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Abstract

The Unmanned Aerial Vehicle (UAV) industry has seen a huge growth in the past

couple of decades, driven mainly by availability of faster and affordable microcon-

trollers and sensors. The commercial and hobbyist sectors have been increasingly

using rotorcraft UAVs for new and varied applications, all the way from asset in-

spection to bait deployment in long-line fishing. This has required control engineers

to come up with systems that are extremely robust, and optimal so that the varying

nature of payloads and the craft parameters itself does not affect the overall per-

formance of the drone, while the best flight quality and maximum flight times are

achieved.

In this research the overall aim was to develop tracking attitude/altitude robust,

and optimal controllers for a quadrotor UAV where non-trivial model uncertainty

is present. To achieve this goal, a comprehensive framework that would develop

optimal weight designs along with the robust controller was developed. This was

achieved by enclosing the H∞ problem inside a constrained non-linear optimization

problem. Separate algorithms were proposed for Single Input Single Output (SISO)

and Multi Input Multi Output (MIMO) systems for all three main variants of ro-

bust controller design strategies; namely the Mixed Sensitivity Optimization (MSO),

Loop Shaping Design Procedure (LSDP) 1 & 2 degree of freedoms, and µ-synthesis.

A detailed linearized model of the multivariable plant and a decoupled version of it

was developed in addition to which, worst-case plant models with significant model

uncertainty were constructed.

In the SISO case, MSO, LSDP 1 & 2 DOF, and µ- synthesis based robust controllers

were developed using the proposed algorithms for the decoupled plant. Satisfactory

performances were obtained in all the cases with the controller achieving robust sta-

bility consistently. Performance comparisons were conducted among the developed

controllers and benchmarked against a PID controlled system. For the systems con-

taining model uncertainty the robust controllers performed better than that of the

PID controlled, in terms of meeting the designs specifications, and the LSDP based

controller performed the best among the robust controllers.
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Similarly for the multivariable case, MSO, LSDP 1 DOF and µ-synthesis based

controllers were developed using the proposed algorithms. While the controllers

assured robust stability, however, it was found that uncertainty in mass of the craft,

and that of the thrust coefficient caused systems to fall short of providing guaranteed

robust performances. The controllers were compared against one another, and it was

once again found that LSDP based systems provided the best performance in terms

of reference tracking, and achieving the required design specifications, while the µ

controller was found to be the most conservative, with the MSO controller occupying

a position between the two other controllers.

A simulation based case study was performed inspired by the quadrotor being used in

long-line fishing application with its unique time varying nature of the payload mass

and slung load length. Two controllers, a PID based and a MSO robust controller

based system were put to test on a quadrotor model carrying a slug load. It was

observed that the PID based controller performed better than the robust controller

for systems that are close to the nominal model. But performance deteriorated

rapidly as the plant moved away from the nominal model with several models with

uncertainty becoming unstable. The robust controller maintained stability even

when tested over extreme plants with the performance deterioration taking a less

steeper path than its PID counterpart.

The proposed algorithms enabled an efficient design process of the optimal controller

weights and significantly quickened the process of developing robust controllers for

rotorcraft drones. The MATLAB framework involved in developing the algorithms

are provided in this work. The controller comparison studies shed new insights into

the overall process of selecting robust control strategies for varied and challenging

UAV applications.
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Nomenclature

Table 1: Thesis nomenclature

Symbol Description

x State vector

u Input vector

y Output vector

xi, yi, zi Position in the inertial frame

φi, θi, ψi Euler angles defining roll, pitch and yaw movements

respectively in the inertial frame

xb, yb, zb Position in the body frame

φb, θb, ψb Euler angles in the body frame

R Orthogonal rotation matrix

fk Force exerted by the kth rotor

τk Torque exerted by the kth rotor on the craft

Ixx, Iyy, Izz Quadrotor moment of inertia along body x, y and z axis

ga Gyroscopic moment vector

m Mass of the quadrotor

ct Thrust coefficient

cp Power coefficient

ω Angular velocity of a propeller

d Diameter of a propeller

dr Distance of the centre of gravity of the quadrotor to the

centre of gravity of the rotor

ρ Density of air

ϑ Generic parameter vector

The thesis will use the following notation for mathematical equations.
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Table 2: Mathematical notation

Notation Description

X Matrix (bold and capitalized)

x Column vector (bold, lower case)

x Scalar (italic, lower case)

ẋ First derivative of x with respect to time

ẍ Second derivative of x with respect to time

‖x‖∞ The infinity norm of x

σ(X) Principal gain (singular value) of X

σ̄(X) Maximum singular value of X

σ(X) Minimum singular value of X

∆ Model Uncertainty

µ(X) Structured singular value of X

In addition to the above the thesis will use the following acronyms.

Table 3: List of acronyms

Abbreviation Definition

UAV Unmanned Aerial Vehicle

PID Proportional Integral Derivative

RCT Robust Control Theory

MSO Mixed Sensitivity Optimization

LSDP Loop Shaping Design Procedure

PCL Proportional Integral Derivative Controller based Loop

MCL Mixed Sensitivity Optimization Controller based Loop

NS Nominal Stability

NP Nominal Performance

RS Robust Stability

RP Robust Performance

HJBI Hamilton-Jacobi-Bellman-Isaacs

SISO Single Input Single Output

MIMO Multi Input Multi Output

NOMAD
Nonlinear Optimization using the Mesh Adaptive

Direct Search Algorithm

LQR Linear Quadratic Regulator

LQG Linear Quadratic Gaussian

MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control
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Abbreviation Definition

ANN Artificial Neural Network

FC Fuzzy Control

GA Genetic Algorithm

AI Artificial Intelligence

LFT Linear Fractional Transformation

ARE Algebraic Ricatti Equation

MAV Micro Aerial Vehicle

LMI Linear Matrix Inequality

EKF Extended Kalman Filter

UKF Unscented Kalman Filter

CIFER
Comprehensive Identification from Frequency

Responses

MOI Method Of Inequalities

MBP Moving Boundaries Process

IAE Integral Absolute Error

ITAE Integral Time Absolute Error

ISE Integral Square Error

ITSE Integral Time Square Error

DAE Differential Algebraic Equations

ODE Ordinary Differential Equations

SVD Singular Value Decomposition
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Chapter 1

Introduction

The popularity of rotorcraft drones with their superior agility and maneuvering abil-

ities has risen in the past couple of decades among hobbyist communities as well as

in the commercial sector. Unmanned Aerial Vehicles (UAVs) are increasingly being

used in the commercial sector from monitoring and asset inspection applications

[1–4], to search and rescue applications [5, 6], with the non-military drone market

set to rise from its market value of 2.5 billion USD [7] in 2016 to an estimated 84

billion USD by 2025 [8].

In this context, stability, robustness, design optimality, and reliability have gained

more importance with the manufacturers and research groups, than ever before.

In this study, techniques are developed to design flight controllers for quadrotor

UAVs that are both robust and optimal in its performance. This chapter provides

a brief overview of the study in four sections. In the first section, an outline of

the existing small UAV flight controller designs are presented. In section 1.2, the

research objectives of the study are listed out. In section 1.3, the thesis contributions

are discussed and in the final section a brief overview of the important chapters in

the study are presented.

1.1 Background: Overview of Small Scale UAV

Flight Controller Designs

Rotorcraft drones, classified in [9] as small scale, are those with a maximum payload

capability of less than 10 kg and a flight time of less than 50 minutes. Commercial

multi rotor drones generally fall in this category. Quadroters and other rotorcraft

drones used in commercial applications mostly employ multiple PID based con-

trollers [10], as they provide nominal stability and are easy to implement.

1



The stability and control of rotorcraft drones is a topic that has been researched

extensively in the past couple of decades (see surveys [9–12]). Conventional control

strategies such as the Proportional Integral Derivative controllers [13], adaptive con-

trollers [14], Linear Quadratic Gaussian controllers [15], Model Predictive Control

algorithms [16], as well as artificial intelligence based systems such as controllers

based on Artificial Neural Networks [17], and Genetic Algorithm, [18] are among

some of the favorite techniques that have been employed to find a solution to the

quadrotor reference tracking problem.

Proportional Integral Derivative (PID) controllers, while they provide satisfactory

nominal stability and performance, lack inherent optimality and robustness proper-

ties when significant model uncertainty is involved, as pointed out in [10]. Adaptive

flight controllers while it is successful to a certain degree in tackling the problem

of parametric model uncertainty, systems based on these have been observed to be-

come unstable when the controllers are required to converge to accurate parameter

estimates while tracking a constant steady state reference input as presented in [19].

The lack of guaranteed stability margins provided by Linear Quadratic Gaussian

(LQG) regulators as noted in [20], is a trend reflected in studies that have devel-

oped LQG flight controllers, but then failed to have provided stability margins while

considering model uncertainty. Model Predictive Control algorithms and techniques

built on Artificial Intelligence (AI) based strategies, focus mostly on resolving the

reference tracking/trajectory planning problem as compared to maintaining the at-

titude/altitude stability of the drone. The inability to guarantee satisfactory robust

stability margins for plants with model uncertainty is seen to be a common charac-

teristic of the strategies mentioned above.

Robust control strategies on the other hand, attempt to provide better stability and

performance in the presence of model uncertainty, and have been employed in the

development of quadroter UAV controllers (see [21–23]). Robust controllers are also

used in combination with optimal control strategies, where the former tends to solve

the ‘tracking attitude and altitude’ problem while the ‘position tracking problem’

is resolved by the latter [24–26]. The problem of multirotor model uncertainty has

been addressed using the tools provided by linear robust control theory generally

from three different angles, namely Mixed Sensitivity Optimization (MSO), Loop

Shaping Design Procedure, (LSDP) and µ synthesis, with majority of the research

undertaken using the Mixed Sensitivity Optimization technique.

Robust control theory, while offering enough leeway in terms of including model

uncertainty in the design, brings in a development process that is quite tedious.

A significant portion of the effort gets directed towards development of controller

weights that play a vital role in the overall stability and performance of the system
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at the desired set-point. Even after such rigorous designs, the flight regimes that can

be comfortably undertaken by these are found to be highly conservative reminding

us the fact that important aspects of stability such as modelling high-frequency

dynamics and dealing with non-deterministic elements such as wind, still remains

an unsolved problem.

1.2 Research Objectives

Robust control theory applied in developing flight controllers for UAVs, generally

follows the traditional method of loop shaping mostly based on of trial and error

(see [21, 27, 28]) when it comes to selecting controller weights. This technique is

both tedious and mostly results in sub-optimal controller designs.

Developing frameworks that involves the robust controller weight parameters, which

minimize a cost function can be seen in various domains such as in [29–31] which

employ fuzzy logic, particle swarm optimization, and genetic algorithm based op-

timization strategies respectively, although a general framework that can capture

parametric uncertainty, uncertainties due to time delays or model non-linearity is

largely left out.

This study aims to develop optimal and robust SISO and MIMO attitude-altitude

rate tracking controllers for quadrotor UAVs with significant model uncertainty. To

achieve this, comprehensive frameworks that would automate the weight selection

procedure for the three main robust control techniques, will be developed. The

following research objectives are examined and pursued in this study alongside the

controller development.

1. To develop a framework which can take into account various linear constraints,

such as limits on closed loop functionals as well as on the H∞ problem, while

automatically generating the controllers weights, alongside the process of de-

veloping an optimal and robust quadrotor controller for attitude and altitude

rate tracking. Separate frameworks are to be developed for MSO, LSDP and

µ -synthesis robust control design procedures.

2. To extend the functionality of the framework from single-input single-output

systems (which is useful for a decoupled quadrotor system), into the multi-

variable domain and develop optimal robust attitude-altitude rate tracking

Quadrotor controllers using the MSO, LSDP and µ-synthesis design proce-

dures.

3. To conduct a simulation based comprehensive testing and performance com-
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parison between the various developed controllers to determine the effective-

ness of the design strategy.

The algorithms proposed, could be used effectively by the control engineer to come

up with the most appropriate and optimal weights required by the controller. Meth-

ods to incorporate model parametric uncertainty and non-linearity into weight de-

signs will be developed in the context of a quadrotor UAV.

The objectives are achieved by developing an outer framework over the conventional

H∞ cost function which solves the problem of weight selection by resolving a con-

strained non-linear optimization problem. The Nonlinear Optimization using the

Mesh Adaptive Direct Search Algorithm (NOMAD) [32] is employed as the opti-

mizer in the process.

1.3 Thesis contributions

The primary objective of this study is to develop optimal-robust tracking atti-

tude/altitude rate controllers for quadrotors. To achieve this in line with the above

identified research objectives, the following key contributions have been made:

1. Algorithms that enable the systematic development of the the optimal weights

alongside the robust controller, have been developed for each of the three

main branches of robust control; namely Mixed Sensitivity Optimization, Loop

Shaping Design Procedure and µ-Synthesis for SISO systems.

2. The above algorithms and the framework have then been extended to the

multivariable domain for the corresponding robust control branches.

3. The comparison of tracking quadrotor attitude/altitude rate controllers (and

the associated weights), which were developed using these proposed algo-

rithms, have been conducted and results presented.

4. Finally with the insights obtained from the various developed algorithms and

adjoining comparison studies, a holistic framework that can be utilized by

control engineers to develop optimal robust controllers is proposed.

To conduct the extensive testing that was required of the controllers, a new way to

visualize the stochastic Monte-Carlo simulations is presented. Further, a non-trivial

simulation based case study of the quadrotor carrying a slung load with time varying

payload mass and slung length (inspired from a real-world fishing application) is
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discussed. For the case-study, a robust controller was developed and tested against

the bench-mark cascaded PID based controllers, and results are presented.

The contributions of this study are summarized in section 7.2.

1.4 Thesis Outline

The thesis is divided into 6 subsequent chapters. In Chapter 2, the literature asso-

ciated with previous research in the area of quadrotor flight controller development

is examined. The flight controller designs developed using PID, adaptive, track-

ing LQR/LQG, model predictive control and artificial intelligence based controllers

are examined alongside various non-linear and linear robust control strategies. Re-

search work done previously on stability problems experienced by quadrotors are

also examined here.

In chapter 3, the quadrotor problem statement of interest is examined. The quadro-

tor mathematical model and the model parameters used in this study are presented.

Following this, the state space model and the methods of scaling are discussed. Fur-

ther the sources of uncertainty considered, and the design specifications which form

the physical constraints used in the robust controller designs are presented.

The Single Input Single Output (SISO) controller development and comparison stud-

ies are examined in Chapter 4. First the decoupled model of the quadrotor is devel-

oped and an introduction to robust control theory is presented in the chapter. Next,

the frameworks for generating optimal control weights alongside the controller for

Mixed Sensitivity Optimization, Loop Shaping Design Procedure, and µ-synthesis

procedure are presented. Quadrotor controllers are also developed and the designs

are analyzed in the chapter. Detailed comparisons are performed both among the

developed controllers and also with a PID controlled system and conclusions are

presented.

In chapter 5, the multivariable counter parts of the SISO controllers are developed.

To design the optimal weights alongside the controllers, frameworks similar to those

proposed in chapter 4 are developed. Multivariable controllers are designed for

MSO, LSDP and µ-synthesis and a performance comparison is conducted among

the controllers.

In chapter 6 a simulation based case study, based on aspects of an industrial ap-

plication is presented. The developed control strategy is applied on an real world

example inspired from a long-line fishing solution developed by Envirobotics Lim-

ited, a New Zealand based company that develops UAVs for industrial applications.
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A comparison study is performed with a cascaded PID controller based system and

conclusions are drawn.

In the final chapter a summary of the study and research findings are presented.

The main conclusions drawn from the study and the future work is also discussed.
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Chapter 2

Literature Review of Controller

Designs

The chapter presents a literature review of previous research work performed in the

field of developing flight controllers for small and micro aerial vehicles. In the first

section, we look at the controller design developments in various branches of control

literature and why these designs are inadequate for the problems of interest. In

section 2.2 the need for robust control alongside the studies that have used robust

control techniques to develop flight controllers are examined. In the section 2.3, some

of the general problems affecting the stability of UAVs and the ways of resolving

them are discussed. This is followed by the final section which lists the general

conclusions drawn from the literature review.

2.1 UAV Flight Controller Designs

Non-linearity, modeling uncertainty and dynamics coupling are some of the impor-

tant challenges that make the problem of designing a flight controller for a quadro-

tor UAV, challenging [33]. A number of different flight controller designs have been

proposed in various studies to tackle different aspects of these general challenges.

Cascaded PID controllers used mostly in commercial UAV flight controller designs,

adaptive controllers, optimal control strategies like LQR-LQG designs, artificial in-

telligence based and robust controller designs are among the various techniques that

have been proposed. The flight controllers designed using these strategies are ex-

amined in sections 2.1.1 - 2.2.

7



2.1.1 Proportional Integral Derivative Control

PID based controllers, although they lack optimal properties and doesn’t offer ro-

bustness as such, are easy to implement on small platforms (such as on easily

accessible STM32 family of micro-controllers [34]) making it the favourite choice

for commercial autopilot manufacturers [10]. Typical PID flight controllers which

achieves attitude and altitude stabilization are presented in [13, 35–38]. The con-

troller constants are tuned for stability and optimal properties, and the controllers

offer nominal stability.

Comparison studies [39–41], look at the PID and LQR controllers that provides

attitude as well as the position stability for the UAV. In general, PID controllers

provides better stability for the nominal plant, in terms of moving closed loop poles

further into the left half plane, while better degree of optimality comes with LQR

based controllers. A comparison of the path tracking ability of Generalized Predic-

tive Control (GPC) and the PID method is presented in [42]. The cascade structure

receives roll and pitch input coordinates which it translates to X and Y position co-

ordinates. For this the system identification is performed using Matlab System ID

toolbox. The PID controller achieves better robustness against model imperfections

with respect to GPC controller.

Automatic tuning of PD controllers based on a scheme using an adaptive technique is

presented in [43], the method being an improvement of [44]. The controller stabilizes

the altitude (resembling a critically damped second order system), although tracking

abilities in presence of disturbances haven’t been discussed in the work. Automatic

PID tuning using adaptive pole placement for attitude stability is studied in [45].

The author concludes that the time taken by the system identification mechanism

adapting to different environments would inevitably lead to instability. A cascaded

PID controller is discussed in [46], where a hierarchical order is followed at three

levels of control, resulting in a highly conservative path tracking control algorithm.

Moving on to some of the hybrid-controllers we can see the actuator fault tolerant

stability studied in [47] using a PID-LQR technique where we have the optimal

properties of LQR, incorporated into the PID constants of the UAV controller. This

is achieved by modifying the state space dynamics as the fault occurs by adjusting

the ‘fault’ vector which represents the control effectiveness of the actuator.

PID controllers provide nominal stability and performance in general, and attempts

such as [40] looks into disturbance rejection techniques, but a comprehensive control

framework which takes into account parameter uncertainty, optimality, tracking

control in the presence of varying frequency and higher order magnitude disturbances

in the context of a highly coupled system like a quadrotor, seem to be beyond the
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scope of PID control.

2.1.2 Adaptive Control

As the name suggests the adaptive controller adapts to changes in the system or

the surroundings, with the technique being employed when the control engineer has

a highly non-linear or time varying system to stabilize. There would usually be

two parts for such a control problem, an estimation problem, and controller design

problem. There have been several variants for adaptive control techniques alongside

the popular adaptive PID tuning, adaptive pole placement and minimum variance

algorithms. Because these can be designed to adapt to parametric uncertainties

such as say inertial matrix parameters for UAV flight controllers (as demonstrated

in [14, 19]), the term ‘robustness’ has been sometimes used with adaptive controllers

in literature although studies on certifiable stability margins for adaptive control is

an ongoing field for research [48].

A robust version of adaptive control is presented in [49], where sliding mode control

maintains position tracking and the adaptive control maintain attitude tracking.

The parameter drift is reduced by using a function that contain noise signals de-

rived from a reference model. Attitude stability realization during events of partial

actuator failure is being discussed in [50]. A similar study which presents a robust

adaptive controller that could deal with payload mass uncertainties in [19] points

us to the so called ‘dichotomy of adaptive control’ (see [51] Chapter 7). The author

notes that when the reference output was constant the controller found it impossi-

ble to converge to a parameter estimate although successful trajectory tracking was

achieved.

In general in adaptive control, good estimation requires varying inputs and outputs

although that conflicts with the general UAV requirement of a steady flight. The

inherent ineffectiveness of adaptive control in the presence of un-modeled dynamics

is explained well in [52].

2.1.3 Tracking LQR and LQG

The Linear Quadratic Regulator (LQR) and the Linear Quadratic Gaussian (LQG)

are optimal controllers based on linear plant models with quadratic performance

objectives [51]. The latter combines the former with a state estimator (presumably

the ‘Kalman Filter’ (KF) or other forms of it like the Extended KF) to bring about

a realistic controller design. Although optimal, the controllers designed using these

9



techniques are proportional controllers hence in-order to compensate for the steady

state error ‘integral states’ (such as the integral of the difference between the ref-

erence input and plant output) will need to be introduced to obtain tracking LQR

and LQG controllers.

Flight controller designs for UAVs under the LQR and LQG framework have been

intensely researched with several proposed design strategies examined. A double

hierarchical control algorithm which uses a relatively accurate model of the quadro-

tor is presented in [53]. The settling time limits for the outer position tracking

control loop is relaxed and a faster inner loop controller is used. These enable the

system to minimize energy consumption similar to the time varying tracking LQ

controller described in [54]. Path tracking problems are further resolved in [55–57]

using LQR and its variants and in [58, 59] using LQG controllers. Other studies

such as LQR integral states based (double layer) controller offering attitude stability

[60], a switching PID-LQR hybrid controller (switches between 20 different models)

[61] for a F-16 , comparison study between UKF and EKF being the state observer

for the LQG controller [62] and a UAV modelled as a tail-sitter using LQG control

theory [63], provide interesting insights into the capability and robustness margins

that these optimal controllers could guarantee.

Reflecting on Doyle’s 1978 article [20] (in which regarding the guaranteed stability

margins offered by an LQG regulator, he famously concluded in a terse abstract

that ‘there are none’), although the studies have discussed optimal properties of the

algorithms they have failed to present a thorough robust stability and performance

analysis for models containing plant uncertainty and this becomes one of the main

sources of unreliability with regards to selecting LQR/LQG for quadrotor controller

designs.

2.1.4 Model Predictive Controller (MPC)

Model Predictive Controller is an optimal controller that uses a cost function that

accounts for both the error between the reference signal and model prediction over

a ‘prediction horizon’, as well as a weighting on the usage of inputs over a ‘control

horizon’. The designed controller will be used for a single time step, the horizons

would then recede and the whole process would be repeated, making the control

algorithm computationally expensive especially when there are constrains involved

with the decision variables.

MPC controllers are widely used for quadrotor position tracking control such as

those seen in [64–67] and in limited studies where it has been employed for attitude

tracking such as [68, 69]. MPC is one of the popular choices for control engineers
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when a hybrid controller is proposed to resolve the flight control problem of a UAV,

with MPCs usually forming the outer loop to tackle the position-tracking problem

as see in [70].

There have also been MPC applictions such as in [71] where a switching scheme is

employed between five linearized plant models based on the performance requirement

for trajectory tracking, and in others such as the obstacle avoidance scheme proposed

in [72] and fault tolerant MPC that works with even two partially failed actuators

[73].

Nonlinear MPCs (NMPCs) cater for highly non-linear dynamic applications where

linearizing the model leads to significant plant-model mismatch. Two interesting

studies, the first being a hybrid PID-NMPC controller is presented in [16] and the

second being a comparison study between the LQR,MPC and NMPC [74], gives

us valuable insights into capabilities of MPC. Both studies point to the fact that

MPCs generally are poor performers when it comes to disturbance attenuation for

attitude/altitude tracking, and hence limiting its influence to mainly position track-

ing controllers.

From the above studies we infer that, with the computational speed limits restricting

the implementation capability of the controller, they are used widely as position

tracking controllers and are not quite favoured when it comes to attitude-altitude

tracking applications.

2.1.5 Artificial Intelligence Based : Artificial Neural Net-

work (ANN), Fuzzy Control (FC) and Genetic Algo-

rithm (GA)

Artificial Neural Networks can be viewed as a collection of artificial neurons with

their functionality depending on the way they form connections. In the past decade

ANN has been widely used as an autonomous trajectory solver for ground based

applications [75, 76] and the trend has moved on to aerial applications. A Neural

network with three specific areas the sensory, motor and a controller network built

exclusively for trajectory tracking is presented in [77]. A similar study that presents

a Dynamic NN, which comprises of a Recurrent NN and two feedforward NN can be

seen in [78], the trajectory tracking in both studies being dependent on a recursive

reward based learning strategy.

Fuzzy Control is a relatively new control approach which started becoming popular

in 1980s. The approach provides a method to represent and implement common-
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sense heuristic knowledge about controlling a system, into a formal control frame-

work ([79] see Chapter 1). The subject has been gaining popularity in UAV control

in the past decade. A typical FC based trajectory tracking controller is presented in

[80]. The ‘computed torque controller’ is compensated for uncertainties in the model

by the fuzzy logic compensator. Simulation based test results show the quadro-

tor being robust against parametric as well as wind disturbances. A study which

presents the implementation of the fuzzy controller for the quadrotor is presented

in [81]. The controller is similar to the previous study with a PD Fuzzy controller

combined with the traditional Integral controller. There are several variants for

the fuzzy based controllers such as - [82] where an EKF adjusts the membership

functions and the LQR controller is tuned based on that, or as in [83] where the

fuzzy controller betters the sliding mode controller performance for the quadrotor

UAV, or the multi-layered fuzzy controller the solves the stabilization problem of a

hexacopter with a hanging payload [84].

A Genetic Algorithm is a global search algorithm introduced by Holland in 1975

[85] that uses an optimization technique where the candidate solutions are evolved

and those with the best fitness survive forming the next generation of solutions. GA

techniques have mainly been used for trajectory identification of the UAV (rather

than stabilization) and some of these studies for optimal path determination are

presented in [86–89]. With given obstacles to avoid, the algorithm attempts to find

the global optimum. For the case of UAVs, the algorithms would work its way

through 3-Dimensional environments, with obstacles partially known prior to the

vehicle flight.

Apart from these AI based algorithms there have been other techniques, mostly

variants of the above, that have been used for UAV flight control. However, similar

to the mentioned techniques, i.e., ANN based methods which are used primarily for

trajectory tracking, FC which is mainly used to complement the main controller and

GA which are usually used mainly for trajectory planning, these AI based techniques

fail to certify the robustness for a UAV with model uncertainty. Robustness prop-

erties have been analysed by random tests rather than theoretically, hence lacking

the verifiability offered by Robust control based methods, which leads to the final

part of flight control literature survey.

2.1.6 Summary of conventional control schemes

It was observed that conventional control schemes provide nominal stability for

quadrotors and some studies have examined the robustness properties that these

controllers can impart to the system. In general, the control schemes have failed
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to explicitly take into account model uncertainty, issues of non-linearity, and time

delays during the design stage of the controller development. There have been at-

tempts made to address the problem of model uncertainty in certain fields like adap-

tive controllers where the controller adapts towards changing model parameters, or

through real-time parameter tuning for PID controllers or with the help of switching

mechanisms when in comes to MPC controllers. The problem of model uncertainty

have also been examined in studies based on artificial intelligence based controllers

where results based on tests conducted have been used to measure robustness of the

controller.

Lack of a systematic approach to deal with the model uncertainty remain an overall

issue in all of the above discussed studies. In the next section we look at the need

for robust control and at studies that have explicitly addressed the issue of model

uncertainty for the case of the quadrotor using robust control techniques.

2.2 The Need for Robust Control

Robust Control Theory (RCT) began gaining more interest in the control domain

during the 1970’s as control engineers began to find that the classic theories of

optimal control from the 1960’s, failed to account for uncertainties in the plant

model [90]. Robust control theory explicitly takes into account model uncertainty

during the controller design and thus directly attempts to increase the robustness

of the closed loop system. RCT not only provides tools to calculate the robust

stability margins such as that of the µ-synthesis, but also design techniques that

directly consider these stability margins and work towards increasing the maximum

amount of model uncertainty the controller can tolerate.

The method of development can be broadly divided into three general areas de-

pending on the technique used to design the controller. These are mixed sensitivity

optimization, loop shaping design procedure and µ-controller theory. There also

have been certain new developments in the area of robust control such as the poly-

topic uncertainty approach as discussed in [91], the probabilistic approach where

the probability of parameter variation is taken into consideration while developing

the controller as in [92], as well as some extensions to the original ideas such as the

method of inequalities as discussed in [93].

With UAVs finding new and varied applications in the commercial and hobby flying

sector, studies have increasingly relied on robust control to deal with modeling

uncertainties. In robust control literature UAV flight controller designs are generally

of two types, the linear and the non-linear controllers. In the following section these
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studies are examined.

2.2.1 Linear H∞ Controllers

The linear H∞ problem is to minimize the H∞ norm of the Linear Fractional Trans-

formation (LFT) between the uncertain plant and all stabilizing controllers. Solv-

ing for the optimal solution of this problem is mathematically complex and the

controllers generated may at times be non-practical (due to difficulties in suitably

implementing them on embedded platforms), hence usually a suboptimal controller

would be adopted for actual applications. The algorithm which requires resolving

a set of coupled algebraic Ricatti equations (ARE) developed in [94], remains fun-

damental to this study. In this section alongside quadrotor UAVs, we also examine

studies that have developed robust controllers for other rotorcraft UAVs, as well as

few fixed wing UAVs.

An interesting comparison study between three different controller design algorithms

when it comes to the Linear H∞ quadrotor tracking problem, is presented in [95].

The MATLAB hifoo and hinfstruct routines that produce lower order controllers

are compared to the Glover-Doyle optimization algorithm that produce a relatively

higher order controller. The Glover-Doyle algorithm which employs the mixed sen-

sitivity ‘S over KS over T’ approach out performs the other two methods when it

comes to both performance and computational time, but at the expense of the con-

troller order. A similar mixed sensitivity H∞ controller with a switching recovery

scheme to deal with actuator failures is discussed in [21]. The weight functions are

developed by trial and error and the recovery scheme which switches between two

controllers, offers decent stability during actuator failure.

The studies [96] and [97] analyses the effectiveness of set point tracking ability of the

H∞ controller under actuator failures and parameter uncertainties, although they

fail to comment on tracking abilities and performance in outdoor environments.

In [98] the H∞ controller stabilizes a 3 DOF twin rotorcraft, and the controller

achieves tracking stability with respect to a varying frequency reference signal as

well as it maintains the attitude set point when wind disturbance with a maximum

velocity of 4.5 m/s is applied. The coupling action between the translational and

rotational action as well as the effect of wind disturbances while tracking a reference

signal hasn’t been examined in the study. An example of implementation of the H∞
robust controller on a 6DOF miniature helicopter can be seen in [24] where we have

the design specifications taken in line with the military UAV standards seen in [99].

The simulations depict controller reaction to a ‘single frequency cosine wave wind

disturbance’ although effect on the controller to varying frequency wind disturbances
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have not been included. The actual test flight results show good hovering and

tracking stability during wind gusts as high as 4 m/s. The reduced order controller

takes into consideration uncertainty due to wind speed as the exogenous input during

the design phase. In general, higher order controllers are generally less desirable

than low order ones primarily due to the ease of implementation in the real world as

argued in [100] where a new linear matrix inequality algorithm is being introduced

to develop lower order H∞ controllers.

In the study [25], the Dryden wind turbulence model (see [101]) is employed to

generate the wind disturbance on the model, with the mean speed set to 2.5 m/s,

shows successful attitude tracking of the linearised fixed wing model (with an EKF

estimator) when a H∞ controller is used, compared to unsuccessful attempts of

regular PD controller. A procedure to calculate tunable gains for each state while

attempting to design a tracking H∞ controller in the presence of actuator command

tracking error, and noisy sensor measurements is presented in [102]. Experiments

show good tracking abilities with respect to position but poor attitude hold.

A flight controller for a fixed wing UAV is developed in [27] using the 2 degree

of freedom H∞ loop shaping technique (see [103]). The realistic controller design

with 1st order Pade approximated delays on all four inputs and white sensor noise

in the model provides acceptable robustness to the UAV. A study which uses a

robust feedback linearisation based inner controller and a H∞ outer controller to

resolve the path tracking problem is presented in [104]. The controller performs well

at 20% mass and inertia alongside aerodynamic force and moment disturbances.

The study [102], mentioned previously also presents an LMI based algorithm which

minimizes H2 and H∞ cost functions in order to stabilize the linear model of the

quadrotor. The final controller is devised in a PID like format enabling easier tuning.

However, for the above three studies a verification of Robust Stability (RS) and

Robust Performance (RP) using µ-synthesis have been left out hence a lack of clarity

in the overall performance remains.

A study that attempts to resolve the flight clearance problem for a X-fighter model

can be seen in [105]. A Linear Fractional Transformation (LFT) of the linearised

plant model is developed with the normalized uncertain block involving 4 key pa-

rameters of the plant. The µ-controller fails to achieve robust stability with the

calculated µ value greater than one. Development and implementation of a µ-

controller for a fixed wing micro air vehicle (MAV) is presented in [106]. The lateral

and longitudinal dynamics are decoupled and control applied separately. Hardware

in the loop testing using reduced order µ-controller gives poor control performance

due model mismatch as identified by the author.

As a step towards the non-linear domain, the study [23] explains the concept of
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Linear Parameter Varying Control where the nonlinearity is distributed among four

linear models which switches between each other whenever required. Two sets of

controllers are developed for each of four models, one being the LQR optimal con-

troller and the second being the H∞ robust controller. Both the controllers perform

poorly in terms of reaching the set point although the author notes that H∞ per-

forms slightly better compared to the LQR controller when it comes to X and Y

coordinate position control.

2.2.2 Non Linear H-infinity Controllers

The nonlinear version of the robust H∞ control problem is resolved by solving the

Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation (instead of the Algebraic Ricatti

Equations) for each of the γ, where γ is the L2 gain from w to z in the general

robust control framework (see page 49).

The path tracking problem for a 2 DOF helicopter is being studied in [22]. The nom-

inal controller exhibits reasonable tracking performance for step reference inputs to

yaw and pitch angles, achieving a PID-like format for tuning parameters although

external disturbances like wind haven’t been taken into account. In [70, 107, 108]

hybrid controllers are presented where the attitude and the altitude of the UAV is

being controlled by the nonlinear H∞ controller and the path being controlled by a

model predictive controller. The controller tracks the reference signal relatively well

in the presence of uncertainty in the parameters, aerodynamic moments and forces.

A similar study where a back stepping controller for dealing with translational mo-

tion and altitude control and the nonlinear H∞ controller for the attitude control

is presented in [26]. The system exhibits robust stability against uncertainty in the

parameters.

The problem of under actuation of the quadrotor is being resolved in [109] and [110]

using rotors that are free to tilt along the axis of the respective arm. The over

actuated models use a feedback linearisation based controller in the former and an

inverse dynamics based method in the latter study to achieve tracking. Although the

H∞ approach of solving the problem haven’t been studied yet, a similar study which

uses propellers mounted at an angle in order to solve the control problem is described

in [111]. The nonlinear H∞ controller takes into account a 40% uncertainty in mass

as well as presence of disturbances, as it tracks the x, y, z coordinates and yaw angle

while trying to maintain zero roll and pitch deviation. The tilt in the motor enables

the thrust being distributed onto the body x and y axis giving a handle to stabilize

(and there by removing the need to have an additional layer of control with regards

to) the uncontrollable DOF. The effectiveness of the controller when the number of
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uncertain parameters are increased and the performance of a linear H∞ controller

for the same model would be an interesting problem to be investigated.

In non-linear H∞ control theory, while currently there is no efficient method to

systematically or numerically solve the HJBI partial differential inequalities as noted

in [112], controllers for under-actuated systems like quadrotors have been developed

as presented above. The designs still fall short of effectively analyzing the robustness

of the overall system and these short comings mostly have been overcome through

adequate testing. In this study we are concerned with developing controllers that

could theoretically guarantee robust stability and performance before the systems

can be deployed. Hence techniques and tools developed using the linear H∞ control

theory will be utilized to develop the required controllers, instead of relying on the

non-linear H∞ control techniques developed in the studies discussed.

2.2.3 Robust controllers - conclusion

To conclude, the quadrotor control problem although have been researched from

within the robust control framework, there are certain areas that remain unexplored.

These are listed below:

1. The µ-synthesis of developed controller-plant system when used to determine

robust stability and performance of developed quadrotor controllers, work as

a powerful tool to determine the how susceptible the closed loop would be to

model uncertainty. The use of this tool has remained largely unexplored when

it comes to developing quadrotor controllers.

2. Utilizing the weights developed to capture parameter as well as other uncer-

tainties such as time delays and non-linearity of the plant in a systematic

manner specifically for a quadrotor plant needs to be further explored and

studied.

3. Finally and most importantly, the case of the optimality of the quadrotor

controller weights is an area that remains unexplored in the above studies.

For an application like the quadrotor which is heavily dependent on controller

optimality for better flight quality and faster flight times [113], the lack of

optimal weights form a significant shortfall when it comes to better controller

designs.

From aside the above mentioned points, comparison of performances of robust con-

trollers developed using the various robust control strategies (i.e, MSO, LSDP, and
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the µ-synthesis) also remain largely unexplored within the context of the quadrotor

application. The stability problems faced by the quadrotor are discussed next.

2.3 Stability Problems due to Model Uncertainty

In this section the general stability problems (other than external sources of dis-

turbances such as that of wind) which affect the flight of a UAV are listed and the

approaches usually used to tackle these are presented briefly.

• Un-modelled Dynamics: Quadcopters, like most plants subjected to high fre-

quency disturbance inputs, tend to exhibit nonlinearities which usually wouldn’t

be captured by the nominal model. Identifying these dynamics hence helps im-

proving the control effectiveness of the UAV. Some of the common techniques

used to deal with the problem are listed below.

A frequency domain identification technique named CIFER (Comprehen-

sive Identification from Frequency Responses), developed by US Military and

NASA for rotorcraft applications have been used to perform frequency domain

system identification in [114]. The high frequency dynamics being identified

using data logged from an on-board data recorder.

The inherent robustness of adaptive controllers such as that of [115], the

sliding mode controller presented in [116] or the linear parameter varying con-

troller in [117] have been exploited as a defense against un-modelled dynamics.

Such techniques free the control engineer from trying to model the dynamics

as the controller adapts as required in order to maintain stability.

The robust control framework allows uncertainty being both neglected and

un-modelled dynamics to be represented as complex perturbations in the fre-

quency domain ([118] see pg. 271-274). The approach can be seen implemented

on a fixed wing UAV based on µ-controller presented in [119].

• Parametric Uncertainties: The two ways of approach seen generally is either

to have an adaptive control mechanism which takes into account the changes

in the model, or use a (robust) controller that has considered the possible

model parameter swings during development. In the general robust control

framework, an unknown plant model with parameter uncertainties is expressed

as a nominal plant alongside additive or multiplicative weights as explained in

[118] (see pg. 265-274). This approach would be used in this study to model

parametric uncertainties. Quadrotor parameters that exhibits uncertainty and

their general uncertainty range are presented in Table 3.2.
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• Model Linearisation Effects: Quadrotor dynamic equations are usually lin-

earised at the hovering state as seen in [120] or would be linearised at various

stages of flight such as hover, cruise, landing etc. and appropriate controllers

are used at each modes using a switching mechanism. Linearisation effects

always come into the picture when the linear controller attempts to control

the actual non-linear plant. However these effects are superimposed alongside

other disturbances and noise and usually hidden in error signals or cost func-

tions. Some efforts to study such effects can be seen in [121] but wider studies

involving comparison studies with robust controllers are yet to be done. In this

study uncertainty brought about by model nonlinearity will be captured using

control weights and efforts would be directed to attenuate the linearisation

effects.

It can be noted that while various conventional control strategies mentioned in the

previous section deal with individual problems that contribute towards system insta-

bility in flight, robust controllers remain well positioned to provide a comprehensive

framework that can take into account uncertainties in dynamics, parameters and

non-linearities. The important conclusions drawn from the literature review con-

ducted are presented in the next section.

2.4 Conclusion

While various aspects of stabilizing and controlling a rotorcraft quadrotor UAV has

been well researched in the academic literature, there are still areas that need to be

examined when controllers that consider model uncertainties need to be developed.

The following conclusions are drawn from the literature survey conducted:

1. Cascaded PID controllers are used mainly in the commercial sector owing to

the simplicity in the design and development. While stability margins and

optimality aspects of flight performance have been analyzed, performance of

the plant in the presence of model uncertainties have not been examined fully.

Moreover, apart from adaptive online tuning of parameters during flight and

PID controller tuning ideas examined in [122], options to explicitly consider ro-

torcraft model uncertainty during controller development need to be explored

further.

2. Adaptive controllers have played and contributed towards imparting ‘robust-

ness’ to rotorcraft UAV designs. While adaptive designs have been reliable as

the reference input commands change considerably, when constant reference
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signals are employed, the ineffectiveness of the controller in the presence of

changing model parameters that contribute to un-modeled dynamics (eg. dy-

namics arising from changing mass and slung load length of a payload attached

to a quadrotor) makes it an unsuitable choice for developing robust control

designs.

3. Optimal controllers like LQR and the LQG, perform well with nominal mod-

els, however as model uncertainty is introduced, guarantees on plant stability

disappears, making it unsuitable for situations where significant model un-

certainty is expected. Optimal MPC controllers have been effectively used

in trajectory tracking have been found to be computationally expensive for

implementation.

4. Artificial intelligence based controllers have been mostly used to develop ef-

fective trajectory tracking and planning systems. Robustness of the plant

towards model uncertainty have been analysed mostly through experimental

tests without verification from a theoretical standpoint.

5. Robust control techniques namely MSO, LSDP and µ-synthesis offer the con-

trol engineer options to consider model uncertainty during the developmental

stage of the controllers as seen in different studies. Controller weights which

play a crucial role in determining performance aspects have mostly been de-

termined through a trial and error approach. Comparison studies between

various robust control strategies when it comes to controlling small scale ro-

torcraft systems have also been largely left out in the literature.

To design controllers for systems that involve significant model uncertainty, be it

parametric uncertainty or due to dynamics brought to the system by variation in

payloads attached to the drone, or the inherent non-linearity of the system, robust

control theory offers tools to ensure robustness. While types of robust controllers

have been developed to solve the issue a comprehensive framework that can develop

optimal controller weight designs while considering the above mentioned uncertain-

ties is missing. Comprehensive comparison studies between different robust control

techniques alongside the cascaded-PID controllers (those mostly preferred in the

industry) have also been mostly left out.

In light of the literature review conducted the following research questions have been

formulated and these would remain central to the rest of this study.

1. Is it possible to develop optimal controller weights alongside a robust con-

troller, to resolve the tracking attitude/altitude problem of a quadrotor? Can

these optimal robust designs be developed in all the three major branches of
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robust control theory namely the Mixed Sensitivity Optimization, Loop Shap-

ing Design Procedure and the µ-synthesis?

2. For a quadrotor model that is associated with modeling uncertainty is it possi-

ble to develop controllers the can theoretically guarantee nominal performance,

robust stability and robust performance?.

3. How does Mixed Sensitivity Optimization, Loop Shaping Design Procedure

and the µ-synthesis based controllers developed for the resolving the tracking

attitude/altitude problem of the quadrotor, compare against each other in

terms performance?

Efforts will be directed in upcoming chapters to effectively answer these questions.

A framework that can generate optimal weights to be used further in design of

the controller (as opposed to assumed after trial and error) will be developed for

all the three major robust control strategies (MSO, LSDP and µ-synthesis). SISO

and MIMO controller development will be treated separately. Comparisons will be

preformed within the developed controllers and also against PID controllers. This

brings us to the conclusion of the literature review section and in the next chapter

the Quadrotor problem statement is examined.
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Chapter 3

A Dynamic Model of the

Quadrotor

The tracking attitude and altitude control problem of a quadrotor will be introduced

in this chapter. The chapter is partitioned into five sections. In the first section,

a general description about a quadrotor will be presented. This will be followed

by development of equations of motion and the state space model that would be

utilized through out the rest of the study. In section 3.3, details regarding scaling of

the model will be provided. This is followed by section 3.4 where model uncertainty

description will be presented. In section 3.5, the quadrotor design specifications will

be listed, followed by the final section where the chapter summary will be presented.

3.1 General Description

In this thesis a quadrotor consist of 4 propellers placed at the ends of a ‘X’ frame

(as opposed to a ‘+’ frame) as seen in Figure 3.1.

Figure 3.1: The quadrotor with the inertial frame Xi, Yi, Zi, and the body frame
Xb, Yb, Zb.
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The inherent under-actuation in a quadrotor arises from the difficulty of having to

control 6 degrees of freedom, using only 4 propeller inputs. Alongside this, quadrotor

flights are characterized by strong coupling between the rotational and translational

forces that arise as a response to the inputs. This contributes towards the general

non-linear dynamics that characterize the equations of motion. These factors make

controlling a quadrotor a challenging problem.

3.1.1 Inertial and Body Frames

The quadrotor equations of motion are developed based on two different frames of

references (see Figure 3.1). The unmovable reference frame, i.e the frame attached

to earth, assumed to be fixed in space, is called the ONED frame of reference where

the subscripts stands for ‘North’, ‘East ’ and ‘Down’ respectively. The x, y and z

axes associated with this frame have the subscript ‘i’ which stands for the ‘inertial ’

frame of reference. The Body Frame otherwise called the OABC where the subscript

stand for ‘Aircraft Body Center ’ is the frame of reference whose origin coincides with

the center of mass of the craft. The x, y and z axes associated with this frame have

the subscript ‘b’ and this stands for the ‘body ’ frame of reference. The body x and

y axis lie in the same plane as that of the rotors, at an angle of 45° with the arms

of the quadrotor which are at right angles to each other.

The equations of motion are developed as required in either of these two frames.

The variables to be observed and states to be controlled can be rotated into the

ONED or OABC frames as required. Further details will be discussed in section 3.2.1

Figure 3.2: Clockwise and anticlockwise propeller movements
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3.1.2 Quadrotor movements

In a quadrotor, opposite pairs of propellers rotate in the same direction while those

adjacent to each other rotate in opposite directions. This can be seen in Figure 3.2

where propellers 1 and 3 rotate in clockwise direction, while 2 and 4 rotate in the

anticlockwise directions.

The movements of the quadrotor can be classified into four basic categories. All

movements of a quadrotor can be expressed as a combination of the these four basic

actions. Theses are listed next.

(a) Back elevation

(b) Sideview

Figure 3.3: Roll movement

• Pure Roll: When Propellers 1 and 4 simultaneously decrease (or increase) and

2 and 3 simultaneously increase (or decrease) their angular velocity it results

in a movement about the roll axis (See Figure 3.3). In case the changes to

the propeller angular velocities are not proportional, it would lead to yawing

action resulting from unbalanced torques from the four rotors.
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(a) Back elevation

(b) Sideview

Figure 3.4: Pitch movement

• Pure Pitch: When Propellers 1 and 2 simultaneously decrease (or increase)

and 3 and 4 simultaneously increase (or decrease) their angular velocity, it

results in a movement about the pitch axis (See Figure 3.4). Similar to roll,

unbalanced torques resulting from disproportional angular velocities would

result in a yawing motion alongside pitch.

• Yaw: When Propeller 1 and 3 simultaneously decrease and 2 and 4 simul-

taneously increase their angular velocity it results in a yaw motion. A yaw

movement of 90° is shown in Figure 3.5.

• Vertical Thrust: When all the four propellers simultaneous increase or decrease

their angular velocity, it results in a corresponding increase or decrease in the

altitude of the craft. This is referred to as the vertical thrust action.
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(a) Initial position

(b) Final position

Figure 3.5: Yaw movement

The equations of motion are developed in the next section.

3.2 Development of the Dynamic Model

The development of the equations of motion are based on the work presented in

[123] and [124]. A quadrotor is an under-actuated mechanical system with 6 degrees

of freedom these being position in the x, y, and z earth coordinate frame, and

orientation based on Euler angles φ, θ and ψ, being the roll, pitch and yaw angles

respectively.

As seen in Figure 3.6, any rotation of body frame OABC about XB results in a change

φ, recorded in the body frame as φb. Similarly changes resulting from rotation about

YB are recorded as θb and that from rotation about ZB axis as ψb. Here the subscript

“b” stands for “body” and represents the variables measured in the OABC frame.

The position vector χi and orientation vector ζi as observed in the inertial frame
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are given by the following vector definitions:

χi =

xiyi
zi

 , ζi =

φiθi
ψi

 , (3.1)

Figure 3.6: The quadrotor model

Notice the subscript ‘i’ which stands for ‘inertial ’ and represents the variables mea-

sured in the ONED frame. Velocity vectors observed in the body frame- vb, repre-

senting the linear velocity (m/s) and ωb, representing the angular velocity (rad/s)

of the craft are similarly given by the following vector definitions:

vb =

ẋbẏb
żb

 , ωb =

φ̇bθ̇b
ψ̇b

 (3.2)

The velocity vector vb can be rotated towards χ̇i using the orthogonal rotation

matrix R [125] :

R =

cψcθ cψsθsφ − sψcφ cψsθcφ + sψcφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 (3.3)

where c· and s· represent the trigonometric functions cos(·) and sin(·) respectively.

Similarly, the angular velocity vector ωb can be rotated into its ONED counterpart
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ζ̇i using the matrix W−1 [125] given by:

W−1 =
1

cθ

cθ sφsθ cφsθ

0 cφcθ −sφcθ
0 sφ cφ

 (3.4)

Hence we have ζ̇i = W−1ωb. With these fundamental vector definitions examined,

the equation of motion governing the quadrotor, will be presented in the next section.

3.2.1 Equations of Motion

The equations of motion are developed while maintaining four basic assumptions.

Firstly, the mass of the quadrotor is assumed to be symmetric about the body x and

y frame. Secondly, the free stream air velocity is considered to be zero. Thirdly, the

body along with the propellers are assumed to be rigid, and finally the blades are

considered inflexible. Based of Newton-Euler equations for rigid body, the relevant

equations of motion can now be developed.

3.2.1.1 Equations of motion derived in the body frame

The equations of motion are first derived in the body frame. To balance out the

translational forces acting on the body frame the net force generated by the motors f b

along with gravitational force RTgi should be equal to centrifugal force m(ωb× vb)

plus mv̇b, the force required for acceleration of the craft. Here × represents the

vector cross product. This can be written as follows:

RTgi + f b = m(v̇b + ωb × vb) (3.5)

where f b =
[

0 0
∑4

k=1 fk
]T

and gi =
[

0 0 − gi
]T

. Here fk represents the force

exerted by the kth rotor and g represents the acceleration due to gravity. (See section

3.2.1.2 for details on fk).

Similarly, to balance out the rotational forces affecting the craft, the net torque

τ realized on the frame should be equal to the net gyroscopic moments of all the

rotors ga, centripetal forces ωb×(Iωb) and Iω̇b, where I represents the inertia matrix

defined about the center of mass.

I =

Ixx 0 0

0 Iyy 0

0 0 Izz

 (3.6)
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and τ b =
[

0 0
∑4

i=1 τk
]T

, where τk represents the torque exerted by the kth rotor

on the craft (See section 3.2.2 for details on τk).

This can be formulated as below:

τ b = ga + ωb × (Iωb) + Iω̇b (3.7)

As pointed out in [126] the net gyroscopic moment produced by rotors ga, is negli-

gible and hence ignored. Taking into account equations eq. (3.5) and eq. (3.7), and

substituting in equations eqs. (3.1) to (3.4), the final equations of motion can be

written as follows.

ẍb = −g sθi + ψ̇b ẏb − θ̇b żb
ÿb = g sφi cθi − ψ̇b ẋb + φ̇b żb

z̈b = −(f1 + f2 + f3 + f4)
1

m
+ gi cφi cθi + θ̇b ẋb − φ̇b ẏb

φ̈b =
1

Ixx

(
(f1 − f2 − f3 + f4) dr + (Iyy − Izz) θ̇b ψ̇b

)
θ̈b =

1

Iyy

(
(f1 + f2 − f3 − f4) dr + (Izz − Ixx) φ̇b ψ̇b

)
ψ̈b =

1

Izz

(
(τ1 − τ2 + τ3 − τ4) + (Ixx − Iyy) φ̇b θ̇b

)

(3.8)

Here dr represents the distance between the center of gravity of the propeller and

that of the quadrotor, m represents mass of the quadrotor, fk represents the force

generated by the kth propeller, and τk represents the torque exerted by the kth

propeller on the center of gravity of the quadrotor. The equations for forces and

torques are presented in section 3.2.2.

In eq. (3.8) the derivatives of position as well as translational velocities are described

in terms of variables from the body frame. While this is useful in certain occasions

(for example in applications that do not involve the use of an inertial frame of

reference), it is always desirable for most of the present day applications that utilize

a GPS or a similar position tracking mechanism, to identify these variables in an

inertial frame of reference. This is examined in the next section.

3.2.1.2 Equations of motion examined in the inertial frame

In the inertial frame, analysing the translational forces, one finds the net linear

acceleration equals acceleration produced by the rotor thrust alongside gravity.

χ̈i =
Rf b
m

+ g (3.9)
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When it comes to calculating the rotational forces acting on the inertial frame,

two approaches can be taken. In the first approach the equation ζ̇i = W−1ωb

is differentiated with respect to time, and eq. (3.7) is substituted to obtain the

final expression. The second approach offers a simplification where the following

assumption is made: at small angles we have ζ̇i = ωb. As seen from eq. (3.4) the

diagonal elements approach unity and all the other elements approach zero when

the angles are close to zero. It is usually considered safe to make this assumption

considering that the UAV operates most of its time near or at zero angle orientation,

as can be seen in [127–130].

3.2.1.3 Equations of motion used in this study

In this study while the linear accelerations and velocity are derived in the inertial

frame, the angular accelerations will be derived in body frame. This hybrid state

vector is useful when the focus is to design a attitude-altitude stabilization controller

[131]. This enables expressing the dynamics of the craft relative to the inertial frame

fixed on the earth, and the use of orientation of the craft expressed in the body

frame to achieve control and stability. The equation of motions in this approach

based on eqs. (3.4), (3.7) and (3.9) can be derived as follows (further see [132] for

the derivation, and [21, 95, 133] for the application of the same set of quadrotor

equations of motion):

φ̇i = φ̇b + (θ̇b sφi + ψ̇b cφi) tθi

θ̇i = θ̇b cφi − ψ̇b sφi
ψ̇i = (θ̇b sφi + ψ̇b cφi) sec(θi)

ẍi = −f1 + f2 + f3 + f4

m
(sφi sψi

+ cφi cψi
sθi)

ÿi = −f1 + f2 + f3 + f4

m
(cφi sψi

sθi − cψi
sφi)

z̈i = g − f1 + f2 + f3 + f4

m
(cφi cθi)

φ̈b =
1

Ixx

(
(f1 − f2 − f3 + f4) dy + (Iyy − Izz) θ̇b ψ̇b

)
θ̈b =

1

Iyy

(
(f1 + f2 − f3 − f4) dx + (Izz − Ixx) φ̇b ψ̇b

)
ψ̈b =

1

Izz

(
τ1 − τ2 + τ3 − τ4 + (Ixx − Iyy) φ̇b θ̇b

)

(3.10)

This brings us to the end of development of quadrotor equations of motion. The

selection of the parameters, used in this development, and system input definitions

are presented next.
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3.2.2 Model Parameters, Propeller Thrusts and Torques

The actual model parameters used in the study are based on the Ascending technolo-

gies (AscTec) Pelican Quadrotor, a commercially available quadrotor developed by

Ascending Technologies GmbH (http://www.asctec.de), and used in [134]. The

nominal values of thrust coefficient ct and power coefficient cp are based on infor-

mation documented in the University of Illinois propeller database [135] for the

10′′×4.7′′ APC propeller. The length of the quadrotor arms have been slightly

increased to accommodate the propellers into the original design. The basic dimen-

sions of the quadrotor is shown in Fig. 3.7.

Figure 3.7: Quadrotor basic dimensions (units in [m]).

This particular quadrotor, which can be modified easily for research purposes [136],

remains popular among academics [137–140]. The parameters used are listed in

Table 3.1.

Table 3.1: The parameters of the quadrotor used in this study

Parameters Value

m 1.27 kg

g 9.81 m/s2

dx 0.194 m

dy 0.194 m

ct 0.1

cp 0.045

IXX , IY Y 0.04339 kg m2

IZZ 0.0705 kg m2

Equations for the thrusts produced by the propeller are presented in [141]. The
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total thrust produced by the kth rotor is given by

fk =
ct ρ nk

2 d4

3600
, (3.11)

and net torque exerted by the kth rotor on the body of the quadrotor is calculated

as

τk =
cp ρ nk

2 d5

2π 3600
(3.12)

where nk is the angular velocity of the kth propeller calculated in rotations per

minute, ρ the density of air at sea level (1.225 kg m−3) and d (0.254 m), the diameter

of the propeller disk.

The maximum recommended RPM for the 10′′×4.7′′ APC propeller is 6500 [135].

The maximum thrust produced based on eq. (3.11) by a single rotor amounts to

5.985 N and hence maximum payload that the craft can lift excluding its own mass,

is 1.17 Kg.

3.2.3 The Linearised State Space Model

Having determined the nonlinear dynamic equations of motion, and parameters of

the model, the purpose of this section is to derive the linear state space model of

the quadrotor attitude-altitude system. The section is subdivided into two parts.

In the first subsection the control architecture as well as the state, input and output

vectors will be defined. The system definition in terms of the output variables to

be controlled, and states variables to be observed, are presented. In the second

subsection the linearised model of the quadrotor is developed and the state space

model is presented.

3.2.3.1 Control Architecture and Control System Vectors

The quadrotor control architecture can be structured in a two tier-format such

that the position tracking control would be managed by an outer framework, while

the inner loop handles attitude-altitude stabilization and tracking, following [142].

The outer loop receives reference commands in the form of position coordinates

(xDi , y
D
i ) which it converts to desired roll and pitch rates (φ̇Db , θ̇

D
b ). This along

with the desired yaw and altitude rates, obtained from the time series derivation of

desired yaw orientation and altitude coordinates (ψ̇Db , ż
D
i ), will be fed to the inner

loop controller. Aside from the subscripts ‘i ’ and ‘b’ which indicate the frame of

reference, the superscript ‘D ’ represents the ‘desired’ values in the reference signal.

This control architecture can be seen in Figure 3.8.
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Figure 3.8: Control architecture

The focus of this study is to resolve attitude-altitude rate tracking problem managed

by the inner loop controller. Hence the output variables that would be tracked and

controlled are selected to be the roll, pitch, yaw and altitude rates.

The state, input and output vectors of the quadrotor model defined in accordance

with the set of differential eq. (3.10), are as follows:

x =
[
xi yi zi φi θi ψi ẋi ẏi żi φ̇b θ̇b ψ̇b

]T
,

y =
[
φ̇b θ̇b ψ̇b żi

]T
, and

u =
[
u1 u2 u3 u4

]T
,

(3.13)

where x represents the state, y, the output and u, the input variables where ui

equals ωi, the angular velocity of the ith propeller in rotations per minute (RPM).

Alongside the equation for output variables and differential eq. (3.10) rewritten as

a first order differential equation (by substituting eq. (3.13)) the system definition

can be presented as follows:

y = g(x,u)

ẋ = f(x,u),
(3.14)

where g(x,u) equals

g(x,u) =


φ̇b

θ̇b

ψ̇b

żi

 (3.15)

and f (x,u) is given by
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f(x,u) =



ẋi

ẏi

żi

φ̇b + (θ̇b sφi + ψ̇b cφi) tθi
θ̇b cφi − ψ̇b sφi

(θ̇b sφi + ψ̇b cφi) sec(θi)

−f(u1)+f(u2)+f(u3)+f(u4)
m

(cφi sθi cψi
+ sφi sψi

)

−f(u1)+f(u2)+f(u3)+f(u4)
m

(cφi sθi sψi
− sφi cψi

)

g − f(u1)+f(u2)+f(u3)+f(u4)
m

(cφi cθi)
f(u1)−f(u2)−f(u3)+f(u4)

Ixx
dy + Iyy−Izz

Ixx
θ̇b ψ̇b

f(u1)−f(u2)+f(u3)−f(u4)
Iyy

dx + Izz−Ixx
Iyy

φ̇b ψ̇b
−τ(u1)−τ(u2)+τ(u3)+τ(u4)

Izz
+ Ixx−Iyy

Izz
φ̇b θ̇b



(3.16)

Here f(uk) ≡ fk and τ(uk) ≡ τk . To design a controller that stabilizes the quadrotor

and achieves satisfactory reference tracking, the non-linear model of eq. (3.14) needs

to be linearized at a point of equilibrium. This is discussed in the next subsection.

3.2.3.2 Jacobian Linearisation

For a non-linear system of the form ẋ = f(x,u), x̄ can be called an equilibrium point

if an input ū can be identified such that f(x̄, ū) = 0, such that when the system

begins operation from an initial point x(t0) = x̄, with a persistent input ū ∀ t > t0,

x(t) remain equal to x̄ [143].

For an open loop quadrotor system, subject to zero external disturbances, the state

of perfect hover, i.e. when all of the propellers rotate at the same RPM and the net

thrust generated, precisely equals the weight of the craft, is the only such equilibrium

point present. For this marginally stable equilibrium position we have x̄ = 012×1

and ū = mg
4

I4×1. It is around this equilibrium point, that the craft will be expected

to operate and controllers expected to provide asymptotic stability, during flight

operations. Consider the system of eq. (3.14). We have at the equilibrium point:

f(x̄, ū) = 0

g(x̄, ū) = 0
(3.17)

Now considering small perturbations to the system at this point, we can define the
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following perturbation variables:

δx(t) = x(t)− x̄

δu(t) = u(t)− ū
(3.18)

Corresponding system equations can be derived as follows:

δ̇x(t) = f(x̄ + δx(t), ū + δu(t))

δy(t) = g(x̄ + δx(t), ū + δu(t))
(3.19)

These exact equations are expanded using a Taylor series expansion, with terms

higher than the 1st order neglected.

δ̇x(t) = f(x̄, ū) +
∂f

∂x

∣∣∣∣x=x̄
u=ū

δx(t) +
∂f

∂u

∣∣∣∣x=x̄
u=ū

δu(t)

δy(t) = g(x̄, ū) +
∂g

∂x

∣∣∣∣x=x̄
u=ū

δx(t) +
∂g

∂u

∣∣∣∣x=x̄
u=ū

δu(t)

(3.20)

Substituting eq. (3.14) in the above equation and introducing the variables

An×n =
∂f

∂x

∣∣∣∣x=x̄
u=ū

δx(t) , Bn×m =
∂f

∂u

∣∣∣∣x=x̄
u=ū

δu(t)

Cp×n =
∂g

∂x

∣∣∣∣x=x̄
u=ū

δx(t) , Dp×m =
∂g

∂u

∣∣∣∣x=x̄
u=ū

δu(t)

(3.21)

where n is the number of states of the system, m the number of inputs and p the

number of outputs, we get the final form:

δ̇x(t) = A δx(t) + B δu(t)

δy(t) = C δx(t) + D δu(t)
(3.22)

The Jacobian linearised form of the non-linear equation eq. (3.14) at the equilibrium

point, is thus given by eq. (3.22). Now replacing the perturbation variables with

system variables, we can write down the linearised spate space model as:

ẋ = A x + B u

y = C x + D u
(3.23)

At the equilibrium point x̄ = 012×1 and ū = mg
4

I4×1 for the quadrotor model and
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parameters as given in Table 3.1, we have the state-space matrices

A12×12 =


0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

9.81

0

0

0

0

0

0

0

0

0

0

0

0

−9.81

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0


,

B12×4 =


−0.0003428

0.004562

0.004562

−0.001046

0

0

0

0

0

0

0

0

−0.0003428

−0.004562

−0.004562

−0.001046

0

0

0

0

0

0

0

0

0.0003428

0.004562

−0.004562

−0.001046

0

0

0

0

0

0

0

0

0.0003428

−0.004562

0.004562

−0.001046

0

0

0

0

0

0

0

0


,

C4×12 =


0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

1

0

0

1

0

0
 , D4×4 =


0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
 (3.24)

To do a quick check with regards to whether the linear system is state control-

lable would be to check if the controllability matrix C has a full rank [144]. The

controllability matrix is given by:

C =
[
B AB A2B · · · An−1B

]
. (3.25)
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Substituting for A and B, the rank of C for the quadrotor system defined in eq. (3.24)

can be calculated to equal 12, i.e. same as the number of states. The concept of

state controllability doesn’t throw light into the quality of control for example say

whether the system can be held at a particular state indefinitely.

Functional controllability, a concept introduced by Rosenbrock [145], which offers

insight into the number of outputs that can be controlled independently [146] can

be checked by calculating the normal rank of the system over all frequencies. To be

fully functionally controllable this calculated rank needs to be equal to the number

of outputs of the system. For the quadrotor model under consideration, the normal

rank amounts to unity. Hence this lets us conclude that the system is not fully

functionally controllable. Checking for functional controllability as well as designing

robust controllers, depends on the proper scaling of the system. The next section

deals with this subject.

3.3 System Scaling

Scaling the system is crucial for both developing the controller and uncertainty

weights, as well as for implementation on a micro-processor. The method employed

here is to normalize the variables entering and exiting the system with respect to the

maximum expected change (please refer to section 1.4 in [118], for further details).

To enable this, the following weights are first defined:

De =


0.25 0 0 0

0 0.25 0 0

0 0 0.25 0

0 0 0 0.25


where De represents the maximum allowed control error. It is set to to 0.25 rad/s

for roll, pitch and yaw rates and 0.25 m/s for altitude rate. These values were chosen

based on the practical considerations of the AscTech Pelican quadrotor.

Du =


1810 0 0 0

0 1810 0 0

0 0 1810 0

0 0 0 1810


where Du represents the maximum allowed change in propeller angular velocity

from the steady state value of 4690 RPM (i.e, corresponding to a weight of mg
4

).

The maximum allowed propeller RPM is 6500, hence the diagonal elements of Du

calculates to 6500− 4690 = 1810 RPM.
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Dd =


0.5 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 0.5

 , Dr =


0.5 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 1.5


where Dd and Dr represents the maximum expected disturbance signal and max-

imum expected change in the reference signal. A maximum expected disturbance

signal and reference change of 0.5 rad/s is expected for roll, pitch and yaw rates while

0.5 m/s is the expected altitude rate change. With the symbol (ˇ) representing the

unscaled values, the original variables can be scaled as follows:

y = De
−1y̌ , e = De

−1ě , u = Du
−1ǔ (3.26)

where we have the outputs and errors scaled with respect to the error weight while

the inputs are scaled with respect to the input weight. For the reference signal, a

normalized variable r̃ is introduced. We have ř = Dr r̃, and the original variable can

now be scaled as r = De
−1 ř. Let De

−1 Dr = R. The final equation hence becomes

r =R r̃ (3.27)

The general control equations

y̌ = Ǧ ǔ + Ǧd ď

ě = y̌ − ř
(3.28)

can now be written as:
De y = Ǧ Du u + Ǧ Dd d

De e = De y −De r
(3.29)

Using the scaled transfer function matrices

G = D−1
e Ǧ Du and Gd = D−1

e Ǧd Dd (3.30)

eq. (3.28) can be rewritten as

y = G u + Gd d

e = y − r
(3.31)

The resulting model in terms of scaled variables are shown in Figure 3.9.
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Figure 3.9: The model enabled by the scaled variables

The control objective now is to keep the error ‖e‖∞ ≤ 1 using an input ‖u‖∞ ≤ 1

subject to disturbances ‖d‖∞ ≤ 1 and a reference set point ‖r̃‖∞ ≤ 1. Here ‖ · ‖∞
refers to the H∞ norm (see section 4.3.1). Sources of modelling uncertainty, consid-

ered during development of robust controllers are presented in the next section.

3.4 Uncertainty Sources

Accurately characterizing the model uncertainty becomes important while designing

controllers for a plant, as it accounts for being able to quantify the unknown [147].

The approach taken is to consider the different sources of known uncertainty and

design weights to capture them relative to the nominal model. Three types of

uncertainty sources are considered in the study, these being parametric, time delay

and uncertainty due to non-linearity. Table 3.2 shows the magnitude of sources

considered.

Table 3.2: Uncertainty Sources

Parameters % Uncertainty Range

IXX , IY Y 0.04339 ±10% kg m2 0.0391 ≤ IXX , IY Y ≤ 0.0477

IZZ 0.0705 ±10% kg m2 0.0634 ≤ IZZ ≤ 0.0775

m 1.27 ±50% kg 0.6350 ≤ m ≤ 1.9050

dr 0.194±30% m 0.1358 ≤ dr ≤ 0.2522

ct 0.1 ±50% 0.0500 ≤ ct ≤ 0.1500

cp 0.045 ±30% 0.0315 ≤ cp ≤ 0.0585

tD 0.004 ±10% s 0.0036 ≤ tD ≤ 0.0044

Variables Range for Model Linearisation

φi, θi, ψi -20↔ 20 (deg)

φ̇b, θ̇b, ψ̇b -0.2↔ 0.2 (rad/s)

ẋi, ẏi, żi -0.5↔ 0.5 (m/s)

u1, u2, u3, u4 4590↔ 4790 (RPM)
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The first section of the table presents the parametric uncertainty sources. These

values are based on percentage changes considered generally in literature [26, 104,

107, 148, 149] where parametric uncertainties are modeled. Time delay uncertainty

with a nominal value of 0.004 s is represented by tD. The second section lists the

ranges across with the model is linearised. The details regarding development of the

weights will be discussed in later sections alongside the controller design.

3.5 Quadrotor design specifications

The design specifications for the nominal nonlinear plant are listed out below. The

design specifications are based on both recommendations from literature [99, 150–

153], and also based on discussions with the development team at Envirobotics

Limited [154] (more of which will be explored in Chapter 6).

Among the constraints listed there are both soft constraints (colored in green) and

hard constraints (colored in red). These form the basis for development of the

constraints of the optimization problem in the final stage of the controller design.

The soft constraints are flexible and while it would be excellent for the quadrotor

to achieve them, these limits are flexible and can be relaxed to meet other more

important constraints (eg. robustness margins). The hard constraints fall at the

farthest end of the allowed performance limits. Failing to meet the hard limits will

be considered as not having met the required performance standards in the study.

It is important to note that surpassing the hard limits might not always result in

instability.

Roll and Pitch Rate Loop:

1. For a reference input of y(t) = 0.25 rad/s

• % Overshoot < 5, 8

• Rise Time < 0.1 s, 0.65 s

• Settling Time < 0.25 s, 0.85 s

2. The scaled inputs limited as -1 ≤ u(t) ≤ 1

3. The closed loop bandwidth of atleast 10 rad/s

Yaw Rate Loop:

1. For a reference input of y(t) = 0.5 rad/s
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• % Overshoot < 5, 20

• Rise Time < 0.1 s, 0.65 s

• Settling Time < 0.3 s, 0.85 s

2. The scaled inputs limited as -1 ≤ u(t) ≤ 1

3. The closed loop bandwidth atleast 10 rad/s

Altitude Rate Loop:

1. For a reference input of y(t) = 1.5 m/s

• % Overshoot < 20, 25

• Rise Time < 0.3 s, 0.75 s

• Settling Time < 1.25 s, 1.75 s

2. The scaled inputs limited as -1 ≤ u(t) ≤ 1

3. The closed loop bandwidth atleast 2 rad/s

The limits are formulated into inequality constraints while developing the framework

for controller design. These are discussed in subsequent chapters.

3.6 Chapter Summary

The main ideas presented in he chapter are summarized below:

• The general dynamic quadrotor mathematical model is introduced in this chap-

ter and equations of motion that are used in the study are derived.

• The specific parameters used to develop the quadrotor model are presented.

• Jacobian linearisation principles are presented and numerical linearisation is

carried out to derive the state space model of the plant.

• A system scaling is presented based on the limits of input, error, expected

disturbance, and change in reference input signal.

• Expected model uncertainty based on uncertainty in parameter accuracy, pres-

ence of time delays and model non-linearity are presented. These estimates

will used during controller development in following chapters.
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• Design specifications that need to be met for the performance of the nominal

plant design are presented. These specifications will be used as constraints

that need to be met during development of the controllers in the upcoming

chapters.

This brings us to the end of this chapter. In the next chapter the development

of SISO robust controllers for the developed quadrotor model will be examined in

detail.
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Chapter 4

Robust Controller Designs: A

Preview on SISO Systems

This chapter presents an introduction to Robust Control Theory together with a

new method for selecting the design weights by resolving a constrained nonlinear

optimization problem. The decoupled linear quadrotor model will be taken as the

plant model for designing the controllers. The chapter is divided into ten sections.

A general introduction to the robust control problem that is being examined is

presented in the first section. In the section 4.2, the decoupled quadrotor model

is presented. A general introduction to robust control theory is presented in the

section 4.3. The three control strategies Mixed sensitivity Optimization (MSO)

control, Loop Shaping Design Procedure (LSDP) and µ-synthesis are explained in

the subsequent sections (sections 4.4, 4.5, 4.6, 4.7, and 4.8). In each of these sec-

tions, controllers for attitude and altitude tracking of the quadrotor model, will be

developed and their performances, examined. In the next section 4.9, a comparison

of performance of the various controller designs is presented. In the final section

4.10, conclusions drawn from the chapter are summarized.

4.1 Introduction

In Chapter 3, a Multi-Input Multi-Output (MIMO) model of the quadrotor model,

developed for resolving the tracking problem was presented. In the commercial

industry the attitude-altitude tracking problem is usually resolved by breaking

down this MIMO problem into multiple ‘Single-Input Single-Output’ SISO prob-

lems. SISO controllers are relatively easy to implement compared to the MIMO

counterparts and as long as a MIMO plant can be decoupled into individual SISO

plants at least around the frequencies where the plant operates, industries opt for
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SISO controllers owing to the relative easiness of design [155, 156]. As such, pop-

ular rotor craft autopilots as surveyed in [10, 157] and [158], use 4 PID controllers

to control the SISO loops, while resolving the attitude-altitude tracking problem.

These SISO loops will be examined in the first part of this chapter.

Robust Control Theory (RCT) explained in the later sections will be presented

alongside controller development for the SISO loops, that concerns with pitch, roll,

yaw and altitude rate of the quadrotor. The three controller development strategies

explained, namely MSO, LSDP and µ-synthesis which are based on minimizing the

H∞ norm of certain specified objective functions, enable the control engineer to

to shape and modify plant characteristics in the frequency domain. For example,

the H∞ MSO S/T strategy minimizes the peaks of Sensitivity and Complementary

Sensitivity functions of the closed loop, alongside formulating the regulation-tracking

problem into frequency domain constraints; the LSDP on the other hand enables

the designer to shape the open-loop singular values of the plant alongside stabilizing

the plant against co-prime factor uncertainties.

While controller design and loop shaping within the frequency domain is helpful,

laying out performance objectives of the closed loop in terms of time domain specifi-

cations (for example, rise time and settling time of step responses) is a practice that

is more commonly seen throughout the control industry [93]. The mathematical

approach of designing controllers such that the constraints and performance specifi-

cations, represented as a set of algebraic inequalities, form the basis of determining

the controller parameters, is termed as Method of Inequalities (MOI) [159]. In [93],

MOI is combined with robust design procedures to form a framework where both

time and frequency domain specifications can be combined as requisites for the con-

troller design. A numerical search routine called the Moving Boundaries Process

(MBP) is employed for this technique.

The above version of MOI is modified in this study to formulate the same problem

of forming a framework for defining time and frequency domain specifications, but

instead, by resolving a constrained nonlinear optimization problem. Substantial

changes are made to this former technique when it comes to MSO and µ-synthesis

designs, while significant changes are brought about to the 1 and 2 DOF LSDP

design technique. The ‘Nonlinear Optimization with MADS algorithm’ (NOMAD)

[32] as provided by the MATLAB toolbox OPTI [160], is employed to develop this

framework.

While various other nonlinear optimization routines that comes with OPTI MAT-

LAB suite, such as the Particle Swarm Pattern Search Method (PSWARM) or the

NLopt Nonlinear-Optimization Package (NLOPT) among others, can be used to

resolve the optimization problem at hand, NOMAD helps to provide the fastest
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convergence to the global optimum. The specific nature of the optimization prob-

lem results in the tendency of solvers to converge to local optima depending on the

initial point of the variables. Of all the solvers listed, NOMAD consistently proves

to be the best solver both in terms of fastness of convergence as well as robustness

towards the initial point of the variables when it comes to reaching the globa opti-

mum. The algorithms developed for each different control strategy will be explained

in the respective sections.

4.2 Decoupling the Quadrotor

In commercially available autopilots for quadrotors, the control system, generally

resolves the position, attitude and altitude tracking problem by decoupling the model

twice, that is, the x, y coordinate position tracking, is decoupled from attitude-

altitude control, and further the attitude-altitude model is further decoupled into

four SISO systems [161].

Attitude control generally employs a double loop PID controller [162] where two

PID controllers are allocated for each SISO channel. While the outer loop aims at

reducing the absolute values of attitude tracking error, the inner loop focuses on

minimizing the tracking error of their rates.

Decoupling can be brought about by redefining the inputs (recall inputs originally

in the multivariable model were angular velocities of individual rotors, see section

3.2.3.1) of the quadrotor as follows:

u1 = f1 − f2 − f3 + f4

u2 = f1 + f2 − f3 − f4

u3 = f1 − f2 + f3 − f4

u4 = f1 + f2 + f3 + f4

(4.1)

where fk represents the force exerted by the kth propeller. We can see here that

inputs are categorized according to the force required to perform the the four basic

manoeuvres- roll, pitch, yaw and thrust, in contrast to the input propeller speeds

(ωk), as used to derive eq. (3.10). The equations of motion now become:

φ̇i = φ̇b + (θ̇b sφ + ψ̇b cφ) tθ

θ̇i = θ̇b cφ − ψ̇b sφ
ψ̇i = (θ̇b sφ + ψ̇b cφ) sec(θ)

ẍi = −u4

m
(sφ sψ + cφ cψ sθ)
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ÿi = −u4

m
(cφ sψ sθ − cψ sφ) (4.2)

z̈i = g − u4

m
(cφ cθ)

φ̈b =
1

Ixx
(u1 dy + (Iyy − Izz) θ̇b ψ̇b)

θ̈b =
1

Iyy
(u2 dx + (Izz − Ixx) φ̇b ψ̇b)

ψ̈b =
1

Izz
(u3 d

cp
ct

+ (Ixx − Iyy) φ̇b θ̇b)

When Jacobian linearisation is performed at the equilibrium point x̄ = 01×12 and ū

=
[

0 0 0 mg
]T

, the state space model essentially decouples into four SISO models,

each representing the system from input actions causing the craft to roll, pitch,

yaw and change altitude to their corresponding desired rates, i.e the outputs. The

linearised model of the quadrotor is given by:

A12×12 =
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B12×4 =
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C4×12 =


0
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
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
 (4.3)

Inspecting the input matrix B reveals the successful decoupling of the quadrotor

model. As for scaling the model, the diagonal weighting matrices De, Dd and Dr,

described in section 3.3 remains the same except for Du, which becomes

Du =


9.6184 0 0 0

0 9.6184 0 0

0 0 9.6184 0

0 0 0 11.4744


Here the values are calculated based on the maximum expected change in inputs

(forces, in contrast to angular velocities), from their steady state values.The follow-

ing sections will examine algorithms required to design the controllers for the SISO

plant model.

4.3 Robust Control Theory

This section introduces the key concepts involved in defining the robust control

problem. The strategy explained in later sections will be developed on, from the

theory presented in this section.

4.3.1 The H∞ norm

In robust control, objectives are often defined in terms of minimizing the maximum

value of a particular function, like for example the sensitivity function of the closed

loop, over the range of frequency that is of interest for the problem at hand. The

maximum value in this ‘min-max’ problem is determined by calculating the H∞
norm of the objective function. The H∞ norm of scalars, vectors and matrices

encountered throughout the rest of this study are defined as:

• Scalars - For a transfer function, the H∞ norm is defined as the peak value of

the Bode magnitude plot. For example for the scalar sensitivity function S,

‖S‖∞ = max
ω
|S(j ω)|
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• Vectors - The H∞ norm of a vector containing scalars is simply the absolute

value of the element with the largest magnitude, i.e. for the input vector u,

the infinity norm ‖u‖∞ = max
i
|ui|.

When the vector contains transfer functions, the approach is slightly different.

For example the H∞ norm of the objective function of the weighted S/T MSO

problem is given by: ∥∥∥∥∥wPSwIT

∥∥∥∥∥
∞

, max
ω

√
|wPS|2 + |wIT |2 (4.4)

• Matrices - For a matrix containing scalars, the H∞ norm is equal to the maxi-

mum singular value of the matrix. For example, the H∞ norm of Du the input

scaling matrix, ‖Du‖∞ = σ̄(Du), where σ̄ denotes the maximum singular value

of the matrix.

The H∞ norm of matrix transfer function is the maximum value calculated,

over all frequencies, of the maximum singular value of the matrix. For example

the system matrix G we have ‖G‖∞ = max
ω

σ̄(G(jω)).

In the time domain, H∞ norm can be interpreted as the worst case gain of a proper

stable system subjected to sinusoidal inputs at any frequency. The symbol H∞ is

also associated with the H∞ space, usually called the ‘Hardy’ space (a concept first

appearing in [163], also see [164] and [118], page 60), which consist of the set of all

proper and stable transfer functions.

TheH∞ norm alongside being an induced norm, plays an important role in represen-

tation of unstructured model uncertainty, hence remains popular in robust control

theory.

4.3.2 The General Robust Control Problem

The method of formulating control problems into the structure shown in Fig. 4.1

first appeared in [165]. The objective function of such a formulation is to develop a

controller K that minimizes theH∞ norm of the transfer function between exogenous

input signals w to the generalized plant P, to outputs z, using an input command u

and measurement signal v that drives the controller. Here ∆ represents the model

uncertainty with y∆ and u∆ representing its outputs and inputs respectively.
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Figure 4.1: The general robust control problem formulation

The block diagram in Fig. 4.1 can be interpreted using the below set of equations:y∆

z

v

 = P

u∆

w

u


u = Kv

u∆ = ∆y∆

(4.5)

The transfer function between w and z is derived by defining the relationships of

the blocks in terms of Linear Fractional Transformations (LFTs). Accordingly we

have the following relationship equations.

N = Fl(P,K) , P11 + P12 K(I−P22K)−1 P21

F = Fu(N,∆) , N22 + N21∆ (I−N11∆)−1 N12

(4.6)

where N is the transfer function from w to z when ∆ equals zero, Fl the lower LFT

and Fu the upper LFT.

4.3.3 Toolboxes and Solvers

Alongside the Control System Toolbox, the Symbolic Math Toolbox and other gen-

eral toolboxes in MATLAB, the work presented in this study relies on the following:

• Robust Control Toolbox: Development of controllers using MSO, LSDP and

µ-synthesis strategies, is enabled by calling routines from the Robust Control

Toolbox [166].

• OPTI Toolbox : OPTI is a MATLAB toolbox that provides tools to resolve

optimization problems. OPTI, which provides access to a suite of linear and

non-linear optimizers, through a MEX interface that enables calling the rou-

tines from within MATLAB effortlessly [167], remains a popular toolbox for
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resolving optimization problems among researchers [168–171].

The MATLAB Optimization Toolbox [172], similar to OPTI, is a widely popular

optimization toolbox among researchers. Although it gives access to a number of

optimization routines, fails to provide access to the optimization algorithm, NO-

MAD which is used in this study to form the optimization framework. Hence the

framework, that enables the search for a controller that satisfies both time domain

and frequency domain specifications, is developed using the OPTI toolbox. The

optimization algorithm chosen to resolve the problem- NOMAD [32], is a black-box

optimization routine, that can handle linear and nonlinear constraints while work-

ing with non-convex, derivative free optimization problems [169]. NOMAD uses

the Mesh Adaptive Direct Search Algorithm [173], a direct search routine that uses

non-smooth Calculus developed in [174]. Among various advantages of NOMAD as

mentioned in [175] the global convergence of the solver using search routines such

as Variable Neighborhood Search algorithm [176] among others, enables the solver

to evade settling down at local optima and hence have found to be extremely help-

ful in resolving the optimization problem at hand compared to other solvers. The

following sections examines in detail, each of the different algorithms employed to

design the controller.

4.4 Mixed Sensitivity Optimization

The one degree of freedom negative feedback control system is presented in Fig. 4.2.

Figure 4.2: The one degree of freedom negative feedback control system.

Following the usual naming conventions, we have “r” representing the reference

input, “u” the plant input, “d” the disturbance signal, “y” the plant output, “n”
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the measurement noise and “ym” the measured output. The error signal “e” is

defined as the difference between the actual output and the reference signal (in

contrast to measured output “ym” and reference signal), i.e. e = y − r.

From analysing Fig. 4.2 the following expressions can be derived:

y = T r + S Gd d− T n (4.7)

e = −S r + S Gd d− T n (4.8)

u = K S r −K S Gd d−K S n, (4.9)

where we have the sensitivity function S and complementary sensitivity function T

defined as

S =
1

1 +GK
, T =

GK

1 +GK
(4.10)

From eq. (4.7) we can see that, shaping the complementary sensitivity function such

that its magnitude is close to unity around the bandwidth frequencies (in order

for the output to match the reference signal), and rolls down quickly at higher

frequencies (in order to eliminate effects from the noise signal), is important for

resolving the tracking problem.

Similarly, from eq. (4.8), it can be deduced that in order to obtain a small error

signal, the magnitude of the sensitivity function should be small at lower frequencies

to curtail the effect of reference inputs, which generally operate at the lower end of

the frequency spectrum. Alongside this, the magnitude of complementary sensitivity

should be small at high frequencies to curtail the effects of high frequency noise on

the system. This requirement in turn translates to shaping the magnitudes of closed

loop functions S and T in the frequency domain utilizing weights.

4.4.1 The S/T Problem

Mixed sensitivity optimization S/T technique caters exactly to these above stated

requirements. The S/T MSO problem can be developed from the Fig. 4.3.

Figure 4.3: The S/T mixed sensitivity optimization problem
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The objective function of the S/T MSO problem can be stated as to develop a con-

troller that simultaneously stabilizes the closed loop and at the same time minimizes

the H∞ norm of the transfer function between output signal z , [z1 z2]T and the

input signal w. This transfer function can be expressed as the lower fractional linear

transformation, Fl(P, K). The system matrix P is given by:

P =

 wP −wP G
0 wI G

I −G

 (4.11)

where the dashed line, partitions the matrix such that P22 is compatible with K.

Here wP stands for the performance weight and is associated with shaping the sen-

sitivity function S, and wI is the weight associated with complementary sensitivity

function T . The subscript ‘I’ represents the choice of considering the model un-

certainty at inputs, rather than outputs (See section 4.4.2). G represents the plant

model that is required to be controlled. The cost function of the S/T MSO problem

is given by:

γ =

∥∥∥∥∥wPSwIT

∥∥∥∥∥
∞

, max
ω

√
|wPS|2 + |wIT |2 (4.12)

Designing the weights play an important role in obtaining a controller that is ro-

bust against model uncertainty. Although there are guidelines that can be followed

while developing these weights (such that they shape the closed loop functions as

required), in general a significant amount of fine tuning, that involves trial and error,

is generally required to reach a satisfactory performance [93]. The following section

presents a deterministic general procedure, that standardizes the development of the

frequency weights, alongside the controller that satisfies the design constraints for a

SISO system.

4.4.2 Developing the design weights wI and wP

Developing the weights, as noted in [93], can be formulated into the following prob-

lem. For the given control problem in Fig. 4.3 find W̃ = (wI , wP ) such that

γ(W̃ ) ≤ εγ, (4.13)

and

Φi(W̃ ) ≤ εi, (4.14)

while maintaining design optimality. Here γ(W̃ ) equals the H∞ norm of eq. (4.12).

The vector Φ contains closed loop time domain functionals that are required to be

constrained. These may include, but are not limited to, step response characteristics
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such as rise time, settling time or peak overshoot. The variables εγ and εi are values

that represent the desired bounds on γ(W̃ ) and Φi(W̃ ) receptively.

The development of W̃ is a two stage process. In the first stage the complementary

sensitivity weight wI is designed such that it captures the model uncertainty. In

stage two, the sensitivity weight wP is designed alongside the controller.

4.4.2.1 Stage 1: Capturing model uncertainty using wI

Model uncertainty can be represented in various forms such as additive, multiplica-

tive, inverse additive, and inverse multiplicative uncertainty. Uncertainty can also

be classified based on its location being either at the input of the plant or at its

outputs. The type of uncertainty can be chosen depending on the application and

the plant model. In this study, we have chosen the uncertainty to be multiplicative

input uncertainty, which gives the perturbed plant model Gp = G(1 +wI∆), where

the subscript ‘p’ stands for ‘perturbed’ and ‘I ’ indicates that the perturbations taken

into account are present at the input of the plant. This is depicted in Fig. 4.4.

Figure 4.4: Multiplicative input uncertainty.

Here ∆ represents any stable transfer functions with a magnitude less than or equal

to 1 over all frequencies, i.e. |∆(jω)| ≤ 1∀ω. To develop wI we first calculate lI at

each frequency as below:

lI(ω) = max
Gp∈

∏
∣∣∣∣GP (jω)−G(jω)

G(jω)

∣∣∣∣ (4.15)

The complementary sensitivity weight is then selected such that |wI(jω)| ≥ lI(jω)∀ω.

Here
∏

represents the set of all possible plants developed using the uncertainty de-

scriptions in Table 3.2. The designed weights are required to be stable, minimum

phase, real and rational transfer functions.

4.4.2.2 Stage 2: Developing wP alongside the controller

The sensitivity weight wP as seen in Fig.4.3 affects the outputs and hence the per-

formance of the closed loop. Here the subscript ‘P’ stands for performance. The
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sensitivity weight needs to be parametrised as below, before the algorithm that

resolves the non-linear optimization problem can be applied,

wP =
w1(s+ w2)

s+ w3

. (4.16)

The initial values of the scalar parameters w1, w2 and w3 are chosen such that w2

>w3 as wP in most applications is chosen to be a high pass filter. Note that other

choices are also possible here for the format of wP (see equation 4.18). A crucial step

in obtaining a successful convergence for the optimization problem while satisfying

the constraints and resolving optimality, is the design of an efficient cost function.

This is explained in the next section.

4.4.3 Choice of the cost function, J .

The proposed cost function J , which is a function of the controller K and design

weight W̃ is given by

J (K, W̃ ) = W1 · γ︸ ︷︷ ︸
J1 - Robustness

+ W2 · ITSE +W3 · Ju︸ ︷︷ ︸
J2 - Optimality

+ W4 · order(K)︸ ︷︷ ︸
J3 - Implementation cost

(4.17)

The cost function has the three different parts of it. These are listed below:

1. J1 - The first part is a function that reflects a penalty on the lack of robustness

of the design which can take different forms. In this section this is represented

by γ, the MSO frequency domain cost function that represents H∞ norms of

closed loop functionals, multiplied by a weight. Hence J1 = W1 · γ

2. J2 - The second part is concerned with the optimality of the designed con-

troller. This can be function that puts a penalty on tracking error and input

usage. It is defined as J2 = W2 · ITSE + W3 · Ju, where ITSE indicates

the Integral Time Square Error, while Ju represents the area under the input

curve, which acts as a handle towards limiting the input usage.

3. J3 - The third part is an optional part which penalizes the cost of imple-

mentation of the controller. Robust controllers in general require large orders

which causes difficulties in implementation and usually requires an extra step

of model reduction. A penalty on the order of the controller thus helps to

penalize this implementation cost. Hence this third part is defined as J3 =

W4 · order(K).
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4.4.4 Algorithm to develop the Controller

Now that the cost function is defined, the constrained nonlinear optimization prob-

lem to develop the controller and the sensitivity weight can be formulated. Al-

gorithm #1 gives the procedure to develop the sensitivity weight alongside the

controller.

Algorithm # 1 Sensitivity weight and Controller design procedure for S/T MSO

Inputs: Plant model G, design constraints, model uncertainty estimate.

Outputs: K, wI , wP .

1. Scale the given plant G according to the criteria described in section 3.3

2. Calculate the complementary sensitivity weight wI according to the procedure de-
scribed in section 4.4.2.1.

3. Define the appropriate form of wP (see equation 4.16,) and choose the initial values
of the parameters.

4. Define the cost function J and initializes the weights W1 through W4.

5. Develop the vector Φ which contains the following nonlinear closed loop functionals
1. Maximum overshoot, Mp

2. Rise time, tp
3. Settling time, ts
4. Maximum value of input, umax

5. gamma, γ
Here Mp, tp and ts, the step response characteristics and umax are the time domain
specifications while γ refers to the frequency domain specification.

6. Define the frequency domain bounds εγ and time domain specifications limit vector
ε.

7. Solve the constrained non-linear optimization problem to obtain controller K, along-
side the weights. This is achieved using the OPTI MATLAB toolbox. The black box
optimizer NOMAD is chosen as the optimization routine. Nonlinear constraints are
defined based on εγ and ε for the vector Φ that defines the closed loop functionals.

8. Depending on robustness requirements, modify the weights W1 through W4 to reach
the required performance levels.

9. If the performance specifications are not met, decrease the % uncertainty considered
while defining wI and relax the bounds defined in step 6 and retry step 7.

Algorithm #1 can be implemented in commercially available software such as

MATLAB that support optimization packages aforementioned. On successful com-

pletion the sensitivity weight wP is obtained alongside the controller. While imple-

menting the algorithm in MATLAB the following points should be noted.

1. During the initial runs, both the time and frequency domain specifications

may need to be relaxed for pragmatic and numerical reasons by the control
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engineer. This gives the optimizer enough leeway to generate search points

and decreases the significance of the parameter initialization. As successful

iterations are completed the specifications can be tightened.

2. The Robust Control Tool box routine mixsyn, is called in step 7 of Algorithm

#1 to develop the MSO controller.

3. The sensitivity weight wP can also be modeled as below:

wP =
(s/M1/n + ω∗B)n

(s+ ω∗BA
1/n)n

(4.18)

with the parameters M , A representing the upper bounds on closed loop sen-

sitivity |S| at higher and lower frequencies respectively, and ω∗B representing

the bandwidth frequency. This format is usually used by control engineers

while designing the weight by trial and error. As an alternative, the three

parameters can also be searched for using Algorithm #1. The parameter n,

which takes integer values, can be initialized with unity. If higher performance

is required (for example, if we may need a steeper slope for the sensitivity, or

the loop function below the bandwidth), its value can be increased.

4. ITSE has been used in step 4 while framing the cost function. Compared

to the various other error performance indices namely IAE (Integral Absolute

Error), ITAE (Integral Time Absolute) and ISE (Integral Square Error), ITSE

has been found to facilitate the fastest convergence for the problem at hand.

Based on Algorithm #1 a simple graphical depiction of the inner and the outer

framework is represeted in Fig. 4.5. The darker shade of white represents the outer

framework and the H∞ problem form the inner framework.

The optimizer NOMAD is implemented in the outer framework encapsulating the

H∞ problem. Inside the outer framework the H∞ problem is run continuously

several times until a convergence to the global minimum of the cost function is

reached. In case the optimizer failure to converge the acceptable limits of the model

uncertianty might need to be revisited before the optimization problem can be rerun.

This generic graphical depiction will be used a basis for development of all the other

algorithms (related to the other branches of robust control) going forward.

Once the controllers are developed, the performance can be measured both in the

frequency and time domain. The performance criteria is explained in the following

subsection.
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Figure 4.5: Graphical representation of the inner and outer framework of the control
problem.

4.4.5 Performance Analysis Criteria

Following the procedures listed in 4.4.2, the effectiveness of the controller can be

measured in both the frequency and time domain. In the frequency domain the

performance criteria in the Table 4.1 can be used to analyse the closed loop stability.

Table 4.1: Performance Criteria

Performance Criteria Necessary Constraint

Nominal Stability Closed loop nominally stable

Nominal Performance |wPS| < 1; ∀ω

Robust Stability |wIT | < 1; ∀ω

Robust Performance (|wPS|+ |wIT |) < 1; ∀ω
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The nominal performance, robust stability and robust performance criteria are de-

veloped by measuring the distance of the closed loop of the nominal plant and

uncertain model, from -1 in the Nyquist plot (for details refer Ch. 7, [118]).

To assess the time domain performance, step response characteristics of the nominal

nonlinear plant can be analyzed. The step response of the extreme plants can also

be plotted to check whether the response settles down towards the reference values.

The extreme plants are generated using parameters at the vertices of the hypercube

formed using values from Table 3.2.

This brings us to the end of the design procedure of MSO controllers. In the following

section controllers are developed using this procedure, for attitude-altitude rate

tracking control of the quadrotor, and performances are analyzed.

4.4.6 A Quadrotor Control Application

The controllers developed using the theory discussed in section 4.4, are presented in

this section. A controller is developed for each of the four SISO loops described in

section 4.2.

The design specifications for each loop of the quadrotor presented in section 3.5

are utilized to develop the optimization problem which forms the outer framework

that designs the controller alongside the sensitivity weight wP . The development of

the complementary sensitivity weights wI , and sensitivity weights wP are presented

next, followed by the controllers and the performance analysis. Parametric uncer-

tainty based on values from Table 3.2 is considered as the only source of uncertainty

for plants present in the uncertain plant array
∏

. This helps to keep the design

problem simple during this initial phase of design. Non-linearities and time delay

uncertainties will be discussed later in Chapter 5 where MIMO controllers will be

presented.

4.4.6.1 The Complementary Sensitivity weight (wI)

The complementary sensitivity weight wI developed based on eq. (4.15) is presented

in Fig. 4.6. The relative error lI(jω), given by

lI(jω) =
GP (jω)−G(jω)

G(jω)
, (4.19)

is calculated for all the uncertain plants in
∏

. The light blue contours represent

this relative error lI(jω), while the red line represents wI (refer to section 4.4.2.1 for
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details).

Figure 4.6: Bode magnitude plots of multiplicative input uncertainty and relative
error between uncertain and nominal plant (Note wI,11 = wI,22).

Since the SISO nominal model from input u1 to roll rate y1 is exactly the same as

that from input u2 to pitch rate y2, the model uncertainty for both SISO models are

captured by the same weight.

The individual weights wI,jk designed for the uncertain plant Gp = G(1 + wI,jk∆),

where j and k represents the corresponding inputs and outputs clearly satisfies the

requirement |wI(jω)| ≥ lI(jω) as seen from the plots (as the red line in the plot

always falls above the blue lines of the density plot).

The developed weights are given below:

wI,11 = wI,22 =
0.4393s+ 0.4374

s+ 0.9954
,

wI,33 =
1.209s+ 1.204

s+ 0.9954
, wI,44 =

0.9692s+ 0.965

s+ 0.9954
.

(4.20)

4.4.6.2 Optimization Problem

Using both designs specification presented in section 3.5 as well as based on per-

formance requirements given in Table 4.1, the following Optimization problem is

constructed.

For a scaled unit step reference input, minimize J (K, W̃ ) =
∑4

k=1 Jk (see eq. (4.17))

subject to nonlinear constraints in Table 4.2 (developed based on the design speci-
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fications listed in section 3.5).

Table 4.2: Nonlinear Constraints of the optimization problem

Nonlinear

Constraints

Roll &

Pitch Rate

Yaw

Rate

Altitude

Rate

Closed loop %

Overshoot
≤ 5 ≤ 5 ≤ 20

Closed loop Rise

Time (s)
≤ 0.1 ≤ 0.1 ≤ 0.3

Closed loop

Settling Time (s)
≤ 0.25 ≤ 0.3 ≤ 1.25

Control effort

|u(t)|
≤ 1 ≤ 1 ≤ 1

γ ≤ 1 ≤ 1 ≤ 1

where γ is the stacked mixed H∞ MSO cost function (see eq. (4.12)).

The upper and lower bounds for parameters forming the sensitivity weight of the

optimization problem arise primarily from the structure of eq. (4.16) where, we begin

the design search with initial state of w2 ≥ w3. The bounds for the variables must

be such that the transfer function developed is stable and proper.

The optimization problem formed as a result is utilized in the development of the

outer frame work using which the sensitivity weight and subsequently the controller

is designed.

4.4.6.3 The Sensitivity weight (wP )

The sensitivity weights developed using the framework presented in Algorithm #1,

are listed below:

wP,11 = wP,22 = 0.8861
s+ 32.6141

s+ 0.7366

wP,33 = 0.0378
s+ 174.7582

s+ 0.4198
, wP,44 = 0.538

s+ 1.9591

s+ 0.006676

(4.21)

The time and frequency domain specifications obtained are presented in Table 4.3
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Table 4.3: Time response characteristics and frequency domain specification of the
linear closed loop model.

Closed Loop

Constraints

Roll & Pitch

Rate controller

Yaw Rate

controller

Altitude

Controller

% Overshoot 5.000 0 3.294

Rise Time (s) 0.025 0.055 0.206

Settling Time (s) 0.250 0.120 1.135

umax 0.418 0.712 1.000

γ 0.893 1.221 0.979

The normalized reference signal employed to generate the response has a step size

of unity. Apart from controller design for the yaw rate loop we have successful

controller designs, i.e, convergence of the optimizer for roll, pitch and altitude rate

loops. From the step response characteristics obtained from the initial runs, we

could see that the roll and pitch controller induces an overshoot of 5.00% of the

reference step input, and that of around 3.29% in the altitude rate loop. We have

the maximum control effort umax, (normalized to unity) for roll, pitch and altitude

rate loops within the desired limit of ≤ 1.

In the case of the controller of the yaw rate loop, the optimizer failed to converge.

The best possible result with the least number of constraint violations as obtained by

NOMAD, are presented in the second column of Table 4.3. The constraint violation

results from the frequency specification γ (the cost function from eq. (4.12)), of the

yaw rate loop exceeding 1, which is not desirable and needs to be addressed.

To address the issue with the yaw controller % uncertainty (Table 3.2) is modified

such that uncertainty in mass is reduced to 40% (from 50%) and the thrust coefficient

ct is reduced to 38% (from 50%). The satisfactory results obtained after tuning are

given in Table 4.4.

Table 4.4: Time and frequency domain specifications after controller tuning.

Closed Loop Functionals Yaw Rate Controller

% Overshoot 1.00

Rise Time (s) 0.05

Settling Time (s) 0.26

umax 0.68

γ 0.926
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The modified sensitivity and complementary sensitivity weights are given below:

wI,33 =
0.9165s+ 0.9126

s+ 0.9954
, wP,33 = 0.0315

s+ 173.1726

s+ 0.4895
(4.22)

Inspecting the tuned results presented in Table 4.4 the following points can be noted:

1. Changing the uncertainty in mass and thrust coefficient affects only the devel-

opment of the yaw controller, this is because, during the development phase,

decoupled loops (in this case the yaw rate loop) are individually considered to

develop the corresponding SISO controller. In the practical setting, this change

can be explained as follows: With the given configuration of the quadrotor (i.e.

the parameters used), when faced with an uncertainty of 50% in mass and that

of 50% in thrust coefficient while robust stability and acceptable performance

can be expected from the roll, pitch and altitude controllers, the performance

of yaw controller might be poor. Subsequently if (say, by the limiting changes

to the payload mass) the uncertainty in mass is limited to 40% and that of the

thrust coefficient to less that 38% (by changing the propeller material) robust

stability and acceptable performance can be guaranteed.

2. The new yaw controller achieves a γ that is less than unity at expense of an

increase in settling time and appearance of a slight overshoot.

The above example demonstrates that the framework can be used effectively to tune

the controller by both making changes to the cost function, as well as by reducing

the model uncertainty captured by the sensitivity weight. The effectiveness of the

controllers are examined in the following sections.

4.4.6.4 Robust stability analysis

The performance criteria presented in Table 4.1 is analyzed in this section. Nominal

stability is guaranteed if closed loop system is nominally stable. The classical closed

loop stability margins, corresponding crossover frequencies and closed loop stability

of the loops are presented in the Table 4.5.

The plant and the controllers are discretized at a frequency of 100 Hz before the

stability analysis is carried out. The sampling frequency was selected as this has

been found to be a reasonable choice, in both academic and commercial environments

[177–180].
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Table 4.5: Classical Stability Margins and Crossover Frequencies

Stability

Margins

Roll & Pitch

Rate Loop
Yaw Rate Loop

Altitude

Rate Loop

Gain Margin

(abs)
2.781 4.206 13.641

GM Frequency

(rad/s)
105.148 84.806 59.816

Phase Margin

(rad)
1.047 1.128 1.293

PM Frequency

(rad/s)
36.285 23.478 7.193

Delay Margin

(s)
0.029 0.048 0.180

DM Frequency

(rad/s)
36.285 23.478 7.193

Closed loop

Stability
Stable Stable Stable

The gain margins of >2 and phase margins of >0.525 rad (30°) as is the case for

the designed controllers is considered acceptable for practical engineering problems.

The delay margin (row 5) gives the maximum amount of delay that can be tolerated

by the pitch/roll rate, yaw rate and the altitude rate loops respectively before they

become unstable.

Having established nominal stability and examined the closed loop stability margins,

nominal performance, robust stability and performance can be assessed. According

to the criteria presented in Table 4.1 the values of |wP S|, |wI T | and |wP S| +

|wI T | should be less than unity at all frequencies for the system to achieve nominal

stability, robust stability and performance. The infinity norms of these weighted

closed loop functionals are given in the next table.

Table 4.6: Robust Stability Analysis

∞-Norm
Roll & Pitch

Rate Loop

Yaw Rate

Loop

Altitude

Rate Loop

‖wP S‖∞ 0.890 0.223 0.611

‖wI T‖∞ 0.431 0.898 0.999

‖(|wP S|+|wI T |)‖∞ 1.213 1.121 1.227
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The values are calculated based on the curves presented in Fig. 4.7. On inspecting

values in the Table 4.6 and Fig. 4.7, it is evident that except for |wP S| + |wI T |,
the weighted sensitivity and complementary sensitivity values fall below unity at

frequencies within the area of interest (which for the quadrotor application is taken to

be within 10−4 rad/s to 104 rad/s, as in this range the dynamics/characteristics of the

plant at steady state, bandwidth and high frequency can be observed comfortably).

This satisfies the criteria for achieving nominal performance and robust stability.

Figure 4.7: Robust stability analysis: Bode magnitude plots of |wP S|, |wI T | and
(|wP S| + |wI T |)

With regards to the robust performance criteria (row 4) in Table 4.1, the following

condition can be taken into account:

max
ω

(|wP S|+|wI T |) ≤
√

2

∥∥∥∥∥∥wPSwIT

∥∥∥∥∥∥
∞

(4.23)
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Refer to [118] pg. 531, for the proof of equation 4.23. This explains the reason

why although the value of γ (i.e. the stacked infinity norm in eq. (4.23)) had

been constrained to be less than one, robust performance criteria is violated (i.e.

‖(|wP S|+|wI T |)‖∞ >1 as seen in row 3, Table 4.6). Nevertheless, since the values

are close to unity, acceptable performance is to be expected.

4.4.6.5 Closed loop bandwidth

The bandwidth ωB can be defined as the range of frequencies over which control is

effective. In terms of closed loop sensitivity this translates to the frequency where

|S(jω)| first crosses 1/
√

2 from below.

(Note: In literature bandwidth definitions have differed slightly among disciplines

of study, chosen mostly from between ωB based on the magnitude of Sensitivity

function, ωc the gain crossover frequency, and ωBT based on the magnitude of Com-

plimentary Sensitivity function.

From the closed loop control system presented in Figure 4.2 and having equations

4.7 to 4.9 derived in terms of S and T , we can see that for tracking performance

calculations, we have

y = T r and e = −S r. (4.24)

For simplicity the disturbance and noise terms are ignored. Without control, we

have T equal to zero and for effective tracking we need the magnitude of T to be

atleast over 1/
√

2 (≈ -3dB), with bandwidth ωBT defined as the highest frequency

at which |T (jω)| crosses 1/
√

2 from above.

While this definition might suffice in most disciplines, in feedback control in certain

cases like that of the inverse response based system presented in [118] (see page.

40), between the the frequency of ωB and ωBT , the phase of T might drop sub-

stantially, even to the point where tracking becomes out of phase, resulting in poor

control performance. Hence when considering complimentary sensitivity to define

bandwidth, both the magnitude and phase of T will need to considered.

On the other hand for good tracking as shown in eq. (4.24), to attain minimal

tracking error, the Sensitivity function should be close to zero. Hence, irrespective

of the phase of S if the magnitude |S|, is close to zero, good performance tracking

can be achieved. Hence for the feedback control problems discussed in this study

we will use the definition of bandwidth ωB based on the Sensitivity function.)

The bandwidths calculated according to this definition is listed in Table 4.7.
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As such we can see that the fastest response in terms better rise times, can be

expected in the roll and pitch rate loops, the yaw rate loop can be expected to

respond a bit slower and the altitude rate would exhibit the slowest response among

the three loops. This is very desirable for a quadrotor as it is the pitch and roll loops

that is mainly responsible for stabilizing the quadrotor against disturbance signals,

while yaw and altitude loops are responsible for way point tracking.

Table 4.7: Closed Loop Bandwidth

Loop ωb (rad/s)

Roll & Pitch Rate 37.6

Yaw Rate 20.2

Altitude Rate 6.125

The values in Table 4.7 are generated from Fig. 4.8. Inspecting the Fig. 4.8 in the

context of eqs. (4.7) to (4.9) the following insights can be derived:

1. The absolute value of sensitivity |S| has small values at low frequencies. This

contributes towards both decreasing the impact of disturbance signals on out-

put, as well as lowering magnitude of error at low frequencies. It also con-

tributes towards decreasing the overall magnitude of the input signal at these

frequencies.

2. Similarly the magnitude of complementary sensitivity |T | has a small mag-

nitude at high frequencies, hence it contributes towards both decreasing the

impact of noise both at the output, as well as in lowering the magnitude of

the overall error signal

3. The loop transfer function L assumes larger magnitudes at low frequencies.

Around bandwidth frequencies, the magnitude rolls down at a constant rate.

The roll off increases further at higher frequencies. The behavior is consis-

tent for all three controllers. This loop shape enables better performance at

lower frequencies in terms of tracking and increased noise reduction at high

frequencies.
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Figure 4.8: Bode magnitude plots of |S|, |T | and |L|

4. The peak values of T (MT ) and S (MS) are as follows:

Table 4.8: Robust Stability Analysis

Roll & Pitch

Rate Loop

Yaw Rate

Loop

Altitude

Rate Loop

MT 1.004 1.132 1.031

MS 1.000 1.000 1.108

The values fall below the typical values of MS = 2 and MT = 1.25, above

which the system would exhibit poor robustness.

5. The |S| and |T | curves exhibit the ‘water-bed’ characteristic (see [118] page

167 for details), which results in a peak for systems with poor robustness.

The tuning procedure has enabled the smoothing out of the peaks over the
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frequency range of interest and hence have produced, almost flat curves, for

all the three closed loops.

Having obtained satisfactory closed loop frequency characteristics, the time domain

characteristics are examined in the next section.

4.4.6.6 Time Domain Response

In this section the time domain response of the nonlinear model controlled by the

developed MSO controller is examined. The section is subdivided into three parts.

In the first part, the nonlinear plant response to a step input is examined and

step response characteristics are calculated. In the second part the response of

a sampled collection of the uncertain plant models with the designed controllers

towards a complex manoeuvre is plotted. Simulations are performed again on the

same uncertain plant models, but this time controlled by set of 4 PID controllers.

Details regarding the responses of both sets of simulations are discussed. In the final

part of the section robust performance of the system is analyzed in the context on

the obtained results.

Throughout the study, reference signals are coloured in shades of grey, output signals

in shades of red, input signals in shades of blue, and disturbance signals in shades

of green.

The response of the non-linear plant subjected to a reference pulse and a square

disturbance input is shown in Fig. 4.9.

In the first part of the analysis, two sets of simulations are conducted. In the

first, set the plant is subjected to a pulse reference setpoint change and a square

wave disturbance input signal. The results from this set of simulations are used to

calculate the step response characteristics of the system.

In the second set, a normally distributed (with zero mean) noise signal, with a

standard deviation equal to 15% of the maximum reference value, is injected at the

output alongside a delay of 1 time sample.
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Figure 4.9: Responses to 1(or 1.25) second long reference pulse and 1.5 second long
disturbance input: Setpoint change of 0.25 rad/s at t = 1 and of -0.25 rad/s at
t = 3, disturbance square wave input of magnitude 0.25 rad/s at t=5 in the Roll
rate loop; setpoint change of 0.25 rad/s at t = 8 and of -0.25 at t = 10, disturbance
square wave input of magnitude, 0.25 rad/s at t = 12 in the Pitch rate loop; setpoint
change of 0.5 rad/s at t = 15 and of -0.5 at t = 17, disturbance square wave input
of magnitude 0.5 rad/s, at t = 19 in the Yaw rate loop; setpoint change of 1.5 m/s
at t = 22 and of -1.5 at t = 24.25, disturbance square wave input of magnitude 0.5
m/s at t = 26.5 in the Altitude rate loop.

In the input signals presented in Figure 4.10, the dark blue curve represents the

signals in the loop where noise and delays are absent while the light blue curve

represents the case where noise and delay signals are present in the loop. The

effects of coupling, i.e. the effect on a particular output channel due to the changes

in other channels, are not presented in Fig.4.9, as these are negligible (see Fig. 4.15

and 4.17 to see the effects in more detail).
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Figure 4.10: Forces exerted by individual motors in response to reference signal

Examining the results from 4.9 and 4.10, the following points can be observed.

1. The nonlinear plant responses (Fig. 4.9) shows acceptable performances both

with regards to reference tracking and disturbance rejection. The acceptability

is assessed from short rise times, marginal peak overshoots and short settling

times. The values of step response characteristics are presented in Table 4.9.

2. The inputs i.e., the forces exerted by the propellers presented in the Fig.

4.10 (dark blue curve) stay within the maximum force that can be exerted

corresponding to the maximum RPM limits designated for the selected motors.

This maximum limit equal to 5.984 N is indicated in the figure by the violet

dashed line.

3. The response towards the same reference inputs and disturbance signal in the

presence of noise signal and time delay is indicated by the orange line in Fig.
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4.9. Acceptable tracking and disturbance rejection is observed. The overshoot

is higher than the case without noise and delay disturbance. In Table 4.5 it

was noted that altitude controller had the largest delay margin. This is evident

in the altitude rate response, which is seen to be the most immune towards

delay and noise injection.

4. In Fig. 4.10 the curve shaded in light blue represents the force exerted by the

individual motors in the presence of delay and the noise signal. The inputs

reach the saturation limit, although they do not affect the plant response

considerably.

5. Further simulations showed that the system remains stable when the delay is

increased to two sample times, although it induces substantial oscillations in

Roll, Pitch and Yaw loops.

In the following section, the step response characteristics are presented.

4.4.6.7 Step Response Characteristics

The step response characteristics are calculated based on the output response pre-

sented in the Fig. 4.9. Before listing down the response characteristics the terms

are briefly defined below:

• Rise Time (tr): The time taken by response signal to move from 10% to 90%

of the stead state final value.

• Settling Time (ts): Time taken for the error, defined as the difference between

the steady state and current value of the signal, to reach and stay below 5%

of the steady state value.

• Settling Maximum/Peak: This is the maximum value of the response once the

signal has risen.

• Peak Time (tp): The time taken for the response to reach the primary peak of

the overshoot.

• % Overshoot: Overshoot is the magnitude of the peak measured from the

steady state value, relative to the the steady state value. It is usually calculated

as a percentage as below:

% Overshoot =
ypeak − yfinal

yfinal

× 100% (4.25)
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where ypeak indicates peak value of the response and yfinal the final steady state

value.

• % Undershoot: The difference between steady state value and the minimum

value that the response signal swings to below its steady state value after it

has risen to its peak (ymin), calculated relative to the steady state value. It is

calculated as a percentage as below:

% Undershoot =
yfinal − ymin

yfinal

× 100% (4.26)

The response characteristics are further presented in Figure 4.11.

Figure 4.11: Response characteristics of the closed loop to a unit step input signal.

The values of these characteristics calculated accordingly are presented in the Table

4.9. (Note: The peak values should be read in the context of the reference signal

applied to the corresponding loops; refer Fig. 4.9.)

Table 4.9: Time and frequency domain specifications after controller tuning

Response

Characteristics

Roll & Pitch

Rate

Yaw

Rate

Altitude

Rate

Rise Time (s) 0.025 0.049 0.206

Settling Time (s) 0.250 0.263 0.989

Peak 0.262 0.505 1.495

Peak Time (s) 0.060 0.100 0.720

% Overshoot 5.000 1.006 3.246

% Undershoot 0.000 0.000 0.061
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Having examined the response characteristics for the nominal plant model, in the

following sections performance plants containing model uncertainty will be exam-

ined.

4.4.6.8 The Parameter Hypercube

The Monte-Carlo simulations will have to be undertaken to check whether the de-

veloped controllers provide adequate stability when plants with model uncertainty

are used instead of the nominal plant. The array of uncertain models are build using

the parameter set at the vertices of the parameter uncertainty hypercube, as well

as using a collection of randomly sampled points from the inside of the uncertain

parameter space.

Figure 4.12: A three dimensional representation of the randomly sampled parameter
hypercube.

This is depicted in Fig.4.12 where for arguments sake, a three dimensional uncertain

parameter space is presented. The three axis represent the magnitude of the 3

parameters ϑ1, ϑ2 and ϑ3 respectively. The yellow dot at the vertices represents the

set of parameters which are used to build the extreme plants, while the red points

are those sets of parameters randomly distributed points within the hyperspace. A

Monte-Carlo analysis of the plant responses are preformed using the parameter sets

from these red dots. The green dot located at the center of the cube represents the

parameter set of the nominal plant.
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A realization of uncertain plant models are generated based on parameter uncer-

tainty definitions examined previously, and each of these models are subjected to

a reference tracking objective. This objective spreads over a length of 15 seconds

in which the first half tracks a simultaneous change in roll, yaw and altitude rates

while in the second half a simultaneous change in pitch, yaw and altitude rates are

tracked. Two sets of simulations are carried out. In the first set robust controllers

are used to generate the responses. In the second set, 4 PID controllers are used to

generate the responses. The PID controllers are employed primarily to perform a

comparison study with the MSO, and the other robust controllers developed further

on.

In total, 256 simulations corresponding to maximum and minimum values of 8 dif-

ferent parameters (dr is replaced by dx and dy corresponding to x-y coordinates of

the rotor with respect to the center of mass, representing the uncertainty in the loca-

tion of the center of mass) are conducted to plot the yellow shaded areas. Similarly

256 simulations are conducted in the Monte-Carlo analysis which uses the uniformly

distributed parameter sets from inside the uncertain parameter hypercube to plot

the red shaded areas. The performance plots are presented in the section after the

following section.

4.4.6.9 PID Controller Setup

The PID controllers are tuned on the nominal plant model using the SIMULINK

PID Tuner [181], a highly regarded, commercial PID tuning software available within

the MATLAB environment.

Figure 4.13: PID Controllers are tuned using the fast and robust tuning settings
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The controllers are tuned to obtain the most ‘robust’ response as well as acceptable

rise times, through out the four individual loops. As seen from Fig.4.13 the tuning

dials are adjusted until the response time is the fastest and no induced oscillatory

responses that develop as the signal rises (the area, indicated by the bigger red circle

in the figure) are present.

The discrete time PID controller takes the Parallel format with a filtered derivative

component. The settings can be observed in Fig. 4.14

Figure 4.14: The PID Controller set-up
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4.4.6.10 Performance Plots

In the output response plots (Fig. 4.15, and 4.17) the reference input command

is marked using dashed black lines. The signals from all the plants formed by the

parameters at the vertices of the uncertainty parameter hypercube are shaded in

yellow while the remaining Monte-Carlo parameter simulations are shaded in red.

In each sub-plot, areas marked in dashed-line boxes are zoomed out. These present

a more detailed view of the responses.

As can be observed, while a square wave is applied towards roll, pitch, and yaw

rate loops, for the altitude rate a filtered square wave is applied. While the roll,

pitch and yaw rate loops are expected to accommodate sharp changes in reference

commands, the altitude rate changes are expected to be more gentler.

Figure 4.15: The response of the MSO based plant with model uncertainty to the
complex manoeuvre reference command. The inserts show zoomed out plots of the
dynamics.
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The responses to the reference commands by the system controlled by the MSO

controller are presented in Fig.4.15. It can be noted that red bands (performances

of the plants from within the parameter hypercube) are always inside the yellow

bands (performances of the plants from the vertices of the hypercube)

Fig.4.16 presents the input trends of the uncertain plants. The signals represent the

forces exerted by the individual motors as the simulation progresses. The inputs

to those plants at the vertices of the uncertain parameter hypercube are shaded in

light blue while to those models used for the Monte-Carlo analysis are shaded in

Navy blue. The dashed light blue lines indicates the maximum and minimum limits

of the forces that can be exerted by individual motors.

Figure 4.16: MSO controlled plant rotor responses to the complex manoeuvre ref-
erence signal.

In Fig.4.17 the responses to the same reference input by the uncertain plants con-

trolled by the PID controller are presented for comparison. The zoomed portions
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marked by the dashed boxes in both Figures 4.15 and 4.17 represent the same areas

measured in the time and the corresponding output axis.

Figure 4.17: The response of the PID based plant with model uncertainty to the
complex manoeuvre reference command (compare with Fig.4.15).

Fig. 4.18 presents the corresponding inputs to the PID controlled uncertain plants.

Comparing the response and input signals generated by the MSO and PID controlled

plants, the following points can be noted.

• The output response towards the step signals (i.e. in the roll, pitch and yaw

rate loops) indicate that the PID controlled Loop (PCL), although tuned to

provide the fastest response, produces a slower response compared to the MSO

Controlled Loop (MCL). The spread of the output signals in that of the PID

loop although remain smaller, this comes at the expense of the slower response.

Tuning the PID controller to be any more faster would induce oscillations.
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Figure 4.18: PID controlled plant rotor responses to the complex manoeuvre refer-
ence signal (compare with Fig.4.16).

• In MCL, except for the yaw response (where one can observe gentle oscilla-

tions), the uncertain plant models from the hypercube vertices do not produce

oscillatory responses. While in PCL careful examination reveals gentle oscil-

latory responses, which can be observed in pitch and roll and yaw rate loops,

for the extreme plants.

• The differences in the altitude rate responses seen between MCL and the PCL

are the most significant. The spread observed in PCL are significantly smaller.

To understand the reason behind this difference in performance we need to

compare the motor inputs from both cases

It can be observed that in PCL, the inputs exact an extremely fast motor input

change (extremely small motor start-up time). In the real world, extremely

fast changes in motor RPM are not desirable both due to the difficultly in

achieving it and due to maintenance related reasons.
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Interesting performance characteristics are observed when the systems are

tested with an input that changes slowly. To simulate this situation, a low

pass filter is introduced with response characteristics similar to that of a first

order system. As the filter cut-off frequency is decreased the PCL begins to

exhibit greater input oscillations, taller input usage spikes and ultimately be-

comes unstable. While MCL, maintains stability to a greater extent while

exhibiting smaller input oscillations and shorter usage spikes.

• The characteristic bulge observed at the start of the altitude rate responses of

both PCL and MCL are brought about by the variation of mass. A ± 40%

variation of mass is incorporated into the model uncertainty and the altitude

rate changes at the start to compensate for this change. This also accounts for

the spread in inputs, as when mass increases, in order to maintain the altitude

a higher RPM is exacted, and vice versa.

• Saturation of inputs that occur in PCL (Fig. 4.18), magnifies the effects of

the inherent coupling between loops, which can be observed in roll and pitch

rates as spikes. From the inputs plots, compared to the MCL, it can be seen

that PCL tracks the reference command at the expense of inputs which are

larger in magnitude.

• Careful examination reveals gentle oscillations in all four inputs signals in the

PCL response (Fig. 4.18), while in MCL inputs are oscillation free.

Summing up, compared to PCL the MSL provides a crisper attitude rate and a

reliable altitude rate response (as opposed to a sluggish response) alongside input

demands that are cheaper as well as oscillation free. Hence the claim that, if the

uncertainty in the plant model can be quantified a dedicated robust controller would

perform better than its PID counterpart, can be made. Having analysed the robust

performance (RP) of the system in the time domain the next section examines the

RP characteristics from the frequency domain.

4.4.6.11 Robust Performance Analysis

Having calculated the H∞ norm of the weighted sensitivity, complementary sensi-

tivity functions and their sum in Table 4.6, we had observed that the loops failed

to achieve strict robust performance. In light of this earlier observation, the values

in Table 4.10 provides limits for the uncertainty that would guarantee robust per-

formance. (Note: MATLAB commands robgain or robustperf which is an earlier

version, can be used to calculate the robust performance margins.)
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Table 4.10: Robust Performance Analysis

Loops
Roll & Pitch

Rate Loop

Yaw Rate

Loop

Altitude

Rate Loop

Uncertainty upper

bound
0.825 0.892 0.815

Critical frequency

(rad/s)
0.0013 0.1737 4.8143

From the calculated values, it can inferred that the uncertainty in roll and pitch rate

loops needs to be lowered to a level of 82.5% of its current value at steady state,

(frequency of 0.00133 rad/s) to achieve robust performance. For the yaw rate loop

model uncertainty at a frequency of 0.17 rad/s should be lowered to 89% of the

current value to achieve robust performance. Similarly at a frequency of 4.814 rad/s

the model uncertainty in altitude rate loop should be lowered to 81.5% of the current

value to achieve RP. The table also points towards the limitations of the stacked

S/T MSO technique as the algorithms available currently in commercial software

do not develop controllers that can guarantee RP although brings the system quite

close to guaranteed RP (as mentioned earlier in eq. (4.23)).

This brings us to the end of the design procedure using mixed sensitivity optimiza-

tion strategy. In the following section Loop Shaping Design Procedure (LSDP) will

be explained and controllers for the quadrotor will be designed and analysed.

4.5 Loop Shaping Design Procedure

In MSO, we had designed frequency weights that depended on the parametric model

uncertainty of the problem. LSDP eliminates this problem-specific uncertainty rep-

resentation, by using a generalized co-prime factor uncertainty [182, 183]. Loop

Shaping Design Procedure essentially combines the classical loop shaping strate-

gies for shaping the frequency response of open-loop plant, with the H∞ robust

stabilization.

Coprime factor uncertainty evolved from coprime factor representation of the plant

model. It involves factorising the plant model G as follows:

G(s) = Ml
−1(s)Nl(s) (4.27)

where the subscript l stands for left-coprime factorization and M and N are stable
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and coprime transfer functions. The stability condition requires that all right half

plane poles of G(s), would be contained in Ml(s) as RHP zeros, and the RHP zeros

of G(s) will be contained in Nl(s). Coprimeness on the other hand requires that,

while there exist stable transfer functions Ul(s) and Vl(s), Ml and Nl satisfy the

Bezout identity:

Nl Ul +Ml Vl = I. (4.28)

This form of representation allows for both poles and zeros to cross over to RHP

and hence enable the representation of an unstable transfer function, as two stable

transfer functions. The perturbed plant model Gp can now be expressed as follows:

Gp(s) = (Ml + ∆M)−1(Nl + ∆N). (4.29)

where ∆M and ∆N represents unknown stable transfer functions representing addi-

tive uncertainty in coprime factors. The perturbed plant is shown in Fig. 4.19

Figure 4.19: Coprime factorisation of the perturbed plant

In the next section the controllers based on the 1 and 2 Degree of Freedom designs of

the LSDP will examined. Similar to the MSO development, the important concepts

of each of these design procedures will be briefly introduced. For detailed analysis

of development of the LSDP controllers, refer [184].

4.6 1 DOF LSDP

As noted in Fig. 4.19, in the co-prime factor representation of the uncertain plant,

the perturbations carry no weights. The magnitude of these uncertainty represen-

tations in the perturbed plant Gp(s) (eq. (4.29)) are such that ||[∆M ∆N ]||∞ ≤ ε.

Here ε >0 is the stability margin of the system. The system attains robust stability

if and only if the controller stabilizes the nominal feedback loop and achieves the
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following:

γK ,

∥∥∥∥∥∥
K
I

 (I −GK)−1M−1

∥∥∥∥∥∥
∞

≤ 1

ε
. (4.30)

Such a controller will stabilize all the plants in the family of perturbed plant Gp. The

cost function γK represents the H∞ norm from ϕ to [u y]T . With this arrangement,

as observed in [182], the smallest magnitude of the cost function γmin is given by:

γmin =
1

εmax

=

√
1− ‖[N M ]‖2

H =
√

1 + ρS(X Z), (4.31)

where ‖·‖H represents the Hankel norm and ρS the spectral radius. For a minimally

realized plant G (with the state space matrices A, B, C and D) Z is the unique

positive solution to the Generalized Control Algebraic Ricatti Equation (GCARE)

(A−BS−1DTC)Z + Z(A−BS−1DTC)T − ZCTR−1CZ +BS−1BT = 0 (4.32)

where R = I + DDT and S = I + DTD. X is the unique positive definite solution

to the Generalized Filter Algebraic Riccati Equation (GFARE):

(A−BS−1DTC)X + Z(A−BS−1DTC)T −XBS−1BTX + CTR−1C = 0 (4.33)

For practical problems a γ >γmin is used to calculate the controller. For such a γ,

the controller that satisfies∥∥∥∥∥∥
K
I

 (I −GK)−1M−1

∥∥∥∥∥∥
∞

≤ γ (4.34)

is given by :

K =

 A+BF + γ2(LT )−1ZCT (C +DF ) γ2(LT )−1ZCT

BTX −DT

 (4.35)

where
F = −S−1(DTC) +BTX, and

L = (1− γ2)I +XZ.
(4.36)

Although γmin can be calculated without the usual γ-iteration procedure by resolv-

ing eq. (4.32) and eq. (4.33) (use icare in MATLAB), the subsequent controller

implementation runs into problems as L (see eq. (4.36)) turns singular when γ =

γmin, hence the choice of a sub-optimal γ.

In the traditional LSDP development, there are three main steps:
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1. The open loop singular values of the nominal plant are shaped using pre and

post compensators. The desired loop shape would encompass the open loop

bandwidth requirements, as well as the usual loop gain requirements of higher

gain at lower frequencies for reference tracking, and lower gain at the high

frequencies for disturbance and noise rejection.

2. The shaped plant denoted by GS = W2GW1 (see section 4.6.1) is then stabi-

lized according to steps mentioned earlier using the controller K.

3. The feedback controller is developed by augmenting K with the designed pre

and post compensators as Kfinal = W1KW2.

The controller implementation can also take the form presented in Fig. 4.20 in

contrast to the general format of Fig. 4.2, as in this format that the controller

doesn’t directly get excited from reference inputs.

Figure 4.20: 1-DOF LSDP alternate implementation format

The reference pre-filter KP ensures that the steady state error is zero. In this

approach, to reach satisfactory weight designs alongside the controller development,

trial and error procedures are employed as recommended in [185] and [186]. It is

also common to use the weights based on a initial controller design as seen in [187],

where the weights are designed for a LQG based controller and further reused for

the H∞ controller.

In the algorithm presented in this section, steps 1 and 2 are combined to a single

step. An outer framework (similar to Algorithm #1 in MSO on page 55) provides

options to provide time domain specification constraints. This, in addition to the

LSDP which defines the frequency domain specifications, provide for both a faster

design in terms of pre and post compensator development, and an optimal controller

in terms of considering tracking error and disturbance rejection.

4.6.1 Design weights W1, W2 and the prefilter KP

The selection of weights W1, W2, and the prefilter KP can be formulated as the

following problem: For the plant configuration presented in Fig. 4.19, find W̃ =

(W1, W2) and KP such that

γ0(W̃ ) ≤ εγ (4.37)
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and

Φk(W̃ ,KP ) ≤ εk (4.38)

alongside the controller K that stabilizes the nominal plant, while maintaining design

optimality. Here γ0(W̃ ) is equal to the infinity norm in eq. (4.34) but for the shaped

plant GS. So γ0(W̃ ) is given by

γ0(W̃ ) =

∥∥∥∥∥∥
W−1

1 K

W2

 (I −GK)−1[W−1
2 GW1]

∥∥∥∥∥∥
∞

(4.39)

where K is the controller that stabilizes the system. Φk(W̃ ,KP ), an element of Φ

= [ Φ1 Φ2 · · ·Φn] represents the closed loop functional required to be constrained.

Similar to the design procedure in MSO vector, Φ contains step response charac-

teristics. Here εγ and εk are the real numbers that represents the desired upper

limits of γ0 and Φk respectively. Development of the weights and the prefilter, first

involves parametrizing them. While KP can take the form of simple scalars, W1 and

W2 takes the form of a transfer function as below:

Wk =
w1(s+ w2)

s+ w3

. (4.40)

Once parameterized, the weights and the prefilter alongside the controller can be de-

veloped using Algorithm #2. The design optimality is ensured by the optimization

problem central to the algorithm.

Algorithm # 2 Weight, prefilter selection and controller design for 1 DOF LSDP

Inputs: Plant model G, design constraints.

Outputs: K, W1, W2, KP .

1. Scale the given plant G according to the criteria described in section 3.3.

2. Define the appropriate form of W1, W2 and KP and choose the initial values of the
parameters.

3. Choose the magnitude of the factor with which γmin needs to be multiplied to obtain
γ

4. Define the cost function J (see eq. (4.17)) and initialize the weights W1 though W4
(see section 4.4.3 for details regarding development of the cost function).

5. Develop the vector Φ which contains the following nonlinear closed loop functionals:
1. Maximum overshoot, Mp

2. Rise time, tp
3. Settling time, ts
4. Maximum value of input, umax
5. Gamma, γ
Here Mp, tp and ts, the step response characteristics and umax are the time domain
specifications, while γ refers to the frequency domain specification.
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6. Define the frequency domain bounds εγ and time domain specifications limit vector
ε.

7. Implement the constrained non-linear optimization problem. This is achieved using
the OPTI MATLAB toolbox. The black box optimizer NOMAD is chosen as the
optimization routine. Nonlinear constraints are defined based on εγ and ε for the
vector Φ that defines the closed loop functionals.

8. Calculate the highest obtainable stability margin 1/γmin. If this value is less than
.25, vary the forms of the weights W1, W2 (see 4.18) as well relax the limits of the
linear constraints and repeat step 7 again.

As in Algorithm #1, the algorithm can be implemented in MATLAB or similar

software which supports the NOMAD optimization package. Successful implementa-

tion produces the weights W1, W2, and KP alongside the controller K. The following

points can be noted while implementing the algorithm in MATLAB:

1. During initial runs, the time and frequency domain constraints can be relaxed.

These can be tightened as successful iterations are completed.

2. Matlab routine ncfsyn (see Page 235 [166]) is called in step 7 to develop the

controller.

3. ITSE has been used in step 4, for developing the cost function. Among the

various error performance indices (IAE, ITAE, ISE, ITSE etc.) ITSE has been

found to facilitate the fastest convergence.

4.6.2 Performance Criteria

Since the coprime factor uncertainty representation isn’t plant specific, the robust

coprime stability margin εmax = 1/γmin is considered as the scale with which the

robustness is assessed. In practical problems if εmax >.25, the designs are considered

successful as noted in [118].

The aforementioned stability margin is also known as the gap metric stability mar-

gin. The gap metric [188] and the ν-gap metric [189, 190] is a criteria used to

measure distance between different plant models based on their difference in closed

loop performance. For both metrics given a controller K and plants G0 and G1 the

following identity holds:

sin−1
(
b(G1, K)

)
≥ sin−1

(
b(G0, K)

)
− sin−1

(
δν(G0, G1)

)
(4.41)

where b(Gk, K) represents the gap metric stability margin and δν represents the

metric criteria. Calculating the stability criteria for a given plant and controller,

86



enables us to calculate the distance (in the metric criteria) of the furthest plant from

the nominal plant, that can be stabilized by the same controller.

The metric always takes a value between 0 and 1 i.e.

0 ≤ δν(G0, G1) ≤ 1 (4.42)

The gap and ν metric criteria will be used to analyse the robustness properties of

the controller. The stability margin will also be used to calculate guaranteed lower

bounds of the classical gain and phase margins given by the following expressions:

GM ≥ 1 + SM

1− SM
PM ≥ 2 sin−1(SM)

(4.43)

where SM represents the gap metric stability margin. For further details regarding

the gap and ν-gap metric criteria including their expressions refer to [191].

This brings us to the end of LSDP 1-DOF controller design procedure. The attitude

and altitude controller designs using this strategy will be explored in the next section.

4.6.3 Attitude-Altitude controllers for a Quadrotor

In this section the development of the LSDP 1 DOF controllers for the attitude and

altitude tracking of the quadrotor model from section 4.2 will be examined. The

section is composed of different parts. In the first part the loop shaping weights

and the values of the precompensator are presented. The loops shapes alongside the

sensitivity and complementary sensitivity are examined next following which the

closed loop bandwidth and the classical stability margins will be presented.

In the final parts of the section, the nonlinear responses, responses of the uncertain

plant model, and robustness of the closed loop will be examined.

4.6.3.1 Optimization Problem

The optimization problem for development of the loop shaping weights is exactly

the same as that presented in section 4.4.6.2 except for the parameters searched and

constraint limits of γ0 (eq. (4.37)). The total number of parameters that need to be

determined equals 7 (in contrast to three — w1, w2, w3, for MSO controller), these

being 3 parameters each for W1 and W2 (equation 4.40), and one parameter that

constitutes KP . The constraints for γ0 are set as 4 as an upper bound and 0.25 as

87



a lower bound.

4.6.3.2 The Designed Loop Shaping Weights and the prefilter

The weights developed to shape the open loop, i.e, W1, W2 and the prefilter KP for

the attitude-altitude controllers are listed below:

Roll and pitch rate:

W1 = 110.4597
s+ 48.8819

s+ 91.8782
, W2 = 0.0022

s+ 34.2769

s+ 16.3131
KP = 0.9802 (4.44)

Yaw rate:

W1 = 100
s+ 40.1646

s+ 27.8011
, W2 = 0.0045

s+ 18.4082

s+ 16.0159
KP = 0.9800 (4.45)

Altitude rate:

W1 = 218.0153
s+ 30.1754

s+ 96.9799
, W2 = 0.0012

s+ 48.4101

s+ 6.9793
KP = 0.9820 (4.46)

The controllers themselves are presented in Appendix D.1. The time and frequency

domain specifications of the modified closed loop of the linearised plant are given in

the following table:

Table 4.11: Time response characteristics and frequency domain specification of the
linear closed loop model

Closed Loop

Constraints

Roll & Pitch

Rate controller

Yaw Rate

controller

Altitude

Controller

% Overshoot 0.528 0.985 19.495

Rise Time (s) 0.050 0.046 0.250

Settling Time (s) 0.079 0.068 1.171

umax 0.490 1.000 1.000

γmin 1.441 1.509 1.629

The cost function γmin is multiplied with a factor of 1.1 to generate γ which is used

to develop the controller using eq. (4.35). The normalized reference signal of unit

magnitude is employed to generate the step responses. Having presented the loop

shaping weights and the step response characteristics of the linearised model, in the

next sub section the stability specifications of the loops are analyzed.
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4.6.3.3 Classical Stability Margins and Nominal Stability

The classical stability margins from analyzing the shaped loops are presented in the

following table. The nominal plant as well as the controller, are discretized at a

frequency of 100 Hz (sample time of 0.01s).

Table 4.12: Classical Stability Margins and Crossover Frequencies

Stability

Margins

Roll & Pitch

Rate Loop
Yaw Rate Loop

Altitude

Rate Loop

GainMargin

(abs)
4.700 6.274 33.051

GM Frequency

(rad/s)
312.15 311.8 314.159

PhaseMargin

(rad)
1.369 1.274 1.043

PM Frequency

(rad/s)
36.986 35.334 5.557

DelayMargin

(s)
0.037 0.036 0.188

DM Frequency

(rad/s)
36.986 35.334 5.557

Closed loop

Stability
Stable Stable Stable

Achievement of acceptable gain and phase margins (GM >2 and PM >30° ) for

all the three shaped loops can be observed from Table 4.12. The gain crossover

frequencies for the three loops are close to approximately close to 313 rad/s.

The delay margin proves a safety of 0.037 s, 0.036 s and 0.188 s for the roll and

pitch, yaw loops and altitude loop respectively. By analysing the Nyquist plot the

loops are also found to be nominally stable. The closed loop bandwidths are further

examined in the next section.

4.6.3.4 Closed Loop Bandwidth

The closed loop bandwidth as defined in section 4.4.6.5 for the loops is presented

in Table 4.13. It can be noted that the altitude controller has a smaller bandwidth

which should hence reflect in a longer step response rise time.
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Table 4.13: Closed Loop Bandwidth

Loops ωb (rad/s)

Roll & Pitch Rate 36.92

Yaw Rate 31.75

Altitude Rate 3.82

Figure 4.21: LSDP 1-DOF based plant: Bode magnitude plots of |S|, |T | and |L|

The values in Table 4.13 are arrived from the Fig. 4.21. Similar to the MSO

controllers developed earlier, the LSDP controllers also managed to smooth out the

peaks of |S| and |T |, ensuring better robustness against uncertainties.

The nature of curves in Fig. 4.21 resemble those from Fig. 4.8. The magnitude

of |S| remain low at low frequencies up to around closed loop bandwidth frequency

90



ωB after which it plateaus around unity. The magnitude of |T | on the other hand

remain constant around unity at low frequencies and starts falling after ωB along-

side the loop transfer function. At lower frequencies the magnitude of loop shape

remains high. The implications of these curves have been discussed previously in

section 4.4.6.5 so will not be repeated here.

The peak values of |T | and |S| which provides insights into the robustness properties

are presented in Table 4.14. As mentioned earlier, the peaks of |T | and |S| that

usually characterize the ”water-bed” formation have been smoothed out, and this

results in the values of MT and MS falling below the stipulated values (of MT <1.25

and MS <2).

Table 4.14: Robust Stability Analysis

Roll & Pitch

Rate Loop

Yaw Rate

Loop

Altitude

Rate Loop

MT 1.000 1.000 1.230

MS 1.000 1.000 1.067

Having analysed characteristics of some of the closed loop transfer functions, we will

now see how these translate to their responses in time domain.

4.6.3.5 Time Domain Response

The discussions on the time domain response of the nonlinear plant are presented in

two parts. In the first part the nominal nonlinear plant is subjected to step response.

The responses as well as the force generated by each propeller (the inputs), as a

response to the controller outputs are analyzed. In the second part of the study the

same complex manoeuvre used in analyzing MSO controller (see section 4.4.6.6), is

used to study the effect of plants with uncertainty in the parameters in order to

replicate an actual drone trajectory.

(Note: The amount of noise injected into the simulation may differ with different

controllers for example MSO, LSDP 1 DoF etc., in sections where the controller

development is presented. The quantity of noise would depend on the amount each

individual controller can accommodate without inducing instability or deterioration

in performance. Disturbances that are equal in magnitude will be introduced in the

Performance Comparison section (see section 4.9) where comparisons between the

various developed controllers are presented.)
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Figure 4.22: Step response of the nominal LSDP 1-DOF controlled plant.

In Fig. 4.22 the response towards square pulse input signals to the plant are pre-

sented. The input as well as the disturbance signals have been decoupled in time in

order for the responses of each loop and the effects of others on it, to be analysed

independently. Fig. 4.23 shows the forces generated by each propeller.

Two sets of simulations are conducted. In the first set the nominal plant is subjected

to a noise and delay free input signal. In the second set a delay of two samples are

introduced at the output and a zero mean noise signal, with a standard deviation

of 15% of the maximum value of the reference input is injected at the output. The

Signal-to-Noise Ratio (SNR) of the measured output signals are calculated in to be

17.284 dB, 17.374 dB, 17.473 dB and 12.799 dB in the roll, pitch, yaw and altitude

rate loops respectively.
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Figure 4.23: Forces exerted by individual motors in response to reference signal

Examining the figures the following points can be noted :

1. Acceptable performances in terms of short rise times, acceptable settling times

and peak overshoots can be observed in all the four loops for the case of

the delay and noise free model response. The step response characteristics

calculated based on this response signals are presented in Table 4.15.

2. The case where a delay as well as a noise signal is present, oscillations arising

primarily due to the presence of the delay block can be observed except for

in the altitude rate loop. The altitude rate loop which had the largest delay

margin of 13 time samples remain oscillation free in the face of the introduced

delays.

3. Good immunity to noise signals (even with low SNRs) can be observed in the

output responses.
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4. The input forces generated in the second case with the injected noise signal,

reach the upper saturation limits, the effects of which are negligible on the

output response.

5. Subsequent simulations show that the system with a delay of two samples

remain stable even at SNRs of below 10. When the delay in increased to three

samples, roll, pitch and yaw rates show significant oscillations while altitude

rate loop remain oscillation free.

The step response characteristics based on delay and noise free response of the

nonlinear nominal plant presented in Fig. 4.22 are given in Table 4.15. For the

definitions of response specifications see section 4.4.6.7. The peak values listed in

the table should in seen in the context of the maximum values of the reference

signal, being 0.25 rad/s for roll and pitch rate, 0.5 rad/s for yaw rate and 1.5 m/s

for altitude rate.

Table 4.15: Time and frequency domain specifications of the non-linear plant model
after controller design

Response

Characteristics

Roll &

Pitch Rate

Yaw

Rate

Altitude

Rate

Rise Time (s) 0.050 0.046 0.249

Settling Time (s) 0.079 0.068 1.182

Peak 0.251 0.505 1.796

Peak Time (s) 0.120 0.100 0.580

% Overshoot 0.528 0.985 19.740

Undershoot 0.000 0.000 0.000

Having examined the responses of the of the nominal plant, we now analyze the

response towards plants with model uncertainty. In LSDP since the controller is

designed such that it tries to maximize the coprime factor uncertainty limit in

the model that the controller can stabilize effectively, to analyze the robustness

the model uncertainty is increased until the responses being to show oscillatory be-

haviour. These responses are presented in Fig. 4.24 and the forces (inputs) generated

by individual motors as a response to the reference inputs in Fig. 4.25.

The model uncertainty limits employed to generate the plots are given in Table 4.16.

These limits are different from those presented in Table 3.2. And the reason for this

is that depending on the nature of the controller, these limits can be stretched in or-

der to accommodate a greater degree of uncertainty in certain parameter. Modeling

uncertainty that are equal in magnitude will be used in the Performance Compar-
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ison section (see section 4.9), where comparisons between the various developed

controllers are presented.

Table 4.16: The parameter uncertainty limits of the quadrotor used for testing the
controller, with the results presented in Figures 4.24 and 4.25.

Parameters % Uncertainty

IXX , IY Y , IZZ ±50%

m ±50%

dx ±40%

dy ±40%

ct ±50%

cp ±30%

Similar to previous Monte-Carlo plots we have the extreme plants output responses

in Fig. 4.24 coloured in yellow, while the inputs in Fig. 4.25 coloured in light blue.

Figure 4.24: The response of the LSDP 1-DOF based plant with model uncertainty
to the complex manoeuvre reference command.

95



The response of the plants surrounding the nominal plant in the interior of those in

the hypercube (i.e. those with parameters marked in red in Fig. 4.12), are in turn

marked in red in Fig. 4.24 and dark blue in Fig. 4.25. The reference command is

represented by black dashed lines.

Figure 4.25: LSDP 1-DOF controlled plant rotor responses to the complex manoeu-
vre reference signal.

The following points can be noted from the two plots.

• In the output response plot (Fig. 4.24), for the plants within the hypercube,

overshoots are absent in the roll, pitch and yaw rates, while the extreme plant

responses (those at the hyper cube corners) exhibit overshoots, and overshoots

can be observed in altitude rates for all models in general.

• Oscillatory responses are absent in roll, pitch, yaw and altitude rate responses

for the plants within the hypercube. The extreme plant responses exhibit

96



oscillations for the case of roll, pitch and yaw rates. Oscillatory response are

absent in the case of altitude rates for extreme plants.

• Input forces (Fig. 4.25) generated as a response to the reference commands

fall below the saturation limits.

• The fluctuation observed in altitude rates characterized by a blob in the first

couple of seconds of the simulation (as explained earlier is the response of MSO

and PID controlled loops), happens as a response towards the uncertainty in

mass and settles down as the system stabilizes.

Having examined the responses of plants containing model uncertainty in the time

domain, the analysis is now presented as observed from the frequency domain. The

performance criteria explained in section 4.6.2 is used in this analysis.

4.6.3.6 Robustness Analysis

The normalized coprime stability margins calculated for each of the SISO loops

alongside the lower limits of the classical stability margins (SM) and phase margins

(PM) are presented in Table 4.17.

Table 4.17: Coprime stability margin and classical gain & phase margins

Response

Characteristics

Roll &

Pitch Rate

Yaw

Rate

Altitude

Rate

Normalized

Coprime Stability

Margin

0.694 0.663 0.614

Classical SM

Lower Limit
5.537 4.933 4.178

Classical PM

Lower Limit (deg)
87.899 83.039 83.039

The values in the first row gives the limit of uncertainty that the controller can

accommodate in each loop, before the loop becomes unstable. This uncertainty is

measured as the distance between the nominal model and the uncertain model in

the gap metric criterion. Hence the controller K that stabilizes the nominal model

G0, can stabilize an uncertain model Gunc if the following condition holds

δν(G0, Gunc) < b(G0, K) (4.47)
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The normalized coprime stability margins fall in the acceptable range of>0.25, hence

from the point of view of robustness, the controller designs are considered successful.

This brings us to the end of the single degree of freedom LSDP controller design.

In the following section the two degree of freedom LSDP are explored.

98



4.7 Two Degree of Freedom LSDP

The 2-DOF configuration enables providing an additional handle on the model

matching capabilities for the control engineer. When strict model matching be-

comes the primary motive for the controller design the 2DOF LSDP is employed to

design the robust controller [103].

Figure 4.26: Two degrees of freedom H∞ loop shaping design problem

The 2-DOF LSDP problem can be seen in Fig. 4.26. Here Tref is the model that the

engineer is trying to match, while β is the reference input after scaling and ρ∗ (≥
1) takes a value depending on whether preference is given towards model matching

over robustness. Higher values of ρ∗ (generally ρ∗ ≤ 3) put a greater emphasis on

model matching. The subscript in the plant GS = M−1
S NS and in coprime factor

uncertainty uncertainty ∆NS
and ∆MS

indicates the shaped plant GS = GW1.

In the designed controller K = [K1 K2], K1 plays the role of the prefilter while K2

forms the feedback controller. K aims to minimize the H∞ norm of the transfer

function of the signals from
[
rT ϕT

]T
and

[
uT yT eT

]T
. With Gs = [AsBs;CsDS]T

and Tref = [ArBr;CrDr]
T , the system matrix P can be defined as below


us

y

e

β

y

 =



As 0 0 (BSD
T
S + ZSC

T
S )R

−1/2
S BS

0 AR BR 0 0

0 0 0 0 I

CS 0 0 R
−1/2
S DS

ρ∗CS −ρ∗
2
CR −ρ∗

2
DR ρ∗R

−1/2
S ρ∗DS

0 0 ρ∗I 0 0

CS 0 0 R
−1/2
S DS



 r

ϕ

us



(4.48)

Here RS = I + DSD
T
S , SS = I + DT

SDS and ZS can be obtained by solving the
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matrix Riccati equation

(AS −BSS
−1
S DT

SCS)ZS + ZS(AS −BSS
−1
S DT

SCS)T − ZSCSR−1CSZS +BSS
−1
S BT

S = 0

(Refer to [182] and [184], chapter 18, for derivation). The controller K2 aims for

internal robust stability while K1 enables model matching by ensuring

||(I −GK−1
2 GK1 − Tref )||∞ ≤ γρ∗

−2
(4.49)

To eliminate the steady state error and thereby match the closed loop to the reference

model Tref , the reference signals can be scaled by Wi, a constant. This alongside

the plant shaping weight W1, and the model matching factor ρ∗, can be generated

using the Algorithm #3 explained in section 4.7.1.

In the traditional design procedure, once form and values of parameters of the

weights are decided the H∞ controller is obtained through γ iterations. After com-

pletion of the design of the controller K ([K1 K2]), the controller-plant system is

implemented as shown in Fig. 4.27

Figure 4.27: Two degree of freedom LSDP controller implementation

As shown in the figure 4.27, both the precompensator and pre filter is incorporated

into the controller structure in the implementation phase.

In this study the three quantities Wi, W1 and ρ∗ are designed with the help of

an outer frame work that works towards satisfying the time domain specifications

required from the controller. The development of these weights are discussed in the

next section.

4.7.1 Choosing the design weight W1, prefilter Wi and model

matching parameter ρ∗

Similar to selection of weights described in section 4.6.1, the selection of the design

weight W1, the prefilter Wi and model matching parameter ρ∗ can be formulated

into the following problem.
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For the plant configuration presented in Fig. 4.26 find W̃ = (W1, Wi) and ρ∗ such

that

γ(W̃ , ρ∗) ≤ εγ (4.50)

and

Φk(W̃ , ρ∗) ≤ εk (4.51)

alongside the controller K that stabilizes the nominal plant, while maintaining design

optimality. Here γ is H∞ norm of the matrix P from equation 4.48. If required,

one can also constrain γmin from equation 4.31 such that it is ≤ 4. In this study

this is not considered as it has been observed that sufficiently minimizing H∞ of

P, limits the normalized co-prime stability margins to be ≥ 0.25. Φk represent the

closed loop functional required to be constrained. εγ and εk are real numbers that

represents the limits for γ and Φk respectively.

The prefilter Wi and the ρ∗ are simple scalars while W1, once again takes the form

of a transfer function as below:

W1 =
w1(s+ w2)

s+ w3

(4.52)

The parametrised weights can now be developed using Algorithm #3. The opti-

mization problem central to the algorithm maintains the design optimality.

Algorithm # 3 Weight, prefilter, model matching parameter selection and con-
troller design for a 2 DOF LSDP

Inputs: Plant model G, design constraints.

Outputs: K, W1, Wi, ρ∗.

1. Scale the given plant G according to the criteria described in section 3.3

2. Define the appropriate form for W1, Wi and choose the initial values of the param-
eters (see 4.7.1).

3. Choose the simple plant model Tref which reflects the desired closed loop response
and initialize the value of the model matching parameter ρ∗.

4. Define the cost function J (see eq. (4.17)) and initialize the weights W1 though W4
(see section 4.4.3 for details regarding development of the cost function).

5. Develop the vector Φ which contains the following nonlinear closed loop functionals
1. Maximum overshoot, Mp

2. Rise time, tp
3. Settling time, ts
4. Maximum value of input, umax
5. Gamma, γ
Here Mp, tp and ts, the step response characteristics and umax are the time domain
specifications while γ refers to the frequency domain specification.

6. Define the frequency domain bounds εγ and time domain specifications limit vector
ε.
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7. Implement the constrained non-linear optimization problem. This is achieved using
the OPTI MATLAB toolbox. The black box optimizer NOMAD is chosen as the
optimization routine. Nonlinear constraints are defined based on εγ and ε for the
vector Φ that defines the closed loop functionals.

8. Calculate the highest obtainable stability margin 1/γmin. If this value is less than
.25, vary the forms of the weights W1 (see 4.18), as well as relax the limits of the
linear constraints and repeat step 7 again.

On successful implementation and execution of the algorithm the design weights,

parameters and the controller are obtained. The algorithm can be implemented in

MATLAB or similar software with toolboxes that support the NOMAD optimization

package. For implementation in MATLAB the following points can be noted.

1. During initial runs, the time and frequency domain constraints can be relaxed.

These can be tightened as successful iterations are completed.

2. Tref is chosen based on requirements in design specifications section 3.5.

3. The Matlab routine hinfsyn is called in step 7 to develop the controller.

4. ITSE has been used in step 4, for developing the cost function. Among the

various error performance indices (IAE, ITAE, ISE etc.) ITSE has been found

to facilitate the fastest convergence.

In the next section the performance criteria that will be used to check the design

effectiveness is examined.
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4.7.2 Performance Criteria

Since co-prime factor uncertainty is the source of uncertainty considered in the

model, the criteria used will be the gap-metric stability margin, similar to that used

to assess the controllers in 1-DOF, (see section 4.6.2).

This brings us to the end of the LSDP 2-DOF design procedure. The development

of the attitude and altitude controllers for the quadrotor will be discussed in the

next section.

4.7.3 Attitude-Altitude controller for a Quadrotor

The attitude-altitude controller of the decoupled quadrotor developed using the

above discussed 2-DOF LSDP strategy is presented here. The section is divided into

different parts. In the first part the optimization problem is stated. The reference

models, the loop shaping weights, the prefilter and the model matching parameter

ρ∗ are then presented. Thereafter the time domain response characteristics and

frequency domain specification of the linear models are examined. This is followed

through by examining the classical stability margins, the loop shape and the closed

loop bandwidth. Sensitivity and complementary sensitivity function plots are then

presented.

In the final part of the section, the responses of the non-linear nominal model and

that with model uncertainty are examined followed by the robust stability margins

of the closed loop system.

4.7.3.1 Optimization Problem

As mentioned in Algorithm #3 the weights, the prefilter and the model matching

parameter selection are carried out by resolving an optimization problem. The

framework explained in section 4.4.6.2 is used to develop the problem. The only

difference is the constraint limits set for γ - theH∞ norm of matrix P from eq. (4.48)

and for ρ∗ the model matching parameter. The lower limit for γ is set as a soft bound

of 0.25 and the upper limit is set as a hard bound of 3. The upper limit is taken

from a practical stand point, so that the co-prime factor stability margin falls above

0.25. For ρ∗, the lower limit is set at 1 and the upper limit is set at 3. A total

of 5 decision parameters are being searched for, these being 3 for the loop shaping

weight W1, 1 for the prefilter Wi and 1 for ρ∗.
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4.7.3.2 Reference Model and Design Weights

The reference model M0 is selected such that each of it satisfies the basic design

specifications given in section 3.5. The reference models are selected to be first

order transfer functions. They are as follows:

M0Roll and Pitch Rate
=

1

0.0567s+ 1
, M0Yaw Rate

=
1

0.0315s+ 1
,

and M0Altitude Rate
=

1

0.1134s+ 1

(4.53)

The developed loop shaping weight W1, the prefilter Wi and model matching pa-

rameter ρ∗ are listed below: Roll and pitch rate

W1 = 0.1860
s+ 1.0753 · 10−4

s+ 0.0978
, Wi = 1.3043, ρ∗ = 2.0957 (4.54)

Yaw Rate:

W1 = 0.1836
s+ 0.0053

s+ 0.2981
, Wi = 3.4095, ρ∗ = 1.2016 (4.55)

Altitude Rate:

W1 = 1.119
s+ 3.8052

s+ 0.01177
, Wi = 1.1472, ρ∗ = 2.7617 (4.56)

The controllers themselves are presented in Appendix D.1. The time and frequency

domain specification of the closed loop system is given in the table below:

Table 4.18: Time response characteristics and frequency domain specification of the
linear closed loop model

Closed Loop

Constraints

Roll & Pitch

Rate controller

Yaw Rate

controller

Altitude

Controller

% Overshoot 0.00 0.00 3.84

Rise Time (s) 0.10 0.06 0.13

Settling Time (s) 0.24 0.11 0.55

umax 0.37 0.36 1.00

γ 2.56 1.93 3.16

The step responses are obtained by feeding in a normalized unit reference input. As

seen from Table 4.18, all the time and frequency domain specifications lie within
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the acceptable range of values. The stability characteristics of the closed loops are

analysed next.

4.7.3.3 Classical Stability Margins and Nominal Stability

To calculate the stability margins, the open loop transfer function defined as the

ratio of the feedback signal to the actuating error signal, in this case is equal to

the product between the shaped plant and the feedback controller K2. The classical

stability margins are presented in the Table 4.19. The controller and the plant is

discretized at a frequency of 100Hz (sample time = 0.01s).

Table 4.19: Classical Stability Margins and Crossover Frequencies

Stability

Margins

Roll & Pitch

Rate Loop
Yaw Rate Loop

Altitude

Rate Loop

GainMargin

(abs)
6.433 20.221 10.360

GMFrequency

(rad/s)
312 312.25 314.159

PhaseMargin

(rad)
1.411 1.536 1.282

PMFrequency

(rad/s)
31.912 11.093 20.377

DelayMargin

(s)
0.044 0.138 0.063

DMFrequency

(rad/s)
31.912 11.093 20.377

Closed loop

Stability
Stable Stable Stable

The following points can be noted regarding the values presented in the Table 4.19.

1. The gain and phase margins of all the loops lie within the acceptable limits,

i.e. GM >2 and PM >30° or 0.52 rad.

2. The gain crossover frequencies all lie around 312 rad/s which can be confirmed

by observing the plots in Fig. 4.28.
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Figure 4.28: LSDP 2-DOF shaped plant: Bode plot of L(jω).

3. The yaw rate loop is the most immune towards instabilities due to delays, with

a delay margin of 0.138 seconds, followed by the altitude rate and then by the

roll and pitch rate loops.

4. As noted in the table, nominal stability is achieved by all of the loops.

As observed in Fig. 4.28 the loop shapes suggest that the yaw rate loop has the

least bandwidth and the highest bandwidth are for roll and pitch rate loops. The

details of the closed loop bandwidth are examined in the next section.

4.7.3.4 Closed Loop Bandwidth

Before presenting the closed loop bandwidth, let us recall the definitions of sensitivity

and complimentary sensitivity functions. Sensitivity can be defined as the closed

loop transfer function from output disturbance to the output, while complementary

sensitivity function can be defined as the closed loop transfer function between the

reference to the outputs.

Hence for the 2DOF positive feedback loop configuration, (see Fig. 4.27), the sen-
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sitivity and complementary sensitivity are obtained as follows:

S =
1

1−GSK2

and

TF = T ·K1 =
GSK2K1

1−GSK2

(4.57)

(Note: The complimentary sensitivity function defined as the closed loop transfer

function from reference signal to output, assumes the form of TF eq. (4.57), as

opposed to T , where subscript F indicates presence of a pre-filter in the control

system. To use Bode’s original definition of the term Sensitivity function (refer

[192]) we have,

S =
dT /T
dG/G

, (4.58)

where T represents the complimentary sensitivity function, and G, the plant model.

Consider the transfer function

Gyr =
GSK2K1

1−GSK2

(4.59)

where Gyr is the transfer function from reference signal to outputs as derived from

Figure 4.27, with Wi = 1. Now differentiating Gyr with respect to the plant model

GS we get:

dGyr

dGS

=
K2K1

1−GSK2

− −GSK2K1K2

(1−GSK2)2
=

K2K1

(1−GSK2)2
= S

Gyr

GS
(4.60)

Hence the sensitivity function S for Fig. 4.27 is derived as:

S =
dGyr/Gyr

dGS/GS
(4.61)

Comparing equations 4.58 and 4.61, we could see that in order to derive the sen-

sitivity function as defined by Bode, we need to consider the transfer function TF

instead of T which forms the rationale behind choosing TF (≡ Gyr) as the perfor-

mance indicator (as opposed to T) in the subsequent performance analysis. The

transfer function TF , also features as one among the Gang of Six important transfer

functions that captures the properties of a control system alongside the conventional

complimentary function T , as defined by Karl Johan Aström, in [193].)

The closed loop bandwidth (see section 4.4.6.5) for the loops are presented in Table

4.20.
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Table 4.20: Closed Loop Bandwidth

Loops ωb (rad/s)

Roll & Pitch Rate

loop
31.900

Yaw Rate Loop 11.380

Altitude Rate Loop 16.500

As shown from the curves in Fig. 4.28, the yaw rate loop has the lowest closed

loop bandwidth suggesting a slower response to reference signals. The closed loop

bandwidth had been calculated based on the values from the plots in Fig. 4.29.

Observing the plots, the following points can be noted.

1. The inherent peaks of the S and TF curves have been smoothed out by the

controller action.

2. From the bandwidth frequency indicated by the dotted grey lines to around

103 rad/s magnitude of |TF | falls at an almost equal pace for all the three loops

after which the rate of descent increases substantially, indicating a effective

noise cancellation at higher frequencies.

3. The magnitude of the open loop remains high at lower frequencies, consistently

around the bandwidth frequency and decreases at higher frequencies.

4. The values of the |S| and |TF | curve peaks are presented in Table 4.21. The

values of the peaks fall well below the stipulated values (of MT <1.25 and MS

<2), with MT falling below MS in each of the loops.

Table 4.21: Robust Stability Analysis

Roll & Pitch

Rate Loop

Yaw Rate

Loop

Altitude

Rate Loop

MT 0.985 0.975 1.011

MS 1.003 1.005 1.003

The implications of the curves have been discussed previously in section 4.4.6.5

hence are not be repeated here.
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Figure 4.29: LSDP 2-DOF system: Bode magnitude plots of |S|, |TF | and |L|

In the next section the time domain responses of the plant towards reference and

disturbance inputs are analysed .

4.7.3.5 Time Domain Response

The closed loop time domain response of the non-linear plant is discussed in this

section. The section is presented in two parts. In the first part the response of

the plant towards unit step inputs both in the absence and presence of noise and

time delays are presented. In the second part, response of plants containing model

uncertainty is examined.

The response towards a step reference input signal is presented in Fig. 4.30. The

inputs as well as disturbances are injected such that the effects are separated. This

enables to observe the plant responses in each case separately.
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Figure 4.30: Step response of the nominal LSDP 2-DOF controlled plant

The inputs, or forces generated by each propeller responding to the reference input

are presented in Fig. 4.31. As in previous cases of controller analysis (see sec-

tion 4.4.6.6 and section 4.6.3.5) two sets of simulations are performed, i.e. with and

without noise and time delays.

In the second set of simulations a delay of a single sample time alongside a zero

mean noise signal with a standard deviation 10% of the maximum of the reference

signal, injected at the output is included. The SNR of the output measured signals

are calculated to be 20.575 dB, 20.707 dB, 20.948 dB, 15.704 dB in the roll, pitch,

yaw and altitude rate loops respectively.
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Figure 4.31: Forces exerted by individual motors in response to reference signal

Examining figures 4.30 and 4.31 and from conducting simulations the following

points can be noted.

1. Acceptable rise times and settling times are observed in all the four loops.

Overshoots are absent in the roll, pitch and yaw rate loop responses to the

reference inputs for the noise and delay free simulation. Altitude rate shows

a slight overshoot. The step response characteristics are presented in Table

4.22.

2. For the case with the presence of the unit time delay and noise, oscillations

can be observed in the roll, pitch, and altitude rate responses, while yaw rate

response exhibit no oscillations. The oscillation are brought about by the delay

in the loop. In the roll, pitch, and altitude rate loops the oscillations increase

substantially with a delay of two sample times, while yaw rate loop exhibit

good immunity which can be explained by its larger delay margins.
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3. Good noise immunity to noise signal (even with SNR <10) can be observed in

the output responses.

4. The input signals are seen to reach the saturation limits although its effect on

the outputs are negligible.

The step response characteristics based on delay and noise free response of the

nonlinear nominal plant presented in Fig. 4.30 are given in Table 4.22. For the

definitions of response specifications see section 4.4.6.7.

The peak values listed in the table should be seen in the context of the maximum

values of the reference signal, being 0.25 rad/s for roll and pitch rate, 0.5 rad/s for

yaw rate and 1.5 m/s for altitude rate.

Table 4.22: Closed loop time and frequency domain specifications from the nonlinear
plant model response

Response

Characteristics

Roll &

Pitch Rate

Yaw

Rate

Altitude

Rate

Rise Time (s) 0.096 0.060 0.134

Settling Time (s) 0.235 0.110 0.659

Peak 0.248 0.498 1.646

Peak Time (s) 0.990 0.160 0.300

% Overshoot 0.000 0.000 9.711

% Undershoot 0.000 0.000 0.000

Having met the required performance objectives of the nominal non-linear plant

model, now the the responses of the plant with model uncertainties will be examined.

Like the case of one degree of freedom, the controller tries to maximize co-prime

factor uncertainty in the model that it can stabilize effectively.

The uncertain nonlinear plant is subjected towards the same complex manoeuvre

used in section 4.4.6.10 and section 4.6.3.5. The percentage parameter uncertainty

limits used in modelling the uncertain nonlinear plant are presented in Table 4.23.
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Table 4.23: Parameter uncertainty limits of the quadrotor used for testing the con-
troller

Model Parameters % Uncertainty

IXX , IY Y , IZZ ±40%

m ±50%

dx ±40%

dy ±40%

ct ±50%

cp ±30%

The Monte-Carlo plots of the output responses are presented in Fig. 4.32. The

significance of the colours used in the plots have been explained previously (see

section 4.6.3.5), hence will not be repeated here.

Figure 4.32: The response of the LSDP 2-DOF based plant with model uncertainty
to the complex manoeuvre reference command.
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The forces produced by each motor as a response to the reference input is presented

in 4.33.

Figure 4.33: LSDP 2-DOF controlled plant rotor responses to the complex manoeu-
vre reference signal.

The following points can be noted from examining the figures.

• In the output response plot, (Fig. 4.32), slight overshoots are present in the

roll, pitch and altitude rates for the extreme plants (plots marked in yellow).

Overshoots can also be observed in the yaw rates response for the extreme

plants.

• Oscillatory responses are present in roll and pitch rate responses. These are

absent in yaw and altitude rate responses.

• Spikes can be noticed after the 6th second in pitch rate response and after the

7th second in roll rate response in Fig. 4.32 corresponding to the saturation
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of inputs as seen in Fig. 4.33 at those respective times.

Having observed the responses of the uncertain nonlinear plants in the time domain

and having recorded satisfactory responses, we now look at the frequency domain

robustness aspects of the controller.

4.7.3.6 Robustness Analysis in the Frequency Domain

The normalized coprime stability margins calculated for each of the SISO loops

alongside the lower limits of the classical stability margins (SM) and phase margins

(PM) are presented in Table 4.24.

Table 4.24: Coprime stability margin and classical gain & phase margins

Response

Characteristics

Roll &

Pitch Rate

Yaw

Rate

Altitude

Rate

Normalized

Coprime Stability

Margin

0.412 0.604 0.494

Classical SM

Lower Limit
2.403 4.049 2.953

Classical PM

Lower Limit (deg)
48.699 74.294 59.214

The coprime stability margins are greater than 0.25 hence from the point of view

of robustness the controller designs can be considered as successful. The stability

margin provides enough guarantee against uncertain plant models as seen from the

perspective of the gap metric criterion (see eq. (4.47)). This brings us to the end of

the two degree of freedom LSDP controller design. In the next section µ-Synthesis

controller designs will be explored.
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4.8 µ-Synthesis

In this section the controller design using µ-synthesis will be examined. In Table

4.6 of the MSO design we had observed that the controller fell short of guarantee-

ing robust performance to the plant in the presence of input multiplicative model

uncertainty. Whilst the plant is represented as in Fig.4.1, the µ-synthesis problem

can be pictured as aiming to tackle this shortfall.

From eq. (4.6) we have defined F as the upper LFT of N and ∆. This N-∆ structure

can be observed in Fig. 4.34(a).

(a) The N-∆ Structure. (b) The M-∆ Structure.

Figure 4.34: µ-synthesis motivation.

We can also observe from the eq. (4.6) that for a nominally stable system the source

of instability arises from the term (I−N11∆)−1. Hence to assess the robust stability

and performance we begin analysing the stability of the M-∆ structure (see Fig.

4.34(b)), where M equals N11. With this given M-∆ structure the robust stability

criteria can now be stated as follows: For a stable nominal system M(s) and a stable

convex set of perturbations ∆ with ‖∆‖∞ ≤ 1, robust stability is achieved if and

only if

det(I −M∆(jω)) 6= 0 ∀ω,∀∆. (4.62)

(See eq. 8.104 and further section 8.5 in [118]). The uncertainty ∆ in eq. (4.62)

can be both unstructured (full-block matrix) or structured (diagonal matrix). Con-

troller designs based on unstructured uncertainty can be generally more conservative

compared to structured uncertainty. To take advantage of the fact that parameter

uncertainty, delay uncertainty and non-linearity can be expressed in terms of struc-

tured uncertainty, the parameter µ can be used in the design [194]. The structured

singular value of µ can be defined as follows:

For a given complex matrix M and a block diagonal complex uncertainty matrix

∆ (i.e. ∆ = diag {∆i} where some of the ∆i can be real or repeating), the real

non-negative function µ(M) is given by

µ(M) ,
1

min{km | det(I − kmM∆) = 0 for structured ∆, σ̄(∆) ≤ 1} (4.63)
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The larger the value of µ, the smaller the value of ∆ that can make the quantity

(I−M∆) singular. Having defined the function µ, we can now look at how it can be

used to assess the robust stability and robust performance of a system with model

uncertainty.

For the N-∆ structure from Fig. 4.34 with a nominally stable system M, and real

or complex stable perturbations ∆, with σ̄(∆) ≤ 1,∀ω, robust stability is achieved

if and only if µ(M(jω)) ≤ 1, ∀ω.

Similarly robust performance for the same system is achieved if and only if µ∆̂(N(jω)) ≤
1∀ω. Here ∆̂ represents the diagonal structure,

∆̂ =

[
∆ 0

0 ∆P

]
(4.64)

Here ∆ is a pure diagonal matrix, while ∆P is always a full block matrix. ∆P is

a perturbation block that is associated with performance weight wP (see [118] pg.

316-319). While µ-synthesis can be used to analyse the stability and performance

characteristics, a controller that strives to reduce the value of µ can also be de-

veloped. Although currently the problem of resolving a controller that minimizes

µ remains unsolved, an iteration procedure named as the D-K iteration from [195]

gives good results. With the matrix D, chosen as any block diagonal matrix that

commutes with ∆, the over all objective of D-K iteration can be stated as to find

the controller that minimizes the function

min
K

(min
D∈D

∥∥D N(K) D−1
∥∥
∞) (4.65)

by switching consecutively between the controller K and matrix D. Here D repre-

sents the set of block diagonal matrices whose structure is compatible with that of

∆. The iteration process has three important steps.

1. K-Step: By holding D constant a H∞ controller that resolves the problem

min
K

∥∥D N(K) D−1)
∥∥
∞ is developed.

2. Using the developed controller K i.e, by holding N constant find the D(jω)

that minimises σ̄(D N D−1).

3. The magnitude of D(jω) is fitted to a minimum phase transfer function. The

iteration now begins again starting in step 1.

While the minimization problem in steps 1 and 2 are individually convex, they

may or may not be jointly convex. This lack of guarantee sometimes results in the
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iterative optimization problem getting stuck in a localized optima. But overall, in

general the D-K iteration has proved to give good results (see [118] pg. 328-338).

4.8.1 Design weights wI and wP in µ synthesis

The development of the design weights used in µ-synthesis to an extent is similar

to that of MSO control in 4.4.2. There are minor differences however. The control

problem can be restated as to finding a stabilizing optimal controller for the control

problem in Fig. 4.3 alongside the weight W̃ = (wI , wP ) such that

γ(W̃ ) ≤ εµ (4.66)

and

Φi(W̃ ) ≤ εi, (4.67)

where εµ represents the upper bound on γ(W̃ ), which is the value of function pre-

sented in eq. (4.65), developed in the context of the weights wI and wP . The

weight wI is developed such that it captures model uncertainty while the perfor-

mance weight wP is developed by the outer framework that encapsulates the D-K

iteration algorithm. The performance weight wP takes the format as that specified

in eq. (4.16).

The outer framework as stated earlier (i.e, as in the development of the MSO control

strategy), resolves an optimization problem to generate both the performance weight

and a controller that satisfies the performance specifications. The cost function for

the optimiser is similar to the one explained in section 4.4.3, except for weight W1,

which represents the penalty on the value of µ (instead of γ). The algorithm for

developing the µ-controller is presented next.

4.8.2 Algorithm for µ-Controller development

To obtain the performance weight alongside the µ-controller that satisfies the re-

quired time and frequency domain specifications the following algorithm can be

followed:

Algorithm # 4 Sensitivity weight and Controller design procedure for µ-Synthesis

Inputs: Plant model G, design constraints, model uncertainty estimate.

Outputs: K, wi, wp.

1. Scale the given plant G according to the criteria described in section 3.3

2. Calculate the complementary sensitivity weight wI according to the procedure de-
scribed in section 4.4.2.1.
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3. Define the appropriate form of wP and choose the initial values of the parameters.

4. Define the cost function J and initializes the weights W1 through W4.

5. Develop the vector Φ which contains the following nonlinear closed loop functionals
1. Maximum overshoot, Mp

2. Rise time, tp
3. Settling time, ts
4. Maximum value of input, umax
5. µ(N)
Here Mp, tp and ts, the step response characteristics and umax are the time domain
specifications while µ(N) refers to the frequency domain specification.

6. Define the frequency domain bounds εµ and time domain specifications limit vector
ε.

7. Implement the constrained non-linear optimization problem. This is achieved using
the OPTI MATLAB toolbox. The black box optimizer NOMAD is chosen as the
optimization routine. Nonlinear constraints are defined based on εµ and ε for the
vector Φ that defines the closed loop functionals.

8. Depending on robustness requirements modify the weights W1 through W4 to reach
the required performance levels.

9. If the performance specifications are not met, decrease the % uncertainty considered
while defining wI and relax the bounds defined in step 6 and retry step 7.

Existing commercial software such as MATLAB can be used to develop the algo-

rithm. While implementing and executing Algorithm #4 the following points

should be noted.

1. The time and frequency domain specifications can be relaxed in the initial

runs. These can be tightened as successful iterations are completed.

2. The Matlab routine dksyn (part of the Robust Control Toolbox) is used in

step 7 to develop the controller.

3. ITSE has been used in step 4, for developing the cost function. Among the

various error performance indices (IAE, ITAE, ISE etc.) ITSE has been found

to facilitate the fastest convergence.

The performance of the developed controllers can be measured once they are de-

signed and tested. The criteria to be followed is given in the next section.

4.8.3 Performance Analysis Criteria

The closed loop stability and performance of the system can be analysed with the

help of the criteria listed in Table 4.25. The criteria follows naturally when we have

a performance requirement of ‖F‖∞ ≤ 1
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Table 4.25: Performance Criteria - µ-Synthesis

Performance Criteria Necessary Constraint

Nominal Stability N internally stable

Nominal Performance σ̄(N22) = µ∆P
< 1; ∀ω, and NS

Robust Stability µ∆(N11) < 1; ∀ω, and NS

Robust Performance µ∆̂(N) < 1; ∀ω, ∆̂ =
[

∆ 0
0 ∆P

]
, and NS

Consider the system in Fig.4.35. The system is modelled with multiplicative uncer-

tainty and the performance weight wP is present at the output.

Figure 4.35: System modelled with multiplicative uncertainty

Converting the system into the N-∆ structure presented in Fig. 4.34.(a) by analysing

the closed loop system from the inputs [u∆ w]T to outputs [y∆ z]T , we obtain N

as below:

N =

−WIKG(I +KG)−1 −WIK(I +GK)−1

WPG(I +KG)−1 WP (I +GK)−1

 (4.68)

and M = N11 = WITI , where the negative sign is ignored as we have µ(N) = µ(U N)

with U =
[
−I 0
0 I

]
. TI represents the input complementary sensitivity function. The

performance criteria in Table 4.25 for the system in Fig 4.35 is hence restated in

Table 4.26.

(In the final criteria w.r.t to RP, calculating µN̂ follows directly from the following

identity: when a, b, c, and d are complex scalars and ∆ = diag{δ1 δ2} we have

µ
[
ab ad
bc cd

]
= |ab|+ |cd|. It can also be noted that the µ-Synthesis performance criteria

is exactly same as that of the MSO criteria presented in Table 4.1.)
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Table 4.26: Performance Criteria - µ-Synthesis for the system in Fig.4.35

Performance Criteria Necessary Constraint

Nominal Stability
N internally stable ≡ S, SG, KS and TI being

stable

Nominal Performance σ̄(N22) = |wPS| < 1; ∀ω

Robust Stability µ∆(N11) = µ(M) = |wITI | < 1; ∀ω

Robust Performance µ∆̂(N) = |wPS|+ |wITI | < 1; ∀ω

This brings us to the end of the design and performance analysis procedure of µ-

synthesis for single input single output systems. In the following section tracking

altitude-attitude rate controllers for the quadrotor model explained in section 4.2

will be presented.

4.8.4 Attitude-Altitude controller for a Quadrotor

The attitude-altitude controller developed using the µ-Synthesis procedure for the

decoupled quadrotor is presented in this section. Initially the complementary sen-

sitivity weights wI , which capture the model uncertainty, are presented. The op-

timization problem is presented next followed by the sensitivity weights alongside

the step response characteristics, which are derived by resolving the optimization

problem.

An analysis of the designed controllers is then presented. The classical stability

margins, peak values of closed loop functions and the closed loop bandwidth are

examined in the frequency domain. In the time domain the responses to a step signal

is examined. The performance of plants with model uncertainty are also examined.

In the final section the Robust performance of the plant using the designed controller

will be examined.

4.8.4.1 Complementary Sensitivity weight wI

The complementary sensitivity weight (similar to those developed for MSO) absorbs

the model uncertainty. For sake of avoiding repetition, the procedure to develop wI

will not be explained (refer to 4.4.2.1). The % parameter uncertainty absorbed into

the weights are based on the values presented in Table 4.27
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Table 4.27: Parameter uncertainty limits of the quadrotor used for testing the con-
troller

Parameters % Uncertainty

IXX , IY Y , IZZ ±10%

m ±30%

dx ±30%

dy ±30%

ct ±30%

cp ±30%

Following Algorithm #4, the developed weights are listed below:

wI,11 = wI,22 =
0.4044s+ 0.4027

s+ 0.9954

wI,33 =
0.9684s+ 0.9643

s+ 0.9954
, wI,44 =

0.4278s+ 0.4260

s+ 0.9954

(4.69)

4.8.4.2 Optimization Problem

The optimization problem is exactly same as that of one developed in 4.4.6.2 except

for the non-linear constraint on µ (instead of γ). µ is bound to be less than 1.

The Optimization problem is used to develop the sensitivity weight as well as the

controller that achieves robust stability. In the cost function defined in section 4.17

J1, is redefined as the weight associated with µ, i.e. J1 = W1 · µ.

4.8.4.3 Sensitivity weight wP

The Sensitivity weights developed following Algorithm #4 are given below.

wP,11 = wP,22 = 0.0003016
s+ 200

s+ 0.00125

wP,33 = 0.0106
s+ 36.1226

s+ 0.1485
, wP,44 = 0.005812

s+ 4.9553

s+ 0.07274

(4.70)

The controllers themselves are presented in Appendix D.1. The time and frequency

domain specifications obtained while developing the controllers based for the lin-

earised model are given below.
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Table 4.28: Time response characteristics and frequency domain specification of the
linear closed loop model

Closed Loop

Constraints

Roll & Pitch

Rate controller

Yaw Rate

controller

Altitude

Controller

% Overshoot 4.160 4.871 19.857

Rise Time (s) 0.047 0.037 0.225

Settling Time (s) 0.142 0.116 1.542

umax 0.246 0.857 0.757

µ 0.408 0.980 0.430

From the results in the Table is can be deduced that the optimization routine have

successfully managed to generate controllers for the loops that satisfy the non-linear

constraints alongside providing stability. In the next subsection the classical stability

margins provided by the controllers are examined.

4.8.4.4 Classical Stability Margins and Nominal Stability

The classical stability margins of the closed loops are presented in Table 4.29

Table 4.29: Classical Stability Margins and Crossover Frequencies

Stability Margins
Roll & Pitch

Rate Loop

Yaw Rate

Loop

Altitude

Rate Loop

GainMargin (abs) 10.106 9.341 42.170

GMFrequency (rad/s) 136.308 158.647 88.291

PhaseMargin (rad) 1.230 1.242 1.087

PMFrequency (rad/s) 23.346 27.573 5.188

DelayMargin (s) 0.053 0.045 0.209

DMFrequency (rad/s) 23.346 27.573 5.188

Closed loop Stability Stable Stable Stable
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The gain and phase margins lie above the acceptable ranges of GM >2 and PM

>30°. The nominal stability is established by examining the Nyquist plots of the

closed loop systems.

Having established nominal stability alongside acceptable stability margins, the cri-

teria presented in Table 4.26 is now checked.

Figure 4.36: Robust stability analysis: Bode magnitude plots of |wP S|, |wI T | and
(|wP S| + |wI T |)

The values in the Table 4.30 are calculated based on the curves of weighted closed

loop functions presented in Figure 4.36.

As observed from the values presented in Table 4.30, as well as from the curves in

Fig. 4.36 it can be concluded that the system will exhibit nominal performance,

robust stability and robust performance in the presence of the considered model

uncertainty (as values of |wP S|, |wI T | and (|wP S| + |wI T |) fall below unity ∀ω).
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Table 4.30: Robust Stability Analysis

∞-Norm
Roll & Pitch

Rate Loop

Yaw Rate

Loop

Altitude

Rate Loop

‖wP S‖∞ 0.002 0.014 0.0111

‖wI T‖∞ 0.406 0.969 0.526

‖(|wP S|+|wI T |)‖∞ 0.408 0.980 0.535

The closed loop bandwidth is examined next.

4.8.4.5 Closed Loop Bandwidth

The closed loop bandwidth (calculated according to the definition in 4.4.6.5) is

presented in Table 4.31

Table 4.31: Closed Loop Bandwidth

Closed loops ωb (rad/s)

Roll & Pitch Rate

loop
19.605

Yaw Rate Loop 23.950

Altitude Rate Loop 3.435

The values obtained have been arrived at from the Fig. 4.37 and it can be noted that

acceptable bandwidths have been obtained. We can see that the the peaks of |S| and

|T | have been smoothed out by the controller ensuring better robustness properties.

The curves resemble those presented in Fig. 4.8 and the reader is referred to section

4.4.6.5 for the discussion around their significance.

The peak values of sensitivity and complementary sensitivity function are listed in

Table 4.32 and the resulting values fall within the target values of MT <1.25 and

MS <2.
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Figure 4.37: The µ-controller based system: Bode magnitude plots of |S|, |T | and
|L|

Table 4.32: Robust Stability Analysis

Roll & Pitch

Rate Loop

Yaw Rate

Loop

Altitude

Rate Loop

MT 1.138 1.119 1.213

MS 1.003 1.000 1.098

Having obtained satisfactory closed loop characteristics in the frequency domain,

the time domain responses are analysed in the next subsection.
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4.8.4.6 Time Domain Responses

The time responses are presented in two parts. In the first part the nominal non-

linear plant responses and motor inputs toward a pulse reference signal is presented.

In the second part the plant containing model uncertainty is subjected to a complex

manoeuvre and the effectiveness of the controller with respect to the robustness of

the plant is examined.

Figure 4.38: Step response of the nominal µ-controller based plant

The nonlinear nominal plant response is presented in Fig. 4.38. Two sets of simu-

lations are conducted. In the first simulation the plant is subjected to a reference

signal in a delay and noise free environment.

In the second simulation the plant is subjected to a delay of two sample times and a

zero mean noise signal with standard deviation that measures to about 15% of the

maximum value of the reference input. In the latter simulation, the signal to noise
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ratio is calculated to be 17.718 dB, 17.841 dB, 17.886 dB and 10.642 dB in the roll,

pitch, yaw and altitude rate loops respectively.

Figure 4.39: Forces exerted by individual motors in response to reference signal

The forces generated by each motor are presented in Fig. 4.39. Examining both

figures and from subsequent simulations the following points can be noted.

1. Acceptable over and undershoots, rise times and settling times (see Table 4.33)

are observed in the delay and noise free responses.

2. Delay induces oscillations in the responses. A delay of two sample times intro-

duces substantial oscillations in the roll, pitch and yaw rate responses, which

was expected from the delay margins the controller provided. The altitude

rate shows relatively higher immunity towards delays.

3. Acceptable noise immunity can be observed towards noise injected at the out-

put of the system.
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4. Inputs reach saturation limits although the effects on performance are negli-

gible.

The step response characteristics of the nonlinear nominal plant are presented next.

The peak values (3rd row in Table 4.33) should be seen in the context of the maxi-

mum values of the reference signal, being 0.25 rad/s for roll and pitch rate, 0.5 rad/s

for yaw rate and 1.5 m/s for altitude rate.

Table 4.33: Time and frequency domain specifications after controller tuning

Response

Characteristics

Roll &

Pitch Rate

Yaw

Rate

Altitude

Rate

Rise Time (s) 0.047 0.037 0.225

Settling Time (s) 0.142 0.116 1.446

Peak 0.260 0.524 1.798

Peak Time (s) 0.100 0.080 0.630

% Overshoot 4.160 4.871 19.855

% Undershoot 0.000 0.000 0.002

From the results, it can be seen the acceptable response characteristics have been

obtained. In the next part the responses of the plant with model uncertainty is

examined.

In this second part of the section the plant is subjected to a complex manoeuvre

(identical to those in section 4.4.6.10). The % parameter uncertainty incorporated

into the nonlinear plant is the same used to develop the complementary sensitivity

weight wI (see Table 4.27).The response of the uncertain plant to the reference input

is presented in Fig. 4.40. The forces produced by the motors in response towards

the reference inputs are presented in 4.41.

From examining both figures the following points can be noted.

• Slight overshoots can be observed in roll and pitch rate responses for the

extreme plants (coloured in yellow). Overshoots can also be observed in the

yaw and altitude rate loops, for extreme plants as well as those plant models

in between the nominal and extreme plants.
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Figure 4.40: The response of the µ-controller based plant with model uncertainty
to the complex manoeuvre reference command.

• Oscillatory responses can be observed in the extreme plants in the yaw rate

loop. Oscillations are absent in the pitch, roll and altitude rate responses.

• The input forces generated fall below their saturation limits. Oscillations are

absent in the motor reactions to the reference commands in the roll and yaw

rate loops. Slight oscillations can be observed in the forces generated in the

pitch and altitude rate loops for the extreme plants (coloured in light blue)

This brings us to the end of the examining time domain responses of the non-linear

uncertain plant. Both stability and acceptable performances have been observed in

the simulations. In the next section the robustness aspects in the frequency domain

will be examined.
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Figure 4.41: The µ-controller based plant rotor responses to the complex manoeuvre
reference signal.

4.8.4.7 Robustness Analysis in the Frequency Domain

From the values of µ displayed in Table 4.28, the limits of uncertainty that each loop

can withstand are calculated and the values listed in Table 4.34. It can be seen that

the roll and pitch rate loop can tolerate 2.451 times the current model uncertainty

at a frequency of 0.749 rad/s and still exhibit robust performance. The yaw rate can

tolerate 1.020 times and altitude rate can tolerate 1.862 times the model uncertainty

at frequencies of 2.574 rad/s and 2.591 rad/s respectively and still exhibit robust

performance.

The table points toward the superiority of µ controllers compared to MSO controllers

in terms of its ability to guarantee robust performance during the development

phase of the controller. The controller designs have been acceptable in terms of its
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ability to guarantee robust stability and performance w.r.t to the model uncertainty

considered.

Table 4.34: Robust Performance Analysis

Loops
Roll & Pitch

Rate Loop

Yaw Rate

Loop

Altitude

Rate Loop

Uncertainty upper

bound
2.451 1.020 1.862

Critical frequency

(rad/s)
0.749 2.574 2.591

This brings us to the end of the design procedure of µ controllers. In the final

section of this chapter a comparison of various controllers and their performances

are presented.

4.9 Performance Comparisons

In this section, comparisons between the different controllers developed in the pre-

vious sections are performed. The section is subdivided into five parts. In the first

part, the time domain response characteristics of the closed loop system subjected to

step responses are examined and performances compared. The performance of the

nominal plant as well as the plant with model uncertainty is assessed and compared.

In the second part, the classical margins of each of the robust control systems are

examined. Like in the first part, the margins of the nominal plant as well as those

with model uncertainty are examined. In the third part of the section, a comparison

is made on 1 DOF controllers based on value of the performance characteristic µ

obtained over frequency. MSO, LSDP 1 DOF and the µ-controller are compared in

this section.

In the fourth part of the section, those controllers that exhibited robust performance

characteristics, as seen from the analysis performed during the controller develop-

ment phase, are analysed using the gap-metric stability criterion and comparisons

are made. This is followed by the final part where certain conclusions are drawn

from the observations made.
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4.9.1 Time domain step response characteristics

As observed from figures 4.42 to 4.45 three aspects of the step responses are examined

in the section; these being the percentage overshoot, rise time and the settling time.

To obtain the step responses (both for the nominal plant and for those with model

uncertainty) the plant is subjected to the same reference signal presented in Fig. 4.9.

For incorporating model uncertainty, parameters in the range described in Table

3.2 are selected. In this first part of the section all the five developed controllers,

(i.e. the four robust controllers alongside the PID controller) are compared based on

these step response characteristics of their respective closed loop systems. Before we

examine the results, the method of presentation is briefly examined in the following

paragraph.

Violin plots are used, to present the results. A violin plot presents the probability

density of the data points at different values after it is (approximately) smoothed

by a kernel density estimator (see [196]). The sample points are also plotted in

the figure. Unlike box plots which presents the user with the four quartiles of the

data alongside the outliers, and which remain unaffected by the distribution of the

samples, the violin plots gives a visual representation of the distribution of the data,

and more suitable for unusual distributions.

In the data presented, the violin plots are shaded in light blue. The blue dots (•),

represents the response of the systems with model uncertainty, the median value is

represented using the red cross (+) and the value of the nominal plant is represented

by the green circle ( ). The design constraints (see section 3.5) are represented by

grey patched area. The responses from a total of 512 systems have been taken into

account to generate each violin plot. Of this 256 systems are those from the vertices

of the hypercube (see section 4.12) and the remaining 256 systems are those which

are uniformly distributed in the hyperspace around the nominal plant.

Each set of violin plots can be inspected for the following four aspects.

1. If the median value of the response characteristic lies outside the patched grey

area in the plot, where the patched grey area refers to soft constraints of the

design specifications presented in 3.5.

2. If the violin plot is completely outside of the patched grey area.

3. The nature of the spread of points and the resulting shape of the probability

density distribution.

4. The nature of each individual plot in comparison to the rest of the four violin

plots.
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Figure 4.42: Roll rate controller- time domain response comparison using violin
plots ([196]): The markers displayed have the following meanings - • : The response
of the systems with model uncertainty, + : Median value of the respective response
characteristic and : The value of the response characteristic of the nominal plant.
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Figure 4.43: Pitch rate controller- time domain response comparison: The markers
displayed have the following meanings - • : The response of the systems with model
uncertainty, + : Median value of the respective response characteristic and : The
value of the response characteristic of the nominal plant.
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Figure 4.44: Yaw rate controller- Time domain response comparison: The markers
displayed have the following meanings - • : The response of the systems with model
uncertainty, + : Median value of the respective response characteristic and : The
value of the response characteristic of the nominal plant.
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Figure 4.45: Altitude rate controller- Time domain response comparison: The mark-
ers displayed have the following meanings - • : The response of the systems with
model uncertainty, + : Median value of the respective response characteristic and

: The value of the response characteristic of the nominal plant.

The following broad conclusions can be drawn from figures 4.42 to 4.45.
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1. The PID controller designed for highest robustness and acceptable rise times,

while it maintains plant stability for all uncertain plants (thanks to tuning for

robustness), designs specifications were not fully met. Acceptable performance

is registered w.r.t rise times for all of the 512 models, but with regards to

overshoot and settling times the required standards haven’t been met.

2. The MSO controller in general registered a performance which is close to

acceptable in many regards. Although the extreme plants in cases produced

a response that fell in the grey hatched unacceptable zone, to a major extent

50% of plants with model uncertainty exhibited robust performance.

3. The LSDP 1 DOF controller registers acceptable performance. Robust perfor-

mance for all the 512 models are achieved for roll and pitch rate loops. The

yaw and altitude rate loops, except for a portion of the models at the vertices,

satisfied the design constraints.

4. The LSDP 2DOF controller achieves acceptable performance for more than

50% of all models in the four loops. A portion of the extreme plat models are

characterized by slow rise times, in roll, pitch and yaw rate loops, and for yaw

rate loop performance decline is observed for a set of extreme plants in the %

overshoots and settling times.

5. The µ-controller registers robust performance w.r.t to some aspects of the

system. A portion of extreme plants experience unacceptable overshoots in

roll, pitch, yaw and altitude rate loops and slower rise times in the yaw rate

loops

These observations based on whether or not, the performance fell in the acceptable

zone are further presented in Table 4.35.

Table 4.35: Time domain Performance Comparison

Controllers PID MSO
LSDP

1DOF

LSDP

2 DOF
µ

% Overshoot

Rise Time

Settling

Time
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Here full circles indicate the controller achieves acceptable performance for all the

512 plant models. The amount of fullness of each circle, corresponds to the number

of plant models that falls in the region of acceptable performance. The four circles

at each entry corresponds to roll and pitch rate loop in the first row from the left

and to yaw and altitude rate loop in the second row from the left.

A quick look at the table suggests that the single degree of freedom LSDP controller

seems to be the most effective in delivering the required performance for the mod-

els with model uncertainty. While MSO, LSDP 2 DOF and µ remains reasonably

effective, tuning the PID for robustness haven’t proved to be fully effective as an-

ticipated. For the case of the PID controller, tuning the system for the maximum

robustness leaves the control engineer with very few options to simultaneously meet

all design specifications. This lack of tuning option is evident from the performance

registered with the uncertain plant models as observed above.

The robust controllers by design strives to push down the peak magnitudes of sensi-

tivity, complementary sensitivity and the closed loop function. This in the Nyquist

plot translates towards healthy gain and phase margins and further translating into

acceptable time domain performances and robustness. While the guaranteed fre-

quency domain performance might not translate into guaranteed time domain per-

formance in terms of the user defined requirements (as we have witnessed the cases

of some extreme plant time responses lying in the hatched area), the controller

skews the performance of uncertain models in the hypercube, favorably towards the

required designs standards.

In the next part the classical margins as well as the bandwidth of the closed loop will

be examined for those controllers which were effective namely the robust controllers

(PID controller performances are excluded).

4.9.2 Classical Margins

The effect of model uncertainty on the classical margins and bandwidth of the system

and the effectiveness of the robust controllers in mitigating it, is examined in this

part.

The gain phase and delay margin as well as the bandwidth of the closed loop system

for all the 512 models with uncertainty are calculated and the values are plotted.

Violin plots are employed to present the data in Fig. 4.46 to Fig. 4.49.
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Figure 4.46: Roll & Pitch rate controller- Classical Margins Gain, Phase and Delay
Margin: The markers displayed have the following meanings - • : The response of
the systems with model uncertainty, + : Median value of the respective response
characteristic and : The value of the response characteristic of the nominal plant.
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Figure 4.47: Yaw rate controller- Classical Margins Gain, Phase and Delay Margin:
The markers displayed have the following meanings - • : The response of the systems
with model uncertainty, + : Median value of the respective response characteristic
and : The value of the response characteristic of the nominal plant.
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Figure 4.48: Altitude rate controller- Classical Margins Gain, Phase and Delay
Margin: The markers displayed have the following meanings - • : The response of
the systems with model uncertainty, + : Median value of the respective response
characteristic and : The value of the response characteristic of the nominal plant.
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Figure 4.49: Closed loop bandwidth: The markers displayed have the following
meanings - • : The response of the systems with model uncertainty, + : Median
value of the respective response characteristic and : The value of the response
characteristic of the nominal plant.

From examining the plots in Fig. 4.46 to Fig. 4.49 the following conclusions are

drawn:
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1. The MSO, LSDP 2DOF and the µ controller provides acceptable gain (>2),

phase (>30°) and delay margins (2 time samples) for majority of the uncertain

plant models. Similarly the three controllers ensures the bandwidth falls within

acceptable margins (see section 3.5). A small sectin of the extreme plants

however fails to provide acceptable margins and bandwidths.

2. The LSDP 1DOF controllers provide by far most acceptable margins as well

as reasonable closed loop bandwidth for the uncertain plant models. This

performance agrees with the conclusions drawn from the previous part.

In further simulations conducted to examine MT and MS (although not presented

here due to the obvious similarities to those of the classical margin plots), accept-

able peak values (MT <1.25 and MS <2) have been observed in all but one of the

instances. The only exception was with the values of MT in the yaw rate loop where

extreme plants tended to have peak values of the complementary sensitivity func-

tion to fall above the acceptable levels. For further details regarding the relations

between MT and MS to the classical gain and phase margins refer page 36, Chapter

2 in [118].

In the violin plots the characteristic horizontal lines arise from the performances of

the plants from the edges of the parameter hypercube (i.e. the extreme plants) and

those performance points that are scattered arise from within the hypercube. The

light blue distribution shades sometimes overshoot the actual data points and these

overshoots can be ignored.

In the next section we examine single degree of freedom controllers and make com-

parisons in the frequency domain using the µ criteria.
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4.9.3 1 DOF controller comparison

In this part the µ-synthesis is utilised to compare the single degree of freedom robust

controllers. The approach taken here, is to use the sensitivity and complementary

sensitivity weights designed during the development of the µ controller (see section

4.8.4). The system presented in Fig. 4.35 with an input multiplicative uncertainty

and performance weights is considered for the analysis.

The values of µ to determine nominal performance, robust stability and robust

performance as listed in Table 4.26 have been calculated and plotted as a function

of frequency. The plots are calculated for systems controlled by MSO, LSDP 1DOF

and µ-controllers.

Figure 4.50: Roll and pitch rate controller: µ plotted as a function of frequency
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Figure 4.51: Yaw rate controller: µ plotted as a function of frequency

From inspecting the plots presented in Fig. 4.50 to Fig. 4.52 the following points

can be noted.

• For the given performance weight and The MSO controller fails to limit the

value of µ, to below unity w.r.t to the robust performance criteria, below a fre-

quency of approximately 0.002 rad/s (0.1 Hz) for roll and pitch rate controller

and below a frequency of 0.02 rad/s (1.1 Hz) for yaw rate controller.

• As far Robust Stability and Nominal Performance is concerned, the 1 DOF

controllers perform well. All of the controllers are able to limit the value of µ

in all the four loops.

• A closer inspection of the plots shows that LSDP 1DOF controller consistently

limits the value of µ below that of the µ controller at all frequencies except

for those in a narrow band around the bandwidth frequencies, where the µ-

controller very slightly outperforms the LSDP 1DOF controller.
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Figure 4.52: Altitude rate controller: µ plotted as a function of frequency

The significance of limiting the value of µ below unity can be explained in terms of

dynamics in the Nyquist plot. As seen in the figure the performance weight or the

sensitivity weight wP can be visualized as the radius of sphere in the Nyquist plot

centered at -1 on the imaginary axis. The term L(jω) in the figure represents the

loop transfer function of the systems. The term |wI(jω)L(jω)| can be visualized as

the radius of a sphere centered on the Nyquist plot.

In the figure, while wP represents the closeness to instability, wI represents model

uncertainty. As the value of µ falls above 1 these two spheres intersect each other

resulting in a deterioration of the system performance, although stability is still

maintained.
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Figure 4.53: Nyquist plot dynamics

Hence lower the value of µ better the performance. According to this criteria in

overall LSDP 1DOF controller ranks the best followed by µ and MSO controller.

In the next part those controllers that have been identified as the ones which can

provide acceptable robust performance are compared using the the gap-metric cri-

terion.

4.9.4 Comparison using the Gap-Metric Stability Criterion

The gap-metric stability margin as previously defined in section 4.6.2 calculates the

distance of the furthest plant from the nominal model that can be stabilized by the

controller at hand. In this part, this criterion is used to compare those controllers

that have shown promising robust performance properties, namely the LSDP 1DOF,

LSDP 2DOF and the µ controller.

Table 4.36 presents the stability margins.

Table 4.36: Robust Performance Analysis - Stability margins

Loops
Roll & Pitch

Rate Loop

Yaw Rate

Loop

Altitude

Rate Loop

LSDP 1 DOF 0.559 0.537 0.590

LSDP 2 DOF 0.412 0.604 0.682

µ 0.137 0.244 0.240

As can be seen the µ-controller offer the lowest stability margins for model uncer-

tainty. LSDP 1DOF and LSDP 2DOF provides good margins, in terms promising
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superior performance in the face of uncertainty. In the next and final part of this

chapter, the summary of the work performed in the chapter is presented.

4.10 Chapter - Summary

The work presented in the chapter is summarized below:

1. The MIMO model of the quadrotor presented in chapter 3 (3) is decoupled after

redefining the inputs and converted into SISO models. Numerical linearisation

is performed and a state space model is developed.

2. The S/T MSO problem is implemented and Algorithm #1 (4.4.4) is pro-

posed. SISO controllers are developed using this strategy while ensuring the

design specification are met for the nominal plant and that H∞ falls below

unity. Stability analysis is carried out in the both time and frequency domain.

3. 1 DOF LSDP is implemented and Algorithm #2 (4.6.1) is presented. SISO

controllers are developed alongside design weights and pre-filters, followed by

a stability analysis. Co-prime stability margins are calculated and satisfactory

performance is observed.

4. 2 DOF LSDP is implemented and Algorithm #3 (4.7.1) is presented. De-

sign weights alongside the controller weights are developed and a stability

analysis is performed and co-prime stability margins calculated. Satisfactory

performance is observed.

5. µ-synthesis is implemented and Algorithm #4 (4.8.2) is presented. Design

weights are developed alongside the controllers. A µ value of less than unity

is attained for all the controllers. A stability analysis is carried out and satis-

factory performance is observed.

6. Performance comparison between the 4 developed controllers are performed.

In the time domain analysis, comparison is also performed against the plant

controlled by a PID controller. The robust controllers performed markedly bet-

ter than PID controller for plants containing model uncertainty, with regards

to meeting design specifications. In the time domain step response analysis

the LSDP based controllers gave the best overall performances.

7. Comparisons are also performed based on the classical stability margins. Here

too the LSDP based controllers provide the best performances. A µ synthesis

based performance comparison is further performed. It was seen that when it

comes to RP, the MSO controller fails to limit the value of µ below unity at
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certain frequencies, while in all other cases the controllers successfully limit

the values of µ below unity, for the model uncertainty considered.

8. A comparison based on gap-metric stability criterion shows that LSDP based

controllers remain better equipped in the presence of model uncertainty than

µ controllers.

This brings us to the end of the chapter. In the next chapter more realistic multivari-

able robust controllers will be developed for the quadrotor, and plant performances

will be analyzed.
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Chapter 5

Multivariable Robust Controller

Designs

In this chapter the SISO robust controller design concepts from chapter 4 are ex-

panded upon to the multivariable domain. The theory and techniques from the the

Chapter 4 will be referred to, and augmented as required. The nonlinear model of the

quadrotor developed in Chapter 3 will be utilized to test the developed algorithms.

The chapter is composed of 6 sections following an approach similar to Chapter 4. A

general introduction towards multivariable robust control theory is presented in the

first section. In the subsequent three sections (sections 5.2, 5.3 and 5.4) the MSO,

LSDP and µ-controller MIMO controller development using the proposed algorithms

will be presented. In these sections the tracking attitude-altitude controller for the

quadrotor will be developed and the performances will be examined. In section

5.5, a performance comparison between the developed controllers will be presented

which will followed by the final section 5.6, where the ideas presented in the chapter

will be summarized.

5.1 Introduction

The main difference between the SISO and the MIMO model of the plant, is the

absence of directions in the former and that of its presence in the latter. The term

‘direction(s)’ of a MIMO model can be defined as the normalized column vector(s)

obtained from the singular value decomposition of the MIMO model’s frequency

response matrix (i.e, the singular vectors). Input directions influence the gain of a

system. As the input directions are varied, the gain of the system varies between

its maximum and minimum singular values. Alongside the direction and singular
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values of the MIMO model, the condition number of the system will also be briefly

introduced in the section. These characteristics will be evaluated based on the

MIMO quadrotor model developed in Chapter 3.

The singular values of a matrix G can be computed by the following expression:

σk(G) =

√
λk(G

H G) (5.1)

where λk represents the kth eigenvalue of (GH G) where GH represents the complex

conjugate transpose of G. The largest singular value of the matrix (represented by

σ̄) gives the maximum gain of the matrix in any given direction and the smallest

singular value (represented by σ) similarly gives the minimum gain in any given

input direction. As such, plotting the maximum and minimum singular values of

the quadrotor over the frequencies of interest gives us Fig. 5.1

Figure 5.1: The frequency dependent maximum and minimum singular values of the
quadrotor

The maximum and minimum singular values can be derived from the singular value

decomposition (SVD) of the system matrix at various frequencies. A SVD essentially

decomposes the system matrix G as follows:

G = UΣVH (5.2)

where U and V represents the output, and input singular vectors respectively. The

input directions corresponding to the maximum and minimum singular values are

first and last columns of V respectively. The matrix Σ in eq. (5.2) which is a

diagonal matrix, contains the singular values arranged in decreasing order. Σ for the
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quadrotor model at around the bandwidth frequency (see section 5.2.5) calculates

to below matrix:

Σ =



5.9172 0 0 0

0 5.9172 0 0

0 0 0.6782 0

0 0 0 0.4446


(5.3)

Alongside the interactions observed in the singular input and output directions, the

values from the diagonal of the Σ matrix can be used to measure if the system is

ill-conditioned. The condition number defined as σ̄/σ can be calculated as a way to

determine significance of large off-diagonal elements of the system matrix , alongside

effects of multi-variable uncertainty. The quadrotor model remains at and around

13.308 through out the frequency of interest.

In general, plants with condition number greater than 10 usually exhibit control

problems (such as those with an inverse based controller [197] as well as with mul-

tivariable parameter uncertainty [198]) although there are exceptions to this ([118]

pg. 82). With a condition number of 13.308, effects on performance due to unstruc-

tured (and to a certain extent, structured) uncertainty, can be expected during the

controller development.

Based on the insights obtained from the previous discussions, the development of

multivariable robust controllers are discussed in the following sections. The MIMO

quadrotor model will be used to test the developed frameworks.

5.2 Mixed Sensitivity Optimization

This section is further subdivided into two main parts. In the first part the theory

behind multivariable controller development will be introduced and in the second

part the controller development based on the MIMO quadrotor will be presented.

The theoretical background of mixed sensitivity optimisation explained in section 4.4

in the previous chapter directly translates over to its multivariable counterpart. The

differences in formulation of the H∞ problem, those while developing the design

weights as well as the differences in the performance criteria will be presented in the

following subsection.
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5.2.1 Multivariable controller development framework

The S/T problem described in section 4.4.1 will remain as the framework for devel-

opment of the robust control MSO problem. With the model presented in Fig. 4.3,

the P matrix remains the same (eq. (4.11)) and the cost function is given by

γ =

∥∥∥∥∥∥∥
WPS

WIT

∥∥∥∥∥∥∥
∞

(5.4)

where the infinity norm of the matrix transfer function is now calculated as a ex-

plained in section 4.3.1, namely the peak of the maximum singular value, σ̄ over the

frequency of interest.

Similarly with regards to developing the design weights, i.e. the sensitivity and com-

plimentary sensitivity weights, the steps presented in section 4.4.2 directly translates

to the multivariable domain with few changes. The concepts relating to eq. (4.13)

and eq. (4.14) remain the same.

Sensitivity weights and complimentary sensitivity weights turn out to be matrices

with transfer function weights along its diagonals. The complimentary sensitivity

weight matrix, which captures the model uncertainty (categorised as ‘Structured’

input multiplicative uncertainty in this case) is given by WI = diag{wI1 , wI2 , · · ·,
wIk} where k denoted the number of inputs. Here wIk is derived similar to eq. (4.15),

by calculating lIk(jω) as follows:

lIk(jω) = max
Gp∈

∏ σ̄(G(k, :)−1(Gp(k, :)−G(k, :))) (5.5)

with wIk developed such that wIk(jω) ≥ lI(ω)∀ω. For successful development of

the controller it is required that ‖WI‖∞ remain less than unity. The sensitivity

function WP , similarly is a matrix with transfer functions along the diagonal. To

develop WP , similar to its SISO counter part, we develop an outer framework that

resolves a nonlinear constrained optimisation problem. The cost function essentially

remains the same (see section 4.4.3). The optimisation framework both develops the

controller alongside the sensitivity weight. The algorithm is presented in the next

subsection.
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5.2.2 Algorithm to Develop the Multivariable MSO Con-

troller

Algorithm #5 can be followed to develop the sensitivity weights alongside the

multivariable optimal MSO controller.

Algorithm # 5 Sensitivity weight and Multivariable Controller design procedure
for S/T MSO

Inputs: Plant model G, design constraints, model uncertainty estimate.

Outputs: K, WI , WP .

1. Scale the given plant G according to the criteria described in section 3.3

2. Calculate the complementary sensitivity weight WI according to the procedure de-
scribed in section 5.2.1.

3. Depending on the form of WI (based on unstructured or structured uncertainty
that is used to model the system), define the appropriate form for WP (scalar or
diagonal matrix transfer function) and choose the initial parameters.

4. Define the cost function J and initialize the weights W1 through W4.

5. Develop the vector Φ which contains the following nonlinear closed loop functionals
1. Maximum overshoot, Mp

2. Rise time, tp
3. Settling time, ts
4. Maximum value of input, umax
5. gamma, γ
Here Mp, tp and ts, the step response characteristics and umax are the time domain
specifications while γ refers to the frequency domain specification. To constrain the
closed loop functionals calculated for every output, they are stacked together into a
single vector.

6. Define the frequency domain bounds εγ and time domain specifications limit vector
ε.

7. Implement the constrained non-linear optimization problem. This is achieved using
the OPTI MATLAB toolbox. The black box optimizer NOMAD is chosen as the
optimization routine. Constraints are defined based on εγ and ε for the vector Φ
that defines the closed loop functionals.

8. Depending on robustness requirements, modify the weights W1 through W4 to reach
the required performance levels.

9. If satisfactory performance specifications are not met, decrease the % uncertainty
considered while defining WI and relax the bounds defined in step 6 and retry step
7.

The algorithm might seem very much similar to that of Algorithm #1 (see sec-

tion 4.4.4), and in many ways it is. The differences between the two are in aspects

of the form of the weights WI and, WI , the structure of Φ, and the way the cost

function is calculated considering the various outputs from the system. For further
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details regarding other aspects concerning the algorithm see section 4.4.4.

5.2.3 Performance Analysis Criteria - Multivariable MSO

When it comes to analysing the performance of the controller in the frequency

domain the criteria described in Table 5.1 can be used.

Table 5.1: Performance Criteria

Performance Criteria Necessary Constraint

Nominal Stability N internally stable

Nominal Performance σ̄(N22) < 1; ∀ω

Robust Stability µ∆(N11) < 1; ∀ω

Robust Performance µ∆(N) < 1; ∀ω

For the definition of N see section 4.3.2. Here µ∆ represents the value of µ while

the uncertainty ∆ is structured. In addition to the frequency domain response

the time domain step response characteristics will also be analysed based on the

design specifications listed in section 3.5. In the following section these concepts

will be applied to design the multivariable attitude-altitude tracking controller for

the quadrotor model, and the performances will be analysed.

5.2.4 Multivariable MSO controller for the Quadrotor Ap-

plication

In this section the tracking attitude-altitude quadrotor controller developed based on

ideas discussed previously will be presented. The complimentary sensitivity weight,

the sensitivity weight, the closed loop bandwidth, the time and frequency domain

characteristics of the closed loop system will be explored.

5.2.4.1 Complimentary sensitivity weight

The uncertainty sources described in Table 3.2, being uncertainty in parameters,

time delays and model uncertainty due to linearisation, has been considered while

WI , the complimentary sensitivity weight was developed. As described earlier, the
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chosen structured multiplicative input uncertainty, leads to the following description

of the uncertain plant: Gp = G(1 + WI∆). The developed weight matrix is given

below:

WI =



1.933s+ 34.17

s+ 57.2
0 0 0

0
1.995s+ 41.11

s+ 57.88
0 0

0 0
1.989s+ 17.24

s+ 49.44
0

0 0 0
1.982s+ 42.11

s+ 57.82


The weight development was completed by lowering the uncertainty (see Table 5.2)

for example in the thrust coefficient ct to 20 % (from 50 %) and lowering uncertainty

in mass to 20 % (from 50 %), among others. This adjustment had be to made inorder

to develop a weight with an infinity norm less than unity.

While this might seem like a hack, what this essentially means in the real world, is

that we can only permit for the model to have, say 20% uncertainty in mass and

thrust coefficient, if we are hoping to design a robust MSO controller that upholds

the required design standards. Hence rather than a hack, it turns out to be a way

in which the nature of the physical plant, shines light on the constraints it wields

on the achievable limits of robustness, on all possible MSO controller designs.

5.2.4.2 Optimisation Problem

The formulation of the optimisation problem remains the same as that given in

4.4.6.2, except for γ which represents the stacked cost function given in eq. (5.4).

The new objective w.r.t γ would be to minimize its magnitude instead of constraining

it to less that unity. The optimisation problem will be used in the development of

the sensitivity weight and the controller, which is presented in the next section.

5.2.4.3 Sensitivity weight choice and the MSO controller

As noted in step 9 of Algorithm #5, the % uncertainty is needs to be decreased as

required so that the design constraints are met. This means, the developed controller

can meet the design requirements only when model uncertainty is below the lowered

new values. As such, for the development the new uncertainty values that were used

are listed in the Table 5.2:
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Table 5.2: Uncertainty Sources

Parameters % Uncertainty Range

IXX , IY Y 0.04339 ±10% kg m2 0.0391 ≤ IXX , IY Y ≤ 0.0477

IZZ 0.0705 ±10% kg m2 0.0634 ≤ IZZ ≤ 0.0775

m 1.27 ±20% kg 1.0160 ≤ m ≤ 1.5240

dr 0.194±20% m 0.1552 ≤ dr ≤ 0.2328

ct 0.1 ±20% 0.0800 ≤ ct ≤ 0.1200

cp 0.045 ±20% 0.0360 ≤ cp ≤ 0.0540

tD 0.004 ±10% s 0.0036 ≤ tD ≤ 0.0044

Variables Range for Model Linearisation

φi, θi, ψi -10↔ 10 (deg)

φ̇b, θ̇b, ψ̇b -0.1↔ 0.1 (rad/s)

ẋi, ẏi, żi -0.25↔ 0.25 (m/s)

u1, u2, u3, u4 4490↔ 4890 (RPM)

The designed sensitivity weight WP is given below:

WP =



0.356s+ 10.03

s+ 0.187
0 0 0

0
1.969s+ 53.05

s+ 0.09886
0 0

0 0
0.06848s+ 2.375

s+ 0.0482
0

0 0 0
0.1426s+ 3.489

s+ 0.02092


The controller itself is presented in Appendix D.2. The resulting closed loop gave

the following time and frequency domain specifications with the linear plant model.

Table 5.3: Time response characteristics and frequency domain specification of the
linear closed loop MIMO model

Closed Loop

Constraints

Roll

Rate

Pitch

Rate

Yaw

Rate

Altitude

Rate

% Overshoot 0 0 1.779 1.140

Rise Time (s) 0.105 0.041 0.489 0.349

Settling Time (s) 0.175 0.078 0.739 0.540

umax 0.999

γ 1.989
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Figure 5.2: Step response of the nominal multivariable MSO controlled plant

The developed controller performs well in terms of achieving the desired performance

for the nominal plant as can be seen in the nonlinear plant response in Figures 5.2

and 5.3. The orange curve in Fig. 5.2 represents the response to the reference input

alongside a time delay of two sample units and a zero mean noise signal with a

standard deviation equal to 30% of the maximum reference value, injected at the

output of the plant. The light blue curve in Fig.5.3 shows the corresponding inputs.

Further experiments showed that the system remains stable even when the standard

deviation of the noise signal is increased to 50% and time delay is increased to 3

sample times (0.03s). The yaw and altitude rates showed excellent resistance to

both the noise and time delay disturbance.

(Note: The differences in elements of the sensitivity function WP (1, 1), and WP (2, 2),

corresponding to the roll and pitch rates, and the subsequent variation/differences

observed in the nature of roll and pitch rate plant responses in Fig. 5.2, can be
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attributed towards the nature of the path taken by the optimizer while solving the

nonlinear optimization problem. Similar weights and hence symmetric reactions can

be elicited from the optimizer if the upper and lower bounds of the parameters of

both WP (1, 1), and WP (2, 2) are identically tightened.)

Figure 5.3: Control inputs, the angular velocities of individual motors in response
to reference signal

The response of the plants with model uncertainty is presented in Fig. 5.4. The plant

is subjected to the same complex manoeuvre, that was initially presented in sec-

tion 4.4.6.10. (For the explanation for the various shades please see section 4.4.6.10).

While for the nominal plant, satisfactory performance and disturbance rejection is

achieved, in the case with model uncertainty, the altitude rate response appears to

lack the integral action. This issue can be resolved in two ways.

The traditional way to approach the problem is by slightly tuning the altitude rate
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integrator parameter (parameter A(9,9) in the controller state matrix manually. The

second way to approach the problem would be by referring to Step 9 in Algorithm

#5. The constraint parameters are slightly relaxed until sufficient integral action is

obtained in the response.

Figure 5.4: The response of the Multivariable MSO based plant with model uncer-
tainty to the complex manoeuvre reference command- initial attempt.

While the issue is resolved this comes at the expense of 32.41 % overshoot and a set-

tling time of 1.493 seconds for the nominal plant response, and the extra oscillatory

dynamic at the beginning of the simulation.

The Inputs to the system i.e the motor RPM is presented in the Fig. 5.6 and the non-

linear plant step response characteristics after the final tuning is listed in Table 5.4.

We have satisfactory performances for the uncertain plant models. The nonlinear

plant response characteristics are, except for Altitude rate overshoots, which had

moved past the hard limit set earlier in section 3.5.
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Figure 5.5: Multivariable MSO based plant response to the complex manoeuvre
reference signal- after tuning

Although the loop maintains nominal as well as robust stability, relaxing the limits

set in design specifications (section 3.5) resulted in a single instance of constraint

violation. This violation is compensated on the other hand through an enhanced

the integral action in the altitude rate the system as we have seen above.

From the experiments conducted and observations made it was concluded that uncer-

tainty in craft mass makes it difficult to design controllers that can guarantee robust

performance, while simultaneously maintaining strict performance standards.
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Figure 5.6: Multivariable MSO controlled plant rotor responses to the complex
manoeuvre reference signal.

Table 5.4: Closed loop time domain specifications after controller tuning

Response

Characteristics

Roll

Rate

Pitch

Rate

Yaw

Rate

Altitude

Rate

Rise Time (s) 0.090 0.047 0.526 0.284

Settling Time (s) 0.149 0.081 0.728 1.493

Peak 0.250 0.248 0.505 1.986

Peak Time (s) 0.121 0.150 0.566 0.760

% Overshoot 0.000 0.000 0.934 32.413

Undershoot 0.000 0.000 0.237 0.000
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In the next section the performance criteria listed in Table 5.1 will be presented.

The frequency dependent values of µ calculated for determining nominal stability,

robust stability and robust performance will also be presented.

5.2.4.4 Performance criteria

The performance criteria, calculated as explained in 5.1 are listed out in Table 5.5.

For nominal performance and robust stability, we have have the infinity norm of µ

calculated over the frequency spectrum of interest to be below unity, while that of

the robust performance falls above unity.

This can further be observed in the µ-frequency plots presented in Fig. 5.7. As

can be seen the values of µ calculated for robust performance falls above unity (the

black dashed line) at steady state frequencies.

Table 5.5: Robust Performance Analysis

Nominal

Performance

Robust

Stability

Robust

performance

µ 0.489 0.49 2.42

As previously observed in 4.6 where in SISO MSO could fail to strictly guarantee

RP, in MIMO systems MSO similarly cannot also guarantee to push µ values to

below unity across the entire frequency spectrum.

Figure 5.7: Frequency dependent µ-plots
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In the following section we look at the closed loop bandwidth properties of the

system.

5.2.5 Closed loop bandwidth

Closed loop bandwidth in multivariable systems, as presented in [118] (pg. 81) can

be defined as the frequency where σ̄(S) crosses 0.707 from below. This definition

also translates as to the frequency where σ crosses unity.

Figure 5.8: Multivariable MSO system: Singular value plots of Sensitivity and Loop
Function

The singular values of sensitivity function (S) and the loop function (L = GK) are

plotted against frequency in Fig. 5.8. The dashed line indicates the frequency where

the sensitivity function crosses 0.707 from below. The bandwidth calculates to 2.56

rad/s (0.41 Hz). This indicates that while designed controller is resistant to model

uncertainty arising from parametric, time delay and irregularities in linearisation,

the quadrotor would be effective to reference commands that have a time period

of about 2.4 seconds and slower (0.41 Hz). While effectiveness can be expected at

higher frequencies in certain directions, as we can observe that σ̄(GK)) crosses unity

at 27 rad/s or 4.3 Hz (time periods of 0.23 seconds and above), the overall effective

time period of reference commands tends to be around 2 to 2.4 seconds.
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5.2.6 Conclusion of multivariable MSO controller design

This concludes the end of multivariable MSO controller design and analysis. The sec-

tion details the formulation of a framework (Algorithm #5- see section 5.2.2) that

can generate optimal (or suboptimal as needed) controllers alongside the controller

weights. The designed quadrotor attitude/altitude controller, while remaining sub-

optimal (as µ falls above unity for robust performance), gives a satisfactory responses

for models with uncertainty. The bandwidth indicates that the closed loop system

will react robustly to slow commands (i.e. those with a time period of around 2.5

seconds). This conservative nature is expected owing to the coupled nature of the

plant outputs controlled by a multivariable controller that strives to maintain step

response constraints alongside robustness. In the next section we will look at the

design and implementation of 1 DOF LSDP multivariable controllers.

5.3 Loop Shaping Design Procedure - 1 DOF

In this section the development of the multivariable robust controller using the

loop shaping procedure single degree of freedom approach is discussed. The design

procedure is based on a technique presented in [199], where a H∞ controller is

cascaded with a PID controller for stabilizing an open loop unstable system. The

technique employed reduces the complexity of overall optimization problem, there

by ensuring convergence alongside the development of a satisfactory controller.

The section is divided into two main parts. In the first part the controller devel-

opment framework which is based on the concepts presented in section 4.6 will be

briefly explained. In the second part, the developed multivariable controller for the

quadrotor will be presented.

5.3.1 Multivariable controller development framework

Similar to the MSO multivariable desgin in section 5.2.4, the concepts from the

SISO LSDP theory (see section 4.6) translates directly to the multivariable domain

with few changes. The H∞ norm of the cost function γ given in equation eq. (4.39)

becomes σ̄ of the cost function matrix.

The weights W1, and W2 are matrices with transfer functions and simple scalars

arranged along its diagonals respectively. The prefilter KP is also a matrix with

simple scalars arranged along the diagonal.
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Unlike the design presented in SISO LSDP 1DOF controller development, in the

weight W2, transfer functions are replaced by simple scalars. In the initial experi-

ments with transfer functions along the diagonal of W2, the resulting optimization

problem was too complex for the optimizer to resolve satisfactorily. The new tech-

nique while it would require the control engineer to further design the the cascaded

PI controllers, reduced the overall complexity of the optimization problem (as well

as the overall order of the multivariable controller), resulting in a satisfactory con-

troller.

The transfer functions along the diagonal of W1 takes the format from eq. (4.40). In

the next subsection the algorithm to be followed to develop the optimization frame-

work which leads to the development of the multivariable controller is presented.

5.3.1.1 Algorithm to Develop the Multivariable LSDP 1 DoF Controller

The Algorithm #6 can be used to develop the multivariable controller alongside

the loop shaping design weights and the prefilter.

Algorithm # 6 Design weights, prefilter and Multivariable Controller development
algorithm for LSDP 1DOF

Inputs: Plant model G, design constraints.

Outputs: K, W1, W2, KP.

1. Scale the given plant G according to the criteria described in section 3.3

2. Define the appropriate form of the designs weights W1, W2 and the prefilter KP

and initialize the weights.

3. Choose the magnitude of the γmin

4. Follow step 4 through 7 from Algorithm #2 (on page 85).

5. If the optimizer fails to converge, linear constraints can be relaxed and the form
of W1 can be changed (if required), after which step 4 can be repeated. As the
optimizer achieves convergence, these constraints can tightened and brought back
to the required values.

Unlike the SISO case, in the multivariable optimization framework the nonlinear

constraints (some of which are themselves vectors) are stacked together to form

a column vector with 17 rows. The upper and lower bounds are then assigned

depending on a) the constraint, and b) the loop that is being considered. While

developing the cost function, the impact of various outputs on the system can be

separated (if required), and priorities assigned by using separate weights. For more

details regarding other aspects concerning the algorithm, see section 4.4.4
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While Algorithm #6 develops the multivariable controller, the 4 PI controllers

(corresponding to each of the output) that are cascaded with it are tuned using

the SIMULINK PID Tuner [181]. The tuning process is relatively straight forward

and can be performed with ease after the LSDP controller is designed (see sec-

tion 4.4.6.9). The controllers are tuned such that the bandwidth of the closed loop

complies with that of design requirements (section 3.5) and required closed loop

stability margins are achieved.

5.3.2 Performance criteria

The gap metric stability criterion introduced in section 4.6.2 will be used to analyse

the effectiveness of the multivariable controller. If we have the value of εmax >0.25,

then the design will be considered successful.

Alongside the stability margin criteria, the time domain specifications of the nominal

closed loop needs to be within the required limits (as noted in section 3.5). As a

part of further analysing the system, the frequency dependent µ values will also be

calculated and plotted.

5.3.3 Designing the multivariable LSDP 1DoF controller

This section presents the developed prefilter and controller weights, the developed

PI controllers alongside the results obtained from subjecting the system to step

inputs and complex manoeuvres. The time domain characteristics, the closed loop

bandwidth and the frequency domain characteristics will also be explored here.

5.3.3.1 Controller weights, Prefilter and the PI controllers

While in MSO we require to capture uncertainty using the complimentary sensi-

tivity weight, in LSDP the co-prime factor uncertainty representation enables the

designer to directly develop the controller that can provide the maximum stability

margins against the uncertainty. As such following Algorithm #6, the following

weights are developed for the tracking controller, for the quadrotor model presented
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in section 3.2.

W1 =



216.9s+ 3880

200.6s+ 2387
0 0 0

0
1722s+ 2133

606.6s+ 927.1
0 0

0 0
5.139s+ 185.1

2.964s+ 86.07
0

0 0 0
2.115s+ 330.7

1.977s+ 151.4



W2 =



0.2733 0 0 0

0 0.3260 0 0

0 0 0.4537 0

0 0 0 0.3550


, Ks0 =



0.9913 0 0 0

0 0.9782 0 0

0 0 1.0208 0

0 0 0 1.0137


.

The form of the tuned PI controller as well as the values of the constants are pre-

sented in Table 5.6.

Table 5.6: Proportional and integral constants of the cascaded PI controller

P
(
1 + I · Ts

1

z − 1

) Roll

Rate

Pitch

Rate

Yaw

Rate

Altitude

Rate

P 1.676 0.709 6.445 2.438

I 0.305 0.240 2.025 3.893

The LSDP controller itself is presented in Appendix D.2.
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Table 5.7: Closed loop time domain specifications after controller tuning

Response

Characteristics

Roll

Rate

Pitch

Rate

Yaw

Rate

Altitude

Rate

Rise Time (s) 0.031 0.083 0.161 0.201

Settling Time (s) 0.062 0.143 0.626 1.407

Peak 0.259 0.248 0.562 1.835

Peak Time (s) 0.060 0.380 0.270 0.500

% Overshoot 3.747 0.00 12.439 22.32

Undershoot 0.00 0.00 0.221 0.039

5.3.3.2 Closed loop time domain characteristics

The time and frequency domain characteristics of the developed controller plant

model are presented next. The true nonlinear system is subjected to step inputs

which are exactly the same inputs as those presented in section 4.4.6.6, except for

altitude rate where the square wave has a length of 1.5 seconds (as opposed to

1.25s). The time domain closed loop response characteristics are presented in Table

5.7. The peak values should be seen in the context of the reference signal (see page

94 for details).

As observed in Table 5.7 acceptable performances in terms of meeting the design

constraints have been achieved. The actual responses to these setpoints are shown

in Figures 5.9 (outputs) and 5.10 (inputs).
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Figure 5.9: The outputs of the 1 DoF LSDP-PI controlled nonlinear plant.

In Fig. 5.9 the orange curve represents the response to the reference input alongside

the presence of unit delay and zero mean noise signal with a standard deviation

equal to 15% of the maximum reference value, injected at the output of the plant to

simulate measurement noise. As can be observed the roll and pitch rate loops are

relatively more susceptible to noise signal, compared to the yaw and altitude rate

loops.

Further experimentation showed that, the yaw and altitude rate loops are resistant

towards both greater time delay and larger noise, while the pitch and roll rate loops

appear vulnerable especially to stronger noise signals.

Fig. 5.10 presents the motor inputs in response to the reference setpoint. The

simulation conducted in the presence of the injected noise signals are indicated using

the light blue curves. The signals can be seen to reach the saturation limits although

the controller maintains stability and the system offers acceptable performance.
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Figure 5.10: Motor inputs of the LSDP-PI controlled system in response to the step
commands

The performance of the plant in the presence of parameter uncertainty is explored

next. The parametric uncertainty source ranges are those presented in first list

of Table 5.2. The plant is subjected to the complex manoeuvre presented in sec-

tion 4.4.6.10.

The response on the plants with parametric uncertainty is presented in Fig. 5.11.

For details regarding the meanings of the colours used, refer section 4.4.6.10. As

observed in the figure, the plants are able to track the step inputs closely. An

oscillatory dynamic is observed at the beginning of the simulation which dies out

fast. The dynamic has its largest magnitude in the altitude rate loop. Overshoots

are observed in pitch, yaw and altitude rates loops.
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Figure 5.11: The response of the Multivariable LSDP 1-DOF based plant with model
uncertainty to the complex manoeuvre reference command.

The response of the uncertain plants to the reference input is observed in Fig. 5.12.

The light blue dotted line represents the motor RPM saturation limits. Spikes can

be observed in the system response corresponding to the points where the inputs

hits this saturation limit.

In the following section the performance criteria will be examined in the context of

the developed controller. The frequency domain characteristics of the system will

also be analyzed.
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Figure 5.12: Multivariable LSDP 1-DOF controlled plant rotor responses to the
complex manoeuvre reference signal.

5.3.3.3 Performance

The normalized co-prime stability margin of the closed loop system controlled by

the MIMO LSDP controller is given in Table 5.8. As noted earlier in section 4.6.3.6,

the co-prime stability margin provide the limit of co-prime factor uncertainty that

the system can accommodate, where the co-prime factor uncertainty is the distance

measure in gap metric criterion from the nominal model to the uncertain model.

As observed in Table 5.8, values of above 0.25 are achieved, hence the designs are

considered to successful from the point of view of robustness.
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Table 5.8: Coprime stability margin and classical gain & phase margins

Response Characteristics MIMO System

Normalized Coprime Stability Margin 0.672

Classical SM Lower Limit 5.106

Classical PM Lower Limit (deg) 84.515

The closed loop stability margins of individual loops after the tuning of the PI

controllers have been completed are listed out in Table 5.9.

Table 5.9: Closed loop stability margins

Response

Characteristics

Roll

Rate

Pitch

Rate

Yaw

Rate

Altitude

Rate

Gain margin (dB) 11.2 16 12.1 21.7

Phase margin (Deg) 62.4 75.5 55 63

Acceptable stability margins can be observed in the loops. The values of the struc-

tured singular value calculated using the weights derived in section 5.2.4.1 and sec-

tion 5.2.4.1, and plotted across the frequency spectrum, is presented in Fig. 5.13.

Figure 5.13: Frequency dependent µ-plots
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It can be observed that the curves lie below unity except for that of robust per-

formance, which while at low frequencies fall above unity. While LSDP controller

proves effective against co-prime factor uncertainty, the controller by itself doesn’t

strive towards constraining the singular structured value concerning performance to

below unity.

The peak values of the curves are presented in Table 5.10. As can be seen, the

peak nominal and robust performance µ values of the system, as controlled by the

multivariable controller falls below unity while, (as noted above) that of the robust

performance falls above unity.

Table 5.10: Robust Performance Analysis

Nominal

Performance

Robust

Stability

Robust

Performance

µ 0.44 0.58 1.8

In the next subsection the closed loop bandwidth of the system will be examined.

5.3.3.4 Closed loop bandwidth

Using the bandwidth definitions presented in 5.2.5 the closed loop bandwidth of the

system as controlled by the LSDP multivariable controller is calculated based on

the curves in Fig. 5.14.

Figure 5.14: Multivariable LSDP 1-DOF system: Singular value plots of Sensitivity
and Loop Function
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The bandwidth, i.e. the frequency where σ̄(S) crosses 0.707 from below, calculates to

2.866 rad/s (0.456 Hz). This indicates that the quadrotor would be most effective to

reference commands that have a time period of about 2.2 seconds and slower. Faster

response can be expected in certain directions as we can see σ̄(GK) crosses unity

at 47.91 Hz (time periods of 0.13 s and above), but overall effective time period for

reference commands can be noted to be around 2 seconds.

5.3.4 Conclusion

This brings to the end of the LSDP 1 DOF implementation and formulation of the

framework Algorithm #6 (5.3.1.1), that can be used to develop optimal robust

controllers alongside design weights. As presented, the hybrid LSDP 1 DOF - PI

provides satisfactory performance with regards to reference tracking. The µ values

similar to what we observed with the Multivariable MSO controller lie below unity

for NP and RP but not for RP in lower frequencies. From calculating the bandwidths

we can observe the fact that the system would respond robustly to input commands

that have a time period of around 2 seconds.

The implementation of a framework, as well as the development of a multivariable

controller for the 2-DOF LSDP for the quadrotor model is not presented here in the

study. A framework for the 2-DOF can be based on Algorithm #3 (4.7.1) and

developed for the multivariable controller in a manner very similar to how Algo-

rithm #2 was extended to Algorithm #6. In the next section the development

of the multivariable µ controller will be examined.

5.4 µ-Synthesis

In this section the design procedure for the development of the multivariable µ

controller will be presented. The section is divided into two parts. In the first part

the theory behind the controller development will be introduced. This is mainly an

extension of the µ-controller concepts explained previously in section 4.8.

In the second part, the multivariable quadrotor µ-controller developed based on

the concepts discussed will be presented. The performance of the controller will be

analysed and response to step inputs will be examined.

177



5.4.1 Multivariable controller development framework

Similar to the SISO counter part, the MIMO µ-controller development has similar-

ities to the multivariable MSO controller development procedure. Developing the

controller depends on appropriately selecting the sensitivity and complimentary sen-

sitivity weights. The complimentary sensitivity weight wI is developed as explained

in section 5.2.1.

The sensitivity weight is derived alongside the optimal controller which stabilizes

the control problem from Fig. 4.3 while satisfying equations 4.66 and 4.67. To

develop this weight alongside the controller an external framework is introduced

which resolves an optimization problem while ensuring the time and frequency do-

main performance constraints are met. The D-K iteration algorithm which develops

the µ-controller is placed inside this framework. The algorithm to develop the frame-

work is presented in the next subsection.

5.4.2 Algorithm to Develop the Multivariable µ-Controller

Algorithm #7 can be used to develop the µ-controller in the multi-input multi-

output plant.

Algorithm # 7 Sensitivity weight and Multivariable Controller design procedure
for µ-synthesis

Inputs: Plant model G, design constraints, model uncertainty estimate.

Outputs: K, WI , WP .

1. Scale the given plant G according to the criteria described in section 3.3

2. Calculate the complementary sensitivity weight WI according to the procedure de-
scribed in section 5.2.1.

3. Define the appropriate form of elements of the diagonal matrix WP and choose the
initial value of the parameters.

4. Define the cost function J and initialize the weights W1 through W4.

5. Develop the vector Φ which contains the following nonlinear closed loop functionals
1. Maximum overshoot, Mp

2. Rise time, tp
3. Settling time, ts
4. Maximum value of input, umax
5. µ(N)
Here Mp, tp and ts, the step response characteristics and umax are the time domain
specifications while µ(N) refers to the frequency domain specification. To constrain
the closed loop functionals calculated for every output, they are stacked together
into a single vector.

6. Define the frequency domain bounds εµ and time domain specifications limit vector
ε.
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7. Implement the constrained non-linear optimization problem. This is achieved using
the OPTI MATLAB toolbox. The black box optimizer NOMAD is chosen as the op-
timization routine. Constraints are defined based on εµ and ε for the corresponding
elements of vector Φ, that defines the closed loop functionals.

8. Depending on robustness requirements modify the weights W1 through W4 (in the
cost function J ) to reach the required performance levels.

9. If satisfactory performance specifications are not met, decrease the % uncertainty
considered while defining WI and relax the bounds defined in step 6 and retry step
7.

Comparing Algorithm #7 with Algorithm #4, many similarities can be noted,

specially with regards to how the overall optimization problem is formulated. The

differences mainly come from the weights WI and WP , the structure of Φ, the

calculation of the cost function and the consideration of outputs from the system.

For further details concerning other aspects of the algorithm see section 4.8.2.

The performance analysis criteria defined in section 4.8.3 for the SISO system, can

be directly applied to the MIMO case and hence is not be restated. It can be noted

that N11, as well as other components of N in eq. (4.68) for the MIMO case, would

be matrices as opposed to scalars in the SISO case.

This brings us to the end of the controller development description. In the following

section these developed concepts will be applied to the multivariable quadrotor

model.

5.4.3 Multivariable µ-controller for the Quadrotor Applica-

tion

The tracking attitude-altitude controller developed based on concepts presented in

the previous section, will be analyzed and responses of the plant to specific in-

put signals presented, in this section. The complimentary sensitivity weight, the

sensitivity weight, the closed loop bandwidth, and the time and frequency domain

characteristics will be analyzed.

5.4.3.1 Complimentary sensitivity weight

While developing the complimentary sensitivity weight, the uncertainty values pre-

sented in Table 5.2 are considered to begin with. As listed in step 9 of Algorithm

#7, as uncertainty is decreased until the constraints given in section 3.5 are fully

met. The parameter uncertainty range from Table remain the same, except for mass
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and thrust coefficient ct. The uncertainty of both these parameters are reduced to

zero in order to satisfy the constraints.

Uncertainty in quadrotor parameter values, w.r.t to time delay and uncertainty due

to linearization are absorbed by the complimentary sensitivity weights. Considering

multiplicative input uncertainty and the uncertain plant Gp = G(I + WI∆), the

following complimentary sensitivity weight is developed.

WI =



0.9859s+ 15.15

s+ 56.37
0 0 0

0
0.985s+ 11.77

s+ 53.16
0 0

0 0
0.984s+ 15.07

s+ 56.34
0

0 0 0
0.9851s+ 12.05

s+ 53.45


Having developed WI the next step is to develop the sensitivity weight and the

controller. Algorithm #7 will be used for this purpose.

5.4.3.2 Optimization problem, the sensitivity weight and the µ-controller

The framework of the optimization problem remains the same (see section 4.4.6.2),

and the additional changes to this optimization problem w.r.t developing the µ-

controller comes from section 4.8.4.2.

The sensitivity weight that is developed by following Algorithm #7 is given below:

WP =



−6.482s− 1671

s+ 100000
0 0 0

0
53.77s− 1874

s+ 99960
0 0

0 0
0.148s+ 3144

s+ 21150
0

0 0 0
−0.01026s− 36.51

s+ 225.1



The controller itself is presented in Appendix D.2. In the next section the time

and frequency domain characteristics of the non-linear closed loop system will be

presented.

5.4.3.3 Closed loop characteristics

The time and frequency domain characteristics of the closed loop plant is analysed

in this section. In Table 5.11 the time domain characteristic of the closed loop non-
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linear plant is presented. The plant is subjected to step inputs (see section 4.4.6.6)

and responses calculated.

Table 5.11: Closed loop time domain specifications after controller tuning

Response

Characteristics

Roll

Rate

Pitch

Rate

Yaw

Rate

Altitude

Rate

Rise Time (s) 0.464 0.453 0.515 0.634

Settling Time (s) 0.646 0.631 0.669 0.855

Peak 0.249 0.248 0.501 1.464

Peak Time (s) 0.990 0.990 0.990 0.990

% Overshoot 0.000 0.000 0.189 0.000

Undershoot 0.000 0.000 0.000 0.144

As observed acceptable responses in terms of the meeting the design constraints,

have been achieved.

The actual response of the system to these step input are presented in Figures 5.15

and 5.16. In Fig. 5.15, the red curve represents the response of the nonlinear model

and the orange curve represents that response in the presence of a time delay equal

to the duration of three sample times, alongside the presence of a zero-mean noise

signal, with a standard deviation equal to 50% of the maximum reference value,

injected at the output of the plant.

As can been seen from Fig. 5.15, the µ-controller offers excellent noise and time

delay rejection capabilities. Further experiments with noise signals with a higher

% standard deviation, showed that the controller can tolerate noise signals with a

standard deviation upto around 70% of the reference value and a delay of three

sample times.

(Note: In subsequent simulations it was identified that in case the it requires that

the system needs to exhibit a higher rise time and faster settling times, it could be

achieved by introducing a cascaded proportional controller before the µ-controller.

While this hybrid controller can speed up the closed loop performance, it comes at

the cost of the presences of oscillations in the signal. This isn’t unexpected as the

higher bandwidth offered by the hybrid controller lets through a portion of the high

frequency noise signal into the system.
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Hence while introducing the cascading proportional controller might improve the

performance (in terms of desired closed loop characteristics) of uncertain plant mod-

els, this comes at the cost of decreased noise rejection capabilities. The control en-

gineer will need to find the balance between uncertain plant performance and noise

rejection capabilities as required, while tuning the proportional controller.)

Figure 5.15: Step response of the multivariable µ-controller based system

Fig. 5.16 presents the responses of the motors to the reference input command. The

dark and light blue curves represents the responses from the systems without and

with the noise/time delay injection. The motor responses are satisfactory with no

oscillations or overshoots.

182



Figure 5.16: Forces exerted by individual motors in response to reference signal

The performance of the uncertain plant models, that is, those plants with the un-

certainty in parameters are examined next. The uncertainty source ranges are those

present in Table 5.12, and the plant subjected to the complex manoeuvre of sec-

tion 4.4.6.10.

Table 5.12: Uncertainty Sources

Parameters % Uncertainty Range

IXX , IY Y 0.04339 ±30% kg m2 0.0304 ≤ IXX , IY Y ≤ 0.0564

IZZ 0.0705 ±30% kg m2 0.0493 ≤ IZZ ≤ 0.0916

dr 0.194±30% m 0.1358 ≤ dr ≤ 0.2522

cp 0.045 ±30% 0.0315 ≤ cp ≤ 0.0585

As observed from Fig.5.17 oscillations are absent throughout the responses. The

response are also characterised by the absence of overshoots. Pitch and Roll response
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fail to the reach the peak reference input set point, while altitude rate response can

be observed to have recorded the smallest spread.

Figure 5.17: The response of the Multivariable µ-controller based plant with model
uncertainty to the complex manoeuvre reference command.

The inputs associated with the uncertain plants are presented in Figure 5.18. Similar

to the the plant response (observed in Fig. 5.17), the oscillations are absent in the

associated inputs. The inputs also do not reach the point of saturation (6500 RPM).

(Note: The input plots are devoid of the characteristic spread observed in those

plots from previous control designs. This is due to the absence of uncertainty in

mass considered during the simulations.)
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Figure 5.18: Multivariable µ-controller controlled plant rotor responses to the com-
plex manoeuvre reference signal.

In the next section the performance of the plant with respect to the criteria men-

tioned earlier (see end of section 5.4.2) will be examined.

5.4.3.4 Performance

In this section the performance of the plant will be analysed. The values of µ

calculated based on the weights presented in section 5.4.3.1 and section 5.4.3.2, and

based on a ∆ allowed to take both real and complex values, plotted across the

frequency spectrum is presented in Fig. 5.19.

Compared to the corresponding plots of multivariable MSO and LSDP (Figures 5.7

and 5.13 respectively), it can be observed that the controller brings the values of µ

to below unity.
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Figure 5.19: Frequency dependent µ-plots

The peak values of the curves are presented Table 5.13.

Table 5.13: Robust Performance Analysis

NP RS RP

µ 0.27 0.27 0.54

As explained in section 4.8, the controller attempts to bring the µ values to below

unity inorder to ensure robust performance and stability of the plant in the presence

of uncertainty. The D-K performance routine within the optimization framework,

in this case has successfully achieved this task.

Using the closed loop bandwidth definitions from section 5.2.5, the bandwidth of

the system as controlled by the µ-controller, is calculated based on the plots in Fig.

5.20. The bandwidth calculates to 1.86 rad/s (0.296 Hz). This would mean that

the controller, despite model uncertainty will be able to effectively follow reference

commands which have a time period of 3.4 seconds or higher. While this might

seem slow, the controller this time period can guarantee robust performance against

uncertainties.
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Figure 5.20: Multivariable µ-controller system: Singular value plots of Sensitivity
and Loop Function

It can be observed that σ̄(GK) crosses unity at 4.25 rad/s (0.676 Hz), corresponding

to a a reference command time period of 1.5 seconds. Hence faster response can be

expected in certain directions, while an overall effective time period for reference

command can be expected to be around 3.4 seconds.

5.4.4 The µ-synthesis controller development - Conclusion

This concludes the development of the µ controller. The framework to generate the

controller and the design weights are explained through Algorithm #7 (5.4.2). As

can be seen from 5.20, while the values of µ fall below unity for NP, RS and RP this

comes at the expense of developing a complimentary sensitivity weight that do not

consider uncertainty in the mass and thrust coefficient. In light of the performance

analysis done on MSO and LSDP controllers in the previous sections we can assume

that uncertainty in mass, and thrust coefficient of the craft restricts the overall

system from achieving robust performance i.e., to limiting µRP below unity.

The µ-controller achieves a overall system bandwidth of 1.84 rad/s which translates

to an effective response to signal with a time period of around 3.4 seconds. This

once again points to the conservative nature of the controller owing to the fact that

in the presence of the considered uncertainties it guarantees complete robustness of

the plant.

(Note: The uncertainty in mass and thrust coefficient can be included if need be,

187



but that would result in a µRP ≥ 1. This is a characteristic of the problem which

we are trying to solve. There are other studies that have come across the same

problem. Consider the study [200], where a µ-controller is developed to control an

X-fighter plane with mass uncertainty of ±10%. The developed controller while it

was able to provide stability, it could constraint the value of µ to only about 1.87.

This meant the controller will not be able to guarantee robust performance.

This reminds us that, sometimes the nature of the problem physically poses restric-

tions on the performance, that the controller can achieve in the presence of model

uncertainty. The following two points can be inferred from the work presented on

µ-controller development using the proposed framework.

1. Theoretically it is possible to isolate those parameter uncertainties that can

contribute significantly towards performance deterioration of the plant.

2. Optimal robust controllers can be developed in spite of constraints imposed

by the physical characteristics and model uncertainties of the plant, using the

proposed framework.

Depending on requirements, i.e, say if it is okay for the value of mu to be ≤ 2 as

opposed to ≤1, as many a time performance requirements in practical problems may

not be as stringent as it had been in this study, the proposed framework would act

as excellent tool to develop robust optimal controllers.)
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5.5 Performance comparison of the developed ro-

bust controllers

In this section the performance of the 3 multivariable robust controllers, developed

in the previous sections are compared. The comparisons are performed in a manner

similar to those presented in section 4.9. Plants with parameter uncertainty are

developed using the uncertainty description from Table 5.12. The section is divided

into 4 parts. In the first part, various aspects of the time domain response of the

plants for each of the different systems are compared. The response of the uncertain

plants alongside the nominal plant is presented in each case.

In the second part, the closed loop bandwidth is defined in terms singular values of

the sensitivity function (σ̄(S)) and the loop function (σ̄(GK) and σ(GK)). Similar

to the first part, the band widths of the uncertain and the nominal plant are pre-

sented. In the third section, a comparison is made based on values of µ calculated

for nominal performance, robust stability and robust performance explained in the

end of section 5.4.2 and in the final section the conclusions are presented based on

the observations made.

5.5.1 Time domain step response characteristics

Figures 5.21 to 5.24 represents the step response characteristics. The characteristics

are based on the step response signal from 5.15 with a minor change, being the

altitude pulse signal having a time period of two seconds (as opposed to a single

second). This change allows to record the settling times more accurately. Alongside

the settling time, the % overshoots and rise times are examined as well. Details re-

garding the Violin plots and the data points are presented in section 4.9.1. Similarly

each of the Violin plots are inspected for the four aspects presented in section 4.9.1.

These are given below.

1. Position of median value of the response characteristic with respect to the

patched grey area in the plot.

2. Position of the violin plot with respect to the patched grey area.

3. The spread of the data points and the shape of the probability density distri-

bution.

4. The nature of individual violin plots as compared with the other two plots for

a characteristic.
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Figure 5.21: Multivariable system roll rate- time domain response comparison: The
markers displayed have the following meanings - • : The response of the systems
with model uncertainty, + : Median value of the respective response characteristic
and : The value of the response characteristic of the nominal plant.
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Figure 5.22: Multivariable system pitch rate- time domain response comparison:
The markers displayed have the following meanings - • : The response of the systems
with model uncertainty, + : Median value of the respective response characteristic
and : The value of the response characteristic of the nominal plant.
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Figure 5.23: Multivariable system yaw rate- time domain response comparison: The
markers displayed have the following meanings - • : The response of the systems
with model uncertainty, + : Median value of the respective response characteristic
and : The value of the response characteristic of the nominal plant.
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Figure 5.24: Multivariable system altitude rate- time domain response comparison:
The markers displayed have the following meanings - • : The response of the systems
with model uncertainty, + : Median value of the respective response characteristic
and : The value of the response characteristic of the nominal plant.

Inspecting the Figures from 5.21 to 5.24, the following points are observed.
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1. MSO controlled plants shows acceptable performance when to comes to the

roll rate loop. A portion of the extreme plants in the case of the pitch rate

overshoots fall in the grey patched zone. Similarly for the yaw rate rise and

settling times, a portion of the extreme plant responses fall in the grey patched

zone.

The altitude rate plot, shows that the overshoots responses of all systems con-

trolled by the MSO controller fall in the unacceptable areas. This as explained

earlier (see section section 5.2.4.3) comes from the relaxation of constraints

performed in order to bring more integral action into the closed loop for the

altitude rate response of the plants with model uncertainty.

2. The LSDP 1 DOF controlled plants in general give acceptable response char-

acteristics with a few exceptions. The % overshoots of some of the extreme

plants for the roll and yaw rate, and the settling times of few plants for the

yaw rate fall in the grey patched area. The cascaded PI controller do con-

tribute to the higher overshoots in the altitude rate although it still falls in

the acceptable region.

3. With the µ-controllers, the system shows acceptable the roll, pitch and yaw

rate characteristics expect for the few extreme plants, for which the rise times

and the settling times fall in the grey patched zone. Compared to the MSO and

LSDO controller systems the µ controlled systems shows the largest spread in

terms of the area of the probability density indicator.

While all the three controllers contribute towards the robustness of the system cer-

tain distinct characteristics can be observed in the plots. The LSDP controlled sys-

tems are characterised by faster rise times, indicating a susceptibility towards noise

signals (owing to larger bandwidth). Yaw rates are characterised by a largest prob-

ability density spread while altitude rates have the least spread. The µ-controlled

systems are characterised by the slowest rise times and the smallest overshoots. This

points towards the relative conservative nature of the µ-controllers and the faster

LSDP systems with MSO taking a place between both. Details regarding bandwidth

of the systems are examined next.

5.5.2 System Bandwidths

In this section the effect of model uncertainty on the bandwidth of the multivariable

system is examined. The bandwidth descriptions are those explained in 5.2.5.
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Figure 5.25: Multivariable system closed loop bandwidth comparison: The markers
displayed have the following meanings - • : The bandwidth of the systems with model
uncertainty, + : Median value of the respective characteristic and : The value of
the characteristic of the nominal plant.
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An overall system bandwidth of 2.5 rad/s is considered as a limit against which

performances are compared. From examining the system bandwidth and magnitudes

of the maximum and minimum singular values of the loop function the following

observations are made:

1. MSO controlled systems the overall system bandwidth for the uncertain plots

fall between approximately 1.8 and 3.2 rad/s. The MSO plots are characterized

by the largest spread among the three controllers. For the loop function in the

direction of σ̄(GK), the magnitude of all of the uncertain plants fall above 10

rad/s.

2. LSDP controlled systems offers the most acceptable bandwidth among the

three controllers. This is considering both the overall system bandwidth as

well as the loop function singular value magnitudes. The system bandwidth

for the uncertain plants fall between 1.4 and 3.1 rad/s approximately.

3. Systems controlled by the µ-controller are characterized by the smallest band-

width among the three controllers. The overall system bandwidths of the

uncertain plants fall between approximately 1 and 2.6 rad/s. While σ̄(GK)

values fall in the acceptable region a portion of the σ(GK) uncertain plant

values falls in the grey patched zone.

These bandwidth estimates concur with the observations made from the time

response violin plots in the previous section. The conservative nature of the µ-

controller arises from the efforts of the D-K algorithm which tries to ensure the

system’s robust performance and stability during the controller development

stage. While this is achieved, the swiftness of the system response to the

reference signal is sacrificed.

Compared to the bandwidth discussion of the SISO counter parts in section 4.9.2,

it is clear that the system bandwidth of the multivariable quadrotor system is sig-

nificantly lesser. While the SISO controllers offer a bandwidth of above 10 rad/s for

roll, pitch and yaw rate loops and above 2 rad/s for the altitude rate, for a majority

of the uncertain plants, MIMO controllers are much more conservative. They tend

to offer an overall system bandwidths of less than 3.5 rad/s, with higher bandwidths

in certain directions. Now that the bandwidth proprieties have been examined the

robustness of the different systems will be analysed with the help of µ values.

5.5.3 Analysing the system robustness

In this section the robustness of the various systems as controlled by the developed

controllers are analysed by calculating the values of µ. The values are calculated
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based on the definitions for µ described in Table 4.25.

Figure 5.26: µ plotted as a function of frequency

To calculate the µ values the sensitivity and complimentary sensitivity weights de-

veloped in section 5.4.3.1 and section 5.4.3.2 are used in the system with input

multiplicative uncertainty (i.e, ignoring the uncertainty in mass of the craft coef-

ficient of thrust). The values have been calculated across the frequency spectrum

and the plots are presented in Fig. 5.26. The following points can be noted from

the figure.
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1. The values of µ of all the three systems from steady state frequency to around

a 1100 rad/s (dashed blue line in the first subplot) falls below unity for robust

performance, robust stability and nominal performance indicator plots.

2. Values of µ calculated for robust performance overshoots unity at high fre-

quencies in all the three systems, indicating the susceptibility of the system

towards model uncertainty and deteriorating performance at these frequencies.

3. Considering a frequency range from steady state up to a 100 Hz, in all the

three plots LSDP controlled systems exhibit the peak µ values, followed by

MSO and µ controlled systems (see Table 5.14).

4. In the absence uncertainty in mass and thrust coefficient all the three con-

trollers readily guarantee robust performance at steady state.

From the plots it is observed that the range where robust performance and stability

can be guaranteed in the presence of model uncertainty, can be found out with

some effort in the case of the multivariable controller design. For the case of the

quadrotor, uncertainty in mass and thrust coefficient play significant roles when it

comes to limiting guaranteed robust performance of the system. Efforts to decrease

the model uncertainty for these two parameters would significantly make designing

robust quadrotor systems easier.

The peak values of the plots are presented in Table 5.14. For the robust performance

curve while as noted earlier the value of µ overshoots unity after around 1100 rad/s,

the value remain below unity around system bandwidth frequencies. The peaks are

calculated using those values upto around 350 rad/s (i.e. upto the critical frequency

range around the system bandwidth frequency- dashed dark red line in the first

subplot), hence ignoring the obvious high values at higher frequencies.

Table 5.14: Robust performance analysis - peak µ values

Systems RP RS NP

LSDP 1 DOF 0.639 0.553 0.398

MSO 0.414 0.314 0.320

µ 0.340 0.269 0.267

As observed in the table, when considering robust stability, the peak µ value, that is

‖M‖∆I
for the LSDP controlled plant equals 0.553. This would mean the parameter

and time delay uncertainty can be increased by a factor of 1/0.553 = 1.808 before
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which the worst case model uncertainty can lead to instability. The corresponding

factors for MSO and µ controlled systems calculates to 3.18 and 3.71 respectively.

Similarly with regards to robust performance, the peak µ value, that is ‖N‖∆̂, with

∆̂ =
[

∆I 0
0 ∆P

]
for the LSDP controller plant equals 0.639. Hence a parameter and

time delay uncertainty can be increased by a factor of 1/0.639 = 1.565 before signif-

icant deterioration in performance of the system can be noticed. The corresponding

factors for MSO and µ controlled systems calculates to 2.415 and 2.941 respectively.

5.5.4 Performance Comparison - Conclusion

The comparison between the various developed controllers point towards certain

aspects of the systems. While satisfactory robust stability margins are observed

in all the three systems, the comparisons based on time domain response, system

bandwidth and robustness it can be concluded that the LSDP based controllers with

their fast responses, larger bandwidths, and higher stability margins can be safely

chosen from between the three, when there is no uncertainty with mass and thrust

coefficient of the craft or that of the payload.

The µ controllers with the smallest bandwidth and slowest in terms of favourable

reference command time periods, but with the highest stability margins can be con-

sidered as the most conservative of all the three controllers. The MSO multivariable

controller lies in between both these extremes. This concludes the performance com-

parison section and in the next part the important ideas noted in the chapter are

summarized.

5.6 Chapter - Summary

The important aspects of the chapter is summarised in the below list of points. For

further details refer to the corresponding sections.

• The Multivariable MSO S/T problem is implemented and Algorithm #5

(5.2.2) which enables the controller and optimized weight development, is pro-

posed. A multivariable controller was developed and the performance of the

closed loop system examined. Satisfactory performance is observed with the

developed suboptimal controller.

• LSDP 1DOF multivariable problem is defined for the quadrotor and Algo-
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rithm #6 (5.3.1.1) is proposed. A hybrid LSDP 1-DOF - PI controller is

developed for the quadrotor model and satisfactory performance is observed.

• The µ-synthesis problem is implemented for the multivariable system and Al-

gorithm #7 (5.4.2) is presented. A multivariable controller is developed

with good robust stability margins. The µ controllers is found to be the most

conservative among all the three developed controllers.

• A detailed performance comparison is conducted between the three developed

controllers. While all of the controllers impart robustness to the overall system,

the µ controller is found to be the most conservative and LSDP 1DOF to be

the most effective when uncertainty in mass and thrust coefficient is absent.

In the next chapter a simulation based case study inspired by aspects of an industrial

application is presented. Robust design strategies developed in this chapter are used

to design a multivariable controller and a comparison is performed against a cascaded

PID based system which are commonly used in the commercial industry.
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Chapter 6

Case Study

As mentioned at the beginning of this study, (see Chapter 1), UAVs are increasingly

being used in challenging environments and for resolving still harder problems. In

this chapter an interesting application related to the recreational fishing industry, is

discussed.

The chapter is divided into 3 sections. In the first section the industrial application

is discussed and challenges observed during the flight process are listed out. In the

second section a multivariable robust attitude/altitude controller and a cascaded

PID trajectory tracking controller is developed for a plant model resembling aspects

of the industrial scenario. Simulations are presented in this chapter for various cases

and results are examined. In the final section conclusions are drawn from the case

study and the case for future work is presented. The case study has been conducted

using simulations, and real world experiments haven’t been performed using the

developed controller.

6.1 Long line fishing and the ‘Aerokontiki’

Longline fishing by enthusiasts and hobbyists enabled by water borne drones and

kites have been a part of recreational fishing in the past decades. The idea of

drawing the line along with the baits out to the sea using a rotorcraft drone mainly

evolved out of a need for increasing the reliability as well decreasing the time taken

to put out the baits. While water borne drones required around 20 to 30 minutes to

draw the line a kilometer out to the ocean depending on the roughness of the ocean,

dropping the baits with help of a kite requires right wind directions to enable the

drop.
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The New Zealand based Envirobotics Limited presented their initial design ‘The

Aerokontiki - Evolution I’ that involved a ‘Y-6’ configuration based drone that could

lift and deliver bait payloads as heavy as 2.5 kilograms in late 2014 and from then

on have graduated to newer ‘X-8’ configuration based designs that could lift and

deliver up to 7 kg across the distance of a kilometer in headwinds of up to 40

km/hr [154]. The industry is rapidly growing with a user based focused mainly in

New Zealand but also extended to countries ranging from the United States and to

Italy. From 2017 to 2019 the author of this study had the chance to be employed in

the development and testing of the drones which enabled him to have a first hand

experience of working with these machines.

Figure 6.1: The flight of the Aerokontiki: The general flight regime is in a straight
line once a height of around 60 meters is attained. The baits are suspended at a
length of around 5-10 meters depending on their number. The figure is not drawn
to scale.

6.1.1 The flight regime

The goal of every flight is to drop the baits at a predetermined distance from the

shore line. The typical flight of an Aerokontiki, involves three main stages. These

being:

1. Lift off: The craft lifts off picking up the baits rising to a height of around 60m.

The baits typically number anywhere between 1 to 25 and with the leaders

lines spaced at a distance of about 50cm. The bait and the leader lines are

laid out on the sand or arranged using a launching trace board.

2. Flight out to the drop destination: Once the height of about 60 meters is

attained, the craft flies out to the ocean usually following a straight line.
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3. Bait drop and return home: This is final stage of the flight where, once the

destination (usually a distance between 600 m to 1000 m from the shore line)

is reached, the baits are dropped and the craft returns back.

The general set up during the initial stages of the flight of the Aerokontiki- Evolution

III, the ‘X-8’ configuration based model, is presented in Figure 6.1. The practical

case of the Aerokontiki makes an especially challenging control problem to resolve.

Unlike traditional Micro, and Mini UAV payloads, the Aerokontiki firstly lifts a slung

load, and secondly pulls the main fishing line as it flies forward. The environmental

conditions, given the flight occurs at the sea in windy conditions also makes it

particularly challenging.

The uncertainty in mass, occurs from the varying nature of baits and more impor-

tantly from the dips in altitude of the craft, that would sometimes result in the

baits getting pulled through the water. This is in addition to the main line get-

ting dragged through water. As the distance increases so does the friction exerted

by water on the main line and to this adds additional dynamics such as flapping

(oscillations) exhibited by the main line. Flapping occurs as a result of vibrations

from the drone being translated to the main line, and it is seen to occur sometimes

at distances above 500 m. The flapping occasionally becomes significant enough to

disrupt flight and hence when this occurs the craft is brought to a stand still-hover

to wait until the oscillations die out.

Figure 6.2: The Aerokontiki in action at Takerau Beach, Doubtless Bay New
Zealand.

Figure 6.2 shows the Aerokontiki- Evolution II, THE ‘Y-6’ configuration based

model, in action at Takerau Beach, Doubtless Bay, New Zealand.

In the next section, the effect of the slung load on the Aerokontiki flight is reproduced

using experiments conducted in MATLAB. A multivariable robust attitude-altitude
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controller and a cascaded PID based controller for trajectory tracking is developed to

control the craft. A comparison with the conventional PID based SISO controllers,

based on the effectiveness of trajectory tracking is also presented.

6.2 A Quadrotor with Suspended Load

The problem of the Aerokontiki delivering bait payloads attached to the fishing

main line can be approximated by modeling the problem as a quadrotor carrying a

suspended load. In this section we concentrate on developing robust tracking atti-

tude/altitude controllers for a quadrotor carrying a suspended load. The dynamics

involved in pulling the main line, as it is drawn out from the reel by the Aerokontiki

will not be modeled, as the design of a robust controller that can accommodate

variations in system parameters, is the primary concern of this study.

Various aspects of the problem of a quadrotor carrying a slung load has been previ-

ously examined in detail in several studies which can be broadly grouped into two

sections. The first section concentrates on developing optimal swing free trajectories

for the flight as reported in [201–204], and the second section focuses on develop-

ing robust attitude/altitude controllers as in [205–209]. In this section since we

are primarily focused on developing attitude/altitude controllers, so we will briefly

examine the ideas presented in this latter group.

In [205], the quadrotor with the suspended load is established to be a deferentially-

flat hybrid system (see [210] for more details) and a non-linear geometric controller

to stabilize the system is presented. The closed loop system is stable and a satis-

factory set point tracking is achieved. The method of separating the overall flight

regime into differentially flat portions is further examined in [207], where the so-

lution to the problem of the quadrotor with a suspended load achieving a smooth

lift off is presented. The issue of payload uncertainty is examined in [206], where a

Proportional Derivative controller is tuned for the quadrotor carrying the nominal

payload mass and a Retrospective Cost Adaptive Controller (RCAC) is used to deal

with the uncertainty in mass. Smaller settling times and overshoots are observed

when the RCAC controller is compared to a fixed gain controller.

The development of an anti-swing controller is examined in [208]. While separate

controllers are designed for achieving position and attitude tracking, the anti-swing

mechanism is developed by modifying the reference input command using an algo-

rithm highly dependent on the system model. In [211], an iterative LQR controller

is developed to control the position and attitude of the controller. The quadro-

tor model is presented as a set of Differential Algebraic Equations, DAEs (a key
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point ignored by most other studies done in the area), although the equations are

significantly simplified in subsequent analysis. Comparisons are presented with a

traditional LQR and it can be observed that an iLQR gives a better performance

when the integral absolute error is considered.

A simplified version of the model presented in [211] (where the DAEs are replaced

after simplification with a set of ODEs), is examined in [212]. The model considered

in this chapter is developed based on this model. Of all the studies summarized

above, none of the studies consider model uncertainties in particular. The effects

that model parameter uncertainties as well as that of time varying payload masses

and time varying payload cable length, exert on the performance of the craft are

omitted in these studies. This is precisely the problem that the Aerokontiki is

trying to resolve. Hence in the next section, the control and response of a quadrotor

with model uncertainties carrying a suspended load to complex trajectories in the

presence of both time varying mass, and payload cable length, are examined.

6.3 Multivariable attitude-altitude robust controller

for a Quadrotor carrying a suspended load

The equations of motion presented are based on [212] and [211]. The model presents

a quadrotor that carries a slung load attached using a non-stretchable cable.

ẍi =
f1 + f2 + f3 + f4

m
(sφi sψi

+ cφi cψi
sθi)−

T

m
(sθiL cφiL)

ÿi =
f1 + f2 + f3 + f4

m
(cφi sψi

sθi − cψi
sφi) +

T

m
(sθiL sφiL)

z̈i = −g +
f1 + f2 + f3 + f4

m
(cφi cθi)−

T

m
(cφiL)

φ̈b =
1

Ixx
((f1 − f2 − f3 + f4) dy + (Iyy − Izz) θ̇b ψ̇b)

θ̈b =
1

Iyy
((f1 + f2 − f3 − f4) dx + (Izz − Ixx) φ̇b ψ̇b)

ψ̈b =
1

Izz
(τ1 − τ2 + τ3 − τ4 + (Ixx − Iyy) φ̇b θ̇b)

φ̈L = − T

mL

(LsθbL cφbL) +
(f1 − f2 − f3 + f4) dy

mL

θ̈L = − T

mL

(LsθbL sφbL) +
(f1 + f2 − f3 − f4) dx

mL

(6.1)

Refer to 3.2.1 for details on the variable naming conventions. The subscript L
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represents the values of variable associated with the slung payload and T represents

the magnitude of the tension in the cable.

The multivariable plant has four inputs which are the respective forces exerted by

the propellers and 6 outputs being the attitude-altitude rates of the quadrotor as

well as the roll and pitch angles of the payload with respect to the quadrotor.

The parameters of the model are those from Table 3.2 with the nominal mass of the

slung load at 0.25 kg and the nominal length of the cable that attaches the load to

the quadrotor at 2 meters.

The system is modeled as that containing an inner loop controller managing the

attitude and altitude rate tracking and an outer loop that takes care of tracking the

X/Y position coordinates. The inner loop is controlled by a MSO H∞ controller

and the outer loop using two sets of cascaded PID controllers. The cascaded PID

controller is modeled similar to those reported in [213–215], and as presented in

[216].

Here the choice for the multivariable MSO controller (as opposed to an LSDP or µ)-

synthesis based controller) comes from the insights received from the performance

comparison study presented in section 5.5. While the LSDP based controller was

seen to be more susceptible to noise, the µ-synthesis based approach seemed to be

overly conservative. The MSO based controller was observed to take a position in

between the two. In this specific case, where payload mass is a significant uncertainty

faced by the craft, it is crucial that the controller is able to target and absorb this

uncertainty during the controller development phase. The MSO controller, while it is

not too conservative and with its ability to target specific parameter uncertainties,

(as opposed to LSDP which doesn’t offer this option), will hence be selected for

developing the controller.

In the case of the comparison study, the PID controller structure in the outer loop

is kept the same while in the inner loop, the multivariable controller is replaced by

SISO PID controllers. The model here remains the same while in the SISO case the

inputs to the plant are grouped as explained previously in 4.2.

Three sets of experiments are conducted through simulations. In all the three sets,

the quadrotor is made to trace a vertical helix stretching across a height of 200 me-

ters, with a radius of 10 meters within a time period of 200 seconds. This trajectory

is different from that taken during a usual Aerokontiki flight, although it proves

ideal for testing. While the Aerokontiki trajectory generally follows a straight line,

the vertical helix is slightly more challenging, and helps the engineer to test the de-

veloped controllers more thoroughly. The experiments are presented in the following
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sections.

6.3.1 Nominal plant response as payload mass is varied

In the first set of experiments the mass of the slung load is varied from 0.125 kg

to 0.55 kg (the nominal mass being 0.25 kg), with all the other parameters held

constant. The results of the simulations are presented in Figure 6.3. The same

experiment is conducted on a plant where the inner and outer controllers are PID

based (similar to the control strategy adopted by the industrial and hobbyist sectors

[217]), the results of which are presented in Figure 6.4.

The PID controllers are tuned to provide the most robust outcomes while maintain-

ing system stability. In both the cases, Gaussian white noise (with a noise power or

height of the power spectral density equal to 10−6) is injected at the attitude/alti-

tude output which is of our primary concern. The responses are colour coded such

that they follow a graduation from violet, where the payload weighs 0.125 kg, to

yellow where the payload weighs 0.55 kg.

Figure 6.3: Multiple simulations showing the MSO based plant dynamics as payload
mass is varied over a period of 200 seconds. The Quadrotor traces a vertical helix
with a diameter of 10 meters and a height of 200 meters. The payload mass is varied
from 0.125 kg to 0.55 kg (see the box on the right hand side).

The response of the MSO controller can be observed in Fig. 6.3 which can be

compared to that of the PID based controller in Fig. 6.4. As can be observed in the

figures, the MSO controller system performs significantly better and to an extent

gives a predictable response when the mass is varied. The PID controlled system,
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while it gives a satisfactory response to plants with the payload mass is close the

the nominal load mass of 0.25 kg, the response becomes chaotic and unpredictable

as the mass is increased substantially.

Figure 6.4: PID based plant dynamics as payload mass is varied over a period of
200 seconds. The payload mass is varied from 0.125 kg to 0.55 kg.

A point to note here is that while the PID controller performs more consistently than

the MSO controller (see the dark blueish regions in Fig. 6.4) during when the load is

closer to the nominal value of 0.25 for which the system was tuned, the performance

deteriorates significantly as payload mass is increased. The MSO controller on the

other hand with its initial offsets presents a steady but slower deterioration as mass

is increased. This in short is the whole design point of robust control.

6.3.2 Plant response as the slung length of the payload is

varied

In the second of experiments the length at which the slung load is attached from the

quadrotor is varied from the nominal length of 2 meters to a length of 10 meters. The

results are presented from Fig.6.5 to Fig.6.8. The responses are colour coded such

that they follow a gradation from violet which represents a length of the attached

payload of 2 meters to yellow at a length of 10 meters.

Experiments are conducted with two different sets of payload masses. In the first

set the payload mass is kept at the nominal value of 0.25 kg and slung length is

varied from 2 to 10 meters. The results are presented in Fig. 6.5 which shows the

MSO controlled plant response, and Fig. 6.6 which gives the response of the PID
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controller plant.

Figure 6.5: MSO based plant dynamics as the slung length of the payload is varied
and payload mass is held at the nominal value. The Quadrotor traces a vertical helix
with a diameter of 10 meters and a height of 200 meters. The slung load length is
varied from 2 m to 10 m.

Figure 6.6: PID Plant dynamics as the slung length of the payload is varied and
payload mass is held at the nominal value. The slung load length is varied from 2
m to 10 m.

As the payload mass is held at the nominal value, the PID controller plant gives

a performance better than the MSO plant, except for certain short lengths. Both

the experiments show that the system is susceptible to oscillations originating at

the payload at shorter lengths (as seen from the blueish portion of the responses),
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mostly around a length of 5 meters. As the slung length is increased further the

system shows better performance.

In the second set the payload mass is increased to 0.395 kg and the experiments are

repeated. This time the performance of the PID controlled system can be seen have

deteriorated considerably (see Fig. 6.8) compared to that of the MSO controlled

plant (Fig. 6.7).

Figure 6.7: MSO based plant dynamics as the slung length of the payload is varied
while payload mass is held at 0.395 kg. The slung load length is varied from 2 m to
10 m.

Figure 6.8: PID Plant dynamics as the slung length of the payload is varied while
payload mass is held at 0.395 kg. The slung load length is varied from 2 m to 10 m.
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A comparison between performances of respective systems with the nominal and

increased payload mass, as the slung load is varied, presents the advantage the robust

controller has, in the presence of varying model parameters. While performance

deterioration is observed, stability is maintained in the case of the robust controller,

but for the case of the PID based system, instability for the case plants with model

uncertainty can be expected.

6.3.3 Plant response as both the slung length and payload

mass is varied simultaneously

In the third set of experiments the quadrotor is made to trace the vertical helix

and with the payload mass and the length at which it is attached are changed

simultaneously. This simultaneous change (in the payload related parameters) is

the characteristic that makes the flight of the Aerokontiki unique. We are trying to

the emulate these time-varying characteristics in our experiments.

Figure 6.9: Experiment Set 3: The change in the value of the payload parameters
as plotted against time.

Table 6.1: Uncertainty Sources

Parameters % Uncertainty Range

IXX , IY Y 0.04339 ±10% kg m2 0.0391 ≤ IXX , IY Y ≤ 0.0477

IZZ 0.0705 ±10% kg m2 0.0634 ≤ IZZ ≤ 0.0775

m 1.27 ±2% kg 1.2446 ≤ m ≤ 1.2954

dx, dx 0.194±20% m 0.1552 ≤ dr ≤ 0.2328

ct 0.1 ±10% 0.0500 ≤ ct ≤ 0.1500

cp 0.045 ±10% 0.0315 ≤ cp ≤ 0.0585
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In Figure 6.9 the time varying payload parameters are plotted. The experiments

are conducted on plants with parameter uncertainties presented in Table 6.1. The

uncertainty in mass of the quadrotor is only a modest 2%. This is because a time

varying payload mass uncertainty is already being considered.

The results of the experiments are presented in Fig. 6.10 and Fig. 6.11. The plots

are colour coded with red lines representing the responses of plants from within the

parameter hypercube and blue lines representing the plants from the vertices of the

hypercube.

As can be observed in the case of the MSO controlled plant (Fig.6.10), the controllers

are able to stabilize the plants with model uncertainties and track the reference

signal. While those plants that lie significantly further away from the nominal plant

model do take time to reach the steady state (as can be noted from some off the

responses in the blue lines), the responses eventually reaches the steady state and

begins tracking the reference trajectory.

Figure 6.10: Dynamics of MSO controlled plant with model uncertainties, while
payload mass and the slung length is varied.

In the case of the PID controlled plant (Fig. 6.11) the oscillations that the plants

experience results in instability for many plants both from within, and from the

vertices of the hypercube. While the PID controller does provide satisfactory re-

sponses for many models, the unpredictability makes it necessarily dangerous to

employ them before understanding the limits of each tuned configuration. This is at

a stark contrast when compared to the plant controlled by the MSO controller where

the control engineer can expect a steady deterioration of performance as opposed

to catastrophic failures when model parameters are unknown and some of them are
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vary substantially. In either cases the expected disturbance at the 120th second

when the payload mass drops back to the nominal value, while is difficult to observe

in the plots on a Z axis scale of 200 meters, the quick correction were observed in

the pitch, roll and altitude rates in the experiments. In the experiments conducted,

the developed model contain saturation elements that limit inputs.

Figure 6.11: Dynamics of the PID controller plant with model uncertainties, while
payload mass and the slung length is varied.

The main conclusions that are drawn from the three sets of experiments are listed

out below:

1. The mixed sensitivity optimization based robust controller developed can ef-

fectively stabilize systems such as those developed for the Aerokontiki fishing

application. The controller can not only handle model parameter uncertain-

ties, but also can handle time varying payload parameters during the flight.

2. As observed in the previous chapters once the uncertainties are estimated and

effectively modelled during the development of the controller, the performance

outcomes become predictable even in the face of substantial model uncertain-

ties.

3. With the PID controller while it provides satisfactory response with the nomi-

nal plants, the performance becomes chaotic and unpredictable as the payload

parameters are varied. The effect of the oscillations transferred from the pay-

load to the plant model are also seen to increase as the payload parameters

move away from the nominal value.
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4. The effects of the payload oscillations transferred to the quadrotor are mini-

mum except of the initial offset (see 6.12) from the reference in the case of the

MSO controlled plant.

Figure 6.12: Observed offset in the response

The offset can be explained as part of an interplay between the initial overshoot

of the plant response in the X axis and attempts of the controller to stabilize

the oscillations translated to the craft from the swinging payload. To an extent

these initial offsets are also observed in the PID controlled plant response. In

the MSO controlled plant where the offsets are significant in some cases, in

all of the simulations the plant output reaches the steady state within a time

period of 20 seconds.

5. The steady state error in position coordinates observed in Fig. 6.10 can be

accounted to the PID controllers from the outer loop. The steady state error

in the altitude remains less than ± 1 meter in either cases.

The MSO robust controller development algorithm outlined in Algorithm #5 de-

veloped in Chapter 5, enables an efficient way to develop an optimal and robust

controller in this case. The algorithm allows the engineer to capture model uncer-

tainties encountered in industrial applications such as that of the Aerokontiki flight

and design effective controllers. This brings us to the conclusion of the case study.

6.4 Conclusion

The chapter takes a look at the case of the Aerokontiki, an industrial application

that involves a payload that is attached to the quadrotor using a non stretchable

cable. The time varying nature of the payload mass and the length at which the

payload is attached to the craft, makes it a challenging problem to resolve.
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A MSO attitude/altitude controller is developed to control the inner loop of the

system and a PID based controller takes care of tracking the position coordinates.

A comparison is performed with a system where the plant is controlled using a cas-

caded PID controller. The MSO based controller is able to stabilize the system and

effectively track the reference set-point even in the presence of model uncertainties

and time varying payload parameters. The MSO controller performs significantly

better than the PID counter part, in terms of stability, rejection of noise and in

terms of rejecting oscillations transferred from the payload to the craft.

The future work in this area would look at modelling the disturbance induced by the

main line onto the Aerokontiki during the flight. The effectiveness of the proposed

controller can then be tested more effectively. Ways to develop a robust controller

to track the position coordinates will also be studied. This would remove the sub-

optimality introduced into the system by the PID based position controllers.
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Chapter 7

Conclusion

The overall aim of this research was to develop robust optimal quadrotor controllers,

especially intended for situations where significant model uncertainty is present in

the plant. To meet this goal, both SISO as well as multivariable robust controllers

were developed. One of the key contributions of this thesis is the development of

algorithms that could automatically develop controller weights thereby removing

the ambiguity brought about by relying on the trial and error approach currently

used widely.

The chapter is divided into four sections. In the first section the main ideas de-

veloped in this work are summarized. This is followed by section 7.2, where the

contributions of this study are presented. Next in section 7.3, the important ideas

that emerged from the study are discussed and a high-level comparison of the vari-

ous controllers developed in this work is presented. In the final section 7.4, the work

that will be pursued in future will be examined.

7.1 Summary

The summaries from the important chapters in this study are presented below.

7.1.1 Problem statement

After the literature review (presented in Chapter 2) of existing techniques employed

to design quadrotor controllers that would perform well against model uncertain-

ties, the robust control paradigm was selected to design controllers for resolving

the tracking attitude/altitude control of the quadrotor. While attempts have been
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made in some studies to automatically develop optimal weights for the designed

controllers, a comprehensive framework for SISO and MIMO systems that could be

used was absent. It was identified that when it comes to quadrotor UAV designs, a

comprehensive comparison study has not been performed among various developed

robust controllers as well as with PID controllers in general.

The quadrotor problem was stated in Chapter 3 and both a non-linear and numer-

ically linearised model was developed. To use a concrete example, the Ascending

technologies (AscTec) Pelican Quadrotor, a popular drone among UAV researchers,

was selected. The model uncertainty that would be considered during the controller

design phase was listed. Seven parameters as identified from the literature review

were considered for inducing model parametric uncertainty for later simulation. In

addition to this time delay uncertainty and uncertainty due to model non-linearity is

also considered (See Section 3.4). Further the design specifications that are required

to be met during the controller development were listed in Section 3.5.

7.1.2 SISO systems

In Chapter 4, a decoupled version of the quadrotor was developed such that it suits

the SISO controller design and further, robust control theory was briefly introduced.

Algorithms were proposed for Mixed Sensitivity Optimization, Loop Shaping Design

Procedure 1 & 2-DOF and µ-synthesis (Algorithm #1 — #4), that could be used

to generate optimal weight designs alongside the development of the controller. The

performances of individual closed loop systems were tested and satisfactory stability

margins were obtained in each of the cases. Further, a PID controlled system was

developed for the purposes of a base-test comparison. All the five closed loop systems

were compared with each other and conclusions were presented.

During the design phase of the robust controllers, (except for those based on Loop

Shaping Design Procedure), the value of µ was constrained to less than unity in the

presence of considerable model uncertainty. For LSDP based controllers the coprime

stability margins of that greater than 0.25 were achieved. From the time domain

analysis, it was observed that the robust controllers gave a better performance in the

presence of model uncertainty, with regards to meeting design specifications, than

the PID controller. Comparisons among robust controllers were also performed

based on classical stability margins observed in the systems, µ values plotted over

the frequency spectrum and using the gap-metric stability criterion. Among the

designed robust controllers, the LSDP based controllers offered better robustness

against uncertainty, both in the terms of overall performance as well as for robust

stability margins.
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7.1.3 Multivariable controllers

Chapter 5 begins with a discussion of the MIMO quadrotor model properties which

includes the singular value decomposition and the condition number of the plant

around the bandwidth frequency. The multivariable robust controllers for the quadro-

tor were developed using MSO, LSDP 1-DOF and µ-synthesis strategies. Algorithms

which could be utilized inorder to generate optimal control weights were proposed

(Algorithm #5 — #7). The LSDP 1-DOF procedures were slightly modified to

produce a LSDP-PI hybrid which enabled a reduction in overall controller order as

well as the complexity of the optimisation problem. All three controllers were able

to achieve nominal stability, nominal performance and robust stability irrespective

of uncertainty in parameters that were expected.

It was observed that robust performance could be achieved in all the three cases

when the uncertainty in the payload mass and thrust coefficient was removed during

controller development, resulting in a value of µRP below unity. It was recognized

that to develop robust quadrotor systems it was crucial to reduce uncertainty in

both these parameters.

It was observed that MIMO controllers are more conservative than its SISO counter-

parts and hence are comfortable only with smaller percentage uncertainties. Com-

parison between the three developed controllers were performed based on step re-

sponse characteristics, closed loop systems bandwidths and by calculating µ-values

across the frequency spectrum. Similar to the SISO cases, the LSDP based con-

trollers were found to be the most effective (in terms of larger bandwidths and

higher robust stability margins) when there was no uncertainty in mass and thrust

coefficient of the craft. The µ controller was the most conservative of all the three

with MSO taking a position in between.

7.1.4 Simulation based case study

In Chapter 6 a simulation based case study was performed by modelling a quadrotor

carrying a suspended load. The inspiration for the study comes from the case of the

Aerokontiki, an industrial drone used for longline fishing. Simulated experiments

were conducted with cases where payload masses and the slung load lengths were

varied individually as well as simultaneously. A cascaded PID controller was also

developed for the system and experiments were repeated on the same.

Comparisons between both the systems revealed that while the PID based plant

performed better than the robust controller based system when the plants are close
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to the nominal model, the performance deteriorated substantially with significant

unpredictability, for systems far away from the nominal plant. The robust controller

on the other hand, offered a steady but predictable decline in the performance

even as the systems moved further away from the nominal plant (as opposed to

the significant unpredictability of PID controlled plants). The unique nature of

time varying payload mass and the slung load length, provided a interesting setting

for testing the robustness of the designed controllers. In the next section the key

contributions of this study are presented.

7.2 The Contributions of this Thesis

The contributions from this research are discussed in this section. To recall the

research objectives that were listed in section 1.2, the main objective of this study

was to develop optimal and robust quadrotor controllers. To achieve this, three re-

search objectives were outlined. These being: (i) Developing a framework for Single

Input Single Output systems using which optimal controller weights could be devel-

oped alongside the robust quadrotor controller (ii) Extending the functionality of the

framework to the multivariable domain, and finally (iii) To conduct a comprehensive

in-simulation performance testing and comparison among the developed controllers

from the three main branches of Robust Control Theory, namely the MSO, LSDP

and µ- synthesis.

In light of these objectives, the contributions are now discussed. Robust controllers

for a quadrotor model were developed in chapter 4 (where controllers for a decoupled

quadrotor model involving 4 SISO systems were presented), and in chapter 5 (where

multivariable controllers for the MIMO quadrotor model was presented). The asso-

ciated controller weights which enabled meeting the required performance standards

were developed such that design optimality was maintained in the overall system.

For the SISO system MSO, LSDP (1 and 2 DoF) and µ-synthesis based controllers

were developed and for the MIMO model MSO, LSDP (1 Dof) and µ-synthesis

were developed. The development and testing of the controllers were enabled and

complemented by the following key contributions.

1. Separate algorithms developed for MSO (Algorithm #1), LSDP - 1 DoF

(Algorithm #2), LSDP - 2 Dof (Algorithm #3) and µ-synthesis (Algorithm

#4) were presented in Chapter 4. These algorithms act as frameworks that

could generate optimal controller weights alongside the robust controller, while

providing options to incorporate model uncertainties, as well as time and fre-

quency domain design specifications.
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2. In Chapter 5, algorithms for the multivariable system, for each of the differ-

ent robust control strategies namely, MSO (Algorithm #5), LSPD 1 DoF

(Algorithm #6) and µ-synthesis (Algorithm #7) were developed. Simi-

lar to the SISO case, the multivariable frameworks allow for capturing model

uncertainties as well as incorporating design standards from both time and fre-

quency domains thus bringing in optimality to the controller weights alongside

development of the robust controller.

3. Comprehensive comparison studies conducted between the developed robust

controllers both in the SISO and MIMO systems provided insights into the

effectiveness of various developed controllers when it came to controlling the

quadrotor. Insight into ways to choose between the various robust control

strategies depending upon the application for which the quadrotor controller

is being designed also crystallized in these comparison studies.

4. The various algorithms proposed can be consolidated into a holistic general

framework that can be used whenever an optimal-robust controller is to be

designed. As can be observed in Fig. 7.1, the decision tree branches first

depending on whether the linearized plant model is a SISO or a MIMO sys-

tem. Then depending on information that the designer has regarding model

uncertainty, the tree further spreads out.

For cases where there is information on modeling uncertainty, depending on

required performance standards the control engineer can select either between

MSO or µ-synthesis designs, or on the other hand, if no model uncertainty

is known the engineer could choose LSDP algorithms. The LSDP algorithms

further branches out into the 1 & 2 DoF designs depending on whether there

is a reference model that the closed loop system is required to emulate.

Alongside these, significant efforts had been directed towards developing a new way

to visualize the stochastic Monte Carlo results obtained from performance of quadro-

tors with model uncertainty. These visualizing techniques made it possible to study

the effects of modeling uncertainty in quadrotors from within the parameter hy-

percube and its vertices. These techniques helped to complement and validate the

performance and comparison analysis made through out the study.

A non-trivial case study with contributions to the real world practical problems was

presented in Chapter 6. The simulations that presented the case of a quadrotor with

modeling uncertainties, carrying a time varying mass attached to a time varying

slung load length, have provided valuable insights that the control engineer can

utilize when she/he is required to make design considerations and select controllers.
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Figure 7.1: The general decision tree that can be followed to choose the appropriate
algorithms for developing optimal robust controllers

In the next section a discussion on ideas that emerged from the study are presented.
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7.3 Discussion

Developing optimal weights has become important in robust control designs, when

gains in the form of flight quality and flight time are to be achieved during the

plant operation. While a conventional trial and error approach helps the engineer

to develop robust control designs, the optimality is sacrificed and the work is overly

ad-hoc. In this study, the algorithms were developed that provides the control

engineer options to formulate constraints, in (i) the time domain in the form of

step response characteristics, and (ii) in the frequency domain as H∞ norm of the

closed loop functionals, during the robust quadrotor controller development phase.

Algorithms for all the three major robust control designs strategies, namely the

MSO, LSDP and µ-synthesis were proposed, and they were used to resolve the

tracking attitude/altitude problem for a quadrotor. The successful implementation

of the algorithms imply that the methods can be used in the future for other systems

as well to develop optimal weights alongside design of the robust controller.

MIMO controllers, while they are conservative compared to the SISO counterparts,

when designed for optimality should bring in a higher degree of savings in terms

of the energy expended during flight, as the controllers are designed to keep the

overall input to a minimum while achieving the required performance objectives.

In the case of the SISO controller, while inputs are constrained to a minimum for

individual loops but when operated in parallel (as they would be during flight), the

overall design optimality may weaken. A comparison study between the MIMO and

SISO systems should reveal this and would be undertaken as a part of future work.

The optimality and savings would become more significant when we take into ac-

count model uncertainties. For plants with high condition numbers, significant de-

terioration in performance can be expected with multi-dimensional model uncer-

tainties. For a simple plant that can be effectively decoupled the SISO controllers

may suffice, but for new and chaotic applications (like that of the Aerokontiki), a

MIMO controller that presupposes modeling uncertainty would bring about signif-

icant gains in terms of flight time and performance. For the case of the quadrotor,

the work performed in the Chapter 5, enabled isolating those model parameters

which contributed to performance deterioration, which the control engineer need to

watch for.

The time taken for the optimization problem to converge to the global optimum

differed with the different robust control strategies discussed. On average the con-

vergence took around 7-8 minutes for SISO loops and around 20-30 minutes for

the MIMO systems on an HP EliteDesk 800 G4 TWR desktop operating on 8th

Generation Intel® CoreTM i7+ processor. These times should not be generalized
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on to other quadrotor configurations or applications. These convergence patterns

are highly problem specific and depends to an extent on the initial values of the

variables and the nature of the performance demands.

While during the development of MSO and µ-synthesis based controller, the param-

eter uncertainty, time delays, and non-linearity are explicitly absorbed into compli-

mentary sensitivity weights, in LSDP the controller by nature, aims for the max-

imum co-prime factor uncertainty that the system can accommodate. Both these

approaches offer advantages and disadvantages. Both in SISO and MIMO designs,

LSDP based controllers performed better than MSO and µ controllers, but it was

during the development of the latter pair, that the control engineer was able to

identify and isolate model parameter uncertainties that contributed the most to-

ward performance deterioration.

During the development of MIMO controllers, uncertainty in mass, and thrust co-

efficient of the craft restricted the system from achieving theoretically guaranteed

robust performance i.e. µRP ≤ 1 (as seen for the case of both MSO and LSDP 1DOF

were the values of µRP exceeded unity). Although in these cases, robust stability

could still be guaranteed. We observe this in the presented case study where, while

the performance deteriorates steadily, stability is still maintained.

From the work with PID controllers, (analyzed both in Chapter 4 and 6), and its

comparison with robust controllers, it was observed that PID controlled systems per-

form more satisfactorily than robust controllers when it comes to trajectory tracking

for systems that are close to the nominal plant. Not unexpectedly, as system move

away from the nominal plant the performance of the PID controlled system deterio-

rate significantly. The slope of this deterioration is steeper when compared to that

of a system controlled by a robust controller. The Goldilocks zone within which the

PID controller outperforms the robust controller also depends on a number of other

factors such as input saturation and high frequency dynamics of the plant.

To choose between selecting a PID and a robust controller when it comes to UAV

controller design, model uncertainty limits will need to be estimated accurately and

experiments performed through numerical simulations. This would enable the con-

trol engineer to identify the the areas where the PID based system would behave

unpredictably leading to instability. For applications (like that of the Aerokontiki

fishing drone), with multi-dimensional uncertainty it would be safe to develop a

robust controller that guarantees robust stability with a predictable performance

decline, as opposed to catastrophic and unpredictable failures which the PID con-

trollers might bring about.

Table 7.1 presented next, gives an overview of the comparison of various controllers
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developed through the study. The table gives a quick overview of what each con-

troller can achieve in the context of attitude/altitude rate tracking of a quadrotor.

Having been able to develop this table, partially justifies the reason behind the de-

velopment of various controllers from all the three main branches of robust control

theory.
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Table 7.1: A general comparison of various control strategies developed in this study in context of the tracking attitude/altitude rate control
of a quadrotor.

Control Strategies Comparison criteria
SISO

Controllers

MIMO

Controller

Mixed Sensitivity

Optimization

• Ability to analyze and isolate individual parameters of the Quadrotor that contribute

towards performance deterioration. Uncertainty in mass and thrust coefficient were noted

and isolated both in the SISO (see page 61), and the MIMO case (see page 157), during

controller development.

4 4

• Effective against unstructured model uncertainty arising from the multivariable nature

of the system
6 4

• Ability to guarantee nominal stability, nominal performance, and robust stability con-

sidering all or a selected set of the model uncertainty by the automated algorithm-

Algorithm #1 for SISO and Algorithm #5 for the MIMO system (see page 63 for

SISO and page 164 for the MIMO case)

4 4

• Ability to guarantee robust performance considering all or a selected set of the model

uncertainty by the automated algorithm (see page 63 for SISO and page 164 for the

MIMO case)

6 6

Loop Shaping Design

Procedure - 1 Degree

of Freedom

• Ability to analyze and isolate individual parameters of the Quadrotor that contribute

towards performance deterioration
6 6

• Effective against unstructured model uncertainty arising from the multivariable nature

of the system
6 4

• Ability to guarantee nominal stability, and nominal performance considering all or a

selected set of the model uncertainty by the automated algorithm- Algorithm #2 for

SISO and Algorithm #6 for the MIMO system (see page 89 for SISO and page 171 for

the MIMO case)

4 4
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Table 7.1 continued. . .

• Ability to guarantee robust stability, and robust performance considering all or a selected

set of the model uncertainty by the automated algorithm
6 6

• Effectiveness against coprime-factor uncertainty 4 4

Loop Shaping Design

Procedure - 2 Degree

of Freedom

• Ability to design the controller so that it can follow the closed loop characteristics of

a predefined model (refer page 99).
4 4

• Ability to analyze and isolate individual parameters of the Quadrotor that contribute

towards performance deterioration
6 6

• Effective against unstructured model uncertainty arising from the multivariable nature

of the system
6 4

• Ability to guarantee nominal stability, and nominal performance considering all or a

selected set of the model uncertainty by the automated algorithm- Algorithm #3 for

SISO system which can be extended to the MIMO system (see page 105 for the SISO

case).

4 4

• Ability to guarantee robust stability, and robust performance considering all or a selected

set of the model uncertainty by the automated algorithm
6 6

• Effectiveness against coprime-factor uncertainty 4 4

µ-Synthesis

• Ability to analyze and isolate individual parameters of the Quadrotor that contribute

towards performance deterioration. Uncertainty in mass or thrust coefficient were noted

and isolated in the SISO (see Table 4.27), and the MIMO case (see page 179), during

controller development.

4 4

• Effective against unstructured model uncertainty arising from the multivariable nature

of the system
6 4
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Table 7.1 continued. . .

• Ability to guarantee nominal stability, nominal performance, robust stability, and robust

performance considering all or a selected set of the model uncertainty by the automated

algorithm- Algorithm #4 for SISO and Algorithm #7 for the MIMO system (see

page 125 for SISO and page 186 for the MIMO case)

4 4

Proportional Integral

Derivative Controller

• Ability to analyze and isolate individual parameters of the Quadrotor that contribute

towards performance deterioration
6 —

• Effective against unstructured model uncertainty arising from the multivariable nature

of the system
6 —

• Ability to guarantee nominal stability, and nominal performance of the plant while

ensuring a degree of robustness
4 —

• Ability to guarantee robust stability, and robust performance considering all or a selected

set of the model uncertainty by the automated algorithm
6 —227



7.4 Future Work

There are five areas that have been identified for future work. The first three would

be those that would immediately supplement the conducted research and the final

two areas would follow on naturally from the work presented in the study.

The initial priority would be on developing a robust observer that would enable state

estimation. Measurement inaccuracy that comes along from sensor noise affects

accurate state estimation especially for a UAV when the noise has been observed

to be coloured as opposed to Gaussian white noise [218]. As noted in [219], in such

situations an Unscented Kalman Filter (UKF) would prove to be more effective

than the traditional Extended Kalman Filter to produce accurate estimation results.

Ways to effectively estimate the attitude, altitude, and their rates using an UKF

have been explored previously in [220, 221] and these studies would be examined

and developed on for designing the state estimator for the model presented in the

thesis.

Secondly, efforts will be directed towards developing an anti-windup scheme to deal

with the actuator saturation experienced by the plant. One of the sources of non-

linearity in quadrotor is actuator saturation. The Anti-windup compensator pre-

sented in [222] is well suited for this work with the key objective of the compensator

to minimize the L2 norm uin and yd as seen in the Figure 7.2.

Here M represents the parameterized version of the compensator, G2 the plant feed-

back part, with K being a stabilizing controller of the plant G. The Linear Matrix

Equalities listed in the study can be resolved using the MATLAB LMI toolbox.

Figure 7.2: The anti-windup scheme.

Next, work could be performed on reducing the controller order for the designed

systems. This becomes important for implementing the robust controllers of real-

world platforms especially for the multivariable controllers. As can seen from Table
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7.2, the orders of designed robust controllers are higher compared to those of the

PID controllers.

While commands from the MATLAB Robust Control Toolbox significantly simplifies

the effort required to reduce the controller order, non-trivial testing needs to be

preformed before the controllers can be safely deployed.

Table 7.2: Controller order – SISO Systems

Type Roll & Pitch Yaw Altitude

MSO 3 3 3

LSDP 1 DOF 4 4 4

LSDP 2 DOF 3 3 3

µ 5 5 6

PID 2 2 2

Controller order – MIMO Systems

Type Order

MSO 12

LSDP 1 DOF 11

µ 12

To follow on from the research work presented in this study, the primary work will

be directed towards developing an effective methodology to compare the the PID

and Robust controller based systems developed in Chapter 6. Currently the systems

have only been compared by means of stability imparted by the controller to the

closed loops. This will be further expanded using traditional methodologies such as

calculating the Integral Absolute Error with regards to trajectory tracking and also

using those extended from Robust Control literature. Efforts will also be directed

to perform comparisons between SISO and MIMO robust controllers. The impact

of model uncertainty and the gains that could obtained when the plant is stabilized

using both the controllers will be studied.

Finally efforts will be directed at developing a framework in the context of UAVs to

determine the zones where a robust controller would outperform the PID controller.

This would make it easier to isolate those systems and applications for which robust

controllers would prove better and safer than working with a PID based system.

This brings us to the end of this chapter, and the thesis. References used in the

study is presented next, followed by the Appendix.
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Appendix A

Algorithms

The code snippets from proposed seven algorithms will be listed in this Appendix.

While the algorithms are different from each other, only steps from Algorithm

#1 will be fully listed. For the other algorithms, the the cost functions from other

will be presented. The other steps can be constructed by examining the steps from

Algorithm #1 and corresponding sections presented in the study. The MATLAB

listings are ordered such that they follow the steps from the Algorithms presented

in the work.

A.1 Algorithm #1

Step 1: Develop the linear plant and scale the plant G according to the criteria

described in section 3.3

Listing A.1: Parameters based on AsTec Pelican Quadrotor

% Chowdhary, G. V., et al. Integrated Guidance Navigation and Control
% for a Fully Autonomous Indoor UAS
mass = 1.2703; % Kg ; Mass
Ixx = 0.04339; % Kg m^2 ; Moment of Inertia of the quad - x component;

5 Iyy = 0.04339; % Kg m^2 ; Moment of Inertia of the quad - y component;
Izz = 0.0705; % Kg m^2 ; Moment of Inertia of the quad - z component;
dx = 0.194; % m ; Location of propeller in body x-direction
dy = 0.194; % m ; Location of propeller in body y-direction
Ct = 0.1; % Thrust coefficient nominal value

10 Cp = 0.045; % Power coefficient nominal value
d = .254; % m ; Propeller diameter
Ir = 3.375e-5; % Kg m^2 ; Rotor Inertia
g = 9.81; % m s^-2 ; Accelaration due to gravity
Ts = 0.01; % s ; Sample time
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Listing A.2: Developing the SISO system

quad_params = [ mass g dx dy Ixx Iyy Izz Ct Cp d Ir]’;
lin_pts = [zeros(15,1)’ mass*g ]; % Nominal_Plant_tf

% SISO Sytem function declaration
5 G_hat = SISO_quad(quad_params,lin_pts);

% The function
function [Plant] = SISO_quad(quad_params,lin_pts)
% Define symbolic parameters

10 % [ x y z ] -> Position vector in Inertial Frame
% [ phi theta yaw ] -> Euler angles in Inertial Frame
% [ x_dot y_dot z_dot ] -> Velocity vector in Inertial Frame
% [ p q r ] -> Angular veloctiy vector (equal to [phi_dot theta_dot ...
% ... yaw_dot] at small angles)

15

syms x y z phi theta yaw x_dot y_dot z_dot p q r u1 u2 u3 u4 f1 f2 f3 f4

% Initialize quadrotor parameters
mass = quad_params(1); g = quad_params(2); dx = quad_params(3);

20 dy = quad_params(4) ; Ixx = quad_params (5) ; Iyy = quad_params(6);
Izz = quad_params(7); Ct = quad_params(8); Cp = quad_params(9);
d = quad_params(10); Ir = quad_params(11);

% States, inputs and outputs
25 X = [ x y z phi theta yaw x_dot y_dot z_dot p q r ]; % state vector

U = [ u1 u2 u3 u4 ]; % input vector
Y = [ p q r z_dot ]; % output vector

rho = 1.225; Dia = 0.254; % Deriving propeller angular velcotiy
30 F2U = [ 1 -1 -1 1 ; 1 1 -1 -1 ; 1 -1 1 -1 ; 1 1 1 1 ];F = F2U\U’;

n = (sqrt(F(1)) - sqrt(F(2)) + sqrt(F(3)) - sqrt(F(4)))/(Ct*rho*Dia^4);

% Quadrotor equations of motion
x_d = x_dot;

35 y_d = y_dot;
z_d = z_dot;
phi_d = p + (q*sin(phi) + r*cos(phi))*tan(theta);
theta_d = q*cos(phi) - r*sin(phi);
yaw_d = (q*sin(phi) + r*cos(phi))*sec(theta);

40 x_dot_d = -(u4/mass)*(sin(phi)*sin(yaw) + cos(phi)*cos(yaw)*sin(theta));
y_dot_d = -(u4/mass)*(cos(phi)*sin(yaw)*sin(theta) - cos(yaw)*sin(phi));
z_dot_d = g -(u4/mass)*(cos(phi)*cos(theta));
p_d = 1/(Ixx)*(u1*dy + (Iyy - Izz)*q*r - Ir*q*n);
q_d = 1/(Iyy)*(u2*dx + (Izz - Ixx)*p*r + Ir*p*n);

45 r_d = 1/(Izz)*(u3*d*(Cp/Ct) + (Ixx - Iyy)*p*q);

% non-linear system, dX(t)/dt = g(X,U,t), y(t) = h(X,U,t)
G = [ x_d y_d z_d phi_d theta_d yaw_d ...

x_dot_d y_dot_d z_dot_d p_d q_d r_d]’;
50 H = [ p q r z_dot ]’;

% compute jacobian
A.symbolic = jacobian(G, X);
B.symbolic = jacobian(G, U);

55 C.symbolic = jacobian(H, X);
D.symbolic = jacobian(H, U);

% linearizing plant at lin_pnt
A.algebraic = simplify(subs(A.symbolic, {x y z phi theta ...
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60 yaw x_dot y_dot z_dot p q r u1 u2 u3 u4},lin_pts));
B.algebraic = simplify(subs(B.symbolic, {x y z phi theta ...

yaw x_dot y_dot z_dot p q r u1 u2 u3 u4},lin_pts));
C.algebraic = simplify(subs(C.symbolic, {x y z phi theta ...

yaw x_dot y_dot z_dot p q r u1 u2 u3 u4},lin_pts));
65 D.algebraic = simplify(subs(D.symbolic, {x y z phi theta ...

yaw x_dot y_dot z_dot p q r u1 u2 u3 u4},lin_pts));

% compute numerical values
A.eval = eval(A.algebraic);

70 B.eval = eval(B.algebraic);
C.eval = eval(C.algebraic);
D.eval = eval(D.algebraic);

% linearized system
75 Plant = ss(A.eval, B.eval, C.eval, D.eval);

return

Listing A.3: Scaling the system

%% Scaling the nominal system matrix - dividing each variable by ...
% ... its maximum expected or allowed change
% Maximum expected changes
Du = diag([9.6184 9.6184 9.6184 11.4744]);% Hover propeller RPM - 4690...

5 % ...Max propeller RPM 6500. Change 6500-4690 = 1810.
De = diag([0.25 0.25 0.25 0.5]); % Max allowed error- 0.25 rad/s ...
% ... for angualr velocity & 0.5 m/s for altitude climb rate
Dd = diag([0.5 0.5 0.5 0.5]); % Max expected change in disturbance - ...
% ... 0.5 rad/s for angular veloctiy & 0.5 m/s for altitude climb rate

10 Dr = diag([0.5 0.5 0.5 1.5]); % Max expected change in ref setpoint - ...
% ... 0.5 rad/s for angular veloctiy & 1.5 m/s for altitude climb rate

% Scaled system matrix
G = De^-1*G_hat*Du; G_d = c2d(G,Ts);

15 Gd = De^-1*eye(4)*Dd;
R = De^-1*Dr;

Listing A.4: SISO systems

% TF from Input U1 to roll Output
U1_tf_to_roll = minreal(G(1,1));

% TF from Input U2 to theta Output
5 U2_tf_to_theta = minreal(G(2,2));

% TF from Input U3 to yaw Output
U3_tf_to_yaw = minreal(G(3,3));

10 % TF from Input U4 to altitude Output
U4_tf_to_altitude = minreal(G(4,4));

Step 2: Calculate the complimentary sensitivity weight, by capturing the uncer-

tainty in the model.
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Listing A.5: Capturing Parameter Uncertainty

% Parameter Uncertainty is captured by generating ’m’ different ...
% ... uncertain plants around the nominal plant
s = tf(‘s’);
m = 100; Uc_G_array = s * zeros(4,4,m);

5 PUc_I = 10; PUc_Ct = 38; PUc_Cp = 30;
PUc_dx = 30; PUc_dy = 30; PUc_mass = 40;

U_mass = ureal(‘U_mass’,mass,‘Percentage’,PUc_mass);
U_mass_sample = usample(U_mass,m);

10 U_mass_sample = reshape(U_mass_sample,[m 1]);

U_dx = ureal(‘U_dx’,dx,‘Percentage’,PUc_dx);
U_dx_sample = usample(U_dx,m);
U_dx_sample = reshape(U_dx_sample,[m 1]);

15

U_dy = ureal(‘U_dy’,dy,‘Percentage’,PUc_dy);
U_dy_sample = usample(U_dy,m);
U_dy_sample = reshape(U_dy_sample,[m 1]);

20 U_Ixx = ureal(‘U_Ixx’,Ixx,‘Percentage’,PUc_I);
U_Ixx_sample = usample(U_Ixx,m);
U_Ixx_sample = reshape(U_Ixx_sample,[m 1]);

U_Iyy = ureal(‘U_Iyy’,Iyy,‘Percentage’,PUc_I);
25 U_Iyy_sample = usample(U_Iyy,m);

U_Iyy_sample = reshape(U_Iyy_sample,[m 1]);

U_Izz = ureal(‘U_Izz’,Izz,‘Percentage’,PUc_I);
U_Izz_sample = usample(U_Izz,m);

30 U_Izz_sample = reshape(U_Izz_sample,[m 1]);

U_Ct = ureal(‘U_Ct’,Ct,‘Percentage’,PUc_Ct);
U_Ct_sample = usample(U_Ct,m);
U_Ct_sample = reshape(U_Ct_sample,[m 1]);

35

U_Cp = ureal(‘U_Cp’,Cp,‘Percentage’,PUc_Cp);
U_Cp_sample = usample(U_Cp,m);
U_Cp_sample = reshape(U_Cp_sample,[m 1]);

40 for i = 1:m
Uc_quad_params = [U_mass_sample(i) g U_dx_sample(i) U_dy_sample(i) ...

U_Ixx_sample(i) U_Iyy_sample(i) U_Izz_sample(i)...
U_Ct_sample(i) U_Cp_sample(i) d Ir]’;

Uc_G_hat = SISO_quad_ss2(Uc_quad_params,lin_pts);
45 Uc_G_array(:,:,i) = minreal(De^-1*Uc_G_hat*Du);

end

% Develop complimentary senstivity weight to capture the uncertainty
% Roll and Pitch rate

50 [Uc_roll_param,Uc_info_roll_param] = ucover(Uc_G_array(1,1,:), ...
G(1,1),1,’InputMult’);

Wi_roll = Uc_info_roll_param.W1;

% Yaw rate
55 [Uc_yaw_param,Uc_info_yaw_param] = ucover(Uc_G_array(3,3,:), ...

G(3,3),1,’InputMult’);
Wi_yaw = Uc_info_yaw_param.W1;

% Altitude rate
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60 [Uc_alt_param,Uc_info_alt_param] = ucover(Uc_G_array(4,4,:), ...
G(4,4),1,’InputMult’);

Wi_alt = Uc_info_alt_param.W1;

Step 3: Define the data structure necessary for the optimization framework as well

the form of complimentary sensitivity weight wP .

Listing A.6: Data structures to develop the optimization framework

% Generate reference and disturbance signals
Tot_time = 10; Time_step = Tot_time/5; Ts = 0.01;
Step_r = [];
Ref = [ 1 0 -1 0 0 ];

5 for j = 1:5
Step_r = vertcat(Step_r,Ref(j)*ones(floor(Time_step*(1/Ts)),1));

end

Step_d = [];
10 Dist = [ 0 1 0 -1 0 ];

for j = 1:5
Step_d = vertcat(Step_d,Dist(j)*ones(floor(Time_step*(1/Ts)),1));

end

15 % Structure containing the data
Roll_data = struct(‘Plant’,U1_tf_to_roll,‘Comp_sens_wt’, Wi_roll, ...

‘Ref_wt’, R(1,1), ‘Dist_wt’, Gd(1,1), ’Ref_sig’, Step_r, ...
‘Dist_sig’, Step_d, ‘Sample_time’, Ts);

Yaw_data = struct(‘Plant’,U3_tf_to_yaw,‘Comp_sens_wt’, Wi_yaw, ...
20 ‘Ref_wt’, R(3,3), ‘Dist_wt’, Gd(3,3), ‘Ref_sig’, Step_r, ...

‘Dist_sig’, Step_d, ‘Sample_time’, Ts);
Alt_data = struct(‘Plant’,U4_tf_to_altitude,‘Comp_sens_wt’, Wi_alt, ...

‘Ref_wt’, R(4,4), ‘Dist_wt’, Gd(4,4), ‘Ref_sig’, Step_r, ...
‘Dist_sig’, Step_d, ‘Sample_time’, Ts);

Listing A.7: wP form definition

% Wp form definition
% Wp = a (s + b)
% -------- where b > c ; a high pass filter
% (s + c)

5

% Lower and upper bounds lb <= x <= ub & x0 for the optimisation framework
lb = [0.001 0.01 0.01];
ub = [100 200 100];
x0 = [1 28 2];

Step 4: Define the cost function J and initialize the weights W1 through W4.

Listing A.8: Sensitivity Weight & Controller Design :- Roll rate

% Cost function declaration
fun = @(x)foptHinf_SISO_MS_S_T(x,Roll_data);

% Cost function definition
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5 function [j] = foptHinf_SISO_MS_S_T(x,Data)

% Wp form definition
% Wp = a (s + b)
% -------- where b > c ; a high pass filter

10 % (s + c)
%
s = tf(‘s’);
Wp = x(1)*((s + x(2))/(s + x(3)));

15 try
[K,~,GAMA,~] = mixsyn(Data.Plant,Wp,[],Data.Comp_sens_wt);

% Discretize the controller and the plant
K_d = c2d(K,Data.Sample_time);G_d = c2d(Data.Plant,Data.Sample_time);

20

% Model setup
% |
% | d
% -------

25 % | Gd_ss |
% -------
% | dout
% |
% r ______ rout e _____ u _____ y_G_d | y

30 % -- | R_ss | --> + ---- | K_d | ---- | G_d | ----> + ---->
% ------ - | ----- ----- |
% | |
% ---------------------------------
%

35 R_ss = ss([],[],[],Data.Ref_wt); Gd_ss = ss([],[],[],Data.Dist_wt);
R_ss.InputName = ‘r’; R_ss.OutputName = ’rout’;
Sum_E = sumblk(‘e = - y + rout’,1);
K_d.InputName = ‘e’; K_d.OutputName = ’u’;
G_d.InputName = ‘u’; G_d.OutputName = ’y_G_d’;

40 Gd_ss.InputName = ‘d’; Gd_ss.OutputName = ’dout’;
Sum_D = sumblk(‘y = y_G_d + dout’,1);
T = connect(R_ss,Sum_E,K_d,G_d,Gd_ss,Sum_D,{‘d’ ; ‘r’},‘y’);
sys = idss(T.A,T.B,T.C,T.D,‘Ts’,Data.Sample_time);

45 % simulate & generate ‘y’ for reference input
udata = [Data.Dist_sig Data.Ref_sig];
y = sim(sys,udata);
t = 0:Data.Sample_time:((length(udata)/ ...

(1/Data.Sample_time))-Data.Sample_time);
50 e = y - Data.Ref_sig*Data.Ref_wt;

K_model = idss(K_d.A,K_d.B,K_d.C,K_d.D,‘Ts’,Data.Sample_time);
u = sim(K_model,e);
ctrl_effort = max(abs(u));

55 % Calculate j
e_area = sum(trapz(t,(t’.* (abs(e(:,:)).^2))));
j = (W1*abs(e_area)+ W2*order(K_model)) + W3*GAMA + W4*ctrl_effort;

catch
j =10^8;

60 disp(‘Good Luck next time’)
end
return
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Step 5: Develop the vector Φ which contains the following nonlinear closed loop

functionals.

1. Maximum overshoot, Mp

2. Rise time, tp

3. Settling time, ts

4. Maximum value of input, umax

5. γ.

Here Mp, tp and ts, the step response characteristics and umax are the time domain

specification while γ refers to the frequency domain specification

Listing A.9: Vector containing the closed loop functionals

% Nonlinear Constraints (cl <= nlcon(x) <= cu) a.k.a Closed loop ...
% ... functionals
nlcon = @(x)[ Clp_overshoot(x,Roll_data) ;

Clp_risetime(x,Roll_data) ;
5 Clp_settlingtime(x,Roll_data) ;

Clp_ctrl_effort(x,Roll_data) ;
Clp_gama(x,Roll_data) ];

The first three functions can be developed by using the MATLAB command stepinfo

while the fourth and fifth function can be developed by modifying the Listing A.8.

Step 6: Define the frequency domain bounds εγ and time domain specifications

limit vector ε.

Listing A.10: Vector containing the closed loop functionals

% Constraints
cl = [-1; 0; 0; 0; .25];
cu = [5; .5; 1 ; 1; 1.0];

Step 7: Implement the constrained non-linear optimization problem. This is

achieved using the OPTI MATLAB toolbox. The black box optimizer NOMAD

is chosen as the optimization routine. Nonlinear constraints are defined based on εγ

and ε for the vector Φ that defines the closed loop functionals.

% Define the solver to be used -> NOMAD in OPTI MATLAB
opts = optiset(‘solver’,‘nomad’,‘display’,‘iter’, ...

‘maxtime’,1000,‘tolafun’,1e-4);

5 Opt = opti(‘fun’,fun ,‘nl’,nlcon,cl,cu,‘bounds’,lb,ub, ...
‘x0’,x0,‘options’,opts);

tic
[x,~] = solve(Opt,x0); % solve for x
toc
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The controller can now be developed once the optimization problem is resolved.

Listing A.11: Develop the SISO Roll rate controller

% Develop the controller
s = tf(‘s’);
Wp_roll = x(1)*((s + x(2))/(s + x(3)));
[K_roll,CL_roll,GAM_roll,~] = mixsyn(U1_tf_to_roll,Wp_roll,[],Wi_roll);

Further tuning and improvements (Step 8 and 9) can now be undertaken as needed

once the preliminary tests are performed with the controller.

A.2 Cost Functions

In this section cost functions from various algorithms presented in the study will be

listed out.

Algorithm #2 – Step 4:

Listing A.12: SISO LSDP 1 DOF - Cost function definition

% Loop shaping weight and pref-filter form definition
% W1 = W1_a(s + W1_b) ;
% -----------
% s + W1_c

5 % W2 = W2_a(s + W2_b) ;
% -----------
% s + W2_c
% Ks0 = Ks0;
% and x = [ W1_a W1_b W1_c W2_a W2_b W2_c Ks0]’

10 W1_a= x(1); W1_b= x(2); W1_c= x(3);
W2_a= x(4); W2_b= x(5); W2_c= x(6);
Ks0=x(7);

s = tf(‘s’);
15 W1 = W1_a*(s + W1_b)/ (s + W1_c);

W2 = W2_a*(s + W2_b)/ (s + W2_c);

try
[K,~,GAMA,~]=ncfsyn(-Data.Plant,W1,W2);

20

% Discretize the controller and the plant
K_d = c2d(K,Data.Sample_time);G_d = c2d(Data.Plant,Data.Sample_time);

% Model setup
25 % |

% | d
% -------
% | Gd_ss |
% -------
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30 % | dout
% |
% r ______ rs ________ rout e _____ u _____ y_G_d | y
% -- | R_ss | -- | Ks0_ss | ---> + ---- | K_d | ---- | G_d | ----> + ---->
% ------ -------- - | ----- ----- |

35 % | |
% ---------------------------------
%

R_ss = ss([],[],[],Data.Ref_wt); Gd_ss = ss([],[],[],Data.Dist_wt);
Ks0_ss = ss([],[],[],Ks0);

40 R_ss.InputName = ‘r’; R_ss.OutputName = ‘rs’;
Ks0_ss.InputName = ‘rs’; Ks0_ss.OutputName = ‘rout’;
Sum_E = sumblk(‘e = - y + rout’,1);
K_d.InputName = ‘’e’; K_d.OutputName = ‘u’;
G_d.InputName = ‘u’; G_d.OutputName = ‘y_G_d’;

45 Gd_ss.InputName = ‘d’; Gd_ss.OutputName = ‘dout’;
Sum_D = sumblk(‘y = y_G_d + dout’,1);
T = connect(R_ss,Ks0_ss,Sum_E,K_d,G_d,Gd_ss,Sum_D,{‘d’ ; ‘r’},‘y’);
sys = idss(T.A,T.B,T.C,T.D,‘Ts’,Data.Sample_time);

50 % simulate & generate ‘y’ for reference input
udata = [Data.Dist_sig Data.Ref_sig];
y = sim(sys,udata);
t = 0:Data.Sample_time:((length(udata)/ ...

(1/Data.Sample_time))-Data.Sample_time);
55

e = y - Data.Ref_sig*(Ks0*Data.Ref_wt);

K_model = idss(K_d.A,K_d.B,K_d.C,K_d.D,‘Ts’,Data.Sample_time);
u = sim(K_model,e);

60 ctrl_effort = max(abs(u));

% Calculate j
e_area = sum(trapz(t,(t’.* (abs(e(:,:)).^2))));
j = (W1*abs(e_area)+ W2*order(K_model)) + W3*GAMA + W4*ctrl_effort;

65 catch
j =10^8;
disp(‘Good Luck next time’)

end
return

Algorithm #3 – Step 4:

Listing A.13: SISO LSDP 2 DOF - Cost function definition

% Loop shaping weights form definition
function [j] = foptHinf_LS_2D0F(x,Data)
% W1 = (W1_a*s + W1_b)
% ---------------

5 % (W1_c*s + W1_d)
% W2 = W2_a;
% Rho
% and x = [ W1_a W1_b W1_c W1_d rho Wi]’
W1_a= x(1); W1_b= x(2); W1_c= x(3); W1_d= x(4); rho=x(5); Wi = x(6);

10 s = tf(‘s’);
W1 = (W1_a*s + W1_b)/ ((W1_c*s + W1_d + 1));
Gs = Data.Plant*W1;
try
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[K,GAMA] = Lsdp2dof(Gs,Data.Tref,rho);
15 [A,B,C,D] = ssdata(K);

A = real(A); B = real(B); C = real(C); D = real(D);
K1 = ss(A,B(:,1),C,D(:,1));
K2 = ss(A,B(:,2),C,D(:,2));

20 % Discretize the controller and the plant
K_d = c2d(K,Data.Sample_time); K1_d = c2d(K1,Data.Sample_time);
K2_d = c2d(K2,Data.Sample_time);
G_d = c2d(Data.Plant,Data.Sample_time);

25 % Model setup
% |
% | d
% -------
% | Gd_ss |

30 % -------
% | dout
% |
% r ______ rs ____ rw ______ rk uw ______ u _____ y_G_d | y
% --| R_ss |--| Wi |---| K1_d |---> + ----| W1_d |----| G_d |----> + ---->

35 % ------ ---- ------ + | ------ ----- |
% | yk ______ |
% -----| K2_d |-----------------
% ------

R_ss = ss([],[],[],Data.Ref_wt,Data.Sample_time);
40 Gd_ss = ss([],[],[],Data.Dist_wt,Data.Sample_time);

Wi_ss = ss([],[],[],Wi,Data.Sample_time);
W1_d = c2d(W1,Data.Sample_time);
R_ss.InputName = ‘r’; R_ss.OutputName = ‘rs’;
Wi_ss.InputName = ‘rs’; Wi_ss.OutputName = ‘rw’;

45 K1_d.InputName = ‘rw’; K1_d.OutputName = ‘rk’;
Sum_E = sumblk(‘uw = yk + rk’,1);
W1_d.InputName = ‘uw’; W1_d.OutputName = ‘u’;
G_d.InputName = ‘u’; G_d.OutputName = ‘y_G_d’;
Gd_ss.InputName = ‘d’; Gd_ss.OutputName = ‘dout’;

50 Sum_D = sumblk(‘y = y_G_d + dout’,1);
K2_d.InputName = ‘y’; K2_d.OutputName = ‘yk’;
T = connect(R_ss,Wi_ss,K1_d,Sum_E,W1_d,G_d,Gd_ss, ...

Sum_D,K2_d,{‘d’ ; ‘r’},‘y’,‘u’);
sys = idss(T.A,T.B,T.C,T.D,’Ts’,Data.Sample_time);

55

% simulate & generate ‘y’ for reference input
udata = [Data.Dist_sig*0 Data.Ref_sig];
y = sim(sys,udata); t = 0:Data.Sample_time:((length(udata)/ ...

(1/Data.Sample_time))-Data.Sample_time);
60 e = y - Data.Ref_sig*Data.Ref_wt;

K_model = idss(K_d.A,K_d.B,K_d.C,K_d.D,’Ts’,Data.Sample_time);

% determine input signal ’input’
udata = [Data.Dist_sig Data.Ref_sig];

65 rd2u = getIOTransfer(T,{‘r’,‘d’},‘u’);
u_sys = idss(rd2u.A,rd2u.B,rd2u.C,rd2u.D,‘Ts’,Data.Sample_time);
u = sim(u_sys,udata);
ctrl_effort = max(abs(u));

70 % Calculate j
e_area = sum(trapz(t,(t’.* (abs(e(:,:)).^2))));
j = (W1*abs(e_area)+ W2*order(K_model)) + W3*GAMA + W4*ctrl_effort;

catch
j =10^8;
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75 disp(‘Good Luck next time’)
end
return

Listing A.14: Lsdp2dof function definition

function [K,GAM] = Lsdp2dof(Gs,Tref,rho) %#ok<*ASGLU>
[As,Bs,Cs,Ds] = ssdata(balreal(Gs));
[Ar,Br,Cr,Dr] = ssdata(Tref);
[nr,nr] = size(Ar); [lr,mr] = size(Dr);

5 [ns,ns] = size(As); [ls,ms] = size(Ds);
Rs = eye(ls) + Ds*Dr’ ; Ss = eye(ms) + Ds’*Dr;
A = (As - (Bs/(Ss))*Ds’*Cs);
B = sqrtm((Cs’/Rs)*Cs);
Q = (Bs/Ss)*Bs’;

10 [Zs,L,~,REPORT] = care(A,B,Q);
A = blkdiag(As,Ar);
B1 = [zeros(ns,mr) ((Bs*Ds’)+(Zs*Cs’))/(sqrtm(Rs));
Br zeros(nr,ls)];
B2 = [Bs ; zeros(nr,ms)];

15 C1 = [zeros(ms,ns+nr); Cs zeros(ls,nr);rho*Cs -rho*rho*Cr];
C2 = [zeros(mr,ns+nr); Cs zeros(ls,nr)];
D11 = [zeros(ms,mr+ls); zeros(ls,mr) sqrtm(Rs); -rho*rho*Dr rho*sqrtm(Rs)];
D12 = [eye(ms) ; Ds; rho*Ds];
D21 = [rho*eye(mr) zeros(mr,ls); zeros(ls,mr) sqrtm(Rs)];

20 D22 = [zeros(mr,ms);Ds];
B = [B1 B2]; C = [C1;C2]; D = [D11 D12;D21 D22];
P = ss(A,B,C,D);
[l1,m2] = size(D12); [l2,m1] = size(D21);
nmeas = l2; ncon = m2; gmin = 1;gmax = 100; gtol = .01;

25 [K,CLP,GAM] = hinfsyn(P,nmeas,ncon,’GMIN’,gmin,’GMAX’, ...
gmax,’TOLGAM’,gtol,’DISPLAY’,’off’);

return

Algorithm #4 – Step 4:

Listing A.15: SISO µ - Cost function definition

% Sensitivity weight form definition
function [j] = MuSyn(x,Data)
% Wp = a (s + b)
% -------- where b > c ; a high pass filter

5 % (s + c)
%
% and x = [ a b c ]’
s = tf(‘s’);
G = Data.Plant; %#ok<*NASGU>

10 Wp = x(1)*((s + x(2))/(s + x(3)));
Wi = Data.Comp_sens_wt;
omega = logspace(-3,3,61);
try

% Generalized Plant P
15 systemnames = ‘G Wp Wi’;

inputvar = ‘[udel(1); w(1); u(1)]’;
outputvar = ‘[Wi; Wp; -G-w]’;
input_to_G = ‘[u+udel]’;
input_to_Wp = ‘[G+w]’;
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20 input_to_Wi = ‘[u]’;
sysoutname = ‘P’; cleanupsysic = ‘yes’;
sysic;
P = minreal(ss(P));
Delta = ultidyn(‘D_1’,[1 1]);

25 Punc = lft(Delta,P);
opt = dkitopt(‘FrequencyVector’, omega);
[K,clp,bnd,dkinfo] = dksyn(Punc,1,1,opt);

% Discretize the controller and the plant
30 K_d = c2d(K,Data.Sample_time);

G_d = c2d(Data.Plant,Data.Sample_time);

% Model setup
% |

35 % | d
% -------
% | Gd_ss |
% -------
% | dout

40 % |
% r ______ rout e _____ u _____ y_G_d | y
% -- | R_ss | --> + ---- | K_d | ---- | G_d | ----> + ---->
% ------ - | ----- ----- |
% | |

45 % ---------------------------------
%

R_ss = ss([],[],[],Data.Ref_wt);
Gd_ss = ss([],[],[],Data.Dist_wt);
R_ss.InputName = ‘r’; R_ss.OutputName = ‘rout’;

50 Sum_E = sumblk(‘e = - y + rout’,1);
K_d.InputName = ‘e’; K_d.OutputName = ‘u’;
G_d.InputName = ‘u’; G_d.OutputName = ‘y_G_d’;
Gd_ss.InputName = ‘d’; Gd_ss.OutputName = ‘dout’;
Sum_D = sumblk(‘y = y_G_d + dout’,1);

55 T = connect(R_ss,Sum_E,K_d,G_d,Gd_ss,Sum_D,{‘d’ ; ‘r’},‘y’);
sys = idss(T.A,T.B,T.C,T.D,‘Ts’,Data.Sample_time);

% simulate & generate ‘y’ for reference input
udata = [Data.Dist_sig Data.Ref_sig];

60 y = sim(sys,udata);
t = 0:Data.Sample_time:((length(udata)/ ...

(1/Data.Sample_time))-Data.Sample_time);
e = y - Data.Ref_sig*Data.Ref_wt;
K_model = idss(K_d.A,K_d.B,K_d.C,K_d.D,‘Ts’,Data.Sample_time);

65 u = sim(K_model,e);
ctrl_effort = max(abs(u));

gama = bnd;

70 % Calculate j
e_area = sum(trapz(t,(t’.* (abs(e(:,:)).^2))));
j = (W1*abs(e_area)+ W2*order(K_model)) + W3*bnd + W4*ctrl_effort;

catch
j =10^8;

75 disp(‘Good Luck next time’)
end
return
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Similarly the Cost function definitions for the multivariable controller development

frameworks.

Algorithm #5 – Step 4:

Listing A.16: MIMO MSO cost function definition

function [j] = foptHinf_MIMO_MSO(x,Data,Wi)
% Performance Weight ’Wp’ form definition
% Wp_i = a_i (s + b_i)
% ---------- where b_i > c_i ...

5 % (s + c_i) ... a high pass filter where i = 1:4
% Wp = [ Wp_1 0 0 0
% 0 Wp_2 0 0
% 0 0 Wp_3 0
% 0 0 0 Wp_4 ]

10 s = tf(‘s’);
Wp_1 = x(1)*((s + x(2))/(s + x(3)));
Wp_2 = x(4)*((s + x(5))/(s + x(6)));
Wp_3 = x(7)*((s + x(8))/(s + x(9)));
Wp_4 = x(10)*((s + x(11))/(s + x(12)));

15 Wp = [ Wp_1 0 0 0
0 Wp_2 0 0
0 0 Wp_3 0
0 0 0 Wp_4 ];

try
20 [K,~,GAMA,~] = mixsyn(Data.Plant,Wp,[],Wi);

% Discretize the controller and the plant
K_d = c2d(K,Data.Sample_time);
G_d = c2d(Data.Plant,Data.Sample_time);

25

% Model setup
% |
% | d
% -------

30 % | Gd_ss |
% -------
% | dout
% |
% r ______ rout e _____ u _____ y_G_d | y

35 % -- | R_ss | --> + ---- | K_d | ---- | G_d | ----> + ---->
% ------ - | ----- ----- |
% | |
% ---------------------------------
%

40 R_ss = ss([],[],[],Data.Ref_wt); Gd_ss = ss([],[],[],Data.Dist_wt);
R_ss.InputName = ‘r’; R_ss.OutputName = ‘rout’;
Sum_E = sumblk(‘e = - y + rout’,4);
K_d.InputName = ‘e’; K_d.OutputName = ‘u’;
G_d.InputName = ‘u’; G_d.OutputName = ‘y_G_d’;

45 Gd_ss.InputName = ‘d’; Gd_ss.OutputName = ‘dout’;
Sum_D = sumblk(‘y = y_G_d + dout’,4);
T = connect(R_ss,Sum_E,K_d,G_d,Gd_ss,Sum_D,{‘d’ ; ‘r’},‘y’);
sys = idss(T.A,T.B,T.C,T.D,‘Ts’,Data.Sample_time);

50 % simulate & generate ‘y’ for reference input
udata = [Data.Dist_sig Data.Ref_sig];
y = sim(sys,udata);
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t = 0:Data.Sample_time:((length(udata)/ ...
(1/Data.Sample_time))-Data.Sample_time);

55 e = y - Data.Ref_sig*Data.Ref_wt;
K_model = idss(K_d.A,K_d.B,K_d.C,K_d.D,‘Ts’,Data.Sample_time);
u = sim(K_model,e);
ctrl_effort = norm(max(abs(u)),inf);
% Calculate j

60 e_area = sum(trapz(t,(t’.* (abs(e(:,:)).^2))));
j = (W1*abs(e_area)+ W2*order(K_model)) + W3**GAMA + W4*ctrl_effort;

catch
j =10^8;
disp(‘Good Luck next time’)

65 end
return

Algorithm #6 – Step 4:

Listing A.17: MIMO LSDP 1 DOF - Cost function definition

function [j] = coprimeunc_MIMO(x,Data)
% Loop Shaping Design Weight form defintions.
% W1 = diag( [ (a1*s + b1)/(c1*s + d1) ;
% (a2*s + b2)/(c2*s + d2) ;

5 % (a3*s + b3)/(c3*s + d3) ;
% (a4*s + b4)/(c4*s + d4) ]
% W2 = diag( [ w2a1 w2a2 w3a3 w4a4 ]);
% Ks0 = diag( [ks1 ks2 ks3 ks4 ]);
% and x = [ a1 a2 a3 a4 ...

10 % b1 b2 b3 b4 ...
% c1 c2 c3 c4 ...
% d1 d2 d3 d4 ...
% w2a1 w2a2 w3a3 w4a4 ...
% ks1 ks2 ks3 Ks4 ]

15

x = reshape(x,[4 6])’;
s = tf(‘s’);
W1 = s* diag(ones(4,1));
W2 = diag(zeros(4,1));

20 Ks0 = diag(zeros(4,1));
for i = 1:4

for j = 1:4
if i==j

W1(i,j) = (x(1,j)*s + x(2,j))/(x(3,j)*s + x(4,j));
25 W2(i,j) = x(5,j);

Ks0(i,j) = x(6,j);
end

end
end

30

try
[K,~,GAMA,~]=ncfsyn(-Data.Plant,W1,W2);

% Discretize the controller and the plant
35 K_d = c2d(K,Data.Sample_time);

G_d = c2d(Data.Plant,Data.Sample_time);

% Model setup
% |
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40 % | d
% -------
% | Gd_ss |
% -------
% | dout

45 % |
% r ______ rs ________ rout e _____ u _____ y_G_d | y
% -- | R_ss | -- | Ks0_ss | ---> + ---- | K_d | ---- | G_d | ----> + ---->
% ------ -------- - | ----- ----- |
% | |

50 % ---------------------------------
%

R_ss = ss([],[],[],Data.Ref_wt);
Gd_ss = ss([],[],[],Data.Dist_wt);
Ks0 = ss([],[],[],Ks0);

55 R_ss.InputName = ‘r’; R_ss.OutputName = ‘rs’;
Ks0.InputName = ‘rs’; Ks0.OutputName = ‘rout’;
Sum_E = sumblk(‘e = - y + rout’,4);
K_d.InputName = ‘e’; K_d.OutputName = ‘u’;
G_d.InputName = ‘u’; G_d.OutputName = ‘y_G_d’;

60 Gd_ss.InputName = ‘d’; Gd_ss.OutputName = ‘dout’;
Sum_D = sumblk(‘y = y_G_d + dout’,4);
T = connect(R_ss,Ks0,Sum_E,K_d,G_d,Gd_ss,Sum_D,{‘d’ ; ‘r’},‘y’);
sys = idss(T.A,T.B,T.C,T.D,’Ts’,Data.Sample_time);

65 % simulate & generate ‘y’ for reference input
udata = [Data.Dist_sig Data.Ref_sig];
y = sim(sys,udata);
t = 0:Data.Sample_time:((length(udata)/ ...

(1/Data.Sample_time))-Data.Sample_time);
70 e = y - Data.Ref_sig*Data.Ref_wt;

K_model = idss(K_d.A,K_d.B,K_d.C,K_d.D,‘Ts’,Data.Sample_time);
u = sim(K_model,e);
ctrl_effort = norm(max(abs(u)),inf);

75 % Calculate j
e_area = sum(trapz(t,(t’.* (abs(e(:,:)).^2))));
j = (W1*abs(e_area)+ W2*order(K_model) + W3*GAMA + W4*ctrl_effort);

catch
j =10^8;

80 disp(‘Good Luck next time’)
end
return

Algorithm #7 – Step 4:

Listing A.18: MIMO µ - Cost function definition

function [j] = MuSyn_MIMO(x,Data,Wi)
% Performance Weight ‘Wp’ form definiton
% Wp_i = a_i (s + b_i)
% ---------- where b_i > c_i

5 % (s + c_i) a high pass filter where i = 1:4
% Wp = [ Wp_1 0 0 0
% 0 Wp_2 0 0
% 0 0 Wp_3 0
% 0 0 0 Wp_4 ]

10 s = tf(‘s’);
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G = Data.Plant; %#ok<*NASGU>
Wp_1 = x(1)*((s + x(2))/(s + x(3)));
Wp_2 = x(4)*((s + x(5))/(s + x(6)));
Wp_3 = x(7)*((s + x(8))/(s + x(9)));

15 Wp_4 = x(10)*((s + x(11))/(s + x(12)));
Wp = [ Wp_1 0 0 0

0 Wp_2 0 0
0 0 Wp_3 0
0 0 0 Wp_4 ];

20 omega = logspace(-3,3,61);

try
% Generalized plant P
systemnames = ‘G Wp Wi’;

25 inputvar = ‘[ydel(4); w(4); u(4)]’;
outputvar = ‘[Wi ; Wp; -G-u]’;
input_to_G = ‘[u+ydel]’;
input_to_Wp = ‘[G+w]’;
input_to_Wi = ‘[u]’;

30 sysoutname = ‘P’;
cleanupsysic = ‘yes’;
sysic;
P = minreal(ss(P));
Delta = ultidyn(‘D_1’,[4 4]);

35 Punc = lft(Delta,P);
opt = dkitopt(‘FrequencyVector’, omega);
[K,clp,bnd,dkinfo] = dksyn(Punc,4,4,opt);

% Discretize the controller and the plant
40 K_d = c2d(K,Data.Sample_time);

G_d = c2d(Data.Plant,Data.Sample_time);

% Model setup
% |

45 % | d
% -------
% | Gd_ss |
% -------
% | dout

50 % |
% r ______ rout e _____ u _____ y_G_d | y
% -- | R_ss | --> + ---- | K_d | ---- | G_d | ----> + ---->
% ------ - | ----- ----- |
% | |

55 % ---------------------------------
%

R_ss = ss([],[],[],Data.Ref_wt);
Gd_ss = ss([],[],[],Data.Dist_wt);
R_ss.InputName = ‘r’; R_ss.OutputName = ‘rout’;

60 Sum_E = sumblk(‘e = - y + rout’,4);
K_d.InputName = ‘e’; K_d.OutputName = ‘u’;
G_d.InputName = ‘u’; G_d.OutputName = ‘y_G_d’;
Gd_ss.InputName = ‘d’; Gd_ss.OutputName = ‘dout’;
Sum_D = sumblk(‘y = y_G_d + dout’,4);

65 T = connect(R_ss,Sum_E,K_d,G_d,Gd_ss,Sum_D,{‘d’ ; ‘r’},‘y’);
sys = idss(T.A,T.B,T.C,T.D,’Ts’,Data.Sample_time);

% simulate & generate ‘y’ for reference input
udata = [Data.Dist_sig Data.Ref_sig];

70 y = sim(sys,udata);
t = 0:Data.Sample_time:((length(udata)/ ...
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(1/Data.Sample_time))-Data.Sample_time);
e = y - Data.Ref_sig*Data.Ref_wt;
K_model = idss(K_d.A,K_d.B,K_d.C,K_d.D,‘Ts’,Data.Sample_time);

75 u = sim(K_model,e);
ctrl_effort = norm(max(abs(u)),inf);

gama = bnd;

80 % Calculate j
e_area = sum(trapz(t,(t’.* (abs(e(:,:)).^2))));
j = (W1*abs(e_area)+ W2*order(K_model)) + W3*gama + W4*ctrl_effort;

catch
j =10^8;

85 disp(‘Good Luck next time’)
end
return
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Appendix B

SIMULINK Diagrams

In this section, the SIMULINK layouts followed throughout the study are presented.

The figures presented are those from SISO MSO controlled plant. The layout is

similar for all the systems except for the replacement in the controllers used.

Figure B.1: Disturbance and Reference Signals

Figure B.2: The Band-Limited White Noise signal block
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Figure B.3: The general layout
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The ‘Band-Limited White Noise’ block (Figure B.2) with this specific value of

the variable ‘Seed’ enables random white noise to be injected into the system in

SIMULINK. The block have been used in Chapter 6 for the case study. The con-

troller block (Figure B.4) changes as the different controllers are used. In some cases

there might also be pre-filters added to the system, but the general layout stays the

same.

Figure B.4: The Controller Block

Inside the ‘Plant’ block, options are presented to select between the Linearized plant

or Non-Linear plant. The Non-Linear plant block is presented in Fig. B.6.

Figure B.5: The ‘Plant’ Block containing both a non-linear and linearized version
of the plant model.

In the ‘Non Linear Plant’ block B.6 the options to select between the nominal

plant parameters and that for the plant with model uncertainty can be seen. These

parameters are used when model with parameter uncertainty are to be tested. The

‘Saturation’ block B.7 makes sure that the input do not overshoot the practically

realizable limits.
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Figure B.6: The ‘Non Linear Plant’ Block

Figure B.7: The ‘Saturation’ Block
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The Non Linear plant equation present in the ‘NLquad’ is presented in Listing B.1

Listing B.1: Non-Linear plant model

function X_dot = NLquad(X,U,quad_params)
x= X(1); y= X(2); z= X(3); phi= X(4); theta= X(5); yaw= X(6); x_dot= X(7);
y_dot=X(8); z_dot=X(9); p= X(10); q= X(11); r= X(12);

5 mass = quad_params(1); g = quad_params(2); dx = quad_params(3);
dy = quad_params(4) ; Ixx = quad_params (5) ; Iyy = quad_params(6);
Izz = quad_params(7); Ct = quad_params(8); Cp = quad_params(9);
d = quad_params(10); Ir = quad_params(11);

10 U_f = U + [zeros(3,1); 1.2703*g ];
u1= U_f(1); u2= U_f(2); u3= U_f(3); u4= U_f(4);

rho = 1.225; Dia = 0.254; % Deriving propeller angular velcotiy
F2U = [ 1 -1 -1 1 ; 1 1 -1 -1 ; 1 -1 1 -1 ; 1 1 1 1 ];F = abs(F2U\U_f);

15 n = (sqrt(F(1)) - sqrt(F(2)) + sqrt(F(3)) - sqrt(F(4)))/(Ct*rho*Dia^4);

% Quadrotor equations of motion
x_d = x_dot;
y_d = y_dot;

20 z_d = z_dot;
phi_d = p + (q*sin(phi) + r*cos(phi))*tan(theta);
theta_d = q*cos(phi) - r*sin(phi);
yaw_d = (q*sin(phi) + r*cos(phi))*sec(theta);
x_dot_d = -(u4/mass)*(sin(phi)*sin(yaw) + cos(phi)*cos(yaw)*sin(theta));

25 y_dot_d = -(u4/mass)*(cos(phi)*sin(yaw)*sin(theta) - cos(yaw)*sin(phi));
z_dot_d = g -(u4/mass)*(cos(phi)*cos(theta));
p_d = 1/(Ixx)*(u1*dy + (Iyy - Izz)*q*r - Ir*q*n);%
q_d = 1/(Iyy)*(u2*dx + (Izz - Ixx)*p*r + Ir*p*n);
r_d = 1/(Izz)*(u3*d*(Cp/Ct) + (Ixx - Iyy)*p*q);

30

X_dot = [ x_d y_d z_d phi_d theta_d yaw_d ...
x_dot_d y_dot_d z_dot_d p_d q_d r_d]’;

end
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Appendix C

Additional Code Snippets

In this chapter important portions of the code from the work presented in the

study are included. In Listing C.1, C.2 and C.3 capturing plant-non linearity and

uncertainty due to time delays and absorbing it into the complimentary sensitivity

weight is presented.

(Note: MATLAB code and SIMULINK files used in the study can be downloaded

from the link : https://1drv.ms/u/s!AspeQzJQstwqqWIozR3FWTbR_MIq?e=mOs3s6)

Listing C.1: Capturing non-linearity

% Non linearity is to be captured by linearizing the quadrotor at
% ‘n’ points around the hover point
n = 100;

5 % angles taken from -10 to +10 . Generate ‘n’ sample points.
Eu_angle_range = deg2rad([-10,10]);
u_phi = ureal(‘u_phi’,0,‘Range’,Eu_angle_range);
u_phi_sample = usample(u_phi,n);
u_phi_sample = reshape(u_phi_sample,[n 1]);

10

u_theta = ureal(‘u_theta’,0,‘Range’,Eu_angle_range);
u_theta_sample = usample(u_theta,n);
u_theta_sample = reshape(u_theta_sample,[n 1]);

15 u_yaw = ureal(‘u_yaw’,0,‘Range’,Eu_angle_range);
u_yaw_sample = usample(u_yaw,n);
u_yaw_sample = reshape(u_yaw_sample,[n 1]);

% angular rates -0.1 rad/s to +0.1 rad/s. Generate ‘n’ sample points.
20 AngVel_range = [-.1,0.1];

u_p = ureal(‘u_p’,0,‘Range’,AngVel_range);
u_p_sample = usample(u_p,n);
u_p_sample = reshape(u_p_sample,[n 1]);

25 u_q = ureal(‘u_q’,0,‘Range’,AngVel_range);
u_q_sample = usample(u_q,n);
u_q_sample = reshape(u_q_sample,[n 1]);
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u_r = ureal(‘u_r’,0,‘Range’,AngVel_range);
30 u_r_sample = usample(u_r,n);

u_r_sample = reshape(u_r_sample,[n 1]);

% linear velocity -.25 m/s to +.25 m/s. Generate ‘n’ sample points.
LinVel_range = [-.25,.25];

35 u_u = ureal(‘u_u’,0,‘Range’,LinVel_range);
u_u_sample = usample(u_u,n);
u_u_sample = reshape(u_u_sample,[n 1]);

u_v = ureal(‘u_v’,0,‘Range’,LinVel_range);
40 u_v_sample = usample(u_v,n);

u_v_sample = reshape(u_v_sample,[n 1]);

u_w = ureal(‘u_w’,0,‘Range’,LinVel_range);
u_w_sample = usample(u_w,n);

45 u_w_sample = reshape(u_w_sample,[n 1]);

% rotor RPM inthe range -> 4490 - 4690 - 4890
RPM_Range = [4490,4890];
u_Omega_1 = ureal(‘u_Omega_1’,4690,‘Range’,RPM_Range);

50 u_Omega_1_sample = usample(u_Omega_1,n);
u_Omega_1_sample = reshape(u_Omega_1_sample,[n 1]);

u_Omega_2 = ureal(‘u_Omega_2’,4690,‘Range’,RPM_Range);
u_Omega_2_sample = usample(u_Omega_2,n);

55 u_Omega_2_sample = reshape(u_Omega_2_sample,[n 1]);

u_Omega_3 = ureal(‘u_Omega_3’,4690,‘Range’,RPM_Range);
u_Omega_3_sample = usample(u_Omega_3,n);
u_Omega_3_sample = reshape(u_Omega_3_sample,[n 1]);

60

u_Omega_4 = ureal(‘u_Omega_4’,4690,‘Range’,RPM_Range);
u_Omega_4_sample = usample(u_Omega_4,n);
u_Omega_4_sample = reshape(u_Omega_4_sample,[n 1]);

65 % linearize at n different points
clear Non_linear_G_vector;
for i = 1:n

lin_pts = [ 0 0 0 ...
u_phi_sample(i) u_theta_sample(i) u_yaw_sample(i) ...

70 u_u_sample(i) u_v_sample(i) u_w_sample(i) ...
u_p_sample(i) u_q_sample(i) u_r_sample(i) ...
u_Omega_1_sample(i) u_Omega_2_sample(i) ...
u_Omega_3_sample(i) u_Omega_4_sample(i) ];

Non_linear_G = tf(MIMO_quad_ss(quad_params,lin_pts));
75 Non_linear_G_vector(:,:,i) = De^-1*Non_linear_G*Du;

end
Non_linear_G_vector = frd(Non_linear_G_vector,[6.28,628.3]); % 1 Hz ...
% ... to 10 Hz

Listing C.2: Capturing time-delay uncertainty

% Delay Uncertainty is captured by generating ’o’ different
% uncertain plants around the nominal plant
o = 100; Tau = .004; PUc_Tau = 10;

5 % Uncertainty in the range Tau +-10%.
U_Tau = ureal(’U_Tau’,Tau,’Percentage’,PUc_Tau);
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s = tf(‘s’);
[num,den] = tfdata(G_hat);

10

for i = 1:o
Sample_pts = [ usample(U_Tau) 0 0 0 ; ...

0 usample(U_Tau) 0 0 ; ...
0 0 usample(U_Tau) 0 ; ...

15 0 0 0 usample(U_Tau) ];

% Unc_TD_G = tf(num,den,’InputDelay’,Sample_pts(:,:));
Unc_TD_G = tf(num,den,’IODelay’,Sample_pts);
Unc_TD_G_vector(:,:,i) = De^-1*Unc_TD_G*Du; %#ok<SAGROW>

20 end

Listing C.3: Developing the complimentary sensitivity weight

% Concatenate the vectors. Here Non_linear_G_vector contains the models
% with parameter uncetainty. The other two vectors are defined above.
NL_TD_Param_Unc_G_vector = cat(3,Unc_TD_G_vector, Unc_G_vector, ...

Non_linear_G_vector);
5

% Structured Parametric, Time Delay Output and Nolinear Input uncertainty
S_NL_TD_Param_Ip_w = s*eye(4);
for j = 1:4

% 1st order Structured Parametric, Time Delay & Non Linear Output ...
10 % ... uncertainty

[S_G_NL_TD_Param,S_Info_G_NL_TD_Param] = ...
ucover(NL_TD_Param_Unc_G_vector(j,:,:),G(j,: ),1,’InputMult’);

S_NL_TD_Param_Ip_w(j,j) = tf(S_Info_G_NL_TD_Param.W1);
end

The plots where percentile based shading is used (eg. see Figure 4.24) is developed

by modifying the MATLAB file fanChart.m. Similarly the Violin plots (see Figure

4.42) is based on the MATLAB file distributionPlot.m (click to follow through

to the hyperlink).
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Appendix D

The Controllers

In order to easily reproduce these results, each of the optimised controllers are listed

following the order in which they appear in this thesis. The continuous controller,

K, is given in packed matrix form [145], in the units given in chapter 3.

D.1 Chapter 4 – SISO Systems

D.1.1 Pitch and Roll Rate

D.1.1.1 MSO Controller

K ∼=


−0.7366 2.082 · 10−16 −1.342 · 10−13 4

8.197 · 10−7 −0.9954 0.05844 −1.206 · 10−9

1.874 · 104 12.84 −8280 −2.055 · 10−8

435.9 0.2985 −192.5 0

 (D.1)

D.1.1.2 LSDP 1 DoF Controller

K ∼=


−91.88 −29.89 −218.8 10.41 0.1449

0 −1.257 −42.78 0.07331 0.00102

0 42.75 −97.04 −0.5363 −0.007463

0 0 0 −16.31 0.25

−74.21 −51.59 −377.6 17.97 0.2501

 (D.2)
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D.1.1.3 LSDP 2 DoF Controller

K ∼=


−10.01 −7.07 8.743 3.704 · 10−20 0.004397

−1.287 · 104 −9089 1.124 · 104 −1.442 · 10−13 5.636

−6.217 · 10−11 −4.391 · 10−11 −17.64 1.909 2.747 · 10−14

−2268 −1602 1988 0 0


(D.3)

D.1.1.4 µ Controller

K ∼=



166.4 −3.481 −1.404 2.231 68.8 3.965 · 10−17

323.2 −112.6 −7.457 4.781 130.8 −25.29

3.299 · 10−7 −1.094 · 10−7 −0.00125 3.133 · 10−9 1.334 · 10−7 −0.25

3.026 −0.06329 −0.02553 −0.9552 1.251 5.594 · 10−15

−397.3 3.628 3.143 −5.263 −164.4 −1.118

215.9 −4.515 −1.821 2.871 89.22 0


(D.4)

D.1.2 Yaw Rate

D.1.2.1 MSO Controller

K ∼=


−0.4895 8.619 · 10−33 −2.106 · 10−31 2

9.469 · 10−8 −0.9954 0.08441 −5.521 · 10−9

333.3 4.565 −111.5 −6.51 · 10−8

21.37 0.2928 −7.153 0

 (D.5)

272



D.1.2.2 LSDP 1 DoF Controller

K ∼=


−27.8 −91.27 −9.364 3.125 0.1633

0 −33.82 −6.455 0.247 0.01291

0 −6.444 −20.96 0.0253 0.001322

0 0 0 −16.02 0.125

38.64 −285.2 −29.26 9.764 0.5102

 (D.6)

D.1.2.3 LSDP 2 DoF Controller

K ∼=


−32.76 −13.61 11.06 −1.167 · 10−15 0.02525

−4351 −1807 1470 −2.823 · 10−14 3.268

−2.238 · 10−12 −9.295 · 10−13 −31.75 3.329 1.519 · 10−15

−1289 −535.4 438.1 0 0

 (D.7)

D.1.2.4 µ Controller

K ∼=



129.6 −17.97 −4.965 2.344 128.7 −1.994 · 10−16

170.4 −167.5 −16.77 2.07 165 −34.01

1.794 · 10−7 −1.724 · 10−7 −0.1485 1.874 · 10−9 1.738 · 10−7 −0.5

1.626 −0.2254 −0.06227 −0.9663 1.614 −1.381 · 10−14

−114.5 −0.5017 3.218 −2.16 −114.2 −3.869

74.96 −10.39 −2.871 1.341 74.39 0


(D.8)

D.1.3 Altitude Rate

D.1.3.1 MSO Controller

K ∼=


−0.006676 −6.225 · 10−17 1.489 · 10−15 1

3.454 · 10−7 −1.005 0.0434 −1.409 · 10−8

156.9 1.717 −43.07 −3.231 · 10−7

−17.37 −0.1901 4.738 0

 (D.9)
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D.1.3.2 LSDP 1 DoF Controller

K ∼=


−69.22 −266.5 −193.8 −28.09 −0.1801

0 −4.427 −14.56 −0.4605 −0.00291

0 14.44 −96.12 0.3378 0.002151

0 0 0 0.01991 0.2415

−113.8 −531.4 −384.8 −56.25 −0.3394

 (D.10)

D.1.3.3 LSDP 2 DoF Controller

K ∼=


−2892 1095 1876 −1.164 · 10−17 1.131

7756 −2937 −5032 1.835 · 10−14 −2.99

−1.957 · 10−11 7.411 · 10−12 −8.818 1.448 7.849 · 10−15

2549 −964.9 −1658 0 0

 (D.11)

D.1.3.4 µ Controller

K ∼=



−0.009512 0.002744 0.03722 0.03774 0.0101 0.03948 0

0 −0.01 0.06552 0.06644 0.01779 0.0695 0

0 0 −0.1067 0.9012 0.2413 0.9427 0

0 0 0 −0.9944 0.2447 0.9559 0

0 0 0 0 −3.681 0.256 0

0 0 0 0 0 −44.3 8

0.05876 −0.1035 −1.403 −1.423 −0.381 −1.488 0


(D.12)

D.2 Chapter 5 – MIMO Systems
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D.2.1 MSO Controller

K ∼=



−0.0001 5.337 · 10−29 2.962 · 10−28 −7.969 · 10−29 −1.093 · 10−27 1.845 · 10−31 5.951 · 10−29 −2.088 · 10−29 7.691 · 10−29 −1.034e− 26

1.86 · 10−11 −0.1679 −7.921 · 10−17 −1.264 · 10−17 −1.727 · 10−12 −1.878 · 10−14 9.761 · 10−19 3.163 · 10−19 3.031 · 10−17 −1.617 · 10−11

−1.902 · 10−9 3.447 · 10−13 −0.04651 −1.824 · 10−14 1.766 · 10−10 −6.183 · 10−14 −7.615 · 10−18 4.565 · 10−16 4.375 · 10−14 1.653 · 10−9

1.23 · 10−9 −7.111 · 10−14 5.536 · 10−15 −0.0001 −1.142 · 10−10 1.275 · 10−14 −6.821 · 10−17 −3.041 · 10−16 −2.915 · 10−14 −1.069 · 10−9

0.0003452 1.488 · 10−14 8.631 · 10−15 −1.416 · 10−15 −57.5 −2.654 · 10−15 −1.15 · 10−16 4.795 · 10−17 3.434 · 10−15 32

7.589 · 10−12 1.685 · 10−7 −1.049 · 10−15 7.649 · 10−16 −7.045 · 10−13 −56.64 1.293 · 10−17 −1.914 · 10−17 −1.835 · 10−15 −6.596 · 10−12

3.897 · 10−11 −1.017 · 10−13 3.753 · 10−08 9.624 · 10−16 −3.618 · 10−12 1.824 · 10−14 −55.28 −2.409 · 10−17 −2.308 · 10−15 −3.387 · 10−11

1.155 · 10−11 −3.074 · 10−13 −2.137 · 10−14 4.096 · 10−8 −1.072 · 10−12 5.514 · 10−14 2.633 · 10−16 −58.11 16 −1.004 · 10−11

−1.976 · 10−11 −4.402 · 10−14 8.389 · 10−13 14.51 1.646 · 10−12 2.237 · 10−14 −3.809 · 10−14 3.802 −15.83 1.719 · 10−11

8077 1.524 · 10−9 −9.459 · 10−10 6.744 · 10−10 −742.2 7.091 · 10−11 −1.891 · 10−10 2.733 · 10−10 −7.145 · 10−10 −7021

2.249 · 10−11 420.4 1.071 · 10−11 −1.539 · 10−12 −2.284 · 10−12 1.402 −7.404 · 10−13 4.024 · 10−13 −3.115 · 10−13 −1.925 · 10−11

5.426 · 10−11 1.234 · 10−14 5.147 2.377 · 10−15 −5.036 · 10−12 −3.817 · 10−15 1.034 3.993 · 10−16 −4.04 · 10−15 −4.716 · 10−11

244.5 12.73 −2.074 −1.917 −22.47 0.04245 −0.4166 −0.5021 1.85 −212.6

−244.5 −12.73 −2.074 −1.917 22.47 −0.04245 −0.4166 −0.5021 1.85 212.6

−244.5 12.73 2.074 −1.917 22.47 0.04245 0.4166 −0.5021 1.85 212.6

244.5 −12.73 2.074 −1.917 −22.47 −0.04245 0.4166 −0.5021 1.85 −212.6

−3.457 · 10−29 −4.411 · 10−28 4 2.566 · 10−33 5.848 · 10−39 −1.969 · 10−38

−8.205 · 10−14 3.932 · 10−16 −1.259 · 10−14 4 8.538 · 10−17 1.27 · 10−17

−2.701 · 10−13 −3.067 · 10−15 1.288 · 10−12 −2.486 · 10−14 1 1.833 · 10−14

5.572 · 10−14 −2.748 · 10−14 −8.326 · 10−13 5.127 · 10−15 −5.967 · 10−15 2

−1.166 · 10−14 −4.298 · 10−14 −2.337 · 10−07 −1.068 · 10−15 −9.347 · 10−15 1.452 · 10−15

16 5.207 · 10−15 −5.138 · 10−15 −1.215 · 10−8 1.131 · 10−15 −7.687 · 10−16

7.969 · 10−14 32 −2.639 · 10−14 7.332 · 10−15 −4.045 · 10−8 −9.672 · 10−16

2.409 · 10−13 1.061 · 10−13 −7.818 · 10−15 2.217 · 10e−14 2.303 · 10−14 −4.116 · 10−8

1.77 · 10−14 −1.001 · 10−12 −2.188 · 10−14 8.373 · 10−16 8.65 · 10−14 −1.495 · 10−7

−1.007 · 10−9 1.429 · 10−9 −4.2 · 10−7 −2.246 · 10−17 −1.856 · 10−14 3.005 · 10−15

−272.3 −1.613 · 10−11 −2.294 · 10−14 −4.301 · 10−8 2.622 · 10−16 −3.747 · 10−16

−8.455 · 10−15 −7.665 −3.677 · 10−14 −1.14 · 10−18 −6.988 · 10−8 −8.538 · 10−16

−8.245 3.088 0 0 0 0

8.245 3.088 0 0 0 0

−8.245 −3.088 0 0 0 0

8.245 −3.088 0 0 0 0


(D.13)
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D.2.2 LSDP 1DOF Controller

K ∼=



−11.9 0 0 0 −31.52 0.3401 −6.496 0.1504 −0.08653 0.01209

0 −1.528 0 0 11.74 −0.9519 14.65 −0.01374 −0.1843 0.04385

0 0 −29.04 0 −1.788 −21.25 1.573 2.624 11.1 −2.528

0 0 0 −76.59 −8.508 −40.26 −5.194 −6.216 −26.15 5.912

0 0 0 0 −542 9.037 −340.9 −45.84 8.276 0.379

0 0 0 0 8.802 −81.21 20.73 1.804 3.478 −12.01

0 0 0 0 −325 20.29 −355 −26.55 4.099 2.463

0 0 0 0 16.17 −3.871 −3.846 −16.57 −18.39 9.553

0 0 0 0 −9.024 −16.81 −3.398 −17.52 −88.73 41.69

0 0 0 0 1.005 10.15 −0.4495 −0.2188 −1.235 −30.15

0 0 0 0 −4.222 0.3277 −1.374 3.081 −0.2486 −0.8603

3.237 0 0 0 −17.04 0.1839 −3.512 0.08133 −0.04678 0.006536

0 −0.8222 0 0 33.33 −2.702 41.58 −0.03901 −0.5233 0.1245

0 0 3.023 0 −0.7749 −9.21 0.6818 1.137 4.813 −1.096

0 0 0 10.67 −1.138 −5.384 −0.6947 −0.8314 −3.497 0.7907

−0.003862 0.002508 −0.003153 0.0002533 −0.000313

0.001779 0.009151 −0.0115 0.000924 −0.001142

−0.08921 −0.5503 0.6918 −0.05557 0.06867

0.2027 1.229 −1.545 0.1241 −0.1534

4.399 −5.105 −5.872 3.66 3.489

−0.1946 0.3351 0.1659 −3.206 2.75

−0.2225 −4.098 −4.534 −1.739 −1.307

2.232 0.141 −0.2135 0.02975 −0.009456

0.9349 0.6739 −0.8418 0.07067 −0.09009

−0.8307 0.09997 −0.1249 0.004565 −0.007574

−1.85 −0.0001526 0.000409 −0.0007606 −0.0004473

−0.002088 0.001356 −0.001705 0.0001369 −0.0001692

0.005049 0.02598 −0.03266 0.002623 −0.003242

−0.03867 −0.2385 0.2999 −0.02409 0.02977

0.0271 0.1644 −0.2066 0.0166 −0.02051



(D.14)
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D.2.3 µ Controller

K ∼=



−704.1 20.44 −716.6 97.1 −227.1 8593 0.01914 −2.441 −1.633 7.073

−232.4 −5581 3121 −431.6 −966.2 −3.743 · 104 −0.08337 −10.39 −6773 −81.89

−232.6 −89.15 −8866 −422.6 990.9 3.836 · 104 −0.08351 −10.41 −1.548 −6789

−34.98 −13.27 470.8 −787.5 149.2 −5646 0.01243 −1.567 6.15 2.115

−9.009 3890 121 −16.74 −1.003 · 105 −1451 −0.003232 −0.4026 −264.1 −1.647

−18.12 −6.947 9349 −32.93 77.22 −1.195 · 105 −0.006507 −0.8108 −3.906 −525.2

−0.02544 −0.00965 0.3424 15.43 0.1085 −4.105 −2.115 · 104 −0.001139 0.006685 0.003734

3.144 0.3739 −13.11 1.776 −4.155 157.2 0.0003502 −225.2 0.1353 0.2928

1.312 −0.4973 −17.62 2.438 5.586 211.3 0.0004708 0.05865 −17.9 0.2405

1.313 0.5034 17.65 2.387 −5.596 −211.7 0.0004716 0.05876 0.2307 −15.05

1.314 0.4986 −17.69 −2.44 −5.607 212.1 −0.0004725 0.05888 −0.3454 −0.193

1.312 −0.5035 17.65 −2.392 5.595 −211.7 −0.0004715 0.05876 −0.1822 −0.3943

0.164 −0.06216 −2.203 0.3047 0.6983 26.42 5.885e− 05 0.007331 4.808 0.03006

0.1642 0.06293 2.207 0.2983 −0.6995 −26.46 5.895e− 05 0.007345 0.02883 4.764

0.1643 0.06233 −2.211 −0.305 −0.7009 26.52 −5.907e− 05 0.00736 −0.04318 −0.02412

0.164 −0.06294 2.206 −0.299 0.6994 −26.46 −5.894e− 05 0.007345 −0.02278 −0.04929

−18.37 −1559 6.472 · 10−8 1.105 · 10−6 4.24 · 10−8 −324.8

21.35 73.21 −1417 1.284 · 10−8 8.668 · 10−7 3.206 · 10−8

71.68 30.66 1.323 · 10−8 −1417 5.014 · 10−8 5.519 · 10−7

−1021 −3.356 2.139 · 10−7 1.318 · 10−8 −212.9 5.4 · 10−9

2.368 1.308 −54.92 −4.675 · 10−9 4.456 · 10−8 7.872 · 10−10

1.798 6.141 9.38 · 10−8 −110.4 5.415 · 10−8 −3.996e− 09

−0.7447 −0.004639 7.659 · 10−10 −1.999 · 10−10 −0.1548 −1.174 · 10−11

−0.1708 −28.35 −3.407 · 10−10 2.027 · 10−8 6.713 · 10−10 −5.941

−0.3444 −0.1911 1.316 · 10−11 −1.202 · 10−12 −3.561 · 10−13 −8.767 · 10−14

−0.1828 −0.3931 −6.521 · 10−12 1.678 · 10−11 3.119 · 10−13 6.859 · 10−14

−17.86 0.2397 7.872 · 10−14 −7.621 · 10−14 −1.253 · 10−13 7.315 · 10−14

0.23 −15.27 −2.032 · 10−12 3.13 · 10−12 −1.163 · 10−13 1.463 · 10−15

−0.04305 −0.02389 0 0 0 0

−0.02285 −0.04913 0 0 0 0

4.81 0.02997 0 0 0 0

0.02875 4.771 0 0 0 0



(D.15)
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