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Abstract The Model Predictive Control (MPC) trajectory tracking problem of
an unmanned quadrotor with input and output constraints is addressed. In this
article, the dynamic models of the quadrotor are obtained purely from operational
data in the form of probabilistic Gaussian Process (GP) models. This is different
from conventional models obtained through Newtonian analysis. A hierarchical
control scheme is used to handle the trajectory tracking problem with the transla-
tional subsystem in the outer loop and the rotational subsystem in the inner loop.
Constrained GP based MPC are formulated separately for both subsystems. The
resulting MPC problems are typically nonlinear and non-convex. We derived a GP
based local dynamical model that allows these optimization problems to be relaxed
to convex ones which can be efficiently solved with a simple active-set algorithm.
The performance of the proposed approach is compared with an existing uncon-
strained Nonlinear Model Predictive Control (NMPC). Simulation results show
that the two approaches exibit similar trajectory tracking performance. However,
our approach has the advantage of incorporating constraints on the control inputs.
In addition, our approach only requires 20% of the computational time for NMPC.

Keywords Quadrotor Trajectory Tracking · Model Predictive Control · Gaussian
Process

1 Introduction

The quadrotor helicopter (or quadrotor for short) is an aerial vehicle with vertical
take-off and landing capabilities. It has received a lot of interests recently due to
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its simplicity, maneuverability, and payload capabilities [2,1]. It has been used in
various military and civilian tasks [31,12].

Trajectory tracking is one of the basic functions performed by a quadrotor in
autonomous flight. Designing a control system to perform this function is chal-
lenging because the quadrotor’s dynamics are highly nonlinear and are subjected
to random external disturbances. Several control approaches have previously been
investigated with varying degrees of success. They include linear techniques such
as Proportional-Integral-Derivative (PID) and Linear-Quadratic Regulator (LQR)
control [4], as well as nonlinear techniques such as sliding mode [29] and backstep-
ping control [21]. More recently, due to the conceptual simplicity, Model Predictive
Control (MPC) techniques have been used in [34,2] based on the linearised model
and in [1] based on the nonlinear model. Moreover, physical constraints on the
system inputs and outputs, which is important for quadrotors, could easily be in-
cluded as appropriate penalty terms in the cost function that is used to compute
the optimal control.

The performance of MPC is highly dependent on how accurately the model
describes the dynamics of the system being controlled. Conventionally, dynami-
cal models are derived from first principles through Newton-Euler [45] or Euler-
Lagrange based formalisms [4]. Alternatively, empirical input-output data could
be collected from a real, working quadrotor. These data could then be used to con-
struct a Fuzzy Model (FM) [18] or an Artificial Neural Network (ANN) model [41,
11]. This data-driven approach has the advantage that unknown dynamics that
are not considered by Newtonian analysis could be captured by the empirical ob-
servations. However, it is difficult to evaluate the quality of these FM and ANN
models. Gaussian Process (GP) modelling is an alternative data-driven technique
based on Bayesian theory. Compared to ANN and FM, a major advantage is that
the quality of obtained GP model can be directly evaluated by GP variances which
are naturally computed during the modelling and prediction processes. GP based
technique has recently been used to learn the flight model of Unmanned Aerial
Vehicle (UAV) [19,20] and quadrotors [3,8].

The cost functions used in early GP based MPC problems are deterministic
even though the GP models are probabilistic [25,24,26,15]. This issue has been
addressed recently in [22,6,8] where the expectation of the cost function is used
instead, as proposed in [30]. However, these works did not take into considera-
tion any constraint on system inputs and outputs. In addition, a computationally
efficient method is required to solve the resulting GP based MPC optimization
problem which is usually nonlinear and non-convex.

In this article, a hierarchical control scheme is applied to the trajectory track-
ing problem of a quadrotor, where a translational subsystem forms the outer loop
and a rotational subsystem is in the inner loop [34,2]. Each subsystem is indepen-
dently modelled by a GP model. We propose a GP based MPC control scheme,
referred to as GPMPC, solve the resulting two MPC tracking problems. It tackles
the issues mentioned above regarding the objective function and computational
efficiency. The performance of GPMPC is evaluated by simulations on two non-
trivial trajectories.
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2 Quadrotor System Modelling Using GP

The quadrotor can be viewed as a 6 Degree-of-Freedom (DOF) rigid body with
generalized coordinates q = [x, y, z, φ, θ, ψ]T ∈ R6, where x, y, z denotes the quadro-
tor’s positions w.r.t. earth-fixed frame (E-frame) and φ, θ, ψ represents quadrotor’s
attitudes w.r.t. body-fixed frame (B-Frame). Motion is controlled by a main thrust
U1 and three torques U2, U3 and U4. Thus it is an underactuated system. Further-
more, the dynamical model of the quadrotor is defined by the state-space function
q̈ = fq(q, q̇, U1, U2, U3, U4) which is usually nonlinear [34]. In order to simplify
the control of the quadrotor, the system is typically decomposed into two subsys-
tems – a translational subsystem and a rotational subsystem. Let the system state
of the translational subsystem be xξ = [x, ẋ, y, ẏ, z, ż]T ∈ R6 and its control be

uξ = [U1, ux, uy]T ∈ R3. The dynamics of this subsystem can be described by [34]

ẋξ = fξ

(
xξ,uξ

)
+ εξ (1)

where fξ : R6 × R3 → R6 is nonlinear and is usually corrupted by white noises

εξ ∈ R6. ux and uy are two intermediate controls to actuate the translational
subsystem and are given by

ux = cosφ sin θ cosψ + sinφ sinψ

uy = cosφ sin θ sinψ − sinφ cosψ
(2)

Similarly, let xη = [φ, φ̇, θ, θ̇, ψ, ψ̇]T ∈ R6 and uη = [U2, U3, U4]T ∈ R3 be the
state and control for the rotational subsystem. Its system equation is given by [34]

ẋη = fη (xη,uη) + εη (3)

where fη : R6 ×R3 → R6 is another nonlinear function and εη ∈ R6 represents the
white noise.

2.1 GP Modelling

The system equations (1) and (3) of both subsystems can be expressed in the
following general form in the discrete-time domain by

xk+1 = f(xk,uk) + wk (4)

where xk ∈ Rn denotes an n-dimensional state vector and uk ∈ Rm represents
an m-dimensional input vector at the sampling time k. f : Rn × Rm → Rn is a
discrete nonlinear function, and wk ∈ Rn is Gaussian white noise. To learn such
an unknown function f(·) using GP modelling techniques, a natural choice for
the model inputs and outputs are the state-control tuple x̃k = (xk,uk) ∈ Rn+m
and the next state xk+1 respectively. However, in practice, the difference ∆xk =
xk+1 − xk ∈ Rn is usually smaller less than the values of xk. Thus it is more
advantageous to use ∆xk as the model output instead [9].

A GP model is completely specified by its mean and covariance function [35].
Assuming that the mean of the model input x̃k is zero, the squared exponential

covariance is given by K(x̃i, x̃j) = σ2s exp(−1

2
(x̃i − x̃j)

TΛ(x̃i − x̃j)) + σ2n, where i
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and j denote two sampling time steps. The parameters σ2s , σ
2
n and the entries of

matrix Λ ∈ R(n+m)×(n+m) (usually is a diagonal matrix) are referred to as the
hyperparameters θ of a GP model. Given D training inputs X̃ = [x̃1, · · · , x̃D] ∈
R(n+m)×D and their corresponding training targets y = [∆x1, · · · ,∆xD]T ∈ RnD,
the joint distribution between y and a test target ∆x∗k corresponding to the test
input x̃∗k at sampling time k is assumed to follow a Gaussian distribution. That is

p

(
y

∆x∗k

)
∼ N

(
0,

K(X̃, X̃) + σnI K(X̃, x̃∗k)

K(x̃∗k, X̃) K(x̃∗k, x̃
∗
k)

)
(5)

where N (·) denotes a multivariate Gaussian distribution and 0 ∈ RnD is a zero vec-
tor. In addition, the posterior distribution over the observations can be obtained
by restricting the joint distribution to only contain those targets that agree with
the observations. This is achieved by conditioning the joint distribution on the ob-
servations, and results in the predictive mean and variance function as follows [35]

m(x̃∗k) = Ef [∆x∗k] = K(x̃∗k, X̃)K−1
σ y (6a)

σ2(x̃∗k) = Varf [∆x∗k] = K(x̃∗k, x̃
∗
k) (6b)

−K(x̃∗k, X̃)K−1
σ K(X̃, x̃∗k)

where Kσ = K(X̃, X̃)+σnI. The state at the next sampling time k+1 also follows
a Gaussian distribution. That is

p(xk+1) ∼ N (µk+1,Σk+1) (7)

where

µk+1 = xk +m(x̃∗k) (8a)

Σk+1 = σ2(x̃∗k) (8b)

Typically, the hyperparameters of the GP model are learned by maximizing
the log-likelihood function given by

log p(y|X̃,θ) =− 1

2
yTK−1

σ y − 1

2
log
∣∣∣K−1

σ

∣∣∣
− D

2
log(2π)

(9)

This results in a nonlinear non-convex optimization problem that is traditionally
solved by using Conjugate Gradient (CG) or Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithms.

2.2 Uncertainty propagation

With the GP model obtained, one-step-ahead predictions can be made by using
(6) and (8). When multiple-step predictions are required, the conventional way
is to iteratively perform multiple one-step-ahead predictions using the estimated
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mean values. However, this process does not take into account the uncertainties in-
troduced by each successive prediction. This issue has been shown to be important
in time-series predictions [14].

The uncertainty propagation problem can be dealt with by assuming that
the joint distribution of the training inputs is uncertain and follows a Gaussian
distribution. That is,

p(x̃k) = p
(
xk,uk

)
∼ N (µ̃k, Σ̃k) (10)

with mean and variance given by

µ̃k = [µk,E [uk]]T (11a)

Σ̃k =

[
Σk Cov [xk,uk]

Cov [uk,xk] Var [uk]

]
(11b)

where Cov [xk,uk] = E [xkuk] − µkE [uk]. Here, E [uk] and Var [uk] are the mean
and variance of the system controls.

The exact predictive distribution of the training target could then be obtained
by integrating over the training input distribution:

p(∆x∗k) =

∫
p(f(x̃∗k)|x̃∗k)p(x̃∗k)dx̃∗k (12)

However, this integral is analytically intractable. Numerical solutions can be ob-
tained using Monte-Carlo simulation techniques. In [5], a moment-matching based
approach is proposed to obtain an analytical Gaussian approximation. The mean
and variance at an uncertain input can be obtained through the laws of iterated
expectations and conditional variances respectively [9]. They are given by

m(x̃∗k) = Ex̃∗
k

[
Ef
[
∆x∗k

]]
(13a)

σ2(x̃∗k) = Ex̃∗
k

[
Varf

[
∆x∗k

]]
+ Varx̃∗

k

[
Ef
[
∆x∗k

]]
(13b)

Equation (8) then becomes

µk+1 =µk +m(x̃∗k) (14a)

Σk+1 =Σk + σ2(x̃∗k) (14b)

+ Cov
[
xk,∆xk

]
+ Cov

[
∆xk,xk

]
The computational complexity of GP inference using (13) is O(D2n2(n+m))

which is quite high. Hence, GP is normally only suitable for problems with lim-
ited dimensions (under 12 as suggested by most publications) and limited size of
training data. For problems with higher dimensions, sparse GP approaches [33]
are often used.
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Fig. 1: The Overall Control Scheme for Quadrotor

3 Control Problem Formulation

3.1 MPC Problem for Subsystems

With the quadrotor system decomposed into two subsystems, a hierarchical struc-
ture as shown in Figure 1 can be used for the controller [34,2]. In the outer loop,
the translational subsystem is controlled to follow a sequence of desired positions
[xd, yd, zd]

T . The optimal control U1 and two intermediate controls ux and uy are
obtained by minimizing the tracking errors. With ψd = 0, the desired attitudes
θd and φd can be obtained using (2). Then, the rotational subsystem’s attitudes
[φ, θ, ψ]T are tuned to achieve the given target values in the inner loop. By mini-
mizing attitude errors, the optimal controls U2, U3 and U4 can be obtained. Finally,
the optimal control inputs U1, U2, U3 and U4 are applied to the quadrotor.

For a horizon of H ≥ 1, the discrete MPC trajectory tracking problem in the
outer loop is given by

min
uξ(·)

H∑
i=1

{∥∥∥xξk+i − rξk+i

∥∥∥2
Qξ

+
∥∥∥uξk+i−1

∥∥∥2
Rξ

}
(15a)

s.t. xξk+i+1 = f1(xξk+i,u
ξ
k+i−1) (15b)

xξmin ≤ xξk+i ≤ xξmax (15c)

uξmin ≤ uξk+i−1 ≤ uξmax (15d)

where the f1(·) represents the GP model of the translational subsystem.
∥∥ · ∥∥

Qξ

and
∥∥ · ∥∥

Rξ denote the two 2-norms weighted by positive definite matrices Qξ

and Rξ respectively. xξk+i and uξk+i−1 are the system states and control inputs,

and rξk+i = [xd,k+i, yd,k+i, zd,k+i]
T denotes the desired positions at time k + i. In

addition, xξmax ≥ xξmin and uξmax ≥ uξmax are the upper and lower bounds of the
system states and control inputs respectively.
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In the same way, for the inner loop, the discrete MPC optimization problem
is given by

min
uη(·)

H∑
i=1

{∥∥∥xηk+i − rηk+i

∥∥∥2
Qη

+
∥∥∥uηk+i−1

∥∥∥2
Rη

}
(16a)

s.t. xηk+i+1 = f2(xηk+i,u
η
k+i−1) (16b)

xηmin ≤ xηk+i ≤ xηmax (16c)

uηmin ≤ uηk+i−1 ≤ uηmax (16d)

where f2(·) represents the GP model of the rotational subsystem.
Problems (15) and (16) can be rewritten in the following general form:

V∗k = min
u(·)
J (xk,uk−1, rk) (17a)

s.t. xk+i|k = f(xk+i−1|k,uk+i−1) (17b)

xmin ≤ xk+i|k ≤ xmax (17c)

umin ≤ uk+i−1 ≤ umax (17d)

i = 1, · · · , H

with the quadratic cost function

J (xk,uk−1, rk)

=
H∑
i=1

{∥∥xk+i − rk+i
∥∥2
Q

+
∥∥uk+i−1

∥∥2
R

} (18)

It should be noted that the control horizon is assumed to be equal to the prediction
horizon H in this paper. In the rest of this article, the cost function J (xk,uk−1, rk)
shall be rewritten as J (xk,uk−1) for brevity.

3.2 MPC with GP Models

When the dynamical system is described by a GP model, the original problem
(17) becomes a stochastic one [16]. The minimization should be performed over
the expected value of J (·) instead and the constraints are modified as follows.

V∗k = min
u(·)

E
[
J (xk,uk−1)

]
(19a)

s.t. p(xk+1|xk) ∼ N (µk+1,Σk+1) (19b)

umin ≤ uk+i−1 ≤ umax (19c)

p
{
xk+i|k ≥ xmin

}
≥ η (19d)

p
{
xk+i|k ≤ xmax

}
≥ η (19e)

where η denotes a confidence level. For η = 0.95, the chance constraints (19d) and
(19e) are equivalent to

µk+i − 2Σk+i ≥ xmin (20a)

µk+i + 2Σk+i ≤ xmax (20b)
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Given (18),

E
[
J (xk,uk−1)

]
= E

[ H∑
i=1

{∥∥xk+i − rk+i
∥∥2
Q

+
∥∥uk+i−1

∥∥2
R
}
]

=
H∑
i=1

E
[∥∥xk+i − rk+i

∥∥2
Q

+
∥∥uk+i−1

∥∥2
R

]

=
H∑
i=1

{
E
[∥∥xk+i − rk+i

∥∥2
Q

]
+ E

[∥∥uk+i−1

∥∥2
R

]}
(21)

In practice, the controls are deterministic. Hence, E
[
u2
k

]
= u2

k and (21) becomes

E
[
J (xk,uk−1)

]
=

H∑
i=1

{
E

[∥∥xk+i − rk+i
∥∥2
Q

]
+
∥∥uk+i−1

∥∥2
R

}

=
H∑
i=1

{∥∥µk+i − rk+i
∥∥2
Q

+
∥∥uk+i−1

∥∥2
R

+ trace
(
QΣk+i

)}
= h (µk,uk−1)

(22)

The elaboration of (22) can be found in Appendix A. With this cost function and
the state constraints (20), we are able to relax the original stochastic optimiza-
tion problem (19) to a deterministic nonlinear one. Furthermore, the resulting
deterministic cost function involves the model variance Σ. This allows model un-
certainties to be explicitly included in the computation of optimized controls.

4 Proposed Solution

Solving the constrained MPC optimization problem (22) with state constraints
(20) is not simple because it is typically nonlinear and non-convex. Solving non-
convex problems due to they are computationally complicated and have multiple
local optima. This significantly limits the application of MPC in real world prob-
lems. An effective and efficient solution method is therefore very important [36,
43,38,39,37,40]. A conventional approach is to use derivative-based methods such
as Sequential Quadratic Programming (SQP) and interior-point algorithms [10].
When the derivatives of the cost function are unavailable or are too difficult to
compute, they could be iteratively approximated by using sampling methods [28,
27]. An alternative solution is to use evolutionary algorithms such as Particle
Swarm Optimization (PSO) [44]. A more complete review of solution methods can
be found in [10].

In this section, we present our proposed solution which is by local linearization.
This allows the original problem to be relaxed into a convex one which can then
be solved efficiently by active-set methods.
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4.1 GP Based Local Dynamical Model

There are many different ways by which a GP model could be linearised. In [3],
a GP based local dynamical model allows standard robust control methods to be
used on the partially unknown system directly. Another GP based local dynamical
model is proposed in [32] to integrate GP model with dynamic programming. In
these two cases, the nonlinear optimization problems considered are unconstrained.

In this paper, we propose a different GP based local model. In this local model,

xk in (4) is replaced by sk = [µk,vec(
√
Σk)]T ∈ Rn+n

2

. Here, vec(·) denotes the
vectorization of a matrix 1 Hence (4) becomes

sk+1 = F ′ (sk,uk) (23)

Linearizing at the operating point (s∗k,u
∗
k) where s∗k = [µ∗k,vec(

√
Σ∗k)]T , we have

∆sk+1 =
∂F ′

∂sk
∆sk +

∂F ′

∂uk
∆uk (24)

Here, ∆sk = sk − s∗k and ∆uk = uk − u∗k. The Jacobian matrices are

∂F ′

∂sk
=


∂µk+1

∂µk

∂µk+1

∂
√
Σk

∂
√
Σk+1

∂µk

∂
√
Σk+1

∂
√
Σk

 ∈ R(n+n2)×(n+n2) (25a)

∂F ′

∂uk
=


∂µk+1

∂uk
∂
√
Σk+1

∂uk

 ∈ R(n+n2)×m (25b)

with the entries given by

∂µk+1

∂
√
Σk

=
∂µk+1

∂Σk

∂Σk
∂
√
Σk

(26a)

∂
√
Σk+1

∂µk
=
∂
√
Σk+1

∂Σk+1

∂Σk+1

∂µk
(26b)

∂
√
Σk+1

∂
√
Σk

=
∂
√
Σk+1

∂Σk+1

∂Σk+1

∂Σk

∂Σk
∂
√
Σk

(26c)

∂
√
Σk+1

∂uk
=
∂
√
Σk+1

∂Σk+1

∂Σk+1

∂uk
(26d)

1 Σk is a real symmetric matrix therefore can be diagonalized. The square root of a diagonal
matrix can simply be obtained by computing the square roots of diagonal entries.
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Since
∂
√
Σk

∂Σk
=

1

2
√
Σk

and
∂
√
Σk+1

∂Σk+1
=

1

2
√
Σk+1

, they can be expressed as

∂µk+1

∂Σk
=
∂µk+1

∂µ̃k

∂µ̃k
∂Σk

+
∂µk+1

∂Σ̃k

∂Σ̃k
∂Σk

(27a)

∂Σk+1

∂µk
=
∂Σk+1

∂µ̃k

∂µ̃k
∂µk

+
∂Σk+1

∂Σ̃k

∂Σ̃k
∂µk

(27b)

∂Σk+1

∂Σk
=
∂Σk+1

∂µ̃k

∂µ̃k
∂Σk

+
∂Σk+1

∂Σ̃k

∂Σ̃k
∂Σk

(27c)

∂Σk+1

∂uk
=
∂Σk+1

∂µ̃k

∂µ̃k
∂uk

+
∂Σk+1

∂Σ̃k

∂Σ̃k
∂uk

(27d)

∂µ̃k
∂Σk

and
∂Σ̃k
∂Σk

can be easily obtained based on (11). Elaborations of
∂Σk+1

∂µ̃k
and

∂Σk+1

∂Σ̃k
can be found in [9].

4.2 Problem Reformulation

Based on the local model derived above, define the state variable as

Zk+1 =
[
sk+1|k, · · · , sk+H|k

]T ∈ RH(n+n2)

= [µk+1,
√
Σk+1, · · · ,µk+H ,

√
Σk+H ]T (28)

Also, let

Uk = [uk, · · · ,uk+H−1]T ∈ RHm (29)

r∗k+1 = [rk+1,0, · · · , rk+H ,0]T ∈ RH(n+n2) (30)

Problem (19) then becomes

min
U

{∥∥Zk+1 − r∗k+1

∥∥2
Q̃

+ ‖Uk+1‖2R̃
}

(31a)

s.t. IHnxmin ≤MzZk+1 ≤ IHnxmax (31b)

IHmumin ≤ Uk+1 ≤ IHmumax (31c)

where
Q̃ = diag{[Q,diag{vec(Q)}, · · · ,Q,

diag{vec(Q)}]} ∈ RH(n+n2)×H(n+n2)
(32)

R̃ = diag{[R, · · · ,R]} ∈ RHm×Hm, Ia ∈ Ra is the identity vector, and

Mz =


ITn 2ITn2 0 0 · · · 0

0 0 ITn 2ITn2 · · · 0
...

...
...

...
...

...

0 0 0 · · · ITn 2ITn2

 ∈ RH×H(n+n2) (33)
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Let Tu ∈ RHm×Hm be a lower triangular matrices with unit entries. Then,

Uk = IHmuk−1 + Tu∆Uk. (34)

The change in Zk+1 can be expressed as

∆Zk+1 = Ã∆sk + B̃∆Uk (35)

based on the local model, with the state and control matrices given by

Ã =
[
A,A2, · · · ,AH

]T
∈ RH(n+n2) (36a)

B̃ =


B 0 · · · 0
AB B · · · 0

...
...

...
...

AH−1B AH−2B · · · B

 ∈ RH(n+n2)×Hm (36b)

where A and B are the two Jacobian matrices (25) and (26) respectively. The
corresponding state variable Zk+1 is therefore given by

Zk+1 = sk + Tz
(
Ã∆sk + B̃∆Uk

)
(37)

where Tz ∈ RH(n+n2)×H(n+n2) denotes a lower triangular matrix with unit entries.
Based on (34) and (37), problem (31) can be expressed in a more compact form

as

min
∆U

1

2
‖∆Uk‖2Φ +ψT∆Uk + C (38a)

s.t. ∆Umin ≤
[

Tu
TzB̃

]
∆Uk ≤ ∆Umax (38b)

where

Φ =B̃TTTz Q̃TzB̃ + TTu R̃Tu ∈ RHm×Hm (39a)

ψ =2(skQ̃TzB̃ +∆skÃ
T Q̃B̃ (39b)

− r∗k+1Q̃TzB̃ + uk−1R̃Tu) ∈ RHm (39c)

C =(s2k + r∗k+1)Q̃ + 2sk∆skQ̃TzÃ (39d)

+ u2
k−1R̃ +∆s2kÃ

T Q̃Ã (39e)

− 2r∗k+1(skQ̃−∆skQ̃TzÃ) (39f)

∆Umin =

[
IHm(umin − uk−1)

IH(n+n2)(xmin − sk −TzÃ∆sk)

]
(39g)

∆Umax =

[
IHm(umax − uk−1)

IH(n+n2)(xmax − sk −TzÃ∆sk)

]
(39h)

Since Q̃, R̃,Tz and Tu are positive definite, Φ is also positive definite. Hence (38) is
a constrained Quadratic Programming (QP) problem and is strictly convex. The
solution will therefore be unique and satisfies the Karush-Kahn-Tucker (KKT)
conditions.
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4.3 Optimization Using Active-Set

The optimization problem (38) can be solved by an active-set method [13]. It
iteratively seeks an active (or working) set of constraints and solve an equality
constrained QP problem until the optimal solution is found. The advantage of
this method is that accurate solutions can still be obtained even when they are
ill-conditioned or degenerated. In addition, it is conceptually simple and easy to
implement. A warm-start technique could also be used to accelerate the optimiza-
tion process substantially.

Let G = [Tu,TzB̃]T , the constraint (38b) can be written as[
G

−G

]
∆U ≤

[
∆Umax

−∆Umin

]
(40)

Ignoring the constant term C, problem (38) becomes

min
∆U

1

2
‖∆Uk‖2Φ +ψT∆Uk (41a)

s.t. G̃∆Uk ≤ ∆̃U (41b)

where G̃ = [G,−G]T ∈ R2H(m+n+n2)×Hm and ∆̃U = [∆Umax,−∆Umin]T ∈
R2H(m+n+n2).

Let Π∆U be the set of feasible points, and I = {1, · · · , 2H(m + n + n2)} be
the constraint index set. For a feasible point ∆U∗k ∈ Π∆U, the index set for the
active set of constraints is defined as

A(∆U∗k) = {i ⊆ I|G̃i∆U∗k = ∆̃U,i} (42)

where G̃i is the ith row of G̃ and ∆̃U,i is the ith row of the ∆̃U. The inactive set
is therefore given by

B(∆U∗k) = I \ A(∆U∗k)

= {i ⊆ I|G̃i∆U∗k < ∆̃U,i}
(43)

Given any iteration j, the working setWj
k contains all the equality constraints plus

the inequality constraints in the active set. The following QP problem subject to
the equality constraints w.r.t. Wj

k is considered given the feasible points ∆Uj
k ∈

Π∆U:

min
δj

1

2

∥∥∥∆Uj
k + δj

∥∥∥2
Φ

+ψT (∆Uj
k + δj) (44a)

= min
δj

1

2

∥∥∥δj∥∥∥2
Φ

+ (ψ +Φ∆Uj
k)T δj (44b)

+
1

2

∥∥∥∆Uj
k

∥∥∥2
Φ

+ψT∆Uj
k︸ ︷︷ ︸

constant

s.t. G̃i(∆Uj
k + δj) = ∆̃U,i, i ∈ W

j
k (44c)
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This problem can be simplified by ignoring the constant term to:

min
δj

1

2

∥∥∥δj∥∥∥2
Φ

+ (ψ +Φ∆Uj
k)T δj (45a)

= min
δj

1

2
δj
T
Φδj + (ψ +Φ∆Uj

k)T δj (45b)

s.t. G̃iδ
j = ∆̃U,i − G̃i∆Uj

k, i ∈ W
j
k (45c)

By applying the KKT conditions to problem (45), we can obtain the following
linear equations: [

Φ G̃T
A

G̃A 0

]
︸ ︷︷ ︸

Lagrangian Matrix

[
δj

λ∗k

]
=

[
−ψ −Φ∆Uj

k

∆̃U,A − G̃A∆Uj
k

]
(46)

where λ∗k ∈ R2H(m+n+n2) denotes the vector of Lagrangian multipliers, G̃A ⊆ G̃

and ∆̃U,A ⊂ ∆̃U are the weighting matrix and the upper bounds of the constraints

w.r.t. Wj
k. Let the inverse of Lagrangian matrix be denoted by[

Φ G̃T
A

G̃A 0

]−1

=

[
L1 LT2
L2 L3

]
(47)

If this inverse exists, then the solution is given by

δj = −L1(ψ +Φ∆Uj
k) + LT2 (∆̃U,A − G̃A∆Uj

k) (48a)

λ∗k = −L2(ψ +Φ∆Uj
k) + L3(∆̃U,A − G̃A∆Uj

k) (48b)

where

L1 = Φ−1 −Φ−1G̃T
A(G̃AΦ

−1G̃T
A)−1G̃AΦ

−1 (49a)

L2 = Φ−1G̃T
A(G̃AΦ

−1 (49b)

L3 = −(G̃AΦ
−1G̃T

A)−1 (49c)

If δj 6= 0, then the set of feasible points ∆Uj
k fails to minimize problem (41).

In this case, the next set of feasible point is computed for the next iteration by
∆Uj+1

k = ∆Uj
k + κjδj with step size

κj = min

{
1, min
i∈B(∆Uj

k)

∆̃U,i − G̃i∆Uj
k

G̃iδj

}
(50)

If κj < 1, the inequality constraint with index q = argmin
i∈B(∆Uj

k)

∆̃U,i − G̃i∆Uj
k

G̃iδj
should

be “activated”, giving the working setWj+1
k =Wj

k∪q. Otherwise, we haveWj+1
k =

Wj
k.

Alternatively, if the solution gives δj = 0, then the current feasible points ∆Uj
k

could be the optimal solution. This can be verified by checking the Lagrangian mul-
tiplier λ∗k = min

i∈Wj
k∩I

λ∗k,i. If λ∗k ≥ 0, the optimal solution of the (41) at sampling
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1 Initialization
the feasible point ∆U0

k ∈Π∆U;

the working set W0 = A(∆U0
k);

2 for j = 0, 1, 2, · · · do
3 Compute the δj and λ∗k by solving the linear equations (46);

4 if δj = 0 then
5 λ∗k = min

i∈Wj
k
∩I

λ∗k,i,

6 p = argmin
i∈Wj

k
∩I

λ∗k,i

7 if λ∗k ≥ 0 then

8 ∆U∗k = ∆Uj
k;

9 Stop.
10 else
11 Wj+1

k =Wj
k \ p;

12 ∆Uj+1
k = ∆Uj

k;
13 end
14 else
15 Compute the step length κj by (50),

16 q = argmin
i∈B(∆U

j
k
)

∆̃U,i − G̃i∆Uj
k

G̃iδj

17 if κj < 1 then
18 ∆Uj+1

k = ∆Uj
k + κjδj ;

19 A(∆Uj+1
k ) = A(∆Uj

k) ∪ q;
20 else
21 ∆Uj+1

k = ∆Uj
k + δj ;

22 A(∆Uj+1
k ) = A(∆Uj

k);
23 end
24 end
25 end

Algorithm 1: Active-set method for solving the resulting convex optimization
problem

time k is found. Otherwise, this inequality constraint indexed by p = argmin
i∈Wj

k∩I
λ∗k,i

should be removed from the current working set, giving us Wj+1
k =Wj

k \ p. Algo-
rithm 1 summarizes the active-set algorithm used in the GPMPC.

4.4 Implementation Issues

The key to solving equation (46) is the inverse of the Lagrangian matrix. However,
G̃A is not always full ranked. Thus the Lagrangian matrix is not always invertible.
This problem can be solved by decomposing G̃A using QR factorization, giving
us GT

A = Q [R 0]T where R ∈ Rm1×m1 is an upper triangular matrix with m1 =

rank(G̃A). Q ∈ RHm×Hm is an orthogonal matrix that can be further decomposed

to Q = [Q1 Q2] where Q1 ∈ RHm×m1 and Q2 ∈ RHm×(Hm−m1). Thus, GT
A = Q =

Q1R and

L1 = Q2(QT2 ΦQ2)−1QT2 (51a)

L2 = Q1R−1T − L1ΦQ1R−1T (51b)

L3 = R−1QT1 ΦL2 (51c)
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The second issue relates to using the appropriate warm-start technique to
improve the convergence rate of the active-set method. For GPMPC, since the
changes in the state between two successive sampling instants are usually quite
small, we can simply use the previous value ∆U∗k at sampling time k as the starting
point ∆U0

k+1 for the next sampling time k+1. This warm-start technique is usually
employed in MPC optimizations because of its proven effectiveness [42].

5 Simulation Results

The performance of GPMPC for quadrotor trajectory tracking is evaluated by
computer simulations. The parameters of translational and rotational subsystems
in the numerical quadrotor system are the same as those used in [2]. All simulations
are independently repeated 50 times on a computer with a 3.40GHz Intelr CoreTM

2 Duo CPU with 16 GB RAM, using Matlabr version 8.1. The simulation results
presented below are the average values from 50 independent trials.

Two non-trivial trajectories are used. They are referred to as “Elliptical” and
“Lorenz” trajectories and are shown as red dotted lines in Figure 4(a) and 4(b))
respectively. The quadrotor subsystems are subject to external Gaussian white
noise with zero mean and unit variance. The constraints on the control inputs of the
translational subsystem are 0 ≤ U1(k) ≤ 100,−0.2 ≤ ux(k) ≤ 0.2,−0.2 ≤ uy(k) ≤
0.2 for the “Elliptical” trajectory, and they are −45 ≤ u1(k) ≤ 0,−2 ≤ ux(k) ≤
2,−2 ≤ uy(k) ≤ 2 for the “Lorenz” trajectory. For the rotational subsystem, all
observations are scaled to the range [0.1, 0.9]. The inputs are scaled accordingly.
This is necessary because the numerical range of the original data is very large.
For example, the unscaled angle φ lies in the range [−1.57, 1.57] while input U4

lies in the range [−3.2, 6.2]× 10−8. Using the scaled data leads to much improved
training results.

To generate observations for GP modelling, the trajectory tracking tasks are
first performed by using the Nonlinear Model Predictive Control (NMPC) strategy
proposed in [17] but without input constraints. For each trajectory, 189 observa-
tions which consist of inputs, states and outputs are collected for use in GP model
training. The initial state and initial control input are zero. The weighting matrices
Q and R are identity matrices. Sampling frequency fs is 1 Hz.

5.1 Modelling Results

The first set of results show how well the GP models are trained with different sizes
of training data. The full set of 189 data are used for testing. As given in Table 1
and 2, the obtained GP models capture the training data well as the training MSE
values are small. The prediction accuracies reflected by the test MSE values show
a sudden drop when sufficiently large training sizes are used. The computational
time required for training averages from approximately 1.12 seconds for a size of
10 to 4.01 seconds for a size of 189.
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Table 1: Prediction training and test MSE values of the GP models in the “Ellip-
tical” tracking problems. (“Trans” denotes the translational subsystem and “Ro-
tate” represents the rotational subsystem.)

Size Training Test
Average

Var

“Trans”

10 2.2485e-4 1.4806 1.0231

50 4.1787e-6 1.2531 0.1074

100 3.0511e-7 1.6733e-6 0.0057

189 1.0132e-7 1.0132e-7 2.4843e-4

“Rotate”

10 2.7443e-6 2.3232e-4 2.1150e-4

50 3.0020e-8 1.0502e-6 1.0853e-4

100 2.8578e-9 7.5105e-8 1.0620e-4

189 1.0457e-9 1.0457e-9 1.0590e-4

Table 2: Prediction training and test MSE values of the GP models in the “Lorenz”
tracking problems. (“Trans” denotes the translational subsystem and “Rotat” rep-
resents the rotational subsystem.)

Size Training Test
Average

Var

“Trans”

10 4.0309e-4 2.6872 4.7156

50 1.1986e-4 1.1820 1.1696

100 6.5945e-6 0.0122 0.0105

189 3.0415e-6 3.0415e-6 1.0870e-4

“Rotate”

10 1.0511e-5 0.0044 3.1641e-4

50 9.4195e-7 4.2896e-5 1.0686e-4

100 3.9616e-8 2.7571e-6 1.0607e-4

189 9.2117e-9 9.2117e-9 1.0566e-4

5.2 Control Results

The GP models used in the control tasks are trained with all 189 observations be-
cause this ensures that the best quality models are obtained. The performance of
using proposed GPMPC scheme is compared with using an exiting GP based MPC
algorithm (referred to as “nonlinear GPMPC” or NMPC below) proposed in [23].
Even though our optimization problem (19) with cost function (22) is more com-
plicated than the one considered in [23], they are essentially similar. In addition,
we choose H = 1 as the prediction horizon. Theoretically, larger values of H is nec-
essary to guarantee the stability of MPC controllers. However, since solving the
nonlinear GPMPC problem with larger values of H effectively is an open problem,
we restrict H to be 1 in order to make proper comparisons. Our previous work
in [7] has demonstrated that the proposed GPMPC can efficiently be used with a
longer horizon.

The control results for the two trajectories are shown in Figures 2 and 3. They
show that NMPC has the best tracking control performance. However, it should
be noted that NMPC does not place any constraints on the control inputs. In
general, the proposed GPMPC is able to closely follow the desired position and
attitude values with constrained control inputs. The overall trajectory tracking
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Fig. 2: Controlled outputs and control inputs by using the proposed GPMPC for
the both two subsystems in the “Elliptical” trajectory

results through using the GPMPC based hierarchical control scheme are depicted
graphically in Figures 4(a) and 4(b).

Even with H = 1, the nonlinear GPMPC requires 220 seconds and 272 seconds
to compute all 189 control inputs for the “Elliptical” and “Lorenz” trajectory
respectively. This is in contrast to the proposed GPMPC algorithm which only
takes 60 seconds and 56 seconds. This demonstrates that the proposed GPMPC
is computationally much more efficient than nonlinear GPMPC.

6 Conclusions

A new MPC algorithm is proposed for the quadrotor trajectory tracking problem
where the quadrotor models are trained from empirical data using GP techniques.
hierarchical control scheme based on a computationally efficient GP based for
the quadrotor trajectory tracking problem. Models of the translational and rota-
tional subsystems are learnt from collected data using GP modelling techniques
rather than by traditional Newtonian analysis. The proposed GPMPC is able to
computationally solve the resulting MPC tracking problems which are originally
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Fig. 3: Controlled outputs and control inputs by using the proposed GPMPC for
the both two subsystems in the “Lorenz” trajectory
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non-convex but can be reformulated as convex ones by using a linearisation of GP
models. The numerical simulation results show that the proposed control scheme
is able to closely track non-trivial trajectories. Its tracking performance is similar
to using an NMPC method even though GPMPC has input constraints while no
input constraints are placed on NMPC. In addition, compared to using an existing
nonlinear GPMPC, the proposed GPMPC based control scheme has the advantage
of solving the MPC problem much efficiently.

Appendix A

First rewrite (22) as follows:

E [J (xk,uk−1)]

= E
[ H∑
i=1

{∥∥xk+i − rk+i
∥∥2
Q

+
∥∥uk+i−1

∥∥2
R
}
]

=
H∑
i=1

{
E
[
(xk+i − rk+i)

TQ(xk+i − rk+i)
]

︸ ︷︷ ︸
probabilistic term

+ uTk+i−1Ruk+i−1︸ ︷︷ ︸
determinisitc term

}
(52)

Let Qab be the entries of Q thus Qab = [Q]ab and εab as the entries of Σk thus
εab = [Σk]ab, the “probabilistic term” can be further derived to

E
[
(xk+i − rk+i)

TQ(xk+i − rk+i)
]

= E
[ N∑
a=1

N∑
b=1

Qab(xk+i,a − rk+i,a)(xk+i,b − rk+i,b)
]

=
N∑
a=1

N∑
b=1

QabE
[
(xk+i,a − rk+i,a)(xk+i,b − rk+i,b)

]

=
N∑
a=1

N∑
b=1

Qab

{
E
[
xk+i,a − rk+i,a

]
E
[
xk+i,b − rk+i,b

]
+ Cov

(
(xk+i,a − rk+i,a), (xk+i,b − rk+i,b)

)
︸ ︷︷ ︸

εab

}

=
N∑
a=1

N∑
b=1

Qab

{
(µk+i,a − rk+i,a)(µk+i,a − rk+i,a) + εab

}

(53)

where
N∑
a=1

N∑
b=1

Qab(µk+i,a − rk+i,a)(µk+i,a − rk+i,a)

= (µk+i − rk+i)
TQ(µk+i − rk+i)

(54)
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and
N∑
a=1

N∑
b=1

Qabεab = trace(QΣk+i) (55)

Therefore, (52) can be obtained by

E [J (xk,uk−1)]

=
H∑
i=1

{
(µk+i − rk+i)

TQ(µk+i − rk+i) + uTk+i−1Ruk+i−1

+ trace(QΣk+i)

}
=

H∑
i=1

{∥∥µk+i − rk+i
∥∥2
Q

+
∥∥uk+i−1

∥∥2
R

+ trace
(
QΣk+i

)}
(56)

References

1. Abdolhosseini, M., Zhang, Y., Rabbath, C.A.: An efficient model predictive control scheme
for an unmanned quadrotor helicopter. Journal of Intelligent & Robotic Systems 70(1-4),
27–38 (2013)

2. Alexis, K., Nikolakopoulos, G., Tzes, A.: Switching model predictive attitude control for
a quadrotor helicopter subject to atmospheric disturbances. Control Engineering Practice
19(10), 1195–1207 (2011)

3. Berkenkamp, F., Schoellig, A.P.: Learning-based robust control: Guaranteeing stability
while improving performance. In: IEEE/RSJ Proceedings of International Conference on
Intelligent Robots and Systems (IROS) (2014)

4. Bouabdallah, S., Noth, A., Siegwart, R.: PID vs LQ control techniques applied to an indoor
micro quadrotor. In: IEEE/RSJ Proceedings of International Conference on Intelligent
Robots and Systems (IROS), vol. 3, pp. 2451–2456. IEEE (2004)

5. Candela, J.Q., Girard, A., Larsen, J., Rasmussen, C.E.: Propagation of uncertainty in
bayesian kernel models-application to multiple-step ahead forecasting. In: IEEE Proceed-
ings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
vol. 2, pp. II–701. IEEE (2003)

6. Cao, G., Lai, E.M.K., Alam, F.: Gaussian process based model predictive control for linear
time varying systems. In: International Workshop on Advanced Motion Control (AMC
Workshop). IEEE (2016)

7. Cao, G., Lai, E.M.K., Alam, F.: Gaussian process model predictive control of unknown
nonlinear systems. IET Control Theory & Applications (2016). URL https://arxiv.org/
abs/1612.01211. Accepted for publication

8. Cao, G., Lai, E.M.K., Alam, F.: Gaussian process model predictive control of Unmanned
Quadrotors. In: International Conference on Control, Automation and Robotics (ICCAR).
IEEE (2016)

9. Deisenroth, M.P.: Efficient reinforcement learning using Gaussian processes. Ph.D. thesis,
Karlsruhe Institute of Technology (2010)

10. Diehl, M., Ferreau, H.J., Haverbeke, N.: Efficient numerical methods for nonlinear MPC
and moving horizon estimation. In: International Workshop on assessment and future
directions on Nonlinear Model Predictive Control, pp. 391–417. Springer, Pavia, Italy
(2008)

11. Dierks, T., Jagannathan, S.: Output feedback control of a quadrotor UAV using neural
networks. IEEE Transactions on Neural Networks 21(1), 50–66 (2010)

12. Doherty, P., Rudol, P.: A UAV search and rescue scenario with human body detection and
geolocalization. In: Advances in Artificial Intelligence, pp. 1–13. Springer (2007)

13. Fletcher, R.: Practical methods of optimization, second edn. Wiley-Interscience Publica-
tion (1987)



Gaussian Process Model Predictive Control of An Unmanned Quadrotor 21

14. Girard, A., Rasmussen, C.E., Candela, J.Q., Murray-Smith, R.: Gaussian process priors
with uncertain input – Application to multiple-step ahead time series forecasting. In:
Advances in Neural Information Processing Systems (NIPS), pp. 545–552. MIT (2003)

15. Grancharova, A., Johansen, T.A., Tøndel, P.: Computational aspects of approximate ex-
plicit nonlinear model predictive control. In: Proceedings of the International Workshop
on Assessment and Future Directions of Nonlinear Model Predictive Control, pp. 181–192.
Springer (2007)

16. Grancharova, A., Kocijan, J., Johansen, T.A.: Explicit stochastic predictive control of
combustion plants based on Gaussian process models. Automatica 44(6), 1621–1631 (2008)
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