dedicated application at a time [66]. Network-level 

virtualization may be hosted within the cloud, lending itself as a viable avenue for planning and 

testing of various (types of network-wide) WSN re-orchestration scenarios such as MAC-layer-

based manipulations [60] or topological manipulations [60, 67] (which tend to considerably 

impact the flow of data within the entire network, as a whole) [25,41-42]. Cloud based 

virtualization has been adopted in many works and research-based projects. Our research 

publications (Acharyya, I. et.al, Acharyya, I. and Al-Anbuky, A. and Ezdiani, S. et al.) [25, 41, 

50] leverage upon this advantageous feature in the pursuit of edging towards a flexible and

responsive sensor network system. Within their multitier cloud architecture, Leon-Garcia and

Tizghadam [68] highlight the role of cloud-based virtualization in realization of scalable and

flexible applications. Moreover, such virtualization framework also accounts for heterogeneity

within their architecture. Besides entirely obviating the requirement of physical sensor nodes

to run tests on, such network virtualization technology (when operated in conjunction with

other softwarization-based resources present within the cloud) could also play a key role in

exploring the degrees of freedom or modes of operation available for network re-orchestration.

The ability offered by virtualization environments towards foreseeing the implications of each

re-orchestration scenario ‘soft-trialled’ within it (i.e., data lost, or downtime experienced by

the network as a result of the same) allows to (relatively) quickly converge upon the most

suitable re-orchestration [25-26, 69-70] to be applied onto the underlying WSN.

2.3 Viability of WSN ‘Virtualization’ 

     The advantage offered by virtualization as a technique or avenue for testing network re-

orchestration scenarios (in a more accurate manner) to be applied on to physical networks over 

conventional modelling and simulation tools can assessed from Table 2-1 below. Virtualization 

however has certain shortcomings viz., inability to account for real world dynamics, physical 

factors, etc., besides not necessarily mimicking the processes occurring within the underlying 

network in real-time. Such deficiencies can only be overcome by employing more advanced 

technologies such as ‘Digital Twin’.  

     On comparing the technological assets of virtualization and digital twin, it was noted that 

while simulation conducted on a virtual platform accurately mirrors i.e., mimics the logical 

components of a physical object, it may not necessarily take into account the real-world factors 

affecting the physical network sensing and monitoring (since it is not feasible to model or 

simulate real-world conditions). This tends to introduce significant deviations within the 
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simulations so conducted and render it unable to represent prevailing real-world operational 

characteristics of the device in real time.  

     Table 2-1 outlines certain key demarcating aspects in regard to the technologies of 

modelling, virtualization and network digital Twin. 

Table 2-1 Distinctions between Modelling, Virtualization and NDT 

Conventional Modelling Virtualization Network Digital Twin 

• No exact replication of

the logical functionality

of the underlying physical

network leading to a

somewhat rough

estimation of the network

behaviour

• Significant aspects may

not be represented leading

to inaccuracies

• Exact (one-to-one) logical

replication of the 

underlying network 

resulting in precise 

mapping (or mimicking) 

of network behaviour 

from the logical 

standpoint 

• Exact twin of the

underlying network 

resulting in precise 

mapping (or mimicking) 

of network behaviour 

from both logical and 

actual (physical) 

behavioural standpoints  

• Follows up with the

process (continuously

ensues upon capturing the

system process behaviour

during run-time)

• Typically network 

behaviour is not mapped 

in real-time 

• Typically network 

behaviour is not mapped 

in real-time 

• Reflects the real-time

behaviour [71] of the

underlying system in real-

time.

Typically, does not account 

for the  

• real world data

• real-world dynamics

• physical factors

influencing the behaviour

of the underlying physical

network.

Typically, does not account 

for the  

• real world data

• real-world dynamics

• physical factors

influencing the behaviour

of the underlying physical

network

Typically, does account for 

the 

• real world data

• real-world dynamics

• physical factors

influencing the behaviour

of the underlying physical

network

• Incapable of predicting

the network behaviour

accurately

• Capable of predicting the

behaviour of the network

accurately from a logical

standpoint

• Capable of forecasting

system or network

behaviour near-accurately

from both logical and

actual (physical)

behavioural standpoints

     While simulation results obtained via conventional modelling tools cannot be said to 

accurate, Network Digital Twin (NDT) is quite an advanced technology entailing considerable 
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costs, time and much involved and/or complex tools, debilitating its feasibility for the proposed 

solution at this stage. In contrast these to technologies, availability of an open-source tool (such 

as Contiki’s Cooja) allowing for seamless logical virtualization has been leveraged upon to 

converge upon a cloud-based software-defined WSN organization. Through obviation of 

hardware requirement for trialling re-orchestrations to be applied to the physical world, 

network virtualization serves as a cost-effective and time-efficient platform to soft-trial 

network scenarios and observe the implications of a variety of software-defined alterations 

within the virtual environment as well as explore the degree of freedom procurable from each 

of the functionalities. 

 

2.4 WSN Softwarization  

     The paradigm of ‘Softwarization’ tends to encourage the aspect of virtualization (which 

involves running a particular functionality in software rather than hardware) and thereby a test 

environment that allows for soft-trialling or soft-re-orchestrations. The core aspect herein 

involves decoupling of functions from the physical layer and creation of abstracted or logical 

instances of the same. Needless to say, there exists plenty of scope for virtualization technology 

in this regard. By means of ‘virtualization’ of the physical functionalities, flexible software-

based re-orchestrations could be ensued upon in a rather seamless way, considerably reducing 

OPEX and CAPEX [72]. The two technologies of SDN and NFV that enable softwarization 

have been employed for numerous WSN implementations [73-76] 

 

2.4.1 SDWSN Node-Level Re-orchestrations  

     A plethora of works have leveraged on the technological paradigms of network 

virtualization, SDN, SDR, etc. to render WSNs dynamically reconfigurable [61, 77-78].      

Realization of software-defined re-orchestration at an individual node level (within SDWSNs) 

typically tends to involve (a) decoupling of control plane from the data plane, (b) a centrally 

located ‘SDN controller’ (that may consist of a certain number of programmable controller 

nodes) directing the operation of SDN switches, (c) rendering it open to flexible management 

via requisite (programming) interface and (d) rendering the individual nodes ‘re-

programmable’ via ‘wireless’ communication [79]. Architectures put forth in this regard such 

as the ones proposed in [61, 80, 81] also take into account features such as network topology-

discovery, memory, data transmission, data acquisition, etc. 

     The SDN-oriented solution of SDNSensor proposed by Akram and Gokhale [61] is 

directed towards optimizing the process of ‘cross-layer’ programmability via employing ‘flow-

tables’. However, the study lays emphasis only on MAC and Network layers to demonstrate 

proof of concept. Zeng et. al and Miyazaki et. al put forth a cloud-based architecture wherein a 

central server presides over the task of generating customized programs for each of the 

constituent software-defined nodes as well as re-programming them via wireless 

communication with the same [82, 83]. Generation of the customized programs takes place in 

accordance with the specifications contained within the ‘Scenario Description’ unit whilst 

banking on a library of certain basic functionalities. The aspect of virtualization, however, for 
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soft-trialling of network re-orchestrations at the cloud prior to implementation has not been 

considered herein. Moreover, both the works do not specify the strategy adopted whilst going 

about re-orchestrating the behaviour of the physical nodes (and the network as a whole, 

including that from a topological perspective) nor focus on the latency or downtime experienced 

by the network (during re-orchestration). 

2.4.2 SDWSN Topological Re-orchestration 

In essence, the ideology of SDN revolves around separation of the control and data planes 

to allow for flexible network management from a centrally located SDN controller [84-87]. 

Such an approach involving abstraction or logical decoupling of the functionalities from the 

underlying physical hardware devices has been adopted for a good number of WSN-based 

research works as a means to solve the problem of dynamic network re-orchestration. In their 

pursuit of exercising control over the topological orientation of their network, Haque et. al [88] 

ensue upon devising a logic-based controller (that is centrally located within their SDSense 

network architecture) which not only hosts the requisite routing, scheduling and other control 

modules but also allows for user-defined assembly and disassembly of software modules. 

Jemal et. al [89] target dynamic network re-orchestration through a rather conventional 

approach involving inclusion of middleware components as a means to adaptively manipulate 

the operational behaviour of clustered WSNs. Within their approach, the aspect of planning of 

the desired re-orchestrations is dictated by means of a pre-defined ruleset. A relatively 

simplistic case of network fragmentation resulting from mobile sensor(s) has been included 

within their work wherein network re-orchestration occurs as a result of the pertinent sensor 

node(s) undergoing relevant adaptations and connecting with the gateway once within its 

communication range. The aspect of network re-orchestration has been almost wholly limited 

to clustered WSNs. Re-orchestration from the viewpoint of network topology has, strictly 

speaking, not been considered within this paper. Neither performance evaluation results 

indicating any improvement in the network’s performance upon undergoing software-defined 

re-orchestrations nor analysis pertaining to the downtime experienced by the network as a result 

of the same have been documented within the paper. Moreover, the potential benefits of 

aggregating functional (both core and non-core) as well as requisite knowledge components 

within a common readily accessible repertoire within the cloud layer, as a means to enhance 

network flexibility, have not been considered.  

Kipongo et. al [80] ensue upon formulation of a software-defined architecture for WSNs 

wherein the SDN controller is equipped with the capability of both visualizing and managing 

the topological orientation of the network.  The proposition is not supported by means of any 

evaluation results. The need to develop a protocol for topology discovery (whilst keeping the 

associated latency to a minimum) has been duly acknowledged, followed by a review of the 

prevailing state-of-the-art for the same. Galluccio et. al [90] propose SDN-WISE, an SDN-

centric solution for topological management of WSNs wherein a particular layer within the 

controller responsible for managing network topology is equipped with virtualization (of 

underlying physical functions) and (the layered-)stack management capabilities, besides the 

ability extracting crucial information of the physical nodes such as their battery power levels, 

radio signal strength, battery capacity, RSSI (Received Signal Strength Indication), address, 

etc. from the ‘underlying’ devices and ‘relay’ them over to the controller(s) and c) exert control 

over the stack layers denoted by the controller(s). In furtherance to this, Abdolmaleki [81] 

incorporates a fuzzy logic-based network topology discovery protocol that reportedly leads to 
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prolonging of the lifetime of the WSN as well as packet loss reduction.  In their efforts to 

address the issue of managing node and network-operational aspects of IoT-based sensor 

networks, Bera et. al [91] design an SDN controller inclusive of both network and node-specific 

rule-based control policies (an approach which enables them to manage the format of their 

respective packets). Theodorou and Mamatas [92] develop Coral-SDN architecture within 

which the management of the flow of data within the network is presided over by CORAL 

centrally located controller. Comprising of a modular subsystem (that hosts certain 

‘algorithms’ and ‘rules’) meant for Decision Making, this controller allows for rule-based 

network routing and topological adaptations. It also consists of a module devoted for ‘network 

modelling’ purposes. This particular module retains an abstracted, graph-based view of the 

physical network and hosts RSSI and Link Quality Estimation-based information.  

 

2.4.3 SDWSN Architectural Frameworks  

     Ndiaye et. al [39] vie to achieve greater flexibility and efficient management of WSNs 

through formulation of SDNMM, an SDN-based management framework that provides an 

avenue for swift testing and deployment of modular management entities. The proposed 

modular management framework is supported by a controller hosted context data 

knowledgebase, working in conjunction with Management Service Interface (MSI). 

     The proposed architectural framework is divided into three SDN-based abstraction planes, 

namely the ‘Application’ plane, ‘Control’ plane and the ‘Data’ plane. The Application plane is 

dedicated for end-user applications, monitoring of network-wide energy levels and network 

status with respect to fault detection. Desired configuration of nodes and issuance of context-

based network policies are actioned through this plane. The Control Plane is subdivided into 

two parts. WSN-centric management modules (such as those pertaining to network topology, 

QoS, energy consumption and security) reside within the upper Global controller cluster, 

whereas the cluster manager units responsible for execution of tasks (in their respective 

clusters) are hosted by the ‘Local controller’ part of the control plane. On the whole, the Control 

plane is accountable for provisioning of APIs to both the application and data planes and 

administering of policies and flow commands (based on context) to serve application requests. 

The Data plane is composed of the clustered, physical, SDN-enabled sensor nodes (i.e., a 

combination of SDN-enabled switch and sensing end device). Sensed data packets (generated 

by the SDN-enabled node) are relayed over to the sink nodes, which in turn allows for data-

linking with nearby cluster manger units. Inter-planar relaying of sensor information, 

network/context information, etc., is provisioned by means of APIs. The element of 

Management Service Interface (MSI) employed for this work has been considerably 

emphasized, along with the aspects pertaining to contexts. Simulations have been performed 

to evaluate and justify the proposed SDNMM framework. 

    Herein, although the role and mechanism (or working) of the Management Service Interface 

(MSI) has been elaborated, the aspect of modularity (in terms of having in place distinct 

functional components as well as communication APIs) and that the various such modular 

management entities pertaining to the key management areas of WSN viz., network topology,  

QoS, security, energy, etc., are stored within the ‘Global Controller’ layer of the control plane 

have been well emphasized (and realized), there lacks a clear definition of the basic functional 

roles of the core network components and the scope of additional functionalities which can be 
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dynamically undertaken/assumed by them, keeping the mind the operational limitations of such 

low-power transceivers. 

    The aspect of testability of the ‘to-be-deployed’ or ‘implemented’ modular management 

entities (or network policies), prior to deployment by means of a virtualized setup has mostly 

been underplayed. The ‘context data knowledge-base’ has been mentioned but not depicted. 

     Inclusion of a pseudo code pertaining to the controller and SDN-enabled nodes employed 

for conducting the Cooja simulation could have offered more insight as to how the simulation 

and thus, the proposed framework delivers. Moreover, although the monitoring management 

section details the ‘context data’ approach as well as the program structure, a satisfactory 

explanation as to how a singular node can undertake responsibilities of MSI (Management 

Services Interface), in addition to handling the understandable or feasible ‘context data’ aspect 

in real-life has not been provided. There is no specificity with regards to which management 

entity was invoked (and which exact parameters with such broad network-management aspects 

or ‘domains’ were tweaked) for each of the three simulations undertaken, apart from the context 

base-related aspects. Moreover, how network topology can be influenced through SDNMM 

framework is unclear (since no results pertaining to this aspect have been documented). 

     Jemal et. al [89] pursue a similar objective of achieving self-adaptation within WSN by 

means of adopting a somewhat similar approach. While certain key requisites towards devising 

an adaptive architecture, viz., adaptive middleware, control elements, simulation aspect, etc. 

are taken into account, the authors do not lay emphasis on the aspect of adaptive network re-

orchestration from a topological point of view. No results pertaining to any improvement 

obtained as a result of software-defined topological re-orchestration have been presented within 

the paper. The authors state that the aspect of ‘planning’ of any network adaptation takes place 

on the basis of ‘pre-defined’ set of rules. The authors consider a case of network fragmentation 

caused by the event of a mobile sensor node drifting away from its original location. As a 

means to resolve this ‘network fragmentation’ scenario, the authors enable the node to adapt 

and connect to the gateway node within its communication range. Investigation pertaining to 

the ‘network downtime’ aspect is not undertaken. 

In contrast to this, the router cluster-head election or replacement-based example case 

considered (and explained) in chapter 5 seeks to demonstrate the re-orchestration process (in 

its entirety) as well as offer information pertaining to the downtime incurred. 

 
Although some of the aforementioned research work conceptually bears mild resemblance 

to the proposed research, e.g., inclination towards modularity, aspects such as soft-trialling of 
various re-orchestration scenarios within a virtual environment, as well as exploring the 
downtime associated with such re-orchestration has, to the best of our knowledge, not garnered 
a significant amount of attention. 

     While certain drawbacks such as large memory space requirement, coupled with lack of 
requisite programming interfaces tend to hinder implementation of SDN protocols such as Flow 
Sensor and Sensor Open Flow for power and memory-constrained sensor nodes [61], SDR (i.e., 
Software-Defined radio)-based approaches entail higher degrees of signal processing 
requirements rendering them equally unsuitable [93-94].  

     Our approach towards realization of software-defined re-orchestration too involves 

decoupling of functionalities from the underlying physical WSN and subjecting them to soft-

trials or virtual re-orchestrations via software control. From the standpoint of implementation 
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of the re-orchestrations, the re-configurability approach has been preferred as opposed to the 

re-programmability as a means to attain greater flexibility, reliability and swiftness (of re-

orchestrations). It (‘Re-configurability-based approach) also tends to potentially allay the 

problem of the node going into resetting-state [37].  

     Re-configurability approach firstly, however, necessitates rendering the functionalities as 

modules that can be ‘reused’. In keeping with this, it is considered reasonable to ensue upon 

formulation of an architectural organization wherein the key functionalities are firstly identified 

and subsequently clearly defined so as to render them as readily-available and reusable 

modules (since it can be argued that vaguely defined operational roles of the basic most 

constituent components seldom offer an avenue for encompassment of the softwarization 

paradigm). In respect to the above context, it is considered worthwhile to identify and clearly 

discern the three key functions (that form the building blocks of any IoT-based sensor-network 

organization in the underlying physical layer), namely the Leaf node function, Router node 

function and the Gateway node function. These well-defined core functionalities can then be 

included as ‘modules’ within a unified firmware (along with requisite auxiliary WSN modules) 

with which the hardware node (capable of accommodating for and executing those tasks) could 

be configured. The desired modules could then be flexibly enabled via external commands. 

These aspects are elaborated in chapter 4. In regard to the above, it is also important to clarify 

that owing to the advent of SoC technology, coupled with the advancements attained within 

the same domain, certain (advanced) SoC-based wireless microcontroller-cum-transceivers 

may offer adequate scope towards incorporation of softwarization paradigm.   

 

2.4.4 NFV-WSN Merger 

    Despite its seemingly ineluctable prospects, limited proposals have been put forth to utilize 

NFV-based softwarization capability to improve the performance or to enhance 

programmability of wireless sensor network. 

    Two of the following attempts to incorporate NFV oriented approaches in WSN focus on 

virtualization of WSN gateways. Mouradian et al. [95] put forth an NFV-based architecture 

wherein the virtualization is restricted only to the WSN Gateway.  The main role of this 

virtualized WSN gateway involve conversion of protocols and processing of information 

model. The network functions possess multiple VNF instances and the VNFs are stored in a 

centralized VNF store. Each and every VNF is managed via Element Management System 

(EMS) and a static chain is employed for executing them in order to deliver a service. Selection 

and deployment of a VNF for providing a service is undertaken by NFV Management and 

Orchestration (MANO) which consists of Virtualized Infrastructure Manager (VIM) as well as 

the VNF manager. Two separate virtualized networks are catered for by designing four VNFs. 

Service requests are accepted by one of the virtualized network Gateways and the required 

VNFs are deployed. The second virtualized network notifies the end user. Virtual Machine VM 

instances (i.e., particular conversions of protocols and processing of information model) of 

Virtualized Gateway 1 and 2 get migrated to different physical sensors employed by the authors 

in their setup. In another of their papers, Mouradian et al. [96] employ almost the same 

infrastructural framework is  wherein  the virtual gateway  handles and operates the VNF 
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instances. Two separate approaches are adopted by the authors. In the first approach, the VNFs 

are chained within the virtual gateway and migrated to Virtual Wireless Sensor Network 

(VWSN) whereas in the second approach, VNFs are chained within the VWSN and are then 

migrated to virtual gateway. Control interfaces present within the control plane control end-to-

end engagement and negotiation activities of VWSN and virtual gateway present in the 

application layer to ensure selection of the required parameters for deploying the correct VNF 

(to the end users). Luo et al. [97],  on the other hand, employ NFV, in conjunction with SDN, 

to exert control over the sleep modes of the sensors employed in industrial WSNs as well as to 

manoeuvre network topology. An SDN-based logic controller unit decides upon the VNF 

instances to be run over the physical sensors.  

 

2.5 Re-orchestration Latency 

     The latency or downtime experienced by a software defined sensor network is an interesting 

research topic that has been focussed upon in our research publication [26] on the proposed 

research topic. Herein, an example network re-orchestration scenario arising out of 

fragmentation event caused by departure of a ‘mobile’ router node away from the network 

connectivity chain is considered. The three-stage strategical approach (viz., Data Analysis and 

Event-Identification phase, Re-orchestration-Planning phase and the Reorchestration-

Execution phase) that a network undergoes towards recovering from the network fragmentation 

event is laid out, indicating clearly the final of the three phases i.e., re-orchestration execution 

phase, as the main phase accounting for the latency experienced. That the re-orchestration 

latency refers to the duration of time from the instant at which the normal flow of data within 

the network gets disrupted (as a result of the commencement of the re-orchestration-execution 

process’ or phase, or due to the network fragmentation event itself) up to the instant of time of 

restoration of normal network-wide flow of data, is clearly specified. An estimate pertaining to 

such downtime could be gained beforehand in SDSN architectures encompassing virtualization 

environments (such as the Contiki-based Cooja) catering for soft-trials, prior to actual physical 

implementation. In regard to the above, it is deemed worthwhile to state that the downtime 

experienced by the network is influenced by host of factors viz., number of hops, number of 

messages exchanged amongst the nodes while the network re-orchestration process is in 

progress, the channel access method adopted for the network, the data communication rate set 

for the nodes, the topological orientation of the network, etc. Although a host of WSN 

deployments (typically those deployed for delay-tolerant, non-dynamic applications) may not 

be significantly impacted by re-orchestration process accompanied by small amount of 

downtime, it may cause substantial amount of loss of data in WSNs deployed for highly 

dynamic, latency-sensitive applications (such as those involving mobile sensor nodes). 

 

2.6 Conclusion 

     A host of research works have addressed the issue of WSN flexibility in recent years [77, 

78, 93, 94, 98-100]. Considerable efforts have been undertaken towards harnessing of the 

softwarization technologies of SDN and NFV as a means to enhance WSN flexibility both at 
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the node and network-levels. However, certain key operational and performance-related 

‘aspects’, along with some of the pre-requisites for the same, that can be conceived to be 

majorly foundational towards establishing a software-defined sensor network, have not been 

adequately focussed and worked upon. Broadly speaking, the key operational and performance-

related aspects include 

(a) development of an approach for enabling dynamic, software-defined re-orchestrations 

both at the node and network-levels,  

(b) establishment of a cloud-hosted library of reusable core and auxiliary firmware modules,  

(c) provisioning for trialling of such re-orchestration scenarios within a cloud-level virtual 

environment (whilst operating in conjunction with the library of reusable core and 

auxiliary firmware modules so formulated) prior to physical implementation,  

(d) outlining a strategy for the re-orchestration process, (catering for identification of events 

necessitating network re-orchestration, planning the necessary re-orchestrations, 

including extraction of real-world information for computation purposes, and finally 

implementation or ‘execution’ of the re-orchestration planning outcome onto the 

physical layer, etc), and finally, 

(e) analysis of the network downtime or latency associated with such re-orchestrations (, it 

being a key performance indicator of the system’s capability to react to the dynamic 

service requirements), etc.   

The pre-requisites on the other hand (deemed logical to allow for the above) relate to  

(a) identification and definition-formalization of the core functional elements constituting 

any sensor network (paving the way for),  

(b) modularization of the core functional components so identified so that they can be 

rendered as reusable firmware modules 

(c) virtualization of the reusable firmware modules (to be harnessed for soft-trialling 

purposes within the virtualization environment).  

The aforementioned aspects tend to form a logically structured basis towards converging 

upon a novel virtualization-equipped architectural framework for software-defined sensor 

networks that is capable of tackling dynamic sensor network operational and re-orchestration 

demands in a flexible manner [25].    
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Chapter 3 

Concept Development Testbed and related Tools 

3.1 Introduction 

     The objective of this particular chapter is to offer insight into the research methods adopted 

for this work as well as the hardware and software tools employed towards construction of the 

proposed testbed. This involves tools relevant to physical sensor network, virtual sensor 

network, Cloud based data management and visualization, and relevant analytical and 

operating system tools used for software development.  The chapter justifies the relevancy of 

tools employed, whilst putting forth certain limitations, towards testing the experiments related 

to various aspects of the developed concept that is in-line with the research methods outlined 

in the following section. 

3.2 Research Methods 

     The aim of the research work involves converging upon a software-defined sensor network 

organization that caters for its flexible re-orchestration towards coping with dynamic service 

requirements. This necessitates formulation of a cloud-based architectural framework 

consisting of both physical and virtual environments. In keeping with this, the research methods 

adopted herein firstly involved analyzing the literature revolving around cloud-backed WSN 

architectures that offer dynamic operational flexibility. Secondly, it entailed establishment of 

a physical WSN system by means of employing a hardware controller capable of provisioning 

the necessary processing memory and code storage memory to host the protocol for 

incrementally trialing the re-orchestration scenarios across the node-operational, node-

functional, network-operational, as well as network-topological levels. Dealing with 

virtualization of the physical WSN so implemented so as to conduct soft-trials of the re-

orchestrations (at the virtual level, so as to converge upon the most suitable ones) formed the 

third method of conducting this research towards solving the problems hindering dynamic 

WSN flexible re-orchestration. 

     The latter two of the aforementioned three research methods necessitated identification of 

the relevant software and operating system to build an Integrated Development Environment 

(IDE) for configuration of both physical and virtual nodes. The open source ‘Instant-Contiki-

2.7’ IDE running on the Contiki OS, an operating system developed specifically for resource 

and power-constrained WSN nodes [101-102], presents itself as a viable tool towards 

implementation and testing of the proposed concept and ideas in this regard, primarily owing 

to two main reasons. Firstly, the embedded firmware employed for the Contiki ported-CC2538 

hardware could be configured or programmed using the Contiki OS tool. Secondly, the 

‘Instant-Contiki-2.7’ allows for a (WSN-specific) virtualization environment wherein virtual 

sensors (essentially configured with the same hardware as their physical counterparts) could 

be created and re-orchestrated for soft-trialing purposes (thereby ‘obviating’ physical network 

for testing re-orchestration scenarios).  
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3.3 General Organization of the Test System 

 
     The general organization of the overall system implemented for the same is as depicted in 

figure 3-1. The physical WSN system or testbed implemented within the lab shows the spatial 

distribution of the physical sensors (deployed on a ‘functional’ basis) across the premises as 

well as the gateway-provisioned connectivity to the remote cloud-server over the Internet. The 

remote cloud-server, on the other hand, hosts the necessary data storage facility and database 

interfaces along with configuration, virtualization, data visualization, and re-orchestration 

management resources. 

 

 

 

Figure 3-1 General organization of the test ‘system’. 

 

 

3.3.1 Physical WSN Implementation 

     As shown in figure 3-2 [41-42][50], a 9-node Texas Instruments (Contiki-ported) CC2538 

SoC-based (physical) sensor network was implemented within our lab premises. Herein, eight 

of the nine wireless CC2538 sensor-transceivers were configured using Contiki to act as end 

devices capturing ambient light, temperature and radio signal strength data in their respective 

timeslots and reporting them to a centrally deployed CC2538 serially connected to a Raspberry 

Pi unit which acts as the ‘Gateway’ node. By means of a python script, Raspberry Pi transmits 

the sensed data so received from the end devices to our local server, over the Internet.  
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Figure 3-2 Physical implementation of a 9-node TI CC2538-based sensor network within our 

laboratory premises. 

     As depicted in figure 3-2 [41-42][50], nodes ‘1’ and ‘2’ were placed near the window to 

facing outside (the lab) so as to capture the ambient light during the day i.e., incident sunlight 

falling on it. Nodes ‘6’, ‘7’ and ‘8’ were hung towards one side of the room from the lab ceiling. 

Node ‘5’ too, was hung from the lab ceiling at one particular area of the lab as depicted in 

figure 3-2 above. Nodes ‘3’ and ‘4’ were deployed against an empty wooden pallet structure 

present at one particular location in the room, as shown in figure 3-2. The sensing requirements 

of the physical sensor network so established within the lab premises merely involved 

monitoring of the indoor environmental parameters of ambient light and temperature, along 

with the radio signal strength.      

3.3.2 Remote Cloud Server Components and Associated Implementation 

     As alluded to earlier, the remote cloud server hosts the requisite storage, virtualization, 

visualization and configuration resources to ensue upon the necessary monitoring and re-

orchestration demands that may be encountered by the underlying physical WSN system from 

time to time. It has three main components associated with it, namely, the ‘MySQL Database 

Server’, the ‘Webserver’ and lastly, the ‘Application Server’. The Application Server hosts the 

sub-components of Contiki OS, Re-orchestration Management Unit as well as the Cooja-based 

virtualization environment. The sub-component of Contiki IDE serves to configure both the 

physical and virtual sensor networks. The most suitable re-orchestrations derived from the Re-

orchestration Management Unit, are directly fed to the Contiki Configuration Interface, which 

in turn ensues upon re-orchestration of both physical and virtual networks. Lastly, the function 

of the MySQL Database Server is to write queries to the database. It does so by means of PHP 

script which (also) fetches data obtained from the physical leaf nodes. This incoming data gets 

timestamped and stored in rows. A block diagram illustrating the inter-connections amongst 

the various constituent components of the remote cloud server is as shown in figure 3-3 [41] 

[50] below. 
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Figure 3-3 Block diagram depicting remote server implementation and the inter-relation among 

its various components.  

 

     Firstly, sensor data emanating from the physical leaf nodes are received by IoT Coordinator, 

i.e., the Raspberry Pi as depicted in figure 3-3 [41] [50], which in turn is escalated to the 

webserver which serves as the entry point for all the incoming sensor data. It does so by using 

REST API. Usage of REST API serves to exchange the necessary information between the 

database and the application server, besides fulfilling the important requirement of 

communicating with users. By means of GET and POST commands, users can select the nodes 

they wish to view the data for. The client side consists of the python script residing within the 

Raspberry Pi, which pushes the data over to the Webserver. This data gets forwarded over to 

the MySQL database (via REST APIs) for statistical and data processing purposes pertaining 

to each of the individual CC2538-based node. For scripting purposes, the PHP script is 

employed by the server. Optimizations foreseen within the Re-orchestration Management Unit 

serve as inputs to the web-server component wherein the resident Contiki configuration 

Interface performs the function of applying i.e., implementing them on to both virtual and 

physical nodes. Sensed data received within the server database get timestamped and stored in 

rows assigned for each individual node [50]. These data packets so received can be accessed 

through the PHP ‘MyAdmin’ tool. 

     The virtual implementation facilitated by means of the Contiki-based Cooja virtualization 

platform is as depicted in figure 3-4 [41-42]. Herein, Contiki has been employed to create 

virtual Cooja motes configured with same program code as that employed for the hardware 

nodes (with the exception of the functions enabling real-world sensing). One-to-one replication 

of all the logical facets of the operational behaviour of the virtual nodes corresponding their 
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physical counterparts, coupled with the similarity with respect to their arrangement within the 

virtualized environment, enables precise mimicking, and thereby monitoring, of the network 

behaviour at a virtual level (typically) hosted within the cloud. 

Figure 3-4 Virtual implementation of the physical 9-node TI CC2538-based sensor network 

within the Contiki-Cooja simulator. 

     Within our server, Google data visualization has been employed for Data visualization 

purposes. By means of a .php file residing within our server, the sensed data stored within the 

server database, can be viewed in graphical format (as depicted in figure 3-5 [41-42] [50]). 

Historical stored sensed data can be accessed for replaying a past event scenario. The graphical 

representation of the stored data (so collected from the physical network) provisioned via our 

server database is as shown in figure 3-5 [41-42] [50]. 

Figure 3-5 Graphical trend of sensor data (ambient light, temperature and RSSI) captured by 

the 8 leaf nodes, retrieved from Server database. 
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     As is evident from figure 3-5, nodes ‘1’ and ‘2’ placed near the window facing direct 

sunlight during daytime reflect vastly higher ambient light sensor readings as compared to the 

other 6 leaf nodes. Furthermore, the same two nodes report somewhat higher temperature 

values as well during the same daytime period, as compared to the other leaf sensor nodes. 

     In regard to such trend of data as monitored via the physical sensor network, it is deemed 

worthwhile to assert that even under normal circumstances, considerable variations of the 

sensed values are observed (within a span of two days). Such an observation derived from an 

albeit small, but real-world WSN deployment fortifies the motivation behind driving towards 

a software-defined sensor network organization that possesses the requisite operational 

flexibility to cope and efficiently capture any significant dynamics associated with the 

monitored environmental phenomenon. The following sections delve deeper into the specific 

tools employed for this research work. 

 

3.4 Contiki OS 

     Typical wireless sensor-transceiver node devices tend to be characterized by severe 

constraints with respect to battery capacity, memory, computational resources, etc.  As a means 

to mitigate the impact posed by such limitations on the operational performance as well as to 

prolong ‘node longevity’, it is essential to efficiently manage the aforementioned scarce 

resources available within a typical WSN node. In this regard, selection of a suitable operating 

system (OS) (on which network protocols are implemented) is an important consideration. This 

consideration becomes even more acute in case of IoT based sensor networks wherein nodes 

incur the additional overhead associated with the 6LoWPAN protocol, on top of the existing 

network protocol, necessitating a lean OS that exerts minimum overhead on the low power 

sensor-cum-transceivers. As mentioned earlier, Contiki is an operating system specifically 

developed for the wireless microprocessors [102]. The Instant Contiki IDE offers support for 

firmware development for a large number of different low power wireless hardware target 

platforms viz., 8051, ARM Cortex- M3, MSP 430, AVR, z80, etc., [102], thereby enabling the 

possibility of formulating heterogenous networks, if required. 

     From this perspective of this research work, an operating system, endowed with desirable 

characteristic features such as real-time scheduling capability, portability, whilst being 

lightweight, flexible [102] and open source, is well suited for the hardware nodes to run on. 

     The Contiki Operating system fulfils the aforementioned characteristic requirements owing 

to   

- enabling dynamic program loading (as well as unloading) and concurrency of node 

tasks (whilst operating in complex, dynamic and concurrent IoT-based sensor network 

environments).  

- exerting lesser memory overhead, with RAM and ROM requirements of 2 kB and 40 

kB respectively [103], on the target hardware platform for which it is employed.  

- Employing the lightweight, hybrid programming model of ‘protothreads’ (combining 

the multi-threaded programming-based model, along with the ‘event-driven’ 

mechanism) which allows for ‘conditional-blocking’ wait-based operation, paving the 

way for sequential control flow [104-105].  
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     Developed as an open source, readily available OS specifically for IoT-based low power 

WSN devices, Contiki OS offers support for the requisite IP standards of 6LoWPAN, CoAP, 

RPL, etc. It also encompasses a thin-layered stack of lightweight communication protocols 

known as the RIME stack allowing for code reuse and simplification of network protocol 

implementation [106]. Numerous large-scale, real-life implementations have employed Contiki 

OS [107] for applications such as wildlife monitoring, intrusion detection, surveillance, road 

tunnel fire monitoring, etc. 

3.4.1 Comparison of Contiki with other Operating Systems 

     Comparison amongst the various operating systems used for WSN nodes (with respect to 

parameters such as memory requirements, real time support, protocols, etc.) has been provided 

in Table 3-1.  

Table 3-1 Comparison table of operating systems used in WSNs. 

 

Parameters 

Operating Systems 

Tiny 

OS 

Contiki Linux RIOT Mantis Nano- 

RK 

t-

Kernel 

SOS 

Minimum 

ROM 

Memory 

 

3.4 kb 

 

3.8 kb 

 

~ 1MB 

 

~ 5kb 

 

14 kb 

 

10 kb 

 

28.2 kb 

20 

kb 

Minimum 

RAM 

Memory 

 

230 bytes 

 

< 2 kb 

 

~ 1MB 

~ 1.5 

kb 

500 

bytes 

2000 

bytes 

2000 

bytes 

1.16

kb 

 

C Support 

 

No 

 

Yes 

 

Yes 

 

Yes 

 

Yes 

 

Yes 

 

No 

 

Yes 

 

Modularity 

 

Yes 

 

Partial 

support 

 

No 

 

Yes 

 

Yes 

 

Yes 

 

____ 

 

Yes 

Real Time 

Support 

 

Yes 

 

Yes 

 

No 

 

Yes 

 

No 

 

Yes 

 

Yes 

 

No 

 

MAC 

Protocol 

 

 

B-MAC, 

S-MAC 

 

 

Contiki 

MAC 

 

 

TDMA 

MAC 

 

 

- 

 

 

X-

MAC 

B-

MAC

& 

CSM

A - 

CA 

 

 

Yes 

 

 

- 

 

Other 

Protocol 

 

RPL, CTP 

 

µIPv6, 

RPL 

 

- 

 

- 

 

- 

Zigbe

e and 

‘LEE

AND’ 

 

Yes 

 

SOS 

Wireless 

Re-

programmin

g 

 

 

Yes 

 

 

Yes 

 

 

No 

 

 

Yes 

 

 

Yes 

 

 

No 

 

 

Yes 

 

 

Yes 

Dynamic 

Memory 

 

Yes 

 

Yes 

 

Yes 

 

Yes 

 

Yes 

 

No 

 

Yes 

 

Yes 
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     Contiki OS tends to serve as a better alternative (OS) when low power nodes such as the 

Texas Instruments ‘CC2538’ SoCs need to undergo frequent firmware updates for IP-based 

experiments. Moreover, Contiki supports dynamic replacement of a pre-existing application 

within a given node’s firmware (as a means to update it). This feature is not supported by  

Tiny OS, wherein the application along with the operating system has to be replaced 

completely [108].  

     Contiki OS is a lightweight and flexible OS which is specifically designed for the power 

and memory-constrained WSN nodes. It consists of its own layered NETSTACK, which has 

been devised to fulfil the requirements of IoT nodes. It is emerging as one of the preferred 

OS for IoT devices owing to some of the desirable characteristics encompassed by it viz., 

portability, concurrency, low memory occupancy, real-time support, C-language support (for 

programming), etc., besides being readily available (i.e., an open-source OS). Besides 

offering support for 6LoWPAN, it consists of the custom MAC protocol of ContikiMAC, 

and the low-power IETF-RPL which tends to ensure node-lifetime longevity [109] making it 

highly suitable to be employed as an OS for both physical and virtual WSN implementations 

in the proposed project. 

 

3.4.2 Contiki Netstack  

     The Contiki Netstack is a layered stack of protocols specifically designed towards 

overcoming the shortcomings associated with the conventional OSI model in fulfilling the 

requirements pertaining to the IoT domain [110].  The various protocol implementations (files) 

available across the various layers of the Contiki are as shown in figure 3-6 [111].   

     The protocol modules of ‘cc2538-rf.c’ for ‘Radio’ layer, ‘nullrdc.c and contikimac.c’ for 

‘Duty Cycling’ layer as well as ‘csma.c’ for ‘MAC’ layer are available at the lower three layers 

of the stack are utilized for custom-configuring the ‘Radio’, ‘Duty Cycling’ and ‘MAC’ layers 

[111]. Roussel and Song [112] state that separation of layers forms the basis of the stack design. 

This is evident from the partitioning of the MAC layer into two separate layers of MAC and 

Radio Duty Cycling (RDC), even though the state-of-the-art MAC protocols are meant to 

manage aspects pertaining to both the layers. 

 

Figure 3-6 Contiki Netstack depicting protocols available across the various layers.  

file:///C:/Users/Indrajit.Acharyya/Desktop/Thesis_chapters_17_03_2021/%5b%5d
https://hal.inria.fr/hal-01202542/document
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3.5 Texas Instruments CC2538 Target Hardware 

     The physical layer of a Cloud-governed, IoT-based sensor network is generally composed 

of a number of wireless sensor-transceiver target platforms, typically configured with either 

the sensing, routing or gateway functionalities. Communication operations executed by these 

hardware nodes are defined by the protocol with which they are configured. Keeping in mind 

the dynamic service requirements a physical sensor network needs to comply with, a plethora 

of factors need to be taken into account whilst converging upon a suitable device for setting up 

an IoT-based physical sensor network testbed. These include current consumption, sensing 

capability, OS, processor or Micro-Controller Unit (MCU) features, memory size, protocols 

supported, cost, IoT capability, logical compliancy with corresponding virtual entity, form 

factor, etc. 

     The Contiki-ported (natively supported) Texas Instruments CC2538 Evaluation Module 

(EM) (SoC mote), as shown in figure 3-7, is an advanced wireless transceiver with IP-

configurability.  It consists of the 32-bit ARM Cortex M3 microcontroller providing for 

memory requirements of up to a maximum of 32 KB and 512 KB of RAM and flash 

respectively [113]. Its salient features include small footprint, low dynamic current 

consumption, low cost [114] and various power modes that could be leveraged upon to prolong 

‘node’ lifetime (via conserving battery power by dropping down to a low energy mode or sleep 

mode when appropriate). It supports ZigBee  IP Mesh, ZigBee PRO Mesh, ZigBee RF4CE, 

advanced ‘ZigBee profiles’, 6LoWPAN, and 2.4 GHz 802.15.4-based solutions. It consists of 

the on-chip ‘temperature’ and RSSI (Received Signal Strength Indication) sensors. of Apart 

from the above, it exhibits excellent receiver sensitivity and programmable output power. Such 

highly desirable features (e.g., the support for Zigbee protocol that was employed for setting 

up of the physical testbed within the lab premises) render it to be highly favourable for physical 

sensor cloud (PSC) testbed implementation.  

 

 

Figure 3-7 CC2538 Evaluation Module. 

 

     The CC2358 EM is used in conjunction with the SmartRF 06 Board (as shown in figure 3-

8) for programming purposes. It consists of the two on-board sensors of ‘Accelerometer’ and 

the ‘Ambient Light Sensor’. 
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Figure 3-8 SmartRF 06 Evaluation Board. 

 

3.5.1 Power Modes and Current Consumption Profile 

     CC2538 motes are characterized by low current consumption and can be switched to 

different operational modes (to conserve power depending upon the prevailing operational 

requirements). Current consumption details of two of the sleep modes, as specified (by 

Venkatesh, G.) in [115], have been summarized in ‘Table 3-2’ below.  

 

Table 3-2 ‘Current consumption’ values of TI CC2538 for the two sleep modes. 

Power modes  Current consumption [115] 

PM2 1.3 µA 

PM3 0.4 µA 

 

     In an attempt to study the current consumption of the CC2538 motes, the current profile 

consumption profile for the CC2538 hardware, operating in different power modes was 

obtained via oscilloscope as shown in figure 3-9 below. Herein, initially the CC2538 mote is 

subjected to the power mode PM2 after which it was woken up by means of an external 

interrupt i.e., hard reset (via pushing the ‘RESET’ button on the CC2538 Evaluation Module). 

Upon ‘waking up’, it momentarily enters an ‘idle state’ before executing the transmission and 

reception operations in the ‘active state’. Once these (requisite) operations within the ‘wake-

up’ period are executed, the node is again subjected to deep sleep PM2 mode to conserve 

battery power. 
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Figure 3-9 Current consumption profile of TI CC2538 hardware obtained via oscilloscope. 

3.5.2 Contiki as a Tool for TI CC2538 Configuration 

     Contiki IDE forms the environment for the development of the firmware with which the 

CC2538 chips have been configured. By means of writing programs in ‘C’ language, the nodes 

could be configured with the Leaf sensing, Routing or the IoT-based gateway functionalities. 

Owing to certain key enhancements allowing for ample memory, processing computation 

capabilities, etc., coupled with a (robust and) powerful microcontroller unit (MCU), the 

CC2538 devices could either be pre-configured (via Contiki-based software control) to execute 

single or multiple functionalities at a time or dynamically re-orchestrated via software control 

to assume or repeal additional functionalities. Reason being, Contiki allows for development 

the ‘modular’ firmware i.e., a firmware designed in such a way that it consists of numerous 

requisite ‘software modules’. Each such constituent software module executes a certain given 

function or task (owing to encompassment of the necessary variables and source code), 

allowing for reusability of code. This in turn opens the door for adoption of the 

reconfigurability approach. In addition to this, Contiki IDE provisions for necessary 

reconfiguration of the various node-operational parameters available for manipulation at the 

various layers within the communication stack viz., sensor selection, channel allocation, 

(sensed) data buffering, radio transmission power, channel access method, etc. (elaborated in 

chapter 5). Using Contiki-based software configuration control as a service, the CC2538 motes 

used in this research can be configured as IP-configured or non-IP configured motes, by means 

of enabling or disabling the 6LoWPAN protocol module, respectively, available within it.  

     Contiki IDE facilitates for the compilation and error checking for the C program written 

within it. Prior to configuring the CC2538 hardware platform with the successfully compiled 

‘C’ code, the ‘Uniflash’ software installed within it converts into the requisite executable 
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format i.e., the ‘.elf’ (Executable Linkable Format) format. As a standalone SoC, the TI 

CC2538 EM consists of the on-chip ADC (Analog-to-Digital) temperature and RSSI. When 

used in conjunction with the SmartRF06 board (i.e., when the EM is mounted over the SmartRF 

06 board with the help of the EM pin connections), the CC2538EM can access the Osram SFH 

5711 ‘Ambient Light Sensor’ present on the SmartRF06 board. By means of inclusion of the 

necessary header files as well as respective sensor functions within the Contiki-based ‘C’ 

programs so written and compiled to configure the CC2538 SoCs as leaf nodes, three sensor 

variables have been extensively used for physical data collection and testing purposes within 

this research.  

     In real-life sensor network applications, especially the ones involving mobility, RSSI 

sensor-based data could be of high importance. Events wherein a mobile router node happens 

to venture beyond the communication range of its children or neighbouring router nodes could 

result in isolation of that respective part of the network. In this regard, a real-life test, albeit 

incremental, was performed within our lab premises using CC2538 chips with the intention of 

testing the RSSI values reflected by a mobile router node with respect to a stationary leaf node. 

Table 3-3 depicting values recorded for the departing router as its distance from the stationary 

leaf node increases is as shown below. 

 

Table 3-3 Real RSSI values recorded for the departing router (with respect to the stationary 

leaf node) via physical experimentation. 

Distance of the departing router with 

respect to the Gateway (m) 

RSSI value of the departing router with 

respect to the Gateway (dBm) 

1 -48 

2 -57 

3 -59 

4 -61 

5 -65 

6 -66 

7 -78 (Outside lab premises) 

 

     Although the light, RSSI and temperature sensor values captured by the TI CC2538 sensors 

may not be precisely accurate, they can be used for nominal demonstration and research 

prototyping purposes. 

 

3.6 Raspberry Pi SoC 

          The inexpensive and re-configurable single-board computer of Raspberry Pi SoC, as 

depicted in figure 3-10, endowed with Internet connectivity capability, is a widely used 

component that can be seamlessly integrated within the sensor network applications’ domain 

for research and prototyping purposes [116]. A Raspberry Pi board consist of RAM memory, 

the CPU (Central Processing Unit), power supply connector, USB ports (wherein the Wi-Fi 

USB dongle or adaptor can be attached), ethernet ports, GPU (Graphics Processing Unit), the 

lower-level peripherals of General Purpose Input Output (GPIO) pins that can be utilized for 
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I2C, UART, SPI-based serial communication buses or interfaces, etc. Advancements over the 

recent years have resulted in a number of enhancements with respect to memory capacity, CPU, 

GPU, etc. (i.e., in the Raspberry Pi 4 version) [116]. It consists of a slot for an SD card, enabling 

it to be used either for storing a large amount of data or for datalogging purposes (in cases of 

Internet outage).    Experience available within the lab rendered Raspberry Pi as an automatic 

choice towards its employment as a gateway. This, coupled with provisions for being battery 

powered, renders it to be used as a portable device. A host of operating systems can be used to 

run Raspberry Pi SoCs such as Raspbian, NOOBS, etc. 

 

Figure 3-10 Raspberry Pi SoC. 

 

     Being equipped with both Wi-Fi and ethernet-based connectivity to access the Internet, 

coupled with ample computational and processing power, the Raspberry Pi SoC has been 

employed as a gateway within our research wherein it performs its function as a protocol-

converter and transmits the CC2538-based sensed data over the Internet to the remote server.      

 

3.7 Contiki-based Cooja as a Virtualization Platform 

     Advancements in software and modelling technologies have ushered the development of 

tools such as Contiki that enable same programs to be used for both hardware and simulation 

environments. Contiki’s in-built java-based tool of ‘Cooja’ [117-118] (present within ‘Instant-

Contiki 2.7 IDE) can be used for virtualization of IoT based networks both at the hardware as 

well as the ‘less detailed’ levels. Within our research, Cooja serves as a virtualization platform 

wherein the ‘Contiki OS’ generated firmware employed for compiling and configuring the 

physical target hardware platform of TI CC2538 are the ones used for compiling and creation 

of virtual nodes. This one-to-one reciprocity with respect to the configuration of the nodes 

enables an accurate virtual representation of the logical (software code) facet of the operational 

dynamics of the physical environment.  
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     It is deemed worthwhile to allude to the saliencies as well as limitations when employing 

Cooja as a virtualization tool for this research work. Since this research work entails usage of 

the same Contiki-generated software codes for ‘compiling’ and configuring both the virtual 

Cooja motes as well as the physical TI CC2538 nodes (as alluded to in chapter 3), re-

orchestrations with respect to  

• (certain) logical facets of operational behaviour of the physical node (by means of 

wresting software-defined control over the Contiki firmware fed into it) such as the 

aforementioned flexibilities (viz., sampling rate, buffer size, MAC layer manipulations, 

etc.),   

• node-level functional re-orchestration from an existing function to a different function 

(e.g., leaf to router) via switching over to that software  

to be imposed on the underlying physical layer consisting of (Contiki-ported CC2538 hardware 

nodes) can be accurately represented, trialled and analysed within the virtual environment 

beforehand via Contiki-based software control. By means of providing an avenue for such 

precise and unambiguous replication of logical facets of the operational behaviour and re-

orchestrations, Cooja serves as an as an extremely desirable tool for virtualization. 

3.7.1 Node Mobility 

     Cooja supports node mobility. Upon patching the mobility plugin within Cooja, it is possible 

to exert fine tune control over the traversal paths as well as speed of a particular virtual node 

or a group of nodes. Using a re-writable or editable ‘positions.dat’ file, the coordinates as well 

as the corresponding time-instants of a node or a group of nodes can be pre-defined with Cooja 

to set the path (in terms of coordinates and hopefully speed, if possible) of a particular mobile 

node. 

3.7.2 In-built RSSI Model 

     Cooja consists of an in-built RSSI or ‘Radio Propagation’ model by means of which the 

radio signal strength of a particular node with respect to another node can be obtained. This 

feature (denoted as Radio) within Cooja is available within the ‘Mote Interface Viewer’ option 

that can be accessed via right clicking on any of the motes created. The RSSI values obtained 

from this model are mostly distance dependent and the practicalities associated with real-world 

are not accounted for within this model.  

     Consider the following example wherein a virtualized (2-node) point-to-point network has 

been implemented within Cooja. The purpose of this example is two-fold, reflecting the ‘built-

in radio propagation model’ as well as the ‘mobility’ features offered by the Cooja 

virtualization tool. Herein, node 1 is a mobile node configured with the router function whereas 

node 2 has been configured with the leaf function which transmits the data packets sensed by 

it to the departing router (till the time the mobile router is within its communication range). 

Once the mobile router moves beyond the communication range of the leaf node, it goes 

without saying that no communication ensues between the two, even though the leaf node may 

continue to transmit data packets meant for the (departed) router.  

     The mobile router node traverses through a pre-meditated path of traversal (as per by the 

coordinates and their corresponding time instants entered within the ‘positions.dat’ file). Figure 
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3-11 a depicts the (initial) case when the two nodes are in (close) proximity of each other. The 

RSSI value of the mobile router leaf node 1 with respect to node 2 (as obtained from the radio 

propagation model feature) for this case is as depicted in figure 3-11 b.      

          

                                 (a)                                                     (b) 

Figure 3-11 Radio propagation model feature within Cooja (a) Network window within Cooja 

wherein the mobile router and the stationary leaf nodes are initially in close proximity of each 

other; (b) ‘Mote Interface Viewer’ window within Cooja wherein the RSSI values of the mobile 

router with respect to the leaf node can be viewed (within the ‘Radio’ option in its dropdown 

list).  

 

     As the distance between the two nodes increases owing to departure of the leaf node, the 

radio signal strength between the two nodes degrades as per the built-in propagation model, as 

depicted by the figures 3-12 a and b.  

          

                                 (a)                                                      (b) 

Figure 3-12 Radio propagation model feature within Cooja (a) Network window within Cooja 

wherein the mobile router has moved away from the stationary leaf node to a certain extent; 

(b) ‘Mote Interface Viewer’ window within Cooja wherein the degraded RSSI value of the 

mobile router with respect to the leaf node (as compared to the earlier case) can be viewed 

(within the Radio option in its dropdown list).  

     Upon further increasing the distance between the two nodes as shown in figure 3-13 a, the 

RSSI signal value of node 1 with respect to node 2 drops further, as reflected by the in-built 

model (shown in figure 3-13 b).  
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   (a)   (b) 

Figure 3-13 Radio propagation model feature within Cooja (a) Network window within Cooja 

wherein the mobile router has moved quite far away from the stationary leaf node but is still 

within its communication range; (b) ‘Mote Interface Viewer’ window within Cooja wherein 

the further degraded RSSI value of the mobile router with respect to the leaf node (as compared 

to the earlier case) can be viewed (within the ‘Radio’ option in its dropdown list).  

     Once the departing leaf node ventures out of the communication range of the router (as can 

be seen from figure 3-14a), radio communication messages between the two nodes cease to 

transpire. The in-built radio propagation model reflects a value of -100 dBm as depicted in 

figure 3-14 b. 

(a)       (b) 

Figure 3-14 Radio propagation model feature within Cooja (a) Network window within Cooja 

wherein the mobile router has moved beyond the communication range of the stationary leaf 

node resulting in loss of connectivity; (b) ‘Mote Interface Viewer’ window within Cooja 

wherein RSSI value (of the mobile router with respect to the leaf node) pertaining this particular 

case of loss of connectivity is reflected by an RSSI value of -100dBm (as viewed within the 

‘Radio’ option in its dropdown list).  

     The provision of begetting instantaneous values of RSSI signal of one node with respect to 

another is a handy feature available within the open-source tool of Cooja, which could prove 

to be somewhat beneficial both in terms of setting up the virtual implementation (of a real-life 

physical network) in for remote monitoring purposes, as well as during running soft-trials of 

network-re-orchestration scenarios within it.  
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3.7.3 ‘Power-trace’ Feature  

     Another feature associated with Cooja is the software-based ‘power-profiling’ mechanism 

of ‘Powertrace’ which keeps track of the estimated energy ‘expenditure’ of each sensor node 

without any additional hardware requirement. The ‘Powertracker’ feature within Cooja can be 

accessed from within the Tools’ menu dropdown list. It provides instantaneous ‘Radio TX’ 

(i.e., Radio Transmission), ‘Radio RX (i.e., Radio Reception)’ and ‘Radio on’ values of the 

constituent virtual nodes as well as the ‘average’ of the overall network, as percentages. 

     The ‘Powertrace’ feature has been elucidated by means of an example experiment 

conducted within Cooja. Herein, a 5-node virtual star-topological network consisting of one 

router-coordinator and 4 leaf nodes are initially configured to operate under a CSMA (Carrier 

Sense Multiple Access) scheme, as depicted in figure 3-15a. The sampling rate of the four of 

the leaf nodes was deliberately set to a very high value of 250 samples per second. From figure 

3-15b, it is clear that the ‘RX’ and ‘TX’ values (in terms of percentages) of the constituent 

nodes are considerably high.  

 

      

                         (a)                                                                     (b) 

Figure 3-15 Powertrace feature within Cooja (a) Network window within Cooja showing a ‘star 

topology’ -based 5-node virtual network within Cooja operating under CSMA mode and (b) 

Screenshot of the ‘Powertracker’ window showing extremely considerably high ‘Radio 

On(%)’, ‘Radio RX(%)’ and ‘Radio  TX(%)’ values. 

     Upon re-orchestrating the network to operate under the TDMA scheme, it was observed that 

the percentage values of ‘RX’ and ‘TX’ of the constituent nodes were extremely minimal, as 

can be seen from figures 3-16 a and 3-16b.  
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                           (a)                                                                 (b) 

Figure 3-16 Powertrace feature within Cooja (a) Network window within Cooja showing the 

same ‘star topology’ -based 5-node virtual network within Cooja operating under TDMA mode 

and (b) Screenshot of the ‘Powertracker’ window showing extremely minimal ‘Radio On(%)’, 

‘Radio RX(%)’ and ‘Radio  TX(%)’ values. 

 

     By means of serving to indicate the power consumed by the nodes, the ‘Powertrace’ feature 

obtained from Cooja could be useful for gaining an estimate of the (power-consumption-based) 

performance characteristics of the (nodes and the entire) network (, as a whole).  

3.7.4 Provisioning for Virtual 6LoWPAN-Based Network 

     UIPv6 stack within Cooja provides IPv6 networking. Cooja offers support (in terms of 

creation of virtual nodes) for multiple target hardware platforms, one of which is the Sky mote. 

The following examples illustrates how Cooja can be utilized to create a virtualized 

6LoWPAN-based network consisting of one ‘Border-router’ (or ‘Edge router’ node) and four 

‘Er-example-server’ nodes, as shown in figure 3-17.  

 

Figure 3-17 6LoWPAN-based virtual network consisting of one border router node and 4 ‘Er 

example server’ nodes created within Cooja. 

 

     Herein, the Edge router or border router node (created using SKY mote also supports 

6LoWPAN), acts as a bridge between 802.15.4 network and the Internet (facilitating for serial 
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to Internet interface). The four virtual ‘Er-example-server’ nodes (represented by the yellow 

colour motes) have been configured using the ‘Er-example-server.c’ program code. Figure 3-

18 depicts the ‘mote output’ within Cooja showing the addresses of the motes are getting 

printed. 

 

 

Figure 3-18 Mote output window of the 5-node 6LoWPAN-based virtual network within Cooja 

showing the addresses of the constituent motes are getting printed. 

      

     The terminal window within Contiki wherein the server IPv6 address is getting printed is as 

shown in figure 3-19. 

 

Figure 3-19 Terminal window within Contiki wherein the server IPv6 address is getting 

printed.  
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     Successful establishment of connection is verified by means of issuing the ‘ping6’ 

command, as shown in terminal window depicted in figure 3-20. 

 

Figure 3-20 Terminal window within Contiki wherein the server IPv6 address is pinged to 

ascertain successful establishment of connection with the server. 

 

     Using 6LoWPAN analyzer with PCAP, details pertaining to the 6LoWPAN packets that are 

being transmitted by the nodes can be viewed, as shown in figure 3-21. 

 

 

Figure 3-21 6LoWPAN analyser within Contiki wherein details associated with the 6LoWPAN 

packets being transmitted by the nodes can be viewed.  
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     Upon pasting the IP address of the server within Mozilla Firefox web browser, information 

pertaining to the only neighbour (Node ID 2) and all the routes can be viewed (on the local 

web), as shown in figure 3-22. 

 

 

Figure 3-22 Upon entering the server address within the Mozilla Firefox web browser, details 

pertaining to neighbours and routes can be viewed. 

 

3.7.5 Scalability 

     Another salient feature offered by Cooja which renders it desirable for this research work is 

the aspect of scalability i.e., its ability to test the behaviour of algorithms and protocols on 

scaled-up networks [119]. 

 

3.7.6 Limitations or Challenges Associated with Cooja as a Virtualization 

Platform 

     Although Cooja arguably serves as a viable (open-source and readily available) tool for 

WSN virtualization and is equipped with quite a few desirable capabilities and features, certain 

real-life factors restrict its scope as an infallible virtualization tool. For example, the radio 

signal strength or ‘RSSI’ signal value between two physical nodes deployed in an environment 

is difficult to model. which cannot be represented accurately within a Cooja-based virtual 

environment. Cooja has an in-built model that computes the RSSI of a virtual node with respect 

to another node. The variations in RSSI between the two nodes can be clearly observed when 

a particular node is moved apart from the neighbouring node. However, these variations are 

merely distance dependent and does not consider dynamics in the environment. Real-life 

factors (pertaining to the physical environment) affecting RSSI do not figure within the virtual 
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Cooja environment (since they cannot be catered for i.e., modelled within it). Attempting to 

inaccurately model these environmental factors within the virtual environment of Cooja may 

inevitably tend to introduction of undesired inaccuracies (implicating on any focussed 

performance measures viz., packet loss, latency, etc.) rendering it ineffective as a virtualization 

tool. As a crude optional workaround around this deficiency, random sensor values could be 

generated using the random function ‘rand()’ available in the C program. However, this tends 

to inevitably result in inaccurate virtualization outcomes. Feeding of such real world sensed 

data onto Cooja for simulation purposes is therefore an important consideration to be taken into 

account whilst ensuing upon testing and determining the best re-orchestrations to be applied to 

before implementation. 

3.8 Conclusion 

     This chapter provides an insight into the research methods as well as the tools used for this 

research work. The viability of employing the open-source OS (Operating Systems) of Contiki 

and Integrated Development Environment (IDE) as a tool for both software development and 

for sensor network modelling are discussed. It then documents information pertaining to the 

Contiki-ported hardware platform of the Contiki-ported Texas instruments-based CC2538 as 

well as Contiki’s in-built network virtualization platform of Cooja. The necessary justification 

towards choosing them for implementing the physical and virtual sensor network environments 

(respectively), of our proposed architectural organization has also been provided. 

     While certain salient features of these tools have been put forth by means of example cases 

of implementations, some of the challenges associated with these tools have also been brought 

to the fore. Besides, the significance of the database developed for storing and visualizing of 

the sensed data has been discussed.  



45 
 

 

Chapter 4   

Software-Defined WSN Concept Development 
 

4.1 Introduction 

     This chapter offers insight into the concept developed towards designing an approach for 

‘Software Defined Wireless Sensor Networks’ (SDWSN). Broadly speaking, the two elements 

of ‘novelty’ of this research work pertain to a) flexible ‘re-orchestration’ of sensor network 

functions via modularization and software-controlled virtualization of the same, and b) 

determining the latency or downtime associated with such dynamic re-orchestration. For the 

former, emphasis has been laid on the identification and consolidation based on the definitions 

of the core functional components integral to any Wireless Sensor Network (WSN) formation. 

It also included outlining certain intrinsic operational parameters that can be subjected to 

software manipulation. This paves the way for modularization of the firmware with which a 

WSN node is configured, thereby allowing for virtualization of the same.  

     A simplistic yet viable modular approach for flexible WSN functional re-orchestration that 

has been adopted here is ‘Reconfigurability’. An integrated or unified firmware, 

accommodating all the necessary functional modules is loaded onto the hardware nodes, 

depending on their ability to accommodate for them. The constituent firmware ‘modules’ could 

then either be invoked and modified individually, or in combination of one another. These 

interactions occur in a dynamic manner by means of external messages acting as commands to 

realize the desired re-orchestrations. The proposed architectural solution for SDWSNs takes 

into cognizance the potential offered by the cloud towards planning of the necessary re-

orchestrations at the virtual level. By means of allowing for running soft-trials of re-

orchestration scenarios, cloud-provisioned virtualization forms an important component of re-

orchestration mechanism in regard to a) obviating the requirement for hardware for testing 

purposes, b) expediting derivation of the re-orchestrations to be applied onto the physical WSN 

and c) enabling foreseeing of the implications of doing so to some extent. The latter sections 

of this chapter revolve around the re-orchestration process itself and the ‘network downtime’ 

associated with the same. For this purpose, at the foremost, the viable strategical phases a 

network is deemed to go through from the instant of detection of an event necessitating re-

orchestration to the subsequent ‘planning’ for the same and the resumption of normal ‘service’ 

or dataflow post re-orchestration implementation, is outlined. Secondly, formulation of a 

generic model for the latency entailed solely by re-orchestration process is ensued upon. This 

is followed by the chapter’s conclusion. 

 

4.2 WSN Softwarization: Key Pre-requisites 

     The term ‘Softwarization’ has been referred to as utilization of software-based solutions, 

as opposed to proprietary, dedicated hardware-based solutions to offer network service solutions 

[120]. In the context of  WSN, it can be interpreted as a paradigm that lends itself towards 

enabling running of a certain WSN function in software, rather than on conventional low power 
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hardware devices [121]. By means of allowing for functions to be manipulated via software 

control, the principle advantages offered by softwarization include increased flexible 

configurability, time-efficient implementation and operation, low maintenance and 

management costs, etc., coupled with remote configurability [122-123]. 

     Establishment of a SDWSN organization that is capable of undergoing desired flexible re-

orchestrations in a seamless manner necessitates logical consideration in regard to certain 

essential pre-requisites it may entail. From a formalization standpoint, identification of the core 

WSN functionalities viz., Leaf, Router and Gateway functionalities, is deemed to be the first 

pre-requisite herein. Clear definition of the aforementioned three essential functionalities so 

identified forms the second pre-requisite that paves the way for their modularization. Ought to 

be regarded as a major component of (any) flexible organization, modularization tends to form 

the third pre-requisite within our approach.  Configuring a sensor device with modular 

firmware comprising of requisite functional modules could allow for seamless invocation of 

any ‘reusable’ logical software module present within the firmware used for configuring a 

given WSN node. Creation of library of functions within the firmware employed could also 

contribute towards augmenting the degrees of freedom encompassed by the individual 

‘network functions’, and thereby the overall system. However, this necessitates identifying and 

clearly discerning the ‘core’ roles that could be attributed to each of the elementary functions 

that form the ‘building blocks’ of any WSN organization in the underlying Physical layer. 

Besides catering for reusability of software functions and thus, overall flexible customizability, 

modularity opens the door for their virtualization and conduction of pertinent soft trials within 

the cloud. Such virtualization-aided ‘planning’ of the re-orchestrations to be realized within the 

physical layer could offer itself towards significantly expediting the overall process (of network 

re-orchestration) and hence deserves emphasis as a key component within SDWSN 

organizations. These are conceived to be important (pre-requisites) from the flexibility 

standpoint. The aforesaid (organizational) elements are deemed to be critical pre-requisites that 

would enable the sensor network organization to smoothly undergo the process of software-

defined re-orchestration.  

 

4.3 Key Modular Components for Flexible WSN 

     Any WSN organization is perceived to be composed of devices statically configured with 

either of the three core functionalities, namely the Sensing, Routing and Gateway functions [25-

26]. Each of these standalone functions ought to be treated as a ‘software module’, which when 

used to (pre-) configure a given physical sensor-transceiver, defines its functional role within 

the overall network process or operation.  Based on their respective classical definitions, each 

of these primary core functions tend to be characterized by a set of certain operational 

components or tasks which they are meant to execute.  For example, the key operational 

components of a physical sensor-transceiver node configured with the leaf functional module 

include Sensing and Data Acquisition, Data Management and Computation and Communication 

(with sink node). Similarly, a node configured with ‘router’ functional module comprises of the 

basic operational components of Data Reception and Storage, requisite MAC Layer 

Manipulation(s) and Data Forwarding or routing data packets to either other leaf nodes or other 

routers or to the higher layer of the Gateway. Lastly, a device configured with the Gateway 
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functional module discharges the core responsibilities of acting as a sink for the physical data 

received from all its constituent router nodes. The system then performs the requisite protocol 

conversion (rendering it suitable for transmission or communication over the Internet) and 

finally transmits the data over the Internet i.e., serving as an access point to the cloud over the 

Internet. All the possible tasks pertaining to each of the identified core WSN functions are as 

outlined within the following subsections, along with their associated descriptions. 

4.3.1 WSN Leaf Function   

     The operational role executed by Physical sensor transceivers configured with the ‘leaf 

function’ can broadly be classified into three tasks viz., ‘Sensing and Data-Acquisition’, ‘Data-

Management and Computation’, and finally communication of the sensed data to a sink node, 

as depicted in figure 4-1. Each of these tasks entails certain node-operational parameters that 

can be presided over by software control. Commonly referred to as end devices, the leaf nodes 

typically tend to have limited battery power.  

Sensing and Data Acquisition 

     The first and foremost stage of the Leaf functionality pertains to Sensing and Data 

Acquisition. This level entails the two node-operational parameters of sensor selection and data 

acquisition rate(s), as depicted in figure 4-1.  

     WSN nodes may be mounted with multiple sensors allowing for sensing heterogeneity. 

Each such sensor has a particular sensing function associated with it within the leaf firmware 

employed for configuring the nodes. Such leaf-firmware sensor nodes could be configured to 

acquire data from either one or all of its sensors simultaneously. Prevailing sensing 

requirements may dictate the criteria for selection of the sensors available at the disposal of the 

hardware employed within the WSN, including configuring the sampling rate for each of the 

sensors (on an individual basis) within the firmware. 

Data Management and Computation 

      The data sensed by the leaf node needs to be stored and preferably subjected to a certain 

degree of processing prior to transmission (to a sink node). These two sub-tasks constitute the 

operational task of Data Management and Computation wherein data samples are sensed by 

the node and buffered (typically within an array of a certain size defined within the firmware 

used for configuring the node). The size of such an array for data-buffering purposes could be 

increased or decreased via exerting software control over the firmware. The extent up to which 

the buffer size may be increased via software control would be dependent on (or constrained 

by) the hardware employed as the sensor-transceiver. A separate array could be defined for 

each sensor variable, in case the leaf node possesses multiple sensing capabilities (i.e., sensing 

heterogeneity, as discussed above). 

     Secondly, the data so stored could then be subjected to certain computation algorithms 

such as averaging of, say, every ten samples so as to generate and schedule a single averaged 

value to be transmitted as opposed to all the ten sample values. Alternatively, a query processor 
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may be included as part of leaf node’s firmware in the form of a conditional, allowing for 

scheduling of transmission of only those data samples which meet the condition specified within 

the ‘conditional’ (e.g., allowing only those data samples to be scheduled for transmission that 

are equal to or greater than a certain set threshold, and filtering the rest). By effectively reducing 

the number of samples to be transmitted, such data management techniques can reduce the 

communication overhead a leaf node may be subjected to, thereby contributing towards battery 

power conservation and prolonging node lifetime. 

 

Data Communication 

     Advancements made in the field of embedded SoC systems have enabled development of 

WSN hardware nodes that could be configured to operate on different channels. Each type of 

hardware may have a range of frequency channels with which it could be configured. The 

desired channel needs to be specified in the pertinent section of the firmware (within the 

appropriate header or configuration file) during firmware configuration or update process. This 

tends to open the door for frequency-based clustering (i.e., multi-channel assignment) within a 

given WSN, allowing for parallel transmission of data, and could therefore be resorted to as 

solution towards alleviating interference in dense WSN deployments.  

     The RF (Radio Frequency) transmission power output of a node refers to the power that is 

produced by it at its output during transmission [124]. It is typically specified in ‘dBm’.  

Exertion of software control over the output power of radio transmission of the constituent 

nodes tends forms an essential component in WSN operations towards either overcoming poor 

signal quality issues (that may arise owing to physical and/or environmental factors viz., 

obstructions, adverse weather conditions, etc. or long distances) amongst nodes or simply for 

the sake of increased reliability (via ensuring better signal quality reception, i.e., RSSI at the 

receiving node) of radio communication amongst them.  

     It is however worthwhile to keep in mind that the process of communication or transmission 

of radio message data by a node to another node tends to entail a significant amount of battery 

power. Higher the radio transmission power, greater is the current consumption of the node 

(resulting in decreased battery lifetime, more so if the node transmits data frequently) as well 

as increased interference [125]. 

     Dynamic manipulation of the radio transmission power output of the node through software 

control is therefore of significant importance towards striking a trade-off between the battery 

power expended (given the limitations in regard to the battery power available to the node) and 

the reliability of communication amongst the nodes (that may be deployed in harsh 

environments or spaces accounting for low RF penetration or at distances faraway from each 

other)[126]. 

     Data Communication rate of a WSN node (, say, a node configured with a leaf function) 

refers to the reporting interval of the data sensed by it to another node (say a node configured 

with the router function). Configuration of this node-operational parameter within the firmware 

employed is critical as regards to its battery lifespan, contention of the wireless medium being 

utilized for transmissions, etc. [127]. While nodes may be configured typically with ‘fixed’ 

data communication rates, it is important to perform software manipulation upon the same (in 
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a dynamic manner) so as to ensure that significant dynamics pertaining to the external 

monitored phenomenon are not lost. 

     The data sensed (or received) and stored by a WSN node is transmitted to another node by 

means of the requisite transmission function. The communication usually takes place through 

the radio module [128] and is in accordance with the configuration with respect to the 

aforementioned node operational parameters within the firmware. 

 

 

Figure 4-1 Operational tasks and associated components pertaining to Leaf function.  

 

     As a means to put the above in the context of a real-world example, consider the case of 

forest fire monitoring and detection via WSNs. As discussed in the introductory chapter, forest 

fires may occur as a manmade hazard or as a natural climatological phenomenon [129-131], 

uncontrolled spread of which could result in widespread incineration of forest vegetation and 

destruction of animal habitat. Besides, it may prove to be detrimental to the surrounding 

environment (via worsening the quality of air and posing increased health risks to all nearby 

wildlife). Monitoring of forest areas through deployment of WSNs tend to provide a viable 

avenue [132-136] towards not only detecting a sudden fire outbreak and localizing its epicentre 

but also prevent it from spreading to neighbouring areas, where possible. Flexile functioning of 

the WSN so deployed however, forms a desirable operational requirement, so as to effectively 

capturing the dynamics associated with fire outbreak and track its spread. For example, if a fire 

were to suddenly erupt in a certain area of a forest region monitored by a dynamically flexible 

WSN, the leaf-function-configured sensor nodes deployed closest to the localized area engulfed 

by the fire (in its initial stages) could firstly respond via undergoing software-defined re-

orchestration to select or enable the desired sensor(s) viz., temperature, humidity, precipitation 

and windspeed [137-144]. Secondly, the respective data acquisition rate(s) could be increased 

(for capturing the significant dynamics associated with occurrence of such an event in a more 

accurate manner) whilst amplifying the internal buffering capacity (to accommodate for the 

copious amount of sensed data). Thirdly, the sensed data so acquired could be subjected to data 

computation for data compression purposes, if required. Finally, the data could be transmitted 

to the governing router node at a higher (than normal) data communication rate as well as at an 

increased radio transmission power output (, if required). While these dynamic node-operational 

re-orchestrations occur simultaneously across a certain number of nodes in close proximity to 
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the region lit by the fire, the WSN must also be capable of responsively re-orchestrating its 

operational behaviour from the overall network standpoint (e.g., resorting to contention-based 

channel-access method, if configured to operate in accordance with a schedule-based channel-

access method under normal circumstances), including that from a topological perspective, 

especially during times of network fragmentation events caused during such calamities. The 

former aspect (MAC-based channel access method manipulation) is discussed in sub-section 

4.3.2 while the latter (topological re-orchestration and ensuant network performance 

improvement) is elaborated upon via examples in section 4.4.2. 

 

4.3.2 WSN Routing Function 

     In WSNs, sensor nodes configured with the routing function execute the role of relaying the 

sensed data from the ‘leaf’ nodes to either other routers or the Gateway and vice-versa, via the 

most suitable route, or in accordance with the routing protocol employed (e.g., mesh protocol) 

as well as playing the role of a cluster-head (and thereby as a temporary sink) for its constituent 

group of leaf nodes. The routing function firmware is characterized by the three tasks of ‘Data 

Reception and Storage’ (of sensed data received from the leaf nodes within its cluster), ‘MAC 

layer manipulation’ and ‘Communication’ as depicted in figure 4-2. 

 

 

Figure 4-2 Operational components and associated tasks pertaining to ‘Router’ function’.  

 

     As part of its role of acting as a ‘cluster head’ for the constituent leaf nodes present within 

its cluster, the router node firstly accommodates for the data transmitted by them (i.e., the 

constituent leaf nodes). By means of provisioning for multiple buffer arrays. As mentioned 

earlier, the sizes of these buffer arrays can be adjusted as per requirement via software control 

but within the constraints imposed by hardware limitations.  

     Software manipulations of the MAC layer protocols could be ensued as a means to exert 

control over the channel access methods whilst multiple nodes share the same wireless 

transmission medium to communicate their data.  

     Radio communication operations accounts for a major part of a WSN node’s energy 

consumption [145], thus necessitating conscientious management of the radio. Moreover, data 

collisions may significantly impact radio communication operations taking place within dense 

WSN deployments, especially when a large quantity of the constituent nodes share the same 
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channel for data communication at the same time. MAC layer protocols provision for channel 

access mechanisms and can be presided over through relevant software control as a means to 

regulate the utilization of the shared communication medium. Two of such channel access 

methods are referred to as ‘Contention-based’ and ‘Schedule-based’ ‘channel access methods. 

Implementation of ‘Scheduled-based’ or ‘fixed assignment’ channel access methods such as 

‘Polling’ results in each node transmitting its data only when polled[146], virtually resulting in 

‘collision-free’ communication. This channel access method however may not be suitable for 

service requirements (involving rapidly changing significant dynamics within the monitored 

external phenomenon) necessitating the relevant nodes to communicate data at a higher-than-

normal rate sans predetermined time slot (i.e., contention-based channel access methods).  

     The Data Forwarding task entails the two operational parameters of Radio Transmission 

Power Output and Data Communication Rate. As explained earlier within section 4.3.1, these 

operational parameters refer to signal strength and rate of transmission of data (to another sink 

node i.e., another router node or gateway node) and can be flexibly manipulated to suit service 

requirements in real-time.  

 

4.3.3 WSN Gateway Function 

     The Gateway unit acts as a local ‘sink’ for the entire incoming sensed data transmitted by 

the connected leaf nodes and router nodes and caters for the requisite protocol conversion and 

relay the sensed data to the ‘remote cloud-server’ over the Internet[41-42, 50] using the 

transport layer. The three core tasks encompassed by the Gateway function, namely, ‘Acting 

as a Sink Node’ (entailing reception and storage of data relayed by the router node), ‘Protocol 

Conversion’ and ‘Pushing of Data to Remote Server’ over the Internet, are as depicted in figure 

4-3.  

      The data relayed by the router node is accommodated for within the gateway by means of 

one or multiple buffer arrays of certain sizes (declared within the firmware and dependent on 

both number of types of incoming sensed variables, as well as the total number of leaf nodes). 

This data then undergoes the requisite protocol conversion. For this we extracted the data from 

the packet received on the gateway and created a new packet with destination and source IP 

added. This enabled data to be sent to and received from the virtual layer hosted on the server. 

For pushing the data to the ‘remote-server’ we used the ‘GET’ command of the REST API. 

 

 

Figure 4-3 Operational components and associated tasks pertaining to ‘Gateway’ function.   
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     Owing to the availability of relatively high computation power and memory space possessed 

by these units, certain other core functions (somewhat tantamount to edge computing) prior to 

transmission over to the cloud, could also be incorporated as ‘auxiliary functions’, if required. 

     In the context of the forest fire monitoring example, data pushed by the Gateway node over 

the Internet to a remote cloud server could be used for continual monitoring of the key sensor 

parameters pertaining to forest fire monitoring viz., temperature, humidity, precipitation and 

windspeed [136-143] under normal circumstances and for triggering an alert to notify 

firefighting rescue team stationed closest to the area in the event of a sudden fire outbreak. 

 

4.4 WSN Re-orchestration 

     In order to adequately cope with the wide variety of dynamic service requirements, a WSN 

organization ought to be able to tap into any and all of such aforementioned operational 

flexibilities (outlined in section 4.3) in a responsive manner. Software-defined flexible WSN 

operation offers itself as a viable solution in this regard since it renders the system capable of 

undergoing flexible re-orchestration at both the node and network levels in a dynamic manner. 

     Node-level re-orchestrations refer to manipulation of the intrinsic node-operational 

parameters (of an individual WSN node) through software control. The ‘functional role’ 

executed by the node being unaffected, such re-orchestrations do not influence the topological 

orientation of the network. Certain of such node-operational parameters that could be subjected 

to software manipulation include ‘Sensor Selection’, ‘Data Acquisition’, ‘Buffering of Sensed 

Data’, ‘Data Computation’, ‘Channel Allocation’, ‘Radio Transmission Power’ and ‘Data 

Communication Rate’, as elaborated in section 4.3.1 (as well as section 5.4 in chapter 5). 

     Re-orchestrations at the network-level, on the other hand, may either impact the nature of 

the dataflow transpiring within a WSN (e.g., defining the ‘channel access method’ at the MAC 

layer through software) or result in alteration of the topological orientation of a given WSN 

(albeit, the change may be restricted merely to that of the functional ‘role’ of an individual 

constituent node). Although such re-orchestrations may not invariably result in a different 

topological formation altogether, they tend to offer a viable avenue towards converging upon 

desired topological orientations (albeit, possibly in an iterative way). This section attempts to 

elucidate the above assertions by means of a simple example wherein network topology and/or 

the flow of data within the network gets altered as a result of subjecting a couple of constituent 

nodes to such network-level re-orchestrations. Another example focusses on the implication of 

such topological re-orchestration (caused as a result of such network-level re-orchestrations) on 

the performance of a relatively bigger network. 

 

4.4.1 Simple Network Re-orchestration: Topological Flexibility 

     Through an incremental example case, network re-orchestration(s) brought about by requisite 
software control, resulting in alteration of the topological orientation of a three-node WSN setup 
has been demonstrated herein. The network shown in figure 4-4a [26] below is initially 
configured to operate as a multi-hop WSN network wherein data sensed by the leaf node i.e., 
node 1 reaches node 3 i.e., the sink node (configured with the gateway function) via the 
intermediate node i.e., node 2 (configured with the router function).  
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     Dynamic re-orchestration of node 2 (via software control), effectuating it to execute the role 
of a leaf node (as opposed to its original functional role of a router node) ceases the existing 
multi-hop operation offered by the network. Furthermore, invocation of the ‘Polling’ channel 
access method for all three of the nodes (resulting in nodes ‘1’ and ‘2’ communicating their data 
to node 3 only when polled by node 3) at the same time instant transforms the same network to 
act as star topology-based network, as depicted in figure 4-4 b [26].  

 

 

Figure 4-4 Example topological re-orchestration from (a) multi-hop network to (b) star network 

brought about by simple network manipulation.  

 

     This simple example highlights the impact that such minor re-orchestrations may have 

towards altering the topological orientation of a given WSN, whilst reflecting the saliency of 

exertion of software control for the same. 

 

4.4.2 Example Network Topological Re-Orchestration Towards Improved 

Network Performance 

     Software defined topological re-orchestration of sensor networks is essential towards  

- as an operational mode contributing to adaptive reconfiguration of the sensor network 

as it interacts with the monitored physical phenomena (in order to deliver better network 

performance) 

- re-orchestration in the event of network fragmentation or a sensor network service to 

an end-user 

     The following example deals with an example simulation of a case to analyse the 

improvement in network performance as a result of sensor network topological re-

orchestration. Herein, a 9-node network, consisting of 7 routers represented by the yellow-

coloured nodes (capable of turning into leaf nodes), one leaf node (represented by the blue-
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coloured node) and one gateway node (represented by the red-coloured node), thereby offering 

multi-hop topological behaviour, is considered. As shown in figure 4-5 a [26], nodes ‘2’ to ‘8’ 

within this network forward the data obtained from ‘node 1’ over to ‘node 9’ in a uni-directional 

fashion. Such an arrangement could not only result in relatively greater amount of delay in 

traversal of the data sensed by the only end node i.e., node 1 to the ‘sink node’ i.e., node 9 but 

also packet loss, to certain extent. 

     Upon subjecting the ‘router-configured’ nodes, except node 7 (as depicted in figure 4-5 b 

[26]) to ‘software control-triggered’ re-orchestration, directing them to execute the role of leaf 

nodes and communicate their data to node 7, the network ceases to be a multi-hop network and 

begins to operate as ‘star-topology’ based network. This topological arrangement offers the 

advantage of faster data communication within the network (owing to single-hop 

communication from the all the leaf nodes to the router node), mitigating the loss of packets 

during the same, whilst accommodating for greater sensing coverage area. 

     Dynamic re-orchestrations pertaining to the channel access methods (e.g., from contention-

based channel access method to polling-based channel access method) could offer further 

mitigation (i.e., minimization) of packet losses during the ongoing network operation. 

(a)       (b) 

Figure 4-5 Example topological orientations a WSN can adaptively re-orchestrate to as a result 

of software-defined re-orchestration: (a) Multi-hop Topology and (b) Star Topology [26].  
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4.5 SDWSN Design Approach 

     Broadly speaking, both re-configurability and re-programmability-based approaches need 

to be looked at and adopted (as suited) in the pursuit of attaining considerable degree of desired 

dynamic and flexible SDWSN operational behaviour.  

    In regard to above account, it is deemed worthwhile to reiterate the argument advanced 

towards undermining the ability of hardware sensor–transceivers to switch to a different 

functional role or assumption of multiple functional roles is based on the generalized (and 

narrow) premise that sensors are rigidly characterized by highly integrated and specialized 

design, are bound by memory and resource-constraints and are not particularly well-suited for 

executing multiple tasks simultaneously. 

     This argument is, however, relative. Advancements made in the field of embedded (SoC) 

technology have ushered in resource-rich devices encompassing enhanced memory capacity 

and ample computational capability. Such progressions coupled with the modern trend of edge 

or fog computing enables either dynamic reformulation of the prevailing functional role being 

executed by the wireless chip or integration of multiple functionalities onto such a single 

wireless microcontroller chip. 

     Thus, based on the resourcefulness of the target hardware platform employed, either the 

prevailing i.e., existing elementary, modular standalone function could be replaced with 

another core functionality or two or more of the aforementioned elementary, modular 

standalone function could be conflated within the same hardware device (by means of software 

control), enabling multi-functional capability.  

4.5.1 Re-configurability-based Approach: Realization via Unified Firmware 

     Command-driven Re-configurability-based approach, for example, could be realized via 

conditional execution of the clearly defined, logical software modules present within the code 

(with which a node is configured) i.e., via employing if-conditional statements or switch-case 

statements within the code). Depending upon the capability of hardware to accommodate for 

and execute multi-functional roles, the WSN nodes are configured with either a unified 

firmware i.e., one consisting of multiple necessary functional modules (viz., leaf and router, 

including additional modules) or with a firmware responsible for execution of any one 

functional role only (e.g., either leaf, router or gateway functions). 

     Such a unified firmware so loaded onto a particular node allows it to switch over to another 

distinct operational mode, the functional module of which is already defined within it. For 

example, if a WSN node is configured with a firmware comprising of leaf, router and gateway 

modules, it can re-orchestrated to execute either of such discrete, unique functional roles. Such 

flexible re-orchestration of the functional role executed by the resourceful WSN nodes could 

be brought about by means of an appropriate external command signal frame or message that 

is issued to it from the cloud layer (, as explained in section 4.4), resulting in execution of only 

the desired pre-loaded software modules present within the code, whilst disabling the 

inessential modules, during run-time. For example, re-orchestrating the functional role of a 

device from leaf-node to that of a router-node would involve disabling the operational modules 

pertaining uniquely to the leaf node (e.g., sensing function) as stated within its pseudo code put 
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forth in figure 4-6) and enabling the operational modules pertaining uniquely to the router node, 

by means of an external trigger signal message. Such allowance for assumption of desired 

configurational status is however subject to the vital assumption that the requisite distinct, core 

functional software modules of for example leaf and router are present within the code 

employed for configuring the FFD (i.e., Fully Functional Device) devices. 

     An example integrated firmware consisting of leaf and router modules is as depicted in 

figure 4-6 below. 

 

Example of a unified firmware used for configuring a node that is capable of 

accommodating for and executing operational activities pertaining to both router and leaf 

functional roles  

Initialization of arrays: Declare and initialize one or multiple arrays (if need 

be, depending upon the number of types of incoming sensed variables) of a 

certain size (depending upon the number of leaf nodes within its cluster) to 

receive all the incoming sensed data variables 

If external radio message flag received directing execution of the leaf function sub-

modules 

        Sensor selection: Execute the desired sensor function(s) (one or more) and 

acquire the sensor readings 

If external radio message flag received directing execution of the router function sub-

modules 

Receive sensed data: Receive and store incoming sensed data from all 

constituent leaf nodes on a node-by-node basis 

Buffering of data variables to be transmitted: Store received data within an 

array of requisite size  

If external radio message flag received directing execution of the ‘leaf function’ sub-

modules 

Channel Allocation: Set the node to communicate using (one of the available 

and) desired channel(s) 

Buffering of sensed data: Store the sensed data within an array of requisite 

size along with node ID 
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Radio Transmission Power: Set the node to transmit data using (one of the 

available and) desired channel(s) 

Setting data communication rate: Set the desired rate of transmission of data 

(via specifying the particular numerical value within the requisite function) 

Transmission of sensed data: Transmit the array of sensed data to a sink node 

(via entering the name of the array variable to be transmitted within the 

requisite function) 

Enabling a channel access method: Enable a particular channel access 

method viz., CSMA, TDMA, etc. 

If external radio message flag is equal to “R” 

Relay (requisite) stored data: Transmit the array of sensed data to requisite 

sink node (via entering the name of the array variable to be transmitted within 

the requisite function) 

Figure 4-6 Example unified firmware consisting of operational components pertaining to both 

Leaf and Router functions.  

 

       Herein, operational activities highlighted in yellow refer to leaf functional modules 

whereas those highlighted in ‘green’ pertain to router functional modules.  

     As alluded to previously in chapter 2, adoption of the Re-configurability-based approach 

allows for WSN organizations to undergo re-orchestrations in a more flexible, reliable, and 

swift manner as compared to Re-programmability-based approach. Re-programmability 

involves transportation of part(s) or complete section of the program to the required node over 

the air. Such transportation tends to entail number of hops through which the data packet 

(containing the complete or part of the code) may need to traverse, making it susceptible to 

packet loss as well as increased delay (latency). Moreover, the problem of the node going into 

state wherein it may tend to reset continuously, potentially also gets alleviated [37]. 
 

     It is worthy to concede that the above approach that involves presiding over a unified 

firmware using software controls may account for certain drawbacks. These include 

requirement of a microcontroller with a large flash memory space as well as possible inefficient 

utilization of the program memory space (in case certain of the pre-defined operational 

components within the unified firmware were to be rarely invoked). However, the same 

approach caters for WSN re-orchestration in a rapid fashion, rendering it better equipped to 

cope with the dynamic service requirements. It also eliminates certain challenges associated 

with re-programmability-based approaches including delay, unreliability of the wireless 

medium (it being prone to packet collisions, interference, etc.) leading to loss of (portions) of 

program codes during transmission (esp. when multiple nodes scattered over the deployed 
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region are to be re-orchestrated) and overhead (caused during writing of the program codes 

onto the flash memory) [147]. The justification behind considering forest fire detection and 

monitoring for the case study portrayed in chapter 6 of this thesis is to merely highlight the 

saliency offered by the ‘re-configurability’ approach towards ensuring that a WSN experiences 

as low packet loss and network delay as possible (as compared to other approaches such as 

‘Re-programmability, OTAP, etc.) whilst undergoing re-orchestration. This approach could 

also be regarded as more viable when the volume of data flowing across the network is high 

(without having to flexibly manipulate certain elements the design of the WSN e.g., buffer size, 

delay tolerance capability, etc. towards equipping the system to cope with the high-load 

conditions, unless necessary). 

4.5.2 Library of Software Modules: Towards Incorporation of Additional 

Functions 

     As a means to flexibly incorporate additional (hitherto-undefined) WSN functions, a library 

of ‘reusable firmware modules’ could be created and integrated within the firmware, as 

illustrated by the generic block diagram structure depicted in figure 4-7. Although the physical 

nodes would require manual firmware reconfiguration as a means to execute the newly 

acquired WSN functions, the frequency of undertaking such processes could be largely limited 

owing to the advantages offered by virtualization technology towards testing various node and 

network level re-orchestration scenarios beforehand. The following sub-section (sub-section 

4.5.3) offers information on the saliency of virtualization towards abetting the proposed 

SDWSN design.  

Figure 4-7 Generic firmware block diagram towards allowing for inculcation of additional 

functions with time. 
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4.5.3 Virtualization: Tool for Running and Testing Soft-Re-orchestration Trials 

     As alluded to earlier, virtualization refers to abstraction of the functions from the physical 

environment and ensuing upon their one-to-one representation in the virtual environment. 

Typically, this process involves decoupling of real-life physical functions by means of 

replicating the software program fed within the physical entities (physical sensor nodes) and 

running them over corresponding virtual entities (virtual sensor nodes), typically within a 

centrally located remote cloud server. Advancements accomplished within the technological 

domain of software application development have led towards development of certain 

Integrated Development Environments (IDE) that tend to not only allow for firmware 

development, compilation and configuration for physical nodes but also for their virtualization. 

     Depending on the process requirement, either a single node entity, a particular process 

(taking place in a certain portion of a network) or the entire network as a whole can be 

virtualized. While virtualization of a single node entity may merely entail creation of a virtual 

node configured with same ‘firmware’ (thereby catering for the exact logical behaviour), 

network virtualization involves creation of virtual model of the underlying physical network, 

reflecting the same (albeit typically proportional) structural or topological representation, etc. 

     This allows for mimicking the physical network. Moreover, owing to the reciprocity of the 

codes employed for both physical and virtual nodes (as facilitated by certain IDEs as mentioned 

earlier), the virtualization environment serves as a more viable avenue for testing various 

network re-orchestration scenarios (resulting from software-defined manipulations), as 

compared to a mere simulation environment. Although virtualization provisions for the 

aforementioned advantages, it may not directly be capable of catering for the replication of 

dynamics associated with the physical environment (for example real-world factors affecting 

the quality of the RSSI signal between two physical nodes may not be catered within the virtual 

environment).  

 

4.6 Proposed System Architectural Organization 

     Figure 4-8 [25-26] shows the proposed cloud-based sensor network organization. It is 

composed of the cloud and physical environments. The stratagem herein consists of interactive 

collaboration between both the layers towards facilitating for the necessary identification, 

planning and execution of the re-orchestration process as necessitated by prevailing service 

requirements.  

 

4.6.1 Physical Layer 

     The Physical layer accommodates for the underlying physical IoT-based sensor network 

wherein each of the core constituent standalone functionalities are entrusted with the 

responsibility to execute a unique role within the overall network operation. For example, the 

leaf function is responsible for sensing and acquisition of physical data whereas the Router 

node function executes the role of forwarding the sensed data to its desired destination within 

the network and/or to the Gateway. Finally, the IoT gateway function performs the task of 

transporting the sensed data to the ‘remote cloud-server’ over the Internet (in accordance with 
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the embedded IP protocol).  Some of the hardware sensor-cum-hardware transceivers 

employed (such as the TI CC2538) are capable of being configured with multiple 

functionalities (i.e., they can perform the roles of both ‘leaf’ and router nodes simultaneously, 

if required). Moreover, they are also capable of sensing heterogeneous data. By virtue of one 

of its core roles as a ‘protocol converter’, the IoT Gateway unit serves as bridge between the 

physical and the cloud layers. The gateway units are typically resource-rich and 

computationally powerful, allowing them to execute ‘edge computing’-based tasks viz., 

compression, queueing, etc. 

 

Figure 4-8 Proposed IoT-based sensor network organization [25-26]. 

 

4.6.2 Cloud Layer 

     As shown in figure 4-8 [25-26], the cloud layer encompasses three components for 

managing the flexible re-orchestration of the underlying physical layer, namely, ‘Data Storage 

Unit’, ‘Re-orchestration Management Unit’ and the ‘Operational Software Unit’. The sensed 

data received from the underlying physical layer is stored within the database offered by the 

‘Data Storage and Visualization Unit’. This data is utilized for data visualization as well as 

both historical real-time data accessibility. The constituent virtualization and software 

resources prove to be instrumental not only towards working out suitable re-orchestrations via 

soft-trialling prior to actual physical re-orchestration but also foreseeing the implications of the 

same. 

     The ‘Operational Software’ refers to the Integrated Development Environment (IDE) 

platform that allows for development and implementation of the firmware to be employed for 

physical nodes. As alluded to earlier, certain modern-day IDEs also provision for virtualization 

i.e., creation of virtual nodes compiled with the exact same firmware as that employed for the 

corresponding hardware. By means of allowing for clearly defined, modular sensor network 
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components that can be virtualized, the two constituent elements hosted by the Operational 

Software unit form the basis of the proposed SDWSN framework. 

     By means of mimicking the flow of data occurring within the physical network, the ‘Virtual 

Network’ serves as a means to remotely monitor the logical facet of the dynamics within the 

same. This renders it as a platform to soft trial various network re-orchestration scenario(s) 

prior to actual implementation. By means of obviating the hardware requirement (for both 

debugging as well as testing of re-orchestration scenarios), cloud-hosted virtualization not only 

aids towards leaning out the network configuration process but also significantly expediting 

the same. It could also consist of certain functionalities such as display of serial output of the 

messages emanating from the virtual nodes along with their respective timestamps, allowing 

for gaining an estimate of the time period associated with various network operations and/or 

delay associated with network re-orchestrations, if any, beforehand.  

     The ‘Firmware Development and Configuration Unit’ consists of the necessary toolchains, 

source codes and compilers and offers the environment for development of the desired 

firmware files. It also consists of the necessary file conversion and configuration software that 

allows for uploading the code to the physical embedded node devices (and virtual nodes for 

IDEs that offer support for virtualization, as alluded to earlier).   

     The idea behind having in place a ‘Re-orchestration Management Unit’ is to tackle network 

fragmentation in a pre-emptive manner (, if possible) and resolve it (post-fragmentation) in 

accordance with a strategy involving the three different phases of re-orchestration, viz., ‘Data 

Analysis and Event-Identification’, ‘Re-orchestration-Planning’ and ‘Re-orchestration-

Execution’. For this, it (i.e. The Re-orchestration Management Unit) houses the three sub-units, 

namely each of which house the respective dedicated knowledge components required for the 

corresponding phases of re-orchestration, elaborated within the following sub-section (section 

4.7.1). The ‘Data Analysis and Event Identification’ sub-unit is responsible for detecting 

deviations from the normal service dataflow pattern (caused by occurrence of any network 

fragmentation event) and trigger the Re-orchestration-Planning’ phase into action. The ‘Re-

orchestration-Planning’ sub-unit, on the other hand, is responsible for both initiation of 

measures towards gathering of information from the physical network layer required for 

planning the necessary re-orchestrations as well as for the actual ‘planning’ of the re-

orchestrations to be assumed by the physical layer. Finally, the ‘Re-orchestration Execution’ 

unit is responsible for implementation of the outcomes of the planning process onto the actual 

physical network (via the aforementioned ‘Firmware Development and Configuration Unit’). 

These phases are elaborated within the following section (section 4.7). 

4.7 Strategy for Network Re-orchestration 

     Cloud-governed Software-defined re-orchestration play(s) a key role in resolving sensor 

network fragmentation arising out events such as node-death, unforeseen node device 

malfunction, departure of a mobile router node beyond the communication range of its 

‘children’ nodes, resulting in loss of connectivity to some parts of the network. It is deemed 

viable to ‘split’ the overall ‘re-orchestration’ process into three different phases viz.,  
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1. Data analysis and Event-Identification phase: analysis of real time network status data 

and tracking of important events. , 

2. Re-Orchestration Planning phase: upon identification of a significant event, follow 

working a plan for reacting to the event through possible software re-orchestration and 

lastly, 

3. Re-Orchestration Execution phase: execution of re-orchestration plan.  

     These are briefly elaborated upon in the following paragraph but are described in detail with 

the help of an example using Cooja network simulator in section 5.7.2 within chapter 5. 

4.7.1 Three-Phase WSN Re-orchestration Strategy 

     Real-time monitoring of the underlying physical WSN via the cloud-hosted virtual network 

may help reveal any important event that could potentially result in partial or complete 

disruption of the WSN operation. Events such as drifting of a mobile router node away from 

the WSN connectivity chain or any (static) router node on the verge of dying owing to depleted 

battery levels, necessitate requisite network re-orchestration to maintain network connectivity 

and ensure the continuity of flow of data across the same. Such potential network fragmentation 

events are continuously monitored by a dedicated ‘knowledge component’ (hosted by the ‘Data 

and Knowledge’ repository) during the ‘Data Analysis and Event-Identification’ phase. Once 

any event requiring network re-orchestration is detected by the said knowledge component, an 

alert or alarm is triggered so as to initiate the ‘Re-orchestration-Planning’ phase. 

     The Re-orchestration-Planning’ phase entails collection of the required information from 

the underlying physical WSN in a proactive manner. These pieces of information are utilized 

within the election process to determine the most suitable replacement router. Via delivering 

the outcome of the election process (i.e., identifying the suitable router node to take up the role 

of a replacement router), the ‘Re-orchestration-Planning’ phase sets the stage for the re-

orchestration of the physical WSN. Progression of the overall re-orchestration process in 

accordance with this particular strategy ensures that the downtime or re-orchestration latency 

experienced by the network, if any, is confined solely to the ‘Re-orchestration-Execution’ 

phase. 

     The process of software-defined sensor network re-orchestration may entail a certain 

unavoidable amount of latency. This latency, which could be referred to as ‘network downtime’ 

pertains solely to the time consumed during the ‘Re-orchestration Execution’ phase.  It is, 

however, worthwhile to analyse and formulate a generic model for the overall or end-to-end 

re-orchestration process, taking into account the latencies incurred in all of the three phases of 

re-orchestration viz., Data Analysis and Event-Identification phase, Re-orchestration-Planning 

phase and the Re-orchestration-Execution phase. 

     While latency incurred on account of the Re-orchestration Planning phase tends to relate to 

the number of messages that need to be exchanged amongst the relevant nodes (in accordance 

with the re-orchestration strategy derived and set apart during the same), the latency associated 

with the ‘Re-orchestration Execution’ phase depends on a host of factors including the 

topological organization of the sensor network and related paths for communicating and 

confirming the necessary changes. 
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4.7.2 Formulation of Generic Model for WSN Re-orchestration Latency  

     The key constituent parameters, along with their respective notations (wherever necessary), 

that in some way or the other, could influence the latency associated with the re-orchestration 

process, are aggregated, and enlisted as below: 

Notation Parameter represented 

s number of radio messages transmitted (by the node) per second  

m No. of radio message transmissions exchanged amongst various nodes 

(involved in the re-orchestration process) throughout the re-orchestration 

execution process (i.e., until the resumption of normal dataflow) 

Psize Size of the packet being transmitted by a node 

n number of nodes involved 

h average number of hops or hop count  

tinterval Pre-defined fixed time interval between two consecutive time slots (when 

‘scheduled-based channel access method is adopted) 

tTr Transmission time 

tprop Propagation time 

tsw Time required for network node to switch over from one functional role to 

another 

Lhop Single hop latency 

 

LS-R  

Latency entailed by a single radio message to traverse from the sender or 

‘transmitter’ node to the ‘receiver node’ (during multi-hop radio message 

transmission) 

 

     Herein, it is assumed that the network operates under relatively low-load conditions (i.e., 

the volume of data flowing across the system remains low at all times). Since the system as a 

whole does not get overloaded to an extent that exceeds beyond its capacity (to cope with the 

same) under any circumstances (even when operating in CSMA mode or under the influence 

of any random-access protocol), the actual channel throughput has not been taken into account.  

Also, it is assumed that the ‘Lhop’ is always than ‘tinterval.’   

     Consider a tree-topological sensor network organization, composed of the three core 

functionalities (i.e., Gateway, Router, and leaf node), as shown in figure 4-9. Let us suppose 

that owing to a special condition, a certain mobile router ‘R1’ present within the network begins 

to irreversibly move away from its neighbouring routers and its constituent leaf member nodes. 

Unless the network were to undergo re-orchestration to replace the departing router with a new 

one (prior to it venturing out of communication range of both the leaf nodes within its cluster 

as well as the immediate lower-level router i.e., 'R2'), the rest of the dependent network clusters 

would be rendered disconnected from the gateway node i.e., 'G' and thereby the cloud server.  
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Figure 4-9 Generic schematic of a Typical WSN. 

 

     In the face of such imminent router departure, the network ensues upon undergoing the 

aforesaid three re-orchestration phases to pre-empt and avert such a massively disruptive 

network fragmentation event. Also, let us suppose that the outcome of the election process 

requires leaf node ‘LR1-1’ to undergo functional re-orchestration (to say, take up the role of a 

replacement router).  

     As a means to gauge the impact of the above re-orchestration on the network in terms of the 

latency entailed, the time elapsed from the instant at which the leaf node ‘LR1-1’ undergoes 

functional change (to say, take up the role of a replacement router) to the instant of time at 

which data from node ‘LRn-n’ reaches the gateway node ‘G’ (marking resumption of the normal 

service dataflow within the network), is measured.  

     First and foremost, latency entailed during a single hop must be delved into. Typically, it 

could be expressed as the summation of transmission, processing, queuing, access, 

propagation, forwarding and reception times. 

     Herein, for the sake of simplicity, only transmission and propagation times are taken into 

account. Thus, the mathematical equation to determine the delay incurred during a single hop 

‘thop’ could be expressed as below. 

Lhop = ttr + tprop, 

where, ttr = (Psize/s), 

     A radio message transmission emanating from a sender or transmitter node may have to 

traverse through a number of nodes prior to reaching a the intended ‘receiver’ node, (thus) 

entailing multiple hops. In case of such multi-hop radio message transmission, latency entailed 

by a single radio message to traverse from the sender or transmitter node to the ‘receiver node’,  
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LS-R = h × Lhop 

where, h = No. of hops and 

            Lhop = Single hop latency  

     Number of hops i.e., ‘h’, in turn, depends on the number of nodes (present between the 

sender or transmitter node and the ‘receiver node’) to be traversed through by the radio 

transmission message. Mathematically, 

h = n-1 

Therefore, LS-R = (n-1) × Lhop 

     Herein, the progression of the re-orchestration process is based on the premise or 

assumption that all the messages get exchanged in a sequential fashion (only one message at a 

time), regardless of the channel access method adopted. Now, the time interval between two 

sequential message transmissions depends on the channel access method in place. While it is 

equivalent to the duration of time interval defined between the time slots allotted for two 

consecutive nodes for schedule-based channel access methods (such as TDMA or polling), it 

corresponds to the message (or Data) communication rate for ‘contention-based’ channel 

access methods (such as CSMA).      

     Thus, the cumulative latency entailed by the total number of sequential radio message 

transmissions exchanged amongst various nodes involved in the re-orchestration process, 

LCumulative   

= (LS-R + tinterval) × m……..…(for ‘schedule-based’ ‘channel access methods’ such as TDMA) 

= (LS-R × s × m)……………(for ‘contention-based’ ‘channel access methods’ such as CSMA) 

     Finally, the total re-orchestration latency i.e., the latency entailed by the re-orchestration 

execution process is the sum of the cumulative latency and the time required for node(s) (‘LR1-

1’ in this case as assumed earlier) to undergo functional re-orchestration. 

Mathematically, it can be expressed as below. 

LRe-orch_Exec = LCumulative + tsw 

LRe-orch_Exec when schedule-based channel access 

method (such as Polling or TDMA) is adopted 

 

= [(LS-R + tinterval) × m] + tsw 

 

= {[(h × Lhop) + tinterval]× m} + tsw 

 

= {{[(n-1) × Lhop] + tinterval}× m} + tsw 

 

= {{[(n-1) × (ttr + tprop)] + tinterval}× m} + tsw 

 

= {{{(n-1) × [ttr + (Psize/s)]} + tinterval}× m} + tsw 

LRe-orch_Exec when contention-based 

channel access method (such as CSMA) 

is adopted 

 

= (LS-R × s × m) + tsw 

 

= {[(h × Lhop) × s × m] + tsw 

 

= {[(n-1) × Lhop] × s × m} + tsw 

 

= {[(n-1) × (ttr + tprop)] × s × m} + tsw 

 

= {(n-1) × [ttr + (Psize/s)] × s × m} + tsw 
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     Albeit at a high level, this model could offer an estimate of the downtime that may be 

experienced by a sensor network during the re-orchestration. Certain limitations associated 

with this model include assumption that each message tick represents the same amount of time 

duration. The exact time associated with any computation ensuing within the cloud during the 

Re-orchestration Planning phase may only be through simulation environments that have 

provision for message timestamps (so that the actual time engulfed for computation purposes 

could be worked out) within a simulation or actual physical hardware. 

4.8 Conclusion 

     It is anticipated that the proposed approach will significantly aid the accrual of network 

flexibility via optimizing the process of network re-orchestration by curtailing the time 

associated with testing (via exploiting all the possible accessible node operational parameters 

to derive the necessary re-orchestrations). One of the key aspects associated with the proposed 

organization pertains to the collaborative engagement between a software library of reusable 

modules i.e., ‘Data and Knowledge Repository’ and virtualization environment at the cloud 

layer (of the proposed architecture) could facilitate for the necessary software-controlled 

switching, reassembly and disassembly of the requisite software modules onto the virtual 

nodes. Furthermore, the operational metrics pertaining to any of the software modules could 

also be subjected to manipulation prior to offloading onto a virtual node. This, in effect, opens 

the door for interacting with various scenarios related to off the shelve components or complete 

solutions to evolvable components and solutions that dynamically resides within the existing 

repository at the cloud.  

 

     This, in turn, can be accomplished via exercising dynamic software control over the several 

operational parameters available for software manipulation at both the node and network levels. 

Cloud-level virtualization and its flexible manipulation through software control offers an 

avenue for such flexible reformulation of core sensor network functionalities.  

     Software-controlled virtualization, working in conjunction with aforementioned ‘software-
library’, offers an avenue for soft-trialling of network performances prior to implementation 
onto the Physical layer. By means of observing the implications of numerous software-defined 
alterations within the virtual environment, the most suitable functional configuration to be 
implemented on the node can be adaptively converged upon whilst exploring the degree of 
freedom procurable from each of the functionalities. 

     In essence, the proposed research work envisages an organization that continually monitors 

the operational dynamics of the underlying sensor network and identifies any (potential) 

situation necessitating re-orchestration beforehand (during the ‘Data Analysis and Event 

Identification’ phase). Upon foreseeing of any such event or scenario, it engages the 

virtualization unit to proactively interact with the Physical layer so as to gather the information 

required for the subsequent phase of ‘Re-orchestration Planning’. During the ‘Re-

orchestration-Planning’ phase, the proposed organization ensues works out the most suitable 

‘re-orchestrations’ to be applied onto the onto the Physical layer. 

 

     Such an organizational workflow aimed at pre-emptive planning of the re-orchestrations to 

be applied onto the physical layer would tend to confine the downtime suffered by the network 

to only the ‘Re-orchestration-Execution’ phase.  
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Chapter 5   

SDWSN Concept Simulation and Testing 
 

5.1 Introduction 

     This chapter details information (on the efforts undertaken) towards implementation and 

testing of the proposed SDWSN concept to render sensor networks capable of undergoing 

flexible network re-orchestrations. By means of delving into the specificities of 

implementations entailing certain example cases of software-defined re-orchestrations and 

offering incremental results in some of those cases, this chapter also reflects the viability of 

Contiki as a tool for the necessary software development and dynamic re-orchestration for both 

the physical as well as virtual environments within the proposed architecture. 

     Performance-related aspects arising out of the re-orchestration process viz., improvement 

with respect to a certain performance (such as packet loss mitigation), downtime suffered by 

the network have been highlighted within this chapter. The role of Contiki IDE to allow for 

programming of the Contiki-ported Texas Instruments CC2538 hardware nodes as well as the 

Cooja virtual motes in a modular way, enabling dynamic flexible re-orchestration (of their 

functional role) via software control has been discussed. 

5.2 Contiki Tool for WSN Softwarization Pre-requisites 

     By means of allowing for both firmware development as well as virtualization, the Contiki 

software, as a tool, tends to seemingly meet the key pre-requisites outlined in chapter 4. The 

firmware for each of the well-defined, core functional components (viz., Leaf, Router and 

Gateway functions, encompassing their respective operational components) so identified can 

be developed within the IDE (Integrated Development Environment) offered by the Instant 

Contiki – 2.7 software and rendered as a re-usable module. These re-usable firmware modules 

so developed could then be compiled and used for configuring both physical and virtual nodes 

via Contiki-based software. By means of facilitating for a virtualization environment, Contiki’s 

Cooja network ‘simulation tool’ fulfils the crucial requisite of running soft trials of network re-

orchestration scenarios to converge upon the most suitable re-orchestrations to be applied onto 

the physical WSN. 

5.3 Contiki-Based Pseudo Codes for Key Modular WSN Components 

5.3.1 Contiki-Based Pseudo Code for WSN Leaf Function 

     The pseudo code for the firmware for the WSN Leaf function is as depicted in figure 5-1 

below. It consists of the various sub-modules, consisting of their respective constituent 

operational parameters. These operational parameters could be subjected to software 

manipulation in a bid to realize the desired node-operational re-orchestrations (pertaining to 

the leaf function). The design of the pseudo code model adopted herein encompasses the 

various operational activities catered to by the leaf function in a chronological order (ranging 

from selection of the desired sensor to the transmission of the data sensed by it in accordance 

with the channel access method adopted). 
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Manipulation of the node-operational components via the Contiki-based firmware used 

for configuring the TI CC2538 node to execute ‘leaf’ functional role 

1:  Sensor selection: Execute the light, temperature and RSSI sensor function(s) 

individually (one at a time) or together (multiple at a time) and acquire the desired 

sensor readings 

light_dbl=adc_sensor.value(ADC_SENSOR_ALS); //Light sensing function 

temp = adc_sensor.value(ADC_SENSOR_TEMP);  //Temperature sensing function 

rssi=packetbuf_attr(PACKETBUF_ATTR_RSSI);   //RSSI sensing function 

2:   Buffering of sensed data: Store the data sensed viz., light temperature and RSSI 

variables within an array variable (of four elements) say, ‘c[4]’) 

c[0]=node_ID; // Assigning the ID of the node to the first element of the array 

declared 

c[1]=light; //Assigning the light value sensed to the second element of the array 

declared  

c[2]=temp; //Assigning the temperature value sensed to the third element of the 

array declared  

c[3]=rssi; //Assigning the RSSI value sensed to the fourth element of the array 

declared 
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3:   Channel Allocation: The TI CC2538 nodes could be configured to communicate via 

through one of the available channels from 11 to 26 via entering the desired 

numerical value within the following line of code 

#define CC2538_RF_CONF_CHANNEL <Required value from 11 to 26> 

4:   Radio Transmission Power: The desired radio transmission power mode (of the 

available power modes) can be set via entering the hexadecimal value corresponding to 

that power mode (refer to Table 5-1) within the following ‘cc2538_rf_power_set’ 

function 

cc2538_rf_power_set(uint8_t new_power) 

{ 

REG(RFCORE_XREG_TXPOWER) = new_power; 

  return (REG(RFCORE_XREG_TXPOWER) & <hexadecimal_value>); 

}       

5:   Setting data communication rate: The desired data communication rate can be set 

via specifying the particular value (say,) x within the etimer (i.e., ‘event timer) function  

 
etimer_set(&et, CLOCK_SECOND*(1/x)); 

 

6:   Transmission of sensed data: In order to transmit the array of data over to a TI 

CC2538 SoC configured as a router node acting as a sink, the name of the array 

variable has to be specified within the following function(s): 

 

packetbuf_copyfrom(&c, sizeof(c); //c is the array variable to be transmitted to the 

sink node 

broadcast_send(&bc); 
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7:   Enabling a channel access method: Whilst sensing data, the leaf node continuously 

checks if the counter value broadcasted by the governing sink node is the same as 

its node ID. If it is the same, a variable, say, Transmit_Flag (initially assigned with 

the value ‘0’) is ‘set’ (i.e., assigned value ‘1’) 

          if(received_node_ID[0] == node_ID_of_receiver_node) // Check if incoming 

counter value is the same as node ID 

                             { 

                                   Transmit_Flag=1;          // Set ‘Transmit flag’ 

                              } 

                      else 

                             { 

                                   Transmit_Flag=0; 

                             } 

 

For ‘Polling’ mode:  The status of the Transmit_Flag’ variable is checked. If it is 

‘set’, the array to be sent is transmitted. 

PROCESS_THREAD(cc2538_demo_process, ev, data) 

        { 

                         while(1) { 

                                 if(Transmit_Flag==1)    //For ‘Polling’ mode 

                                           {                  

                                        packetbuf_copyfrom(&c, sizeof(c); //where c is array of sensed 

data variables to be 

transmitted 

                                         broadcast_send(&bc); 

 

                                         Transmit_Flag=0;     //Resetting the ‘Transmit flag’ 

                                            }  

                                        } 

                } 

 

For ‘CSMA’ mode: The status of the ‘Transmit_Flag’ variable is not checked. The 

array to be sent is transmitted regardless of the existing status of the 

‘Transmit_Flag’ variable. 

                       while(1) { // If ‘Transmit flag’ =0 or if a requisite external command 

message directing it to execute in CSMA mode is received, 

                        {                  

                              packetbuf_copyfrom(&c, sizeof(c); 

                              broadcast_send(&bc); 

                        } 

                       } 

Figure 5-1 Pseudo code for the (Contiki-based) firmware used for configuring TI CC2538 with 

the WSN Leaf function. 



71 
 

 

5.3.2 Contiki-Based Pseudo Code for WSN ‘Routing’ Function 

     The pseudo code for the firmware for the WSN Routing function is as depicted in figure 5-

2. It consists of the various sub-modules, operational parameters within which could be tapped 

into towards realizing the desired node-operational re-orchestrations (pertaining to the 

‘routing’ function). The design of the pseudo code model adopted herein encompasses the 

various operational activities catered to by the routing function in a chronological order 

(ranging from initialization and reception of the incoming sensed data up to relaying it another 

router or a Gateway node). 

 

 

Manipulation of the constituent operational components via the Contiki-based firmware 

used for configuring the TI CC2538 node to execute ‘router’ functional role 

 

1:  Initialization of arrays: Declaring and initializing of arrays of a certain size ‘r’ to receive 

sensed data variables, say, light, temperature and RSSI,  

      var_1_light[r]            ={01,02,….0r}; 

      var_2_temperature[r]={01,02,….0r};                                           

      var_3_rssi[r]              ={01,02,….0r};              

from all the leaf nodes within its cluster)   

 

2:  Receive sensed data: Receiving and storing the incoming sensed values emanating 

from the leaf nodes on a node-by-node basis. 

 
  int16_t *temp_data_pointer;   

  temp_data_pointer= (int16_t *)packetbuf_dataptr();  

  x                          =temp_data_pointer[0]; //Receive node ID , say ‘x’ of the leaf node 

  light[x]                =temp_data_pointer[1]; //Receive light value transmitted by node ‘x’ 

  temperature[x]    =temp_data_pointer[2]; //Receive temperature value variable 

transmitted by node ‘x’ 

     rssi[x]                  =temp_data_pointer[3]; //Receive RSSI value transmitted by node ‘x’ 
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3: Enabling a channel access method: The firmware used for configuring a CC2538 

SoC to act as a ‘polling’ router consists of a ‘counter’ variable (initially set to ‘0’) that 

gets incremented (in accordance with the value specified within its ‘etimer’ function). 

After each such increment, this value is broadcasted by the router node to all the leaf 

nodes within its cluster. The counter variable ceases to increment once its value is 

equal to the number of leaf nodes within its cluster (pre-defined within its firmware). 

 

while(1) { 

  

    PROCESS_YIELD(); 

    if(ev == PROCESS_EVENT_TIMER)  

{ 

 

                ‘counter’++; 

                a_[0]=counter; 

                a_[1]=TIME_IN_SEC - 1; 

                a_[2]=1; 

 

                          etimer_set(&et, CLOCK_SECOND*’N’); 

 

 

                         /*Packets are transmitted (broadcasted) using this function*/ 

 

                         packetbuf_copyfrom(&a, sizeof(a)); // where ‘a’ is an array variable 

containing the counter values to 

be broadcasted as one of its 

elements. 

                         broadcast_send(&bc); 

 

      

if(counter==Number of leaf nodes within its cluster)  

   { 

counter=(counter % Number of leaf nodes within its cluster);  

             } 

} 

} 

 

4:  Channel Allocation: The TI CC2538 nodes could be configured to communicate via 

one of the available channels from 11 to 26 via entering the desired numerical value 

within the following line of code 

 

#define CC2538_RF_CONF_CHANNEL <Required value from 11 to 26> 
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5:  Buffering of data variables to be transmitted: Buffering the sensed data received 

within an array variable say, 'e' (of four elements) 

 e[0]= node_ID_number; 

 e[1]= light_v; 

 e[2]= temperature_v;  

 e[3]= rssi_v; 

 
 

6:  Radio Transmission Power: The desired radio transmission power mode (of the 

available power modes) can be set via entering the hexadecimal value corresponding to that 

power mode (refer Table 5-1) within the following ‘cc2538_rf_power_set’ function 

cc2538_rf_power_set(uint8_t new_power) 

{ 

  REG(RFCORE_XREG_TXPOWER) = new_power; 

  return (REG(RFCORE_XREG_TXPOWER) & <hexadecimal_value>); 

         }       

  

7:  Setting data communication rate: The desired data communication rate can be set 

via specifying the particular value (say,) ‘x’ within the ‘etimer’ (i.e., ‘event timer) function’  

 
etimer_set(&et, CLOCK_SECOND*(1/x)); 
 

8: Relay (requisite) stored data: In order to transmit the array of data over to the CC2538 

SoC configured as a gateway node, the name of the array variable has to be specified 

within the following function(s): 

packetbuf_copyfrom(&e, sizeof(e); //’e’ is the array variable to be transmitted to the 

sink node 

broadcast_send(&bc); 

 
 

 

Figure 5-2 Pseudo code for the (Contiki-based) firmware used for configuring TI CC2538 with 

the WSN Router function. 
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5.3.3 Contiki-Based Pseudo Code for WSN Gateway Function 

     Implementation of the gateway unit involved utilizing a TI CC2538 Evaluation module 

(EM) in conjunction with the Raspberry Pi 3 (Model B V1.2) device, as depicted in figure 5-3. 

Herein, the CC2538 EM was configured with the gateway firmware allowing it to 

accommodate for the data relayed by the router-configured nodes. The Raspberry Pi 3, on the 

other hand, has a ‘python’ script running within it, enabling it to post the data (so acquired by 

the ‘Gateway-firmware’ configured TI CC2538 node) over to the local server. Internet 

connectivity is provisioned to the Raspberry Pi unit via ethernet. The python script firstly reads 

the data acquired by CC25338 EM connected to it via USB over serial communication. It then 

checks for the integrity of the data via reading for instances of the data read and posts it to the 

local server using the REST API. Besides the advantages pertaining to cost and form factor 

i.e., compactness, such a Raspberry Pi-provisioned gateway setup allows for a ‘readily 

portable’ solution, to some extent, given the multitude of interfaces for availing Internet 

connectivity (ethernet, onboard-Wi-Fi, Bluetooth, etc.) 

 

 

Figure 5-3 Gateway unit realized using TI CC2538 Evaluation module (EM) in conjunction 

with the Raspberry Pi 3 (Model B V1.2) device. 

 

     The pseudo code for the firmware for the WSN gateway function is as depicted in figure 5-

4. It consists of the various sub-modules, operational parameters within which could be tapped 

into towards realizing the desired node-operational re-orchestrations (pertaining to the 

Gateway function). The design of the pseudo code model adopted herein encompasses the 

various operational activities catered to by the Gateway function in a chronological order 

(ranging from initialization and reception of the incoming sensed data up to subjecting it 

through the requisite protocol conversion so as to relaying it over to the remote cloud-server 

over the Internet). 
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Implementation of the operational components within the Contiki-based firmware and the 

python script developed for TI CC2538 and Raspberry Pi 3 Model B V1.2 respectively, 

Texas Instruments CC2538 Evaluation Module (EM) 

1:  Initialization of arrays: Declaring and initializing of arrays of a certain size ‘m’ to 

receive all sensed data variables, say light, temperature and RSSI, relayed by an 

intermediate CC2538 router node 

     var_1_light[m] ={01,02,….,0m}; 

     var_2_temperature[m]={01,02,….,0m};

     var_3_rssi[m] ={01,02,….,0m};

  (depending upon the number of leaf nodes within its cluster) 

2:   Receive sensed data: Receiving data from CC2538 router nodes and storing them in 

a specific format (node-by-node basis for all the leaf nodes) 
      int16_t *temp_data_pointer;  

temp_data_pointer= (int16_t *)packetbuf_dataptr(); 

      x = temp_data_pointer[0]; //Receive node ID , say ‘x’ of the leaf node 

      light[x] = temp_data_pointer[1]; //Receive light value transmitted by node ‘x’ 

      temperature[x]    = temp_data_pointer[2]; //Receive temperature value variable 

transmitted by node ‘x’ 

      rssi[x] = temp_data_pointer[3]; //Receive RSSI value transmitted by node ‘x’ 

3:   Channel Allocation: The TI CC2538 nodes could be configured to communicate via 

one of the available channels from 11 to 26 via entering the desired numerical value 

within the following line of code: 

       #define CC2538_RF_CONF_CHANNEL <Required value from 11 to 26> 

4:   Read data over serial communication: Receive data from node acting as gateway 

over serial communication via python script 

5:   Check data integrity: Check integrity of received data via comparing lengths of 

certain number of ‘strings’ of the data 

6:   Push data to remote server: Push data over to a remote-server using the ‘GET 

command’ along with requisite ‘URL’ of (server) webpage. 

Figure 5-4 Pseudo code for the (Contiki-based) firmware used for configuring TI CC2538 with 

the WSN Gateway function. 
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     The python script within Raspberry Pi using the ‘REST API’ to read serial data from TI 

CC2538 and escalate data to the remote cloud server is as depicted in figure 5-5. 

Python script within Raspberry Pi using the REST API to read serial data from TI 

CC2538 and escalate data to the remote cloud server 

import serial 

import os 

import urllib 

import urllib2 

import webbrowser 

 

 

while True:  

 ser = serial.Serial('/dev/ttyUSB1',baudrate=115200) 

 print ser 

 v1= ser.readline() 

 v2= ser.readline() 

 v3= ser.readline() 

 v4= ser.readline() 

  

 

 i1=len(v1) 

 i2=len(v2) 

 i3=len(v3) 

 i4=len(v4) 

 

  

  

 ser.close() 

 

  

 if i1==i2: 

  x=v1 

 elif i2==i3: 

  x=v2 

 elif i3==i4: 

  x=v3 

 elif i1==i3: 

  x=v3 

 elif i1==i4: 

  x=v4 

 elif i2==i4: 

  x=v2 
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 elif i1<220 and i2<220 and i3<220 and i4<220: 

      continue 

 else: 

      continue 

 print x 

  

 

        b = x 

        print b 

        url = 'http://sense.aut.ac.nz/MAC/TI/Ethernet/TI_12Aug18_T1.php' 

        b = '|'+ b 

 

 

        values = {'TheString' : b} 

        data = urllib.urlencode(values) 

        req = urllib2.Request(url,data) 

        response = urllib2.urlopen(req) 

 

        the_page = response.read() 

        print "Data Sent to Server Successfully!!" 

Figure 5-5 Python script within Raspberry Pi using the ‘REST API’ to read serial data from TI 

CC2538 and escalate data to the remote ‘cloud server’. 

 

5.4 Node and Network-Level WSN Re-orchestrations 

     Specificities pertaining to the exertion of software control over certain constituent node-

operational parameters present within the typical, say, leaf-node firmware such as ‘Sensor 

Selection’, ‘Data Acquisition’, ‘Buffering of Sensed Data’, ‘Data Computation’, ‘Channel 

Allocation’, ‘Radio Transmission Power’ and ‘Data Communication Rate’ via Contiki IDE 

(Integrated Development Environment) are elaborated below. Prior to delving into the 

discussions pertaining to each such node-operational parameter, an integrated pseudo code 

encompassing for the same has been depicted in figure 5-6. The complete code is available 

within section A.1 of the appendix. As a means to reflect the process of ‘software-defined’ ‘re-

orchestration’ through examples involving the aforementioned parameters, two incremental 

examples cases (pertaining to node and network levels) are discussed.  

 

5.4.1 Integrated (Contiki-Based) Pseudo Code 

Example unified firmware used for configuring a node that is capable of accommodating 

for and executing operational activities pertaining to both router and ‘leaf functional roles  
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Initialization of arrays:  

Declare and initialize one or multiple arrays (if need be, depending upon the 

number of types of incoming sensed variables) of a certain size (depending upon 

the number of leaf nodes within its cluster) to receive all the incoming sensed 

data variables 

 

Declaration and initialization of arrays of a certain size ‘r’ to receive sensed data 

variables, say, light, temperature and RSSI,  

      

      var_1_light[r]            ={01,02,….0r}; 

 

      var_2_temperature[r]={01,02,….0r};       

                                     

      var_3_rssi[r]              ={01,02,….0r};              

 

from all the leaf nodes within its cluster) 

If external radio message flag received directing execution of the ‘leaf function’ sub-

modules 

         

        Sensor selection:  

        Execute the desired sensor function(s) (one or more) and acquire the sensor 

readings 

 

light_dbl=adc_sensor.value(ADC_SENSOR_ALS); //Light sensing function 

 

temp = adc_sensor.value(ADC_SENSOR_TEMP);  //Temperature sensing 

function 

 

               rssi=packetbuf_attr(PACKETBUF_ATTR_RSSI);   //RSSI sensing function          

If external radio message flag received directing execution of the router function sub-

modules 
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Receive sensed data: Receive and store incoming sensed data from all 

constituent leaf nodes on a node-by-node basis 

 
 int16_t *temp_data_pointer;   

 temp_data_pointer= (int16_t *)packetbuf_dataptr();  

                   x                           = temp_data_pointer[0]; //Receive node ID , say ‘x’ of the 

leaf node 

                   light[x]                 = temp_data_pointer[1]; //Receive light value transmitted by  

node ‘x’ 

                   temperature[x]    = temp_data_pointer[2]; //Receive temperature value variable 

transmitted by node ‘x’ 

 rssi[x]                  = temp_data_pointer[3]; //Receive RSSI value transmitted by 

node ‘x’ 

Buffering of data variables to be transmitted: Store received data within an 

array of requisite size  

Buffering the sensed data received within an array variable say, 'e' (of four 

elements) 

 e[0]= node_ID_number; 

 e[1]= light_v; 

 e[2]= temperature_v;  

 e[3]= rssi_v; 

If external radio message flag received directing execution of the ‘leaf function’ sub-

modules 

Channel Allocation: Set the node to communicate using (one of the available 

and) desired channel(s) 

#define CC2538_RF_CONF_CHANNEL <Required value from 11 to 26> 

Buffering of sensed data: Store the sensed data within an array of requisite 

size along with node ID 

Store the data sensed viz., light temperature and RSSI variables within an array 

variable (of four elements) say, ‘c[4]’) 
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c[0]=node_ID; // Assigning the ID of the node to the first element of the array 

declared 

c[1]=light; //Assigning the light value sensed to the second element of the 

array declared  

c[2]=temp; //Assigning the temperature value sensed to the third element of 

the array declared  

c[3]=rssi; //Assigning the RSSI value sensed to the fourth element of the 

array declared 

 

Radio Transmission Power: Set the node to transmit data using (one of the 

available and) desired channel(s) 

The desired radio transmission power mode (of the available power modes) can 

be set via entering the hexadecimal value corresponding to that power mode (refer 

Table 5-1) within the following ‘cc2538_rf_power_set’ function 

cc2538_rf_power_set(uint8_t new_power) 

{ 

REG(RFCORE_XREG_TXPOWER) = new_power; 

  return (REG(RFCORE_XREG_TXPOWER) & <hexadecimal_value>); 

}       

Setting data communication rate: Set the desired rate of transmission of data 

(via specifying the particular numerical value within the requisite function 

      The desired data communication rate can be set via specifying the particular 

value (say,) ‘x’ within the ‘etimer’ (i.e., ‘event timer) function’  

 
etimer_set(&et, CLOCK_SECOND*(1/x)); 

Transmission of sensed data: Transmit the array of sensed data to a ‘sink’ 

node (via entering the name of the array variable to be transmitted within the 

requisite function) 

 

packetbuf_copyfrom(&c, sizeof(c); //’c’ is the array variable to be transmitted 

to the sink node 

broadcast_send(&bc); 
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Enabling a ‘channel access’ method: Enable a particular ‘channel access’ 

method viz., CSMA, TDMA, etc. 

Whilst sensing data, the leaf node continuously checks if the counter value broadcasted 

by the governing sink node is the same as its node ID. If same, a variable say, 

‘Transmit_Flag’ (initially assigned with the value ‘0’) is ‘set’ (i.e., assigned value 

‘1’) 

          if(received_node_ID[0] == node_ID_of_receiver_node) // Check if incoming 

counter value is the same as node ID 

                             { 

                                   Transmit_Flag=1;          // Set ‘Transmit flag’ 

                              } 

                      else 

                             { 

                                   Transmit_Flag=0; 

                             } 

 

For ‘Polling’ mode:  The status of the ‘Transmit_Flag’ variable is checked. If it is 

‘set’, the array to be sent is transmitted. 

PROCESS_THREAD(cc2538_demo_process, ev, data) 

        { 

                         while(1) { 

                                 if(Transmit_Flag==1)    //For ‘Polling’ mode 

                                           {                  

                                        packetbuf_copyfrom(&c, sizeof(c); //where ‘c’ is array of 

sensed data variables to 

be transmitted 

                                         broadcast_send(&bc); 

 

                                         Transmit_Flag=0;     //Resetting the ‘Transmit flag’ 

                                            }  

                                        } 

                } 

 

For CSMA mode: The status of the ‘Transmit_Flag’ variable is not checked. The 

array to be sent is transmitted regardless of the existing status of the 

‘Transmit_Flag’ variable. 

                       while(1) { // If ‘Transmit flag’ =0 or if a requisite external command 
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message directing it to execute in CSMA mode is received, 

                        {                  

                              packetbuf_copyfrom(&c, sizeof(c); 

                              broadcast_send(&bc); 

                        } 

                       } 

If external radio message flag is equal to “R” 

Relay (requisite) stored data: Transmit the array of sensed data to requisite 

‘sink’ node (via entering the name of the array variable to be transmitted within 

the requisite function) 

In order to transmit the array of data over to the CC2538 SoC configured as a 

gateway node, the name of the array variable has to be specified within the 

following function(s): 

packetbuf_copyfrom(&e, sizeof(e); //e is the array variable to be transmitted  

to the sink node 

broadcast_send(&bc); 

Figure 5-6 Example pseudo code for a (Contiki-based) unified firmware. 

 

    Certain such node-operational parameters present at the various layers of the communication 

stack viz., sampling rate, sensor selection, buffer size etc. present within the physical layer, 

communication protocols, channel allocation, etc., present within the MAC layer and so on, 

could be manipulated by means of tweaking the relevant functions of the firmware fed within 

the node as elaborated (for some of such operational parameters) below. As a means to reflect 

the saliency of Cooja in facilitating for soft trialling of various network re-orchestration 

scenarios, certain incremental example implementations (involving manipulation of certain 

parametric flexibilities discussed below) are provided.    

 

5.4.2 Sensor Selection 

     TI CC2538 has a number of ADC (Analog-to-Digital) sensors associated with it such as 

those for light, temperature, RSSI, etc., offering for heterogeneity of sensing. Through ‘C’ 

codes written within Contiki IDE, each such sensor could be accessed via including the 

necessary header file (i.e., "dev/adc-sensor.h") and invoking the respective sensing functional 

module. For example, in order to measure ambient light, the functional module 

‘adc_sensor.value(ADC_SENSOR_ALS)’ has to be incorporated or retained within the code. 

Similarly for selection of on-chip temperature and RSSI sensing variables, the functions 

‘adc_sensor.value(ADC_SENSOR_TEMP)’ and 

‘packetbuf_attr(PACKETBUF_ATTR_RSSI)’ ought to be invoked within the code. By means 
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of retaining the desired sensor functional modules and removing the unwanted sensor modules, 

software control could be leveraged upon to dynamically select and/or activate only the 

required sensing capabilities offered by the node. As a means to reflect the implementation 

pertaining to the above, relevant sections of code are provided as below. 

Light                = adc_sensor.value(ADC_SENSOR_ALS); 

temperature      = adc_sensor.value(ADC_SENSOR_TEMP); 

rssi                   = packetbuf_attr(PACKETBUF_ATTR_RSSI); 

5.4.3 Buffer Size 

     A buffer could be created within the node via declaring an array of the desired (initial size) 

within the code fed into the node. Example declarations of such array variables of size 16 (i.e., 

capable of accommodating for 16 elements) within a code that has been used for configuring a 

sink node is provided below. 

short signed light_[16]             ={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 

short signed temperature_[16] ={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 

short signed rssi_[16]               ={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 

     Herein too, the ‘#define’ directive could be employed to define its initial size as a ‘macro’ 

definition with a certain (initial) constant value associated with it.  Since such macros so 

defined allow for the (pre-)assigned constant values to get declared throughout the ‘C’-based 

program present within the node, the size of the array could be dynamically manipulated via 

tweaking that particular value at run-time and subsequently re-compiling and re-configuring 

the code.  For example, the size of an array named uint16_t 

arrlight[ARRAY_LENGTH_RT_LIGHT]; declared within the code, could be dynamically 

manipulated via tweaking the value to the macro ARRAY_LENGTH_RT_LIGHT defined 

within the code. 

     In regard to the parametric flexibilities of sampling rate and buffer size available within the 

physical layer that could be wrought through Contiki-provisioned software control, an 

incremental example case of QoS-based dynamic node-level re-orchestration, depending upon 

the prevailing network conditions, is put forth. 

5.4.4 Data Communication Rate 

     Via exerting software control over the ‘etimer_set(&et, CLOCK_SECOND*(‘1/N’))’ 

functional module, 

     where, ‘N’ is either the ‘communication rate ‘or ‘reporting time’ interval or ‘servicing’ 

interval (and could either be a decimal or an integer value),  

the sampling rate and/or data reception rate of the node can be configured and/or dynamically 

manipulated as per the prevailing service requirement. For example, in order to configure a leaf 

node to transmit the data sensed by it to a nearby sink node at the rate of four packets/second, 

the ‘etimer’ function would need to be invoked as below. 

 

etimer_set(&et, CLOCK_SECOND*(1/4)); i.e., etimer_set(&et, CLOCK_SECOND*0.25); 
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          This could also be defined as a ‘macro’ within the code which allows for declaration of 

constant values (associated with it) throughout the program. Changing this value to another 

value results in changing the reporting time interval of the node to the new constant value 

wherever this ‘etimer’ function has been invoked within the figure. However, in both of the 

above ways, the code has to be re-compiled and re-fed into the node. 

 

     As a scenario, consider a virtual point-to-point network running within the Cooja 

virtualization unit wherein an end device transmits the sensed data (represented by the 

randomly generated values of the light, temperature and RSSI) to a coordinator (i.e., router or 

sink) node. In the event of occurrence of ‘significant’ dynamics within the monitored 

‘phenomenon’ with respect to any of the parameters (say, occurrence of an event causing heavy 

fluctuations within the RSSI signals or significant deviation from the usual RSSI values), data-

intensive sensing requirements necessitate higher sampling rates to capture more accurate 

information i.e., data pertaining to that particular unusual event. Figure 5-7 below shows the 

impact of exerting software control over node-operational parameters of the ‘communication 

rate’ or ‘reporting interval’ of any leaf node by means of running a test wherein the same virtual 

network is run for two different communication rates (for comparison purposes). Screenshot 

of the mote output window when the network is run at a low data communication rate is as 

depicted in figure 5-7 a. Herein, large time intervals between the ongoing communication 

amongst the two nodes (as can be observed from the timestamps associated with both the nodes 

at various instances of time) reflects the lower frequency of data communication between the 

two. However, upon re-orchestrating the individual node-operational parameter of ‘etimer’ 

within the firmware to run the network at a much higher communication rate (as indicated by 

the timestamps associated with both the nodes at various instances of time within figure 5-7b), 

more accurate information pertaining to the monitored event can be captured. 

 

           
(a)                                                                          (b) 

Figure 5-7 Dynamic re-orchestration of sampling rate through Contiki-provisioned software 

control to sample data at an increased rate for improved accuracy of (critical) data captured - 

(a) Lower data communication rate and (b) Higher data communication rate.  
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5.4.5 ‘Arrival’ and ‘Service’ Rates  

     Similar to that of the sampling rate, exertion of software control over the ‘etimer_set(&et, 

CLOCK_SECOND*(‘1/N’))’ functional module, 

where, ‘N’ is either the ‘arrival and/or data transmission’ interval or ‘servicing’ interval 

(and could either be a decimal or an integer value),  

also enables dynamic configurability over data arrival (i.e., data transmission rate of the 

transmitter node) and data servicing (i.e., reception rate of the receiver node in consideration) 

rates. These too, could also be defined as a ‘macro’ within the code which allows for declaration 

of constant values (associated with it) throughout the respective programs to be fed the 

transmitter and receiver nodes. Changing this constant value to another constant value results 

in changing the data arrival of data servicing (reception) rates of the respective pertinent nodes 

(as per the new constant value entered) wherever this ‘etimer’ function has been invoked within 

the code. As mentioned earlier, both processes inevitably involve code re-compilation and 

feeding the executable format of the code so compiled into the respective nodes. 

     Equipping the IoT-WSN architectures to better regulate the flow of data in-sync with the 

dynamics of the physical phenomenon necessitates real-time manipulation i.e., 

‘reconfiguration’ of the key ‘Physical Sensor Network’ (PSN) data acquisition ‘parameters’ 

such as buffer size and sampling rate. In this regard, an experiment involving a simplistic (two-

node) point-to-point network was conducted within the virtual Cooja simulation platform, as 

shown in figure 5-8. Herein, one node was programmed to act as a transmitter whereas the 

other one was programmed to act as the receiver node (entrusted with the responsibility of 

servicing the data packets received from the transmitter node).  Exertion of such software 

control of (either) the service rate (or the buffer size) of a receiver node (i.e., a node configured 

with a dominant routing or gateway function) is key to avoid packet loss of incoming data 

transmitted by a node configured with the ‘leaf’ (or router) function and maintenance of QoS 

whilst controlling the flow of sensed data. Herein, the ‘CLOCK_SECOND’ variable present 

within ‘etimer_set’ function of Contiki-based firmware ‘C’ code was varied (as mentioned in 

sub-section 5.4.4) via software control to gradually increase the service rates of the coordinator. 

 

 

Figure 5-8 Virtual 2-node point-to-point network depicting the Cooja nodes 1 and 2 configured 

as the Leaf function and Gateway function nodes respectively.  
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     The relevant section of the Contiki code associated with the transmitter node is provided as 

below. Herein, the sensed data-packets are transmitted to the receiver node along with the ‘node 

ID’ as well as the total number of packets sent. 

 

while(1) { 

                  etimer_set(&et, CLOCK_SECOND*(1/N)); 

                  sentcounter++; 

                  totalsentcounter=sentcounter; 

                  c[b-1]=totalsentcounter; // where ‘c’ is the array of sensed data packets and ‘b’ is 

the numerical value corresponding to the size of the 

buffer array 

                  printf("Total number of packets sent                     = '%d' packets.\n",sentcounter); 

                  printf("Total number of packet elements sent = '%d' packets.\n",totalsentcounter); 

                  packetbuf_copyfrom(&c, sizeof(c)); 

                  broadcast_send(&bc); 

} 

 

     The relevant section of the Contiki code associated with the receiver node is provided as 

below. Herein, packet loss is determined via subtracting the received sensed data packets from 

the total number of packets sent (sent by the transmitter node). 

 

static void 

broadcast_recv(struct broadcast_conn *c, const rimeaddr_t *from) 

{ 

                 x =received_node_ID; 

                 data_variable_1[x] =dataptr_temp1[1]; 

                 data_variable_2 [x] =dataptr_temp1[2]; 

                 …………………… 

                data_variable_n[x] =dataptr_temp1[n]; 

                packetsent[x]=dataptr_temp1[n+1]; 

                if (x==node_ID_of_receiver_node) 

                       { recv_counter++; 
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                          packetrecv[x] = Packets received. 

                          packetloss[x]=packetsent[x]-packetrecv[x]; 

                      } 

 } 

     Complete codes for both transmitter and receiver are placed within section A.2 of the 

appendix.     

     The main intention of this particular exercise was to study the effect of varying the service 

rate (SR) (i.e., the number of incoming data packets served per second) of the Cooja Gateway 

node 2 on the number of packets serviced, packets lost and its buffer usage, keeping the arrival 

rate (AR) i.e., the sampling rate of the Cooja leaf node 1, constant. The service parameter value 

used for configuring the gateway node was incrementally varied i.e., 1, 2, 4, 6, 8 and 10 

packets/second whereas its buffer size was kept constant at 350 packets. The end device was 

configured to transmit its data to the gateway at a constant rate of 10 samples per second. 

 

 

Figure 5-9. Impact of service rate-based node-level re-orchestrations on total incoming data 

packets serviced. 

 

 

Figure 5-10. Impact of service rate-based node-level re-orchestrations on total incoming data 

packets lost.  
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Figure 5-11. Impact of service rate-based node-level re-orchestrations on the gateway node 

buffer filled. 

 

     From figures 5-9 [42], 5-10 [42] and 5-11 [42], it can be clearly observed that when SR=AR, 

all the data packets are serviced, and none are lost. As the service rate is decreased 

progressively via implementation of the pertinent node-level re-orchestrations, lesser number 

of packets are serviced leading to faster buffer occupancy and a greater number of packets are 

lost.                 

    In this particular experiment, the node-level re-orchestrations were first tested on the virtual 

environment offered by Cooja simulator. In this way, the most suitable node-level re-

orchestrations can be determined so as to reconfigure the physical sensor nodes over the Internet 

to prevent packet losses and rapid buffer saturation.  

 

5.4.6 Radio Transmission Power  

     The RF transmission power of the Contiki-ported CC2538 module can be manipulated via 

exerting software control over the 'TXPOWER' register within the 

cc2538_rf_power_set(uint8_t new_power) function (present within the ‘cc2538-rf.c’ file) by 

means of Contiki. The relevant section of the for the same is as provided below. 

 

 

                              return (REG(RFCORE_XREG_TXPOWER) & 0x42); 

 

 

     Although a host of different register value settings can be specified to adjust the 

transmission output power (to avail transmission powers ranging from 7.5 dBm to 22 dBm) as 

depicted in Table 5-1 below, it is recommended that the CC2538 transceiver be configured to 

operate only on certain recommended ('TXPOWER' register) settings amongst those.  
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Table 5-1 Table showing the transmission powers that can be selected to configure the TI 

CC2538 wireless transceiver and their corresponding hexadecimal values to be used within 

relevant section of the code for the same. 

 

 

RF Output Transmission Power (dBm) Hexadecimal Value (TXPOWER) 

22 0×FF 

21.5 0×ED 

20.9 0×DF 

20.1 0×C5 

19.6 0×B6 

19 0×B0 

17.8 0×A1 

16.4 0×91 

14.9 0×88 

13 0×72 

11 0×62 

9.5 0×58 

7.5 0×42 

 

5.4.7 Channel Access Method 

     Channel access methods available at the MAC layer i.e., TDMA or polling, CSMA, TDMA-

CSMA hybrid, etc. could be flexibly switched via software control for purposes such as 

controlling the access to a shared medium of communication, energy efficient operation, etc., 

as necessitated by the prevailing operational and/or service requirements. For example, a 

CSMA-based star-topology network expending sizable amount of energy could be switched to 

polling mode so as to mitigate both power and packets loss (suffered as a result of data 

collision). Similarly, a star network operating in ‘polling’ mode could be configured to operate 

as per CSMA mode to enhance throughput and make better utilization of (the slots within) the 

communication medium. Polling and CSMA channel access methods have been imbibed 

within the Contiki-based software C code fed within the end devices by means of incorporating 
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an ‘if’ conditional statement within the ‘broadcast_open’ function. When operating in ‘polling’ 

mode, the specified ‘If’ condition within the code is set to true owing to which each end device 

transmits packets in their respective set time slots. On the other hand, CSMA mode gets 

executed independent of this particular ‘If condition’. This has been elaborated by means of 

pseudo codes along with pertinent explanation below. 

     The code with which the centrally placed coordinator (node 9) is configured consists of a 

counter which increments in accordance with value used within its ‘etimer’ function upto the 

number of leaf nodes within its cluster (eight in this case) before repeating the counting 

sequence over again. It also broadcasts these counter values as it goes. The psudo code relevant 

to this is as below.  

while(1) { 

  

    PROCESS_YIELD(); 

    if(ev == PROCESS_EVENT_TIMER) { 

                leds_on(LEDS_PERIODIC); 

                counter++; 

                a[0]=counter; 

                a[1]=TIME_IN_SEC - 1; 

                a[2]=1; 

 

                etimer_set(&et, CLOCK_SECOND*’N’); 

 

                /*Packets are transmitted (broadcasted) using this function*/ 

                packetbuf_copyfrom(&a, sizeof(a)); // where ‘a’ is an array variable containing the 

counter values to be broadcasted as one of its 

elements. 

                broadcast_send(&bc); 

      

                if(counter==Number of leaf nodes within its cluster)  

  { 

                counter=(counter % Number of leaf nodes within its cluster);  

} 

 

     Each of the leaf nodes are configured with their own unique address and (respective) node 

IDs. The codes with which they are configured firstly check if the ‘incoming counter value’ 

(broadcasted by the coordinator node) matches with their respective node ID. If so, a ‘Transmit 

flag’ gets set. Only if this ‘Transmit Flag’ is ‘set’ does the broadcast function of the leaf node 

get executed, allowing it to transmit the data sensed by it over to the coordinator (i.e., an ‘If-

conditional’ statement is used to check if the ‘Transmit Flag’ is set or not prior to transmission 

of the data). In order to flexibly switch over to operating in CSMA mode, the same ‘broadcast 

section’ of the code is written ‘independently’ or in separation of the ‘If-condiditional 

statement’ involving the ‘Transmit flag’ variable, and can be trigerred via an external radio 

signal message (again via a different ‘If-conditional’ statement).    This has been expressed by 

means of a pseudo code as below: 
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static void 

                broadcast_recv(struct broadcast_conn *c, const rimeaddr_t *from)  

                { 

                       uint16_t *received_node_ID; 

                      received_node_ID = (uint16_t *)packetbuf_dataptr(); 

 

                      if(received_node_ID[0] == node_ID_of_receiver_node) // Check if incoming 

counter value is the same as node ID 

                             { 

                                   Transmit_Flag=1;          // Set ‘Transmit flag’ 

                                         a[0]=dataptr_temp[0]; //Receive polling counter values 

                                         a[1]=dataptr_temp[1]; 

                                         a[2]=dataptr_temp[2]; 

                                         } 

                      else 

                             { 

                                   Transmit_Flag=0; 

                             } 

              } 

        PROCESS_THREAD(cc2538_demo_process, ev, data) 

        { 

              while(1) { 

                     if(Transmit_Flag==1)    //For Polling mode 

                        {                  

                            packetbuf_copyfrom(&c, sizeof(c); //where ‘c’ is array of sensed data 

variables to be transmitted 

                            broadcast_send(&bc); 

 

                             Transmit_Flag=0;     //Resetting the ‘Transmit flag’ 

                        } 

                      } 

         } 

                                     and                                 

// For ‘CSMA i.e., ‘data-bursting mode’ mode 

                       while(1) { // If Transmit flag =0 or if a requisite external command message 

directing it to execute in CSMA mode is received, 

                        {                  

                              packetbuf_copyfrom(&c, sizeof(c); 

                              broadcast_send(&bc); 

                        } 

 

                       } 

 

     Complete codes for both leaf nodes and sink node or coordinator node are placed within 

section A.3 of the appendix.     
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     With regard  to the above MAC layer-based parametric flexibilities, a simulation based 

experiment was performed on the virtual environment offerred by Cooja simulator to evaluate 

the impact of re-orchestrating the 9-node star topological network (discussed in section 5.2 and 

depicted in running condition in figure 5-12) from CSMA to polling protocol on the total packet 

loss sufferred by the network. The data rate of each of the end devices in the the 9-node VSC 

(Virstual Sensor Cloud) network, depicted in running condition in figure 5-12, was set to (a 

high value of) 200 samples per second for both the experimental cases.  

 

Figure 5-12 9-node virtual network in running condition within the Cooja simulator. 

 

 

Figure 5-13 Graphical comparison of CSMA and TDMA network protocol instances with 

respect to packet loss for the virtual 9-node star network implemented within ‘Cooja’. 

 

     From figure 5-13, it is evident that the packet loss sufferred by the network upon 

implementation of TDMA channel access method is somewhat lesser than when CSMA 

channel access method is adopted (for the scenario considered). From this, it can be inferred 

that implementation of TDMA channel access method tends to lead towards somewhat greater 

network reliability (more so if the data communication rate ranges from low to normal). 

Moreover, similar flexible node-operational as well as MAC layer parametric manipulations 

could further mitigate the problem of packet losses, especially in network operations involving 

communications taking place at a high data rate. 
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From the above account, it is evident that  

- Software-defined switching from CSMA channel access method to TDMA channel 

access method curtails the overall packet loss sufferred by the network to a certain 

extent. From this, it can be inferred that implementation of TDMA channel access 

method would lead to somewhat greater network reliability for this network architecture 

(especially for networks where packet losses are either to be reduced to the extent 

possible when data communication rate is high or better yet, eliminated, provided high 

rates of data communication are not required). Moreover, similar functional (node-

operational MAC layer parametric, topological, etc.) manipulations could potentially 

further mitigate the problem of packet losses, especially in network operations involving 

high data rate transmissions (of the order of 200 samples per second as depicted in the 

above example). Topological manipulations resulting out of software-defined functional 

reformulatios could alleviate unequalized load distributions as alluded to through the 

second simulation based example. 

- by virtue of a having a virtualization environment in place, the impact of software-

defined functional manipulations can be soft-trialled prior to implementation on the 

physical layer (thereby justifying the proposed ideology). 

 

5.4.8 Channel Allocation 

The MAC layer could also be accessed to exert control over allocation of channels to nodes 

as a means to regulate traffic within the shared medium of communication. Such frequency-

based clustering that could result in realizing/creation of multi-channel sensor networks could 

be accomplished through software reconfiguration of a certain desired group of sensor nodes 

with a different channel (out of the original single network). Alterations pertaining to channel 

assignment can be accomplished via alteration of the numeric value associated with the 

‘#define CC2538_RF_CONF_CHANNEL’ line within the ‘contiki-conf.h’ header file, to 

assign the desired channels to the node. For example, in order to configure a TI CC2538 node 

to transmit (at one of channels available from 11 to 26) at, say, channel 26, the following section 

of the code would be required within the ‘contiki-conf.h’ file, 

                      #define CC2538_RF_CONF_CHANNEL              26 

Within the Cooja-provisioned virtual environment, channels allocated to the virtual Cooja 

motes may be altered through software control via altering the pertinent macro definition 

‘RF_Channel’ within the respective header file (i.e., ‘contiki-conf.h’) placed within the Cooja 

directory within the Contiki. 

     The incremental example implementations discussed above have been presented with the 

sole intention of reflecting the role of Contiki-based software control in manipulation of certain 

basic parameters that could serve as ‘drivers’ for re-orchestrations to be implemented on a 

wider scale (throughout a particular Contiki-configured sensor network). Such software-

controlled manipulations could significantly contribute towards the fluid interaction of the 

sensor network with the monitored external phenomenon. On a significant note, running soft-

trials of the various cluster formation possibilities within the virtual simulator of Cooja present 

within Contiki can facilitate converging upon the optimal or near optimal cluster formations 

and network configuration parameters in an expedited manner, without interrupting the PSC 

data collection process. 
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5.4.9 Network (Topology)-Operational (Functional) Re-orchestrations 

          The Contiki software has been used to (pre-)configure physical CC2538 nodes with 

either leaf, router or gateway functions. However, in order to allow for dynamic software-

defined re-orchestration, Contiki-based software control could be used for  

- generating and compiling the ‘Contiki-based’ C programs inclusive of all the three viz., 

leaf, router and gateway functional components   

- pre-configuring the network CC2538 nodes with such C codes (comprising of all the 

three key functionalities, albeit it may only be initialized with the main or dominant 

functional role whilst others remain dormant.) 

- switching to the other (initially dormant) functional modules embedded within a node 

(by means of selecting the pertinent functional module within the code). This could be 

realized by means of having in place a conditional statement such as ‘If-Else’, ‘Switch-

case’, etc., which could be triggered by means of external impulse radio signal message 

whenever required. 

- activating multiple functional modules simultaneously. 

     A generic schematic reflecting the various possible functional roles that could be undertaken 

by CC2538 nodes when pre-configured (i.e., loaded) with the Contiki-based ‘C’ functional 

modules catering for those functionalities, is as depicted in figure 5-14. 

 

 

Figure 5-14 Schematic representing the various core and multi-functional capabilities that can 

be assumed by the TI CC2538 device owing to Contiki-based software control.  
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     The above account is key to how Contiki Software control forms the basis for flexible 

switching or augmenting the functional capabilities of a multi-functional capable device (such 

as the TI CC2538). 

     The flexibility of selecting and activating a particular function offered by the Contiki 

software, including the ability to execute multi-functional roles simultaneously (provided the 

hardware is capable of accommodating for that multiple such functions) opens the door for a 

plethora of network re-orchestrations, thereby vastly augmenting the degree of freedom.  

     As alluded to in chapter 3, the in-built simulation platform of Cooja within Contiki allows 

for virtualization of such physical implementations and soft trialling of various re-orchestration 

scenarios. This is in keeping with the ideology of SDN wherein the cloud layer (acting as the 

control plane) provisioning for,  

- virtualizing the functionalities (i.e., decoupling them from the underlying physical data 

plane) and 

- exertion of software control over such abstracted form of these functionalities, i.e., 

virtual functions (so as to determine suitable re-orchestrations beforehand) 

forms the basis of organising (remote and dynamic) flexible control over the physical layer. 

 

5.5 Example WSN System Implementation 

     As a means to reflect our proposed ideology of a software-defined sensor network operating 

under the aegis of a cloud-based organization allowing for virtualization and soft re-

orchestration of the underlying (physical) layer, a hybrid sensor network system i.e., one 

consisting of both physical and virtual environments has been implemented (within our 

laboratory premises), as already alluded to in section 3.3 of chapter 3.                                    

 

5.5.1 Physical Implementation 

     Figure 5-15 [41-42][50] depicts a 9-node Texas Instruments (Contiki-ported) CC2538 SoC-

based (physical) sensor network implemented within our lab premises[41-42,50]. Herein, eight 

of the nine wireless CC2538 sensor-transceivers were configured using Contiki to act as end 

devices capturing ambient light, temperature and radio signal strength data in their respective 

timeslots and reporting them to a centrally placed IoT-based CC2538-cum-Raspberry Pi unit. 

By means of a python script, Raspberry Pi escalates the sensed data so received from the end 

devices, to our local server, over the Internet[41-42, 50].  

     As depicted in figure 5-15 [41-42][50] above, nodes ‘1’ and ‘2’ were placed near the 

window to facing outside (the lab) so as to capture the ambient light during the day, i.e., 

incident sunlight falling on it. Nodes ‘6’, ‘7’ and ‘8’ were hung towards one side of the room 

from the lab ceiling. Node ‘5’ too, was hung from the lab ceiling at one particular area of the 

lab as depicted in figure 5-15 [41-42][50] above. Nodes ‘3’ and ‘4’ were deployed against an 

empty wooden pallet structure present at one particular location in the room, as shown in figure 

5-15 [41-42][50]. 
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Figure 5-15 Physical implementation of a 9-node TI CC2538-based sensor network within our 

laboratory premises. 

     The sensing requirements of the physical sensor network so established within the lab 

premises merely involved monitoring of the indoor environmental parameters of ambient light 

and temperature, along with the radio signal strength (roughly indicating human presence and 

movement). As already alluded to in section 3.3.2 within chapter 3, the graphical representation 

of the stored data (so collected from the physical network) provisioned via our server database 

is as shown in figure 5-16 [41-42][50]. 

  

Figure 5-16 Graphical trend of ‘sensor’ data (ambient light, temperature and RSSI) captured 

by the 8 leaf nodes, retrieved from server database.  
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     As is evident from both figures 5-15 as well as 5-16 [41-42][50], nodes ‘1’ and ‘2’ placed 

near the window facing direct sunlight during daytime reflect vastly higher ambient light sensor 

readings as compared to the other 6 leaf nodes. Furthermore, the same two nodes report 

somewhat higher temperature values as well during the same daytime period, as compared to 

the other leaf sensor nodes. 

     It is deemed worthwhile to re-assert (via repetition of the figure 3-5 in figure 5-16 within 

this section) that even under normal (i.e., routine or predictable) circumstances, considerable 

variations of the sensed values are observed (within a span of two days). The intent This 

necessitates establishment of sensor network system endowed with requisite operational 

flexibility to cope and efficiently capture the significant dynamics of monitored environmental 

phenomenon, if it were to occur. 

5.5.2 Implementation of the Virtual Environment Within the Remote Server 

     As alluded to in chapter 3, Cooja-based virtualization allows for the precise replication of 

the logical operations occurring within the physical network. It is, however, not possible to 

replicate the physical data sensed by the (corresponding) real-life sensor nodes (without 

external, typically cloud-provisioned, support). Moreover, it does not provision for modelling 

of the physical environment. Owing to such inherent limitations, soft-trials conducted on such 

a platform may result in significant deviation from a desirable accurate outcome. As a step 

towards alleviating this deficiency to a certain extent and attain a somewhat more realistic 

representation of the dynamics transpiring within the physical WSN, a process facilitating for 

incorporation the of element of reality within such a virtual platform in ‘real time’ was devised, 

as explained below.  

     Real-world data acquired from the Raspberry Pi gateway over the Internet is stored within 

the data repository within the server. By means of the relevant database interface, data from 

the most recent physical run (from the database) is extracted and fed into the Contiki 

configuration unit. Equipped with such real-time ‘sensed data’ information, Contiki ensues 

upon necessary compilation and configuration process to create ‘virtual Cooja mote’ copies 

within the Cooja WSN simulation platform resulting in virtualization of the physical sensor 

network. A generic model reflecting the practicable implementation undertaken towards the 

same is as depicted in figure 5-17. 

 

 

Figure 5-17 Overview of the setup devised towards facilitating for incorporation of the element 

of reality within the cloud-based virtualization platform in real time.  
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     As a means to further elaborate upon the above, a more detailed block diagram is presented 

in figure 5-18 [41][50]and discussed as below. 

 

 

Figure 5-18 Block diagram depicting Remote server implementation and the inter-relation 

among its various components.  

 

     The remote server implemented for data storage, data visualization, configuration, etc. 

purposes has three main components associated with it namely, the ‘MySQL Database Server’, 

the ‘Webserver’ and lastly, the ‘Application Server’[50]. The Application Server hosts the sub-

components of ‘Contiki OS’, ‘Performance Modelling Environment’ as well as the Cooja-

based virtualization environment. The sub-component of Contiki IDE serves to configure both 

the physical and virtual sensor networks. Tools such as MATLAB hosted by the ‘Performance 

Modelling Environment’ serve to evaluate the performance of the network, optimizations 

obtained from which are directly fed to the ‘Contiki Configuration Interface’. The Contiki 

Configuration Interface utilizes these suitable re-orchestrations to re-orchestrate both physical 

and virtual networks. Lastly, the function of the ‘MySQL Database Server’ is to write queries 

to the database. It does so by means of a PHP script which (also) fetches data obtained from 

the physical leaf nodes. This incoming data gets timestamped and stored in rows. 

     Certain specificities pertaining to the server implementation are provided below[50]: 

• To start with, sensor data emanating from the physical leaf nodes are received by the IoT 

Coordinator i.e., the Raspberry Pi as depicted in figure 5-15 [41-42][50], which in turn is 

escalated to the webserver which serves as the entry point for all the incoming sensor data. 

It does so by using REST API. Usage of REST API serves to exchange the necessary 

information between the database and the application server, besides fulfilling the important 

requirement of communicating with users. By means of GET and POST commands, users 

select the nodes they wish to view the data for. The client side consists of the python script 

residing within the Raspberry Pi which pushes the data over to the Webserver. This data 

gets forwarded over to the MySQL database (via REST APIs) for statistical and data 

processing purposes pertaining to each of the individual CC2538-based node. For scripting 

purposes, the PHP script is employed by the server. 

• Optimizations foreseen within the ‘Performance Modelling Environment’ serve as inputs to 

the Webserver component wherein the resident Contiki Configuration Interface performs 

the function of implementing them on to both virtual and physical nodes.  
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5.6 Example WSN Re-orchestration Scenarios 

     Implementations of certain example re-orchestration scenarios have been realized via 

exerting Contiki-based software control over the three ‘core’ network functionalities i.e., Leaf, 

Router and Gateway functions. Such re-orchestrations have resulted in changes pertaining to 

network topology, network dataflow (direction), performance, etc., besides serving as a means 

to clearly define the re-orchestration phase (as well as the phases preceding it) and analyse its 

implications on the network, in terms of network downtime. 

5.6.1 Simple Network (Function) Manipulation: Function Swapping Case 

Consider the following simplistic case of network re-orchestration wherein Contiki-based 

software control has been employed to 

- (initially) pre-configure three nodes i.e., node ID: 1, node ID: 2 and node ID: 3 within 

Cooja to execute the ‘leaf’, ‘router’ and ‘gateway’ functionalities, respectively, 

constituting a three-node ‘multi-hop network’, as shown in figure 5-19a [26].  

- manipulate to functional roles being executed by two of the three nodes, i.e., node ID: 

2 and node ID: 3, as depicted in figure 5-20a [26]. 

 

     Figure 5-19 a [26] illustrates the initial network setup wherein the flow of data is such that 

the data sensed by the virtual node (with Node ID: 1) configured with the leaf function (i.e., 

light, temperature and RSSI values as sensed by its physical counterpart) is relayed to the 

virtual node (with Node ID: 3) configured with the Gateway function, via the intermediate 

virtual node (with Node ID: 2) configured with the Router function. The ‘mote output’ window 

within Cooja for this initial network configuration is as depicted in figure 5-19 b [26].  

 

     Upon modifying within the ‘broadcast_open’ function within Contiki-based firmware to 

enable the desired (pre-existing but initially dormant) functional module(s) (and de-activating 

the existing functional module), a separate Contiki functional module is generated, which when 

implemented onto the same virtual node results in re-orchestration of the operational behavior 

of the same node (in this case, re-orchestration of a virtual node to a router role from an end 

device role and vice-versa). Such individual node re-orchestrations tend to contribute to the re-

orchestration of the entire network as a whole, including its inherent dataflow. This aspect is 

elaborated below. 
 

 

(a) 
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(b) 

Figure 5-19 (a) Virtual three-node multi-hop network implemented within Cooja; (b) ‘Mote 

output’ window within Cooja reflecting the dataflow within the multi-hop network. 

 

     As depicted in figure 5-20 a [26], activation and due implementation of the (relevant and 

initially dormant) ‘leaf’ functional module within the pre-existing functional code fed to node 

ID: 2 (initially configured to act as a router) through Contiki-provisioned software control re-

orchestrates its functional role to that of a leaf node.  

 
 

 

(a) 

 

(b) 

Figure 5-20 (a) Star topology post re-orchestration of the multi-hop network (depicted in Fig. 

4); (b) Star topology behaviour of the re-orchestrated network depicted by the ‘Mote output’ 

window within Cooja.  
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     This, coupled with re-orchestrating the operation of the gateway node (i.e., Node ID: 3) via 

similar software control to enable polling of its two end devices results in a star-based 

topological organization wherein the flow of data is such that the data sensed by end devices 

(Node ID: 1 and Node ID: 2) is received by the Gateway node acting as sink for the two nodes. 

The mote output screenshot pertaining to this re-orchestrated network is as depicted in figure 

5-20 b [26]. 

Example cases of software-defined re-orchestrations such as the above could be 

instrumental in resolving cases of network fragmentation caused by departure of a mobile 

(router) node beyond the communication range of the Gateway.  

 

 

5.6.2 Demand for Flexibility: Topology Related-Case 

 

(a)                                                                         (b) 

Figure 5-21 Certain topological orientations that a given IoT-enabled sensor network could 

flexibly re-orchestrate to as a result of software-defined re-orchestration:- (a) Multi-hop 

Topology and (b) Star Topology.  

 

 

The network is initially configured to operate under a multi-hop topological arrangement, 

as shown in figure 5-21 a [26]. Herein, the sampling rate or reporting time interval of each of 

the nodes is gradually increased from one to twenty-five samples per second (increasing 5 

samples per second at a time). Overall packets lost by the network (for these sampling rates) 

has been focussed upon as a performance measure herein. Subsequently, via software control, 

it is re-orchestrated to operate as a star-topological network as shown in figure 5-21 b [26].   

 

The data communication rate of the data being sensed by the end device is incremented (in 

steps of five samples per second, from ‘1’ sample per second to 25 samples per second) for 

both the sensor network topological arrangements in a bid to observe the implications. The 

packets lost (parameter) has been considered as the performance measure within this 

experiment. 
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Table 5-2 The impact of increasing data communication rates on the packet loss experienced 

by the network consisting of eight nodes for various scenarios.     

 

Data 

Communication 

rate 

Packet/Sec PPS 

Packets lost 

(‘Multi-hop’) 

Packets lost 

(Star-CSMA) 

Packets lost 

(Star-

TDMA) 

1 0 0 0 

5 3 0 0 

10 5 0 0 

15 8 0 0 

20 10 4 0 

25 12 -- 0 

 

 

Table 5-2 [26] clearly depicts the considerable mitigation of packet loss experienced by 

the sensor network when re-orchestrated from multi-hop to a CSMA-based star-topological 

arrangement, as shown in figure 5-21 b while the network experiences loss of twelve data 

packets when run on multi-hop topological configuration at 25 samples per second. The Cooja 

simulator ceases to offer any data when the same network is run on CSMA-based star 

topological configuration at the same 25 PPS. On switching to a TDMA-based star topology, 

no packet losses are observed (at least till the sampling rate is increased to 25 samples per 

second). This experiment aptly demonstrates the benefit of incorporating a virtual environment 

to test and foresee the implications of software manipulation of individual network functions 

on the overall network performance.  

 
 

5.7 Example Network Re-orchestration Scenarios with Focus on Re-

orchestration Latency   

5.7.1 Simple Network Manipulation: Function swapping case 

     Although software-defined re-orchestartion allows for flexible node-operational 

manipulatioms and thereby, if necessary, topological reorganizations, it might be accompanied 

by service disruption issues. Service disruption refers to the latency associated with the re-

orchestration process, and may temporarily render the network partially (or fully) disconnected. 

It is, therefore, of relevant research interest to explore the impact of the reorchestration process 

on service delivery. In order to preliminarily investigate the overall latency associated with the 

disruption suffered by the network, a simplistic experiment involving ‘function-swapping’ 

among two network nodes (belonging to a three-node network) has been again performed on 

the virtual environemt offerred by Cooja. 

 

     Herein, a three node stationary network, consisting of end device, router and Gateway node, 

is considered, as shown in figure 5-23 a. The leaf node continuously transmits sensed data 

(temperature and RSSI) to the ‘router’ node, which relays this data over to the Gateway node, 

along with its battery level. These are indicated by messages 1 i.e., MLR_Initial and 2 i.e., 
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MRG_Initial respectively, as depicted in figure 5-22. Owing to the continuous routing operation 

and prohibition from entering ‘sleep’ mode, the battery level of the router is bound to deplete 

rapidly. It is also assumed that the Gateway node is programmed to initiate the swapping 

process once the battery level of the router node falls below the set critical threshold, with that 

of the leaf node. Such a simplistic case of automated, query-based software-defined re-

orchestration aids extension the overall network lifetime, to a certain extent. It also serves a 

means to investigate the latency associated with the reorchestration process, at an elementary 

level. 

 

     The simplisitc function swap process of network reorchestration involves certain 

communication transactions (amongst the three node functions) initiated by the Gateway node 

as depicted in figure 5-22. Description pertaining to the ensuing communication messages are 

provided as below. 

 

 

Figure 5-22 Communication messages exchanged amongst the constituent network elements 

to fulfil the desired re-orchestration process of ‘function swap’ process between the leaf and 

router nodes. 

 

1. Upon detecting the fall of the router node’s below certain pre-defined threshold level, The 

IoT based gateway node transmits message 3 i.e., MGR_R(L-R) to the router node, which, in turn, 

transmits message 4 i.e., MRL-L(L-R) to the leaf node, notifying it to turn into a router node. By 

means of invoking the routing-centric software functional modules (and masking the 

previously defined leaf-centric modules), the reception of these messages prompts autonomous 

transformation to a router node. 

 

2. The Gateway node then issues message 5 i.e., MGR(R-L) to the leaf node so as to invoke leaf-

centric software functional modules whilst disabling its routing-centric modules. Thus, the 

router node now turns into a leaf node, releiving it from its routing operational requirements 

and thus, conserving battery power, to some extent. 
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3. Owing the swapping of amongst the leaf and router nodes, the dataflow within the network 

is altered as depicted in figure 5-23b.  

 

                  

  (a)                                                                         (b) 

Figure 5-23 Initial state of the three-node network wherein nodes 1, 2 and 3 are pre-configured 

to behave as leaf node, router node and Gateway node respectively; b) Final state of the three-

node network wherein the network has undergone re-orchestration owing to swapping of 

functions amongst node 1 (now a router node) and node ‘2’ (now a ‘leaf’ node) causing the 

dataflow within the network to get altered. 

 

     Normal operation resumes in this re-orchestrated network as the router-turned leaf node 

transmits its sensed data (message 6 ‘MLR_FINAL) over to its leaf-turned router counterpart, 

which in turn routes this data over to the Gateway node (message MRG_FINAL), as depicted in 

figure 5-23 b. Upon summation of time intervals of each of the individual message ‘ticks’ 

(obtained through the timestamps seen from the Cooja simulation), the overall ‘service 

disruption time’ or ‘latency’ incurred during the re-orchestration process until normal dataflow 

resumes within the network was found to be 2.56 seconds. This disruption time is considerable 

(even in the case of this simple 3-node network), given the individual tick messages for an 

unperturbed network are of the order of certain milliseconds each. This is illustarted in figure 

5-24 as shown below. 

 

 

Figure 5-24 Overall latency (associated with the function-swapping-based re-orchestration 

process) deduced through summation of time intervals of the individual message ticks.  
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5.7.2 Network Manipulation: Router Replacement Case  

     As a means to gauge the extent of the downtime experienced in case of a slightly more 

involved scenario, an example cloud-governed sensor network system due to undergo the 

process of phased dynamic re-orchestration (as documented in section 4.7.2 within chapter 4) 

as a result of an impending network fragmentation event has been considered [26]. The virtual 

representation of this network running within the Cooja simulator has been depicted in figure 

5-25 [26] wherein as a result of a certain special circumstance, the mobile router-cum-

clusterhead node i.e., node 5, tends to irreversibly drift away from the Gateway node (i.e., node 

6). As a means to pre-empt an eventuality wherein the flow of ‘sensed data’ emanating from 

the ‘leaf nodes’ (represented by the nodes 1, 2, 3 and 4) over to the Gateway node (through the 

inter-mediate router node in a multi-hop fashion) ceases (as a result of such fragmentation 

scenario), it is required that the ensuing phased re-orchestration process concludes with the 

election of the most suitable of the four leaf nodes (which are capable of assuming the role or 

function of a router) to switch to a role of that of a ‘replacement’ router, before the ‘departing’ 

router ventures out of the connectivity range. For simplicity’s sake, it has been assumed that 

the leaf nodes cannot transmit sensed data over to the Gateway node, even if it happens to be 

within (any of) their communication range, but only through an intermediate router node. 

However, if need be, the Gateway node is fully capable of establishing direct connectivity with 

any of the leaf nodes.  

 

 

Figure 5-25 Cooja-based virtual representation of a 6-node network facing impending network 

fragmentation owing to departure of a mobile router node away from range of connectivity 

[26]. 

 

     During the first phase of ‘Data Analysis and Event-Identification’ phase’, a particular 

dedicated knowledge component hosted within the ‘Data and Knowledge’ repository 

continually monitors the strength of radio signal messages exchanged between the Gateway 

node (i.e., node 6) and the router node (i.e., node 5). By means of continuously analysing the 

historical data of the strengths of the radio signals so exchanged between the gateway and the 

router nodes (example representation of which has been presented in Table 5-3), it identifies 

the pattern of departure of the router and subsequently ensues upon triggering an alert to 

proactively initiate the ‘Re-orchestration Planning’ phase. 
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Table 5-3 Example representation of mobile router communication strength. 

Time instants 
RSSI 

(dBm) 

m -13 

m+1 -16 

m+2 -27 

m+3 -44 

m+4 -61 

m+5 

m+6 

-77 

-94 

      

     Within the ‘Re-orchestration Planning’ phase, another dedicated knowledge component 

ensues upon figuring out the most suitable leaf node that can replace the departing router. For 

the example network in consideration, it has been assumed that only leaf nodes with IDs 1, 2 

and 3 are capable of assuming router functionality, barring the leaf node with node ID 4 from 

being a part of the election process (refer to figures 5-25 [26] and 5-26 [26]). The election 

process involves computation of a fitness model for each of the three participant nodes as a 

means to determine (and subsequently compare) their normalized weights. The three factors 

that have been identified as the key requisite parameters for the fitness model in consideration 

are as follows: 

• Radio signal strength of each of the participant leaf nodes with respect to its counterpart 

(both participant and non-participant) leaf nodes. 

• Radio signal strength of each of the participant leaf nodes with respect to the gateway 

node. 

• The battery power level of each of the participant leaf nodes. 

     In this particular case, each of the above three parameters have been assigned equal 

weightage so as to enable the dedicated knowledge component to compute the normalized 

weights of each of the participant leaf nodes. Such assumptions (pertaining to the assignment 

of weightages for the different parameters) however, are subject to change, depending either 

upon the case for which they are being stated, or as per the knowledge derived through a process 

of long-term learning. 

     The fitness model (encompassing the aforementioned three parameters) is expressed 

mathematically as below: 

WNW = [aj×RSSIEDs_AVG] + [aj+1×RSSIG-ED] + [aj+2×BPEDs] [26], 

where, 

aj = L × (Mj), aj+1 = L × (Mj+1) and aj+2 = L × (Mj+2) denote the respective equalized or 

normalized weightages assigned for each of the three parameters (where Mj, Mj+1 and Mj+2 

represent the represent the fiddle factor associated with each parameter), 

‘RSSIEDs_AVG’ denotes the average of the RSSI values for any given participant node with 

respect to its counterpart (both participant and non-participant) leaf nodes,  

‘RSSI G-ED’ denotes the RSSI value for any given participant leaf node with respect to the 

‘Gateway’ and 

‘BPEDs’ denotes to the instantaneous ‘battery’ power ‘level’ of a given ‘participant’ leaf node. 
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     Herein, the ‘fiddle’ factors associated with each of the parameters are considered (or 

formulated) in such a way that they are completely independent of each other. The intention 

behind this approach was to ensure that equal (and uniform) weightages are assigned to each 

and every variable. Weightages assigned to each of the parameter, however, may be skewed in 

favour of a parameter that may deserve more weightage as compared to other (A more 

dominant parameter may be identified through experience of the application being dealt with). 

As a means to elaborate upon the fitness model so formulated, a sample router fitness calculator 

table for a given participant node towards electing replacement router (to replace the departing 

router node) has been provided in section A.4 in the appendix. Figure 5-26 [26] presents an 

abstracted communication sequence diagram representing the various messages (in the order 

of occurrence) being exchanged amongst the various nodes over the three phases of re-

orchestration. A more elaborate communication sequence diagram showing all the messages 

transpiring amongst the various nodes over the three phases of re-orchestration process, along 

with the associated description, has been included in section A.5 of the appendix. 

 

  

Figure 5-26 Abstracted sequence diagram showing the messages transpiring over the three re-

orchestration phases in pursuit of electing the most suitable leaf node to take up the role of the 

replacement router. 

     As can be seen from figure 5-26, the ‘Re-orchestration Planning’ phase entails numerous 

exchanges of communication messages amongst all the constituent network nodes so as gather 

the requisite information for the computation of the fitness models for each of the nodes and 

reaches its conclusion upon figuring out the leaf node with the highest fitness. The final phase 
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of ‘Re-orchestration Execution’ commences with a series of notifications transmitted by the 

Gateway node which include notifying the leaf node with the highest fitness value of its new 

‘role’ as a ‘replacement router’, notifying all the nodes regarding the outcome of the election 

process (i.e., the elected leaf node would act as the new router-cluster-head for them), directing 

the departing router to relieve itself of its role as a router, if need be, etc. It concludes with all 

the constituent nodes of the network in consideration operating in accordance with their 

respective post-re-orchestration’ roles, thereby resuming the flow of data within the network.  

     At the initial stage (refer figure 5-26), node 6 (i.e., the gateway node) continuously transmits 

message ‘MGR’ to node 5 (i.e., the router node) to gauge its radio signal strength and battery 

level as part of the ongoing ‘Data Analysis and Event Identification’ phase. In response, the 

router node transmits this information to gateway node 6 via message ‘MRG’. This data gets 

escalated and stored within the cloud where it is monitored by the requisite knowledge 

component. The second phase of ‘Re-orchestration Planning’ phase gets initiated by the 

message ‘MGL_Post-trig’ broadcasted by node 6 to all the leaf-function nodes i.e., node 1, node 2 

and node 3 (once it is detected and ascertained that the departing router is set to move out of 

the network’s connectivity chain). This message directs node 1, node 2 and node 3 to switch 

over to the router-functional role, if they are capable of turning into router nodes. These nodes 

then broadcast a series of messages denoted by to each other (including leaf node 4 that is 

incapable of transforming into a ‘router’) to obtain their radio signal values. The messages are 

responded to by the leaf-turned router nodes to the other leaf-turned router nodes with their 

resp. radio signal strength values, as denoted by message MLeaf_recv’. Each leaf node then 

transmits message ‘MLR_RSSI’ (consisting of the averages of their resp. radio signal strength 

values with respect to their counterpart leaf nodes) to the departing (node 5) router, which in 

turn is relayed by node 5 to (gateway) node 6 via message ‘MRG_RSSI_AVG’ (consisting of the 

combined information pertaining to the RSSI values). 

     Subsequently, messages ‘MGL_RSSI_broad’ is broadcasted by node 6 to nodes 1, 2 and 3 to 

fetch their radio signal strength with respect to itself as well as their resp. battery values. 

Message ‘MLG_RSSI_recv’ represents the responses transmitted by all the leaf nodes to the 

gateway node. Equipped with all the requisite information, the gateway node 6 ensues upon 

computation of normalized weight of each of the participant leaf nodes (in accordance with the 

fitness model explained and specified earlier). Upon receiving all the parameters from the 

different participating nodes in the election process, the relevant knowledge component ensues 

upon computation and comparison of the normalized weights of all the nodes participating in 

the router election process. The leaf node with the greatest normalized weight value of all the 

participant nodes receives a message from the gateway node directing it to assume the role of 

replacement router. A screenshot of the mote output window, (a feature available) within Cooja 

reflecting the outcome of the election process (computed within the gateway i.e., node 6) is 

depicted in figure 5-27. 

 

 

Figure 5-27 Messages related to the outcome of the election process as seen within Cooja’s 

‘Mote output’ window [26].  
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     The ‘Re-orchestration Execution phase’ is the final phase wherein a series of messages 

denoted message ‘MNotif’ (in figure 5-26) get transmitted by node 6, notifying node 1 to turn 

into a router, directing node 5 to resign from its role of a router-cum-clusterhead and informing 

rest of the (participant as well as non-participant) nodes about the outcome of the election (i.e., 

node 1 is the new router node) and reverting back to their original roles as leaf nodes. Finally, 

normal flow of data resumes within the network wherein all the leaf nodes transmit their data 

to the newly elected router node 1, as represented by the combined message ‘MLR_Resume’ (also 

involving node 5 as well once it traverses back to a position that falls within the communication 

range of the gateway), and the newly elected router node, in turn relaying this information to 

node 6 via message ‘MRG_Resume’.  

 

     The screenshot of Cooja’s ‘mote output’ window shown in figure 5-28 denotes the instant 

of time of node 1’s functional switching from the role of a leaf node to that of a router node 1 

and subsequently commencing upon its duty of gathering sensed data from the leaf node 

devices. 

 

 

 

Figure 5-28 Screenshot of Cooja’s ‘Mote Output’ showing the time instant of node 1’s 

functional transformation from the role of a leaf node to that of a router node and subsequent 

data acquisition from its constituent leaf nodes [26].  

 

     For scenarios where the implementation outcomes are pre-emptively derived (i.e., before 

the flow of data within the network gets disrupted as a result of network fragmentation), this 

phase accounts for the actual network downtime experienced by the physical network within 

the physical layer. For this particular example scenario of network re-orchestration, the 

downtime experienced by the network equals the time consumed for a total of six messages to 

get ‘exchanged’ amongst the relevant constituent nodes. The overall ‘re-orchestration’ latency, 

on the other hand, takes into account the latencies incurred during each of the three re-

orchestration phases (i.e., the summation of latencies incurred during all of the three phases).   

     It is, however, important to acknowledge that results such as the one obtained above are 

relative in nature. More exact values of network downtimes can be extracted by taking into 

account the real-world factors that accompany the communication processes, in addition to the 

node network-level operational parameters viz., sampling rate, number of nodes, topological 

orientation, etc. 
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     The above example, however, brings to the fore the significance of having in place a cloud 

layer (consisting of a virtual platform and software knowledge components) for pre-emptively 

deriving suitable re-orchestrations to be applied onto the physical network. The software 

knowledge components could, however, also reside at the devices capable of executing ‘edge 

computing’-based activities i.e., the router and gateway nodes (facilitated by softwarization). 

     In order to include the element of reality in one of the example processes depicted, the 

physical RSSI has also been characterized (with respect to increasing) (for the given 

environment) and used within the virtualization process to reflect the mobility dynamics for 

the given virtual process. This reflects the saliency of the virtualization platform in 

accommodating for real data emanated from the physical network towards offering accurate 

control information for manipulating it. 

     As part of the physical implementation pertaining to the above example, a 6-node network 

has been implemented within our AUT-SeNSe lab as depicted in figure 5-29. Here, Raspberry 

Pi has been employed as the Gateway node whereas the router node and end device nodes are 

comprised of the Texas Instruments CC2538 node. Data gathered from the end devices is 

escalated by the Raspberry Pi (acting as protocol converter) to our remote local server over the 

Internet. Via the data visualization service provisioned by the cloud layer, a graphical 

representation of this data can be viewed online. 

 

 

Figure 5-29 Physical implementation of the multi-hop network (corresponding to figure 9) 

established within the SeNSe lab.   

     Being continually fed with real-time data or information pertaining to the of the underlying 

physical network, any change in the topological status (including aspects such as connectivity 

pattern, data flow, etc.) or operational dynamics of the physical network is reflected within the 

virtual network. As the router (node 5) moves away from the Gateway (node 6) the radio signal 

strength value between the departing router i.e., node 5 and the gateway i.e., node 6 gradually 
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decreases. Herein, a particular dedicated knowledge component (which is a part of the 

monitoring software) continually measures the radio signal strength values of the Gateway with 

respect to the departing router. 

     The trend recording of the communication signal strength reflects the degradation of the 

RSSI signals of the departing mobile router as it moves away from the gateway as shown in 

figure 5-30. 

 

Figure 5-30 Data retrieved from SeNSe Lab’s server depicting degradation of the RSSI signal 

of the departing router (node 5) as it moves away from the Gateway node. 

 

     In this particular case, virtualization of the process of detecting the event of departure of a 

mobile routing node moving away from the head router (or Gateway) (that could result in 

isolation of that particular part of the network) is focussed upon.  

     Both Table 5-4 and figure 5-31 incrementally reflect the synchronicity of the virtualization 

environment in (terms of) mimicking the dynamics occurring within the physical network in a 

similar way.  

 

Table 5-4 Real RSSI values recorded for the departing router (with respect to the gateway) 

via physical experimentation. 

 

Distance of the departing router with respect to 

the Gateway (m) 

RSSI value of the departing router with respect 

to the Gateway (dBm) 

1 

 

-48 

2 

 

-57 

3 

 

-59 

4 

 

-61 

5 

 

-65 

6 

 

-66 

7 

 

-78 (Outside lab premises) 

8 

 

-92 (Outside lab premises) 
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Figure 5-31 Cooja nodes configured within the Cooja simulator with the real values obtained 

from physical experimentation. 

 

     The environment offered by Cooja to allow for the virtualization (for the router departure 

process in this case) is conducive for software-defined re-orchestration (at the virtual level) 

owing to the Contiki-provisioned configurability of virtual nodes using the modular functional 

components present within the ‘Data and Knowledge’ repository (as worked out by the 

pertinent knowledge components). 

 

     As alluded to earlier, dynamic software-defined re-orchestration to turn the elected leaf node 

to router within the virtualization environment involves Contiki-based software control to 

switching the functionality embedded within the successfully elected leaf node to that of a 

router node by means of implementing or activating the pertinent functional module within the 

code. The Contiki codes for the nodes have been included in the Appendix (within section A.1). 

     The sensed data (emanating from the physical network that is) stored within the Data 

repository within the server can not only be utilized for ‘Event Identification and Data 

Analysis’ purposes (for unusual events such as the aforementioned router departure event) but 

also for further examination and instantaneous influencing of the virtual network itself.  

     In this particular case, when the monitoring knowledge component detects that a pre-defined 

threshold RSSI value has been reached between the departing router and Gateway, it raises a 

trigger to initiate the process of electing a new router.  

     The number of communication transactions ensuing during the ‘Re-orchestration execution 

phase’ is the same as that of the virtual implementation. This example considers a case of 

rupture arising within a cloud-monitored sensor network owing to the gradual departure of the 

mobile router node away from the gateway node. This scenario necessitates one of the 

constituent leaf nodes among others that is most suitable to replace the departing router. This 

undergoes software-defined re-orchestration and assumes the role of a router to maintain 

network connectivity. The example clarifies a dynamic situation within the nodes’ mobility 

whereas network rupture may take place. Detection of such occurrence prompts the need for 

network re-orchestration. Available knowledge on such process at the cloud level offers the 

virtual service of recording the behaviour of such process and helps in monitoring and planning 

for required action on the physical network. While this offers a simplistic illustration in 
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facilitating the virtualization for given process (the physical organization and related 

dynamics), it reflects the possibility of developing virtual counterparts for various processes 

either at the early stages of the design or later and as further learning is introduced. On the other 

hand, the virtual network may represent a process, or it might cover complex case of various 

processes reflecting both the physical network of components (or nodes) and their dynamic 

interconnectivity.  It has also put forth our notion of defining the process of demand for network 

re-orchestration into three different phases viz., ‘Data Analysis and Event-Identification’, ‘Re-

orchestration-Planning’ and ‘Re-orchestration-Execution’. 

     Such segregation is directed towards our endeavour to clearly define the proposed 

organization’s capacity to detect network fragmentation in a somewhat pre-emptive fashion, 

and ‘planning’ for the necessary re-orchestrations in the background without disrupting the 

physical data collection process beforehand by means of relying on the cloud–based virtual and 

software resources. Furthermore, it also aids towards identification of the actual (physical) 

network downtime while implementing the last phase of Re-orchestration Execution. 

 

5.8 Conclusion  

 
     The role played by Contiki-based software control in re-orchestrating both node and 

network level operations at the virtual environment provisioned through Contiki’s own virtual 

resource of Cooja simulator has been put forth through a number of incremental example 

implementations. By means of an example case of network fragmentation (caused by departure 

of a mobile router node away from the Gateway node implemented within Cooja), efforts 

towards studying the aspect of downtime incurred by the network whilst undergoing re-

orchestration were pursued. Prior to this, classification of the various phases involved in the 

process of cloud-governed re-orchestration was ensued upon (using this router replacement 

case as an example). The entire re-orchestration process was broadly classified into three 

phases namely the ‘Data Analysis and Event-Identification’, ‘Re-orchestration-Planning’ and 

‘Re-orchestration-Execution’ phases. 

     Besides, this particular example was also used to put forth certain efforts undertaken 

towards incorporating the element of reality into virtualization (by means of feeding real world 

data obtained from physical nodes into the corresponding virtual nodes) as an attempt to boost 

the accuracy of the soft re-orchestrations. Finally, the impact of varying three significant 

parameters on the overall re-orchestration latency was analysed by means of conduction of 

simulation-based experiments within Cooja.  
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Chapter 6   

Use Case: Dynamic Re-orchestration of WSN Deployed for Forest 

Fire Monitoring Purposes 

 

6.1 Introduction 

 

     WSNs deployed for forest fire monitoring purposes ought to cope with the dynamic network 

service and operational requirements that may emanate as a result of sudden fire outbreaks and 

potential network fragmentation events. The proposed ideology of a software defined wireless 

sensor network (SDWSN), backed by network virtualization offers good potential towards 

meeting the dynamic re-orchestration demands of such networks. This chapter attempts to 

incrementally demonstrate the above by means of considering an example case of network 

fragmentation (involving node-death of a router node caused by dead batteries) conducted on 

a preliminarily working virtual model.  

     Results indicate consistency of the cluster re-organizational outcomes, albeit accompanied 

by significant packet losses (for both up- scaled and downscaled network scenarios). While 

this may be an early stage of laying the ground for this attempt, there exists a significant 

potential for this direction of research as it links the two emerging technologies in identifying 

a potential solution that could contribute to the autonomous WSN-based forest fire monitoring 

solutions. 

 

6.2 Demand for Dynamic Re-orchestration: Setting the Scene for the 

Example Case of Network Fragmentation in Consideration 

 

     A variety of factors tend to influence WSN deployments meant for forest fire monitoring 

purposes (both from the perspective of spatial distribution of nodes across the monitored region 

as well as the overall topological orientation of the same). These range from efficient energy 

consumption, distance amongst neighbouring nodes, prediction, rapid detection and location 

estimation of a fire outbreak, channel access or contention method, etc. [136]. 

      Certain implementations tend to adopt the peer-to-peer topological approach [140, 148] 

whereas certain others have opted for a tree-based topological distribution of sensor nodes 

across the monitored region [137]. 

 

     A schematic representing a cloud-based forest fire monitoring WSN deployment is as 

depicted within figure 6-1. 
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Figure 6-1 A schematic representing a cloud-based WSN organization for forest fire 

monitoring purposes. 

 

     Dynamics associated with forest fire monitoring may tend to involve of events of network 

fragmentation arising out of either nodes suffering damage as a result of fire or natural hazards 

or as a result of dying batteries from time-to-time. Sudden death of a router node acting as a 

cluster head of its particular group would most probably result in immediate and abrupt 

disruption of the cluster’s outgoing sensed dataflow.  

 

     Certain dependent children members nodes, (of the dead or dying router node) might 

possibly, get disconnected from the group and thus, render that portion of the region 

unmonitored. Furthermore, such an event may also adversely impact the flow of sensed data 

emanating from the lower-level clusters present within the connectivity chain and vice versa 

(Refer figure 6-1).   

 

      Software-defined Wireless Sensor Networks (SDWSNs), in conjunction with virtualization 

could be conceived to be a highly prospective solution towards satisfying such transitory nature 

of re-orchestration demands in a dynamic manner. As emphasized throughout the course of 

this research work, cloud-enabled virtualization could play a significant role towards offering 

improved and flexible management of such large-scale deployments, whilst lending itself for 

data analysis, remote monitoring as well as prediction (of potential network fragmentation) 

purposes[149, 150].   

 

     It is deemed worthwhile to reiterate the assumption that nodes considered here are (pre-

configured) with the requisite functional modules, enabling them to undertake or ‘assume’ any 

of the defined functional roles in a dynamic manner i.e., a leaf node may assume the router 

functional role (and cease to act as a leaf node upon receiving the requisite external signal or 

command). 
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Figure 6-2 Example schematic of WSN deployed for forest fire monitoring purposes wherein 

a certain primary level router is suffering from low battery voltage and is about to die (requiring 

the network to undergo re-orchestration). 

 

 

     In keeping with this context, we direct our focus towards a typical use-case example of a 

router node, ‘acting’ as a cluster-head for its group of member leaf nodes, dying owing to 

depleted battery levels (Refer figure 6-1). This would tend to render its ‘dependent’ children 

(i.e., leaf) nodes unconnected. Hence, a new router node ought to be elected as its replacement. 

This replacement router node should also be able to accommodate any of the unconnected 

nodes. Network re-orchestration to recover from this situation could involve the virtual network 

residing within the cloud and elect a ‘potential replacement’ (i.e., the fittest possible leaf node), 

which will then take over the routing role. Electing a replacement router depends on the 

necessary measurements that are conducted by the relevant nodes and communicated through 

a sequence of messages among the main nodes in the network viz., the dying router, Gateway 

node, leaf nodes within the reach of the gateway node, leaf nodes beyond the reach of the 

gateway node and lastly, the routers of other clusters. A router fitness model for each such 

eligible candidate node ought to be formulated [151]. 

 

 

6.3 Formulation of Fitness Model 

6.3.1 Description of Election Parameters 

In order to clearly discern how the parameters would come into play, an attempt has been 

made to classify them as per two different stages (i.e., ‘pre-election’ and ‘during election’ 

stages).  
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1) Pre-election parameters  

a) (Threshold) Battery level of (the dying Router) node 

Information pertaining to depleted levels of battery power of any of the router nodes (by 

means of setting a threshold, below which any battery voltage value reported by it could trigger 

an alert) could be instrumental in offering an estimation as to which router node may stop 

functioning. Such information introduces an option of delay tolerance and thus, aids 

improvement of QoS. 

    Also, this data will offer information pertaining to the particular region monitored by the 

cluster of nodes of the dying router that may get disconnected and battery voltage level above 

the critical level. 

b) Rate of battery depletion of (the dying Router) node 

     This data, in conjunction with the battery level data could be used to compute the time 

available before the node ceases to function. Alternatively, this piece of information could be 

used to compute the critical battery level value at which information pertaining to initiating the 

election be broadcasted.  

 

c) A repository of addresses of nodes (encompassed by the dying router node) 

The dying router has an updated repository or list of its constituent member leaf nodes that 

would be rendered disconnected from the rest of the network (upon its death). These nodes, if 

falling within the communication range of the gateway node, ought to be informed by it to 

partake within the process of electing a replacement router node from amongst them. If 

unsuccessful, they are to search for a new parent.  

     Within the framework of an ‘aware’ network, information derived from these parameters 

could be useful in terms of acquiring pre-knowledge of 

• the eventuality of a particular parent router about to die [so as to duly initiate (pre-emptive) 

router election process]. 

• the estimated time at which router will cease all communication operations 

Utilization of such prior knowledge to activate the election process will either prevent loss 

of network connectivity or mitigate the time for which the affected leaf nodes remain 

unconnected.   

 

2) Election-based (Decisive) parameters  

a) Radio Signal Strength of a potential router node from the gateway node 

Herein, radio signal strength values of each of the participant nodes (with respect to the 

gateway) are taken into account (eliminating the need to take into consideration the calculation 

of respective distances from it). All participant leaf nodes communicate their respective RSSI 

values to the gateway node reflecting a more accurate estimate of their connectivity with the 

gateway node [151]. 

 

b) Radio Signal Strength between the potential replacement router node and the 

constituent leaf nodes of the cluster that may be deprived of network connectivity 

The router eligible to partake within the election process, along with the leaf nodes falling 

within the communication range of the gateway node as well as routers acting as cluster head 
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for other clusters of leaf nodes as well as eligible routers in the election process, attempt to 

establish connection with leaf nodes (that may be rendered disconnected as a result of the dying 

cluster head node) that fall outside the communication range of the gateway. This aids 

identification of such unreachable leaf nodes would have to be accommodated by a nearby 

router-cluster-head node, ensuring its connectivity within the overall network. 

c)  Ability of potential replacement router to act as a cluster-head for maximum number 

of leaf nodes that may be rendered disconnected from the network 

This parameter has been considered herein on the premise that the replacement router ought 

to cater to able to act as a cluster-head for as many leaf nodes that may drop out of the 

connectivity chain (as a result of the ensuing ‘node-death’-based fragmentation event) as 

possible. This may also divulge information pertaining to the number of children that may 

establish connections with the prospective replacement router. Any participant leaf node with 

RSSI value below a certain reliable threshold level would refrain from forming a connection 

with a given participant router node. 

d)  Number of existing children nodes already connected to the potential router node 

Each router node has a certain maximum capacity of connected children leaf nodes. For 

example, a maximum of 3 nodes may be specified. Lesser the number of children connected to 

a potential router, greater would be the possibility of it winning the election process. 

e)  Level of battery power of the potential replacement router node 

Prevailing levels of battery power of the participant nodes have also been taken into account 

here. This factor ought to be given due weightage along with the aforementioned parameters 

owing to its significance towards ensuring reliable connectivity over the long-term.  

     Figure 6-2 shows the screenshot of the virtual network showing only the region around the 

cluster affected by the dying router node. Here, the affected leaf nodes participate in the 

election process.  If successful, they will assume the functional role of a router node (upon 

being remotely invoked via requisite external commands, for the same).   

      

 

Figure 6-3 Screenshot of the virtual network showing only the area of the overall WSN 

consisting of the cluster wherein member leaf nodes are affected by the dying router node.            
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6.3.2 Sequence of Messages for Electing a New Router  

     The process of election of a replacement router node commences once the alert triggered by 

the router node (owing to its battery value falling below a certain set threshold value) is 

disseminated amongst the various participant nodes [151]. Thereafter, each of the participant 

nodes ensue upon communicating messages (based on the aforementioned parameters) to the 

gateway node in order for it (the gateway node) to compute the (normalized) fitness value for 

each of them. These values are subsequently compared to determine the node with the highest 

fitness value which is then declared to be the replacement router node. Descriptions of the 

sequence of messages exchanged amongst the various nodes during the ‘election’ process is 

provided below. 

1) Once the battery level of certain router node falls below the set threshold value, it calculates 

its remaining lifetime of the dying router node and transmits this piece of information along 

with the addresses of its children nodes (that will be disconnected from the rest of the network 

upon its death) to the gateway, the (‘reachable’ as well as ‘unreachable’) leaf nodes, as well as 

the routers of other clusters, through message ‘MRD’ as depicted in figure 6-3 [151]. 

2) Once the gateway node receives this message from the dying router, it attempts to 

‘broadcasts’ message ‘MG-L’ to all of the leaf member nodes belonging to the cluster yet 

governed by the dying router node. This particular message is aimed at evoking 

acknowledgement messages consisting of respective radio signal strength values (denoted by 

‘MRC-L’) from all the reachable leaf nodes, enabling it to identify and segregate them from the 

unreachable ones. Once acknowledgment messages from all such reachable nodes are received, 

the gateway node responds to them via message ‘MG-RL’, essentially informing them regarding 

their eligibility as participant nodes within the election process. 

3) In an attempt to check their radio signal strength values with respect to the leaf nodes of the 

dying router, the ‘routers of other clusters’, transmit radio messages denoted by ‘MROC-RL’ to 

them. Upon receiving ‘acknowledgment’ message(s), denoted by ‘MRL-ROC’, from them 

(provided they fall within their respective communication ranges), these ‘routers of other 

clusters’ transmit message ‘MROC-G’ to the gateway node updating it with the number of leaf 

nodes within their communication range, and the average value of their radio signal strength 

values with each of the leaf nodes affected by the death of their governing router.  

4) The participant leaf nodes (capable of assuming the router function and belonging to the 

cluster of the ‘dying’ node) temporarily switch over to the role a router node to broadcast a 

signal denoted by ‘MRCL-L’ amongst each other. The intention here is to determine how many 

of the participant leaf nodes fall within the communication range of each of them. This 

information pertaining to the number of possible connections (obtained when acknowledgment 

message(s) ‘ML-RCL’ in response to message ‘MRCL-L’ are received by each of the ‘affected leaf 

nodes’), is ‘communicated’ to the ‘gateway’ node via transmission of the message ‘MRL-G’.  

5) Based on the information gathered from all the ‘participant’ (reachable ‘leaf’ nodes as well 

as ‘routers ‘of other clusters), the gateway node computes the fitness value for each of them. 

The participant node with the ‘highest fitness value’ is elected as the new replacement router, 

the node ID of which is subsequently broadcasted to all the participant nodes (via messages 

‘MG-RL’ and ‘MG-R’). Information regarding the leaf nodes that will be governed by the newly 

elected router is also included within these messages.   



120 
 

 

     The process involves two models. One is directed towards election of a leaf node that is 

‘reachable’ by the gateway node and can accommodate as many leaf nodes as possible that are 

directly affected by the death of their governing router. The second vies to find a possible other 

router node that could accommodate for the remaining unconnected nodes.  

 

6) Once the connection between the newly elected replacement router and its leaf member 

nodes is established (denoted by message ‘MERCL-L’) and service dataflow within the re-

orchestrated cluster resumes, the routers of other clusters direct the relevant leaf nodes to do 

the same (i.e., resume normal flow of data) in accordance with the re-orchestrated network 

arrangement.  

 

 

Figure 6-4 Sequence diagram depicting the various messages exchanged amongst the various 

nodes partaking in the election process.  
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6.3.3 Model Formulated Towards Determining the Fitness Value of Participant 

Nodes 

     The model for the selection process has two main sub-processes associated with it. These 

should result with the identification of the necessary router(s) that establish connectivity with 

the leaf nodes of the departing router. The first sub-process attempts to identify a router node 

among these leaf nodes. Emphasis has been laid on leaf nodes falling within the communication 

range of the ‘gateway’ (referred to as reachable nodes) that will compete amongst one another 

for the ‘replacement router’ node. The process may end up with the selection of a node that 

facilitates routing to a number of relevant leaf nodes. This might be any number of nodes 

between the maximum (i.e., all nodes) and zero (i.e., no node has been selected).   

     Based on the parameters considered within section 6.3.2, the model formulated towards 

determining the fitness value of a given participant node is as follows:  

Wf = {[NWj × RSSIRCL-G] + [NW(j+1) × RSSIRCL-L] + [NW(j+2) × CCL-RCL] + [NW(j+3) × BRCL]} 

[151]      

where, NWj = Wj×fj,  

‘fj’ denotes the ‘fiddle’ factor associated with a (respective) particular variable,  

RSSI RCL-G denotes the radio signal strength of a given participant reachable leaf node with 

respect to the gateway node, 

RSSI RCL- L denotes the radio signal strength of a given participant reachable leaf node with 

respect to the other leaf member nodes, 

CCL-RCL denotes the quantity of member leaf nodes that fall within the communication of the 

reachable leaf node and 

BRCL represents the battery level of the reachable member leaf node (i.e., RCL).  

    Each of the above ‘fiddle’ factors associated with their respective parameters have been 

considered independently of each other as a means to normalize the weightage allocated to 

each of them, and thereby the resultant fitness value, i.e., ‘Wf’ [151]. (As a means to elaborate 

on the above formulated fitness model, a sample router fitness calculator table for a given 

participant node towards electing replacement router (to replace the dying router node) has 

been provided in section A.6 of the appendix.) However, even though the weight for each 

impact factor is chosen as unity to start with, it is liable to be tampered with as part of the 

ongoing learning process (which is part of the cloud background operation on the virtual 

network).  

The second sub-process is relevant to the possible distribution of the remaining unallocated 

leaf nodes. The criterion here considers balancing the load through using the number of existing 

leaf nodes connected to each router and is expressed as below: 

Wv = {[NWj × RSSIROC-RSU] + [NW(j+1) × RSSIROC-L] + [NW(j+2) × CMCL-ROC] + [NW(j+3) × 

BROC]} 

     where, RSSI ROC- RSU represents the received signal strength indication for ROC (router of 

other cluster) with respect to the gateway node, 

RSSI ROC- L represents the received signal strength indication, 

for ROC with respect to other leaf nodes, 
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CMCL-ROC represents the maximum number of leaf nodes that are reached by ROC node(s) 

considering the existing connected leaf nodes and  

BROC represents the battery level of ROC node(s).  

      

6.3.4 Implementation on Virtual Platform and Results 

    As a means to confirm the workability of the conceptual model so formulated, the concept 

has been incrementally tested on a simulated stationary scenario using the Cooja simulator. 

Consider figure 6-4 [151], which depicts the implementation and modeling of the 

aforementioned simplistic, notional forest fire monitoring sensor network-based clustering 

scenario using Contiki-Cooja simulator.  

    Herein, the dying router is disseminating the ‘MRD’ message to all the participant nodes. 

Through the knowledge of the battery level, rate of battery depletion, the time could be 

predicted, thus helping in defining the time available for electing a replacement router node. 

  

  

Figure 6-5 Virtual network implementation wherein the dying router broadcasts message ‘MRD’ 

to all the relevant nodes.  

 

     At this preliminary testing stage, the consistency of the model, (with respect to the correct 

delivery of outcome of the election process) was observed for the following case which was 

deliberately considered and repeated for 100 times so as to check if there is any irregularity in 

the election result (i.e., whether the same node gets elected with the same fitness model each 

time. This would confirm the veracity of the working model). Another reason for repeating the 

tests these many times was to check for any packet losses as a result of the communication 

process taking paces amongst the nodes.  
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     This early stage of exploring the model also involved scaling up i.e., varying the number of 

participant reachable leaf nodes from one to six nodes as shown in figure 6-5 [151], as an 

attempt to observe the capacity of the model to deal with a greater number of nodes. 

 

 

 

Figure 6-6 Static model implemented within the virtual Network: Number of participant 

reachable leaf child nodes scaled up to six nodes. 

 

    While re-running the simulation tests for the static case for 100 times revealed no irregularity 

or ‘variability’ with respect to the ‘election’ outcome (see figure 6-6), the process accompanied 

a sizeable amount of packet losses. The cause for such significant and unanticipated packet 

losses is being investigated. 

 

 

 

Figure 6-7 Cooja simulator outcome confirming consistence of the result.  
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6.4 Conclusion 

     The chapter explores the organization of wireless software defined sensor networks with 

emphasis on self-organization in the event of anticipated partial disruption to a WSN deployed 

for forest fire monitoring purposes.  The cloud offers efficient operational environment for re-

orchestration. Owing to the resources of virtualization, stored historical data and learning tools 

and methods, the cloud could then be made to explore the scope for future improvement in the 

operation with different software scenarios. While putting forth a case for dynamically 

changing network, a network meant for forest fire monitoring purposes is made the subject of 

focus in resolving the fragmentation occurring as a result of the death of a key connectivity 

component within the network (in this case, a router node). Incremental testing has been made 

successfully here. However, scope exists towards conduction of more thorough and integrated 

tests whilst exploring the possibility of reflecting the role of the cloud as a look-ahead 

component for the organization of dynamic improvements and playing the role of dynamic re-

orchestration.  
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Chapter 7   

Conclusion 

7.1 Introduction 

    As a means to cater for the crucial characteristic requisite of operational flexibility for 

wireless sensor networks (WSN), an architectural solution leveraging upon cloud-based 

virtualization and software resources has been proposed. Herein, a cyber-physical based sensor 

network organization has been conceptualized that allows for interactive collaboration between 

the cloud (equipped with the necessary data storage, virtualization, re-orchestration 

management and firmware development and configuration resources) and physical layers 

towards facilitating for the necessary identification, planning and execution of the re-

orchestration process as necessitated by prevailing service requirements. This has been deemed 

as a prospective solution for the realization of software-defined sensor network systems. Such 

a cloud-supported framework has opened new vistas towards remote monitoring, hardware-

independent soft-trialing, besides augmented flexible control and management, i.e., dynamic 

re-orchestration of the underlying physical network. 
 

     This thesis pursues towards collaborative interaction amongst the aforesaid technological 

resources hosted by the cloud and the physical layer under the aegis of a cyber physical 

(architectural) framework, wherein well-defined, modular constituent functional components 

could be virtualized and subjected to multifarious software-defined re-orchestration. 

Embodiment of the requisite potential and intelligence to progressively evolve with experience 

and flexibly engage with the monitored external phenomena and/or meet the dynamic service 

requirements is also an important consideration within the architecture so proposed. 

     The thesis takes into cognizance the efficacy of subjecting the abstractions, i.e., virtualized 

forms of the three core functionalities (i.e., the gateway’ function, router’ function and the leaf 

node function, along with their associated sub-functionalities as well as certain additional 

WSN-allied functions), stored as software ‘functional’ modules (within the cloud layer) to 

software-defined re-orchestrations under the aegis of the virtualization environment. That 

adoption of the (relatively simplistic yet fairly advantageous) re-configurability approach 

towards realization of flexible node and network-level re-orchestrations (at both the physical 

and virtual levels) is a somewhat more viable approach when compared with re-

programmability-based approaches (such as OTAP) is brought to the fore. The aspect of 

augmenting the flexibility of a (resource-rich) node via creation and integration of a library of 

reusable firmware modules within its firmware (wherein requisite new reusable software 

modules could be added from time to time) is discussed within the concept chapter. 

Advancements made within embedded technology have to a certain extent eliminated the 

impracticability associated with direct implementation of the softwarization paradigm to low 

power wireless sensor-cum-transceiver devices.  

 

     By means of leveraging upon its abundant resources encompassed by it viz., virtualization, 

software control, ‘Data and Knowledge Repository’, etc.), the cloud can figure out the sequence 

of messages to be executed to re-orchestrate the physical WSN network whilst incurring 
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reduced downtime and ensure that the node meant to undergo re-orchestration is capable of 

accommodating for additional functions. 

     The proposed research aims to significantly contribute to the existing state-of-the-art in 

terms of converging upon a modular, cloud-supported software defined sensor network 

organization that can flexibly re-orchestrate its behaviour at both the node and network-

operational levels (by virtue of the re-configurability approach) at the virtual level first (prior 

to implementation at the physical layer) whilst adhering to the three-phased re-orchestration 

strategy (outlined in chapter 4). 

 

7.2 Conclusion 

     Converging upon the objective of a flexible and adaptive WSN system entailed dealing with 

physical WSN setup on one hand and cloud-level virtualization cum cognitive analytics on the 

other. In a bid to create such a flexible WSN organization endowed with virtualization 

capability, it is necessary to secure an ‘accurate’ and ‘precise’ logical correlation between the 

physical and virtual WSN environments.  The Contiki-based Cooja fulfils this fundamental 

requirement via using the same Contiki-generated firmware for ‘compiling’, configuring and 

creating the virtual Cooja motes as that used for configuring the physical ‘TI CC2538’ 

hardware motes.  

          The cloud-based virtualization unit, whilst operating in conjunction with the ‘Data and 

Knowledge repository’, offers itself as an avenue for testing the soft-trials of such flexible 

‘WSN function’ reformulations so as to converge upon the most conducive WSN re-

orchestrations. Such collaborative operation amongst the two cloud components tends to be 

portentous towards the overall flexible operation of the network in a dynamic fashion. 

     The examples depicted within this thesis reflect the saliency of Contiki-Cooja facilitated 

virtualization environment as a means to mimic the dynamics of the underlying physical sensor 

network, thereby providing for (continual) remote monitoring, planning or facilitating the 

necessary re-orchestrations (at the cloud level), (if required to align the sensor network 

dynamics with that of the external monitored phenomenon), exploring and exploiting the 

possible degrees of freedom (within the network architecture which could act on manipulating 

the network parameters and hence controlling the network operation, without disrupting its key 

operational process of data collection), etc. Besides these advantages, it is worthwhile to 

mention that Cooja provisioned virtualization environment serves to significantly not only 

optimize the flexible re-orchestration process of physical sensor network but also analyse the 

implications of the re-orchestration process on the network serviceability beforehand, i.e., the 

extent of downtime experienced by the sensor network. 

     The overall re-orchestration process can be said to entail a number of key phases which the 

system is required to undergo sequentially (until the network can be said to have been 

completely re-orchestrated). By means of an example case of sensor network re-orchestration 

implemented within the virtual network offered by Cooja, the three phases of re-orchestration 

viz., ‘Data Analysis and Event-Identification’, ‘Re-orchestration-Planning’ and ‘Re-

orchestration-Execution’ have been discussed. 
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     Bulk of the computational aspect (pertaining to the re-orchestrations to be applied) takes 

place in the cloud during the Re-orchestration Planning phase. Although the Re-orchestration 

process spans over three phases, the actual downtime is confined to the ‘Re-orchestration 

execution’ phase alone. The time for which a network suffers downtime tends to depend on 

factors such as ‘number of nodes’, number of hops, data communication rate, channel access 

method adopted, Pre-defined fixed time interval between two consecutive time slots (when 

‘scheduled-based channel access method’ is adopted), number of messages exchanged amongst 

the nodes (during the re-orchestration process), size of data packets being transmitted, 

transmission time, switching time (i.e., time taken by a node to switch to different functional 

role) and latency entailed by a single hop.  

     The results pertaining to network downtime for the specific cases of network re-

orchestration examples depicted in this thesis (extracted via implementation within the virtual 

Cooja environment) are relative. In order to obtain near-accurate results, it necessary to take 

into account the various aforementioned factors, especially the channel access method, data 

communication rate as well as routing protocol implemented, including real-world factors 

affecting the communication operations. 

     In order to reflect the applicability of the proposed approach or concept, the real-life use 

case of forest fire monitoring’ has been focused upon within this thesis. The caliber of the said 

framework (comprising of ‘Data and Knowledge repository’, consisting of the application-

specific knowledge components, software modules, etc., working in tandem with the 

virtualization unit) in dynamically re-orchestrating network dynamics in the event of outbreak 

of forest fire is demonstrated. It is anticipated that such an approach could benefit a wide variety 

of WSN application domains (ranging from highly dynamic mobile sensor networks such as 

the vehicular or drone-based sensor network implementations to the largely static WSN 

deployments viz., environmental sensing, smart home applications, etc.) towards pre-emptive 

detection of an event necessitating re-orchestration and allowing for the same whilst reducing 

the downtime associated with it (re-orchestration process) to a considerable extent.  

 

7.3 Future work 

7.3.1 Realization and Incorpoaration of the Aspect of Digital Twin 

     In line with the current endeavour to converge upon a flexible software-defined sensor 

network organization with enhanced accuracy and (dynamic) responsiveness towards real-time 

re-orchestration demands, progression from virtualization to a ‘Network Digital Twin’ is 

deemed to be imperative. This forms an important and challenging part of the future work. 

     Realization of digital twin primarily involves connecting the physical sensors with their 

virtual counterparts. (Deemed to be more potent than mere virtualized entities,) network digital 

twins can not only enable forecasting of an estimated outcome of a particular soft-trial, i.e., 

virtual re-orchestration, but also provide status of the ongoing dynamics of the physical 

network in real time [71]. 

     So far as our specific research interests are concerned, it is conceived that figuring out a 

way to ‘link’ the data emanated by the physical CC2538 sensors to their virtual Cooja 

counterpart nodes in real time could increase the level of accuracy (via incorporating the 

element of reality within) the virtualization feature provisioned by Cooja.  
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7.3.2 Re-programmability-based Approaches 

    As a possible alternative to re-configurability-based approaches, dynamic re-

programmability-based approach involving dissemination of the requisite software modules 

onto the desired nodes (for the purposes of assembly or re-assembly of the same within that 

particular node) via OTAP (Over-The-Air-Programming)-based techniques viz., paging, delta 

updates and methods such as sprinkler, deluge, etc., could also be looked at and implemented. 

[147]. The potential offerred by OTAP-based protocols for WSNs as a means to implement the 

desired re-orchestrations for multiple sensor nodes ought to be exploited. Contiki does offer 

support for OTAP, provided the network is a homogeneous (i.e., consisting of the same target 

hardware employed as nodes) one and running the same OS and firmware (i.e., Contiki) [152]. 

Incorporation of OTAP-based approaches eliminates the need to have in place a mangement 

software running on top of the nodes, besides the API needed for the same [153]. It is however 

important that due measures towards addressing the challenges associated with OTAP-based 

protocols (e.g., time taken for re-programming of a node, are taken prior to implementation 

onto real-world networks). 

 

7.3.3 Edge-Computing Aspect 

     The research concept, in its current state, relies almost entirely on the cloud resources for 

the computational (or knowledge-crunching-based) aspects. However, the prospect of availing 

the benefits offered by ‘edge computing’ must be investigated.  

     Although all the knowledge components can be housed within the cloud, it is seemed rather 

logical to offload certain feasible knowledge components to the edge level devices, e.g., 

Gateway node(s).  

     It is envisaged that offloading certain knowledge components responsible for mild 

computations at the sub-cloud level could offer somewhat further reduce the number of 

communication transactions i.e., exchanges (amongst the various network components) and 

hence, the latency. This, in turn, could also significantly lessen the prospects of packet loss.  

    This incentivizes further investigation of the implications of allocation or migration of 

knowledge components to the sub-cloud levels of fog and edge (depending on the ability of the 

edge device e.g., gateway, to assume them) on overall network downtime.   

https://www.diva-portal.org/smash/get/diva2:817379/FULLTEXT01.pdf
http://www.diva-portal.se/smash/get/diva2:937213/FULLTEXT01.pdf
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Appendix 

A.1 Example Integrated Firmware (Integrated Code Consisting of Leaf and 

Router Modules) 

#include "contiki.h" 

#include "sys/etimer.h" 

#include "sys/rtimer.h" 

#include "dev/leds.h" 

#include "dev/button-sensor.h" 

#include "dev/watchdog.h" 

#include "dev/serial-line.h" 

#include "net/rime/broadcast.h" 

#include <stdio.h> 

#include <stdint.h> 

#include <math.h> 

 

/*---------------------------------------------------------------------------*/ 

#define LOOP_INTERVAL       CLOCK_SECOND 

#define LEDS_OFF_HYSTERISIS (RTIMER_SECOND >> 1) 

#define LEDS_PERIODIC       LEDS_YELLOW 

#define LEDS_BUTTON         LEDS_RED 

#define LEDS_SERIAL_IN      LEDS_ORANGE 

#define LEDS_REBOOT         LEDS_ALL 

#define LEDS_RF_RX          (LEDS_YELLOW | LEDS_ORANGE) 

#define BROADCAST_CHANNEL   129 

#define N_DECIMAL_POINTS_PRECISION (100)  

 

 

#define MAX_NODES     3 

#define TIME_IN_SEC     47 

/*---------------------------------------------------------------------------*/ 
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static struct etimer et; 

static struct rtimer rt; 

static uint16_t counter; 

static uint16_t node_ID = 1;  //Address 0xCD, 0xCD 

 

int Transmit_Flag = 0; 

int i = 0; 

static uint16_t a[3]; 

float light_dbl; 

float temp_dbl; 

float rssi_dbl; 

int lightintpart; 

int lightdecpart; 

int tempintpart; 

int tempdecpart; 

int rssiintpart; 

int rssidecpart; 

static uint16_t c[7]; 

int existing_function_flag=0; 

static uint16_t function_change_counter=0; 

 

/*****************DECLARATION OF ROUTER VARIABLES******************/ 

static uint16_t counter; 

static uint16_t count_flag; 

short signed light[16]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 

short signed temperature[16]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 

short signed rssi[16]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 

short signed lightdec[16]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 

short signed temperaturedec[16]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 

short signed rssidec[16]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 
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short signed values_to_be_transmitted[7]; 

int x; 

int y; 

/*****************DECLARATION OF ROUTER VARIABLES******************/ 

/*---------------------------------------------------------------------------*/ 

PROCESS(cc2538_demo_process, "cc2538 demo process"); 

AUTOSTART_PROCESSES(&cc2538_demo_process); 

/*---------------------------------------------------------------------------*/ 

static void 

broadcast_recv(struct broadcast_conn *c, const rimeaddr_t *from)  

{ 

if(existing_function_flag==0){ 

  uint16_t *dataptr_temp; 

  

 dataptr_temp= (uint16_t *)packetbuf_dataptr(); 

if(dataptr_temp[0] == node_ID) 

{ 

  Transmit_Flag=1; 

  a[0]=dataptr_temp[0]; 

  a[1]=dataptr_temp[1]; 

  a[2]=dataptr_temp[2]; 

} 

else 

{ 

Transmit_Flag=0; 

} 

} 

 

if(existing_function_flag==1){ 

int16_t *dataptr_temp1; 
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    dataptr_temp1= (int16_t *)packetbuf_dataptr(); 

//if (dataptr_temp1[0]==a[0]){ 

    //for (x=1;x<=15;x++) {  

    //if (a[0]==x) { 

  //for (dataptr_temp1[0]=x;dataptr_temp1[0]<=x;dataptr_temp1[0]++){ 

  x =dataptr_temp1[0]; 

  light[x] =dataptr_temp1[1]; 

  temperature[x] =dataptr_temp1[2]; 

  rssi[x] =dataptr_temp1[3]; 

  lightdec[x] =dataptr_temp1[4]; 

  temperaturedec[x] =dataptr_temp1[5]; 

  rssidec[x] =dataptr_temp1[6]; 

} 

} 

/*---------------------------------------------------------------------------*/ 

static const struct broadcast_callbacks bc_rx = { broadcast_recv }; 

static struct broadcast_conn bc; 

/*---------------------------------------------------------------------------*/ 

void 

rt_callback(struct rtimer *t, void *ptr) 

{ 

  leds_off(LEDS_PERIODIC); 

} 

/*---------------------------------------------------------------------------*/ 

PROCESS_THREAD(cc2538_demo_process, ev, data) 

{ 

 

  PROCESS_EXITHANDLER(broadcast_close(&bc)) 

 

  PROCESS_BEGIN(); 
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 if(existing_function_flag==0){ 

  counter = 0; 

  broadcast_open(&bc, BROADCAST_CHANNEL, &bc_rx); 

} 

 

if(existing_function_flag==1){ 

  counter = 0; 

  count_flag=0; 

  broadcast_open(&bc, BROADCAST_CHANNEL, &bc_rx); 

} 

  while(1) { 

if(existing_function_flag==1){ 

 if(count_flag==0) 

{ 

etimer_set(&et, CLOCK_SECOND); 

count_flag=1; 

} 

} 

if(existing_function_flag==0){     

   etimer_set(&et, CLOCK_SECOND*1); 

} 

    PROCESS_YIELD(); 

//if(Transmit_Flag==1) 

//{                 //leds_toggle(LEDS_RF_RX); 

if(existing_function_flag==0){                      

                  /********************************************************* FOR 

LIGHT*******************************************************************/     

                  light_dbl=rand();                              

                  lightintpart = (int)light_dbl; 

                  lightintpart = abs(lightintpart);             



144 
 

 

                  lightintpart= (lightintpart % 27995);        

                  lightintpart= (lightintpart+5);    

                  lightdecpart = 

((int)(light_dbl*N_DECIMAL_POINTS_PRECISION)%N_DECIMAL_POINTS_PRECISI

ON); 

                  lightdecpart = abs(lightdecpart);             

                  

/**************************************************************************

*************************************************************************/ 

 

/**************FORTEMPERATURE*********************/ 

                  temp_dbl = rand();                            

                  tempintpart = (int)temp_dbl; 

                  tempintpart=abs(tempintpart);            

                  tempintpart = (tempintpart % 35);         

                  tempintpart = (tempintpart+5); 

                  tempdecpart = 

((int)(temp_dbl*N_DECIMAL_POINTS_PRECISION)%N_DECIMAL_POINTS_PRECISI

ON);  

                  tempdecpart=abs(tempdecpart);            

                  

/**************************************************************************

*********************************************************************/ 

 

 

                  

/******************************FORRSSI***************************/ 

                  rssi_dbl=rand();                        

                  rssiintpart = (int)rssi_dbl; 

                  rssiintpart=abs(rssiintpart);           

                  rssiintpart= (rssiintpart % 88);        

                  rssiintpart= (rssiintpart + 10); 

                  rssiintpart=rssiintpart*(-1);           
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                  rssidecpart = 

((int)(rssi_dbl*N_DECIMAL_POINTS_PRECISION)%N_DECIMAL_POINTS_PRECISIO

N); 

                  rssidecpart=abs(rssidecpart);           

                  rssidecpart=0;  

                  

/**************************************************************************

***********************************************************************/ 

 

                  c[0]=node_ID; 

                  c[1]=lightintpart; 

                  c[2]=tempintpart;  

                  c[3]=rssiintpart; 

                  c[4]=lightdecpart; 

                  c[5]=tempdecpart; 

                  c[6]=rssidecpart; 

      if(Transmit_Flag==1) 

{                  

                  printf("This is end device with node_ID=%d transmitting the following values to 

the Coordinator.\n", node_ID); 

                  printf("1. Ambient raw light = '%d.%d' lux.\n", lightintpart, lightdecpart); 

                  printf("2. Temperature value = '%d.%d' degree celsius.\n",tempintpart 

,tempdecpart); 

                  printf("3. rssi              = '%d.%d' dBm.\n",rssiintpart, rssidecpart); 

                  printf("Func_ch_count        = '%d.\n",function_change_counter); 

           packetbuf_copyfrom(&c, sizeof(c)); 

                  broadcast_send(&bc); 

                  if(function_change_counter>=50) 

                  {existing_function_flag=1; 

                  } 

                  function_change_counter++; 

                  Transmit_Flag=0; 
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  if(a[2]==1) 

  { 

                etimer_set(&et, CLOCK_SECOND*a[1]); 

  a[2]=0; 

  } 

  if(ev == PROCESS_EVENT_TIMER && a[0]!=node_ID) 

  { 

                etimer_set(&et, CLOCK_SECOND*1); 

  } 

} 

}  

 

if(existing_function_flag==1){      

 if(ev == PROCESS_EVENT_TIMER) { 

      leds_on(LEDS_PERIODIC); 

 

 counter++; 

     printf("\nCounter value = %d counts.", counter); 

                a[0]=counter; 

          a[1]=TIME_IN_SEC - 45; 

                a[2]=1; 

                etimer_set(&et, CLOCK_SECOND*3); 

                packetbuf_copyfrom(&a, sizeof(a)); 

                broadcast_send(&bc); 

                //printf("node_ID=%d\n", a[0]); 

                //if (a[0]== 15) { 

                //printf("\n\n");  

                

                //} 

                 if(counter==51) 
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  { 

                counter=(counter % 51); 

                printf("\nValues reported by the end devices (to the router) are as follows:"); 

for (x=1;x<=4;x++) 

{  

//print node lines 

 

printf("\n|Node %d: %d,%d.%d,%d|", x, light[x], temperature[x], temperaturedec[x], rssi[x]); 

values_to_be_transmitted[0]=x; 

values_to_be_transmitted[1]=light[x]; 

values_to_be_transmitted[2]=temperature[x]; 

values_to_be_transmitted[3]=rssi[x]; 

values_to_be_transmitted[4]=lightdec[x]; 

values_to_be_transmitted[5]=temperaturedec[x]; 

values_to_be_transmitted[6]=rssidec[x]; 

 

packetbuf_copyfrom(&values_to_be_transmitted, sizeof(values_to_be_transmitted)); 

broadcast_send(&bc); 

} 

printf("\n"); 

                etimer_set(&et, CLOCK_SECOND*TIME_IN_SEC); 

  } 

                

        }  

  

  } 

       

} 

PROCESS_END();   

} 
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A.2 Codes for Transmitter and Receiver Nodes (Reg. ‘Arrival’ and ‘Service’ 

rates of End-device and Coordinator nodes respectively) 

 

The code for the ‘end device’ or ‘transmitter’ node is provided below. 

 

#include "contiki.h" 

#include "cpu.h" 

#include "sys/etimer.h" 

#include "sys/rtimer.h" 

#include "dev/leds.h" 

#include "dev/uart.h" 

#include "dev/button-sensor.h" 

#include "dev/adc-sensor.h" 

#include "dev/watchdog.h" 

#include "dev/serial-line.h" 

#include "dev/sys-ctrl.h" 

#include "net/rime/broadcast.h" 

#include <stdio.h> 

#include <stdint.h> 

#include <math.h> 

/*---------------------------------------------------------------------------*/ 

#define LOOP_INTERVAL       CLOCK_SECOND 

#define LEDS_OFF_HYSTERISIS (RTIMER_SECOND >> 1) 

#define LEDS_PERIODIC       LEDS_YELLOW 

#define LEDS_BUTTON         LEDS_RED 

#define LEDS_SERIAL_IN      LEDS_ORANGE 

#define LEDS_REBOOT         LEDS_ALL 

#define LEDS_RF_RX          (LEDS_YELLOW | LEDS_ORANGE) 

#define BROADCAST_CHANNEL   129 

#define N_DECIMAL_POINTS_PRECISION (100)  

/*---------------------------------------------------------------------------*/ 
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static struct etimer et; 

//static struct etimer et; 

//static struct etimer ed; 

static struct rtimer rt; 

static uint16_t counter; 

static uint16_t node_ID = 1;  //Address 0xCD, 0xCD 

//static uint16_t node_ID = 2;  //Address 0xCD, 0xCE 

//static uint16_t node_ID = 3;  //Address 0xCD, 0xCF 

//static uint16_t node_ID = 4;  //Address 0xCD, 0xDA 

//static uint16_t node_ID = 5;  //Address 0xCD, 0xDB 

//static uint16_t node_ID = 6;  //Address 0xCD, 0xDC 

//static uint16_t node_ID = 7;  //Address 0xCD, 0xDD 

//static uint16_t node_ID = 8;  //Address 0xCD, 0xDE 

//static uint16_t node_ID = 9;  //Address 0xCD, 0xDF 

//static uint16_t node_ID = 10; //Address 0xCD, 0xEA 

//static uint16_t node_ID = 11; //Address 0xCD, 0xEB 

//static uint16_t node_ID = 12; //Address 0xCD, 0xEC 

//static uint16_t node_ID = 13; //Address 0xCD, 0xED 

//static uint16_t node_ID = 14; //Address 0xCD, 0xEE 

//static uint16_t node_ID = 15; //Address 0xCD, 0xEF 

 

int Transmit_Flag = 0; 

int i = 0; 

int j; 

static uint16_t a[3]; 

float light_dbl; 

int16_t temp; 

float temp_dbl; 

signed short rssi; 

float rssi_dbl; 
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int lightintpart; 

int lightdecpart; 

//int lightdecpart_int; 

int tempintpart; 

int tempdecpart; 

//int tempdecpart_int; 

int rssiintpart; 

int rssidecpart; 

//int rssidecpart_int; 

//static uint16_t c[2]; 

//static uint16_t d[2]; 

static uint16_t c1; 

static uint16_t d1; 

int Recv_Flag=0; 

uint16_t counterlighttr=0; 

uint16_t countertemptr=0; 

 

//int tx; 

//long int countincr=0; 

/*---------------------------------------------------------------------------*/ 

PROCESS(cc2538_demo_process, "cc2538 demo process"); 

AUTOSTART_PROCESSES(&cc2538_demo_process); 

/*---------------------------------------------------------------------------*/ 

static void 

broadcast_recv(struct broadcast_conn *c, const rimeaddr_t *from)  

{ 

  uint16_t *dataptr_temp='\0'; 

   

 dataptr_temp= (uint16_t *)packetbuf_dataptr(); 

if(dataptr_temp[0] == node_ID) 
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{ 

  Transmit_Flag=1; 

  a[0]=dataptr_temp[0]; 

  a[1]=dataptr_temp[1]; 

  a[2]=dataptr_temp[2]; 

} 

else 

{ 

Transmit_Flag=0; 

} 

} 

 

//if(*dataptr_temp!= '\0'){ 

//Recv_Flag=1; 

//} 

//else 

//{ 

//Recv_Flag=0; 

//} 

//{ 

  //Transmit_Flag=1; 

  //a[0]=dataptr_temp[0]; 

  //a[1]=dataptr_temp[1]; 

  //a[2]=dataptr_temp[2]; 

//} 

//else 

//{ 

//Transmit_Flag=0; 

//} 

//} 
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/*---------------------------------------------------------------------------*/ 

static const struct broadcast_callbacks bc_rx = { broadcast_recv }; 

static struct broadcast_conn bc; 

/*---------------------------------------------------------------------------*/ 

void 

rt_callback(struct rtimer *t, void *ptr) 

{ 

  leds_off(LEDS_PERIODIC); 

} 

/*---------------------------------------------------------------------------*/ 

PROCESS_THREAD(cc2538_demo_process, ev, data) 

{ 

 

  PROCESS_EXITHANDLER(broadcast_close(&bc)) 

 

  PROCESS_BEGIN(); 

 

  counter = 0; 

   

  //count=0; 

   

  broadcast_open(&bc, BROADCAST_CHANNEL, &bc_rx); 

   

  while(1)  

{ 

   etimer_set(&et, CLOCK_SECOND*(0.025)); //Case 1 

   //etimer_set(&et_2, CLOCK_SECOND*(0.2)); 

   //etimer_set(&et, CLOCK_SECOND*1); //Case 2 

   //etimer_set(&et, CLOCK_SECOND*10); //Case 3 
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    //etimer_set(&et, CLOCK_SECOND*1); 

    PROCESS_YIELD(); 

    counter++; 

     

//if(Transmit_Flag==1) 

//{                 //leds_toggle(LEDS_RF_RX); 

                  light_dbl=adc_sensor.value(ADC_SENSOR_ALS); 

                  if (light_dbl<=4500){ 

light_dbl= light_dbl*0; 

} 

if ((light_dbl>=4501) && (light_dbl<=9516)){ 

light_dbl= ((light_dbl - 4500)/(627/5)); 

} 

if ((light_dbl>=9517) && (light_dbl<=11572)){ 

light_dbl= ((light_dbl - 5404)/102.8); 

} 

if ((light_dbl>=11573) && (light_dbl<=15744)){ 

light_dbl= ((light_dbl - 11475)/ (1043/58)); 

} 

if ((light_dbl>=15745) && (light_dbl<=16780)){ 

light_dbl= ((light_dbl - 14462)/(259/59)); 

} 

if ((light_dbl>=16781) && (light_dbl<=20000)){ 

light_dbl= ((light_dbl - 16196)/(805/728)); 

} 

if ((light_dbl>=20001) && (light_dbl<=21772)){ 

light_dbl= ((light_dbl - 19616)*9.28); 

} 

if ((light_dbl>21773) && (light_dbl<=25116)){ 

light_dbl= ((light_dbl - 12483)*2.153); 
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} 

if ((light_dbl>25117) && (light_dbl<=25184)){ 

light_dbl= ((light_dbl - 24730)*70.59); 

} 

 

                

                  lightintpart = (int)light_dbl; 

                  lightdecpart = 

((int)(light_dbl*N_DECIMAL_POINTS_PRECISION)%N_DECIMAL_POINTS_PRECISI

ON);  

                 

                 

         

                  temp = adc_sensor.value(ADC_SENSOR_TEMP); 

                  //temp_dbl =   (((25 + ((temp >> 4) - 1422) * 10 / 42) - 3)/2); 

                  //temp_dbl=((((temp >> 4) - 1422)*0.2381)+22); 

                  

//*************************************************************************/

/ 

                      //For Node_IDs = 2,5,6 and 10 

                  //temp_dbl=(((((temp >> 4) - 1422)*0.2381)+22)/2); 

                  //temp_dbl=temp_dbl + 2.56; 

                  

//*************************************************************************/

/ 

                

                   

//*************************************************************************/

/ 

                      //For Node_IDs = 8 and 9 

                  //temp_dbl=((((temp >> 4) - 1422)*0.2381)+22);  

                   //temp_dbl=temp_dbl-4; 
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//*************************************************************************/

/ 

 

                  

//*************************************************************************/

/ 

                      //For Node_IDs = 14 and 11 

                  //temp_dbl=((((temp >> 4) - 1422)*0.2381)+22);  

                  

//*************************************************************************/

/ 

 

                  

//*************************************************************************/

/ 

                      //For Node_IDs = 12, 13 and 3 

                      //temp_dbl=((((temp >> 4) - 1422)*0.2381)+22); 

                  //temp_dbl=temp_dbl-1.61; 

                  

//*************************************************************************/

/ 

                 

                  

//*************************************************************************/

/ 

                      //For Node_IDs = 1 and 15 

                     //temp_dbl=((((temp >> 4) - 1422)*0.2381)+22); 

                   //temp_dbl=temp_dbl + 1.43; 

                  

//*************************************************************************/

/ 

 

                  

//*************************************************************************/

/ 
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                      //For Node_IDs = 7 

                  //temp_dbl=((((temp >> 4) - 1422)*0.2381)+22); 

                   //temp_dbl=temp_dbl - 6.9; 

                  

//*************************************************************************/

/ 

                

                  

//*************************************************************************/

/ 

                      //For Node_IDs = 4 

                       temp_dbl=((((temp >> 4) - 1422)*0.2381)+22); 

                   temp_dbl=temp_dbl - 5.19; 

                  

//*************************************************************************/

/ 

                  tempintpart = (int)temp_dbl; 

                  tempdecpart = 

((int)(temp_dbl*N_DECIMAL_POINTS_PRECISION)%N_DECIMAL_POINTS_PRECISI

ON);  

                  if (tempdecpart<0) { 

                  tempdecpart = tempdecpart * (-1); 

                  } 

                   

                  rssi=packetbuf_attr(PACKETBUF_ATTR_RSSI); 

                  rssi_dbl=rssi; 

                  rssiintpart = (int)rssi_dbl; 

                  rssidecpart = 

((int)(rssi_dbl*N_DECIMAL_POINTS_PRECISION)%N_DECIMAL_POINTS_PRECISIO

N);  

                  

                 /*  

                  if (counter==80){ 

                  counter=counter%80; 
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                  tx = 4321; 

                  } 

                  else {  

                  tx = 0; 

                  } 

                  */ 

                  c1=lightintpart; 

                  d1=tempintpart; 

                  struct transmit_data { 

                  char type; 

                  uint16_t data1; 

                  uint16_t data2; 

                  uint16_t data3; 

                  }; 

                 // struct transmit_data data_val; 

                  struct transmit_data data_val_light; 

                  data_val_light.type='L'; 

                  data_val_light.data1=c1; 

                  data_val_light.data2=node_ID; 

                  data_val_light.data3=counterlighttr; 

 

                

                  struct transmit_data data_val_temp; 

                  data_val_temp.type='T'; 

                  data_val_temp.data1=d1; 

                  data_val_temp.data2=node_ID; 

                  data_val_temp.data3=countertemptr; 

                  

                  //if(Recv_Flag==1){ 

                    //etimer_set(&ed, CLOCK_SECOND*(1/40)); 
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      //Recv_Flag=0; 

                  //} 

                     

 

                 // struct transmit_data data_val; 

 

                 

                  //if(counter%1==0){ 

                   //if(counter%40==0){ 

                   if (counter%5==0){ 

                   counterlighttr++; 

                   printf("This is end device with node_ID=%d transmitting the following values to 

the Coordinator.\n", node_ID); 

                  

                  printf("1. Ambient raw light = '%d' lux.\n", lightintpart); 

                  printf("   Counterlighttr =    '%d'\n", counterlighttr); 

                

           packetbuf_copyfrom(& data_val_light, sizeof(data_val_light)); 

                  broadcast_send(&bc); 

    //Recv_Flag=0; 

                  } 

                    

                  if(counter%8==0){ 

                  //if(etimer_expired(&et_2)){ 

                  countertemptr++; 

                  printf("This is end device with node_ID=%d transmitting the following values to 

the Coordinator.\n", node_ID);   

                  printf("2. Temperature value = '%d' degree celsius.\n",tempintpart);                             

                  printf("   Countertemptr =    '%d'\n", countertemptr); 

                  //count++; 

                  //d[0]=count; 
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           packetbuf_copyfrom(& data_val_temp, sizeof(data_val_temp));  

                  broadcast_send(&bc);                                         

    //Recv_Flag=0; 

                  } 

                   

                  

                  //if(counter%13==0) 

    //{ 

    //printf("\n\nSet of 13 values\n\n"); 

    //} 

                 

                  Transmit_Flag=0; 

  /*if(a[2]==1) 

  { 

                etimer_set(&et, CLOCK_SECOND*a[1]); 

  a[2]=0; 

  } 

  if(ev == PROCESS_EVENT_TIMER && a[0]!=node_ID) 

  { 

                etimer_set(&et, CLOCK_SECOND*1); 

  } 

     */ 

//} 

       

} 

PROCESS_END();   

} 
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The code for the ‘coordinator’ or ‘receiver’ node is provided below. 

 

#include "contiki.h" 

#include "cpu.h" 

#include "sys/etimer.h" 

#include "sys/rtimer.h" 

#include "dev/leds.h" 

#include "dev/uart.h" 

#include "dev/button-sensor.h" 

#include "dev/adc-sensor.h" 

#include "dev/watchdog.h" 

#include "dev/serial-line.h" 

#include "dev/sys-ctrl.h" 

#include "net/rime/broadcast.h" 

#include <stdio.h> 

#include <stdint.h> 

#include <math.h> 

/*---------------------------------------------------------------------------*/ 

#define LOOP_INTERVAL                CLOCK_SECOND 

#define LEDS_OFF_HYSTERISIS          (RTIMER_SECOND >> 1) 

#define LEDS_PERIODIC                LEDS_YELLOW 

#define LEDS_BUTTON                  LEDS_RED 

#define LEDS_SERIAL_IN               LEDS_ORANGE 

#define LEDS_REBOOT                  LEDS_ALL 

#define LEDS_RF_RX                   (LEDS_YELLOW | LEDS_ORANGE) 

#define BROADCAST_CHANNEL            129 

#define ARRAY_LENGTH_RT_LIGHT        20// Original value was 27. 

#define ARRAY_LENGTH_DT_TEMP         20// Original value was 69. 

#define N_DECIMAL_POINTS_PRECISION (100) 
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struct transmit_data { 

                  char type; 

                  uint16_t data11; 

                  uint16_t data2; 

                  uint16_t data3; 

                  }; 

struct transmit_data *data_val_recv; 

 

/*---------------------------------------------------------------------------*/ 

/*Coordinator address 0xCD, 0xCC*/  

/*---------------------------------------------------------------------------*/ 

static struct etimer et_1; 

static struct etimer et_2; 

int etimercounter; 

int i; 

int x; 

int y; 

int z; 

int ser_countl=0; 

int lost_countl=0; 

int ser_countt=0; 

int lost_countt=0; 

int total_countl; 

int total_countt; 

signed int lightcounttotal=0; 

signed int tempcounttotal=0; 

signed int lightcounttotal_exit=0; 

signed int tempcounttotal_exit=0; 

int lightcounttotal_unabletoexit_thatis_lost; 

int lightcountwrtb=0; 
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int tcount=0; 

int totcount; 

float lightcounttotal_temp = 0.0; 

float lightcounttotal_temp_exit=0.0; 

 

  float buffer_usage_real_time_light; 

  float buffer_usage_temp_real_time_light; 

  float buffer_usage_dec_real_time_light; 

  int buffer_usage_decpart_real_time_light; 

  int buffer_usage_intpart_real_time_light; 

 

 float buffer_usage_real_time_temp; 

  float buffer_usage_temp_real_time_temp; 

  float buffer_usage_dec_real_time_temp; 

  int buffer_usage_decpart_real_time_temp; 

  int buffer_usage_intpart_real_time_temp; 

 

int bufsizeinstantlintpart; 

int bufsizeinstantldecpart; 

int bufsizeinstantt; 

int lightlosscount; 

int templosscount; 

long int indexyl=ARRAY_LENGTH_RT_LIGHT; 

long int indexyt=ARRAY_LENGTH_DT_TEMP; 

uint16_t arrlight[ARRAY_LENGTH_RT_LIGHT]; 

uint16_t arrtemp[ARRAY_LENGTH_DT_TEMP]; 

uint16_t *Light; 

uint16_t *Temp; 

uint16_t Node_ID; 

uint16_t counterlight; 
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uint16_t counterlight_temp; 

uint16_t countertemp; 

uint16_t countertemp_temp; 

uint16_t countertemp; 

signed int tpcinbuf; 

signed int tpcinbuf_temp; 

signed int packetlosstemp; 

signed int lpcinbuf; 

signed int lpcinbuf_temp; 

signed int packetlosslight; 

long int serviceratebufferlight[ARRAY_LENGTH_RT_LIGHT]; 

long int serviceratebuffertemp[ARRAY_LENGTH_DT_TEMP]; 

long int lostpacketslight[ARRAY_LENGTH_RT_LIGHT]; 

long int lostpacketstemp[ARRAY_LENGTH_DT_TEMP]; 

int lassign=0; 

int tassign=0; 

int buffill; 

/*---------------------------------------------------------------------------*/ 

PROCESS(cc2538_demo_process, "cc2538 demo process"); 

AUTOSTART_PROCESSES(&cc2538_demo_process); 

/*---------------------------------------------------------------------------*/ 

static void 

broadcast_recv(struct broadcast_conn *c, const rimeaddr_t *from) 

{  

data_val_recv= (struct transmit_data*)packetbuf_dataptr(); 

 

if(data_val_recv -> type=='L') 

{ 

//lcount++; 

lightcounttotal++; 
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//bufsizeinstantl=((ARRAY_LENGTH_RT_LIGHT)-lcount); 

Light = &data_val_recv->data11; 

Node_ID=data_val_recv->data2; 

counterlight=data_val_recv->data3; 

counterlight_temp = counterlight; 

//printf("\nReceived light packet size:          %d       Index:       %li",packetbuf_datalen(), 

indexyl); 

printf("\nReceived light packets count:                              %d",     lightcounttotal); 

printf("\nNode ID of end device =                                    %d",     Node_ID); 

//printf("\nCounterlight received =              %d",     counterlight); 

printf("\n---------------------------------------------------------------------"); 

} 

else if(data_val_recv -> type=='T'){ 

tempcounttotal++; 

Temp = &data_val_recv->data11; 

Node_ID=data_val_recv->data2; 

countertemp=data_val_recv->data3; 

countertemp_temp = countertemp; 

//tcount++; 

//bufsizeinstantt=((ARRAY_LENGTH_DT_TEMP)-tcount); 

//printf("\nReceived temperature packet size:    %d       Index:       %li",packetbuf_datalen(), 

indexyt); 

//printf("\nReceived temperature packets count:                        %d",     tempcounttotal);//These 

two////////////////////// 

//printf("\nNode ID of end device =                                    %d",     Node_ID);//These 

two//////////////////////////// 

//printf("\nCountertemp received =               %d",     countertemp); 

//printf("\n---------------------------------------------------------------------"); 

 

//printf("\n__________________________________________________________________

"); 



165 
 

 

//printf("\n_________________________________________________________________")

; 

} 

} 

 

 

 

/*static void 

broadcast_recv(struct broadcast_conn *c, const rimeaddr_t *from) 

{  

  

data_val_recv= (struct transmit_data*)packetbuf_dataptr(); 

if(data_val_recv -> type=='L'){ 

Light = &data_val_recv->data11; 

Node_ID=data_val_recv->data2; 

counterlight=data_val_recv->data3; 

counterlight_temp = counterlight; 

lightcounttotal++; 

//lightcountwrtb++; 

printf("\n\n"); 

printf("\n-----------------------------------------------------------------------------------------------"); 

printf("\nNode ID of end device =                                    %d",     Node_ID); 

printf("\nTotal Light packets received at the Coordinator=           %d",     lightcounttotal); 

} 

  

else if(data_val_recv -> type=='T') 

{ 

Temp = &data_val_recv->data11; 

Node_ID=data_val_recv->data2; 

countertemp=data_val_recv->data3; 

countertemp_temp = countertemp; 



166 
 

 

tempcounttotal++; 

printf("\n\n"); 

printf("\n-----------------------------------------------------------------------------------------------"); 

printf("\nNode ID of end device =                                    %d",     Node_ID); 

printf("\nTotal Temperature packets received at the Coordinator=     %d",     tempcounttotal);   

} 

}*/ 

/*---------------------------------------------------------------------------*/ 

static const struct broadcast_callbacks bc_rx = { broadcast_recv }; 

static struct broadcast_conn bc; 

/*---------------------------------------------------------------------------*/ 

void 

rt_callback(struct rtimer *t, void *ptr) 

{ 

  leds_off(LEDS_PERIODIC); 

} 

 

/*---------------------------------------------------------------------------*/ 

PROCESS_THREAD(cc2538_demo_process, ev, data) 

{ 

 

  PROCESS_EXITHANDLER(broadcast_close(&bc)) 

 

  PROCESS_BEGIN(); 

 

  etimercounter = 0; 

   

   

  broadcast_open(&bc, BROADCAST_CHANNEL, &bc_rx); 
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  while(1)  

{ 

   etimer_set(&et_1, CLOCK_SECOND*(0.25)); //Case 1 

   etimer_set(&et_2, CLOCK_SECOND*(60)); //Case 1 

    PROCESS_YIELD(); 

   

 

 

 if(etimer_expired(&et_1)){//2 Original place 

 

 

lightcounttotal_exit++; 

if(data_val_recv -> type=='L') 

{//1 

 

  printf("\nTotal number of light packets serviced =                 %d",lightcounttotal_exit);            

////////////////////////////////// 

  serviceratebufferlight[ser_countl++]=arrlight[indexyl]; 

  lpcinbuf=lightcounttotal-lightcounttotal_exit; 

  if(lpcinbuf<0){//3 

  printf("\nLight packets currently in the buffer =                  0");                                 

////////////////////////////////// 

  }////1 

  else {//4  

      if (lpcinbuf>ARRAY_LENGTH_RT_LIGHT){//5 

          printf("\nLight packets currently in the buffer =          %d", 

ARRAY_LENGTH_RT_LIGHT);          ////////////////////////////////// 

          }////2 

      else{//6 

          printf("\nLight packets currently in the buffer =          %d", lpcinbuf);                        

////////////////////////////////// 

          }////3 
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       }////4 

  packetlosslight=((lightcounttotal-lightcounttotal_exit)-ARRAY_LENGTH_RT_LIGHT); 

  if(packetlosslight<0){//7 

  printf("\nLight packets lost =                                     0");                                  ////////////////////////////////// 

  }////5 

  else {//8 

  printf("\nLight packets lost =                                     %d", packetlosslight);                

////////////////////////////////// 

  }////6 

  lpcinbuf_temp=lpcinbuf; 

  lpcinbuf_temp=lpcinbuf_temp*100; 

  buffer_usage_real_time_light=(lpcinbuf_temp/ARRAY_LENGTH_RT_LIGHT); 

  buffer_usage_temp_real_time_light=buffer_usage_real_time_light; 

  buffer_usage_dec_real_time_light=buffer_usage_real_time_light*100; 

  buffer_usage_decpart_real_time_light=((int)buffer_usage_dec_real_time_light)%100; 

  buffer_usage_intpart_real_time_light = (int)buffer_usage_temp_real_time_light; 

  if(buffer_usage_intpart_real_time_light<0){//9 

  printf("\nLight_buffer_filled =                                    0.0 percent");                        

////////////////////////////////// 

  printf("\n---------------------------------------------------------------------");                         

  printf("\n---------------------------------------------------------------------"); 

  }////7 

  else {//10 

     if(buffer_usage_intpart_real_time_light>100){//11printf("\n------------------------------------

---------------------------------"); 

        printf("\nLight_buffer_filled =                              100.0 percent");                       

////////////////////////////////// 

        printf("\n---------------------------------------------------------------------"); 

        printf("\n---------------------------------------------------------------------"); 

        } ////8 

    else{//12 
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        printf("\nLight_buffer_filled =                              %d.%d percent", 

buffer_usage_intpart_real_time_light,buffer_usage_decpart_real_time_light);     

////////////////////////////////// 

        printf("\n---------------------------------------------------------------------"); 

        printf("\n---------------------------------------------------------------------"); 

        }////9 

   

}////10 

}////11 

////12 

 

} 

else if(etimer_expired(&et_2)) 

{ 

tempcounttotal_exit++; 

if(data_val_recv -> type=='T'){ 

//printf("\nser_countt:                            %d       ", ser_countt); 

//printf("\nService Rate Buffer Temp array:        %li      ", serviceratebuffertemp[ser_countt]); 

printf("\nTotal number of temperature packets serviced =           %d",tempcounttotal_exit);                         

//////////////////////////// 

serviceratebuffertemp[ser_countt++]=arrtemp[indexyt]; 

tpcinbuf=tempcounttotal-tempcounttotal_exit; 

 if(tpcinbuf<0){//3 

  printf("\nTemperature packets currently in the buffer =            0");                                           

//////////////////////////// 

  }////1 

  else {//4  

      if (tpcinbuf>ARRAY_LENGTH_DT_TEMP){//5 

          printf("\nTemperature packets currently in the buffer =    %d", 

ARRAY_LENGTH_DT_TEMP);                    //////////////////////////// 

          }////2 

      else{//6 
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          printf("\nTemperature packets currently in the buffer =    %d", tpcinbuf);                               

//////////////////////////// 

          }////3 

       }////4 

  packetlosstemp=((tempcounttotal-tempcounttotal_exit)-ARRAY_LENGTH_DT_TEMP); 

  if(packetlosstemp<0){//7 

  printf("\nTemperature packets lost =                               0");                                          

//////////////////////////// 

  }////5 

  else {//8 

  printf("\nTemperature packets lost =                               %d", packetlosstemp);                         

//////////////////////////// 

  }////6 

  tpcinbuf_temp=tpcinbuf; 

  tpcinbuf_temp=tpcinbuf_temp*100; 

  buffer_usage_real_time_temp=(tpcinbuf_temp/ARRAY_LENGTH_DT_TEMP); 

  buffer_usage_temp_real_time_temp=buffer_usage_real_time_temp; 

  buffer_usage_dec_real_time_temp=buffer_usage_real_time_temp*100; 

  buffer_usage_decpart_real_time_temp=((int)buffer_usage_dec_real_time_temp)%100; 

  buffer_usage_intpart_real_time_temp = (int)buffer_usage_temp_real_time_temp; 

  if(buffer_usage_intpart_real_time_temp<0){//9 

  printf("\nTemperature_buffer_filled =                              0.0 percent");                                 

//////////////////////////// 

  printf("\n---------------------------------------------------------------------");                                

//////////////////////////// 

  printf("\n---------------------------------------------------------------------");                                

//////////////////////////// 

  }////7 

  else {//10 

     if(buffer_usage_intpart_real_time_temp>100){//11 

        printf("\nTemperature_buffer_filled =                       100.0 percent");                                

//////////////////////////// 
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        printf("\n---------------------------------------------------------------------");                          

//////////////////////////// 

        printf("\n---------------------------------------------------------------------");                          

//////////////////////////// 

        } ////8 

    else{//12 

        printf("\nTemperature_buffer_filled =                        %d.%d percent", 

buffer_usage_intpart_real_time_temp,buffer_usage_decpart_real_time_temp); 

//////////////////////////// 

        printf("\n---------------------------------------------------------------------");                          

//////////////////////////// 

        printf("\n---------------------------------------------------------------------");                          

//////////////////////////// 

        }////9   

   

} 

} 

}    

} 

PROCESS_END();   

} 

 

A.3 Codes for both leaf nodes and sink node or coordinator node (Reg. 

Channel Access Method) 

 

     The code for the ‘end device’ node is as below. 

 

#include "contiki.h" 

#include "cpu.h" 

#include "sys/etimer.h" 

#include "sys/rtimer.h" 

#include "dev/leds.h" 
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#include "dev/uart.h" 

#include "dev/button-sensor.h" 

#include "dev/adc-sensor.h" 

#include "dev/watchdog.h" 

#include "dev/serial-line.h" 

#include "dev/sys-ctrl.h" 

#include "net/rime/broadcast.h" 

#include <stdio.h> 

#include <stdint.h> 

#include <math.h> 

 

/*---------------------------------------------------------------------------*/ 

#define LOOP_INTERVAL       CLOCK_SECOND 

#define LEDS_OFF_HYSTERISIS (RTIMER_SECOND >> 1) 

#define LEDS_PERIODIC       LEDS_YELLOW 

#define LEDS_BUTTON         LEDS_RED 

#define LEDS_SERIAL_IN      LEDS_ORANGE 

#define LEDS_REBOOT         LEDS_ALL 

#define LEDS_RF_RX          (LEDS_YELLOW | LEDS_ORANGE) 

#define BROADCAST_CHANNEL   129 

#define N_DECIMAL_POINTS_PRECISION (100)  

/*---------------------------------------------------------------------------*/ 

static struct etimer et; 

static struct rtimer rt; 

static uint16_t counter; 

//static uint16_t node_ID = 1;  //Address 0xCD, 0xCD 

//static uint16_t node_ID = 2;  //Address 0xCD, 0xCE 

//static uint16_t node_ID = 3;  //Address 0xCD, 0xCF 

//static uint16_t node_ID = 4;  //Address 0xCD, 0xDA 

//static uint16_t node_ID = 5;  //Address 0xCD, 0xDB 
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static uint16_t node_ID = 6;  //Address 0xCD, 0xDC 

//static uint16_t node_ID = 7;  //Address 0xCD, 0xDD 

//static uint16_t node_ID = 8;  //Address 0xCD, 0xDE 

//static uint16_t node_ID = 9;  //Address 0xCD, 0xDF 

//static uint16_t node_ID = 10; //Address 0xCD, 0xEA 

//static uint16_t node_ID = 11; //Address 0xCD, 0xEB 

//static uint16_t node_ID = 12; //Address 0xCD, 0xEC 

//static uint16_t node_ID = 13; //Address 0xCD, 0xED 

//static uint16_t node_ID = 14; //Address 0xCD, 0xEE 

//static uint16_t node_ID = 15; //Address 0xCD, 0xEF 

 

int Transmit_Flag = 0; 

int i = 0; 

static uint16_t a[3]; 

float light_dbl; 

int16_t temp; 

float temp_dbl; 

signed short rssi; 

float rssi_dbl; 

int lightintpart; 

int lightdecpart; 

//int lightdecpart_int; 

int tempintpart; 

int tempdecpart; 

//int tempdecpart_int; 

int rssiintpart; 

int rssidecpart; 

//int rssidecpart_int; 

static uint16_t c[7]; 

/*---------------------------------------------------------------------------*/ 
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PROCESS(cc2538_demo_process, "cc2538 demo process"); 

AUTOSTART_PROCESSES(&cc2538_demo_process); 

/*---------------------------------------------------------------------------*/ 

static void 

broadcast_recv(struct broadcast_conn *c, const rimeaddr_t *from)  

{ 

  uint16_t *dataptr_temp; 

   

 dataptr_temp= (uint16_t *)packetbuf_dataptr(); 

 

if(dataptr_temp[0] == node_ID) 

{ 

  Transmit_Flag=1; 

  a[0]=dataptr_temp[0]; 

  a[1]=dataptr_temp[1]; 

  a[2]=dataptr_temp[2]; 

} 

else 

{ 

Transmit_Flag=0; 

} 

} 

/*---------------------------------------------------------------------------*/ 

static const struct broadcast_callbacks bc_rx = { broadcast_recv }; 

static struct broadcast_conn bc; 

/*---------------------------------------------------------------------------*/ 

void 

rt_callback(struct rtimer *t, void *ptr) 

{ 

  leds_off(LEDS_PERIODIC); 
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} 

/*---------------------------------------------------------------------------*/ 

PROCESS_THREAD(cc2538_demo_process, ev, data) 

{ 

 

  PROCESS_EXITHANDLER(broadcast_close(&bc)) 

 

  PROCESS_BEGIN(); 

 

  counter = 0; 

  broadcast_open(&bc, BROADCAST_CHANNEL, &bc_rx); 

   

  while(1) { 

     

   etimer_set(&et, CLOCK_SECOND*0.25); 

     

    PROCESS_YIELD(); 

    

//if(Transmit_Flag==1) 

//{                 //leds_toggle(LEDS_RF_RX); 

                  light_dbl=adc_sensor.value(ADC_SENSOR_ALS); 

                  if (light_dbl<=4500){ 

light_dbl= light_dbl*0; 

} 

if ((light_dbl>=4501) && (light_dbl<=9516)){ 

light_dbl= ((light_dbl - 4500)/(627/5)); 

} 

if ((light_dbl>=9517) && (light_dbl<=11572)){ 

light_dbl= ((light_dbl - 5404)/102.8); 

} 
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if ((light_dbl>=11573) && (light_dbl<=15744)){ 

light_dbl= ((light_dbl - 11475)/ (1043/58)); 

} 

if ((light_dbl>=15745) && (light_dbl<=16780)){ 

light_dbl= ((light_dbl - 14462)/(259/59)); 

} 

if ((light_dbl>=16781) && (light_dbl<=20000)){ 

light_dbl= ((light_dbl - 16196)/(805/728)); 

} 

if ((light_dbl>=20001) && (light_dbl<=21772)){ 

light_dbl= ((light_dbl - 19616)*9.28); 

} 

if ((light_dbl>21773) && (light_dbl<=25116)){ 

light_dbl= ((light_dbl - 12483)*2.153); 

} 

if ((light_dbl>25117) && (light_dbl<=25184)){ 

light_dbl= ((light_dbl - 24730)*70.59); 

} 

 

                

                  lightintpart = (int)light_dbl; 

                  lightdecpart = 

((int)(light_dbl*N_DECIMAL_POINTS_PRECISION)%N_DECIMAL_POINTS_PRECISI

ON);  

                 

 

                  temp = adc_sensor.value(ADC_SENSOR_TEMP); 

                  //temp_dbl =   (((25 + ((temp >> 4) - 1422) * 10 / 42) - 3)/2); 

                  //temp_dbl=((((temp >> 4) - 1422)*0.2381)+22); 

                  

//*************************************************************************/

/ 
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                      //For Node_IDs = 2,5,6 and 10 

                  //temp_dbl=(((((temp >> 4) - 1422)*0.2381)+22)/2); 

                  //temp_dbl=temp_dbl + 2.56; 

                  

//*************************************************************************/

/ 

                

                   

//*************************************************************************/

/ 

                      //For Node_IDs = 8 and 9 

                  //temp_dbl=((((temp >> 4) - 1422)*0.2381)+22);  

                   //temp_dbl=temp_dbl-4; 

                  

//*************************************************************************/

/ 

 

                  

//*************************************************************************/

/ 

                      //For Node_IDs = 14 and 11 

                  //temp_dbl=((((temp >> 4) - 1422)*0.2381)+22);  

                  

//*************************************************************************/

/ 

 

                  

//*************************************************************************/

/ 

                      //For Node_IDs = 12, 13 and 3 

                      //temp_dbl=((((temp >> 4) - 1422)*0.2381)+22); 

                  //temp_dbl=temp_dbl-1.61; 

                  

//*************************************************************************/

/ 
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//*************************************************************************/

/ 

                      //For Node_IDs = 1 and 15 

                     //temp_dbl=((((temp >> 4) - 1422)*0.2381)+22); 

                   //temp_dbl=temp_dbl + 1.43; 

                  

//*************************************************************************/

/ 

 

                  

//*************************************************************************/

/ 

                      //For Node_IDs = 7 

                  //temp_dbl=((((temp >> 4) - 1422)*0.2381)+22); 

                   //temp_dbl=temp_dbl - 6.9; 

                  

//*************************************************************************/

/ 

                

                  

//*************************************************************************/

/ 

                      //For Node_IDs = 4 

                       temp_dbl=((((temp >> 4) - 1422)*0.2381)+22); 

                   temp_dbl=temp_dbl - 5.19; 

                  

//*************************************************************************/

/ 

       

       

//*********************************************************// 

                      //For Node_IDs = 4 

                       temp_dbl=((((temp >> 4) - 1422)*0.2381)+22); 
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                   temp_dbl=temp_dbl - 3.25; 

                  

//*************************************************************************/

/  

       

                  tempintpart = (int)temp_dbl; 

                  tempdecpart = 

((int)(temp_dbl*N_DECIMAL_POINTS_PRECISION)%N_DECIMAL_POINTS_PRECISI

ON);  

                  if (tempdecpart<0) { 

                  tempdecpart = tempdecpart * (-1); 

                  } 

                   

                  rssi=packetbuf_attr(PACKETBUF_ATTR_RSSI); 

                  rssi_dbl=rssi; 

                  rssiintpart = (int)rssi_dbl; 

                  rssidecpart = 

((int)(rssi_dbl*N_DECIMAL_POINTS_PRECISION)%N_DECIMAL_POINTS_PRECISIO

N);  

                  c[0]=node_ID; 

                  c[1]=lightintpart; 

                  c[2]=tempintpart;  

                  c[3]=rssiintpart; 

                  c[4]=lightdecpart; 

                  c[5]=tempdecpart; 

                  c[6]=rssidecpart; 

      if(Transmit_Flag==1) 

{                  

                  printf("This is end device with node_ID=%d transmitting the following values to 

the Coordinator.\n", node_ID); 

                  printf("1. Ambient raw light = '%d.%d' lux.\n", lightintpart, lightdecpart); 

                  printf("2. Temperature value = '%d.%d' degree celsius.\n",tempintpart 

,tempdecpart); 
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                  printf("3. rssi              = '%d.%d' dBm.\n",rssiintpart, rssidecpart); 

           packetbuf_copyfrom(&c, sizeof(c)); 

                  broadcast_send(&bc); 

                  Transmit_Flag=0; 

  if(a[2]==1) 

  { 

                etimer_set(&et, CLOCK_SECOND*a[1]); 

  a[2]=0; 

  } 

  if(ev == PROCESS_EVENT_TIMER && a[0]!=node_ID) 

  { 

                etimer_set(&et, CLOCK_SECOND*0.25); 

  } 

      

} 

       

} 

PROCESS_END();   

} 

 

 

     The code for the ‘coordinator’ or ‘sink’ node is as below. 

 

#include "contiki.h" 

#include "cpu.h" 

#include "sys/etimer.h" 

#include "sys/rtimer.h" 

#include "dev/leds.h" 

#include "dev/uart.h" 

#include "dev/button-sensor.h" 
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#include "dev/watchdog.h" 

#include "dev/serial-line.h" 

#include "dev/sys-ctrl.h" 

#include "net/rime/broadcast.h" 

#include <stdio.h> 

#include <stdint.h> 

#include <math.h> 

/*---------------------------------------------------------------------------*/ 

#define LOOP_INTERVAL       CLOCK_SECOND 

#define LEDS_OFF_HYSTERISIS (RTIMER_SECOND >> 1) 

#define LEDS_PERIODIC       LEDS_YELLOW 

#define LEDS_BUTTON         LEDS_RED 

#define LEDS_SERIAL_IN      LEDS_ORANGE 

#define LEDS_REBOOT         LEDS_ALL 

#define LEDS_RF_RX          (LEDS_YELLOW | LEDS_ORANGE) 

#define BROADCAST_CHANNEL   129 

#define MAX_NODES     15 

#define TIME_IN_SEC     7 

/*---------------------------------------------------------------------------*/ 

/*Coordinator address 0xCD, 0xCC*/  

/*---------------------------------------------------------------------------*/ 

static struct etimer et; 

static struct rtimer rt; 

static uint16_t counter; 

static uint16_t count_flag; 

static uint16_t a[3]; 

//short signed d[7]; 

short signed light[16]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 

short signed temperature[16]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 

short signed rssi[16]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 
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short signed lightdec[16]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 

short signed temperaturedec[16]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 

short signed rssidec[16]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 

int x; 

int y; 

/*---------------------------------------------------------------------------*/ 

PROCESS(cc2538_demo_process, "cc2538 demo process"); 

AUTOSTART_PROCESSES(&cc2538_demo_process); 

/*---------------------------------------------------------------------------*/ 

static void 

broadcast_recv(struct broadcast_conn *c, const rimeaddr_t *from) 

{ 

 int16_t *dataptr_temp1; 

    //leds_toggle(LEDS_RF_RX); 

    dataptr_temp1= (int16_t *)packetbuf_dataptr(); 

//if (dataptr_temp1[0]==a[0]){ 

    //for (x=1;x<=15;x++) {  

    //if (a[0]==x) { 

  //for (dataptr_temp1[0]=x;dataptr_temp1[0]<=x;dataptr_temp1[0]++){ 

  x =dataptr_temp1[0]; 

  light[x] =dataptr_temp1[1]; 

  temperature[x] =dataptr_temp1[2]; 

  rssi[x] =dataptr_temp1[3]; 

  lightdec[x] =dataptr_temp1[4]; 

  temperaturedec[x] =dataptr_temp1[5]; 

  rssidec[x] =dataptr_temp1[6]; 

 

if(dataptr_temp1[0] ==2){ 

light[dataptr_temp1[0]] =dataptr_temp1[1]; 

  temperature[dataptr_temp1[0]] =dataptr_temp1[2]; 
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  rssi[dataptr_temp1[0]] =dataptr_temp1[3]; 

  lightdec[dataptr_temp1[0]] =dataptr_temp1[4]; 

  temperaturedec[dataptr_temp1[0]] =dataptr_temp1[5]; 

  rssidec[dataptr_temp1[0]] =dataptr_temp1[6]; 

} 

 

 

     //if(dataptr_temp1[0]==counter){ 

  //for (counter=1;counter<=15;counter++) {   

  /*light[dataptr_temp1[0]] =dataptr_temp1[1]; 

  temperature[dataptr_temp1[0]] =dataptr_temp1[2]; 

  rssi[dataptr_temp1[0]] =dataptr_temp1[3]; 

  lightdec[dataptr_temp1[0]] =dataptr_temp1[4]; 

  temperaturedec[dataptr_temp1[0]] =dataptr_temp1[5]; 

  rssidec[dataptr_temp1[0]] =dataptr_temp1[6];*/ 

   

  dataptr_temp1[0]=0; 

  dataptr_temp1[1]=0; 

  dataptr_temp1[2]=0; 

  dataptr_temp1[3]=0; 

  dataptr_temp1[4]=0; 

  dataptr_temp1[5]=0; 

  dataptr_temp1[6]=0; 

//continue; 

//} 

//} 

 

//} 

//if (a[0]==15) { 

//a[0] =0; 
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//} 

//} 

//} 

} 

/*---------------------------------------------------------------------------*/ 

static const struct broadcast_callbacks bc_rx = { broadcast_recv }; 

static struct broadcast_conn bc; 

/*---------------------------------------------------------------------------*/ 

void 

rt_callback(struct rtimer *t, void *ptr) 

{ 

  leds_off(LEDS_PERIODIC); 

} 

 

/*---------------------------------------------------------------------------*/ 

PROCESS_THREAD(cc2538_demo_process, ev, data) 

{ 

 

  PROCESS_EXITHANDLER(broadcast_close(&bc)) 

 

  PROCESS_BEGIN(); 

 

  counter = 0; 

  count_flag=0; 

  broadcast_open(&bc, BROADCAST_CHANNEL, &bc_rx); 

 

  while(1) { 

   if(count_flag==0) 

{ 

etimer_set(&et, CLOCK_SECOND); 
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count_flag=1; 

} 

  

    PROCESS_YIELD(); 

    if(ev == PROCESS_EVENT_TIMER) { 

      leds_on(LEDS_PERIODIC); 

 

 counter++; 

                a[0]=counter; 

  a[1]=TIME_IN_SEC - 5; 

                a[2]=1; 

//somewhere is here do the serial output    

                etimer_set(&et, CLOCK_SECOND*1); 

                packetbuf_copyfrom(&a, sizeof(a)); 

                broadcast_send(&bc); 

                //printf("node_ID=%d\n", a[0]); 

                //if (a[0]== 15) { 

                //printf("\n\n");  

                

                //} 

                 if(counter==4) 

  { 

                counter=(counter % 4); 

                //printf("TheString="); //////////////// 

printf("|"); 

for (x=1;x<=4;x++) 

{  

//print node lines 

 

//printf("|%d,%d,%d,%d|", x, light[x], lightdec[x], temperature[x], temperaturedec[x], rssi[x], 

rssidec[x]); ///////////////// 
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//printf("%d,%d,%d,%d|", x, light[x], temperature[x], (rssi[x]*(-1))); ///////////////// 

printf("\n\nEND DEVICE %d: Light=%d lux, Temperature=%d degree celsius(approx.) and 

RSSI=%d dBm", x, light[x], temperature[x], rssi[x]); 

} 

printf("\n"); 

                etimer_set(&et, CLOCK_SECOND*TIME_IN_SEC); 

  } 

                

        }  

  

  } 

 

  PROCESS_END(); 

} 

A.4 Sample Router Fitness Calculation Table for a Given Participant Node 

towards Electing Replacement Router (To Replace the Departing Router 

Node) 

Parameter Range Fiddle Factor 

(i.e., 

multiplicand) 

Instantaneous 

(Sensor Value) 

of the 

participant 

node under 

consideration 

Normalized 

(i.e., equalized 

value) to be 

considered for 

summation 

RSSIEDs_AVG 0 to 

RSSIEDs_AVG 

(max.)  

(0 to -70 dBm) 

 

100÷RSSIEDs_AVG 

(max.)  

i.e., [100 ÷ (-70)] 

(RSSIEDs_AVG = 

say,) -20 dBm 
100 - (Column 3 

× Column 4) = 

71.42 

RSSIG-ED 0 to RSSIG_ED 

(max.)  

(0 to -98 dBm) 

 
100÷RSSIG_ED 

(max.) 

i.e., [100 ÷ (-98)] 

(RSSIG_ED = 

say,) – 25 dBm 
100 - (Column 3 

× Column 4) = 

74.48 

BPEDs 0 to BPEDs 

(max.) 

(0 to 95%) 

 

[100÷BPEDs 

(max.)]  
i.e., (100 ÷ 95) 

(BPED = say,) 

95% 
(Column 3 × 

Column 4) = 

100 

Sample router fitness value for the participant router node under 

consideration 

245.9 
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A.5 Sequence Diagram and Associated Description of All the Messages 

Transpiring Over the Three Phases of Re-orchestration In Pursuit of 

Electing the Most Suitable Leaf Node to Take Up the Role of the 

Replacement Router 

 

 

Figure. Sequence diagram showing all the messages transpiring over the three re-orchestration 

phases in pursuit of electing the most suitable leaf node to take up the role of the replacement 

router.  
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During the initial phase of ‘Data Analysis and Event-Identification’, the ‘gateway’ node 

i.e., the node with node ID 6 continuously transmits the message ‘MG-R’ (at a set rate of 

transmission) to node ID 5, i.e., the router node, in order to keep a track of its radio signal 

strength with respect to node ID 5. The router node responds to this message with a message 

of its own i.e., ‘MR-G’, which also includes its current battery power level. This trend of the 

RSSI data is stored within the cloud and is continuously monitored by the dedicated 

‘knowledge component’ (hosted within the ‘Data and Knowledge’ repository) as part of the 

monitoring process.  

Upon sensing the pattern of increased deviation of the RSSI values between the gateway 

node’ and the router node’, the ‘Re-orchestration Planning’ phase commences with the gateway 

node broadcasting a trigger message ‘MG-L_Post-trigger’ to the leaf nodes 1, 2 and 3 (which are 

capable of assuming the router functionality) to (temporarily) switch to the role of a ‘router’. 

These newly formed (leaf-turned) ‘router’ nodes (i.e., nodes with node IDs 1, 2 and 3) 

broadcast messages to each other, including the leaf node 4 (which is not capable of turning 

into a router), in order to find out their ‘RSSI’ values with respect to each of them. These 

messages so broadcasted are denoted by messages ‘M1_broadcast’, ‘M6_broadcast’ and ‘M10_broadcast’, 

transmitted by nodes with node IDs 1, 2 and 3 respectively. These messages are responded to 

respectively by each of the four-leaf nodes. To elaborate, messages ‘M2’, ‘M3’ and ‘M4’ are 

transmitted by leaf nodes 2, 3 and 4 respectively, in response to message ‘M1_broadcast’. 

Similarly, messages ‘M6’, ‘M7’ and ‘M8’ as well as messages ‘M10’, ‘M11’ and ‘M12’ are 

transmitted by the respective leaf nodes in response to messages ‘M6_broadcast’ and ‘M10_broadcast’ 

respectively. All the participant nodes (i.e., nodes 1, 2 and 3) relay the average value of RSSI 

signal values received by them over to node 5, i.e., the router node, as denoted by messages 

‘M5’, ‘M9’ and ‘M13’ respectively. This value is relayed by the router node over to node ID 6 

(i.e., the Gateway node) through message ‘M14’. Through transmission of the messages ‘M15’, 

‘M17’ and ‘M19’ to the nodes three participant nodes, the Gateway node then seeks to find out 

its respective RSSI as well as battery power level values with each of them. In response, each 

of the three leaf nodes transmit messages ‘M16’, ‘M18’ and ‘M20’ respectively (consisting of 

their battery level values, as well) to the node 6 (gateway node).  

 

The final phase of ‘Re-orchestration Execution’ involves implementation of the outcomes 

derived within the preceding phase of ‘Re-orchestration Planning’. Here, the following 

messages get exchanged amongst the constituent nodes in a sequential manner (as depicted in 

the above figure).  

 

• The gateway node transmits message ‘M21_Notification_election_outcome’ to the participant 

leaf node with the highest normalized weight value (i.e., to the leaf node 1, in this 

case) ‘directing’ it to take up the ‘role’ of the ‘replacement router’.  

• The outgoing router then receives message ‘M22’ from the gateway node directing it 

to stop acting as a router and assume the function of a leaf node.  

• By means of broadcasting ‘M23’ message, gateway node 6 informs all the constituent 

nodes about node 1 being the new replacement router. 

• Upon switching over to the role of replacement router, node 1 (traverses to a suitable 

location to be within the range of the gateway as well as the constituent leaf nodes) 

and thereby facilitates for the resumption of the normal flow of data within the 

network wherein it relays the ‘sensed data’ obtained from the all the ‘leaf’ nodes (as 

indicated by the messages ‘M24’, ‘M25’, ‘M26’ and ‘M27’) and relays it over to the 

‘Gateway’ node (as indicated by message ‘M28’).  
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A.6 Sample Router Fitness Calculation Table for a Given Participant Node

towards Electing Replacement Router (To Replace the Dying Router Node)

Parameter Range Fiddle Factor 

(i.e., 

multiplicand) 

Instantaneous 

(Sensor Value) 

of the 

participant 

node under 

consideration 

Normalized 

(i.e., equalized 

value) to be 

considered for 

summation 

RSSIRCL-G 0 to RSSIRCL-G 

(max.)

(0 to -70 dBm) 

100÷ RSSIRCL-G 

(max.)  

i.e., [100 ÷ (-

98)]

(RSSIRCL-G = 

say,) -30 dBm 
100 - (Column 3 

× Column 4) = 

69.38 

RSSIRCL-L 0 to RSSIRCL-L 

(max.)

(0 to -98 dBm) 

100 ÷ RSSIRCL-L 

(max.) 

i.e., [100 ÷ (-

98)]

(RSSIRCL-L = 

say,) – 35 dBm 
100 - (Column 3 

× Column 4) = 

64.28 

CCL-RCL 0 to CCL-RCL 

(max.) 

(0 to 4) 

100 × {1- [CCL-

RCL/ CCL-RCL 

(max.)] 
(CCL-RCL = say,) 

4 

0 

BRCL 0 to BRCL (max.) 

(0 to 95%) 
[100 ÷ BRCL 

(max.)] 

i.e., (100 ÷ 95)

(BRCL = say,) 

92% 
(Column 3 × 

Column 4) = 

96.84 

Sample router fitness value for the participant router node under 

consideration 

230.5 


