
Use of Data Compression Techniques

For

Optimizing queries in an RFID Network

Shekhar Babanrao Teke

A thesis submitted to

Auckland University of Technology

in partial fulfilment of the requirements for the degree of

Master of Computer and Information Sciences (MCIS)

18th April 2012

Primary Supervisor: Dr. Russel Pears

School of Computing & Mathematical Sciences

Declaration

I hereby declare that this submission is my own work and that, to the best

of my knowledge and belief, it contains no material previously published or

written by another person nor material which to a substantial extent has been

accepted for the qualification of any other degree or diploma of a University or

other institution of higher learning, except where due acknowledgement is made

in the acknowledgements.

Printed name: SHEKHAR BABANRAO TEKE

Signature:

Date:

1/124

Abstract

 This Research investigates the effectiveness of Radio Frequency Identification (RFID)

technology in navigating through a network of RFID tags which helps to direct a given person to

a desired destination. Due to storage capacity constraints, it is not feasible to store exact

information in the form of a map on every tag in the network. As such, each tag contains only a

partial map which contains the greatest level of detail on the locations of its immediate

neighbors and a lower level of detail on locations of tags that are outside of its neighborhood.

This storage scheme enables a person equipped with an RFID reader to decide which

neighboring tag should be chosen next on the path towards the eventual destination.

The research applies different compression schemes based on the Haar Wavelet techniques and

investigates the effect of these on the length of the path to the desired destination.

2/124

Acknowledgment

 I wish to express my gratitude towards my supervisor, Dr Russel Pears for his patience,

kind support, guidance and advice given throughout this research, without whom I could not able

to complete the study.

 I am also sincerely thankful to my friends, colleagues to encourage me and support me in

completion of my study. I am also thankful to staff of the School of Computing and

Mathematical Science for their kindness and encouragement during my study. Lastly, I am

thankful to AUT library that provides me all literatures in terms of books, e-journals which are

helpful in my study.

3/124

Table of Contents

Abstract .. 1
Acknowledgment ... 2
List of Tables .. 5
List of Figures .. 7

Chapter 1 : Introduction ... 8
1.1 Research Background .. 8
1.2 Motivation ... 9
1.3 Organization of the Thesis ... 10

Chapter 2 : Literature Review .. 11
2.1 Introduction ... 11
2.2 RFID Technology Overview ... 11

2.3 Applications of RFID Technology .. 12
2.4 Data Compression Techniques .. 13

2.4.1 Huffman Compression ... 14
2.4.2 Arithmetic Coding ... 15

2.4.3 Wavelet Compression .. 18
2.4.4 JPEG Compression .. 21
2.4.5 MPEG Compression .. 22

Chapter 3 : Haar Wavelet ... 24
3.1 One-Dimensional Haar Wavelet .. 24

3.2 Multi-Dimensional Haar Wavelet ... 25
3.3 Why Haar Wavelet ?.. 29

Chapter 4: Research Methodology ... 30
4.1 Introduction ... 30

4.2.1 Constructive Research ... 31
4.2.2 Experiment ... 31

4.3 Scenarios for experimentation ... 32

4.4 Important factors in the Navigation Algorithm ... 33
4.4.1 Distance ... 33

4.4.2 Angle .. 34
4.5 Experiment Prototype .. 34

4.6 Experiment Data .. 35
4.7 Algorithms ... 36

4.7.1. Tag Creation Algorithm .. 36
4.7.2. Compression Algorithm .. 36
4.7.3. Navigation Algorithm ... 37

Chapter 5: Experimental Study and Results ... 40
5.1 Introduction ... 40
5.2 Data Compression ... 40

5.2.1 Scenario 1 : Tags contains all wavelet coefficients ... 40
5.2.2 Scenario 2 : Standard Decomposition Method .. 45

5.2.3 Scenario 3: Tags storing coefficients depending on tags' resolution 50

5.2.4 Scenario 4: Non-Standard Decomposition Algorithm ... 55

5.3 Navigation Experiments .. 59
5.3.1 Scenario 1: All Coefficients are stored in the tag .. 60
5.3.2 Scenario 2: Standard Decomposition method .. 68
5.3.3 Scenario 3: Store Wavelet Coefficients using tag position .. 79

4/124

5.3.4 Scenario 4: Non-Standard Wavelet Decomposition Method ... 84

Chapter 6: Experimental Analysis .. 90

6.1 Effects of Different Compression Schemes... 90

6.2 Navigation Experiment .. 94
Chapter 7: Conclusion .. 96
Application of the system in real world scenarios ... 97
Strengths and Limitations ... 97
Future Research Directions .. 98

REFERENCES ... 99
ANNEXURES .. 102

Annexure 1 : Tag Creation Code ... 102
Annexure 2 : Wavelet Decomposition in Scenario 1 .. 104
Annexure 3 : Wavelet Decomposition in Scenario 2 (Standard Decomposition) 106

Annexure 4 : Wavelet Decomposition in Scenario 3 .. 109

Annexure 5 : Wavelet Decomposition in Scenario 4(Non-Standard Decomposition) 113

Annexure 6 : Wavelet Reconstruction in Scenario 1 ... 115
Annexure 7 : Wavelet Reconstruction in Scenario 2(Standard Decomposition) 116
Annexure 8 : Wavelet Reconstruction in Scenario 3 ... 118
Annexure 9 : Wavelet Reconstruction in Scenario 4 (Non-Standard Decomposition) 119
Annexure 10 : Navigation Algorithm Coding (Finding Next Tag to move) 121

5/124

List of Tables

Table 1: Tag coordinates used in all experiments .. 35

Table 2: List of wavelet coefficients for 8 tags and 16 tags in Scenario 1 ... 40
Table 3: List of wavelet coefficients with threshold = 0.50 for 8 tags and 16 tags in Scenario 1 41
Table 4: Compression Ratio for threshold = 0.50 in Scenario 1 .. 41
Table 5: List of wavelet coefficients with threshold = 1 for 8 tags and 16 tags in Scenario 1 41
Table 6: Compression Ratio for threshold = 1 in Scenario 1 ... 41

Table 7: List of wavelet coefficients with threshold = 25% for 8 tags and 16 tags in Scenario 1 42

Table 8: Compression Ratio for threshold = 25% in Scenario 1 .. 42

Table 9: Reconstructed values for X-Axis and Y-Axis for 8 tags when all wavelet coefficients

are stored and no threshold has been applied ... 42
Table 10: Reconstructed values for X-Axis and Y-Axis for 16 tags when all wavelet coefficients

are stored and no threshold has been applied ... 43
Table 11: Reconstructed values for X-Axis and Y-Axis for 8 tags when all wavelet coefficients

are stored and threshold = 0.50 has been applied ... 43
Table 12: Reconstructed values for X-Axis and Y-Axis for 16 tags when all wavelet coefficients

are stored and threshold = 0.50 has been applied ... 43
Table 13: Reconstructed values for X-Axis and Y-Axis for 8 tags when all wavelet coefficients

are stored and threshold = 1 has been applied .. 43
Table 14: Reconstructed values for X-Axis and Y-Axis for 16 tags when all wavelet coefficients

are stored and threshold = 1 has been applied .. 44
Table 15: Reconstructed values for X-Axis and Y-Axis for 8 tags when all wavelet coefficients

are stored and threshold = 25% has been applied .. 44
Table 16: Reconstructed values for X-Axis and Y-Axis for 16 tags when all wavelet coefficients

are stored and threshold = 1 has been applied .. 44

Table 17: Reconstructed values for X-Axis and Y-Axis for 8 tags when Standard Decomposition

method is used and no threshold has been applied ... 46

Table 18: Reconstructed values for X-Axis and Y-Axis for 16 tags when Standard

Decomposition method is used and no threshold has been applied ... 47
Table 19: Reconstructed values for X-Axis and Y-Axis for 8 tags when Standard Decomposition

method is used and threshold =0.50 has been applied ... 47

Table 20: Reconstructed values for X-Axis and Y-Axis for 16 tags when Standard

Decomposition method is used and threshold = 0.50 has been applied ... 48

Table 21: Compression Ratio for threshold = 0.50 in Scenario 2 .. 48
Table 22: Reconstructed values for X-Axis and Y-Axis for 8 tags when Standard Decomposition

method is used and threshold = 25% has been applied .. 49
Table 23: Reconstructed values for X-Axis and Y-Axis for 16 tags when Standard

Decomposition method is used and threshold = 25% has been applied... 49

Table 24: Compression Ratio for threshold = 25% in Scenario 2 .. 50
Table 25: Reconstructed values for X-Axis and Y-Axis for 8 tags when Wavelet Coefficients as

per the tag resolution are stored ... 54
Table 26: Reconstructed values for X-Axis and Y-Axis for 16 tags when Wavelet Coefficients as

per the tag resolution are stored ... 55
Table 27: Compression Ratio in Scenario 3 ... 55
Table 28: Reconstructed values for X-Axis and Y-Axis for 16 tags when Non-standard

Decomposition method is used and no threshold has been applied ... 56
Table 29: Reconstructed values for X-Axis and Y-Axis for 16 tags when Non-standard

6/124

Decomposition method is used and threshold = 0.50 has been applied ... 57

Table 30: Compression Ratio for threshold = 0.50 in Scenario 4 .. 57
Table 31: Reconstructed values for X-Axis and Y-Axis for 16 tags when Non-standard

Decomposition method is used and threshold = 25% has been applied... 58
Table 32: Compression Ratio for threshold = 25% in Scenario 4 .. 58
Table 33: Experiment Readings using 8 tags in Scenario 1 ... 62

Table 34: Experiment Readings using 8 tags using different threshold values in Scenario 1 62
Table 35: Experiments Readings for applying threshold = 0 in 16-tags network in Scenario 1 65
Table 36: Experiments Readings for applying threshold = 0.50 in 16-tags network in Scenario 1 ... 67
Table 37: Experiments Readings for applying threshold = 25% in 16-tags network in Scenario 1 .. 68
Table 38: Experiment Readings using 8-tags network in Scenario 2 .. 69

Table 39: Experiment Readings using 8-tags network for applying different threshold values in

Scenario 2 ... 70

Table 40: Experiments Readings for applying threshold = 0 in 16-tags network in Scenario 2 73
Table 41: Experiments Readings for applying threshold = 0.50 in 16-tags network in Scenario 2 ... 76
Table 42: Experiments Readings for applying threshold = 25% in 16-tags network in Scenario 3 .. 78
Table 43: Experiments Readings in 8-tags network in Scenario 3 .. 80
Table 44: Experiments Readings in 16-tags network in Scenario 3 .. 84

Table 45: Experiments Readings for applying threshold = 0 in 16-tags network in Scenario 4 85
Table 46: Experiments Readings for applying threshold = 0.50 in 16-tags network in Scenario 4 ... 87
Table 47: Experiments Readings for applying threshold = 25% in 16-tags network in Scenario4 .. 89

7/124

List of Figures

Figure 4.1: Basic Research Paradigms……………………………………………………… 30

Figure 4.2: Experimentation Plan…………………………………………………………... 33

Figure 4.3: Tag distribution in 2 dimensional space……………………………………….. 35

Figure 4.4: Overview of tag creation and encoding process……………………………….. 38

Figure 4.5: Overview of the navigation process……………………………………………. 39

Figure 5.1: Graphical representation of 8 tags……………………………………………… 52

Figure 5.2: Graphical representation of Group 2 tags after data construction in Scenario 3.. 53

Figure 5.3: Graphical representation of Group 1 tags after data construction in Scenario 3.. 53

Figure 5.4: Screenshot for applying 0 threshold in Scenario 1……………………………... 63

Figure 5.5: Navigation Path for applying 0 threshold in Scenario 1……………………….. 64

Figure 5.6: Screenshot for applying 0.50 threshold in Scenario 1…………………………. 65

Figure 5.7: Navigation Path for applying 0.50 threshold in Scenario 1……………………. 66

Figure 5.8: Screenshot for applying 25% threshold in Scenario 1…………………………. 67

Figure 5.9: Navigation Path for applying 25% threshold in Scenario 1……………………. 68

Figure 5.10: Screenshot for applying 0 threshold in Scenario 2……………………………. 71

Figure 5.11: Navigation Path for applying 0 threshold in Scenario 2……………………… 72

Figure 5.12: Screenshot for applying 0.50 threshold in Scenario 2………………………… 74

Figure 5.13: Navigation Path for applying 0.50 threshold in Scenario 2…………………... 75

Figure 5.14: Screenshot for applying 25% threshold in Scenario 2………………………... 77

Figure 5.15: Navigation Path for applying 25% threshold in Scenario 2…………………... 78

Figure 5.16: Screenshot for Navigation path calculation in Scenario 3……………………. 82

Figure 5.17: Navigation Path in Scenario 3………………………………………………… 83

Figure 5.18: Screenshot for applying 0 threshold in Scenario 4…………………………… 84

Figure 5.19: Navigation Path for applying 0 threshold in Scenario 4……………………… 85

Figure 5.20: Screenshot for applying 0.50 threshold in Scenario 4………………………… 86

Figure 5.21: Navigation Path for applying 0.50 threshold in Scenario 4…………………... 87

Figure 5.22: Screenshot for applying 25% threshold in Scenario 4………………………... 88

Figure 5.23: Navigation Path for applying 25% threshold in Scenario 4………………….. 88

8/124

Chapter 1 : Introduction

1.1 Research Background

 The volume of data processed by computers continues to grow in size. As data grows in

size, processing time increases as a result. In general, storage devices have increased in capacity

to cope with increased demand, some applications exist where the storage devices have very

limited capacity as they were designed for applications that do not require mass storage devices.

One such storage device is an RFID tag which is commonly used to track products and stores

summary information such as product code and price. In this research we envisage using RFID

tags to store location information. A collection of such RFID tags, with the application of a

suitable data compression mechanism will then encode information that will enable a user to

navigate a path from a given starting point to a desired destination without the use of a

conventional terrestrial map.

 This research thus addresses the problem of how best to store sparse maps on tags so as

enable a user equipped with an RFID reader to select the shortest possible path from source to

destination. Each tag is encoded with only a partial map which contains the greatest level of

detail on the locations of tags within a given radial distance from any given tag (henceforth

referred to in this thesis as the neighborhood) and a lower level of detail on locations of tags that

are outside of its neighborhood. Thus each node will have the information to efficiently assess

the most promising paths to the target node from any given node without the need to

exhaustively explore all possible paths. Once the compression algorithm is in place, an

experimental approach will be used to evaluate navigation efficiency. A number of experiments

will be run and the sensitivity of key parameters on performance such as the number of

neighbors and the wavelet thresholding level will be investigated. The performance metric that

will be utilized is the number of hops necessary to traverse the network from a given source node

to a given destination node.

 The navigation problem stems from the need to design an algorithm that will be able to

cope with a sparse, rather than a detailed terrestrial map. This research investigate the use of

various forms of the well-known Haar wavelet and use an experimental approach to assess the

effectiveness of the storage schemes in facilitating navigation in the network.

9/124

1.2 Motivation

 Global Positioning System (GPS) has proved to be a very useful and effective tool to

locate positions in an outdoor environment. It has been used with a great success by travellers

who wish to navigate to destinations whose location is unknown. Many such applications exist in

an indoor environment, the most common of which is product location in a physical warehouse.

Another application is a pathfinder for disabled individuals who wish to move to a given

unknown location from a given starting point. The reliability of GPS technology in indoor and

underground environments is poor as it is a satellite-based technology that has a very low signal

in such environments. As such, wireless technology has been implemented in such environments

and provides more accurate and cost effective solutions than GPS based solutions.

 Recently, Radio Frequency Identification (RFID) technology has achieved great success

in the supply chain management system and tracking systems (Domdouzis, K., et. al. 1999, and

Ward, M., et. al., 2006). It can also be effectively used in Indoor Location – Aware systems

(Lionel, M. N., et. al., 2004 and Tesoriero, R., et. al., 2008) The main reason behind the

emergence of RFID technology is its ability to recognize and track the movement of objects.

RFID technology does not need any human intervention and has good tolerance to environmental

factors such as temperature (Want, R., 2006). RFID technology is very cost effective (Potdar,

M., et. al., 2006, Want, R., 2006 and Ward, M., et. al., 2006).

 Though RFID has numerous advantages, its main limitation is its storage capacity. An

RFID tag has a very limited storage capacity and thus a full indoor exact map cannot be stored in

a single tag. As such, compression needs to be introduced to enable an RFID tag to encode

sufficient information to support the navigation process in an efficient manner (Fazzinga, B., et.

al., 2009). There are number of different compression techniques to available that can potentially

be used. Our preference in this research is for the Haar wavelet coefficient compression

technique as it has been shown to provide high compression ratios and is also easy to implement

(Raviraj, P., et. al., 2007).

Thus the main objective of the study can be phrased as the research question - How can

the Haar Wavelet technique be applied to compress and store a sparse version of a terrestrial

map in an RFID tag in order to support efficient navigation. In order to answer this question

the research will involve two major activities: Firstly designing a compression scheme using the

Haar wavelet that will use a multi resolution encoding scheme to store information on neighbors

and more distant nodes while taking into account the severe storage constraints of an RFID tag;

and secondly, a navigation algorithm that is capable of using inexact location information to plot

the shortest possible path from source to destination.

10/124

1.3 Organization of the Thesis

 This thesis is organized into following chapters. Chapter 1 has presented an introduction

to the research and provided a motivation for undertaking the research.

 Chapter 2 provides a literature review on RFID and different data compression

techniques. In first half, it will discuss about RFID technology and its applications. Then, it will

discuss different data compression techniques available like, Huffman technique, Arithmetic

Coding, Wavelet transform, MPEG and JPEG.

 Chapter 3 elaborates Haar Wavelets. One dimensional and two dimensional Haar

transformation methods will be discussed thoroughly with some examples. It will also discuss

about storing sparse data using a wavelet transformation.

 Chapter 4 discusses about research methodologies used in the research study. It contains

concept and selection of research methodologies like constructive research and experimental

testing. It also discusses four different scenarios used in the research which helps to define the

exact nature of the experiments that will be conducted.

Chapter 5 presents different experimental results obtained from the research study. Each

scenario gives rise to different compression outcomes and uses a navigation algorithm to traverse

the network. These experimental results are then discussed in the Chapter 6.

 The last chapter presents concluding remarks, strengths and limitations of the study. It

also discusses the application of the algorithms developed in a real world scenario and future

research directions.

11/124

Chapter 2 : Literature Review

2.1 Introduction

 This chapter presents an overview of RFID technology. The different types of tags and

their properties from the viewpoint of storage capacity and communication capability are

discussed. This is followed by a discussion of the major applications of RFID technology.

Previous research in the area of data compression covering techniques such as Huffman Coding,

Arithmetic coding and Wavelets are then discussed.

2.2 RFID Technology Overview

 Radio Frequency Identification (RFID) technology is a wireless technology which detects

electromagnetic signals (Domdouzis, K., et. al., 2007). It consists of three main components viz.,

RFID tag, Antenna and an RFID Reader. A RFID tag works as a transponder which transmits

radio signals while the RFID Reader acts as a transceiver which reads radio signals sent by a

RFID tag. There are two types of tags, Active and Passive. Active tags have in-built batteries for

power while Passive tags do not have an in-built battery. This type of tag gets power from

electromagnetic fields generated by an RFID reader. Active tags have an in-built battery and do

not depend on the electromagnetic field generated by the reader. This type of tag has a wide

range of activation while passive tags have a relatively low range as it depends on an RFID

reader to generate an electromagnetic field.

Ward, M., et. al. (2006) describes five classes of RFID tags. They are :

Class Class Layer Name Functionality

1 Identity Tags Purely passive, identification tags

2 Higher Functionality Tags Purely passive, identification + some additional functionality (e.g.

read/write memory)

3 Semi-Passive Tags Addition of on-board battery power

4 Active 'ad hoc' Tags Communication with other active tags

5 Reader Tags Able to provide power for and communicate with other tags i.e. can

act as a reader, transmitting and receiving radio waves

Source: Ward, M., Van Kranenburg, R., (May 2006). "RFID: Frequency, standards, adoption and innovation." JISC

Technology and Standards Watch.

 Storage of data is also a point of difference between an Active tag and a Passive tag. On-

chip storage capacity is different in these tags. Active tags have more storage capacity than that

of Passive tags. Read-only tags can store only unique identification numbers permanently. This

memory is called as a WORM – Write-Once-Read-Many memory. Read-Write tags are capable

12/124

of storing tag Id and user's data in which the user can change additional data stored in the

memory.

Passive tags normally have a non-volatile memory ranging from 64 bits to 1 kilobyte and Active

tags can store data up to 128 kilobytes. (Ward, M., et. al., 2006). A modern UHF Passive tag can

store up to 32 KB of data (Pais, S. and Symonds, J.,2011).

2.3 Applications of RFID Technology

 RFID technology has successfully been implemented in various scientific and technical

fields like medicine and engineering. In the medical field, RFID technology has been used in

blood transfusion and analysis. The RFID tag can be used to store the medical history of the

patient and then this tag may be attached to the patient's wristband. RFID technology can be used

in civil engineering such as on-site inspection support systems and for tracking of building

materials (Domdouzis, K., et. al., 2007).

 Tesoriero, R., et. al., (2008) describes the use of RFID technology to support Indoor-

Location Awareness system and demonstrates how both active and passive tag environments

help to find the location of mobile devices in closed spaces. This system has been deployed to

assist visitors in finding information on artifacts in a museum. Each visitor is provided with a

PDA at the entrance of the museum. A mobile application is installed on the PDA. Museum

visitors use the PDA to communicate with the environment that has RFID tags installed close to

exhibits throughout the museum. The visitor can select either between auto-navigation and

manual modes of opeartion. Manual-navigation mode makes use of cursor keys on the mobile

device (ie. PDA) to navigate in the museum building while auto-navigation mode automatically

detects the visitor position and gets correct information about the museum as per the PDA

location.

 Lionel, M. N., et. al., (2004) describes the LANDMARC, a location sensing system using

RFID technology for use in inside buildings. The main advantage of this system is to improve

the accuracy of finding a location by deploying reference tags. The reference tags store

information about all nearest neighbor tags and each reference tag stores information about four

nearest neighbour tags. The experiment results in favour of RFID technology and found that

active tags are viable and cost effective in indoor navigation systems.

 Fazzinga, B., et. al., (2009) addresses the data compression issue in the RFID to enable

devices with less memory to execute queries on RFID data warehouse. They developed a lossy

algorithm for collapsing tuples carrying items' information which are to be delivered at various

locations in the supply chain system. Without connecting to main data warehouse, the user with

the device like PDA can do data analysis by supplying them compressed data and allow them to

13/124

do data analysis with some acceptable approximation. The algorithm reads the data request from

RFID reader and then on request, it compresses the requested data and sends it to the user's PDA.

After receiving the required information on PDA, the user then processes it locally on a PDA

without connecting to the main server.

 RFID tags can be successfully implemented in inventory and warehouse management

system (Potdar, M., et. al., 2006). Tracking entry and exit of the material is the biggest and

challenging tasks which can be handled by RFID technology. Material tracking and smart

shelving are two main requirements of any inventory management system where RFID can be

useful. When the raw material is received and sent to warehouse, then RFID tags can be used to

store material information like product name, vendor, received date etc. This facilitates the

manager to trace the material and certify that the material is sent by the approved vendor. RFID

tags can also be fixed on the finished goods to maintain the track of all goods dispatching the

warehouse and also useful in maintaining the correct stock of finished goods. Smart shelf is –

they know what they are carrying. RFID tags are useful to locate the products from long distance

in a large warehouse.

2.4 Data Compression Techniques

 Data compression is the process of reducing the data size by removing redundant data

from the input data. Original data is replaced by the encoded data by using an encoder and a

decoder uses the same model to reproduce the original data from the encoded string. There exists

different data compression techniques that are used in practice. These techniques are used on text

data, audio, video data and finally on hybrid data types. As mentioned are two vital components

to any data compression technique – the compressor/encoder and the decompressor/decoder.

Original Data

Decompressor/Encoder

Compressor/Decoder

Compressed
Data

14/124

 Balevic, A., et. al., (2008) classified data compression techniques into two categories:

lossless and lossy. Lossless data compression technique gives exact reconstruction of original

data whereas lossy techniques give acceptable distorted or perceptively lossless representation of

the original data. Talukdar, K.H. and Harada, K. (2007) used another classification – Lossless vs

Lossy compression and Predictive vs. Transform coding. The reconstructed image is identical

after reconstruction from lossless compression while the reconstructed image may have some

degradation after reconstructing it from the lossy compression technique because lossy

compression entirely removes redundant information. Lossy compression always has better

compression ratio as compared to loss-less compression techniques. In predictive coding, the

current information is used to predict future data and the difference between the predicted and

original values are recorded. This technique is easy to implement. Transform coding,

alternatively, converts the image to a different form of representation using some conversion

algorithm and then records the transformed coefficients. Transform coding has better

compression ratio than predictive techniques but is more expensive in terms of computation. We

now discuss some specific data compression techniques.

2.4.1 Huffman Compression

 The Huffman technique is commonly used in data compression due to its simplicity. All

it requires is statistical information for the data which needs to be encoded. Huffman coding

algorithm is named after its inventor, D.A. Huffman. The steps in Huffman technique are :

Step 1: Construct a Huffman tree by sorting the histogram and then join two bins of the smallest

values till. Repeat this till just one bin remains.

Step 2: Convert the Huffman tree into coded form and save it along with the coded values.

Step 3: Encode the remaining image.

 The performance and efficiency of the Huffman coding technique depends on the data

distribution. If the data has a large range then the Huffman technique requires a greater

computational cost. Huffman coding is one of the key concepts used in JPEG compression,

which is currently the most commonly used compression method for images. Differential Pulse

Code Modulation (DPCM) is used in lossless JPEG compression. The lossless JPEG uses two

different coding schemes: arithmetic coding and Huffman coding. Arithmetic coding has been

found to offer better compression results than that of Huffman coding but Huffman coding has

less computational cost than arithmetic coding. (Hu, Y., and Chang C., 2000).

15/124

An example of a Huffman tree is :

Source: Stabno, M., Wrembel, R. (2009). "RLH: Bitmap compression technique based on run-length and Huffman

encoding." Information Systems 34(4-5): 400-414.

 Huffman Coding generates the code tree in a bottom up fashion and builds the codes

from right to left. (Rao, O.S., et. a., 2011). First it sorts all alphabets in the given input string in

descending order of their probabilities and stores them in a list and then builds a binary tree with

an alphabet at each leaf where, at each step, alphabets having the two smallest probabilities are

selected. Belevic, A., et. al., (2008) stated that Huffman Coding is “a statistical lossless data

compression algorithm”. It gives a diminution in the average code length by assigning smaller

code values to more predominant alphabets. But in the real world, it is very hard to know

probabilities in advance, so we have to either compromise on lower compression ratio or use

adaptive Huffman coding which gives a one-pass encoding while accommodating changing

statistics in the input data. Though Huffman Coding is conceptually simple, the main

disadvantage of adaptive Huffman Coding is the high cost of tree maintenance.

2.4.2 Arithmetic Coding

 The concept of Arithmetic Coding was first introduced by Elias in early 1960s.

Arithmetic Coding converts an input string into an interval of real numbers between 0 and 1

(Witten, I. H., et. al., 1987). As the input string become larger and larger, the number interval

becomes smaller but the number of bits to identify the interval increases. Successive characters

or symbols of the input string decrease the interval size in accordance with their probabilities.

Singla, V., et. al., (2008) describes the compression and decompression processes using

Arithmetic Coding. The output from the Arithmetic Coding encoding process is a single number

16/124

between 0 and 1. In order to construct the resultant number, a set of probabilities needs to be

calculated for each symbol of the string.

 Following example illustrates the process of Arithmetic coding (Singla, V., et.al. 2008),

which uses the string: “BILL GATES”. The first step in the process is to generate a probability

and a range value for each character.

 The above string contains 10 characters, so characters which occur once have 0.10

probability (A,B,E,G,I,S,T,space) and characters occurs twice have 0.20 probability (letter L).

First step is to write all letters in the string in ascending order. Then consider the range will start

from 0.00, so “Space” has range from 0.00 to 0.10 as it has 0.10 probability. The range of letter

“A” will be 0.10 to 0.20 and so on.

Character Probability Range

Space 1/10 0.00 >= r > 0.10

A 1/10 0.10 >= r > 0.20

B 1/10 0.20 >= r > 0.30

E 1/10 0.30 >= r > 0.40

G 1/10 0.40 >= r > 0.50

I 1/10 0.50 >= r > 0.60

L 2/10 0.60 >= r > 0.80

S 1/10 0.80 >= r > 0.90

T 1/10 0.90 >= r > 1.00

The next step is to calculate range values, (Low and High) as :

Range = High – Low

Low = Low + Range * Low Range(c)

High = Low + Range * High Range(c)

To encode letter “B” using above formulae,

Range = 1 – 0 = 1 (Here we are considering the range between 0 and 1)

Low Value = 0 + 1 * 0.20 = 0.20

High Value = 0 + 1 * 0.30 = 0.30

Now Low and High Value to be used are 0.20 and 0.30 respectively.

To encode letter “I”,

Range = 0.30 – 0.20 = 0.10 (Considering low and high values of “B”)

Low Value = 0.20 + 0.10 * 0.50 = 0.25

High Value = 0.20 + 0.10 * 0.60 = 0.26

17/124

To encode letter “L” ,

Range = 0.26 – 0.25 = 0.01

Low Value = 0.25 + 0.01 * 0.60 = 0.256

High Value = 0.25 + 0.01 * 0.80 = 0.258

To encode second letter “L”

Range = 0.258 – 0.256 = 0.002

Low Value = 0.256 + 0.002 * 0.60 = 0.2572

High Value = 0.256 + 0.002 * 0.80 = 0.2576

Following is the table of Low values and High values of each letter after encoding them

using above formulae –

Character Low Value High Value

 0.0 1.0

B 0.2 0.3

I 0.25 0.26

L 0.256 0.258

L 0.2557 0.2576

SPACE 0.25720 0.25724

G 0.257216 0.257220

A 0.2572164 0.2572168

T 0.25721676 0.257168

E 0.257216772 0.2572167776

S 0.2572167752 0.2572167756

So, we get 0.2572167752 as the resultant number for the original input string “BILL

GATES”. In the decoding algorithm, we just reverse the above steps to achieve the original

string. As we get 0.2572167752 which comes between 0.2 and 0.3, we easily get first character

of the string i.e. “B”. To get all characters of the string, following calculations are done :

Character = Find Character (Number)

Range = High Range (character) – Low Range (Character)

Number = (Number – Low Range (Character)) / Range

 Using these calculations, we get Range (0.3 – 0.2) as 0.1 and Number is ((0.2572167752

– 0.2)/0.1) = 0.572167752 which falls between the range 0.5 to 0.6 i.e. character “I”. After

repeating this process, we get the original string “BILL GATES”.

18/124

Number Low High Range Character

0.2572167752 0.2 0.3 0.1 B

0.572167752 0.5 0.6 0.1 I

0.72167752 0.6 0.8 0.2 L

0.6083876 0.6 0.8 0.2 L

0.041938 0.0 0.1 0.1 SPACE

0.41938 0.4 0.5 0.1 G

0.1938 0.1 0.2 0.1 A

0.938 0.9 1.0 0.1 T

0.38 0.3 0.4 0.1 E

0.8 0.8 0.9 0.1 S

0.0

 Though Arithmetic Coding is useful in text data compression, Howard, P.G. and Vitter,

J.S. (1994) mentioned one disadvantage of arithmetic coding is that the execution of Arithmetic

Coding Algorithm is very slow as it has numerous multiplications and divisions. Suppose low

and high values are too close that the scaling operation maps some different symbols of the

model onto the same integer in the low (Low, High) interval. In this case, the encoding process

may be possible to continue (Witten, I. H., et. al., 1987).

Witten, I. H., et. al., (1987) also discussed two overheads on the performance of the

compression efficiency algorithm. The algorithm is added 2 extra bits at the end of the data

which leads to the termination overhead and due to fixed-length arithmetic, the algorithm

truncates the reminders while doing division arithmetic.

2.4.3 Wavelet Compression

 The wavelet is described as a “small wave” which provides an analytical tool for

transient, moving or time varying circumstances. It has the capability to allow concurrent time

and frequency analysis. The wavelet transform is a powerful mathematical tool for data

compression. Wavelets are adjustable and adaptable and can be designed for adaptive systems

that adjust themselves to suit the signal. Wavelets can be made to tend to zero as fast as possible.

It is this property that makes wavelets so effective in signal and audio compression. (Khalifa, O.

O., et. al., 2008).

 There are various types of wavelet transformation techniques. Some of the common and

widely used methods are – Discrete Wavelet Transform (DWT), Continuous Wavelet Transform

(CWT), Fast Wavelet Transform (FWT) and so on. Khorrami, H., Moavenian (2010) compared

CWT and DWT in ECG arryhythmias classification for improving the pattern classifiers.

19/124

Wavelet transform technology is an efficient tool in video compression (Fakeh, R., et. al., 2009).

Discrete Wavelet Transform (DWT) is a useful tool in visual applications, particularly in video

sequencing because DWT is very flexible to use.

 According to Schomer, D. F., et. al., (1998), there are three basic components of wavelet-

based compression algorithms – Image transformation, Quantization, and encoding.

Source: Schomer, D. F., Elekes, A.A., Hazle, J.D., Huffman, J.C., Thompson, S.K., Chui, C.K., Murphy, W.A.

(1998). "Introduction to wavelet-based compression of medical images." RadioGraphics - The Journal of continuing

medical education in radiology 18: 469-481.

 The forward wavelet transform decomposes the image which results into a list of wavelet

coefficients which represents the input image. The quantizer removes the redundant data and

then the encoder presents the compressed image efficiently. The intention of quantization is to

restrict the values of transformed coefficients to decreased numbers. The lossless encoding step

implements the compression by substituting the original signal with quantized wavelet

coefficients.

 According to Fakeh, R., et. al., (2009), video compression algorithms are not as effective

as their counterparts in other data type domains such as text or still image domains, and thus to

get bigger compression ratios both amongst both spatial and temporal dimensions should be

attempted in video compression. Spatial compression technique removes redundancy from video

frames without compromising the video quality. The 2-D DWT technique is then used on the

frames and creates decomposition levels into the LL, LH, HL and HH sub-bands. This leads to

approximation coefficients which are defined over different levels. This technique is very

successful in compressing video frames without compromising quality.

 Garofalakis, M., and Gibbons, P.B. (2004) observed that wavelet compression techniques

have achieved great success in image and signal processing applications. DWT is used in

JPEG2000 compression. Coefficients thresholding is also useful in data reduction. The “absolute

normalized value” is proposed as a threshold to reduce the overall root-mean squared error in

data compression. In this process, all wavelet coefficients whose values are less than this

threshold are replaced with the 0 value.

20/124

 Kambli, M., and Bhatia, S. (2010) compares DCT (Discrete Cosine Transform) based

JPEG, wavelet based SPIHT (Set Partitioning in Hierarchical Tree) using fingerprint data. The

SPIHT wavelet base technique achieved a better compression ratio than the JPEG technique. It

speeds the image transmission and minimizes the storage requirements.

 Talukdar, K.H. and Harada, K. (2007) mentioned that the wavelet transformation

separates the image information into approximation and detail coefficients. If these detail

coefficients are too smaller than a given threshold value then they can be replaced with zero. The

larger the number of zeros, the better is the compression ratio. Lossy compression should be

implemented to obtain more compression. A positive threshold value (Tv) when set will yield a

bigger compression ratio as it will cause all coefficients having value less than or equal to Tv to

be replaced with the zero value. Thus, when T=0 then it results in lossless compression and when

Tv>0, then we have lossy compression. The setting of the threshold value is important as it

determines the trade-off among between compression ratio and quality of the reconstructed data.

There are three types of thresholding – Hard, Soft and Universal thresholding.

Hard Thresholding :

 O, if |x|=Tv

T(Tv,x) =

 x, Otherwise

Soft Thresholding :

 O, if |x|=Tv

T(Tv,x) =

 Sign(x) (|x|-Tv), Otherwise

Universal Thresholding :

 O, if x < (2log2N)
1/2

T(Tv,x) =

 x, Otherwise

where, is standard deviation of wavelet coefficients and N is number of wavelet coefficients

We can calculate the compression ratio as :

 Number of nonzero coefficients in original matrix

Compression Ratio = ---

 Number of nonzero coefficients in updated matrix

 Following two sub-sections discusses about image and audio-video data compression.

Image, Audio and Video data needs more memory to store. They are storage intensive. But all of

them are good candidates for data compression as they contain a great deal of redundancy. This

has made them a natural target for compression and methods such as JPEG and MPEG.

21/124

2.4.4 JPEG Compression

 Image compression involves reducing the number of bits needed to store the image. To

bring down the transmission bandwidth over Internet and storage space, JPEG is the preferred

technique for image data compression over other image formats like BMP. JPEG stands for

“Joint Photographic Experts Group” and established by ISO (International Standards

Organization) and IEC (International Electro-Technical Commission).

 Jain, A., et. al., (2007) stated that the JPEG compression is executed autonomously on

sets of 8x8 pixels in an image. JPEG compression gives greater compression ratio as compared

to other image compression techniques and also maintains the quality of the image. Another

important property of the JPEG compression standard is that the brightness and chrominance

data of an image that is divided into 8 rows of 8 pixels each. The JPEG compression standard

encodes these 64 pixels at one time. Hence no 8x8 pixel sets are dependent on each other for

compression.

 JPEG supports DCT (Discrete Cosine Transform) scheme (Kambli, M., and Bhatia, S.,

2010). It uses a lossy technique. Images have spatial representation and every pixel is identified

by location coordinates and the colour. DCT converts this spatial representation into frequency-

based array characterization. The DCT encoder uses 8x8 blocks of image in compression

process. The JPEG technique uses both arithmetic and Huffman coding. Arithmetic coding gets

5-10% better compression performance than Huffman coding on the average but the complexity

is greater than with arithmetic coding. Singh, S., Sharma, R.K., and Sharma, M.K. (2009)

observed that the new JPEG2000 standard gives a better compression rate than normal JPEG. It

is implemented in image compression, mobile transmission, PDAs and desktop computers. But

when an image has graphics data like logos, the compression performance is reduced in

JPEG2000 because such images are based on low color depth and have a limited number of

colours.

 Talukdar, K.H. and Harada, K. (2007) stated that an image contains identical information

from a certain viewpoint so it is feasible to eliminate some redundant and identical information

from the image using compression techniques. Discrete Cosine Transform (DCT) is an effective

tool in image compression. It gives a better approximation of an image with fewer coefficients.

JPEG method is commonly used to store images. JPEG is based on DCT and identifies three

modes (sequential, progressive and hierarchical) for lossy compression and one for lossless

encoding. There is degradation in performance at low bit-rates in JPEG due to the use of DCT.

22/124

2.4.5 MPEG Compression

 MPEG is an acronym for “Moving Picture Expert Group” which is used in video

compression and broadly used in different multimedia applications. There are different MPEG

compression standards for video and the most popularly known standards are MPEG-2, MPEG4,

MPEG-7 and so on. Xia, J., et. al., (2003) mentioned that due to limited bandwidth presently

available for leading applications and exposure to the human visual system, investigation in the

digital video compression is controlled by lossy compression, where a definite level of

deformation is presented in order to accomplish the best achievable compression efficiency. It is

also vital to introduce a certain distortion level while applying lossy compression technique so

that the best possible compression can be achieved. The applications where the distortion is not

tolerated, lossless compression plays an important role to save the storage place as well as the

quality of the image for future use.

 Koumaras, H., Kourtis, A., Lin, C.H., and Shieh, C.K. (2008) describes that MPEG

compression uses lossy techniques as it gives a partial loss while video compression. MPEG is

using spatial, frequency and temporal domain in the sequence of video frames. It compresses the

video data by removing redundancy from these domains by loosing certain amount of data which

is not possible to retrieve back. This problem leads the researchers to introduce certain level of

distortion while using lossy compression so greater efficiency compression can be gained.

Koumaras, H., et. al., (2008) proposes a framework for video quality prediction of encoded video

signal and linking transmission loss ratio to video quality deterioration.

 Apart from the data compression techniques covered in this review, there are a number of

other techniques used, such as LZW, ZIP, and so on. While Huffman Coding and Arithmetic

Coding are effective in text data compression they have also been used in image compression.

On the other hand, techniques such as MPEG and JPEG techniques were specifically designed to

work with image, audio and video data.

 Many researchers found that Arithmetic Coding was superior to Huffman Coding.

Witten, I.H., et. al., (1987) applied fixed probability model for symbols on the input string and

then apply Arithmetic Coding algorithm. They found that Arithmetic Coding needed extra bits at

end of the string and tell the algorithm about end of the input string. This increases the data

termination overhead. Though Huffman Coding is one of the popular data compression

techniques, Witten, I.H., et. al., (1987) found that the size of the compressed data is much less in

Arithmetic Coding than Huffman. They also found that the processing time is reduced to almost

23/124

half when compared to Huffman coding. Hu, Y.C., et. al., (2000) found that the computation cost

is much higher in Huffman coding if the input data has a large dynamic range. Singla, V., et. al.,

(2008) and Rao, O.S., et. al., (2011) compared Huffman Coding and Arithmetic Coding

techniques in their research. Singla, V., et. al., did not used fixed probability model as Witten

(1987) but the probability model was generated on the given input string. Both Singla (2008) and

Rao (2011) agreed upon the efficacy of Arithmetic Coding over Huffman Coding. Rao (2011)

did testing of both Arithmetic Coding and Huffman Coding and found that Arithmetic Coding

gave better results and obtained compression ratios that were to 3-4 times better than that of

Huffman coding. However they concluded that Arithmetic Coding is very slow to execute due to

greater computational overhead.

 Latu, G. (2010) compared both sparse and dense data structure in his research. A sparse

data structure generally consists of data where most of the data coefficients are almost equal to

zero so that we can get benefit in both space and time as only non-zero data coefficients need to

be considered. On the other hand, dense data structure stores all data values. Sparse data often

results in reduction in memory overheads and provides a fast approach to storing data. Wavelet

representation provides such sparsity.

 Latu, G. (2010) compared three different data structures in wavelet representation – dense

tree, hash table, and binary tree, by way of processing time and storage space required. After

thorough experimentation, he found that binary tree gave better results in both processing time

and storage space. Binary tree required relatively little memory to store coefficients compared to

the dense tree which required large storage space. The computational time is also much less

when compared to other binary tree methods of data compression. The Haar wavelet transform

defines a binary tree structure and is found to be the simplest and most efficient amongst all

wavelet transforms. To compress the data, we can also use wavelet thresholding which involves

two steps. First transform original data into wavelet coefficients and then discard all wavelet

coefficients which are very small in value. The wavelet thresholding results in a very small error

during the reconstruction process.

24/124

Chapter 3 : Haar Wavelet

 Deligiannakis, A., Garofalakis, M., Roussopoluos, N. (2007) describes Haar wavelet as a

mathematical tool for the hierarchical decomposition of functions. It is successfully implemented

in several applications like signal and image processing. It is also an efficient tool for data

reduction in large databases and query processing on voluminous tables. The main idea of Haar

wavelet is to deploy the decomposition process on large datasets with threshold values to get

compact datasets comprising Haar wavelet coefficients.

3.1 One-Dimensional Haar Wavelet

 We illustrate the decomposition process with the help of an illustrative example. Suppose

that we have a one-dimensional array A = [2, 2, 0, 2, 3, 5, 4, 4] with N = 8 values, then the

wavelet transform of this array will be calculated as follows.

 First, pairwise averages are taken to get “lower resolution” of the data which yields

[2,1,4,4]. Naturally, while calculating these averages, some information is lost in the process. So,

to restore the original values, we need some “detailed coefficients”. These detailed coefficients

are the differences between average value and the first element of the pair values. So, it comes to

[0, -1, -1, 0]. This process is repeated till we get overall average. Following table describes how

we get averages and detail coefficients at each stage :

Resolution Averages Detailed Coefficients

3 [2,2,0,2,3,5,4,4] --

2 [2,1,4,4] [0,-1,-1,0]

1 [3/2,4] [½,0]

0 [11/4] [-5/4]

25/124

 So after applying wavelet decomposition on this example, we get one-dimensional haar

wavelet transform coefficients is WA = [11/4, -5/4, ½, 0, 0, -1, -1. 0].

3.2 Multi-Dimensional Haar Wavelet

 Stollnitz, E. J., et. al., (1995) describes two-dimensional Haar wavelet transform.

Standard decomposition and non-standard decomposition methods are used in multi-dimensional

Haar wavelet decomposition process.

 To get standard decomposition, one-dimensional wavelet transform has been applied to

each row of multi-dimensional array. This gives average and detail coefficients for each row in

the array. Then, these transformed rows are treated as data values, and then again one-

dimensional wavelet transform has been applied to each column. The resulting array will have all

detail coefficients with one overall average coefficient. The algorithm for standard

decomposition method is :

Proc StandardDecomposition(Array[1,j, 1.w) of reals)

for row = 1 to h

{

 Decomposition(Array[row, 1..w]

}

for col = 1 to w

{

 Decomposition(Array[1..h, col]

}

 Non-standard decomposition alternates between operations on rows and columns. In the

first step, horizontal pair-wise average and differences are calculated on each row values. Then

same process is done vertically on column i.e. averaging and differencing pair-wise elements

vertically on each column. The process is repeated only on the quadrant having averages. The

algorithm for this non-standard decomposition is :

26/124

proc NonstandardDecomposition (C: array[l..h, l..h] of reals)

C = C/h --normalize input coefficients

while h > 1 do

for row = 1 to h do

 DecompositionStep(C[row, 1 ..h])

end for

for col = l to h do

 DecompositionStep (C[1. .h, col])

end for

h = h/2

end while

Chakrabarti, K., et. al., (2001) employed a non-standard decomposition process in their

paper.

Source : Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K. (2001). "Approximate query processing using

wavelets." The VLDB Journal 10(2-3): 199-233.

 Chahrabarti et. al. (2001) showed that multi-dimensional wavelet decomposition can play

an important role in improving query performance in modern applications having a large volume

of data. They transformed raw source data into the wavelet domain to get approximate, yet

accurate results of queries. Since their query processing algorithms operated in sparse wavelet

space they were able to achieve very significant speedups in query processing. They also

proposed an I/O efficient wavelet decomposition process for generating relational data.

 Raviraj, P., and Sanavullah, M.Y. (2007) investigated the success of 2-D Haar wavelet

transformation in image compression. They focused on compressing the image using 2-D Haar

wavelet transformation to reduce the computational needs by using different threshold values on

calculated wavelet coefficients to obtain the best trade-off between compression ratio and image

reconstruction quality. They concluded that the Haar wavelet transformation was very effective

on account of its high computational speed and high compression ration compared to other

27/124

methods of data compression.

 Papageorgiou, C., Poggiom, T. (2000) implemented 2-D Haar wavelet decomposition in

face detection, people detection and car detection tasks. They transferred their images from

pixels to wavelet coefficients decomposed by applying non-standard 2-D DWT (Discrete

Wavelet Transform) method.

Source : Papageorgiou, C., Poggiom, T. (2000). "A Trainable System for Object Detection." International Journal of

Computer Vision 38(1): 15-33.

 Three types of wavelet functions in non-standard decomposition are used in this process

– vertical, horizontal and diagonal coefficients. The vertical coefficient is difference in average

intensity in vertical order, horizontal coefficient is difference in average intensity in horizontal

order while diagonal coefficient is calculated by taking into consideration the diagonal order.

(See section B of above figure).

 The 2-D data is transformation a 2-D simplification of 1-D wavelet transformation

(Talukdar, K.H. and Harada, K., 2007). So, in 2-D image compression, 1-D wavelet

transformation is applied on each row which gives an average value of row elements and detail

coefficients. Then this converted matrix is treated as an original and 1-D transformation is

applied on each column. The all resultant values are detail coefficients except one which is

overall average of all coefficients. Now, this method is repeated continuously on the section

having all average values. Suppose that we have following 8x8 data matrix:

 Now, 1-D transformation can be applied on each row by averaging and differencing on

pairs of elements. For example, considering first row then Averaging is (64+2)/2=33,

64 2 3 61 60 6 7 57

9 55 54 12 13 51 60 16

17 47 46 20 21 43 42 24

40 26 27 37 36 30 31 33

32 34 35 29 28 38 39 25

41 23 22 44 45 19 18 48

49 15 14 52 53 11 10 56

8 58 59 5 4 62 63 1

28/124

(3+61)/2=32, (60+6)/2=33, (7+57)/2=32 and Differencing is 64-33=31, 3-32=-29, 60-33-27 and

7-32=-25. So, we will get transformed row as (33,32,33,32,31,-29,27,-25). Now, next step is to

do same thing again only on averages i.e. (33,32,33,32) which comes to (32.5,0,0.5,0.5,31,-

29,27,-25). After doing this transformation on all rows, the following matrix will be generated:

 Now, after applying 1-D transformation on above matrix, we get final transformed

matrix as:

 Here, we can see that in the final transformed matrix, number of zeros is much more than

in the original matrix. It is very easy to reconstruct the Original matrix from this transformed

matrix by applying reverse operation of averaging and differencing. This is lossless non-standard

technique of wavelet decomposition on 2-D data array.

32.5 0 0.5 0.5 31 -29 27 -25

32.5 0 -0.5 -0.5 -23 21 -19 17

32.5 0 -0.5 -0.5 -15 13 -11 9

32.5 0 0.5 0.5 7 -5 3 -1

32.5 0 0.5 0.5 -1 3 -5 7

32.5 0 -0.5 -0.5 9 -11 13 -15

32.5 0 -0.5 -0.5 17 -19 21 -23

32.5 0 0.5 0.5 -25 27 -29 31

32.5 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 4 -4 4 -4

0 0 0 0 4 -4 4 -4

0 0 0.5 0.5 27 -25 23 -21

0 0 -0.5 -0.5 -11 7 -7 5

0 0 0.5 -0.5 -5 7 -9 11

0 0 -0.5 -0.5 21 -23 25 -27

29/124

3.3 Why Haar Wavelet ?

The rationale behind wavelet compression lies in selectively decomposing and

reconstructing just those spatial data that are mainly significant to our eyes. Due to this reason,

wavelet compression has been the preeminent compression method for two-dimensional images

or textual data.

Stollinz, E.J., et. al., (1995) mentioned that an image in the form of wavelet coefficients

rather than an actual image has lots of advantages. One of the benefits of storing wavelet

coefficients is that the large number of the detailed coefficients frequently is very small in size.

So, we can either truncate or remove these small wavelet coefficients from the representation,

thus resulting in very small errors in reconstructing the original image. This gives us a lossy

compression with minimal distortion in the image quality.

There are various types of wavelets. However, researchers prefer Haar wavelet due to the

fact that they are conceptually simple, have high computational speed and are a most efficient

method of compression.

30/124

Chapter 4: Research Methodology

 In this chapter, research methodologies which are suitable for this study are discussed.

Then, a number of research scenarios and terms used in this study such as distance and angle of

RFID tags will also be discussed. Each scenario presents a different scheme for storing wavelet

coefficients. The calculations for estimating distance and angles between tags are also presented

in this Chapter.

4.1 Introduction

 Every research has two main paradigms and a suite of research methods underlying these

paradigms. They are Positivist and Interpretivist paradigms (de Villiers, M. R., 2005). The

positivist paradigms states that the knowledge is implicit and neutral and it is observed by

verifiable ways, e.g. experiments. Positivist research is supposed to create an exact picture of

real scenarios. On the other hand, Interpretivist paradigms intend to discover new interpretations

or inherent meanings and sticks firmly to the ontological premise of numerous realities,

depending on time and context.

Figure 4.1: Basic Research Paradigms

Source: deVilliers, M. R. (2005). Three approaches as pillars for interpretive information systems research:

development research, action research and grounded theory. Proceedings of the 2005 Annual Research Conference

of the South African Institute of Computer Scientists and Information Technologists on IT research in developing

countries, South Africa.

Positivist research consists of quantitative methods such as experiments, testing, etc in

which numbers and measurements data is used using statistical methods. While positivist

paradigm examines hypotheses, Interpretivist paradigm analyses research questions and uses

qualitative data. Qualitative methods such as case studies and grounded theory are used with the

Interpretivist paradigm as shown in Figure 4.1.

31/124

4.2 Selection of Methodology

 Constructive Research Method will be used in this project. This research work is based

on the constructive research method, which will be to build and test the algorithms designed for

compression and navigation. For algorithm testing, as experimental study will be used to to

analyze and compare the effectiveness of the proposed algorithms.

 The compression algorithms will encode information about the location of each node as

well as a certain number of its nearest neighbors. Each node will contain information to

efficiently assess the most promising paths that originate from that node. Once the compression

algorithm is in place, an experimental approach will be used to evaluate navigation efficiency. A

number of experiments will be run and the sensitivity of key parameters on performance such as

the number of nearest neighbors and the wavelet thresholding level will be investigated. The

performance metric to be used is the number of hops necessary to traverse the network from a

given source node to a pre-specified target node.

4.2.1 Constructive Research

 The constructive research method is the most commonly used methodology in computer

science research. The method is intended to solve problems that occur in real world systems. It is

used to produce innovative constructions which make a contribution to the theory of the

discipline in which the method is applied. (Lukka, 2003). According to Lukka, “The constructive

research approach is a research procedure for producing innovative constructions, intended to

solve problems faced in the real world and, by that means, to make a contribution to the theory

of the discipline in which it is applied.” Caplinskas, A., Vasilecas, O. (2004) describes

“Constructive Research” as an important research method in the Information Systems field. With

this method an artifact is first constructed and subsequently the constructed artifact is evaluated

to determine its efficacy. In most cases the evaluation is performed through the application of an

experimental approach.

4.2.2 Experiment

 According to Caplinskas, A., Vasilecas, O. (2004), Experimental Research evaluates

tools algorithms and techniques that are oriented to Information Systems research. Experimental

Research includes experimental simulation, adaptive experiments, laboratory experiments, and

field experiments. Walker, W. (2005) observed that Experimental Research provides a model for

establishing relationship between source and outcomes. The researcher exercises logical thinking

to prove hypotheses which comprises of manipulating independent variables (causes or source)

32/124

and discovering the result on dependent variables (effects). The strength of an experimental

research is the ability control key variables to investigate cause and affect relationships.

Experiment methodology includes the use of standardised procedures to decrease systematic bias

and eliminate or greatly reduce the chance of arriving at incorrect conclusions.

 Experimental Research involves testing hypothetical anticipations against reality.

Experiments are used when theory and reasoning analysis do not fully explain the phenomenon

under consideration. Experiments investigate the power of assumptions, get rid of alternate

explanations of phenomena, and find new phenomena in demand of explanation. In this manner,

experiments help to initiate deriving theories from measures. Repeatability is the vital

requirement of an experimental approach. It guarantees that outcomes can be tested severally and

increases assurance in the outcomes which helps to remove mistakes, frauds and hoaxes (Tichy,

W. F., 1998). The main benefits of experimental study are:

 Experiments help to develop an authentic base of cognition and increase certainty about

adequacy of processes, methods, theories, etc.

 Experiments can speed up development by speedily removing unproductive approaches,

wrong assumptions.

 Experimentation can guide to new, useful and unpredicted perceptions and open new

areas of research.

Given the advantages of experimentation and the natural fit with the style of research in this

study we thus employ the Experimental approach in the evaluation phase of our research.

4.3 Scenarios for experimentation

 Four different scenarios are considered for wavelet compression and then the resulting

compressed data is evaluated with the use of a navigation algorithm that operates under different

experimental configurations. Each scenario has different algorithm for data compression. In

scenario 1, it is assumed that each RFID tag is able to store all wavelet coefficients. In Scenario

2, standard wavelet decomposition method is applied on a multi-dimensional data array. The

standard decomposition method is applied on an array of size (N-1, 2) which contains values for

X and Y coordinates, and Tag Labels. In scenario 3, each tag contains location information about

every other tag at a level of resolution that depends on its distance from the source tag. The tag

stores exact information about the neighbor tags and progressively fuzzier information about tags

which are far away. In Scenario 4, non-standard wavelet decomposition method was applied on

the tag data.

33/124

 In addition to different algorithms, thresholding is also used in all scenarios. Three

threshold values are used in the experiments : 0, 0.50 and 25%. The block diagram of the

experimentation plan is drawn in following figure (see Figure 4.2) :

Figure 4.2: Experimentation Plan

4.4 Important factors in the Navigation Algorithm

 To navigate from the source tag to the destination tag in the RFID environment, the user

must know the distance between the tags, especially the distance to the next reachable tag in the

navigation path. The angle between tags also plays a vital role as it provides the directional

information which is necessary to identify the best candidate to move to from the current tag

position.

4.4.1 Distance

 In an indoor and underground navigation environment, RFID tags are installed with their

specific positional information. Each and every tag in this environment has three data sets, i.e.

tag label, X-Axis and Y-Axis to indicate the exact location of the tag. The X and Y coordinates

are encoded in the form of wavelet coefficients that have been subjected to thresholding and are

thus stored in approximate form. From each source tag, the algorithm can calculate the distance

between itself and other remaining tags in order to move to the most promising neighboring tag

in its search for a path to the destination tag.

 In operation, the end-user will specify source and destination tags, and the system will

then reconstruct X-Axis and Y-Axis data from wavelet coefficients stored on the source tag and

Experiments

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Algorithm:

Store all

Coefficients

Algorithm:

Standard

Decomposition

Algorithm:

Store Coefficients

using Tag Position

Algorithm:

Non-Standard

Decomposition

Thresholding

0 0.50 25%

Thresholding

0 0.50 25%

Thresholding

0 0.50 25%

34/124

calculate the distance between the current tag and destination tag. The expression used to

calculate distance is the Euclidean metric as illustrated below:

This distance metric is then used to identify the nearest neighbours to the current tag. For

experimental purposes, the system calculates four nearest neighbours on each hop to the

destination tag.

4.4.2 Angle

 The angle is also an important aspect to consider in the navigation system. The angle

between source tag and destination tag guides the navigation algorithm by providing the

directional information that will result in which neighbor to move to from the pool of 4 that are

available. A number of different mechanisms were tested for calculating the angle between any

two given tags. After rigorous testing of different alternatives, the following formula proved to

be best and is thus utilized in the experimentation:

4.5 Experiment Prototype

As this research study does not involve implementing algorithms in a real world

environment at this time, it then becomes important to demonstrate efficiency of these

algorithms in a laboratory environment. To study the efficiency of the algorithms, application

software was developed in Microsoft Visual Basic .Net. The tag data is stored in the text files.

The software coding for the research is attached in this report in the Annexures. Both

Compression and Navigation algorithms are presented in Annexure 1 to Annexure 10.

Distance = Math.Sqrt((DestX - CurrentX) ^ 2 + (DestY - CurrentY) ^ 2)

 DestAngle = Math.Atan2((SourceY - DestY), (SourceX - DestX))

 DestAngle = Math.Round(DestAngle * (180 / Math.PI), 2)

 If (SourceY - DestY) > 0 Then

 If SourceX > DestX Then DestAngle = DestAngle + 270

 If SourceX = DestX Then DestAngle = DestAngle + 180

 If SourceX < DestX Then DestAngle = DestAngle + 90

 End If

35/124

4.6 Experiment Data

 The experimental data is created using “Tag Creation Algorithm”. The algorithm details

are discussed is the next section. The same data is used in all four scenarios. Table 1 presents the

tag coordinates with N=16.

Tags X Axis Y Axis

14 1 3

5 3 5

9 4 4

2 4 7

12 7 8

7 9 9

3 7 11

16 10 11

10 13 10

11 14 12

4 17 10

6 19 12

15 20 16

8 21 14

1 22 16

13 24 20

Table 1: Tag coordinates used in all experiments

The graphical representation of these tags is displayed in Figure 4.3 :

Figure 4.3: Tag distribution in 2 dimensional space.

36/124

This data is used in all scenarios to test the effectiveness and efficiency of each

compression method. Two types of thresholding is used, an absolute and relative. With absolute

thresholding, a number (for example 0.50) is specified and all wavelet coefficients whose

numeric values are less than or equal to the threshold are replaced with 0. If relative thresholding

is used, then the coefficients in the bottom region will be set to zero. For example, if the

threshold value is 25% and the array contains 8 wavelet coefficients, then 25% wavelet

coefficients the bottom quartile will be set to 0 and eliminated from storage. Thus only 6 wavelet

coefficients will be stored in the storage array out of 8 coefficients when there are 8 tags and 12

coefficients will be stored when there are 16 tags in total.

4.7 Algorithms

For this research study, three different algorithms were designed, namely the tag creation

algorithm, data compression algorithm and the navigation algorithm. In the data creation

algorithm, tag data is created and stored in the text file. The data compression algorithm converts

this tag data into wavelet coefficients using different scenarios and applies thresholding and then

stores the resulting set of wavelet coefficients in text files as well. The navigation algorithm

reads these wavelet coefficients files, reconstructs the tag data and finds the navigation path

between the user specified source and destination tags. The block diagrams of the algorithms are

given in Figure 4.4 and 4.5.

4.7.1. Tag Creation Algorithm

A collection of 64 tags and their X-Axis and Y-Axis coordinates have been created and

stored in a text file. Tags are randomly generated with X-Axis and Y-Axis values. Then are they

checked for duplicate values in X-Axis and Y-Axis. If duplicate values are found, then values for

X-Axis and Y-Axis for that tag are calculated again. Then, all tags are sorted by ascending order

of distance and then by angle (angle to the dummy point (0, 0)) so that tags nearer to each other

are grouped together (Figure 4.4). The total number of tags used in each experiment was either 8

or 16.

4.7.2. Compression Algorithm

Using Haar Wavelet Data Compression technique, this algorithm converts tag

coordinates into wavelet coefficients. The algorithm asks for number of tags in the network.

Then it reads tag coordinates data from the text file which is created using tag creation

algorithm. After calculating wavelet coefficients then depending on which scenario it is, stores

the wavelet coefficients in the text file. Before storing wavelet coefficients, threshold value is

also applied on these wavelet coefficients. Only one file of wavelet coefficients is created in all

37/124

scenarios except scenario 3. In scenario 3, N files are created where N is number of tags in the

network, as different wavelet coefficients are stored for each tag depending on the tag position.

So, if there are 16 tags then 16 text files have been created in scenario 3 (Figure 4.4).

4.7.3. Navigation Algorithm

The source and destination tag need to be entered into the navigation algorithm. Then the

algorithm reads appropriate wavelet coefficients text file and reconstruct tag values. After getting

reconstructed X Coordinates and Y Coordinates, the angle (DestAngle) and distance

(DestDistance) are calculated from source to destination tag. In addition to this, distances and

angles are calculated from source tag to other tags and stored in different arrays in ascending

order. Now, the angle differences are calculated for first 4 NN tags which are not already visited

before (i.e. DestAngle – TagAngle) and stored in the array. If no such tags are found then there is

no available tag to move forward. Then the angle difference array are sorted in the ascending

order of the difference. The first member of an array is the next tag to move forward. So, the

value of the original source tag is replaced with the newly found tag. This process is recursively

executed till the destination tag is found (Figure 4.5).

38/124

Figure 4.4: Overview of the tag and encoding process

Data Compression

Algorithm

Read Text File

containing tags data

Scenario?

1: All Coefficients 2: Standard 3: Tag Resolution 4. Non-Standard

Wavelet

Coefficients

Data

Threshold?

Apply Threshold

Wavelet

Coefficients

Data

Create Tag Coordinates

Check for duplicates

If

Duplicate

Find?

Calculate distance of

each tag from (0,0)

Sort Tag array

by distance

Store tags data

in

Text file

Start Tag Creation Algorithm

39/124

Figure 4.5: Overview of the navigation process

Calculate Dest Angle

from current source tag

Calculate Dest Distance

from current source tag

Calculate all tags distances

from current source tag

Sort Distance Array

Calculate all tags angles

from current source tag

Calculate angle differences for 4 NN tags

which are not in the travel path

(Dest Angle – Tag Angle)

NN

Tags?

No tag to move

Sort Angle Difference Array

START

First Tag of

Array

=

Dest Tag?

Destination Tag Found

END

No

No Yes

Navigation

Algorithm

Yes

40/124

Chapter 5: Experimental Study and Results

5.1 Introduction

 The experimental study is divided into two parts : Compression and navigation. Different

algorithms (compression schemes) are used across the four scenarios. These algorithms are used

to reduce storage space of 2-dimensional data for RFID tags, comprising the X-Axis and Y-Axis

co-ordinates. All four scenarios are analysed with respect to the compression ratio obtained with

different levels of thresholding. The navigation algorithm reads the text file having wavelet

coefficients and reconstructs the 2-dimensional data for all tags in the environment. After

reconstructing values for X-Axis and Y-Axis, the distance and angle will be calculated between

source tag and other tags in the path in an attempt to find the next reachable tag on the navigation

path.

5.2 Data Compression

 The main research question investigated in this study is: How can Haar Wavelet

techniques be used effectively to compress location information on RFID tags? To investigate

the research question, four scenarios, as described in the previous Chapter, are tested and

analyzed.

5.2.1 Scenario 1 : Tags contains all wavelet coefficients

 In this scenario, it is assumed that each RFID tag is capable of storing all wavelet

coefficients. Here, the original X-Axis and Y-Axis data values are stored in two separate one-

dimensional arrays and after the application of wavelet decomposition on each array the resulting

wavelet coefficients are stored in three different arrays, one each for Tag id, X-Axis and Y-Axis

sets of coefficients.. The threshold values used here are 0.50, 1 and 25%.

 Here, 8 tags and 16 tags are tested differently to check the compression ratio. After

applying one-dimensional wavelet coefficient decomposition, the wavelet coefficients generated

for 8 tags are displayed in Table 2:

Tags X-Axis Y-Axis

8 5.62,-2.62,-1,-0.25,-1,0,-1,-1.5 7.25,-2.5,-0.75,-1.25,-1,-1.5,-0.5,0

16 12.19,-6.56,-2.62,-3,-1,-0.25,-2.25,-1.25,-

1,0,-1,-1.5,-0.5,-1,-0.5,-1

10.5,-3.25,-2.5,-2.75,-0.75,-1.25,0,-1.5,-1,-

1.5,-0.5,0,-1,-1,1,-2

Table 2: List of wavelet coefficients for 8 tags and 16 tags in Scenario 1

41/124

After applying thresholding at 0.50, the resulting wavelet coefficients are given in Table

3 :

Tags X-Axis Y-Axis

8 5.62,-2.62,-1,0,-1,0,-1,-1.5 7.25,-2.5,-0.75,-1.25,-1,-1.5,0,0

16 12.19,-6.56,-2.62,-3,-1,0,-2.25,-1.25,-

1,0,-1,-1.5,0,-1,0,-1

10.5,-3.25,-2.5,-2.75,-0.75,-1.25,0,-1.5,-1,-

1.5,0,0,-1,-1,1,-2

Table 3: List of wavelet coefficients with threshold = 0.50 for 8 tags and 16 tags in Scenario 1

Compression Ratios for X-Axis and Y-Axis Co-ordinates for 16 tags after applying

threshold = 0.50 are shown in Table 4 :

Axis Wavelet Coefficients before

threshold

Wavelet Coefficients after

threshold

Compression

Ratio

X 12.19,-6.56,-2.62,-3,-1,-0.25,-2.25,-

1.25,-1,0,-1,-1.5,-0.5,-1,-0.5,-1

12.19,-6.56,-2.62,-3,-1,0,-2.25,-

1.25,-1,0,-1,-1.5,0,-1,0,-1

1.25

Y 10.5,-3.25,-2.5,-2.75,-0.75,-1.25,0,-

1.5,-1,-1.5,-0.5,0,-1,-1,1,-2

10.5,-3.25,-2.5,-2.75,-0.75,-

1.25,0,-1.5,-1,-1.5,0,0,-1,-1,1,-2

1.08

Table 4: Compression Ratio for threshold = 0.50 in Scenario 1

After application of threshold = 1, wavelet coefficients are shown in Table 5 :

Tags X-Axis Y-Axis

8 5.62,-2.62,0,0,0,0,0,-1.5 7.25,-2.5,0,-1.25,0,-1.5,0,0

16 12.19,-6.56,-2.62,-3.00,0,0,-2.25,-1.25,

0,0,0,-1.5,0,0,0,0

10.5,-3.25,-2.5,-2.75,0,-1.25,0,-1.5,0,-1.5,0,0,

0,0,0,-2

Table 5: List of wavelet coefficients with threshold = 1 for 8 tags and 16 tags in Scenario 1

Compression Ratios for X-Axis and Y-Axis Co-ordinates for 16 tags after applying

threshold = 1 are given in Table 6 :

Axis Wavelet Coefficients before

threshold

Wavelet Coefficients after

threshold

Compression

Ratio

X 12.19,-6.56,-2.62,-3,-1,-0.25,-2.25,-

1.25,-1,0,-1,-1.5,-0.5,-1,-0.5,-1

12.19,-6.56,-2.62,-3,0,0,-2.25,-

1.25, 0,0,0,-1.5,0,0,0,0

2.14

Y 10.5,-3.25,-2.5,-2.75,-0.75,-1.25,0,-

1.5,-1,-1.5,-0.5,0,-1,-1,1,-2

10.5,-3.25,-2.5,-2.75,0,-1.25,0,-

1.5,0,-1.5,0,0,-0,0,0,-2

1.75

Table 6: Compression Ratio for threshold = 1 in Scenario 1

42/124

After the application of threshold at the 25% level, the resulting wavelet coefficients are

as shown in Table 7 :

Tags X-Axis Y-Axis

8 5.62,-2.62,-1,-0.25,-1,0,0,0 7.25,-2.5,-0.75,-1.25,-1,-1.5,0,0

16 12.19,-6.56,-2.62,-3,-1,-0.25,-2.25,-1.25,-

1,0,-1,-1.5,0,0,0,0

10.5,-3.25,-2.5,-2.75,-0.75,-1.25,0,-1.5,-1,-1.5,

-0.5,0,0,0,0,0

Table 7: List of wavelet coefficients with threshold = 25% for 8 tags and 16 tags in Scenario 1

The compression ratios obtained with 16 tags after applying threshold at 25% are given in

Table 8 :

Axis Wavelet Coefficients before

threshold

Wavelet Coefficients after

threshold

Compression

Ratio

X 12.19,-6.56,-2.62,-3,-1,-0.25,-2.25,-

1.25,-1,0,-1,-1.5,-0.5,-1,-0.5,-1

12.19,-6.56,-2.62,-3,-1,-0.25,-

2.25,-1.25,-1,0,-1,-1.5,0,0,0,0

1.36

Y 10.5,-3.25,-2.5,-2.75,-0.75,-1.25,0,-

1.5,-1,-1.5,-0.5,0,-1,-1,1,-2

10.5,-3.25,-2.5,-2.75,-0.75,-

1.25,0,-1.5,-1,-1.5,-0.5,0,0,0,0,0

1.40

Table 8: Compression Ratio for threshold = 25% in Scenario 1

 The error obtained after reconstruction is calculated from:

 |(Original Value – Reconstructed Value)|

%Err = -- X 100

 Original Value

 With no thresholding applied the reconstructed values obtained were exactly the same as

the original values, as shown in Tables 9 and 10 :

 Tags 14 5 9 2 12 7 3 16

Original Values X Axis 1 3 4 4 7 9 7 10

Y Axis 3 5 4 7 8 9 11 11

Reconstructed

Values

X Axis 1 3 4 4 7 9 7 10

Y Axis 3 5 4 7 8 9 11 11

%Err X Axis 0% 0% 0% 0% 0% 0% 0% 0%

Y Axis 0% 0% 0% 0% 0% 0% 0% 0%

Table 9: Reconstructed values for X-Axis and Y-Axis for 8 tags when all wavelet coefficients are stored and no

threshold has been applied

43/124

Original

Values

X 1 3 4 4 7 9 7 10 13 14 17 19 20 21 22 24

Y 3 5 4 7 8 9 11 11 10 12 10 12 16 14 16 20

Construct-

ed Values

X 1 3 4 4 7 9 7 10 13 14 17 19 20 21 22 24

Y 3 5 4 7 8 9 11 11 10 12 10 12 16 14 16 20

%Err

Value

X 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Y 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 10: Reconstructed values for X-Axis and Y-Axis for 16 tags when all wavelet coefficients are stored and no

threshold has been applied

At the 0.50 thresholding level the coefficients obtained are displayed in Tables 11 and 12:

 Tags 14 5 9 2 12 7 3 16

Original Values X Axis 1 3 4 4 7 9 7 10

Y Axis 3 5 4 7 8 9 11 11

Reconstructed

Values

X Axis 1 3 4 4 7 9 7 10

Y Axis 3 5 4 7 8 8 11 11

%Err

X Axis 0% 0% 0% 0% 0% 0% 0% 0%

Y Axis 0% 0% 0% 0% 0% 11% 0% 0%

Table 11: Reconstructed values for X-Axis and Y-Axis for 8 tags when all wavelet coefficients are stored and

threshold = 0.50 has been applied

Original

Values

X 1 3 4 4 7 9 7 10 13 14 17 19 20 21 22 24

Y 3 5 4 7 8 9 11 11 10 12 10 12 16 14 16 20

Reconstructed

Values

X 1 3 4 4 7 9 7 10 14 14 17 19 20 20 22 24

Y 3 5 4 7 8 8 11 11 10 12 10 12 16 14 16 20

%Err

Values

X 0% 0% 0% 0% 0% 0% 0% 0% 8% 0% 0% 0% 0% 5% 0% 0%

Y 0% 0% 0% 0% 0% 11% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 12: Reconstructed values for X-Axis and Y-Axis for 16 tags when all wavelet coefficients are stored and

threshold = 0.50 has been applied

After reconstructing the data from the wavelet coefficients array with threshold set to 1,

the resulting coefficients are shown in Tables 13 and 14 :

 Tags 14 5 9 2 12 7 3 16

Original Values X Axis 1 3 4 4 7 9 7 10

Y Axis 3 5 4 7 8 9 11 11

Reconstructed

Values

X Axis 3 3 3 3 8 8 7 10

Y Axis 5 5 3 6 8 8 11 11

%Err X Axis 200% 0% 25% 25% 14% 11% 0% 0%

Y Axis 67% 0% 25% 14% 0% 11% 0% 0%

Table 13: Reconstructed values for X-Axis and Y-Axis for 8 tags when all wavelet coefficients are stored and

threshold = 1 has been applied

44/124

 Tags 14 5 9 2 12 7 3 16 10 11 4 6 15 8 1 13

Ori.

Value

X 1 3 4 4 7 9 7 10 13 14 17 19 20 21 22 24

Y 3 5 4 7 8 9 11 11 10 12 10 12 16 14 16 20

Const

ructed

Value

X 3 3 3 3 8 8 7 10 14 14 18 18 20 20 23 23

Y 5 5 3 6 8 8 11 11 11 11 11 11 15 15 16 20

%Err X 200% 0% 25% 25% 14% 11% 0% 0% 8% 0% 6% 5% 0% 5% 5% 4%

Y 67% 0% 25% 14% 0% 11% 0% 0% 10% 8% 10% 8% 6% 7% 0% 0%

Table 14: Reconstructed values for X-Axis and Y-Axis for 16 tags when all wavelet coefficients are stored and

threshold = 1 has been applied

After reconstructing the data from the wavelet coefficients array with threshold set to

25%, the resulting coefficients are shown in Tables 15 and 16 :

 Tags 14 5 9 2 12 7 3 16

Original Values X Axis 1 3 4 4 7 9 7 10

Y Axis 3 5 4 7 8 9 11 11

Reconstructed

Values

X Axis 1 3 4 4 8 8 8 8

Y Axis 3 5 4 7 8 8 11 11

%Err

X Axis 0% 0% 0% 0% 14% 11% 14% 20%

Y Axis 0% 0% 0% 0% 0% 11% 0% 0%

Table 15: Reconstructed values for X-Axis and Y-Axis for 8 tags when all wavelet coefficients are stored and

threshold = 25% has been applied

 Tags 14 5 9 2 12 7 3 16 10 11 4 6 15 8 1 13

Original

Values

X 1 3 4 4 7 9 7 10 13 14 17 19 20 21 22 24

Y 3 5 4 7 8 9 11 11 10 12 10 12 16 14 16 20

Constructed

Values

X 1 3 4 4 7 9 7 10 14 14 18 18 20 20 23 23

Y 3 5 4 7 8 9 11 11 11 11 11 11 15 15 18 18

%Err

Value

X 0% 0% 0% 0% 0% 0% 0% 0% 8% 0% 6% 5% 0% 5% 5% 4%

Y 0% 0% 0% 0% 0% 0% 0% 0% 10% 8% 10% 8% 6% 7% 13% 10%

Table 16: Reconstructed values for X-Axis and Y-Axis for 16 tags when all wavelet coefficients are stored and

threshold = 1 has been applied

45/124

5.2.2 Scenario 2 : Standard Decomposition Method

 In this scenario, standard wavelet decomposition method has been applied on multi-

dimensional array to generate wavelet coefficient matrix. Standard Decomposition method is

applied on an array of size (N/2-1,3) i.e, for 8 tags, it is storing 16 wavelet coefficients in 4 x 4

matrix while for tag 16 it is storing 32 wavelet coefficients in 8 x 4 matrix.

 For 8 tags, the matrix structure is :

 The structure for 16 tags matrix is :

 To obtain standard decomposition, the one-dimensional wavelet transform is applied to

each row. This operation gave an average value along with detail coefficients for each row. Next,

these transformed rows are treated as if they were themselves an array and applied the one-

dimensional transform to each column. The resulting values are all detail coefficients except for

a single overall average coefficient.

 Standard decomposition method for 8 tags is :

 After applying standard decomposition method on the original values matrix, we get

following wavelet coefficient matrix for 8 tags :

X1, X2, X3, X4

Y1, Y2, Y3, Y4

X5, X6, X7, X8

Y5, Y6, Y7, Y8

CX1, CX2, CX3, CX4

CY1, CY2, CY3, Y4

CX5, CX6, CX7, CX8

CY5, CY6, CY7, CY8

C1, C5, C9, C13

C2, C6, C10, C14

C3, C7, C11, C15

C4, C8, C12, C16

X1, X2, X3, X4

Y1, Y2, Y3, Y4

X5, X6, X7, X8

Y5, Y6, Y7, Y8

X1, X2, X3, X4, X5, X6, X7, X8

Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8

X9, X10, X11, X12, X13, X14, X15, X16

Y9, Y10, Y11, Y12, Y13, Y14, Y15, Y16

6.5, -2.57, -0.88, -0.75

-0.75, -0.06, -0.13, 0.50

-1, -0.13, 0, -0.25

-1, 0, 0.75, -0.75

46/124

 Standard decomposition method for 16 tags is :

After applying standard decomposition method on the original values matrix, we get following

wavelet coefficient matrix for 16 tags –

 After reconstructing these wavelet coefficients matrices, we get the following

coefficients, as shown in Tables 17 and 18.

 Tags 14 5 9 2 12 7 3 16

Original Values X Axis 1 3 4 4 7 9 7 10

Y Axis 3 5 4 7 8 9 11 11

Reconstructed

Values

X Axis 1 3 4 4 7 9 7 10

Y Axis 3 5 4 7 8 9 11 11

Table 17: Reconstructed values for X-Axis and Y-Axis for 8 tags when Standard Decomposition method is used and

no threshold has been applied

X1, X2, X3, X4,X5, X6, X7, X8

Y1, Y2, Y3, Y4,Y5, Y6, Y7, Y8

X9, X10, X11, X12, X13, X14, X15, X16

Y9, Y10, Y11, Y12, Y13, Y14, Y15, Y16

CX1, CX2, CX3, CX4, CX5, CX6, CX7, CX8

CY1, CY2, CY3, CY4, CY5, CY6, CY7, CY8

CX9, CX10, CX11, CX12, CX13, CX14, CX15, CX16

CY9, CY10, CY11, CY12, CY13, CY14, CY15, CY16

C1, C9, C17, C25

C2, C10, C18, C26

C3, C11, C19, C27

C4, C12, C20, C28

C5, C13, C21, C29

C6, C14, C22, C30

C7, C15, C23, C31

C8, C16, C24, C32

11.34, -4.91, -0.82, 2.5

-2.72, 0.16, -0.06, -0.13

-1, 0.13, -0.13, -1.13

-1.06, 0.32, 0.5, 0.13

-0.88, -0.13, 0, 0.25

-0.88, 0.13, 0.75, 0

-0.25, -0.5, -0.25, -0.75

-1.12, 0.38, -0.75, 0.5

47/124

 Tags 14 5 9 2 12 7 3 16 10 11 4 6 15 8 1 13

Ori.

Value

X 1 3 4 4 7 9 7 10 13 14 17 19 20 21 22 24

Y 3 5 4 7 8 9 11 11 10 12 10 12 16 14 16 20

Recon

struct

Value

X 1 3 4 4 7 9 7 10 13 14 17 19 20 21 22 24

Y 3 5 4 7 8 9 11 11 10 12 10 12 16 14 16 20

Table 18: Reconstructed values for X-Axis and Y-Axis for 16 tags when Standard Decomposition method is used and

no threshold has been applied

Now, after applying different threshold values on original wavelet coefficients matrix, we

get the following results, as shown in Tables 19 and 20 :

a. Threshold = 0.50

Wavelet Coefficients Matrix for 8 tags

 Tags 14 5 9 2 12 7 3 16

Original Values X Axis 1 3 4 4 7 9 7 10

Y Axis 3 5 4 7 8 9 11 11

Reconstructed

Values

X Axis 1 3 4 4 7 8 7 11

Y Axis 3 5 4 7 8 10 10 11

%Err X Axis 0% 0% 0% 0% 0% 11% 0% 10%

Y Axis 0% 0% 0% 0% 0% 11% 9% 0%

Table 19: Reconstructed values for X-Axis and Y-Axis for 8 tags when Standard Decomposition method is used and

threshold =0.50 has been applied

Wavelet Coefficients Matrix for 16 tags

6.5, -2.57, -0.88, -0.75

-0.75, 0, 0, 0

-1, -0.13, 0, 0

-1, 0, 0.75, -0.75

11.34, -4.91, -0.82, 2.5

-2.72, 0, 0, 0

-1, 0, 0, -1.13

-1.06, 0, 0, 0

-0.88, 0, 0, 0

-0.88, 0, 0.75, 0

0, 0, 0, 0.75

-1.12, 0, -0.75, 0

48/124

 Tags 14 5 9 2 12 7 3 16 10 11 4 6 15 8 1 13

Ori.

Value

X 1 3 4 4 7 9 7 10 13 14 17 19 20 21 22 24

Y 3 5 4 7 8 9 11 11 10 12 10 12 16 14 16 20

Recon

struct

Value

X 1 3 4 4 7 7 8 11 13 15 17 19 20 21 21 24

Y 3 4 4 7 9 9 11 11 10 12 10 12 16 15 16 19

%Err X 0% 0% 0% 0% 0% 22% 14% 10% 0% 7% 0% 0% 0% 0% 5% 0%

Y 0% 20% 0% 0% 13% 0% 0% 0% 0% 0% 0% 0% 0% 7% 0% -5%

Table 20: Reconstructed values for X-Axis and Y-Axis for 16 tags when Standard Decomposition method is used and

threshold = 0.50 has been applied

The compression ratio at the 0.50 thresholding level with standard decomposition method

is given in Table 21 :

Tags Wavelet Coefficients before

threshold

Wavelet Coefficients after

threshold

Compression

Ratio

8 6.5, -2.57, -0.88, -0.75

-0.75, -0.06, -0.13, 0.50

-1, -0.13, 0, -0.25

-1, 0, 0.75, -0.75

6.5, -2.57, -0.88, -0.75

-0.75, 0, 0, 0

-1, -0.13, 0, 0

-1, 0, 0.75, -0.75

1.40

16 11.34, -4.91, -0.82, 2.5

-2.72, 0.16, -0.06, -0.13

-1, 0.13, -0.13, -1.13

-1.06, 0.32, 0.5, 0.13

-0.88, -0.13, 0, 0.25

-0.88, 0.13, 0.75, 0

-0.25, -0.5, -0.25, -0.75

-1.12, 0.38, -0.75, 0.5

11.34, -4.91, -0.82, 2.5

-2.72, 0, 0, 0

-1, 0, 0, -1.13

-1.06, 0, 0, 0

-0.88, 0, 0, 0

-0.88, 0, 0.75, 0

0, 0, 0, 0.75

-1.12, 0, -0.75, 0

2.14

Table 21: Compression Ratio for threshold = 0.50 in Scenario 2

b. Threshold = 25%

 Wavelet Coefficients Matrix for 8 tags (The fourth column i.e. 0 is not stored in the

physical file to save the storage space but during reconstruction process is added to the array).

Results are in Table 22.

6.5, -2.57, -0.88, 0

-0.75, -0.06, -0.13, 0

-1, -0.13, 0, 0

-1, 0, 0.75, 0

49/124

 Tags 579 506 376 40 62 790 329 768

Original Values X Axis 1 3 4 4 7 9 7 10

Y Axis 3 5 4 7 8 9 11 11

Reconstructed

Values

X Axis 1 3 4 4 8 9 9 11

Y Axis 3 5 4 7 8 9 9 11

%Err X Axis
0% 0% 0% 0% 14% 0% 29% 10%

Y Axis 0% 0% 0% 0% 0% 0% 18% 0%

Table 22: Reconstructed values for X-Axis and Y-Axis for 8 tags when Standard Decomposition method is used and

threshold = 25% has been applied

 Wavelet Coefficients Matrix for 16 tags (Here also the fourth column i.e. 0 is not stored

in the physical file to save the storage space but during reconstruction process is added to the

array). Results are in Table 23.

 Tags 14 5 9 2 12 7 3 16 10 11 4 6 15 8 1 13

Ori.

Value

X 1 3 4 4 7 9 7 10 13 14 17 19 20 21 22 24

Y 3 5 4 7 8 9 11 11 10 12 10 12 16 14 16 20

Recon

struct

Value

X 1 3 4 4 7 9 7 10 11 13 13 16 18 18 19 22

Y 3 5 4 7 8 9 11 11 11 13 13 16 18 18 19 22

%Err X
0% 0% 0% 0% 0% 0% 0% 0% 15% 7% 24% 16% 10% 14% 14% 8%

Y 0% 0% 0% 0% 0% 0% 0% 0% 10% 8% 30% 33% 13% 29% 19% 10%.

Table 23: Reconstructed values for X-Axis and Y-Axis for 16 tags when Standard Decomposition method is used and

threshold = 25% has been applied

Compression ratios obtained after applying threshold at 25% with the Standard

Decomposition method is given in Table 24 :

11.34, -4.91, -0.82, 0

-2.72, 0.16, -0.06, 0

-1, 0.13, -0.13, 0

-1.06, 0.32, 0.5, 0

-0.88, -0.13, 0, 0

-0.88, 0.13, 0.75, 0

-0.25, -0.5, -0.25, 0

-1.12, 0.38, -0.75, 0

50/124

Tags Wavelet Coefficients before

threshold

Wavelet Coefficients after

threshold

Compression

Ratio

8 6.5, -2.57, -0.88, -0.75

-0.75, -0.06, -0.13, 0.50

-1, -0.13, 0, -0.25

-1, 0, 0.75, -0.75

6.5, -2.57, -0.88, 0

-0.75, -0.06, -0.13, 0

-1, -0.13, 0, 0

-1, 0, 0.75, 0

1.40

16 11.34, -4.91, -0.82, 2.5

-2.72, 0.16, -0.06, -0.13

-1, 0.13, -0.13, -1.13

-1.06, 0.32, 0.5, 0.13

-0.88, -0.13, 0, 0.25

-0.88, 0.13, 0.75, 0

-0.25, -0.5, -0.25, -0.75

-1.12, 0.38, -0.75, 0.5

11.34, -4.91, -0.82, 0

-2.72, 0.16, -0.06, 0

-1, 0.13, -0.13, 0

-1.06, 0.32, 0.5, 0

-0.88, -0.13, 0, 0

-0.88, 0.13, 0.75, 0

-0.25, -0.5, -0.25, 0

-1.12, 0.38, -0.75, 0

1.30

Table 24: Compression Ratio for threshold = 25% in Scenario 2

5.2.3 Scenario 3: Tags storing coefficients depending on tags' resolution

 In this scenario, each tag contains location information about every other tag. Each tag

stores detailed information about its neighboring tags and progressively less detailed information

about tags that are further away from it.

Tags Wavelet Coefficients
T1, T2, T3, T4 C0, C1, C2, C3, C4, C5

T5, T6, T7, T8 C0, C1, C2, C3, C6, C7

 In the 8 tags network, there are two groups of tags, Group1 and Group2. Group1 consists

of tags T1, T2, T3 and T4 while Group2 consists of tags T5, T6, T7 and T8. Tag T1 consists of

exact information about its group members i.e. tags T2, T3 and T4 and fuzzier information about

tags in the other group, i.e. Group2, by having just one coefficient which is C3.

C4

T1 T2 T3 T4 T5 T6 T7 T8

C5 C6 C7

C2 C3

C1

C0

51/124

Tag Wavelet Coefficients

T1,T2,T3,T4 C0,C1,C2,C3,C4,C5,C8,C9

T5,T6,T7,T8 C0,C1,C2,C3,C4,C5,C10,C11

T9,T10,T11,T12 C0,C1,C2,C3,C6,C7,C12,C13

T13,T14,T15,T16 C0,C1,C2,C3,C6,C7,C14,C15

 In the 16 tags network, tags are divided into three groups. Tags T1, T2, T3, T4 form

Group1, while tags T5, T6, T7 and T8 are in Group2 which is the neighboring group to Group 1.

Group 3 consists of tags T9 to T16 for which tags in Group 1 will have location information at a

low level of resolution. So, tag T1 will have wavelet coefficients such as C0, C1, C2, C4, C8 and

C9 which will give exact information about its group members, then C5 coefficient will give less

precise information about neighboring group consists of tags T5, T6, T7 and T8 while coefficient

C3 will give even less precise information about tags T9 to T16. Hence, tag T1 will end up

having C0, C1, C2, C3, C4, C5, C8 and C9 wavelet coefficients.

 The graphical representation of 8 tags appears in Figure 5.1 below :

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16

C8 C9 C10 C11 C12 C13 C14 C15

C7 C6 C5 C4

C2 C3

C0

C1

52/124

Figure 5.1: Graphical Representation of 8 Tags

The two groups of tags, easily identifiable from Figure 5.1 above stores exact information

of group members and fuzzy information of Neighbouring group members. So, after

reconstructing the actual data values from wavelet coefficients, we get exact values for X-Axis

and Y-Axis of all group members of a given group and approximate or fuzzy values for X-Axis

and Y-Axis for members of the other group.

 If we consider Group 1, then we will have exact data for Tags 1 to 4 and approximate

data for Tags 5 to 8. In case of Group 2, we will have exact data for Tags 5 to 8 and approximate

data for Tags 1 to 4.

 After data reconstruction from wavelet coefficients, we get the following tag networks.

Considering the Group 1 as current group, we will have Tag 1, Tag 2, Tag 3 and Tag4 from

Group 1. On the other hand, with respect to Group 2, Tags 5 and 6 coalesce into one unit and

Tags 7 and 8 also coalesce, thus yielding two units in this group (See Figure 5.2 below) :

53/124

Figure 5.2: Graphical Representation of Group 2 Tags after Data construction in Scenario 3

 When considering the Group 2 as current group, a similar situation arises, with pairs of

tags coalescing in Group 1, while Group 2 tags remain separate from each other (See Figure 5.3

below) :

Figure 5.3: Graphical Representation of Group 1 Tags after Data construction in Scenario 3

 So, while navigating from the current group to the neighbouring group, the next tag will

be calculated from the nearest pair in the path of the neighbouring group. In most cases, the first

tag in the sequence will be picked up as the next reachable tag in the path.

54/124

 As in previous Scenarios, the wavelet compression results for 8 tags and 16 tags

configurations for this scenario are analyzed and presented in following two tables (Table 25 and

26).

 Tags 14 5 9 2 12 7 3 16

Original

Values

 X Axis 1 3 4 4 7 9 7 10

Y Axis 3 5 4 7 8 9 11 11

Compressed

Values

Source

Tags

14, 5, 9,

2

X Axis 1 3 4 4 8 8 8 8

Y Axis 3 5 4 7 8 8 11 11

%Err
X Axis 0% 0% 0% 0% 14% 11% 14% 20%

Y Axis 0% 0% 0% 0% 0 11% 0 0

Compressed

Values

Source

Tags

12, 7, 3,

16

X Axis 2 2 4 4 7 9 7 10

Y Axis 4 4 6 6 8 9 11 11

%Err
X Axis 100% 33% 0% 0% 0% 0% 0% 0%

Y Axis 33% 20% 50% 14% 0% 0% 0% 0%

Table 25: Reconstructed values for X-Axis and Y-Axis for 8 tags when Wavelet Coefficients as per the tag resolution

are stored

For 16 tags :

 T

a

gs

14 5 9 2 12 7 3 16 10 11 4 6 15 8 1 13

Ori. Value X 1 3 4 4 7 9 7 10 13 14 17 19 20 21 22 24

Y 3 5 4 7 8 9 11 11 10 12 10 12 16 14 16 20

Comp
value

Src
Tag

14,5

,9,2

X 1 3 4 4 8 8 8 8 16 16 16 16 22 22 22 22

Y 3 5 4 7 8 8 11 11 11 11 11 11 16 16 16 16

%Err
X 0% 0% 0% 0% 14% 11% 14% 20% 23% 14% 6% 16% `0% 5% 0% 8%

Y 0% 0% 0% 0% 0% 11% 0% 0% 10% 8% 10% 8% 0% 14% 0% 20%

Comp
value

Src
Tag

12,

7, 3,
16

X 2 2 4 4 7 9 7 10 16 16 16 16 22 22 22 22

Y 4 4 6 6 8 9 11 11 11 11 11 11 16 16 16 16

%Err
X 100

%

33% 0% 0% 0% 0% 0% 0% 23% 14% 6% 16% 10% 5% 0% 8%

Y 33% 20% 50% 14% 0% 0% 0% 0% 10% 8% 10% 8% 0% 14% 0% 20%

55/124

Comp
value

Src
Tag

10,

11,
4, 6

X 3 3 3 3 8 8 8 8 13 14 17 19 20 20 23 23

Y 5 5 5 5 10 10 10 10 10 12 10 12 15 15 18 18

%Err
X 200

%

0% 25% 25% 14% 11% 14% 20% 0% 0% 0% 0% 0% 5% 5% 4%

Y 67% 0% 25% 29% 25% 11% 9% 9% 0% 0% 0% 0% 6% 7% 13% 10%

Comp
value

Src
Tag

15,

8, 1,
13

X 3 3 3 3 8 8 8 8 14 14 18 18 20 21 22 24

Y 5 5 5 5 10 10 10 10 11 11 11 11 16 14 16 20

%Err
X 200

%
0% 25% 25% 14% 11% 14% 20% 8% 0% 6% 5% 0% 0% 0% 0%

Y 67% 0% 25% 29% 25% 11% 9% 9% 10% 8% 10% 8% 0% 0% 0% 0%

Table 26: Reconstructed values for X-Axis and Y-Axis for 16 tags when Wavelet Coefficients as per the tag

resolution are stored

With this exercise, it is concluded that the error is 0% for group members, small for

neighboring group tags and highest for the furthest group. Compression ratios obtained with the

8 and 16 tag networks are given in the Table 27 below:

Tags Number of Wavelet

Coefficients

Number of Wavelet

Coefficients stored in each tag

Compression

Ratio

8 8 6 1.33

16 16 8 2

Table 27: Compression Ratio in Scenario 3

5.2.4 Scenario 4: Non-Standard Decomposition Algorithm

 In this scenario, Non-standard wavelet decomposition method has been applied on multi-

dimensional array to generate wavelet coefficient matrix. Non-Standard Decomposition method

is applied on a data array similar to the Scenario 2 i.e. Standard Decomposition Method.

For 8 tags, the matrix structure is:

 The structure for 16 tags matrix is :

X1, X2, X3, X4

Y1, Y2, Y3, Y4

X5, X6, X7, X8

Y5, Y6, Y7, Y8

X1, X2, X3, X4, X5, X6, X7, X8

Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8

X9, X10, X11, X12, X13, X14, X15, X16

Y9, Y10, Y11, Y12, Y13, Y14, Y15, Y16

56/124

 To obtain non-standard decomposition, the one-dimensional wavelet transform is applied

by averaging and differencing pair-wise data elements to each row. This operation gave an

average value along with detail coefficients for each row. Next, these transformed rows are

treated as if they are themselves an array and applied the one-dimensional transform again to

each column. All the resultant coefficients are detailed coefficients except one which is overall

average. This process is repeated continuously on the section with all average values.

 After applying standard decomposition method on the original values matrix, we get

following wavelet coefficient matrix for 16 tags :

 After reconstructing these wavelet coefficients matrices, we get the following compressed

values for 16 tags :

 Tags 14 5 9 2 12 7 3 16 10 11 4 6 15 8 1 13

Ori.

Value

X 1 3 4 4 7 9 7 10 13 14 17 19 20 21 22 24

Y 3 5 4 7 8 9 11 11 10 12 10 12 16 14 16 20

Recon

struct

Value

X 1 3 4 4 7 9 7 10 13 14 17 19 20 21 22 24

Y 3 5 4 7 8 9 11 11 10 12 10 12 16 14 16 20

Table 28: Reconstructed values for X-Axis and Y-Axis for 16 tags when Non-standard Decomposition method is

used and no threshold has been applied

Now, after applying different threshold values on original wavelet coefficients matrix, we

get following results:

11.34, -1.03, -0.56, -1

-4.91, 0.22, -0.31, 0.25

-2.56, -0.06, -0.12, 0

-2.88, 0.12, -0.5, 0.25

-0.88, -0.12, 0, 0.75

-0.75, 0.5, -0.25, -0.75

2.38, -1.12, 0.25, 0

2.62, 0.12, -0.75, 0.5

57/124

a. Threshold = 0.50

 Wavelet Coefficients Matrix for 16 tags

 Tags 14 5 9 2 12 7 3 16 10 11 4 6 15 8 1 13

Ori.

Value

X 1 3 4 4 7 9 7 10 13 14 17 19 20 21 22 24

Y 3 5 4 7 8 9 11 11 10 12 10 12 16 14 16 20

Recon

struct

Value

X 1 3 4 4 7 8 8 11 13 14 17 19 19 22 22 24

Y 3 4 4 8 8 9 11 11 11 12 10 12 16 15 17 19

%Err X
0% 0% 0% 0% 0% 11% 14% 10% 0% 0% 0% 0% 5% 5% 0% 0%

Y 0% 20% 0% 14% 0% 0% 0% 0% 10% 0% 0% 0% 0% 7% 6% 5%

Table 29: Reconstructed values for X-Axis and Y-Axis for 16 tags when Non-standard Decomposition method is

used and threshold = 0.50 has been applied

Compression Ratio after applying threshold = 0.50 with the standard decomposition method is:

Tags Wavelet Coefficients before

threshold

Wavelet Coefficients after

threshold

Compression

Ratio

16 11.34, -1.03, -0.56, -1

-4.91, 0.22, -0.31, 0.25

-2.56, -0.06, -0.12, 0

-2.88, 0.12, -0.5, 0.25

-0.88, -0.12, 0, 0.75

-0.75, 0.5, -0.25, -0.75

2.38, -1.12, 0.25, 0

2.62, 0.12, -0.75, 0.5

11.34, -1.03, -0.56, -1

-4.91, 0, 0, 0

-2.56, 0, 0, 0

-2.88, 0, 0, 0

-0.88, 0, 0, 0.75

-0.75, 0, 0, -0.75

2.38, -1.12, 0

2.62, 0, -0.75, 0

1.93

Table 30: Compression Ratio for threshold = 0.50 in Scenario 4

b. Threshold = 25%

 Wavelet Coefficients Matrix for 16 tags (Here also the fourth column i.e. 0 is not stored

in the physical file to save the storage space but during reconstruction process, that 0 is added in

the array)

11.34, -1.03, -0.56, -1

-4.91, 0, 0, 0

-2.56, 0, 0, 0

-2.88, 0, 0, 0

-0.88, 0, 0, 0.75

-0.75, 0, 0, -0.75

2.38, -1.12, 0

2.62, 0, -0.75, 0

58/124

 So, after encoding these wavelet coefficients, we get following reconstructed values for

X and Y co-ordinates in Table 31 below :

 Tags 14 5 9 2 12 7 3 16 10 11 4 6 15 8 1 13

Ori.
Value

X 1 3 4 4 7 9 7 10 13 14 17 19 20 21 22 24

Y 3 5 4 7 8 9 11 11 10 12 10 12 16 14 16 20

Recons
truct

Value

X 1 3 4 4 7 9 8 8 13 14 18 18 20 21 23 23

Y 3 5 6 6 8 9 11 11 10 12 11 11 16 14 18 18

%Err X
0% 0% 0% 0% 0% 0% 14% 20% 0% 0% 6% 5% 0% 0% 5% 4%

Y 0% 0% 50% 14% 0% 0% 0% 0% 0% 0% 10% 8% 0% 0% 13% 10%

Table 31: Reconstructed values for X-Axis and Y-Axis for 16 tags when Non-standard Decomposition method is

used and threshold = 25% has been applied

So, Compression Ratio after applying threshold = 25% on Non-standard Decomposition

method is :

Tags Wavelet Coefficients before

threshold

Wavelet Coefficients after

threshold

Compression

Ratio

16 11.34, -1.03, -0.56, -1

-4.91, 0.22, -0.31, 0.25

-2.56, -0.06, -0.12, 0

-2.88, 0.12, -0.5, 0.25

-0.88, -0.12, 0, 0.75

-0.75, 0.5, -0.25, -0.75

2.38, -1.12, 0.25, 0

2.62, 0.12, -0.75, 0.5

11.34, -1.03, -0.56, 0

-4.91, 0.22, -0.31, 0

-2.56, -0.06, -0.12, 0

-2.88, 0.12, -0.5, 0

-0.88, -0.12, 0, 0

-0.75, 0.5, -0.25, 0

2.38, -1.12, 0.25, 0

2.62, 0.12, -0.75, 0

1.26

Table 32: Compression Ratio for threshold = 25% in Scenario 4

 Now, it is necessary to check the effect of compressing location information on

navigation. The efficacy of these compression methods are dependent on how successful the

navigation algorithm can find the next tag to move to. For the compression to be effective, the

navigation path should be very similar if not identical to the path followed when the original

coordinates for X-Axis and Y-Axis are stored in the RFID tag, instead of their compressed

versions.

11.34, -1.03, -0.56, 0

-4.91, 0.22, -0.31, 0

-2.56, -0.06, -0.12, 0

-2.88, 0.12, -0.5, 0

-0.88, -0.12, 0, 0

-0.75, 0.5, -0.25, 0

2.38, -1.12, 0.25, 0

2.62, 0.12, -0.75, 0

59/124

5.3 Navigation Experiments

The research question under investigation in this part of the research is:

Can the wavelet compression in RFID tags support efficient traversal between a given source

and target node in an RFID network?

 In this section, the navigation algorithm is discussed and tested. This algorithm identifies

the next tag to be travelled in the path from source to destination tag. To test the algorithm, we

use four different scenarios as used in compression experiments and each scenario will use two

configurations, each consisting of 8 tags and 16 tags. The first scenario to be discussed and

tested is that all wavelet coefficients can be stored fully in the RFID tag. Second scenario

represents the situation when wavelet coefficients are stored using the standard decomposition

method, while in the third scenario the compression is controlled by storing data at different

levels of resolution which is determined by distance from a given reference point. The fourth

scenario uses the non-standard wavelet decomposition method.

 All the four scenarios use the same data. The files for experiments were generated as

described in the previous section on compression using Haar wavelets. For testing the 8-tag

configuration, the first eight tags are used. The actual data of 16 tags is:

Tags X Axis Y Axis

14 1 3

5 3 5

9 4 4

2 4 7

12 7 8

7 9 9

3 7 11

16 10 11

10 13 10

11 14 12

4 17 10

6 19 12

15 20 16

8 21 14

1 22 16

13 24 20

60/124

5.3.1 Scenario 1: All Coefficients are stored in the tag

 In this scenario, as stated earlier it is assumed that all wavelet coefficients are stored in

each RFID tag.

Experiment 1 : This experiment uses 8 tags as follows :

Tags Label X Axis Y Axis

T1 14 1 3

T2 5 3 5

T3 9 4 4

T4 2 4 7

T5 12 7 8

T6 7 9 9

T7 3 7 11

T8 16 10 11

 The graphical representation of these tags is :

 Each tag will store all wavelet coefficients in a lossless compression mode. For

calculation of distance and angle, we use the X-Axis and Y-Axis wavelet coefficients. They are

(5.62,-2.62,-1,-0.25,-1,0,-1,-1.5) and (7.25,-2.50,-0.75,-1.25,-1,-1.5,-0.5,0) respectively. The

navigation algorithm first reconstructs all X-Axis and Y-Axis co-ordinates using these wavelet

coefficients.

In the first test, the objective is to find a path between T1 (Source Tag) and T6

(Destination Tag). The distance between T1 and T6 is 10 and angle is 28.76. The algorithm

61/124

calculates the next tag to move towards T6 and it is tag T3. The distance between T3 and T1 is

3.16 and the angle between T1 and T3 is 10.32. Now, source tag is T3 and the destination tag is

still T6. So next nearest tag from T3 towards T6 is tag T5 which is 5 units away from tag T3 at

the angle of 45.02. The next run has T5 as the source tag. The algorithm then moves to tag T6

(destination tag) which is 2.24 units away from tag T5 with an angle of 18.45. So, to reach from

tag T6 from tag T6, we have to travel total 10.40 units as compared to 10 units with the original

uncompressed data (see table below).

Source

Tag

Next

Tag

Angle between

source to Next

Angle between

Source to

Destination

Distance between

Source to

Destination

Distance to

travel

T1 T3 10.32 28.76 10 3.16

T3 T5 45.02 36.89 7.07 5.00

T5 T6 18.45 18.45 2.24 2.24

 Total Distance Travelled 10.40

 Excess Distance Travelled 0.40

 Percentage Excess Travelled 4%

 So, the shortest travel path from tag T1 to the destination tag T6 is:

 This algorithm is also tested with finding the path from tag T2 to tag T7 and the path

from tag T4 to tag T8. The following table describes the findings and percentage excess travel to

reach destination path in all these three tests.

62/124

Experiment

No

Source Tag Destination

Tag

Distance to

Travel

Tags Travelled Actual

Distance

Travelled

Difference Excess

Percentage

1 T1 T6 10 T1, T3, T5, T6 10.40 0.40 4%

2 T2 T7 9.22 T2, T4, T5,

T6, T7

9.88 0.88 9.54%

3 T4 T8 7.21 T4, T5, T6, T8 7.64 0.43 5.96%

Table 33: Experiment Readings using 8 tags in Scenario 1

 Now, Experiment 1 above is repeated using Lossy data compression with threshold

values 1, 0.50 and 25%. With threshold value 1, all wavelet coefficients are replaced with 0 if

absolute value of coefficient is less than or equal to 1. With threshold value 0.50, all wavelet

coefficients are replaced with 0 if absolute value of coefficient is less than or equal to 0.50. With

25% threshold, each RFID tag assume to be stored only 75% of all wavelet coefficients i.e. for 8

tags, each tag will store 6 wavelet coefficients for the data instead of all.

 Using threshold = 1, each tag stores (5.62,-2.62,0,0,0,0,-1.5) and (7.25,-2.50,0,-1.25,0,-

1.5,0,0) for X-Axis and Y-Axis respectively which in turn after reconstruction is giving (3, 3, 3,

3, 8, 8, 7, 10) and (5, 5, 3, 6, 8, 8, 11, 11) coordinates for X-Axis and Y-Axis. The tags in the

path to reach tag t6 from T1 in this test are T1, T5, T7, T6 and travelled 11.35 distance as

compare to original 5.83 distance. For threshold = 0.50 each tag stores (5.62, -2.62, -1, 0, -1, 0, -

1, -1.5) and (7.25, -2.50, -0.75, -1.25, -1, -1.5, 0, 0) for X-Axis and Y-Axis respectively. After

reconstructing these wavelet coefficients, we get (1, 3, 4, 4, 7, 9, 7, 10) and (3, 5, 4, 7, 8, 8, 11)

coordinates for X-Axis and Y-Axis respectively. The algorithm gives tags T1, T3, T5, T7, T6 in

the path of travelling from source tag T1 to destination tag T6. The distance travelled in this path

is 14.16 as compare to original distance of 9.43. Using threshold = 25%, each tag stores (5.62,-

2.62,-1,-0.25,-1,0,0,0) and (7.25,-2.50,-0.75,-1.25,-1,-1.5,0,0) respectively.

Threshold Source Tag Destination

Tag

Distance to

Travel

Tags Travelled Actual

Distance

Travelled

Difference Excess

Percentage

1 T1 T6 5.83 T1, T5, T7, T6 11.35 5.52 94.68%

0.50 T1 T6 9.43 T1, T3, T5,

T7, T6

14.16 4.73 50.16%

25% T1 T6 9.22 T1, T3, T5, T6 10.56 1.34 14.53%

Table 34: Experiment Readings using 8 tags using different threshold values in Scenario 1

 Here, after analyzing data compression done in Scenario 1 and in navigation algorithm, it

is observed that threshold value 1 gives worse performance in %Err (Max 200%) while

reconstructing the data as well as excess percentage (94.58%) in navigation. Hence, this

63/124

threshold value 1 is not used in other experiments.

Experiment 2: In this experiment, 16 tags are being used as stated above.

 Each tag will store all wavelet coefficients Lossless data compression. For calculation of

distance and angle, we are using X-Axis coefficients and Y-Axis coefficients. They are (12.19,-

6.56,-2.62,-3.00,-1,-0.25,-2.25,-1.25,-1,0,-1,-1.5,-0.5,-1,-0.5,-1) and (10.5,-3.25,-2.50,-2.75,-

0.75,-1.25,0,-1.5,-1,-1.5,-0.5,0,-1,-1,1,-2) respectively. Threshold values used in this experiment

are 0, 0.50 and 25%.

a. Threshold = 0

 This represents the lossless method.

Figure 5.4: Screenshot for applying 0 threshold in Scenario 1

 In the first test, the objective is to reach tag T2 from tag T15. The linear distance between

these two tags is 21.95 with angle 21.77. The algorithm finds tag T4 as the first tag to move at a

distance 2.24 at an angle 55.32. Now, tag T4 becomes the new source tag and the algorithm finds

that tag T5 is the next tag to move to at a distance 3.16 with an angle of 10.32. Tag T6 is the next

tag from tag T5 at angle of 18.45 and 2.24 units away from tag T5. Tag T9 is the next tag to

move from tag T6 which is 4.12 units away from tag T6 with an angle of 5.92. The algorithm

next finds tag T10 as the next tag from T9 at a distance of 2.24 units with an angle of 55.32.

After tag T10, tag T12 is the next tag at a distance of 5 units from T10 at an angle of 180. From

tag T12, the algorithm finds Tag T14 is the next tag to move to reach the destination tag T15 and

the distance travelled from tag12 to tag T14 is 2.83 units and finally the destination tag T15 is

64/124

reached from tag T14 which is at a distance of 2.24 units. The total distance travelled is 24.07 to

reach from the source tag T2 to the destination tag T15 which is 2.12 units (9.66% excess) more

as compared to the distance to be travelled without compression.

Source

Tag

Next

Tag

Angle between

source to Next

Angle between

Source to

Destination

Distance between

Source to

Destination

Distance to

travel

T2 T4 55.32 21.77 21.95 2.24

T4 T5 10.32 18.33 20.12 3.16

T5 T6 18.45 20.05 17 2.24

T6 T9 5.92 20.05 14.76 4.12

T9 T10 55.32 25.78 10.82 2.24

T10 T12 180 18.33 8.94 5

T12 T14 36.89 45.26 5 2.83

T14 T15 55.32 55.32 2.24 2.24

 Total Distance Travelled 24.07

 Excess Distance Travelled 2.12

 Percentage Excess Travelled 9.66%

 And the travel path from the source tag T2 to the destination tag T15 is (Figure 5.5) :

Figure 5.5 : Navigation Path for applying 0 threshold in Scenario 1

 This algorithm is also tested with finding path from Tag T3 to Tag T12 and path from

Tag T1 to Tag T13. Following table describes the findings and percentage excess travel to reach

destination path in all these three tests :

65/124

Experiment

No

Source Tag Destination

Tag

Distance to

Travel

Tags Travelled Actual

Distance

Travelled

Difference Excess

Percentage

1 T2 T15 21.95 T2, T4, T5,

T6, T9, T10,

T12, T14, T15

24.07 2.12 9.66%

2 T3 T12 17.00 T3, T4, T5,

T6, T9, T10,

T12

19.76 2.76 16.24%

3 T1 T13 23.02 T1, T2, T5,

T6, T9, T10,

T12, T13

25.55 2.53 10.99%

Table 35: Experiments Readings for applying threshold = 0 in 16-tags network in Scenario 1

 Now, this testing is done again using Lossy data compression with threshold values 0.50

and 25%.

b. Threshold = 0.50

 In threshold value 0.50, all wavelet coefficients are replaced with 0 if absolute value of

coefficient is less than or equal to 0.50. Using threshold = 0.50, each tag stores (12.19,-6.56,-

2.62,-3,-1,0,-2.25,-1.25,-1,0,-1,-1.5,0,-1,0,-1) and (10.5,-3.25,-2.5,-2.75,-0.75,-1.25,0,-1.5,-1,-

1.5,0,0,-1,-1,1,-2) wavelet coefficients for X-Axis and Y-Axis respectively which in turn after

reconstruction is giving (1,3,4,4,7,9,7,10,14,14,17,19,20,21,22,24) and

(3,5,4,7,8,8,11,11,10,12,10,12,16,14,16,20) coordinates for X-Axis and Y-Axis.

Figure 5.6 : Screenshot for applying 0.50 threshold in Scenario 1

66/124

 After applying threshold = 0.50 in this scenario, the navigation algorithm gives the linear

distance between the source tag T2 and the destination tag T15 as 21.95 units. Tag T4 is the first

tag to move at a distance of 2.24 with the angle 55.32. The path contains tag T5 to move next

from T4 which is 3.16 units from tag T4 with the angle of 10.32. From tag T5, algorithm shows

tag T8 as a next tag and the distance between tag T5 and T8 is calculated as 4.24 units and angle

is 38.89 between these two tags. From tag T8, tag T10 is the next tag on the navigation path at a

distance of 4.12 units and angle is 5.92. The algorithm shows tag T12 is the next tag on the path,

5 units away from the current source tag T10 with angle 180. The last tag in path before the

destination is tag T14 which is 2.24 units far from tag T12 and the angle between two tags is

55.32. Finally, tag T15 is reached from tag T14 with a distance of 2.83 units and angle as 36.89.

The total distance travelled in the experiment is 23.83 units which is 1.88 units more (8.56%

excess) than the linear distance.

The graphical representation of this navigation path is shown in Figure 5.7 below:

 Figure 5.7 : Navigation Path for applying 0.50 threshold in Scenario 1

This algorithm is also tested with finding path from Tag T3to Tag T12 and path from Tag

T1 to Tag T13. Following table describes the findings and percentage excess travel to reach

destination path in all these three tests :

67/124

Experiment

No

Source Tag Destination

Tag

Distance to

Travel

Tags Travelled Actual

Distance

Travelled

Difference Excess

Percentage

1 T2 T15 21.95 T2, T4, T5,

T8, T10, T12,

T15

23.83 1.88 8.56%

2 T3 T12 17.00 T3, T4, T5,

T8, T10, T12

19.52 2.52 14.82%

3 T1 T13 23.02 T1, T2, T5,

T7, T8, T10,

T12, T13

27.07 4.05 17.59%

Table 36: Experiments Readings for applying threshold = 0.50 in 16-tags network in Scenario 1

c. Threshold = 25%

 With 25% threshold, each RFID tag assume to be stored only 75% of all wavelet

coefficients i.e. for 8 tags, each tag will store 6 wavelet coefficients for the data instead of all. 12

coefficients are stored if number of tags are 16. Using threshold = 25%, each tag stores (12.19,-

6.56,-2.62,-3,-1,-0.25,-2.25,-1.25,-1,0,-1,-1.5) and (10.5,-3.25,-2.50,-2.75,-0.75,-1.25,0,-1.5,-1,-

1.5,-0.5,0) for X-Axis and Y-Axis respectively. After wavelet coefficients reconstruction, we get

X-Axis coordinates as: (1,3,4,4,7,9,7,10,14,14,18,18,20,20,23,23) and Y-Axis coordinates as:

(3,5,4,7,8,9,11,11,11,11,11,11,15,15,18,18).

Figure 5.8 : Screenshot for applying 25% threshold in Scenario 1

 The total path length (linear distance) from tag T2 to tag T15 is 23.85 units. From source

tag T2 to the destination T15, the path travelled through tags T4, T5, T6, T9, T13 i.e. number of

hops is 5. The total distance travelled is 24.48 units which is 2.64% excess as compare to the

68/124

linear distance which is 23.85 units. The graphical representation of the travel using threshold =

25% is shown below in Figure 5.9 :

Figure 5.9 : Navigation Path for applying 25% threshold in Scenario 1

This algorithm is also tested with finding the path from Tag T3 to Tag T12 and the path

from Tag T1 to Tag T13. Following table describes the findings and percentage excess travel to

reach destination path in all these three tests :

Experiment

No

Source Tag Destination

Tag

Distance to

Travel

Tags Travelled Actual

Distance

Travelled

Difference Excess

Percentage

1 T2 T15 23.85 T2, T4, T5, T6,

T9, T13

24.48 0.63 2.64

2 T3 T12 15.65 T3, T4, T5, T6,

T9, T11, T12

17.79 1.54 13.67%

3 T1 T13 22.47 T1, T2, T5, T6,

T8, T9, T13

23.52 1.05 4.67%

Table 37: Experiments Readings for applying threshold = 25% in 16-tags network in Scenario 1

5.3.2 Scenario 2: Standard Decomposition method

 Each tag will store all wavelet coefficients in the lossless data compression mode using

the standard decomposition method.

 In the first test, we are finding the path between T1 (source tag) and T6 (destination tag).

The distance between T1 and T6 is 10 and angle is 28.76. The algorithm calculates the next tag

to move towards T6 and it is tag T3. The distance between T3 and T1 is 3.16 and the angle

between T1 and T3 is 10.32. Now, source tag is T3 and the destination tag is still T6. So next

nearest tag from T3 towards T6 is tag T5 which is 5 units away from tag T3 at the angle of

69/124

45.02. The next run is having T5 as the source tag. The algorithm gives tag T6 (which is a

destination tag) which is 2.24 units away from tag T5 with angle of 18.45. So, to reach from tag

T1 to tag T6, we have to travel a total of 10.40 units as compared to the original 10 units. (See

table below).

Source

Tag

Next

Tag

Angle between

source to Next

Angle between

Source to

Destination

Distance between

Source to

Destination

Distance to

travel

T1 T3 10.32 28.76 10 3.16

T3 T5 45.02 36.89 7.07 5.00

T5 T6 18.45 18.45 2.24 2.24

 Total Distance Travelled 10.40

 Excess Distance Travelled 0.40

 Percentage Excess Travelled 4%

 The path diagram of this travel is:

 This algorithm is also tested with finding the path from tag T2 to tag T7 and the path

from tag T4 to tag T8. The following table describes the findings and percentage of excess travel

to reach destination path in all these three tests.

Experiment

No

Source Tag Destination

Tag

Distance to

Travel

Tags Travelled Actual

Distance

Travelled

Difference Excess

Percentage

1 T1 T6 10 T1, T3, T5, T6 10.40 0.40 4%

2 T2 T7 9.22 T2, T4, T5,

T6, T7

9.88 0.88 9.54%

3 T4 T8 7.21 T4, T5, T6, T8 7.63 0.42 5.83%

Table 38: Experiment Readings using 8-tags network in Scenario 2

70/124

 Now, experiment 1 above is repeated in the lossy compression mode with threshold

values of 0.50 and 25%. With threshold value 0.50, all wavelet coefficients are replaced with 0 if

absolute value of coefficient is less than or equal to 0.50. With 25% threshold, each RFID tag

will store the largest 75% of coefficients in value.

 Using threshold = 0.50, the wavelet coefficient reconstruction functions returns

(1,3,4,4,7,8,7,11) and (3,5,4,7,8,10,10,11) coordinates for X-Axis and Y-Axis respectively. The

algorithm gives T2, T4, and T5 tags in the path of travel from source tag T2 to destination tag

T7. The distance travelled in this path is 8.64 as compare to original distance of 6.40. Using a

threshold of 25%, after reconstructing the wavelet coefficients obtained are (1,3,4,4,8,9,9,11) and

(3,5,4,7,8,9,9,911) coordinates for X-Axis and Y-Axis respectively. So, to reach tag T7 from tag

T2, the algorithm has to pass through T4, T5, and T6 tags to each the destination. Using 25%

threshold, tag T6 and tag T7 end up with the same coordinates but algorithm considers the T6 tag

ahead of the T7 tag because of its position in the network. In keeping with the coalescing of T6

and T7, the algorithm indicates 0 units need to be travelled between T6 and T7.

Threshold Source Tag Destination

Tag

Distance to

Travel

Tags Travelled Actual

Distance

Travelled

Difference Excess

Percentage

0.50 T2 T7 6.40 T2, T4, T5,T6, T7 8.64 2.24 35%

25% T2 T7 7.21 T2, T4, T5,T6, T7 7.77 0.56 7.77%

Table 39: Experiment Readings using 8-tags network for applying different threshold values in Scenario 2

Experiment 2: In this experiment, we use 16 tags.

 In this experiment we assess the effects of lossless and lossy compression on path length.

The standard decomposition method is used and the coefficients are stored in a 4 x 8 matrix as:

11.34,-4.91,-0.82,2.5

-2.72,0.16,-0.06,-0.13

-1,0.13,-0.13,-1.13

-1.06,0.31,0.50,0.13

-0.88,-0.13,0,0.25

-0.88,0.13,0.75,0

-0.25,-0.50,-0.25,-0.75

-1.12,0.38,-0.75,0.5

a. Threshold = 0

 After reconstructing the data, we get X-Axis coordinates as (1, 3, 4, 4, 7, 9, 7, 10, 13, 14,

17, 19, 20, 21, 22, 24) and Y-Axis coordinates as (3, 5, 4, 7, 8, 9, 11, 11, 10, 12, 10 , 12, 16, 14,

71/124

16, 20). Our objective is to reach tag T15 from tag 2. The distance between these two tags is

21.95 with an angle of 21.96.

Figure 5.10 : Screenshot for applying 0 threshold in Scenario 2

 As this is Lossless data compression, this experiment shows similar results to the Lossless

data compression configuration in Scenario 1 above. The algorithm finds tag T4 as the next tag

to travel at a distance 2.24 and at an angle of 55.58. Tag T4 then becomes the source tag and

from this point, the algorithm finds that tag T5 is the next tag to move to at a distance of 3.16 and

with an angle of 10.32. Tag T6 is the next tag from tag T5 at angle of 18.33 and distance 2.24

units away from tag T5. Tag T9 is the next tag to move to from tag T6 which is 4.12 units away

from tag T9 with an angle of 5.73. After tag T9, tag T10 is the next tag at a distance of 2.24 units

from T9 and at an angle of 55.58. From tag T10, the algorithm finds tag T12 is the next tag to

move to reach the destination tag T15 and the distance to travel from tag10 to tag T12 is 5 units

with an angle of 179.91. After tag T12, algorithm gives T14 tag at a distance of 2.83 units having

angle of 36.67 and finally the destination tag T15 is reached from tag T14 which is at a distance

of 2.24 units with angle of 55.32. The total distance travelled is 24.07 to reach from the source

tag T2 to the destination tag T15 which is 2.12 units more than the shortest path between source

and destination.

72/124

Source

Tag

Next

Tag

Angle between

source to Next

Angle between

Source to

Destination

Distance between

Source to

Destination

Distance to

travel

T2 T4 55.32 21.96 21.95 2.24

T4 T5 10.32 18.45 20.12 3.16

T5 T6 18.45 19.96 17 2.24

T6 T9 5.92 20.19 14.76 4.12

T9 T10 55.32 25.58 10.82 2.24

T10 T12 180 18.45 8.94 5

T12 T14 36.89 45.02 5 2.83

T14 T15 55.32 55.32 2.24 2.24

 Total Distance Travelled 24.07

 Excess Distance Travelled 2.12

 Percentage Excess Travelled 9.66%

 The following figure (Figures 5.11) gives the graphical representation of the travel path

from tag T2 to tag T15:

Figure 5.11 : Navigation Path for applying 0 threshold in Scenario 2

 This algorithm is also tested with finding path from Tag T3 to Tag t11 and path from Tag

T1 to Tag T13. Following table describes the findings and percentage excess travel to reach

destination path in all these three tests :

73/124

Experiment

No

Source Tag Destination

Tag

Distance to

Travel

Tags Travelled Actual

Distance

Travelled

Difference Excess

Percentage

1 T2 T15 21.95 T2, T4, T5, T6, T9,

T10, T12, T14, T15

24.07 2.12 9.66%

2 T3 T12 17.00 T3. T4, T5, T6, T9,

T10, T12

19.76 2.76 16.24%

3 T1 T13 23.02 T1, T2, T5, T6, T9,

T10, T12, T13

25.55 2.53 10.99

Table 40: Experiments Readings for applying threshold = 0 in 16-tags network in Scenario 2

 We now assess the effect of lossy data compression with thresholds of 0.50 and 25%.

b. Threshold = 0.50

 After applying the 0.50 threshold, we get the following wavelet coefficient matrix:

11.34,-4.91,-0.82,2.5

-2.72,0,0,0

-1,0,0,0

-1.06,0,0,0

0,0,0,0

0,0,0.75,0

0,0,0,-0.75

-1.12,0,-0.75,0

 Reconstructing these lossy wavelet coefficients we get following coordinates for X-Axis

ad Y-Axis:

X : 1,3,4,4,7,7,8,11,13,15,17,19,20,21,21,24

Y: 3,4,4,7,9,9,11,11,10,12,10,12,16,15,16,19

 Using this data, the algorithm finds all tags to travel from tag T2 to tag T15. The distance

between these two tags is 21.63 units with an angle of 25.58.

74/124

Figure 5.12 : Screenshot for applying 0.50 threshold in Scenario 2

 First tag in the path is T4 at a distance of 3.16 units with an angle of 63.60. From tag T4,

the next tag to travel to is tag T5 which is at a distance of 3.61 units from tag T4 with an angle of

25.78. The next in the sequence is tag T5 which is 4.47 units away and at an angle of 18.33.

From tag T8, the next tag is T10 which is 4.12 units from T8 with an angle of 5.73. T12 is the

next tag to be found by the algorithm with a distance of 4 units from T10 and with an angle of

179.91. Tag T14 is the final tag before reaching the destination, is 3.61 units away from T14

with an angle of 48.13. Finally, tag T15 is reached from T14 at a distance of 1 unit and angle

between these two tags is 81.93. The total distance travelled from tag T2 to T15 is 23.97 which is

10.82% more than the shortest path.

75/124

Source

Tag

Next

Tag

Angle between

source to Next

Angle between

Source to

Destination

Distance between

Source to

Destination

Distance to

travel

T2 T4 63.45 25.58 21.63 3.16

T4 T5 25.58 19.78 19.24 3.61

T5 T8 18.45 18.45 15.65 4.47

T8 T10 5.92 18.45 11.18 4.12

T10 T12 180 25.58 7.21 4

T12 T14 48.20 55.32 4.47 3.61

T14 T15 81.89 81.93 1 1

 Total Distance Travelled 23.97

 Excess Distance Travelled 2.34

 Percentage Excess Travelled 10.82%

 Following is the graphical representation (Figure 5.13) of the travel for tag T2 to tag T15

using the standard decomposition method in lossy mode with threshold set at 0.50.

Figure 5.13 : Navigation Path for applying 0.50 threshold in Scenario 2

76/124

 This algorithm is also tested with finding path from Tag T3 to Tag t11 and path from Tag

T1 to Tag T13. Following table describes the findings and percentage excess travel to reach

destination path in all these three tests :

Experiment

No

Source Tag Destination

Tag

Distance to

Travel

Tags Travelled Actual

Distance

Travelled

Difference Excess

Percentage

1 T2 T15 21.63 T2, T4, T5, T8,

T10, T12, T14, T15

23.97 2.34 10.82%

2 T3 T12 17.00 T3, T5, T8, T10,

T12

18.42 1.42 8.35%

3 T1 T13 23.02 T1, T2, T5, T8,

T10, T12, T13

25.35 2.33 10.12%

Table 41: Experiments Readings for applying threshold = 0.50 in 16-tags network in Scenario 2

c. Threshold = 25%

 Now, 25% threshold is applied on the wavelet coefficients. After applying this threshold,

we get the following wavelet coefficient matrix:

11.34,-4.91,-0.82,0

-2.72,0.16,-0.063,0

-1,0.13,-0.13,0

-1.06,0.31,0.50,0

-0.88,-0.13,0,0

-0.88,0.13,0.75,0

-0.25,-0.50,-0.25,0

-1.12,0.38,-0.75,0

The reconstructed coefficients are:

X : 1,3,4,4,7,9,7,10,11,13,13,15,18,18,19,22

Y : 3,5,4,7,8,9,11,11,11,13,13,15,18,18,19,22

 Using this data, we find the distance between tag T2 and T15 as 21.16 units with an angle

of 33.07.

77/124

Figure 5.14 : Screenshot for applying 25% threshold in Scenario 2

 Number of tags in the path from T2 to T15 are 7, i.e. hops = 7. The distance travelled

between these two tags is 21.26 units which is just 0.52 units more than the shortest path, i.e.

2.45% excess which is near optimal.

Source

Tag

Next

Tag

Angle between

source to Next

Angle between

Source to

Destination

Distance between

Source to

Destination

Distance to

travel

T2 T4 55.58 33.07 21.26 2.24

T4 T5 10.31 30.55 19.21 3.16

T5 T6 18.33 34.40 16.28 2.24

T6 T9 36.67 36.89 14.14 2.83

T9 T10 36.67 36.89 11.31 2.83

T10 T12 36.67 36.89 8.49 2.83

T12 T13 36.67 36.89 5.66 4.24

T13 T15 36.89 36.89 1.41 1.41

 Total Distance Travelled 21.78

 Excess Distance Travelled 0.52

 Percentage Excess Travelled 2.45%

78/124

Following figure (Figure 5.15) is the graphical representation of the travel from tag T2 to

tag T15 using the standard decomposition method operating in lossy mode with threshold =

25%.

Figure 5.15 : Navigation Path for applying 25% threshold in Scenario 2

 This algorithm is also tested with finding path from Tag T3 to Tag t11 and path from Tag

T1 to Tag T13. Following table describes the findings and percentage excess travel to reach

destination path in all these three tests :

Experiment

No

Source Tag Destination

Tag

Distance to

Travel

Tags Travelled Actual

Distance

Travelled

Difference Excess

Percentage

1 T2 T15 21.16 T2, T4, T5, T6,

T9, T10, T12, T13,

T15

21.78 0.52 2.45%

2 T3 T12 15.56 T3, T4, T5, T6,

T9, T10, T12

16.89 1.33 8.55%

3 T1 T13 22.67 T1, T2, T5, T6,

T9, T10, T12, T13

22.80 0.13 0.57%

Table 42: Experiments Readings for applying threshold = 25% in 16-tags network in Scenario 3

79/124

5.3.3 Scenario 3: Store Wavelet Coefficients using tag position

 In this scenario, lossy data compression is applied through the use of positional

information, rather than the use of a fixed size threshold. We first experiment with 8 tags.

Navigation (8-Tags Network)

 In this experiment, the source tag was taken as T1 and the destination tag as T6. Tag 1 at

position (1, 3) stores exact information about tag T2 at (3, 5), tag T3 at (4, 4), and tag T4 at (4,

7). Approximate information was stored on tags T5 (6, 2), T6 (7, 4), T7 (7, 5) and T8 (8, 3).

 We found tag T3 (4, 4) to be the nearest tag in the path to the destination tag, i.e. tag T6

(7,4). Applying this procedure recursively, we found that tag T5 (6, 2) was the next tag in the

path. So, to reach tag T6 from tag T1, the pointer went through tags T3 and T5. In this case, we

have 3 hops to reach the destination tag. So, Navigation from T1 to T6 is:

 As mentioned earlier, each tag stores a different set of wavelet coefficients and program

reconstructs data during runtime, each time we get different values depending on source tag

position. The following table contains the wavelet coefficients stored in these tags and the

corresponding reconstructed values.

80/124

Tag Wavelet Coefficients Reconstructed values

T1 X : 5.62, -2.62, -1, -0.25, -1, 0, 0, 0

Y : 7.25, -2.50, -0.75, -1.25, -1, -1.5, 0, 0

X : 1, 3, 4, 4, 8, 8, 8, 8

Y : 3, 5, 4, 7, 8, 9, 11, 11

T3 X : 5.62, -2.62, -1, -0.25, -1, 0, 0, 0

Y : 7.25, -2.50, -0.75, -1.25, -1, -1.5, 0, 0

X : 1, 3, 4, 4, 8, 8, 8, 8

Y : 3, 5, 4, 7, 8, 9, 11, 11

T5 X : 5.62, -2.62, -1, -0.25, 0, 0, -1, -1.5

Y : 7.25, -2.50, -0.75, -1.25, 0, 0, -0.5, 0

X : 2, 2, 4, 4, 7, 9, 7, 10

Y : 4, 4, 6, 6, 8, 9, 11, 11

T6 X : 5.62, -2.62, -1, -0.25, 0, 0, -1, -1.5

Y : 7.25, -2.50, -0.75, -1.25, 0, 0, -0.5, 0

X : 2, 2, 4, 4, 7, 9, 7, 10

Y : 4, 4, 6, 6, 8, 9, 11, 11

 The distance between T1 and T6 is 8.60 and the angle between them is 27.43. The

navigation algorithm finds the four nearest neighbours of the source tag and then calculates the

angle difference of each of the nearest neighbour tags to destination tag. The next tag to navigate

to is the tag which has closest angle to the destination as shown in the following table.

Source

Tag

Next

Tag

Angle between

source and next

Angle between

Source and

Destination

Distance between

Source to

Destination

Distance to

travel

T1 T3 10.32 32.49 9.23 3.16

T3 T5 36.89 36.89 5.66 5.66

T5 T6 18.45 18.45 2.24 2.24

 Total Distance Travelled 11.06

 Excess Distance Travelled 1.83

 Percentage Excess Travelled 19.83%

 Three experiments are done using the 8-Tags network. The table below describes the path

and distance travelled for each experiment in moving from the source to the destination tag.

Experiment

No

Source Tag Destination

Tag

Distance to

Travel

Tags Travelled Actual

Distance

Travelled

Difference Excess

Percentage

1 T1 T6 9.23 T1, T3, T5, T6 11.06 1.83 19.83%

2 T2 T7 7.81 T2, T4, T5,

T6, T7

11.43 3.62 46.35%

3 T4 T8 5.66 T4, T5, T6, T8 8.60 2.94 51.94%

Table 43: Experiments Readings in 8-tags network in Scenario 3

 The same data is used in the next set of experiments with a 16-tags network. In the 16-

Tags network, each group stores exact information on its member tags, less precise information

about tags of its neighbouring group and even less precision information on the remaining two

groups. With respect to Group1 (the reference, or baseline group), it stores exact information for

81/124

tags T1 to T4, stores fuzzier information about tags T5 to T8 and the fuzziest information about

tags T9 to T16.

 Group 2 stores exact information about tags T5 to T8, fuzzier information about tags T1

to T4 and the fuzziest information about tags T9 to T16. Group3 stores exact information about

tags T9 to T12, fuzzier information about tags T13 to T16 and the fuzziest information on tags

T1 to T8. In case of Group 4, it stores exact information about tags T13 to T16, fuzzier

information on tags T9 to T12 and the fuzziest information about tags T1 to T8.

 The following table displays the wavelet coefficients stored in these tags and the

corresponding reconstructed values. The bold font denotes those wavelet coefficients that had

exact reconstructions.

Tag Wavelet Coefficients Stored Reconstructed Coordinate Values

01 X: 12.19, -6.56, -2.62, -3, -1, 0.25, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0
Y: 10.5, -3.25, -2.50, -2.75, -0.75, -1.25, 0, 0, -1, -1.5, 0, 0, 0, 0, 0, 0

X: 1, 3, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 22, 22, 22, 22
Y: 3, 5, 4, 7, 8, 8, 11, 11, 11, 11, 11, 11, 16, 16, 16, 16

02 X: 12.19, -6.56, -2.62, -3, -1, 0.25, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0

Y: 10.5, -3.25, -2.50, -2.75, -0.75, -1.25, 0, 0, -1, -1.5, 0, 0, 0, 0, 0, 0

X: 1, 3, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 22, 22, 22, 22

Y: 3, 5, 4, 7, 8, 8, 11, 11, 11, 11, 11, 11, 16, 16, 16, 16

03 X: 12.19, -6.56, -2.62, -3, -1, 0.25, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0

Y: 10.5, -3.25, -2.50, -2.75, -0.75, -1.25, 0, 0, -1, -1.5, 0, 0, 0, 0, 0, 0

X: 1, 3, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 22, 22, 22, 22

Y: 3, 5, 4, 7, 8, 8, 11, 11, 11, 11, 11, 11, 16, 16, 16, 16

04 X: 12.19, -6.56, -2.62, -3, -1, 0.25, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0

Y: 10.5, -3.25, -2.50, -2.75, -0.75, -1.25, 0, 0, -1, -1.5, 0, 0, 0, 0, 0, 0

X: 1, 3, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 22, 22, 22, 22

Y: 3, 5, 4, 7, 8, 8, 11, 11, 11, 11, 11, 11, 16, 16, 16, 16

05 X: 12.19, -6.56, -2.62, -3, -1, -0.25, 0, 0, 0, 0, -1, -15, 0, 0, 0, 0

Y: 10.5, -3.25, -2.50, -2.75, 0.75, -1.25, 0, 0, 0, 0, -0.5, 0, 0, 0, 0, 0

X: 2, 2, 4, 4, 7, 9, 7, 10, 16, 16, 16, 16, 22, 22, 22, 22

Y: 4, 4, 6, 6, 8, 9, 11, 11, 11, 11, 11, 11, 16, 16, 16, 16

06 X: 12.19, -6.56, -2.62, -3, -1, -0.25, 0, 0, 0, 0, -1, -15, 0, 0, 0, 0
Y: 10.5, -3.25, -2.50, -2.75, 0.75, -1.25, 0, 0, 0, 0, -0.5, 0, 0, 0, 0, 0

X: 2, 2, 4, 4, 7, 9, 7, 10, 16, 16, 16, 16, 22, 22, 22, 22
Y: 4, 4, 6, 6, 8, 9, 11, 11, 11, 11, 11, 11, 16, 16, 16, 16

07 X: 12.19, -6.56, -2.62, -3, -1, -0.25, 0, 0, 0, 0, -1, -15, 0, 0, 0, 0
Y: 10.5, -3.25, -2.50, -2.75, 0.75, -1.25, 0, 0, 0, 0, -0.5, 0, 0, 0, 0, 0

X: 2, 2, 4, 4, 7, 9, 7, 10, 16, 16, 16, 16, 22, 22, 22, 22
Y: 4, 4, 6, 6, 8, 9, 11, 11, 11, 11, 11, 11, 16, 16, 16, 16

08 X: 12.19, -6.56, -2.62, -3, -1, -0.25, 0, 0, 0, 0, -1, -15, 0, 0, 0, 0

Y: 10.5, -3.25, -2.50, -2.75, 0.75, -1.25, 0, 0, 0, 0, -0.5, 0, 0, 0, 0, 0

X: 2, 2, 4, 4, 7, 9, 7, 10, 16, 16, 16, 16, 22, 22, 22, 22

Y: 4, 4, 6, 6, 8, 9, 11, 11, 11, 11, 11, 11, 16, 16, 16, 16

09 X: 12.19, -6.56, -2.62, -3, 0, 0, -2.25, -1.25, 0, 0, 0, 0, -0.5, -1, 0, 0

Y: 10.5, -3.25, -2.50, -2.75, 0, 0, 0, -1.5, 0, 0, 0, 0, -1, -1, 0, 0

X: 3, 3, 3, 3, 8 8, 8, 8, 13, 14, 17, 19, 20, 20, 23, 23

Y: 5, 5, 5, 5, 10, 10, 10, 10, 10. 12, 10, 12, 15, 15, 18, 18

10 X: 12.19, -6.56, -2.62, -3, 0, 0, -2.25, -1.25, 0, 0, 0, 0, -0.5, -1, 0, 0

Y: 10.5, -3.25, -2.50, -2.75, 0, 0, 0, -1.5, 0, 0, 0, 0, -1, -1, 0, 0

X: 3, 3, 3, 3, 8 8, 8, 8, 13, 14, 17, 19, 20, 20, 23, 23

Y: 5, 5, 5, 5, 10, 10, 10, 10, 10. 12, 10, 12, 15, 15, 18, 18

11 X: 12.19, -6.56, -2.62, -3, 0, 0, -2.25, -1.25, 0, 0, 0, 0, -0.5, -1, 0, 0

Y: 10.5, -3.25, -2.50, -2.75, 0, 0, 0, -1.5, 0, 0, 0, 0, -1, -1, 0, 0

X: 3, 3, 3, 3, 8 8, 8, 8, 13, 14, 17, 19, 20, 20, 23, 23

Y: 5, 5, 5, 5, 10, 10, 10, 10, 10. 12, 10, 12, 15, 15, 18, 18

12 X: 12.19, -6.56, -2.62, -3, 0, 0, -2.25, -1.25, 0, 0, 0, 0, -0.5, -1, 0, 0
Y: 10.5, -3.25, -2.50, -2.75, 0, 0, 0, -1.5, 0, 0, 0, 0, -1, -1, 0, 0

X: 3, 3, 3, 3, 8 8, 8, 8, 13, 14, 17, 19, 20, 20, 23, 23
Y: 5, 5, 5, 5, 10, 10, 10, 10, 10. 12, 10, 12, 15, 15, 18, 18

13 X: 12.19, -6.56, -2.62, -3, 0, 0, -2.25, -1.25, 0, 0, 0, 0, 0, 0, -0.5, -1
Y: 10.5, -3.25, -2.50, 0, 0, 0, -1.5, 0, 0, 0, 0, 0, 0, 1, -2

X: 3, 3, 3, 3, 8, 8, 8, 8, 14, 14, 18, 18, 20, 21, 22, 24

Y: 5, 5, 5, 5, 10, 10, 10, 10, 11, 11, 11, 11, 16, 14, 16, 20

14 X: 12.19, -6.56, -2.62, -3, 0, 0, -2.25, -1.25, 0, 0, 0, 0, 0, 0, -0.5, -1

Y: 10.5, -3.25, -2.50, 0, 0, 0, -1.5, 0, 0, 0, 0, 0, 0, 1, -2

X: 3, 3, 3, 3, 8, 8, 8, 8, 14, 14, 18, 18, 20, 21, 22, 24

Y: 5, 5, 5, 5, 10, 10, 10, 10, 11, 11, 11, 11, 16, 14, 16, 20

15 X: 12.19, -6.56, -2.62, -3, 0, 0, -2.25, -1.25, 0, 0, 0, 0, 0, 0, -0.5, -1

Y: 10.5, -3.25, -2.50, 0, 0, 0, -1.5, 0, 0, 0, 0, 0, 0, 1, -2

X: 3, 3, 3, 3, 8, 8, 8, 8, 14, 14, 18, 18, 20, 21, 22, 24

Y: 5, 5, 5, 5, 10, 10, 10, 10, 11, 11, 11, 11, 16, 14, 16, 20

16 X: 12.19, -6.56, -2.62, -3, 0, 0, -2.25, -1.25, 0, 0, 0, 0, 0, 0, -0.5, -1

Y: 10.5, -3.25, -2.50, 0, 0, 0, -1.5, 0, 0, 0, 0, 0, 0, 1, -2

X: 3, 3, 3, 3, 8, 8, 8, 8, 14, 14, 18, 18, 20, 21, 22, 24

Y: 5, 5, 5, 5, 10, 10, 10, 10, 11, 11, 11, 11, 16, 14, 16, 20

 As we can see from the Table above the reconstructed values for the neighboring group

are without error while groups there are further away incur errors that increase with the distance

from the baseline (reference group). For example, Y coordinates for Group 2 are actually 8, 8, 11

82/124

and 11 instead of 8, 9, 11 and 11, which are their reconstructions. These tags have fuzziest

information for Groups 3 and 4 and so we get 16, 16, 16, 16, 22, 22, 22, 22 and 11, 11, 11, 11,

16, 16, 16, 16 instead of 13, 14, 17, 19, 20, 21, 22, 24 and 10, 12, 10, 12, 16, 14, 16, 20. If we

carefully observe these values, we can notice that for Group 2, the first two members have same

data and the next two members have same data whilst in Groups 3 and 4, each member has

exactly the same coordinates as all other tags in the group. This is because tag T1 has the fuzziest

information about tags in Group 4.

 In this experiment, T2 is the source tag and T15 is the destination tag.

Figure 5.16: Navigation Path in Scenario 3

 For the first run of the algorithm, T5 is indicated as the next tag to travel in the path.

Subsequent executions give T6, T8, T9, T12 and T13 as the tags to move next. So, to reach T13

from T4 tag, it has to travel through T5, T6, T8, T9, and T12. The number of hops in the path is

6, T4-->T5-->T6-->T8-->T9-->T12-->T13. The details about angle and distance between the

tags appear in the following table.

83/124

Source

Tag

Next

Tag

Angle between

source to Next

Angle between

Source to

Destination

Distance between

Source to

Destination

Distance to

travel

T2 T3 55.32 21.96 21.95 2.24

T3 T5 5.92 18.45 20.12 4.12

T5 T6 18.45 19.96 17 2.24

T6 T8 55.32 20.19 14.76 2.24

T8 T9 180 14.51 13 6

T9 T12 10.32 30.55 12.81 6.32

T12 T13 63.45 48.20 7.21 3.16

T13 T15 180 180 2 2

 Total Distance Travelled 28.32

 Excess Distance Travelled 6.36

 Percentage Excess Travelled 28.96%

 The graphical representation of the above travel path is shown below in Figure 5.17 :

 Figure 5.17: Screenshot for applying 0 threshold in Scenario 4

The same experiment is done on different paths, one is travelling from tag T4 to tag T13

and then from tag T6 to tag 16. Following table describes the summary of travelled path for these

experiments is :

84/124

Experiment

No

Source Tag Destination

Tag

Distance to

Travel

Tags Travelled Actual

Distance

Travelled

Difference Excess

Percentage

1 T4 T13 20.12 T4, T5, T6,

T8, T9, T12,

T13

23.76 3.64 18.09%

2 T2 T15 21.95 T2, T3, T5,

T6, T8, T9,

T12, T13, T15

28.32 6.36 28.96%

3 T6 T16 14.76 T6, T8, T9,

T12, T14, T15,

T16

21.55 6.79 46%

Table 44: Experiments Readings in 16-tags network in Scenario 3

5.3.4 Scenario 4: Non-Standard Wavelet Decomposition Method

 16 tags are used to test Non-Standard Wavelet Decomposition method with 0, 0.50 and

25% threshold values.

i. Threshold = 0

 In this experiment, source Tag was taken as T2 and destination tag as T15. The distance

between the source and destination is 21.95 units and angle between then is 21.77.

Figure 5.18 : Screenshot for applying 0 threshold in Scenario 4

 The next tag in the path is tag T4 which is 2.24 units away from tag T2. Now, source tag

is T4 and we again search for next tag to move. The algorithm gives tag T5 as the next tag to

move towards the destination at a distance of 3.16 units from the current source tag T4. Tag T6

is the next tag to move to next from the current source tag T5 which is at a distance of 2.24 units.

85/124

Now, when source tag is T6, the algorithm indicates T9 as the next tag, which is 4.21 units away

from tag T6. From tag T9, we get next tag as tag T10 with a distance of 2.24 units from tag T9.

Tag T12 is given is then indicated as the next from the current source tag T9 and is at a distance

of 5 units away. This then leads to tag T4, at a distance of 2.83 units from the current source tag.

Finally, the destination tag T15 is reached from the source tag T14 at a distance of 2.24 units. In

total the number of hops required is 8 to reach tag T15 from T2. The total distance travelled is

24.07 units which is 2.12 units more (9.66% excess) than the shortest path from source to

destination, thus only incurring a small overhead in path length due to compression. The travel

path is shown in the following figure (Figure 5.19) :

Figure 5.19 : Navigation Path for applying 0 threshold in Scenario 4

 This algorithm is also tested with finding path from Tag T3 to Tag t11 and path from Tag

T1 to Tag T13. Following table describes the findings and percentage excess travel to reach

destination path in all these three tests :

Experiment

No

Source Tag Destination

Tag

Distance to

Travel

Tags Travelled Actual

Distance

Travelled

Difference Excess

Percentage

1 T2 T15 21.95 T2, T4, T5, T6, T9,

T10, T12, T14, T15

24.07 2.12 9.66%

2 T3 T12 17.00 T3, T4, T5, T6, T9,

T10, T12

19.76 2.76 16.24%

3 T1 T13 23.02 T1, T2, T5, T6, T9,

T10, T12, T13

25.55 2.53 10.19%

Table 45: Experiments Readings for applying threshold = 0 in 16-tags network in Scenario 4

86/124

ii. Threshold = 0.50

 Here, the same data has been used at threshold level of 0.50 in order to see the effect of

more compression on navigation performance. We preserve the source tag as T2 and the

destination Tag as T15 in order to maintain the integrity of the comparison. The distance

between the source tag T2 and destination tag T15 is 23.02 units and the angle between them is

26.36.

 Figure 5.20 : Screenshot for applying 0.50 threshold in Scenario 4

The path travelled in this case is different from the path taken with no thresholding

(Figure 5.21). The path sequence is T2, T4, T6, T8, T10, T12, T14, T15 which requires a total of

7 hops to reach the destination as compared to 8 hops with no thresholding. However, the total

distance travelled was 26.25 units, which represents an excess of 14.03% as opposed to a lower

excess of 9.66% with no thresholding.

87/124

Figure 5.21 : Navigation Path for applying 0.50 threshold in Scenario 4

 This algorithm is also tested with finding path from Tag T3 to Tag t11 and path from Tag

T1 to Tag T13. Following table describes the findings and percentage excess travel to reach

destination path in all these three tests :

Experiment

No

Source Tag Destination

Tag

Distance to

Travel

Tags Travelled Actual

Distance

Travelled

Difference Excess

Percentage

1 T2 T15 23.02 T2, T4, T6, T8,

T10, T12, T14, T15

26.25 3.23 14.03%

2 T3 T12 17.00 T3, T5, T8, T10,

T12

18.16 1.16 6.82%

3 T1 T13 22.02 T1, T2, T5, T6, T8,

T10, T12, T13

25.08 3.06 13.90%

Table 46: Experiments Readings for applying threshold = 0.50 in 16-tags network in Scenario 4

iii. Threshold = 25%

 Same data has been used again with the same source and destination tags but with the

threshold set to 25%.

88/124

Figure 5.22 : Screenshot for applying 25% threshold in Scenario 4

 The path sequence in this case is T2, T3, T5, T6, T9, T10, T11, T14 and T15. The total

number of hops in this case is 8 which is 1 more than with thresholding set at 0.5. The total

distance travelled is lesser at 26.45 units, thus incurring an excess of 10.9% as opposed to an

excess of 14.03% with thresholding at the 25% level. The Navigation path for this experiment is

shown in following figure (Figure 5.23):

Figure 5.23 : Navigation Path for applying 25% threshold in Scenario 4

89/124

 This algorithm is also tested with finding path from Tag T3 to Tag t11 and path from Tag

T1 to Tag T13. Following table describes the findings and percentage excess travel to reach

destination path in all these three tests :

Experiment

No

Source Tag Destination

Tag

Distance to

Travel

Tags Travelled Actual

Distance

Travelled

Difference Excess

Percentage

1 T2 T15 23.85 T2, T3, T5, T6, T9,

T10, T11, T14, T15

26.45 2.60 10.90%

2 T3 T12 14.87 T3, T5, T6, T9,

T10, T11, T12

16.33 1.46 9.82%

3 T1 T13 23.02 T1, T2, T5, T6, T9,

T10, T11, T13

24.67 1.65 7.17%

Table 47: Experiments Readings for applying threshold = 25% in 16-tags network in Scenario4

90/124

Chapter 6: Experimental Analysis

 This chapter comprises of two sections. The first section will discuss the findings of

compression experiments done on the 8 tag and 16 tag environments from the twin perspectives

of compression efficiency and navigation performance. Based on the analysis conducted in the

first section, the second section will identify the best compression scheme to be used in a real-

world scenario.

6.1 Effects of Different Compression Schemes

 Different compression algorithms are used in the four different experimental scenarios.

After compressing the original data, threshold values have been applied on the wavelet

coefficients to get a final compressed version of the wavelet coefficients. The following table

displays the compression ratios derived from each compression scheme for the 16 tag network

configuration.

Scenario Threshold

Value

Compression

Ratio

Scenario 1 : All Wavelet Coefficients are stored 0 1.00

0.50 1.25, 1.08

Avg 1.17

25% 1.36, 1.40

Avg 1.38

Scenario 2 : Standard Decomposition Method 0 1.00

0.50 2.14

25% 1.30

Scenario 3 : Coefficients according to tag resolution -- 2.00

Scenario 4 : Non-Standard Decomposition Method 0 1.00

0.50 1.93

25% 1.26

 From the above table, it can be observed that the 0.50 threshold compressed data was

very effective in all four scenarios, though the 25% threshold gave the best result in Scenario 1.

A threshold level of 1 was applied in Scenario 1 but gave a high excess in percentage terms for

the distance travelled and was therefore abandoned. While testing different threshold values on

wavelet coefficients, it was observed that the compression ratio is dependent on the distribution

91/124

of wavelet coefficients values. In some cases, the 25% threshold yielded better results than

thresholding at the absolute level of 0.5. As Talukder et al have observed (Talukder, K. H.,

Harada, K., 2007) the setting of the threshold needs to be carried out empirically on a trial and

error basis as compression ratios obtained are very dependent on the nature of the underlying

data distribution.

 In Scenario 1, which assumes that all wavelet coefficients can be stored in a single RFID

tag, three threshold values were applied on the array of wavelet coefficients. Threshold = 1 gave

the worst results and had to be abandoned, as mentioned before (see Tables 10 and 11). Overall,

with Scenario 1, the lowest reconstruction error is 8%, while the highest is 11%. When 25%

thresholding was applied in Scenario 1, the last half of the coefficients was affected. This is due

to the fact that 25% thresholding results in the last 25% of the coefficients being dropped, which

in turn only affects the reconstruction of the last half of the coefficient array (i.e. the last set of

tags in the array (see Tables 15 and 16).

 Scenario 2 experiments also gave very similar results. The standard decomposition

method is used for compression in this scenario. A multi-dimensional array was used to stored

wavelet coefficients and reconstructed values. But here the number of values that changed with

Threshold = 0.50 are more than that in Scenario 1 (i.e. storing all coefficients). Thresholding at

the 25% level also gave poorer results as compared to Scenario 1. The maximum %Err is 33%

here as compared to 10% in Scenario 1. Compression ratio was better for 16 tags when the 0.50

threshold value was applied. Compression ratio obtained was 2.14 with threshold 0.50 as

opposed to 1.30 for the 25% thresholding level.

 As Scenario 3 is inherently lossy in nature, no thresholding applied in this scenario. The

number of coefficients stored in each tag depends on how many tags exist in the environment.

Here 8 tags and 16 tags environments are tested. In the 8-tag environment, 6 wavelet coefficients

are stored while in the 16-tag environment, 8 wavelet coefficients are stored for tag labels and

(X-Axis, Y-Axis) coordinates. The greater the number of tags in the environment the better is the

compression ratio. Compression ratio is 2 for 16 tags as compared to 1.33 for 8 tags (Table 24).

 After experimenting on different N number of tags, following formula has been derived t

calculate number of wavelet coefficients to be stored in each tag using Scenario 3 :

Number of Tags (N) = 2
S

Here, for 8 tags we store 6 wavelet coefficients and for 16 tags, 8 wavelet coefficients are stored

in each tag, i.e.

8 = 2
3
 i.e. 3 x 2 wavelet coefficients

16 = 2
4
 i.e. 4 x 2 wavelet coefficients

92/124

So, Number of Wavelet Coefficients in a tag = 2×S. Using this formula, we can easily

calculate number of wavelet coefficients to be store for any N number of tags and the resulting

compression ratio. The following table illustrates the relationship between the size of the

network (i.e. number of tags) and compression ratio.

Number

of Tags

Number of Wavelet

Coefficients in a tag

Compression

Ratio

8 6 1.33

16 8 2.00

32 10 3.20

64 12 5.33

 From the above table, it can be seen that when the number of tags increases in this

scenario, the compression ratio also increases. Thus, it is clear that better efficiencies can be

achieved in large RFID tag environments.

 Non-standard decomposition method has been applied to compress the data in Scenario 4.

After applying threshold = 0.50 on wavelet coefficients, we get %Err values ranging from 5% to

20% while the corresponding range with 25% thresholding was 4% to 50. At the same time, the

compression ratio with the 0.50 threshold at 1.93 was better than the compression ratio at 25%

thresholding, which happened to be 1.26.

 After compressing the wavelet coefficients, they are stored in text files. One text file was

created for all Scenarios except for Scenario 3 where wavelet coefficients are stored depending

on tag resolution. The algorithm created 16 different text files; one for each different tag as each

tag stores a different set of wavelet coefficients. The following table describes the storage space

required (in bytes) for each tag for each scenario and with a different number of tags in the

network.

93/124

Scenario Threshold 8 tags 16 tags XML (16 tags)

A B A B A B

1 Lossless 70 101 137 173 602 864

25% 55 86 110 156 451 646

0.50 63 94 124 168 598 860

2 Lossless 89 119 180 240 588 1065

25% 66 96 141 201 488 974

0.50 70 101 114 174 582 1065

3 No threshold

as it already

has lossy data

54 85 76 136 214 684

4 Lossless 82 112 171 231 531 1001

25% 60 91 140 200 433 903

0.50 63 94 126 186 525 995

A: If only Coefficients are stored for X-Axis and Y Axis in the tag and treat tag positions as tag labels

B: If Tag Labels, X-Axis, and Y-Axis wavelet Coefficients are stored in the tag

 As active RFID tags have storage capacities that can up to 128 Kilobytes while passive

RFID tags can have up to 32 KB of storage capacity, the data compression schemes used in this

research easily meet the storage constraints involved with both types of tags. The storage size for

the16 tag-environment is 208 bytes. Thus, it can be seen that, except for the standard

decomposition method operating in lossless mode (Scenario 2) which requires 240 byes to store

tag data, the other scenarios require lesser storage space than with the original data. If it is

assumed that all tags are deployed sequentially and labels are 1,2,3... and so on are assigned to

the tags, then only the X-Axis and Y-Axis coordinates data need be stored, thus saving a great

deal of storage space. But if tags are not deployed in sequential order, tag label data will need to

be stored for each tag; which will still not cause a storage overflow.

 Two file types are tested here to store tag data, i.e. CSV and XML. The XML file type

takes much larger space to store the data which incurs a storage overhead which is to 4 to 5 times

greater than with the CSV file format. Accordingly, CSV format is recommended to store the

wavelet coefficients data in an RFID tag.

 Thus, taking into consideration the above storage capacity table, Scenario 3 (i.e. wavelet

coefficients stored as per tag resolution) gives better results as it requires less memory capacity

to store tag information. But when compression ratio is taken into consideration, the standard

decomposition technique with 0.50 thresholding tends to give better results when compared to

the other modes of compression.

94/124

6.2 Navigation Experiment

 After successfully conducting experimentation with data compression for the four

different scenarios, the next goal was to test the effect of compression on navigation

performance. For discussion of the navigation experimentation, the 16 tag configuration is

selected. The experimental results are summarized below:

 (Here Actual Distance means the distance measured on the shortest path between source

and destination tags)

Scenario Compression

Mode

Source

Tag

Destination

Tag

Actual

Distance

Distance

Travelled

No. of

Hops

% Excess

1 Lossless T2 T15 21.95 24.07 07 9.66%

0.50 Threshold T2 T15 21.95 23.83 06 8.56%

25% Threshold T2 T15 23.85 24.48 05 2.64%

2 Lossless T2 T15 21.95 24.07 07 9.66%

0.50 Threshold T2 T15 21.63 23.97 06 10.82%

25% Threshold T2 T15 21.26 21.78 07 2.45%

3 --- T2 T15 21.95 28.32 07 28.96%

4 Lossless T2 T15 21.95 24.07 07 9.66%

0.50 Threshold T2 T15 23.02 26.25 06 14.03%

25% Threshold T2 T15 23.85 26.45 07 10.90%

 Thus it is clear from the above table that if all wavelet coefficients are stored in lossless

and lossy modes in Scenario 1, the results will be exactly the same as with no compression

applied. The threshold value 25% gives better results as compared to threshold value 0.50 in the

first scenario. The user needs to travel 2.64% greater distance at 25% thresholding as compared

to 8.56% in the case of 0.50 thresholding.

 If the standard decomposition method is applied, the lossless mode gives the same results

as with no compression applied. In the lossy mode, 25% thresholding gives better results than

with thresholding at 0.50. The distance to travel decreased by 1.19 units when thresholding at

0.50 was applied while it is decreased by 2.74 units.

 Scenario 3 gives the worse results when compared to other scenarios. The user has to

travel 28.96% more to reach tag T15 from tag T2.

95/124

 In Scenario 4 where we applied the non-standard wavelet decomposition method, once

again the 25% thresholding value gave better results than with the 0.50 threshold value. With the

25% threshold value, the user needs to travel 10.90% more as compared to a 14.03% excess

using the 0.50 threshold value.

 The number of hops was also less when 0.50 threshold value was applied in all

experiments. In the lossless mode, the navigation required 7 hops to travel from tag T2 to tag

T15. But, when 0.50 threshold value was applied, the number of hops reduced to 6 for all cases

from 7, except for the first scenario where the number of hops was 5.

 Thus, from a navigation viewpoint, data compression using 25% thresholding with the

standard decomposition method gives the best results. We observe that the optimal thresholding

level differs depends on the viewpoint; from the compression perspective 0.5 thresholding gives

the best compression, whereas from the navigation viewpoint the 25% thresholding gives the

best results. The ultimate choice between the two thresholds should thus be determined on a

case-by- case basis depending on the user’s preference between storage efficiency and

navigation performance.

96/124

Chapter 7: Conclusion

 As mentioned earlier, the focus of this study was to design efficient data compression

methods using the Haar wavelet scheme when applied on RFID tags in an indoor or underground

navigation environment. The study also investigated whether data compressed by using different

methods are sufficiently efficient to navigate through RFID tags deployed in the environment as

compared to navigation with non-compressed data. Three different scenarios were discussed in

this study. Storage capacity was assessed with the different data compression schemes employed.

Thresholding was also applied on the wavelet coefficients. Thresholding played was shown to

play a significant role in data compression. A proper threshold value results in a better

compression ratio with less error, i.e. with minimal changes in reconstructed values. Storage

requirements after data compression is much reduced from the original non compressed form.

 Raviraj, P., et. al., (2007) designed a computationally efficient algorithm using the Haar

wavelet. They used the two dimensional discrete wavelet transform on image data. They

experimented with thresholding levels of 25%, 10%, 5% and 1% and obtained promising results

as they were able to reconstruct the images with very minor loss in quality while achieving high

compression rates. However, to date there has been no study reported in the literature that the

author is aware of that applies wavelet compression to location data stored on RFID tags. Thus

this research provides new insights into the use of wavelets by providing a new area for its

application, particularly in view of its success in both storage efficiency and navigation

performance.

 Scalability of these scenarios is with respect to Compression Ratio and Network Size. As

we discussed in our experimental study in Chapter 6, Compression Ratio increased when we

implemented data compression with Scenario 3. The 8-tag network has compression ratio of 1.33

while it steadily increases to 2.00, 3.20, 5.33 for 16-tag, 32-tag and 64-tag networks. This shows

that as the number of tags is increased in this Scenario, Compression Ratio increased as well,

thus demonstrating compression ration scales very well under Scenario 3. In other Scenarios as

well, proper utilization of threshold values will help to implement data compression algorithm

effectively in a larger network.

97/124

Application of the system in real world scenarios

 The system as described in this research was designed to operate in indoor and

underground environments where RFID tags can be installed. The system can thus be

implemented in large hospitals where RFID tags are installed in different localities such as ICU,

blood banks, emergency units, operating theaters, drug stores and so on. The patient will have

navigation devices such as PDAs or mobile devices. The patient will enter the location of the

place that they want to visit such as a blood bank. Then the navigation system operating with the

help of the RFID tag network will respond by guiding the patient to reach the desired destination.

This will reduce the search time in very large hospitals and be helpful in emergency situations.

 This system can also be used in underground mining projects where we need to find the

location of miners working in different parts of the mine. Very large warehouses are candidates

for the use of such technology. In a large warehouse, it can help employees to find locations of

certain product sections, or departments. It can also be helpful to museum visitors and act as a

guide to navigate visitors to certain parts of the museum that they are interested in.

Strengths and Limitations

 There are certain strengths and limitations to this research study. One of the strengths is

that this study analyzed data compression techniques in three different realistic scenarios,

involving lossless compression, lossy standard decomposition, lossy non-standard decomposition

and a novel lossy compression scheme that we introduced that is based on tag resolution.

Different threshold values are also applied in the lossy schemes to ascertain their effect on the

accuracy of reconstructed values. Though data compression was tested on the 8-tag and 16-tag

environments, in principle they can be applied across much larger environments as well, without

any need to change the algorithms involved. All wavelet coefficients generated in different

experiments are stored in CSV files which are then used in the navigation experiment. We also

devised a novel navigation algorithm that was designed to operate with sparse approximate maps

produced with the application of lossy data compression. Our experimentation showed that the

navigation algorithm was able to achieve high levels of performance with the right choice of

thresholding level used for data compression.

 Most researchers studied different wavelet decomposition methods and their efficacy

separately. There is no study known to the author that compared the performance of these

methods viz., standard and non-standard wavelet decomposition methods. This research thus

helped to fill the gap in this regard.

 Just as there are a number of strengths to the study, some limitations exist, as well. The

98/124

main limitation is that the system is not implemented and tested in a real environment. Such

testing was considered to be outside the scope of the study but there is every reason to believe

that the compression and navigation efficiencies that were obtained will carry through to real

world usage as our experimentation was generic in nature and did not assume certain specialized

application environments.

Future Research Directions

 As mentioned in the previous section about the strengths and limitations of the study, the

future direction is to implement and analyze the system in real case scenario and test the

outcome and navigation path against standards. The feasibility and reliability of the system in a

real world needs to be established.

 A future extended study, apart from testing in the real world will be how to avoid storing

duplicate data in the RFID tags. During the study, it was observed that nearest neighbour tags

end up storing wavelet coefficients that are similar in value. A, further study needs to test the

implementation of an RFID reference tag which will store the duplicate (or near duplicate)

wavelet coefficients, thus enabling a higher data compression ratio to be achieved.

99/124

REFERENCES

Balevic, A., Rockstroh, L., Wroblewski, M., Simon, S. (2008). "Using Arithmetic Coding for

Reduction of Resulting Simulation Data Size on Massively Parallel GPGPUs." Recent Advances

in Parallel Virtual Machine and Message Passing Interface 5205: 295-302.

Barr, K. C., Asanovic, K. (2006). "Energy-aware Lossless Data Compression." ACM

Transactions on Computer Systems (TOCS) 24(3): 250-291.

Caplinskas, A., Vasilecas, O. (2004). Information Systems Research Methodologies and Models.

The 5th International Conference on Computer Systems and Technologies. Bulgaria: 1-6.

Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K. (2001). "Approximate query processing

using wavelets." The VLDB Journal 10(2-3): 199-233.

Chon, H. D., Jun, S., Jung, H., Won An, S. (2004). "Using RFID for Accurate Positioning."

Journal of Global Positioning Systems 3(1-2): 32-39.

de Villiers, M. R. (2005). Three approaches as pillars for interpretive information systems

research: development research, action research and grounded theory. Proceedings of the 2005

Annual Research Conference of the South African Institute of Computer Scientists and

Information Technologists on IT research in developing countries, South Africa.

Deligiannakis, A., Garofalakis, M., Roussopoluos, N. (2007). "Extended Wavelets for Multiple

Measures." ACM Transactions on Database Systems 32(2).

Domdouzis, K., Kumar, B., Anumba, C. (2007). "Radio-Frequencey Identification (RFID)

Applications: A brief introducdtion." Advanced Engineering Informatics 21(4): 350-355.

Dvorsky, J., Pokorny, J., Snasel, V. (1999). "Word-Based Compression methods and Indexing

for Text Retrieval Systems." Advances in Databases and Information Systems 1691/1999: 76-84.

Fakeh, R., Ghani, A.A.A. (2009). "Empirical Evaluation of Decomposition Strategy of Wavelet

Video Compression." International Journal of Image Processing (IJIP) 3(1): 31-54.

Fazzinga, B., Flesca, S., Masciari, E., Furfaro, F. (2009). Efficient and Efffective RFID Data

Warehousing. IDEAS '09 Proceedings of the 2009 International Database Engigineering &

Applications Syposium, Calabria (Italy), ACM.

Garofalakis, M., Kumar, A. (2004). Deterministic wavelet thresholding for maximum-error

metrics. Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles

of database systems, Paris, France.

Garofalakis, M., Gibbons, P.B. (2004). "Probabilistic Wavelet Synopses." Transactions on

Database Systems (TODS) 29(1): 43-90.

Hevner, A. R., March, S.T., Park, J., Ram, S. (2004). "Design Science in Information Systems

Research." MIS Quarterly 28(1): 75-105.

100/124

Howard, P. G., Vitter, J.S. (1994). Arithmetic Coding for Data Compression. Proceedings of the

IEEE. 82(6): 857-865.

Hu, Y. C., Chang C. (2000). "A new lossless compression scheme based on Huffman coding

scheme for image compression." Signal Processing: Image Communication 16(4): 367-372.

Huffmire, T., Sherwood, T. (2006). Wavelet-based Phase Classification. Proceedings of the 15th

International Conference on Parallel Architectures and Compilation Techniques, New York,

ACM.

Iivari, J. (2007). "A Paradigmatic Analysis of Information Systems As a Design Science."

Scandinavian Journal of Information Systems 19(2): 39-64.

Jain, A., Sen Gupta, I. (2007). A JPEG compression resistant steganography scheme for raster

graphics images. TENCON 2007 - 2007 IEEE Region 10 Conference: 1-4.

Kambli, M., Bhatia, S. (2010). "Comparison of different Fingerpring Compression Techniques."

Signal & Image Processing : An International Journal (SIPIJ) 1(1): 27-39.

Khalifa, O. O., Harding, S.H., Hashim, A.A. (2008). "Compression using Wavelet Transform."

Signal Processing: An International Journal 2(5): 17-26.

Khorrami, H., Moavenian (2010). "A Comparative Study of DWT, CWT and DCT

transformations in EDG arrhythmias classification." Expert Systems with Applications 37: 5751-

5757.

Koumaras, H., Kourtis, A., Lin, C.H., Shieh, C.K. (2008). "End-to-End Prediction Model of

Video Quality and Decodable Frame Rate for MPEG Broadcasting Services." International

Journal on Advances in Networks and Services 1(1): 19-29.

Latu, G. (2010). "Sparse data structure design for wavelet-based methods." Retrieved 25-07-

2011, from http://icps.u-strasbg.fr/~latu/wavelet/course_note.pdf.

Lionel, M. N., Yunhao, L., Yiu, C.L., Patil, A.P. (2004). "LANDMARC: Indoor Location

Sensing Using Active RFID." Wireless Networks 10: 701-710.

Ng, R., Ramamoorthi, R., Hanrahan, P. (2003). "All-frequency shadows using non-linear

wavelet lighting approximation." ACM Transactions on Graphics (TOG) 22(3): 376-381.

Pais, S., Symonds, J. (2011). "Data Storage on a RFID Tag for a distributed system."

International Journal of UbiComp (IJU) 2(2): 1-14.

Papageorgiou, C., Poggiom, T. (2000). "A Trainable System for Object Detection." International

Journal of Computer Vision 38(1): 15-33.

Potdar, M., Chang, E., Potdar, V. (2006). Applications of RFID in Pharmaceutical Industry. ICIT

2006 : IEEE International Conference on Industrial Technology. Mumbai, India: 2860-2865.

Raviraj, P., Sanavullah, M.Y. (2007). "The Modified 2D-Haar Wavelet Transformation in Image

Compression." Middle-East Journal of Scientific Research 2(2): 73-78.

101/124

Schomer, D. F., Elekes, A.A., Hazle, J.D., Huffman, J.C., Thompson, S.K., Chui, C.K., Murphy,

W.A. (1998). "Introduction to wavelet-based compression of medical images." RadioGraphics -

The Journal of continuing medical education in radiology 18: 469-481.

Singh, S., Sharma, R.K., Sharma, M.K. (2009). "Use of Wavelet Tranform Extension for

Graphics Image Compression using JPEG2000 Framework." International Journal of Image

Processing (IJIP) 3(1): 55-60.

Singh, T., Chopra, S., Kaur, H., Kaur, A. (2010). "Image Compression Using Wavelet and

Wavelet packet Transformation." International Journal on Computer Science and Technology

1(1): 97-99.

Singla, V., Singla, R., Gupta, S. (2008). "Data Compression Modelling: Huffman and

Arithmetic." International Journal of the Computer, the Internet and Management 16(3): 64-68.

Stabno, M., Wrembel, R. (2009). "RLH: Bitmap compression technique based on run-length and

Huffman encoding." Information Systems 34(4-5): 400-414.

Stollnitz, E. J., DeRose, A.D., Salesin, D.H. (1995). "Wavelets for Computer Graphics: A Primer

1." Computer Graphics and Applications, IEEE 15(3): 76-84.

Stollnitz, E. J., DeRose, A.D., Salesin, D.H. (1995). "Wavelets for Computer Graphics: A Primer

2." Computer Graphics and Applications, IEEE 15(4): 75-85.

Talukder, K. H., Harada, K. (2007). "Haar Wavelet Based Approach for Image Compression and

Quality Assessment of Compressed Image." IAENG International Journal of Applied

Mathematics 36(1).

Tesoriero, R., Gallud, J.A., Lozano, M., Penichet, V.M.R. (2008). "Using Active and Passive

RFID Technology to Support Indoor Location-Aware Systems." IEEE Transactions on

Consumer Electronics 54(2): 578-583.

Tichy, W. F. (1998). "Should computer scientists experiment more?" Computer 31(5): 32-40.

Vitter, J. S., Wang, M. (1999). Approximate computation of multidimensional aggregates of

sparse data using wavelets. SIGMOD '99 Proceedings of the 1999 ACM SIGMOD International

Conference of Management of Data, NY, USA, ACM.

Walker, W. (2005). "The strengths and weaknesses of research designs involving quantitative

measures." Journal of Research in Nursing 10(5): 571-582.

Want, R. (2006). “An Introduction to RFID Technology.” PERVASIVE Computing: 25-33.

Ward, M., Van Kranenburg, R., (May 2006). "RFID: Frequency, standards, adoption and

innovation." JISC Technology and Standards Watch.

Witten, I. H., Neal, R.M., Cleary, J.G. (1987). Arithmetic Coding for Data Compression.

Communications of the ACM. New York, USA, ACM, New York. 30: 520-540.

Xia, J., Jiang, J., Yang, S.Y., Hou, C.H. (2003). An empirical study to turn MPEG-2 into lossless

video compression. International Conference on Visual Information Engineering, VIE 2003.

102/124

ANNEXURES

Annexure 1 : Tag Creation Code

 N = Convert.ToInt32(txtTags.Text)

 Dim orandom As System.Random

 ReDim Tags(N - 1), XAxis(N - 1), YAxis(N - 1)

 Dim tagdata(N - 1, 3), T As Integer

 orandom = New System.Random

 fullpath = " F:\ThesisLATEST\HaarWavelet\Data\Tags_16_New.txt"

 objReader = New StreamWriter(fullpath)

 For i = 0 To N - 1

 Tags(i) = i + 1

 ok = False

 While ok = False

 X = orandom.Next(100)

 Y = orandom.Next(100)

 Xindex = Array.IndexOf(XAxis, X)

 YIndex = Array.IndexOf(YAxis, Y)

 If Xindex <> YIndex Then

 ok = True

 Else

 If Xindex = -1 Then

 ok = True

 End If

 End If

 End While

 XAxis(i) = X

 YAxis(i) = Y

 tagdata(i, 0) = i + 1

 tagdata(i, 1) = X

 tagdata(i, 2) = Y

 tagdata(i, 3) = Math.Sqrt(X * X + Y * Y)

 Next

 For i = 0 To N - 2

 For j = i + 1 To N - 1

 If XAxis(i) > XAxis(j) Then

 Xindex = XAxis(i)

 XAxis(i) = XAxis(j)

 XAxis(j) = Xindex

 YIndex = YAxis(i)

 YAxis(i) = YAxis(j)

 YAxis(j) = YIndex

 End If

 If tagdata(i, 3) > tagdata(j, 3) Then

 T = tagdata(i, 0)

 X = tagdata(i, 1)

 Y = tagdata(i, 2)

 dist = tagdata(i, 3)

 tagdata(i, 0) = tagdata(j, 0)

 tagdata(i, 1) = tagdata(j, 1)

 tagdata(i, 2) = tagdata(j, 2)

 tagdata(i, 3) = tagdata(j, 3)

 tagdata(j, 0) = T

 tagdata(j, 1) = X

103/124

 tagdata(j, 2) = Y

 tagdata(j, 3) = dist

 End If

 Next

 Next

 For i = 0 To N - 1

 objReader.Write(tagdata(i, 0) & ", " & tagdata(i, 1) & ", " & tagdata(i, 2) & " | ")

 Next

 objReader.Close()

 Label2.Text = "Tags created...."

104/124

Annexure 2 : Wavelet Decomposition in Scenario 1

 lblTagCoeff.Text = ""

 lblXCoeff.Text = ""

 lblYCoeff.Text = ""

 ' S = 3

 N = Tags.Length

 For i = 1 To 100

 If N = 2 ^ i Then

 S = i

 Exit For

 End If

 Next

 ReDim Tavg(N - 1), Xavg(N - 1), Yavg(N - 1)

 For i = 0 To N - 1

 Tavg(i) = Tags(i)

 Xavg(i) = XAxis(i)

 Yavg(i) = YAxis(i)

 Tsum += Tags(i)

 Xsum += XAxis(i)

 Ysum += YAxis(i)

 Next

 avg1 = Tsum / N

 avg2 = Xsum / N

 avg3 = Ysum / N

 ReDim TagsCoeff(N - 1), XCoeff(N - 1), YCoeff(N - 1)

 For cnt = S To 1 Step -1

 ReDim Preserve Tavg1(N / 2 - 1)

 ReDim Preserve Xavg1(N / 2 - 1)

 ReDim Preserve Yavg1(N / 2 - 1)

 ReDim Preserve diff1(N / 2 - 1)

 ReDim Preserve diff2(N / 2 - 1)

 ReDim Preserve diff3(N / 2 - 1)

 j = 0

 k = 0

 For i = 0 To N - 2

 Tavg1(j) = (Tavg(i) + Tavg(i + 1)) / 2

 Xavg1(j) = (Xavg(i) + Xavg(i + 1)) / 2

 Yavg1(j) = (Yavg(i) + Yavg(i + 1)) / 2

 diff1(k) = Tavg(i) - Tavg1(j)

 diff2(k) = Xavg(i) - Xavg1(j)

 diff3(k) = Yavg(i) - Yavg1(j)

 i += 1

 j += 1

 k += 1

 Next

 j = k

 For i = 0 To k - 1

 TagsCoeff(j) = diff1(i)

 XCoeff(j) = diff2(i)

 YCoeff(j) = diff3(i)

 j += 1

 Next

 ReDim Tavg(N / 2 - 1), Xavg(N / 2 - 1), Yavg(N / 2 - 1)

 For i = 0 To N / 2 - 1

 Tavg(i) = Tavg1(i)

 Xavg(i) = Xavg1(i)

105/124

 Yavg(i) = Yavg1(i)

 Next

 N = N / 2

 Next

 TagsCoeff(0) = avg1 'Tsum / N

 XCoeff(0) = avg2 'Xsum / N

 YCoeff(0) = avg3 'Ysum / N

 N = Tags.Length

 For i = 0 To N - 1

 TagsCoeff(i) = Math.Round(TagsCoeff(i), 2)

 XCoeff(i) = Math.Round(XCoeff(i), 2)

 YCoeff(i) = Math.Round(YCoeff(i), 2)

 Next

 ' ------------ Writing to text file

 fullpath = "C:\ThesisLATEST\HaarWavelet\Data\WaveletCoeff_S1_" & N & ".txt"

 objReader = New StreamWriter(fullpath)

 For i = 0 To N - 1

 objReader.Write(TagsCoeff(i))

 If i <> N - 1 Then

 objReader.Write(",")

 End If

 Next

 objReader.Write("|")

 For i = 0 To N - 1

 objReader.Write(XCoeff(i))

 If i <> N - 1 Then

 objReader.Write(",")

 End If

 Next

 objReader.Write("|")

 For i = 0 To N - 1

 objReader.Write(YCoeff(i))

 If i <> N - 1 Then

 objReader.Write(",")

 End If

 Next

 objReader.Close()

 '-------------

 For i = 0 To Tags.Length - 1

 lblTagCoeff.Text &= TagsCoeff(i) & " "

 lblXCoeff.Text &= XCoeff(i) & " "

 lblYCoeff.Text &= YCoeff(i) & " "

 Next

106/124

Annexure 3 : Wavelet Decomposition in Scenario 2 (Standard Decomposition)

 lblTagCoeff.Text = ""

 lblXCoeff.Text = ""

 lblYCoeff.Text = ""

 ' L = N / 2

 L = txtTags.Text / 2

 i = 0

 ReDim myArr(3, L - 1), CoeffArr(3, L - 1), AxisData(L - 1)

 For r = 0 To 3 Step 2

 For c = 0 To L - 1

 myArr(r, c) = XAxis(i)

 myArr(r + 1, c) = YAxis(i)

 i = i + 1

 Next

 Next

 '----- First Pass Row Decomposition

 N = L

 For i = 1 To 100

 If N = 2 ^ i Then

 S = i

 Exit For

 End If

 Next

 For r = 0 To 3

 For i = 0 To L - 1

 AxisData(i) = myArr(r, i)

 Next

 N = L

 Tsum = 0

 ReDim Tavg(N - 1), diff1(N - 1), Tavg1(N - 1)

 For i = 0 To N - 1

 Tavg(i) = AxisData(i)

 Tsum += AxisData(i)

 Next

 avg1 = Tsum / N

 ReDim TagsCoeff(N - 1)

 For cnt = S To 1 Step -1

 ReDim Preserve Tavg1(N / 2 - 1)

 ReDim Preserve diff1(N / 2 - 1)

 j = 0

 k = 0

 For i = 0 To N - 2

 Tavg1(j) = (Tavg(i) + Tavg(i + 1)) / 2

 diff1(k) = Tavg(i) - Tavg1(j)

 i += 1

 j += 1

 k += 1

 Next

 j = k

 For i = 0 To k - 1

 TagsCoeff(j) = diff1(i)

 j += 1

 Next

107/124

 ReDim Tavg(N / 2 - 1)

 For i = 0 To N / 2 - 1

 Tavg(i) = Tavg1(i)

 Next

 N = N / 2

 Next

 TagsCoeff(0) = avg1 'Tsum / N

 For i = 0 To N - 1

 TagsCoeff(i) = Math.Round(TagsCoeff(i), 2)

 Next

 For i = 0 To L - 1

 CoeffArr(r, i) = TagsCoeff(i)

 Next

 Next

 '----- Second Pass Column Decomposition

 N = 4 'L

 ReDim AxisData(3), CoeffArr2Pass(L - 1, 3)

 For i = 1 To 100

 If N = 2 ^ i Then

 S = i

 Exit For

 End If

 Next

 For c = 0 To L - 1

 For i = 0 To 3

 AxisData(i) = CoeffArr(i, c)

 Next

 N = 4 'L

 Tsum = 0

 ReDim Tavg(N - 1), diff1(N - 1), Tavg1(N - 1)

 For i = 0 To N - 1

 Tavg(i) = AxisData(i)

 Tsum += AxisData(i)

 Next

 avg1 = Tsum / N

 ReDim TagsCoeff(N - 1)

 For cnt = S To 1 Step -1

 ReDim Preserve Tavg1(N / 2 - 1)

 ReDim Preserve diff1(N / 2 - 1)

 j = 0

 k = 0

 For i = 0 To N - 2

 Tavg1(j) = (Tavg(i) + Tavg(i + 1)) / 2

 diff1(k) = Tavg(i) - Tavg1(j)

 i += 1

 j += 1

 k += 1

 Next

 j = k

 For i = 0 To k - 1

 TagsCoeff(j) = diff1(i)

 j += 1

 Next

 ReDim Tavg(N / 2 - 1)

 For i = 0 To N / 2 - 1

 Tavg(i) = Tavg1(i)

108/124

 Next

 N = N / 2

 Next

 TagsCoeff(0) = avg1 'Tsum / N

 For i = 0 To N - 1

 TagsCoeff(i) = Math.Round(TagsCoeff(i), 2)

 Next

 For i = 0 To 3

 CoeffArr2Pass(c, i) = TagsCoeff(i)

 Next

 Next

 '-------

 fullpath = "C:\ThesisLATEST\HaarWavelet\Data\WaveletCoeff_S2_" & Tags.Length & ".txt"

 objReader = New StreamWriter(fullpath)

 For r = 0 To L - 1

 For c = 0 To 3

 objReader.Write(Math.Round(CoeffArr2Pass(r, c), 2))

 If c <> 3 Then objReader.Write(",")

 Next

 objReader.WriteLine()

 Next

 objReader.Close()

109/124

Annexure 4 : Wavelet Decomposition in Scenario 3

 Private Sub btnWaveDecompo_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles btnWaveDecompo.Click

 Dim PathArray() As Integer, ind As Integer, newXCoeff() As Decimal, newYCoeff() As Decimal, k1 As

Integer, TagInd As Integer

 WaveletCalc()

 For i = 0 To Tags.Length - 1

 TagsCoeff(i) = Math.Round(TagsCoeff(i), 2)

 XCoeff(i) = Math.Round(XCoeff(i), 2)

 YCoeff(i) = Math.Round(YCoeff(i), 2)

 Next

 For TagInd = 0 To Tags.Length - 1

 lblTagCoeff.Text = XCoeff.Length

 lblXCoeff.Text = ""

 lblYCoeff.Text = ""

 For i = 0 To XCoeff.Length - 1

 lblXCoeff.Text &= XCoeff(i) & ","

 lblYCoeff.Text &= YCoeff(i) & ","

 Next

 CoeffPath(Tags.Length, TagInd + 1)

 ind = path.Length + pair.Length - 2

 ReDim PathArray(ind)

 For j = 0 To path.Length - 1

 PathArray(j) = Math.Abs(path(j))

 Next

 k1 = 0

 For k = j To ind

 PathArray(k) = Math.Abs(pair(k1))

 k1 += 1

 Next

 Array.Sort(PathArray)

 '---------------------

 ReDim newXCoeff(PathArray.Length - 1), newYCoeff(PathArray.Length - 1)

 For j = 0 To PathArray.Length - 1

 ind = PathArray(j)

 newXCoeff(j) = XCoeff(ind)

 newYCoeff(j) = YCoeff(ind)

 Next

 ' ------------ Writing to text file

 fullpath = "C:\ThesisLATEST\HaarWavelet\Data\Experiment Data\WaveletCoeff_S3_" & N & "_" &

TagInd + 1 & ".txt"

 objReader = New StreamWriter(fullpath)

 Dim m As Integer

 For m = 0 To newXCoeff.Length - 1

 objReader.Write(newXCoeff(m))

 If m < newXCoeff.Length - 1 Then

 objReader.Write(",")

 End If

 Next

 objReader.Write("|")

 For m = 0 To newYCoeff.Length - 1

 objReader.Write(newYCoeff(m))

 If m < newYCoeff.Length - 1 Then

110/124

 objReader.Write(",")

 End If

 Next

 objReader.Close()

 '-------------

 Next

 End Sub

 Public Sub WaveletCalc()

 N = Tags.Length

 For i = 1 To 100

 If N = 2 ^ i Then

 S = i

 Exit For

 End If

 Next

 ReDim Tavg(N - 1), Xavg(N - 1), Yavg(N - 1)

 For i = 0 To N - 1

 Tavg(i) = Tags(i)

 Xavg(i) = AxisData(i, 0)

 Yavg(i) = AxisData(i, 1)

 Tsum += Tags(i)

 Xsum += AxisData(i, 0)

 Ysum += AxisData(i, 1)

 Next

 avg1 = Tsum / N

 avg2 = Xsum / N

 avg3 = Ysum / N

 ReDim TagsCoeff(N - 1), XCoeff(N - 1), YCoeff(N - 1)

 For cnt = S To 1 Step -1

 ReDim Preserve Tavg1(N / 2 - 1)

 ReDim Preserve Xavg1(N / 2 - 1)

 ReDim Preserve Yavg1(N / 2 - 1)

 ReDim Preserve diff1(N / 2 - 1)

 ReDim Preserve diff2(N / 2 - 1)

 ReDim Preserve diff3(N / 2 - 1)

 j = 0

 k = 0

 For i = 0 To N - 2

 Tavg1(j) = (Tavg(i) + Tavg(i + 1)) / 2

 Xavg1(j) = (Xavg(i) + Xavg(i + 1)) / 2

 Yavg1(j) = (Yavg(i) + Yavg(i + 1)) / 2

 diff1(k) = Tavg(i) - Tavg1(j)

 diff2(k) = Xavg(i) - Xavg1(j)

 diff3(k) = Yavg(i) - Yavg1(j)

 i += 1

 j += 1

 k += 1

 Next

 j = k

 For i = 0 To k - 1

 TagsCoeff(j) = diff1(i)

 XCoeff(j) = diff2(i)

 YCoeff(j) = diff3(i)

 j += 1

 Next

 ReDim Tavg(N / 2 - 1), Xavg(N / 2 - 1), Yavg(N / 2 - 1)

 For i = 0 To N / 2 - 1

 Tavg(i) = Tavg1(i)

 Xavg(i) = Xavg1(i)

111/124

 Yavg(i) = Yavg1(i)

 Next

 N = N / 2

 Next

 TagsCoeff(0) = avg1 'Tsum / N

 XCoeff(0) = avg2 'Xsum / N

 YCoeff(0) = avg3 'Ysum / N

 End Sub

 Public Sub CoeffPath(ByRef nValue As System.String, ByRef iValue As System.String)

 Dim n1 As Decimal, root As Integer, k1 As Integer, k2 As Integer, pos As Integer, sign As Integer

 N = Convert.ToInt32(nValue)

 pos = Convert.ToInt32(iValue)

 For i = 1 To 100

 If N = 2 ^ i Then

 S = i

 Exit For

 End If

 Next

 n1 = N / 2

 Root = 1

 'pos = i

 k1 = 2

 k2 = 0

 ReDim path(S + 1)

 ReDim pair(S - 1)

 ReDim coeff(S * 2)

 path(0) = 0

 If pos <= N / 2 Then

 sign = 1

 path(1) = 1

 Root = 2

 Else

 Root = 3

 path(1) = -1

 pos = pos - N1

 sign = -1

 End If

 For j = 2 To S

 If pos <= N1 / 2 Then

 path(j) = Root

 If Root Mod 2 = 0 Then

 pair(j - 2) = (Root + 1) * -1

 Else

 pair(j - 2) = (Root - 1)

 End If

 Root = Root * 2

 Else

 path(j) = Root * -1

 If Root Mod 2 = 0 Then

 pair(j - 2) = (Root + 1) * -1

 Else

 pair(j - 2) = (Root - 1)

 End If

 Root = (Root * 2) + 1

 If pos > N1 Then

 pos = pos - N1

 'Root = Root + 1

 Else

 If N1 > pos Then

 pos = N1 - pos

112/124

 'Root = Root + 1

 End If

 End If

 End If

 N1 = N1 / 2

 Next

 End Sub

113/124

Annexure 5 : Wavelet Decomposition in Scenario 4(Non-Standard

Decomposition)

Private Sub btn_Decomposition_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

btn_Decomposition.Click

 N = txtTags.Text

 ReDim AxisData(N / 2 - 1, N / 4 - 1)

 k = 0

 For i = 0 To 7 Step 2

 For c = 0 To N / 4 - 1

 AxisData(i, c) = XAxis(k)

 AxisData(i + 1, c) = YAxis(k)

 k = k + 1

 Next

 Next

 ReDim CoeffArr(N / 2 - 1, N / 4 - 1), XCoeff(N / 4 - 1)

 '---------- Row Decomposition

 For cnt = 0 To N / 2 - 1

 k = 0

 For c = 0 To N / 4 - 1

 XCoeff(k) = AxisData(cnt, c)

 k = k + 1

 Next

 Nonstandard_Decompose()

 k = 0

 For c = 0 To N / 4 - 1

 AxisData(cnt, c) = XCoeff(k)

 k = k + 1

 Next

 Next

 '---------- Column Decomposition

 ReDim XCoeff(N / 2 - 1)

 For cnt = 0 To N / 4 - 1

 k = 0

 For c = 0 To N / 2 - 1

 XCoeff(k) = AxisData(c, cnt)

 k = k + 1

 Next

 Nonstandard_Decompose()

 k = 0

 For c = 0 To N / 2 - 1

 AxisData(c, cnt) = Math.Round(XCoeff(k), 2)

 k = k + 1

 Next

 Next

 '----------- Wavelet Coefficients before Threshold

 Label4.Text = ""

 NonZero1 = 0

 For r = 0 To 7

 For c = 0 To 3

 Label4.Text &= Format(AxisData(r, c), "#0.##")

 If AxisData(r, c) <> 0 Then NonZero1 += 1

 If c <> 3 Then Label4.Text &= ", "

 Next

 Label4.Text &= vbCrLf

 Next

 '----------- Apply Threshold

 If txtThreshHold.Text <> "0" Then

114/124

 For r = 0 To 7

 For c = 0 To 3

 'If Math.Abs(AxisData(r, c)) <= txtThreshHold.Text Then

 ' AxisData(r, c) = 0

 'End If

 Next

 AxisData(r, 3) = 0 '--- 25% Threshold

 Next

 End If

 '---------- Writing into file

 fullpath = "C:\ThesisLATEST\HaarWavelet\Data\WaveletCoeff_NS_" & Tags.Length & ".txt"

 objReader = New StreamWriter(fullpath)

 Label17.Text = ""

 NonZero2 = 0

 For r = 0 To 7

 For c = 0 To 3

 Label17.Text &= Format(AxisData(r, c), "#0.##")

 If c <> 3 Then Label17.Text &= ", "

 If AxisData(r, c) <> 0 Then NonZero2 += 1

 objReader.Write(Format(AxisData(r, c), "#0.##"))

 objReader.Write(",")

 Next

 Label17.Text &= vbCrLf

 objReader.WriteLine()

 Next

 objReader.Close()

 If NonZero2 <> 0 Then txtCratio.Text = Format(NonZero1 / NonZero2, "#0.##") Else txtCratio.Text = 0

 End Sub

 Private Sub Nonstandard_Decompose()

 k = XCoeff.Length

 L = XCoeff.Length ' k / 2

 While L > 1

 k = 0

 ReDim avg(L / 2 - 1), diff(L / 2 - 1)

 For i = 0 To L - 1 Step 2

 avg(k) = (XCoeff(i) + XCoeff(i + 1)) / 2

 diff(k) = XCoeff(i) - avg(k)

 k = k + 1

 Next

 k = 0

 For i = 0 To avg.Length - 1

 XCoeff(k) = avg(i)

 k = k + 1

 Next

 j = 0

 'k = k - 1

 For i = 0 To diff.Length - 1

 XCoeff(k) = diff(j)

 j = j + 1

 k = k + 1

 Next

 L = L / 2

 End While

 End Sub

115/124

Annexure 6 : Wavelet Reconstruction in Scenario 1

 Public Sub DataReconstruct(ByRef S As Integer)

 N = Convert.ToInt32(txtTags.Text)

 Dim myTArr(N - 1) As Decimal, myXArr(N - 1) As Decimal, myYArr(N - 1) As Decimal, x As Decimal, y As

Decimal, ind As Integer, t As Integer

 ReDim Tavg(N - 1), Xavg(N - 1), Yavg(N - 1), diff1(N / 2 - 1), diff2(N / 2 - 1), diff3(N / 2 - 1)

 ind = 1

 k = 0

 ReDim XAxis(N - 1), YAxis(N - 1)

 XAxis(0) = XCoeff(0)

 YAxis(0) = YCoeff(0)

 For i = 0 To S - 1

 k = 0

 t = 0

 For j = 1 To 2 ^ i

 x = XCoeff(ind)

 y = XAxis(k)

 myXArr(t) = y + x

 myXArr(t + 1) = y - x

 x = YCoeff(ind)

 y = YAxis(k)

 myYArr(t) = y + x

 myYArr(t + 1) = y - x

 ind += 1

 k += 1

 t += 2

 Next

 For j = 0 To N - 1

 XAxis(j) = myXArr(j)

 YAxis(j) = myYArr(j)

 Next

 Next

 End Sub

116/124

Annexure 7 : Wavelet Reconstruction in Scenario 2(Standard Decomposition)

 Private Sub DataReconstruct()

 Dim t1 As Decimal, t2 As Decimal, tcoeff(N / 2) As Decimal, x As Decimal, y As Decimal, ind As Integer, t

As Integer

 '---- First Pass Column reconstruction

 N = 4

 L = txtTags.Text / 2

 Dim myXArr(N - 1) As Decimal, Tags1() As Decimal

 ReDim CoeffArr(3, L - 1), myArr(3, L - 1)

 For i = 1 To 100

 If N = 2 ^ i Then

 S = i

 Exit For

 End If

 Next

 For r = 0 To L - 1

 ReDim TagsCoeff(3)

 For i = 0 To 3

 TagsCoeff(i) = CoeffArr2Pass(r, i)

 Next

 ind = 1

 k = 0

 ReDim Tags1(N - 1)

 Tags1(0) = TagsCoeff(0)

 For i = 0 To S - 1

 k = 0

 t = 0

 For j = 1 To 2 ^ i

 x = TagsCoeff(ind)

 y = Tags1(k)

 myXArr(t) = y + x

 myXArr(t + 1) = y - x

 ind += 1

 k += 1

 t += 2

 Next

 For j = 0 To N - 1

 Tags1(j) = myXArr(j)

 Next

 Next

 For i = 0 To 3

 CoeffArr(i, r) = Tags1(i)

 Next

 Next

 '-------------- Second Pass Row reconstruction

 N = L

 For i = 1 To 100

 If N = 2 ^ i Then

 S = i

 Exit For

 End If

117/124

 Next

 For r = 0 To 3

 ReDim TagsCoeff(L - 1)

 For i = 0 To L - 1

 TagsCoeff(i) = CoeffArr(r, i)

 Next

 ReDim myXArr(N - 1)

 ReDim Tags1(N - 1)

 Tags1(0) = TagsCoeff(0)

 ind = 1

 k = 0

 For i = 0 To S - 1

 k = 0

 t = 0

 For j = 1 To 2 ^ i

 x = TagsCoeff(ind)

 y = Tags1(k)

 myXArr(t) = y + x

 myXArr(t + 1) = y - x

 ind += 1

 k += 1

 t += 2

 Next

 For j = 0 To N - 1

 Tags1(j) = myXArr(j)

 Next

 Next

 For i = 0 To L - 1

 myArr(r, i) = Math.Round(Tags1(i), 0)

 Next

 Next

 End Sub

118/124

Annexure 8 : Wavelet Reconstruction in Scenario 3

 Public Sub DataReconstruct()

 N = Convert.ToInt32(txtTags.Text)

 Dim k As Integer, j As Integer

 Dim myTArr(N - 1) As Decimal, myXArr(N - 1) As Decimal, myYArr(N - 1) As Decimal, x As Decimal, y As

Decimal, ind As Integer, t As Integer

 For i = 1 To 100

 If N = 2 ^ i Then

 S = i

 Exit For

 End If

 Next

 ind = 1

 k = 0

 ReDim XAxis(N - 1), YAxis(N - 1)

 XAxis(0) = XCoeff(0)

 YAxis(0) = YCoeff(0)

 For i = 0 To S - 1

 k = 0

 t = 0

 For j = 1 To 2 ^ i

 x = XCoeff(ind)

 y = XAxis(k)

 myXArr(t) = y + x

 myXArr(t + 1) = y - x

 x = YCoeff(ind)

 y = YAxis(k)

 myYArr(t) = y + x

 myYArr(t + 1) = y - x

 ind += 1

 k += 1

 t += 2

 Next

 For j = 0 To N - 1

 XAxis(j) = myXArr(j)

 YAxis(j) = myYArr(j)

 Next

 Next

 End Sub

119/124

Annexure 9 : Wavelet Reconstruction in Scenario 4 (Non-Standard

Decomposition)

 Private Sub btnReconstruct_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

btnReconstruct.Click

 '---------- Column Reconstruct

 colreconstruct = 1

 N = txtTags.Text

 For cnt = 0 To N / 4 - 1

 k = 0

 For c = 0 To N / 2 - 1

 XCoeff(k) = AxisData(c, cnt)

 k = k + 1

 Next

 NonStandard_Reconstruct()

 k = 0

 N = txtTags.Text

 For c = 0 To N / 2 - 1

 AxisData(c, cnt) = XCoeff(k)

 k = k + 1

 Next

 Next

 '---------- Row Reconstruct

 N = txtTags.Text

 colreconstruct = 0

 ReDim XCoeff(N / 4 - 1)

 For cnt = 0 To N / 2 - 1

 k = 0

 For c = 0 To N / 4 - 1

 XCoeff(k) = AxisData(cnt, c)

 k = k + 1

 Next

 NonStandard_Reconstruct()

 k = 0

 N = txtTags.Text

 For c = 0 To N / 4 - 1

 AxisData(cnt, c) = Math.Round(XCoeff(k), 0)

 k = k + 1

 Next

 Next

 '----------

 txtxAxisReconstruct.Text = ""

 txtyAxisReconstruct.Text = ""

 k = 0

 For i = 0 To 7 Step 2

 For c = 0 To N / 4 - 1

 txtxAxisReconstruct.Text &= AxisData(i, c) & " "

 txtyAxisReconstruct.Text &= AxisData(i + 1, c) & " "

 XAxis(k) = AxisData(i, c)

 YAxis(k) = AxisData(i + 1, c)

 k = k + 1

 Next

 Next

 End Sub

120/124

 Private Sub NonStandard_Reconstruct()

 Dim m As Integer, x As Decimal, y As Decimal

 ReDim avg(0), diff(0)

 'N = txtTags.Text / 2

 N = XCoeff.Length '/ 2

 For i = 1 To 100

 If N = 2 ^ i Then

 S = i

 Exit For

 End If

 Next

 m = 2

 k = 2

 avg(0) = XCoeff(0)

 diff(0) = XCoeff(1)

 x = avg(0) + diff(0)

 y = avg(0) - diff(0)

 XCoeff(0) = x

 XCoeff(1) = y

 For i = 1 To S - 1

 j = avg.Length

 ReDim avg(j * 2 - 1)

 For j = 0 To avg.Length - 1

 avg(j) = XCoeff(j)

 Next

 k = avg.Length '+ 1

 ReDim diff(avg.Length - 1)

 For j = 0 To diff.Length - 1

 diff(j) = XCoeff(k)

 k = k + 1

 Next

 m = 0

 For j = 0 To i '+ 1

 x = avg(j) + diff(j)

 y = avg(j) - diff(j)

 XCoeff(m) = x

 XCoeff(m + 1) = y

 m = m + 2

 Next

 If i = S - 1 And colreconstruct = 1 Then

 x = avg(j) + diff(j)

 y = avg(j) - diff(j)

 XCoeff(m) = x

 XCoeff(m + 1) = y

 m = m + 2

 End If

 Next

 End Sub

121/124

Annexure 10 : Navigation Algorithm Coding (Finding Next Tag to move)

 Private Sub btnNextTag_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

btnNextTag.Click

 If Path.Length = 1 Then

 Path(0) = txtSourceTag.Text

 End If

 N = Tags.Length

 For i = 1 To 100

 If N = 2 ^ i Then

 S = i

 Exit For

 End If

 Next

 For i = 0 To N - 1

 If Tags(i) = txtSourceTag.Text Then

 SourceX = XAxis(i)

 SourceY = YAxis(i)

 Exit For

 End If

 Next

 For i = 0 To N - 1

 If Tags(i) = TxtDestinationTag.Text Then

 DestX = XAxis(i)

 DestY = YAxis(i)

 Exit For

 End If

 Next

 DestAngle = Math.Round(Math.Atan2((SourceY - DestY), (SourceX - DestX)), 2)

 DestDistance = Math.Round(Math.Sqrt((DestX - SourceX) ^ 2 + (DestY - SourceY) ^ 2), 2)

 If DestAngle < 0 Then

 DestAngle = DestAngle + 3

 End If

 DestAngle = Math.Round(DestAngle * (180 / Math.PI), 2)

 If (SourceY - DestY) > 0 Then

 If SourceX > DestX Then DestAngle = DestAngle + 270

 If SourceX = DestX Then DestAngle = DestAngle + 180

 If SourceX < DestX Then DestAngle = DestAngle + 90

 End If

 If txtDestiDistance.Text = "" Then txtDestiDistance.Text = Math.Round(DestDistance, 2)

 If txtDestiAngle.Text = "" Then txtDestiAngle.Text = Math.Round(DestAngle, 2)

 DistanceCalc(txtSourceTag.Text)

 AngleCalc(txtSourceTag.Text)

 If DistanceArray(0, 0) = TxtDestinationTag.Text Then

 TagNext = DistanceArray(0, 0)

 Else

122/124

 CalculateAngleRange(DestAngle)

 TagNext = NextDistance(0, 0)

 End If

 If TagNext = 0 Then

 TagNext = TxtDestinationTag.Text

 End If

 TagNext = NextDistance(0, 0)

 If TagNext = 0 Then

 TagNext = TxtDestinationTag.Text

 End If

 Dim a As Integer = Path.Length

 If Array.IndexOf(Path, TagNext) = -1 Then

 tagindex = Array.IndexOf(Tags, txtSourceTag.Text)

 TxtNextTag.Text = TagNext

 ReDim Preserve Path(a)

 Path(a) = TagNext

 For i = 0 To 3

 If AngleArray(i, 0) = TagNext Then

 nextTagAngle = AngleArray(i, 1)

 End If

 If DistanceArray(i, 0) = TagNext Then

 nextTagDistance = DistanceArray(i, 1)

 End If

 Next

 txtNextTagDistance.Text = Math.Round(nextTagDistance, 2)

 End If

 TotDistTravelled = TotDistTravelled + Math.Round(nextTagDistance, 2)

 txtTotDistTravelled.Text = TotDistTravelled

 TxtPathTags.Text = ""

 For i = 0 To Path.Length - 1

 TxtPathTags.Text &= Path(i) & " "

 Next

 End Sub

 Private Sub DistanceCalc(ByRef Source As Decimal)

 Dim SourceTag As Decimal, X As Integer, Y As Integer

 SourceTag = Source

 For i = 0 To N - 1

 If Tags(i) = SourceTag Then

 X = XAxis(i)

 Y = YAxis(i)

 Exit For

 End If

 Next

 j = 0

 ReDim DistanceArray(N - 2, 1)

 For i = 0 To N - 1

 If Tags(i) <> SourceTag Then

 DistanceArray(j, 0) = Tags(i)

 DistanceArray(j, 1) = Math.Sqrt((X - XAxis(i)) ^ 2 + (Y - YAxis(i)) ^ 2) '+ 1

 j = j + 1

 End If

 Next

 SortDistanceArray()

 End Sub

 Private Sub AngleCalc(ByRef SourceTag As Decimal)

123/124

 Dim angle As Decimal, X1 As Integer, Y1 As Integer, X2 As Integer, Y2 As Integer, X As Integer, Y As

Integer

 For i = 0 To N

 If Tags(i) = SourceTag Then

 X1 = XAxis(i)

 Y1 = YAxis(i)

 Exit For

 End If

 Next

 j = 0

 ReDim AngleArray(N - 2, 1)

 For i = 0 To N - 2

 If Tags(i) <> SourceTag And Array.IndexOf(Path, Tags(i)) = -1 Then

 AngleArray(j, 0) = Tags(i)

 X2 = XAxis(i)

 Y2 = YAxis(i)

 angle = 0

 angle = Math.Atan2((Y1 - Y2), (X1 - X2))

 If angle < 0 Then

 angle = angle + 3

 End If

 angle = angle * (180 / Math.PI)

 If (Y1 - Y2) > 0 Then

 If X1 > X2 Then angle = angle + 270

 If X1 = X2 Then angle = angle + 180

 If X1 < X2 Then angle = angle + 90

 End If

 AngleArray(j, 1) = Math.Round(angle, 2)

 j = j + 1

 End If

 Next

 End Sub

 Private Sub SortDistanceArray()

 Dim i As Integer, temp1 As Integer, temp2 As Decimal

 For i = 0 To N - 3

 For j = i + 1 To N - 2

 If DistanceArray(i, 1) > DistanceArray(j, 1) Then

 temp1 = DistanceArray(i, 0)

 temp2 = DistanceArray(i, 1)

 DistanceArray(i, 0) = DistanceArray(j, 0)

 DistanceArray(i, 1) = DistanceArray(j, 1)

 DistanceArray(j, 0) = temp1

 DistanceArray(j, 1) = temp2

 End If

 Next

 Next

 End Sub

 Public Sub CalculateAngleRange(ByRef Angle As Decimal)

 ReDim NextDistance(3, 1)

 Dim tagNo As Decimal, tagangle As Decimal, found As Integer, tagindex As Integer

 tagindex = 0

 For i = 0 To N - 2 '--- Checking 4 NN

 tagNo = DistanceArray(i, 0)

 found = 0

 For j = 0 To N - 2

 If AngleArray(j, 0) = tagNo And Array.IndexOf(Path, tagNo) = -1 Then ' And tagNo <>

TxtDestinationTag.Text Then

 tagangle = AngleArray(j, 1)

 If tagangle > 0 Then found = 1

124/124

 Exit For

 End If

 Next

 If found = 1 Then

 NextDistance(tagindex, 0) = DistanceArray(i, 0)

 NextDistance(tagindex, 1) = Math.Abs(tagangle - DestAngle)

 tagindex = tagindex + 1

 End If

 If tagindex = 4 Then Exit For

 Next

 SortNextDistance()

 End Sub

 Private Sub SortNextDistance()

 Dim i As Integer, temp1 As Integer, temp2 As Decimal

 For i = 0 To 3

 For j = i + 1 To 2

 If NextDistance(i, 1) > NextDistance(j, 1) Then

 temp1 = NextDistance(i, 0)

 temp2 = NextDistance(i, 1)

 NextDistance(i, 0) = NextDistance(j, 0)

 NextDistance(i, 1) = NextDistance(j, 1)

 NextDistance(j, 0) = temp1

 NextDistance(j, 1) = temp2

 End If

 Next

 Next

 End Sub

	Declaration_20042012
	Thesis_Final_20042012

