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Abstract

In the field of mining data streams, processing time is one of the most impor-

tant factors because data instances continuously arrive at high-speed. Thus, it

is crucial to process each instance in a timely manner. This concern is further

emphasized when Discrete Fourier Transform (DFT) is applied to Decision

Tree systems. DFT is highly beneficial in data stream mining as it allows

us to represent a Decision Tree with less memory usage while preserving the

accuracy of the prediction model. However, DFT is notorious for being com-

putationally expensive to perform. An existing solution (Kargupta & Park,

2004) to mitigate this problem is by computing coefficients for smaller order.

This approach, however, is highly inefficient for deep trees as the underlying

problem space grows exponentially.

We seek to improve the efficiency of computing Fourier coefficients of De-

cision Trees in this study. We propose a divide and conquer solution by

decomposing a Decision Tree into small sub-trees. Local Fourier coefficient

table are then built for each sub-tree. The final Fourier coefficient table is then

compiled by tabulating all the local Fourier coefficient tables. This effectively

allows us to derive a coefficient table from an existing coefficient table. The

method is particularly useful for two purposes. First is to track and synchro-

nize a Decision tree and its Fourier spectrum on the fly. Second is to handle

recurring concepts by reusing previously learned concepts. This thesis serves

as a groundwork for future works which will be focused for the latter purpose.

In our experiments, we compare the runtime of our solution to that of

the normal DFT process with various order cutoff on both real and artificial

datasets. The results show that our solution generally performed better than

normal DFT process with various degrees of success from moderate to sig-

nificant improvements. We also measured the runtime performances of our

solution in eager synchronization setup for comparison.



Chapter 1

Introduction

Every day, enormous amount of data are produced by systems running con-

tinuously. This continuous flow of data creates challenge to efficiently process

huge amount of data, potentially infinite, in a timely manner. For example,

Google handles more than 5 billion searches per day in 2012 1. Another exam-

ple of continuous system is Yahoo finance keeping track of stock prices listed

in every stock market in the world at near real-time, if not real-time.

The Knowledge Discovery in Databases (KDD), recently known as Knowl-

edge Discovery and Data mining, is a multi-discipline field mainly concerned

with making sense out of data (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). It

involves a wide spectrum of processes; from pre-processing and post-processing

of data to pattern recognition and statistical analysis and interpretation of

mined results. The extracted knowledge (or pattern) is potentially useful to

assist human to make decisions, often to gain economic edge from business

competitors.

However, traditional KDD techniques were only suitable for static datasets,

typically stored in a data warehouse. When applied to data with continuous

flow, KDD has to make immediate decision e.g. raising alarm and perform

other security measures when detecting early onset of a possible denial-of-

service attack. In static mining, data can be pre-analysed which helps to

create the best possible learning model for future predictions. Patterns can

then be relearned once it no longer relevant to new batches of data. In stream
1http://www.statisticbrain.com/google-searches/
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mining, models expired far too fast that discard-rebuild approach is no longer

possible.

Because of its nature, extracting patterns from streaming input poses se-

rious challenges. First, streams are open-ended, making the amount of data

to process enormously large (potentially an infinite amount). It is simply in-

feasible to store all arriving data because memory space is limited. Second,

data arrives at high-speed. Unlike batch learning setting, a learning algorithm

in stream mining context only has one chance to read arriving data instances

and thus needs to process such instances on the fly. Third, streams evolve over

time. Hinted at above, statistical properties of input instances may change

dynamically. It is necessary for a learner to quickly adapt to changes in the

stream as obsolete data may reduce the effectiveness of the learner.

This motivated the development of learning techniques with the capabil-

ity to build models incrementally as data arrives. Incremental learning is

crucial as it allows accumulation of information continuously, thus allowing

for processing of open-ended input such as streams. Examples of incremental

learners are Hoeffding tree (Domingos & Hulten, 2000) and AOG (Gaber, Kr-

ishnaswamy, & Zaslavsky, 2005) which are able to dynamically make changes

to the learning model as new data instances arrive.

Data stream mining is a maturing research field. Extensive works have

been done to extend existing batch learning algorithms into incremental learn-

ers, such as SVM (Domeniconi & Gunopulos, 2001), Decision Tree (Domingos

& Hulten, 2000; Hulten, Spencer, & Domingos, 2001) and the Bayesian Net-

work (Hulten & Domingos, 2002). A number of works also focused on de-

termining when a concept change occurs, such as the CUSUM (Basseville,

Nikiforov, et al., 1993), DDM (Gama, Medas, Castillo, & Rodrigues, 2004)

and ADWIN (Bifet & Gavalda, 2007). Such a concept change detection algo-

rithm is typically paired with a base incremental learner to further boost the

learners’ adaptability to the evolving stream.
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However, there are plenty real-world scenarios such as military-use sensor

networks, aircraft navigation systems, autonomous mass transport systems,

earthquake early warning systems and high-frequency trading systems where

previously-known patterns, or concepts, are likely to reoccur. For example,

a condition that drives an increase of a commodity price may reappear in

the future. Another example is specific tremor patterns may reoccur prior

to a massive quake. Such systems have to accurately make predictions and

take immediate action in order to avoid disastrous, potentially irrecoverable,

damages or losses.

Extracting knowledge from streams with reoccurring concepts is a rela-

tively young field of research. Mining recurrent concepts is a very challenging

task as we now have to face additional issues, while considering all the chal-

lenges posed by stream mining. The main issue is to figure out how to capture

a concept in anticipation to future occurrences. A traditional incremental

learner would be highly inefficient as it is not aware of concept recurrence and

will treat concept reoccurrences as "just another concept change", resulting

in time wasted to relearn previously-known concepts.

There are several works in the field of mining stream with concept re-

currences, such as (Gama & Kosina, 2011; Katakis, Tsoumakas, & Vlahavas,

2008; Ramamurthy & Bhatnagar, 2007; Sripirakas & Pears, 2014). A promis-

ing strategy in mining recurrent concepts is to train an ensemble of learners

and then identify which one best capture the current concept. The model is

then stored for future prediction, in the hope that the learned concept will

reappear in the stream.

Although simple and effective, this approach is very costly in terms of

memory consumption as models representing past concepts are accumulated

and thus may be prohibitive for production systems with restricted memory.

The memory requirements can be reduced by employing a compression method

to models that has learned concepts. Kargupta and Park (2004) showed that it
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is possible to transform a decision tree structure into a highly condensed form

using the Discrete Fourier Transform (DFT). In the study they showed that

the DFT of a tree obtained by computing relatively low order coefficients was

able to capture virtually all of the classification accuracy. Sripirakas and Pears

(2014) showed that the DFT can be particularly useful in mining streams with

concept recurrences as it greatly reduces the memory required to store past

concepts, while preserving the prediction performance of uncompressed trees.

Despite all the benefits offered by the DFT, it is inherently an expensive

computation with time complexity of O(n2). Unfortunately, the well-known

Fast Fourier Transform (FFT) is unsuitable in the case of DFT of decision

trees due to the dimensionality issue; FFT only works in univariate transform

while the DFT of decision trees is a multivariate problem. Existing solutions

proposed (Park, 2001; Sripirakas, 2015) to mitigate the costly DFT computa-

tion are: 1) exploiting the properties of Fourier transform and 2) reducing the

computational overhead of the DFT. However, the solutions do not attempt

to reduce the underlying exponential problem space. This motivates us to

find a way to reduce time complexity of computing the DFT of decision trees.

This research focuses on addressing the issue caused by the costly nature

of the DFT in its role to support mining recurrent concepts. Inspired by the

FFT, our solution uses a divide and conquer strategy to decompose a decision

tree into sub-trees and compute Fourier spectra in the localized problem space

of sub-trees. Later in this thesis, we will show that our solution in general

improves the runtime needed to compute Fourier spectra on both synthetic

and real-world datasets.

1.1 Research Questions

The Discrete Fourier Transform (DFT) by its very nature is an expensive

computation, where the number of coefficients to compute grows exponentially
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on the number of distinct features in a decision tree. In practice on univariate

data, it is usually implemented as the Fast Fourier Transform (FFT), which

uses a divide and conquer strategy to break the performance barrier of the

DFT.

Unfortunately, the FFT is not applicable to transform decision trees into

Fourier spectra. The main obstacle is that the FFT is a univariate transform

while Fourier spectrum of a decision tree is a multivariate problem. Being

aware of this problem, Kargupta and Park (2004) proposed a solution exploit-

ing the properties of decision trees in Fourier domain. Another optimization

was proposed by Sripirakas which reduces the computational overhead of the

DFT (Sripirakas, 2015). These approaches, however, do not attempt to reduce

the size of the underlying feature space.

The main objective of this thesis is to explore ways to further improve the

DFT computation of decision trees, which raises several questions:

1. Is it possible to reduce the size of problem space by decomposing a de-

cision tree into sub-trees and compute their Fourier spectra separately?

Will this approach incur information loss?

2. Assuming that Question 1 leads to a positive answer, is computation

of Fourier spectra of sub-trees always less costly than computing the

Fourier spectrum of the original tree? Under what conditions is the

decomposition approach beneficial?

3. Because Fourier spectrum is highly dependent on the tree structure, is

it possible to infer the Fourier spectrum of a decision tree, or a sub-tree

from previously-computed Fourier spectra of similar trees?
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1.2 Scope

This thesis is limited to the application of DFT on Hoeffding Trees in the

stream mining setting with recurrent concepts. Hoeffding Tree is a top-down

tree induction algorithm that is specifically designed to learn incrementally

which is suited to a stream mining environment. The DFT can be particularly

useful in the recurrent concept setting as it allows us to store decision trees in

a highly compressed form while preserving the predictive performance of the

underlying model (Sripirakas & Pears, 2014).

The application of DFT in this thesis is limited to the binary feature do-

main for illustration purposes but the DFT of decision trees can be generalized

to arbitrary-size feature domain as shown by Park (Park, 2001). However, the

implementation of our algorithm is designed for decision trees in binary fea-

ture domain to serve as a proof of concept of our solution. Extension of our

solution into n-ary feature space will be discussed in the future work section

of this thesis.

1.3 Overview of Research Strategy

We briefly present the overall research strategy in this section. We make use

of an existing general framework to mine streams with recurrent concepts

which is proposed in (Sripirakas, 2015). The framework consists of three

main components: a decision forest containing tree classifiers that are learning

concepts dynamically, a concept change detector, and a repository pool to

collect learned concept classifiers. Each component is designed to tackle a

specific problem in recurrent concept mining. The forest manages a collection

of decision tree learners, each of which is trained to capture different concepts.

This can be achieved in numerous ways, such as training each tree on different

partition of feature space, or growing each tree on a distinct root attribute.
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Concept drift detectors raise alerts to the system when they detect concept

change in the stream. The pool serves as a repository of captured concepts

which will be used for future predictions.

The flow of the general framework is as follows. Data instances are routed

to the forest and are used to train each tree member separately. Each decision

tree in the forest is paired with a concept detector. Whenever a concept change

is detected, the tree with the highest accuracy in the forest is selected as the

winner tree. The winner tree, having captured a concept, will then be stored

in a repository for possible future use in a highly condensed form. In our

implementation, the compression used is the DFT. At the beginning of the

stream, output prediction will be mainly performed by the forest. When old

concepts reoccur in the stream, the system will dynamically switch to the

concept classifier with the highest accuracy in the repository. The framework

will be described in further detail in Chapter 3.

Later in this thesis we will introduce our solution to efficiently compute the

DFT of decision trees, dubbed memoFT. For the experiment runs, we imple-

mented three types of DFT computations, normal DFT and memoFT in both

lazy and eager mode. The implementation of the system is configured in such

way because we want to compare the runtimes of the three processes. Since

our algorithm uses memory-optimization technique, it is necessary to select

which winner tree should be compressed using memoFT. In this research, we

use a simple statistical count strategy to select on which winner tree memoFT

should perform a DFT.

We then run experiments using synthetic and real-world datasets. The

Rotating Hyperplane and Radial Basis Function generators are specifically

chosen because they generates datasets with polar opposite characteristics.

From the real world datasets, we chose the Forest Covertype, NSW Electricity

and Flight datasets. The entire experimental setting will be fully explained

in Chapter 5.
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1.4 Thesis Structure

The rest of this thesis is organized as follows. In Chapter 2, we outline the

data stream mining primer, as well as the progress of the research work done in

the field, up to the current state. We will then focus on the mining framework

serving as the foundation of this thesis in Chapter 3 and discuss the key

elements used in the framework, giving special attention to DFT application

to decision trees where we will identify the main issue we attempt to solve. In

Chapter 4, we present our research design and propose an algorithm that uses

a divide and conquer strategy to address the issue raised in Chapter 3. We

then proceed to assess our algorithm in terms of runtime and memory usage

in Chapter 5. The research achievements, limitations, and future works are

discussed in Chapter 6.



Chapter 2

Literature Review

Throughout this chapter, we will describe the progress of research in data

stream mining to recurrent concept mining. We start the chapter with defining

data mining in a stream environment, describing the challenges and problems

it attempt to solve. In the last section, we address mining of recurring concepts

which is the basic premise of our research.

2.1 Data Stream Mining

Data mining is a field of study mainly concerned with extraction of meaning-

ful patterns from data. The need to automate this process is ever increasing

because we generate data much faster than the human capacity of understand-

ing such data. Hidden in this formidable amount of data is information that

is potentially useful, waiting to be taken advantage of.

Data stream mining is a specialized subfield of data mining; it attempts

to apply data mining techniques to be suitable for mining open-ended data

streams. For this purpose, there is a need to define what a data stream is.

Data stream is defined as a flow, or stream, of data instances being transmitted

at a high rate of speed.

Several key issues in mining data stream are restrictions on resources:

sample size, memory space and time. Classical data mining draws its training

instances from static datasets, where learning algorithms are allowed to read

instances multiple times, effectively giving the chance for the algorithms to
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further fine-tune their generated models. Such a learning style, however, is

technically infeasible with open-ended input such as data streams.

Enlisted below are the additional constraints that apply in data stream

mining:

1. The volume of data is enormously large and potentially grows infinitely.

It is impossible to store all arriving data. Instead, only a small amount

of instances can be processed and stored at a given time.

2. The learning algorithm is not allowed to read input data in multiple

passes and has to make decision or computation, and then discard ob-

solete instances in a timely manner. This is because the rate of arrival

of input is large.

3. Data evolves over time. Data may evolve because of the changes in

statistical properties of distribution in the input. It means that mining

algorithm has to adapt to evolving streaming data because outdated

data may reduce accuracy of the prediction model.

In this section, we will describe research work done addressing Constraint

1 and 2, while work focused to tackle Constraint 3 is described in Section 2.2.

2.1.1 Classification in Data Stream

Batch learning algorithms such as CART (Breiman, Friedman, Stone, & Ol-

shen, 1984), ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993), k-Nearest Neighbor

and Neural Networks are not designed to mine data streams where the volume

of data is potentially unlimited. This motivates research into development of

incremental learning algorithms. Building models incrementally is an impor-

tant capability as it supports a continuous learning process and accumulation

of information over time. An incremental learner effectively builds a model

once and continuously updates the model as new instances arrive, preserving
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previously acquired knowledge (Ade & Deshmukh, 2013). This incremental

update of model is favored because discarding and rebuilding models can be

very costly to perform in terms of processing time.

Domingos and Hulten (2000) developed the Hoeffding tree to perform in-

cremental induction of decision trees by making use of Hoeffding bound. The

usage of the Hoeffding bound eliminates the need for the tree learner to read

instances multiple times that was previously required by traditional top-down

tree induction algorithms. In the study, Hoeffding tree was implemented as

VFDT (Very Fast Decision Tree) which was shown to run much faster and be

more tolerant to noise compared to C4.5 (Quinlan, 1993).

Domingos and Hulten then extended the idea in a later study (2002), ap-

plying the Hoeffding bound to other classification learners. In the study,

Domingos and Hulten used Bayesian Network as the base learner. They

showed that Bayesian Network fitted with Hoeffding bound to be superior

compared to Dirichlet distribution-based Bayesian learner developed by Heck-

erman et al. (1995)

Gaber et al. (2005) developed AOG (Algorithm Output Granularity) as

an alternative approach to incremental learning that is resource-aware. AOG

is designed to handle fluctuating data rates commonly occurring with systems

involving networks of sensors. AOG consists of three stages: Mining, adapta-

tion and knowledge merging. The first two stages are dynamically adjusted

to cope with variable input rate. Knowledge merging is performed when allo-

cated memory space is full. In the study, it is shown that AOG is also suitable

for clustering and frequent pattern tasks.

Domeniconi and Gunopulos (2001) introduced an approach to perform

incremental learning using the Support Vector Machine (SVM) as the base

learner. In the study, the base learner process instances in batches. Domeni-

coni and Gunopulos identified four possible techniques to train SVM incre-

mentally. 1) Error Driven, where wrongly classified instances are preserved for
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fine tuning the model. 2) Fixed Partition, where models are built separately

on fixed-size batches and aggregated. 3) Exceeding Margin where instances

located in the margin of a SVM model are preserved to update the model. 4)

Combining Error Driven and Exceeding Margin.

2.2 Mining Evolving Data Streams

As discussed in Section 2.1, data streams are open-ended and as such, data

may change overtime. As a consequence, a pattern, or concept, previously

learned at one point of time becomes obsolete as new instances represents

different concepts. The change of concept, popularly known as concept drift,

is caused by the shift of statistical information of the instances.

Several research works focused to tackle concept drift typically makes use

of sliding window mechanism (Bifet & Gavalda, 2006, 2007; Hulten et al.,

2001). A sliding window is particularly useful in stream mining for detecting

concept changes occurring in the stream, and preserving instances for updating

models (Hoeglinger & Pears, 2007).

Basseville and Nikiforov conducted one of the earliest surveys of change

detection algorithms (1993), where they compiled change detection methods

in four categories: control charts, filtered derivative algorithms, cumulative

sum (CUSUM) tests, and Bayes-type algorithms. All four categories involved

usage of sliding windows of which statistical information is checked against

adaptive threshold to detect changes.

Domingos et al. showed that VFDT can be extended to handle concept

drift with a drift detection mechanism (2001). The resulting algorithm is

called CVFDT (Concept-adapting Very Fast Decision Tree). CVFDT grows

a sub-tree when it detects that a split node is outdated. The split is then

replaced by the new sub-tree when the sub-tree grows more accurate than the

old one, resulting in a smooth transition of adapting to new concepts.
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Gama et al. introduced Drift Detection Method (DDM) to detect occur-

rence of abrupt change (2004). The algorithm also maintains a sliding window

while collects two sets of statistical information; that of all instances and in-

formation of instances from beginning to the point where classification errors

start increasing. Additional feature introduced by DDM is two level state

triggers, Warning and Change. As a warning is raised, instances are collected

anticipating when change is triggered. When change is triggered, the learned

model is discarded and a new model is built from the collected instances from

the point at which the warning was raised.

Bifet and Gavalda introduced an adaptive sliding window approach called

ADWIN (2007). ADWIN uses the Hoeffding bound to determine whether

the statistical information of two window partitions are significantly different

from each other. Therefore, ADWIN is appealing because it has theoretical

guarantee of performance.

2.2.1 Time-basedWindowing versus Concept-basedWin-

dowing

All of the works mentioned in the previous section falls under the time-based

windowing scheme. Generally, there are two types of windowing schemes:

time-based and concept-based windowing. Both schemes share the same goal;

to enable learning algorithms to cope with changing concepts. In a typical

time-based windowing scheme, a sliding window is partitioned into two and

constantly monitored as shown in Figure 2.1. If the statistical information of

both partitions is "significantly" different (or the difference is above certain

threshold), it implies that concept drift has occurred and model needs to be

updated (Hoeglinger, Pears, & Koh, 2009).

Concept-based windowing scheme is radically different from its time-based

counterpart. The main motivation of this scheme is that older instances are
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Figure 2.1: Typical sliding window structure for detecting concept change

not always outdated. Concept-based windowing scheme utilizes techniques to

preserve some information of previously learned concepts that are still relevant

when concept drift occurred.

Figure 2.2 illustrates the difference between time-based and concept-based

windowing schemes in recognising concept drifts. Concept drift is illustrated

at the top, while time-based and concept-based windowing scheme are located

at the middle and bottom, respectively. The concept drift shown consisted

of large drift which is superimposed with smaller drift. Time-based scheme

would forget the smaller drift which has to be relearned, whereas concept-

based scheme can memorize the smaller patterns.

Figure 2.2: Concept drift recognition; time-based windowing vs. concept-

based windowing
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Wang et al. introduced a concept-based approach for mining data streams

to tackle data expiration problem using reduction error analysis (2003). In

this approach, a weighted ensemble is built on a set of data batches. Weight

of each model in the ensemble is derived based on the expected classification

error of each model.

Hoeglinger and Pears presented another concept-based approach using en-

semble learning called CBDT (Concept-based Decision Tree) (2009). CBDT

maintains an ensemble of decision trees grown separately on the same in-

stances. As new instances arrive, trees with the lowest accuracy are discarded

to provide additional memory space for those with better accuracy. Although

internally it is a forest, class prediction is performed by individual tree with

the highest accuracy.

2.3 Mining Streams with Recurring Concepts

A survey on concept-adaptation was conducted by Gama et al (2014). In

the study, they identified two types of concept drift: Real drift and virtual

drift. Real drift occurs when posterior probability of classes is changed, caused

by changes in data distribution. Whereas, virtual drift occurs when changes

in data distribution do not affect target concept. Figure 2.3 illustrates the

difference between the two types of drift. In the figure, instances with different

classes are represented as circles with different colors.

Gama et al. (2014) further noted that changes of concept can manifest

Figure 2.3: Types of concept drifts



2.3. Mining Streams with Recurring Concepts 16

in several forms. Drift may occur abruptly, where the new concept immedi-

ately replace the old concept, or incrementally, where there are intermediary

concepts between the old and new concept. Drift may also occur gradually,

where new concept progressively replaces the old concept. Drift can also occur

multiple times where the old concept is reoccurring.

REDDLA was developed by Li, Wu and Hu to handle streams with recur-

ring concepts and unlabelled instances (2012). The algorithm makes use of a

clustering strategy on unlabelled instances, of which information will be used

to make refinements to a decision tree model. In the study, concept drifts

are detected by monitoring the distance of concept clusters which determines

whether an old concept reoccurs, or a real drift is occurring. Several known

issues with the approach are: how to accurately predict appearance of novel

concepts, and how to correctly set the interval of reoccurring concepts and

the high memory usage issue.

An ensemble approach to mine recurring patterns was proposed by Ra-

mamurthy and Bhatnagar (2007). In their approach, all generated models

are stored in a global set, and each model is trained on a batch of instances.

Not all models in the global set are used to classify new instances. The sys-

tem classifies using only models of which output error is within user-defined

threshold. A new model is built whenever the ensemble accuracy is lower than

user-defined acceptance threshold τ . The key issues with their approach is the

need to fine-tune the acceptance threshold and specify the appropriate size of

batches for different datasets.

Katakis et al. also used ensemble learning to tackle recurring concepts

called CCP (Conceptual Clustering and Prediction) framework (2008). CCP

process instances in batches, where instances are transformed into conceptual

vectors using a mapping function. These conceptual vectors are then grouped

using a clustering technique, forming a set of clusters, from which classifica-

tion learners are trained separately on each cluster. In the study, they experi-
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mented using the Usenet data and showed that the ensemble method proposed

has better accuracy than an incremental Naïve Bayes classifier. The approach

necessitates the additional process to map input data into conceptual vectors

which can be expensive in streams with large dimensionality. Additionally,

the mapping function may need to be customized for use in different type of

streams.

A two-layer approach is proposed by Gama and Kosina to handle recurring

concepts and delayed labelled instances (2011). In the first layer, a base learner

is trained using labelled instances in the stream. The model is paired with the

second layer learner, called referee, which is a meta-classifier grown in parallel

with the base model. When concept change is detected, the pair is stored

for possible future use. Referees are trained on the region of feature space

of their paired base classifiers, hence providing some confidence level of the

output of the corresponding base learners. The referees make the decision to

keep a classifier with the highest confidence score, provided that the predicted

applicability of the classifier is above a user-defined threshold.

One of the most recent researches done in the field is by Sripirakas and

Pears (2014) using the Discrete Fourier Transform (DFT) as a compression

method for decision trees. The system also used ensemble learner (to be more

precise a decision forest) where it maintains a set of trees trained separately on

the same instances. Trees with highest accuracy are encoded into condensed

representations using the DFT and stored in a pool for possible future use.

Therefore, the pool effectively contains Fourier spectra of concepts. Class

prediction is performed by the best performing classifier in the pool. When a

novel concept appears in the stream, the system reverts back to the decision

forest classification.
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Summary

In this chapter, we have discussed the progression of research from data stream

mining to recurrent concept mining, which is the main setting of our research.

Most of the works done in recurrent concept mining involves the usage of

ensemble learning with a memory structure to preserve previously learned

models. However, ensemble learner uses up significant memory space. In

the next section, we will describe our mining framework to capture recurring

concepts which is able to preserve old concepts in compressed form to address

the issue.



Chapter 3

Research Background

This chapter describes in further detail background information on important

elements used in our research. We start with describing the general framework

to mine recurrent concepts. We then describe chosen algorithms which serve

as building blocks for experiments to be conducted in Chapter 5. The last

part of this chapter is dedicated to describing the challenges of converting

decision trees into their Fourier spectra representation, of which a solution

will be presented in Chapter 4.

3.1 A General Framework for Data StreamMin-

ing with Recurrent Concepts

Briefly covered in Chapter 2, there are two general approaches to handling

recurring concepts in stream mining: The first approach is to map instances

to conceptual vectors, which will then be used to train classifiers (Katakis et

al., 2008). The second approach is to store classifiers having learned patterns

for possible future use (Gama & Kosina, 2011; Li et al., 2012; Ramamurthy &

Bhatnagar, 2007; Sripirakas & Pears, 2014). The latter approach is preferred

by a number of researchers because of its simplicity and the absent of addi-

tional computations required to generate conceptual vectors. Furthermore, it

is difficult to produce accurate conceptual vector representation of instances.

Our study also falls into the latter category, where classifiers are archived

in anticipation of appearance of previously-known concepts. Sripirakas in-
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Figure 3.1: General framework to capture recurring concepts in streams,

adapted from Sripirakas (2015)

troduced a general framework specialised in capturing recurrent concepts in

data streams that requires several components, each of which tackles a spe-

cific problem (Sripirakas, 2015). Figure 3.1 shows a general framework for

capturing recurrent concepts in streams.

The framework consists of three main components: 1) A decision forest

containing classifiers which dynamically learn concepts, 2) a concept change

detector and 3) a pool collecting learned concept classifiers.

The decision forest maintains a set of incremental tree learners, each is
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trained independently from arriving instances. There are several strategies

to avoid creating identical trees, such as growing trees in distinct partitions

of feature space, or growing trees on different features as the root attribute.

We use the latter strategy in our implementation. We use Hoeffding tree as

the base incremental tree learner and CBDT algorithm as the chosen forest

system, which will be explained in some detail in Section 3.2 and Section 3.4

respectively.

Each tree learner in the forest is paired with a concept drift detector. When

concept change is detected, the tree with the best accuracy in the forest is

transformed into a condensed representation (Fourier spectrum) and stored

in a repository pool for future predictions. Therefore, the repository pool

contains Fourier spectra representing past concepts. In our implementation,

ADWIN is chosen as the concept detection mechanism which will be further

described in Section 3.3.

Stream instances are routed to both forest learner and repository pool.

However, prediction output is not averaged, but taken from the classifier with

the highest output accuracy from either the forest or the pool. Initially,

class predictions would mainly be performed by the forest. However, once

previously-captured concept reappears in the stream, the system can readily

use a classifier from the repository pool.

In the following sections, we will describe the algorithms chosen as the

building blocks of our study. Special attention is given to the DFT as the

goal of this thesis is to improve the computational runtime complexity of

transforming decision trees into Fourier spectra.

3.2 Hoeffding Tree

Hoeffding tree was developed by Domingos and Hulten (2000) as an incremen-

tal decision tree induction algorithm specifically designed to handle massive
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streams of data. As this algorithm is used as the base tree learner in our

study, we are going to describe Hoeffding Tree in some detail.

The key idea behind Hoeffding tree is the use of the Hoeffding bound.

Domingos and Hulten further expands this idea and shows that it can be

generalized to other classification learner algorithms (2002). In the study

they asserted that Hoeffding bounds allow any learner built on discrete search

to process data streams.

In batch learning setting, a split attribute is determined by picking the

attribute with highest information gain for ID3 (Quinlan, 1986) and C4.5

(Quinlan, 1993), or Gini index for CART (Breiman et al., 1984). In order

to achieve a similar decision mechanism in stream mining without the need

for revisiting past instances, Domingos and Hulten employed the Hoeffding

bound, which is also known as the additive Chernoff bound.

The Hoeffding bound postulates that with probability (1 − δ), the true

mean of a random variable of range R will not differ from the estimated mean

after n independent observations by more than

ε =

√
R2 ln(1/δ)

2n
(3.1)

Here is an example: Suppose there are two attributes, A and B with their

respective information gains, G(A) and G(B), G(A) > G(B), ε = 0.1. This

would mean that the difference between the two information gains has to

exceed 0.1 in order to confidently split on attribute A.

A very attractive feature of Hoeffding tree is its theoretical guarantee of

performance. Using the concept of intentional disagreement it is shown that

the output of Hoeffding tree is nearly identical to that of tree generated by

non-incremental learner for infinitely many examples (Bifet, 2010). The in-

tentional disagreement ∆i between two decision trees is the probability that a

path of an example through the first tree differs from the path going through

the other tree. The theoretical guarantee is stated below.
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Theorem: If HTδ is the tree produced by Hoeffding tree algorithm with de-

sired probability δ given infinite examples, DT is the batch learned decision

tree having similar output performance, and p is the leaf probability, then

E[∆i(HTδ,DT )] ≤ δ/p.

3.2.1 VFDT

In the study (Domingos & Hulten, 2000), Hoeffding tree is the theoretical

algorithm while the practical implementation is called VFDT, an acronym

for Very Fast Decision Tree. In this thesis, we refer to Hoeffding tree as

an umbrella term for any variant of the basic principles of the algorithm,

including VFDT. The VFDT algorithm is as shown in Algorithm 3.1. VFDT

employed additional heuristics in addition to the Hoeffding bound such as

• Sufficient statistics in each leaf nodes to compute information gain.

• Grace period. ε is computed every nmin instances arriving.

• Tie breaking τ is used when the difference between the two information

gains are very small.

The Hoeffding tree is chosen as a base classifier for several reasons. First,

decision tree models are fairly easy to comprehend. The ease of model interpre-

tation greatly helps data analysts to gain better understanding of a problem

(Witten & Frank, 2005). Second, the Hoeffding tree has a sound guarantee

that it will be "very close" to the tree induced by batch learning algorithms

(Kirkby, 2007; Bifet, 2010). This would mean that Hoeffding tree learners are

capable of constructing trees of equivalent quality to those of batch learners

without the need to revisit past instances. This is significant because decision

trees are one of the best performing learning models in static data mining.
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Algorithm 3.1 The VFDT algorithm
1: Let HT be a tree containing a single node (the root)

2: Let l be the root node of HT

3: Let X be the set of attributes of the stream

4: for all training instances do

5: Sort instance into leaf l using HT

6: Update sufficient statistics in l

7: Increment nl, the number of examples seen at l

8: if nl mod nmin = 0 and examples seen at l not all of same class

then

9: Compute Gl for each attribute

10: Let Xa be attribute with highest Gl

11: Let Xb be attribute with second-highest Gl

12: Compute Hoeffding bound ε =
√

R2 ln(1/δ)
2nl

13: if Xa 6= X∅ and (Gl(Xa)−Gl(Xb)) > ε or ε < τ then

14: Replace l with an internal node that splits on Xa

15: for all branches of the split do

16: Add a new leaf with initialized sufficient statistics

17: end for

18: end if

19: end if

20: end for

CART (Breiman et al., 1984) and C4.5 (Quinlan, 1993) are widely recognized

and have become de facto benchmark standards for research studies.
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3.3 Concept Drift Mechanisms

One of the core concerns in mining data streams is dealing with concept

drift. Concept drift occurs when there are unforeseen changes in the statistical

information of the target of prediction. There are at least three tasks necessary

to tackle this issue (Bifet & Gavalda, 2006): detecting changes occurring in

the stream, maintaining sufficient statistics up-to-date and updating learning

model(s) to keep up with the change occurring.

One of the most common approaches is to make use of a sliding window

and its variants, where a window storing the most recent examples is being

maintained following a set of rules (Bifet, 2010). The contents of such a

window are necessary for the three tasks mentioned above.

The simplest form of this approach is to keep a fixed size window where the

oldest instance is discarded for every new instance arrival, effectively following

a LIFO (last in, first out) policy. Fixed size windowing, however, is a rigid

mechanism. It causes a dilemma for users in a trade-off; "big" window is

suitable when the concept is stable, whereas a "small" window reflects the

most recent distribution better (Bifet & Gavalda, 2007).

This motivated the development of the Adaptive sliding window algorithm,

also known as ADWIN, by Bifet and Gavalda (2006) addressing the issues

where fixed windowing fall short. It has the capability to dynamically change

the size of the window depending on the current state of the stream, where

window size decreased when change is occurring and increased during time of

stability (Bifet & Gavalda, 2007).

The first version of ADWIN is called ADWIN0 which maintains a window

W that is partitioned in two adjacent sub-windows W0 and W1, W0 partition

contains older examples and W1 contains recent ones. ADWIN0 contantly

monitors W0 and W1. When the difference in sample means between the

two partitions is greater than a statistically computed threshold, we can say
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that the older window, W0, contains a stale concept and ADWIN0 can safely

discard examples contained within it. Similar to Hoeffding tree, ADWIN0

also uses the Hoeffding bound to compute the mean difference threshold, εcut,

allowing ADWIN0 to have sound, rigorous performance guarantee of false

positive and false negative rates.

Bifet and Gavalda further refined ADWIN0 and introduced ADWIN as its

implementation algorithm (Bifet & Gavalda, 2007). They showed empirically

that ADWIN outperforms other well-known concept detection methods, such

as (Gama et al., 2004) and (Kifer, Ben-David, & Gehrke, 2004) in terms of

false positive rate and false negative rate. Several notable improvements made

are as follows:

• Usage of Bernstein bound instead of Hoeffding bound. Hoeffding bound

offers sound estimation regardless of statistical distributions but in ex-

change, it overestimates the probability of large deviations occurring.

Bernstein bound can establish a tighter estimation, when variance is

provided.

• Reducing the number of hypothesis tests. ADWIN0 is computationally

expensive because it needs to perform (n − 1) tests on a sub-window

containing n elements. ADWIN uses a variant of exponential histogram

developed by Datar et al. to maintain sufficient statistics (2002).

3.4 Concept-based Decision Tree (CBDT)

As mentioned previously, research in data stream mining typically focuses

on incremental learning in which a model is continuously revised as new ex-

amples arrived. The motivation of the approach is to avoid the necessity of

reconstructing models as new batches of examples arrive.

Incremental learning algorithm, such as VFDT (Domingos & Hulten, 2000)
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and its derivatives, typically makes use of a time-based sliding window to help

maintain sufficient statistical information necessary for determining when to

update the model. Such windowing schemes allow models to quickly adapt to

new patterns. The disadvantage of this scheme, however, is that old patterns

are forgotten once examples associated with them slide out of the window (or

in other words, expired) (Wang et al., 2003). Hence, time-based sliding win-

dow does not efficiently handle re-emergence of old patterns as every concept

change is treated as new pattern arriving.

Hoeglinger and Pears (2007) took a radical approach to tackle this issue,

proposing the idea of concept-based approach. It is similar to time-based

windowing in terms of the need to selectively discard "stale" information

due to memory constraints imposed by stream mining. The difference lies

in the criteria of information to discard; the decision to discard in time-based

approach is purely based on the age of examples, whereas in a concept-based

approach it is based on usage-statistics. The general idea of concept-based

approach is that highly relevant features will be frequently used. Additionally,

the more information collected about particular features, we can learn more

details about the feature (Hoeglinger & Pears, 2007).

In a later study, Hoeglinger and Pears present a concept-based mining

system called CBDT (Concept-based Decision Tree) (2009) by maintaining

an ensemble of decision trees, or forest where every individual tree is grown

separately to represent a concept sharing the same examples. This approach

differs from traditional with ensemble learning. In a traditional forest of trees

scheme, trees are grown on different partitions of training examples, and pre-

diction is done by averaging the results of individual tree (Breiman, 1996).

CBDT adapts to changing concepts by maintaining a forest of trees, each

grown separately on distinct attributes. When a concept drift occurs, CBDT

simply switches to a better tree in the forest. This mechanism preserves both

"strong" and "weak" patterns of older concepts and is shown to adapt very
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quickly to recurring patterns (Hoeglinger et al., 2009).

The main disadvantage of CBDT is the memory size required to maintain

the forest. CBDT creates trees as much as the number of attributes in the

stream. Feature selection in stream mining is very hard to do because of its

dynamic nature; an attribute that is previously irrelevant might turn out to

be highly important at later points in the stream.

3.5 Discrete Fourier Transform (DFT)

Fourier transform started from a simple insight, that any signal can be rep-

resented in terms of periodic functions (Arfken & Weber, 2001). The essence

of Fourier transform is deconstruction of an arbitrary waveform into separate

sinusoids of differing frequencies and amplitudes. If these sinusoids sum up to

the original waveform, then we have determined the Fourier transform of the

waveform. Mathematically, this relationship can be defined as follows:

F(ω) =

∫ ∞
−∞

f(t) e−j2πωt dt (3.2)

where f(t) is the waveform to be deconstructed into a set of sinusoids, F(ω)

is the Fourier transform of f(t) and j is the imaginary number
√
−1.

The definition given above is for continuous Fourier Transform, which is

unsuitable for digital machine calculations, such as a CPU. In practice, such

machines do not receive a function as input, but rather samples of the function

which is captured at a constant rate. Furthermore, it would be prohibitive to

deconstruct a waveform into an infinite number of sinusoids in terms of mem-

ory usage. These factors drove the development of Discrete Fourier Trans-

form. Now let us consider Fourier Transform in the case of a discrete function

f(t) → f(tn), where tn ≡ n∆ with n = 0, 1, . . . , N − 1, where N is the total

number of partitions (or sinusoids) to be considered. We can then write out
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the Discrete Fourier transform F(k) as

F(k) ≡
N−1∑
n=0

f(n) e−j2πnk/N (3.3)

where k = 0, 1, . . . , N − 1. Note that e−j2π/N is a constant and thus can

be calculated and stored in advance for multiple values of N . It is usually

known as phase factor (Gentleman & Sande, 1966), WN = e−j2π/N . Hence the

formula can now be succinctly written as

F(k) ≡
N−1∑
n=0

f(n)W nk
N (3.4)

The ability of the Discrete Fourier Transform to deconstruct any waveform

into sum of sinusoids is useful as it is easier to analyze a signal in frequency

spectrum, as opposed to the time domain. For instance, a transmission wave

can be decomposed into a message and noise frequency spectra. Another

feature of DFT is that a waveform can be approximated with a finite number of

partitions N , albeit with some loss of information. This kind of representation

has much smaller storage requirement compared to storing the samples of a

waveform itself.

Despite all of the benefits mentioned, DFT comes with a caveat. Note that

e−j2πnk/N is a complex number in polar form, which means that each compo-

nent of sum in the formula involves N complex multiplications. Counting the

total number of the multiplications needed to be performed gives us the cost

of calculating a DFT.

Cost of DFT = number of k .N = N2

As N is increased, the DFT approximation is closer to the origin signal,

but the cost of calculation also grows prohibitively. The exponential growth

of the cost makes it extremely difficult to perform DFT in "higher" resolution.

DFT calculation can be performed much efficiently using an algorithm called

Fast Fourier Transform, which will be further described in the next section.
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3.5.1 Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT) is an algorithm to rapidly compute Discrete

Fourier Transform. The introduction of FFT algorithm by Cooley and Tukey

enables DFT computations which were previously prohibitive (1965). Since

then, FFT is widely used in many applications in science, engineering and

mathematics. FFT reduced Fourier analysis to a practical procedure that can

be applied effectively for wide range of seemingly unrelated fields of application

from music synthesizing to biomedical engineering to radar and communica-

tions (Brigham, 1988).

FFT (or Cooley-Tukey algorithm) uses divide-and-conquer approach to

recursively break down a DFT of size N into two sets of smaller DFTs, even

and odd sets. Thus, f(n) is an interleaving of even f(2m) and odd f(2m+ 1)

sequences.

F(k) ≡ DFT of even sequence off(n) + DFT of odd sequence of f(n)

=

N/2−1∑
m=0

f(2m)W
(2m)k
N +

N/2−1∑
m=0

f(2m+ 1)W
(2m+1)k
N

The trick to FFT is to convert the phase factor for N partitions into that

of N/2 partitions WN → WN/2, which implies W 2mk
N = Wmk

N/2. Hence the

equation above can be written as

F(k) ≡
N/2−1∑
m=0

f(2m)Wmk
N/2 +W k

N

N/2−1∑
m=0

f(2m+ 1)Wmk
N/2, (3.5)

FFT recursively breaks down each sequence further into even and odd

sequences, which dramatically improves the cost of calculation. It reduces

the number of complex multiplications from what was previously O(N2) into

O(NlogN). This improvement is so significant that it propels the prolifera-

tion of FFT usage in a wide range of applications since its inception in 1965

(Brigham, 1988).
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3.6 Converting a Decision Tree into Fourier Spec-

trum

A decision tree can be transformed into Fourier form by applying the DFT

to paths of the tree. We are using binary decision trees for the purpose of

illustrating the process; however, the process is also applicable to arbitrary

n-ary domain (Kargupta, Park, & Dutta, 2006). Therefore, let us define the

j-th Fourier Coefficient ωj for d number of binary features.

ωj = 1
2d

∑
x

f(x)ψj(x)

ψj(x) = (−1)(j.x)
(3.6)

f(x) is the classification outcome (the value of leaf node) for path x. ψj(x)

is the Fourier Basis function; (j.x) is the inner product operation between

vectors j and x with j,x ∈ {0, 1}d.

Each partition j uniquely corresponds to a certain subset of features in

the problem space. The order of a coefficient is the same as the order of a

partition; that is the number of non-zero values in vector j. For example,

j = (000) has an order of 0, whereas j = (001, 010, 100) has an order of 1.

We present a simple example of boolean decision tree in 3-attribute setting

X3

+ X1

− +

high low

hot cold

X3

1 X1

0 1

0 1

0 1

Figure 3.2: A binary Decision Tree in symbolic form (Left) and its numerical

representation (Right)
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(x1, x2, x3) as shown in Figure 3.2. Note that the Fourier transform is based

on numerical (algebraic) representation rather than symbolical. Thus for the

remainder of this thesis, we assign numerical forms to illustrate tree examples.

x1 x2 x3 f(x)

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

j[x1, x2, x3] ωj

000 3/4

001 1/4

010 0

011 0

100 -1/4

101 1/4

110 0

111 0

Table 3.1: Decision Tree from Figure 3.2 as truth table (Left) and its respective

Fourier Coefficient table (Right)

The tree shown in Figure 3.2 contains 3 schemata (∗ ∗ 0, 0 ∗ 1, 1 ∗ 1).

A schema represents a path from root node to a particular leaf node, e.g.

schema 0 ∗ 1 corresponds to x3 → x1 → 0. The wildcard character denotes

a collection of vectors. Thus schema 0 ∗ 1 covers vectors 001 and 011, both

having f(x) = 0. Because there are 3 features, there are 23 coefficients where

j ∈ {000, 001, 010, . . . 111}.

Fourier coefficients ω000 and ω011 can then be calculated as follows:
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ω000 = 1
2d

∑
x

f(x)ψ000.x

= 1
8
f(000)(−1)000.000 + 1

8
f(001)(−1)000.001+

1
8
f(010)(−1)000.010 + 1

8
f(011)(−1)000.011+

1
8
f(100)(−1)000.100 + 1

8
f(101)(−1)000.101+

1
8
f(110)(−1)000.110 + 1

8
f(111)(−1)000.111

= (1+0+1+0+1+1+1+1)
8

= 3
4

ω011 = 1
2d

∑
x

f(x)ψ011.x

= 1
8
f(000)(−1)011.000 + 1

8
f(001)(−1)011.001+

1
8
f(010)(−1)011.010 + 1

8
f(011)(−1)011.011+

1
8
f(100)(−1)011.100 + 1

8
f(101)(−1)011.101+

1
8
f(110)(−1)011.110 + 1

8
f(111)(−1)011.111

= (1+0−1+0+1−1−1+1)
8

= 0

After calculating Fourier Coefficients for all possible j vectors, we can

construct a Fourier Coefficient table as shown in Table 3.1. Note that every

coefficient where x2 is selected is 0, or in other words ω∗1∗ = 0. This is

consistent with a Lemma proven by Park (2001, p. 56) which guarantees that

ωj will be 0, whenever an attribute not appearing in the tree has value 1 for

that particular attribute in its corresponding schema (Park, 2001; Kargupta

et al., 2006). Based on this, we can selectively compute only the coefficients

for attributes that actually appears in the tree since the rest of the coefficients

would be zero. Hence we can build a compacted table as shown in Table 3.2

3.7 Problems with DFT

Unlike traditional data mining from a static dataset, patterns of data classi-

fication can change dynamically in stream mining due to shifting distribution

of instances, popularly known as concept drift. Therefore, it is possible for
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x1 x3 f(x)

0 0 1

0 1 0

1 0 1

1 1 1

j[x1, x3] ωj

00 3/4

01 1/4

10 -1/4

11 1/4

Table 3.2: Compacted truth table and Fourier Coefficient table after removing

attribute not appearing in the tree, x2

a stream learner to grow large decision trees as adaptation to new concepts.

This raises several concerns in applying DFT to decision trees in real appli-

cation.

Size of Problem Space

The cost of calculating the entire Fourier Coefficient table is dependent on the

size of the tree being converted. To be precise, the size of problem space is

dependent on the number of distinct attributes appearing in the decision tree.

As demonstrated in previous section, that a 3-binary feature problem space

(Table 3.1) can be reduced to a 2-binary feature problem space (Table 3.2)

because only 2 attributes actually appear in the tree.

Let P be a set of attributes appearing in the tree, P ⊆ {x1, x2, . . . xd}.

The size of problem space in binary domain can be defined as:

S(P ) = 2|P | (3.7)

The equation shows that the size of problem space grows exponentially

with respect to the number of distinct attributes appearing in a tree. The size

of a tree affects the number of distinct attributes appearing in that tree. Thus,

the size of problem space to be computed may turn out to be prohibitive as

we convert a decision tree grown over stream instances.
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Multivariate DFT

In Digital Signal Processing, the DFT is used to convert signal values from

the time domain to the frequency domain. This process is a one-dimensional

transformation, thus making it possible for the FFT to work. The FFT algo-

rithm exploits the fact that Fourier Basis functions ψn can be pre-computed

and stored in a table to be reused.

This is not the case with the DFT of decision trees where transformation is

from the x vector domain to the j vector domain, where x and j are of variable-

length, depending on the number of appearing attributes in the decision tree.

This explains why our calculation of Fourier Basis functions involves inner

product operation, as shown in Equation 3.6. This multivariate nature of

decision trees renders it infeasible to pre-compute and store Fourier Basis

functions as it is hard to determine when they are reusable or not.

Based on these insights, we can define the cost of calculating the Fourier

Coefficient table of a decision tree in the binary domain as the total number

of Fourier Basis functions generated over the entire problem space:

G(P ) = S(P )V (P ) = S(P )(2|P |) = 22|P | (3.8)

G(P ) is the total number of ψj(x) generated to calculate a complete Fourier

Coefficient table considering only the attributes appearing in the tree V (P ) is

the number of Fourier Basis function to be calculated.

3.8 Existing Solutions

In the previous section, we have discussed the costly nature of DFT. In order

to mitigate this cost, there are several solutions proposed (Kargupta & Park,

2004; Park, 2001):

1. Exploiting the properties of Decision Trees in Fourier space.
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2. Using schema-based Fourier Coefficient methods.

3.8.1 Properties of Decision Trees in Fourier Space

Suppose we wish to compute in a 3-attribute space, given the tree example

in Figure 3.2. We can then compute the amount of energy contained by a

coefficient ωj as follows:

Eωj
= |ω2

j | (3.9)

The total energy of order n, En, is the sum of energy for all partition j

that is of order n. e.g. for n = 2,

E2 = Eω011 + Eω101 + Eω110

= 0.0625

In similar way, we can calculate energy of other orders: E0 = 0.5627, E1 =

0.125, E3 = 0. Note that energy diminishes as order is increased. In fact,

energy decays exponentially with respect to increase of order (Linial, Mansour,

& Nisan, 1993; Mansour, 1994; Park, 2001; Kargupta & Park, 2004). Due to

this property, Park suggested that DFT should only be performed on "low"

orders (2001). This allows us to effectively reduce the number of partitions j

to be calculated by specifying the maximum threshold of order t. Hence the

size of problem space from Equation 3.7 can then be redefined as:

S(P ) =
t∑

n=0

(
|P |
n

)
, if t ≤ |P | (3.10)

3.8.2 Schema-based Fourier Coefficient Calculations

Kargupta and Park (2004) discovered that Fourier Coefficient calculation can

be performed on schema-based formula by exploiting the knowledge that f(x)

for every x vector that is member of a schema h(i) is constant. Therefore,
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Fourier Coefficient formula can be rewritten where f(h(i)) is the class outcome

of schema h(i) as:

ωj =
|h(1)|

2d
f(h(1))ψj(h(1)) + . . .+

|h(n)|
2d

f(h(n))ψj(h(n)), (3.11)

Note that Equation 3.11 is in binary domain. Using this simplified formula,

we can calculate ω000 and ω011 respectively:

ω000 = 4
8
f(∗ ∗ 0)ψ000(∗ ∗ 0) + 2

8
f(0 ∗ 1)ψ000(0 ∗ 1) + 2

8
f(1 ∗ 1)ψ000(1 ∗ 1)

= 4
8

+ 0 + 2
8

= 3
4

ω011 = 4
8
f(∗ ∗ 0)ψ011(∗ ∗ 0) + 2

8
f(0 ∗ 1)ψ011(0 ∗ 1) + 2

8
f(1 ∗ 1)ψ011(1 ∗ 1)

= 4
8
(1− 1 + 1− 1) + 0 + 2

8
(1− 1) = 0

Note that schema 0∗1 has classification outcome 0. This particular schema

will always contribute 0 when calculating coefficients regardless of the result

of inner products associated to that schema. Hence in practice, we only need

to consider schemata with class outcome 1 when using schema-based Fourier

Coefficient calculation.

Another schema-based computation is proposed by Sripirakas et al (2015)

showing that the Fourier basis function of a schema can be computed directly.

The proposed theorem is for n-ary feature space but can be simplified for bi-

nary feature space. The Fourier base function of partition j and schema S in

the binary feature space can be computed as follows

Case 1: If there exists at least one (1, ∗) combination of corresponding fea-

tures in partition j and schema S, then ψj(s) = 0.

Case 2: If there exists k combinations of (0, ∗) pairing of corresponding fea-

tures in j and S, then

ψj(S) = 2k(−1)l, (3.12)
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where l is the number of (1, 1) combinations. This particular method com-

pletely bypasses the vector inner product operations and effectively reduces

computational overheads when computing the entire Fourier spectrum. We

can compute ω000 and ω011 of the tree in the previous example using Sripirakas’

optimisation as follows:

ω000 = 1
2d

(f(∗ ∗ 0)ψ000(∗ ∗ 0) + f(0 ∗ 1)ψ000(0 ∗ 1) + f(1 ∗ 1)ψ000(1 ∗ 1))

= 1
8
(22 + 0 + 21) = 3

4

ω011 = 1
2d

(f(∗ ∗ 0)ψ011(∗ ∗ 0) + f(0 ∗ 1)ψ011(0 ∗ 1) + f(1 ∗ 1)ψ011(1 ∗ 1))

= 1
8
(0 + 0 + 0) = 0

By exploiting the properties of Fourier coefficients and using schema-based

Fourier Coefficient calculation, the total number of Fourier Basis functions

generated can be reduced. We can then revise Equation 3.8 as:

G(P ) = S(P )V (P ) =


2|P |τ if |P | ≤ t(

t∑
n=0

(
|P |
n

))
τ if |P | > t

(3.13)

where τ is a constant representing the number of schemata with class outcome

1, t is the maximum number of order to calculate. Therefore, the cost of

calculating Fourier coefficients now depends on the value of maximum order

threshold.

These techniques, however, do not reduce the underlying exponential growth

of the complete problem space. Furthermore, the number of coefficients to

compute is still prohibitive because the growth rate is not linear. To get a

better picture, let us compare two hypothetical trees, both sharing the same

τ , containing distinct attributes of 10 and 20 (|P1|, |P2|) respectively, and

maximum order t = 5.
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G(P1) =

(
5∑

n=0

(
5

n

))
τ = 638τ

G(P2) =

(
5∑

n=0

(
10

n

))
τ = 21700τ

The DFT for the first tree involves computing 638 Fourier Basis functions

per schema, whereas the cost rate on applying the DFT to the second tree

jumped to 21700 per schema. As shown clearly, when we merely double the

number of distinct attributes appearing in the trees, the effort per schema to

compute the Fourier coefficients has grown by more than 30 times.

In practice, the cost of DFT will be managed by reducing the maximum

order threshold. This will improve the runtime needed to compute the DFT,

but would also mean more information loss. As a consequence, accuracy of

resulting coefficient table may drop. This motivates us to seek an alternative

way to calculate Fourier coefficients which will be presented in Chapter 4.
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Summary

We have described the theoretical fundamentals behind each component used

in our experimental study. As discussed in this chapter, the DFT is a very

useful tool for spectral analysis but it is an inherently expensive transforma-

tion. FFT was developed to bring down the computation cost of DFT to a

more manageable growth.

From the perspective of stream mining with recurring concepts, DFT is

a valuable tool because it enables us to represent a decision tree in a very

compact form, with negligible difference in output predictions. FFT exploits

the fact that phase factors for univariate transform are constant. However,

decision trees in Fourier domain are multivariate in nature and current ap-

proaches to mitigate the problems of applying the DFT to decision trees does

not address the underlying exponential growth. Hence, it is necessary to

find alternative way to reduce the cost of transforming decision trees into the

Fourier domain, which is the main theme of this thesis. We will address this

issue and propose a solution in the next chapter.



Chapter 4

Research design

In this chapter we present the core methods used in this research. The main

research contribution that we make in this thesis is to reduce the computa-

tional complexity of the Fourier spectrum derivation from a given decision

tree. As discussed before in this thesis spectrum derivation has inherently an

exponential time complexity in the number of attributes that appear in the

Decision tree. The methods that we present in this chapter are designed to

reduce this time complexity by applying a decomposition scheme that is sim-

ilar in spirit to the well known Fast Fourier Transform (FFT). However, we

note that the FFT cannot be used directly in this research as the FFT applies

to a univariate case, whereas the problem that we address in this research is

inherently a multivariate case.

4.1 Strategies to Improve Time Performance

In order to increase the speed of computation of Fourier coefficients, we adopt

two strategies; 1) Aggressively reduce problem space by a divide and con-

quer strategy and 2) Infer a Fourier coefficient table from an existing Fourier

coefficient table.

Divide and conquer is a very well-known and established strategy in math-

ematical and computer science fields as a technique to reduce running time

(Kleinberg & Tardos, 2006, p. 210). A couple of notable examples of algorithm

using this strategy are merge sort and Fast Fourier Transform (Kingston &
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Kingston, 1990, p. 65). A divide and conquer strategy works as follows. Di-

vide an instance of problem into two partitions (or more) of smaller instances

of same type of problem and solve each instances recursively. The solution

to the original problem instance resulted from merging of the solutions of the

small problem instances.

Partially inspired by the FFT algorithm, our approach to compute the

Fourier spectrum of a decision tree follows the same principle mentioned

above. Divide a tree into two parts, left and right sub-trees, construct Fourier

coefficients for each sub-tree recursively, and assemble the complete Fourier

Coefficients for the original tree.

For this approach to work there are two crucial pieces of information.

First, the relationship between Fourier coefficients of sub-trees and Fourier

coefficients of original tree. It turns out that Fourier coefficients of tree is

simply the sum of Fourier coefficients of each sub-tree. Second is whether this

strategy will ultimately reduce the size of our problem space or not. We will

discuss this further in Section 4.2.

Another strategy to improve performance is to infer a Fourier coefficient

table from an existing Fourier coefficient table. The idea behind this approach

is really simple. Two trees with similar structure should also be similar in

Fourier space. Thus, the effort to calculate Fourier coefficients from similar

tree should also be small. show that it is indeed possible to calculate Fourier

coefficients from previously-calculated ones. This will be described further in

Section 4.3.

4.2 Fourier Spectrum of Sub-trees

As mentioned in Section 4.1, the Fourier spectrum of an arbitrary tree is the

same as the sum of Fourier spectra of each sub-tree. We show that there is no

information loss when the coefficients are calculated this way. The reason that
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this holds is because when a tree is decomposed into sub-trees, schemata are

also being split. As a consequence, the class outcome f(x) at each sub-tree

is partitioned without interfering each other. Therefore, we define our first

Theorem as follows:

Theorem 1: Let L and R be the left and right sub-trees of a decision tree

T in binary domain. The Fourier coefficients of T are the sums of Fourier

coefficients of L and R

Proof: When a tree is split, f(x) would be partitioned into fL(x) and fR(x)

in a way that they do not interfere (or overlap) with each other. Thus,

∀x, f(x) = fL(x) + fR(x)

ωj = 1
2d

∑
x

f(x)ψj(x)

= 1
2d

∑
x

(fL(x) + fR(x))ψj(x)

= 1
2d

∑
x

fL(x)ψj(x) +
1

2d

∑
x

fR(x)ψj(x)

= ωLj + ωRj ,

where d is the number of distinct attributes appearing in tree T .

To illustrate this, we split the tree shown in Figure 3.2 into Left and Right

sub-trees as shown in Figure 4.1. The trees can then be represented in a table

shown in Table 4.1. Notice that the vectors are rearranged to emphasize the

partitioning of f(x) space when a tree is decomposed into sub-trees.

We also observed that the properties of Fourier spectrum of decision trees

described in Section 3.8.1 still holds for these sub-trees. For the left sub-tree,

x3 is the only appearing attribute. Therefore, Fourier coefficients for when

either x1 or x2 is selected are zero. i.e. ωLj = 0, where j ∈ {1 ∗ ∗} ∪ {∗1∗}.

Whereas only x2 does not appear in the right sub-tree, resulting in ωRj = 0,

where j ∈ {∗1∗}. This allows us to calculate the Fourier coefficients of an
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X3

1 0

X3

0 X1

0 1

0 1 0 1

0 1

Figure 4.1: Left and Right sub-trees of sample tree shown in Figure 3.2

x1 x2 x3 f(x) fL(x) fR(x)

0 0 0 1 1 0

0 1 0 1 1 0

1 0 0 1 1 0

1 1 0 1 1 0

0 0 1 0 0 0

0 1 1 0 0 0

1 0 1 1 0 1

1 1 1 1 0 1

j[x1, x2, x3] ωj ωLj ωRj

000 3/4 1/2 1/4

010 0 0 0

100 -1/4 0 -1/4

110 0 0 0

001 1/4 1/2 -1/4

011 0 0 0

101 1/4 0 1/4

111 0 0 0

Table 4.1: Truth table (Left) and Fourier Coefficients (Right) of Left and

Right sub-trees as shown in Figure 4.1 with vectors rearranged

individual sub-tree in the attribute space appearing only in that particular

sub-tree, potentially reducing the total number of Fourier Basis functions

needed to be computed to form the complete Fourier coefficients.

The interesting part of this Theorem is that decomposing a tree into sub-

trees can be performed recursively until there are no more sub-trees that can

be decomposed. As pointed out above, decomposing a tree allows us to com-

pute in localized problem space than the complete problem space. The next

logical question is whether the total computation in localized problem space
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of each sub-tree is lower than calculating in the complete problem space. This

is where our second Theorem comes into picture.

Theorem 2: Given a decision tree in binary domain T , The total number

of Fourier coefficients to be calculated on each sub-tree is less than the total

number coefficients calculated on T .

Proof: Let D ∈ x1, x2, ..xn be the set of distinct attributes appearing in T

where d = |D|. DL and DR are sets of distinct attributes appearing in left

and right sub-trees respectively, satisfying the conditions DL ⊆ D,DR ⊆ D.

Therefore, dL = |DL| and dR = |DR|. d, dL and dR are related such that

dL = d − k, dR = d − m, k < m, where k and m are integers. This implies

d− k > d−m.

The number of coefficients generated from calculating T and its sub-trees

are: S(D) = 2d, S(DL) = 2(d−k), S(DR) = 2(d−m). Therefore, the total number

of coefficients calculated on both sub-trees is:

S(DL) + S(DR) = 2(d−k) + 2(d−m),

Thus, we have two possible cases:

Case 1: k >= 1,

S(DL) + S(DR) < 2(d−k) + 2(d−k)

< 2(d−k+1)

< 2d

Case 2: k = 0
S(DL) + S(DR) = 2d + 2(d−m)

> 2d

hence the theorem holds for Case 1.

Case 1 implies a non-balanced tree structure, therefore distinct split at-

tributes are distributed unevenly between left and right sub-trees. It also
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implies that the bigger the intersection between DL and DR, coefficients to

be computed also increased.

Case 2 tells us that if one of the sub-trees contains the same set of distinct

attribute as that of origin tree, the total number of coefficient computations on

sub-trees will be bigger than total number of computations when performing

the DFT on origin tree T the normal way.

Using the Left and Right sub-trees example shown in Figure 4.1, let us

compare the number of coefficients to be calculated on each sub-trees as well

as the origin tree (Figure 3.2. The The number of coefficients for Left tree,

Right tree, and origin tree are as follows:

S(DL) = 21 = 2,

S(DR) = 22 = 4,

S(D) = 22 = 4 < S(DL) + S(DR)

This is consistent with case 2 of our Theorem. Note that we exclude

x2 as it does not appear in the origin tree. For this particular example, it

would be faster to just perform DFT on the origin tree instead of decompos-

ing. However, in our implementation we did not include a decision making

mechanism to determine whether to decompose or not. This is because we

are more interested to observe the general runtime performance of DFT by

aggressively splitting a tree in comparison with normal DFT. As such, this

heuristics mechanism would be part of future works.

Let us consider another example of sub-trees as shown in Figure 4.2. For

the given example, the number of coefficients at Left sub-tree is 22 = 4, for

Right sub-tree, it is 23 = 8. When the two sub-trees are merged, the origin

tree has 4 distinct attributes, therefore 24 = 16 coefficients are going to be

calculated. So this is an example where calculating localized coefficients is

more beneficial.

Unfortunately, the size of problem space is still exponential. However,

splitting the calculation task as calculating sub-trees still has its merits, al-
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X3

X4

1 0

0

X3

0 X1

X2

0 1

1

0 1

0 1

0 1

0 1

0 1

Figure 4.2: Left and Right sub-trees example where decomposing is beneficial

though the exact extent of the benefit is very much dependent on the structure

of the tree built by the learner algorithm.

In practice, there is also an additional cost introduced by the necessity to

combine the Fourier coefficients of sub-trees. This cost is hard to determine

because of numerous factors. First, Fourier coefficient tables generated for

sub-trees are of various sizes, so access time is not uniform. Second, there is

an overhead prior to combining the Fourier coefficient tables. This is because

Fourier coefficients to be combined are of different attribute sets. For example,

one coefficient may have j vector which is consisted of x1, x2, x3 attributes

while another coefficient set may consist of only x2 and x3. The environment

where the system is running will also affect the process. Thus, k must be

much bigger than 1 for us to benefit from this approach.

The last important piece to complete this strategy that we have not men-

tioned so far is the splitting strategy. We can technically decompose a tree

at every single split node, but this would have detrimental effect because the

number of coefficient merging processes will also grow. It is also possible

to use a heuristic-based splitting strategy to avoid the worst case condition

highlighted in Theorem 3. In our implementation, however, a simple splitting
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strategy is used, that is to decompose from a split node of which both child

nodes are split nodes. This strategy is much more suitable to our interest in

studying the performance of a system that aggressively split a tree to compute

the Fourier spectrum.

4.3 Adjusting Fourier Spectrum from an Exist-

ing Spectrum

We also show that it is indeed possible to compute certain Fourier coeffi-

cients, from previously calculated Fourier coefficients. The intuition to this

approach is that two trees with similar structure should also be similar in

Fourier space. Therefore the cost to infer Fourier coefficients from previously

calculated Fourier coefficients of a similar tree should be lower than calculating

those Fourier coefficients from scratch. This brings us to Theorem 3 as follows:

Theorem 3: Given a tree in binary domain with class outcome f(x), P is a

set of changed vectors, P ⊆ (x). If there are some changes in the paths such

that the class outcome also changed to f ′(x), then

ω′j =


ωj + 1

2d

∑
P

ψj(P ) if changed vectors from 0 to 1

ωj − 1
2d

∑
P

ψj(P ) if changed vectors from 1 to 0
(4.1)

Proof: Let x be the union problem space of both trees, Q ⊆ x, Q is a set of

unchanged vectors. P does not intersect Q, therefore f(P ) and f(Q) do not

interfere with each other. The DFT of a decision tree in binary domain can

be written in terms of changed and unchanged vector components as such:
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ωj = 1
2d

∑
x

f(x)ψj(x)

= 1
2d

∑
P

f(P )ψj(P ) +
1

2d

∑
Q

f(Q)ψj(Q)

We introduce a function fdelta(x), such that f ′(x) = f(x) + fdelta(x). For un-

changed vectors, fdelta(Q) must be zero, implying f ′(Q) = f(Q). For changed

vectors, f ′(P ) 6= f(P ) must hold. Because class outcome can only be either 0

or 1, we have two possibilities. First is when change of class outcome from 0

to 1. Second is when change of class outcome from 1 to 0. Fourier coefficients

of tree after change can then be expressed as:

ω′j = 1
2d

∑
P

f ′(P )ψj(P ) +
1

2d

∑
Q

f ′(Q)ψj(Q)

= 1
2d

∑
P

(f(P ) + fdelta(P ))ψj(P ) +
1

2d

∑
Q

f(Q)ψj(Q)

= 1
2d

∑
P

f(P )ψj(P ) +
1

2d

∑
Q

f(Q)ψj(Q) +
1

2d

∑
P

fdelta(P )ψj(P )

= ωj + 1
2d

∑
P

fdelta(P )ψj(P )

Recall that we have 2 cases. First is when f(P ) = 0, f ′(P ) = 1 holds

true, implying fdelta(P ) = 1. Second is when f(P ) = 1, f ′(P ) = 0 holds true,

implying fdelta(P ) = −1. Substituting fdelta(P ) for both cases gives us

ω′j =


ωj + 1

2d

∑
P

ψj(P ) if changed vector from 0 to 1

ωj − 1
2d

∑
P

ψj(P ) if changed vector from 1 to 0

Hence Theorem 3 holds.

Now let us work on an example to get a better picture of how this theorem

works. Suppose we have trees in binary domain of which coefficients have

been calculated as shown in Figure 4.3. A split then occurred on the right

leaf node, creating a tree shown in Figure 4.4. The dimension of the tree
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X3

1 0

0 1

x3 f(x) ωj(x)

0 1 1/2

1 0 1/2

Figure 4.3: Sample tree prior to split (Left) and its corresponding truth table

and Fourier coefficients in compact form (Right)

prior to and after the split are different, therefore we need to first expand

the j vector from {x3} feature space to {x1, x3}. Remember that Fourier

coefficients for partitions which any attribute not appearing in the tree is

selected is zero, meaning ω1∗ = 0. ω0 is mapped to ω00 and ω1 is mapped to

ω01 respectively. There are two ways to deduce the changed vector P and the

direction of the change. First is to compare the truth table directly and find

where f(x) 6= f ′(x). Second is to take note the class outcome of the leaf node

where split takes place. In this case, leaf node outcome was 0 and split takes

place where the right child path leads to a different class outcome, i.e. where

x3 = 1 and x1 = 1. Thus P ∈ {11}, where P in x1, x3 dimension space and

the direction of the change fdelta(P ) = 1.

The Fourier coefficients of the tree after split can then be calculated using

Equation 4.1. For example, let us compute ω′00 and ω′10.

ω′00 = ω00 + 1
2d

∑
P

ψ00(P )

= 1/2 + 1
22
ψ00(11)

= 1/2 + 1
4
(−1)00.11 = 3/4

ω′10 = ω10 + 1
2d

∑
P

ψ10(P )

= 0 + 1
22
ψ10(11)

= 1
4
(−1)10.11 = −1/4
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x1 x3 f(x) ωj(x)

0 0 1 1/2

0 1 0 1/2

1 0 1 0

1 1 0 0

Table 4.2: Expanded truth table and Fourier coefficients of Figure 4.3

X3

1 X1

0 1

0 1

0 1

x1 x3 f(x) f ′(x) ωj(x) ψj(P ) ω′j(x)

0 0 1 1 1/2 1/4 3/4

0 1 0 0 1/2 −1/4 1/4

1 0 1 1 0 −1/4 −1/4

1 1 0 1 0 1/4 1/4

Figure 4.4: State of tree after split (Left) and its truth table and Fourier

coefficients prior and after adjustment (Right)

There are several consequences to this theorem. Firstly, it allows us to

actively synchronize Fourier spectrum of a tree as it grows while processing

input instances, as shown by our example earlier. This eager synchronization

can be useful in real-time systems where instances arrive at extremely high

speed and avoiding spikes in processor usage is desirable. Secondly, inference

of Fourier coefficients will be extremely beneficial for scenarios involving re-

curring concepts. This is due to the fact that a concept can be represented

by a tree structure (or a sub-tree structure) and may reoccur numerous times

during the streaming process, especially for periodical data. However recur-

ring concepts are not necessarily identical. A concept may reappear with

slightly different values and this will be recaptured by the tree learner as a

tree (or sub-tree) structure sharing some similarities with the previous occur-

rence (Sripirakas & Pears, 2014). Thus, the approach would pave the way
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for a possibility to build a "smart" caching scheme that is shareable between

trees in a forest.

In this study, we only experimentally explore the former consequence of

this theorem, while the latter will be left for future research as it requires a

caching system in place. The next section describes the algorithm we designed

to make advantage of the strategies mentioned.

4.4 memoFT

We present our solution, called memoFT (Memory-Optimization Fourier Trans-

form), to compute the Fourier spectrum of a decision tree by implementing

the theorems we have described. As the name implies, memoFT uses a struc-

ture in the memory to store Fourier coefficients. The tenet behind memoFT

is: avoid computing coefficient table from scratch as much as possible. This

is why memoFT needs to maintain memory storage for lookup purposes.

The core module of memoFT is a mechanism that can either build a coeffi-

cient table, or perform adjustment to a coefficient table based on its last-known

state. Hence, it is heavily based on our third theorem. This core module is in-

terfaced with two modules: tree analyser and split analyser. Figure 4.5 shows

how all modules interact with each other. The split analyser is a module

tasked with monitoring the occurrences of splits in a tree. Based on a split

information, it generates a traversal plan, a changed vector and the direction

of change for the core module to process. The tree analyser module scans a

tree generates a collection of traversal plans for leaf nodes with class outcome

1.

The incremental nature of the core module allows memoFT to be used as

an eager or lazy evaluation. In eager evaluation, memoFT track the splits in

the tree and make adjustment to Fourier coefficient table as necessary with

the help of the split analyser.
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Figure 4.5: memoFT modules and their interactions

In the lazy evaluation mode, memoFT is extended to directly evaluate

and build Fourier coefficient table with the help of the tree analyser module.

memoFT is designed as an incremental mechanism to serve as a groundwork

for future work which will be focused on a caching mechanism. This will be

discussed in more detail in the Conclusion chapter of this Thesis.

4.4.1 Partial Encoding of Sub-tree Structures

memoFT maintains a structure that maps a sub-tree to its Fourier coefficients.

This can be achieved by representing sub-tree as a series of string which are

then associated to their respective Fourier coefficient table. To minimize the

memory size, the string encoding format is adapted from a variant of succinct

binary tree format (Jacobson, 1989), where a tree structure is represented by

a string of bits in which split nodes are represented by 1s and leaf nodes by 0s.

The only difference in our format is the sequence of the traversal, where we use
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a pre-order traversal (a type of depth first search), instead of a breadth-first

traversal.

Suppose we have a tree as shown in Figure 4.6; split nodes are circle-

shaped and leaf nodes are in rectangles for visual cues. A pre-order traversal

will visit the nodes in the order of the numbers written in the figure. Hence,

the structure of the example tree can be encoded as 11001100100.

The encoding strategy is limited to static trees, whereas our need is to re-

trieve coefficient tables for sub-trees with similar structure, rather than being

exact. However, we noted that encoded strings of a pair of left and right sub-

trees share the same encoding bits up until the split node where they branch

out. We call such split nodes as decomposition points. Therefore, instead of

encoding full sub-trees, we can encode sub-trees partially until the decompo-

sition point, where we can assign storage bins for Fourier coefficients of left

and right sub-trees of that decomposition point.

Figure 4.7 shows one of the possible pair of left and right sub-trees from a

tree structure shown in Figure 4.6. The structure of left and right sub-trees

will be encoded as 1011000 and 1010100 respectively. Both strings share the

same series of bits, 101, until the decomposition point. Therefore 101 will

be used as a key for storage or retrieval of coefficients of those left and right

sub-trees.

0

1

2 3

4

5

6 7

8

9 10

Figure 4.6: Tree structure example and its numbered sequence of traversal.
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0

1 2

3

4 5

6

0

1 2

3 4

5 6

Figure 4.7: Left and Right sub-tree pairing example and their respective

traversal sequences.

4.4.2 Core memoFT

The core module of memoFT is the heart of our solution where a tree is

broken down into sub-trees, and Fourier coefficients are then calculated (or

adjusted) in the local sub-tree feature space. To avoid recalculating Fourier

coefficients of sub-trees that are unchanged, it requires a traversal plan to help

it determine which sub-trees are affected by the Fourier coefficient calculation.

This is necessary, because any changes in a sub-tree will affect the coefficients

of that sub-tree at its higher levels, requiring additional work to update the

stored coefficients of sub-trees in the memory. The pseudo-code of the core

module of memoFT is shown by Algorithm 4.1 and Algorithm 4.2 below.

To summarize, the core module involves a three-step process: 1) Traverse

the tree to identify the sub-trees affected by changes (or updates). 2) Cal-

culate a new coefficient table, or perform adjustment to an existing one for

the deepest decomposition point affected by change(s). 3) Update all coef-

ficient tables of sub-trees identified by the first step. Using this approach,

the algorithm also yields memory storage that is synchronized to the latest

state of sub-trees of the origin tree, in addition to producing the final Fourier

coefficients. Note that we always decompose the tree at the root node. It is

to ensure that we have a static top-level decomposition point. It is harder to
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Algorithm 4.1 Core memoFT: Tree Decomposition and Evaluate change
Input: origin tree O, string traversal plan, coefficient table repository M

Output: Fourier coefficients of O

1: Let S be a stack of decomposition points.

2: for all visited node N in O as guided by traversal plan do

3: if N is decomposition node or N is root node then

4: push N to S

5: end if

6: end for

7: invoke AdjustAndTabulate (Algorithm 4.2) to update M to the current

state of tree

8: return merged coefficient table at top-level decomposition point stored

in M

determine which entry in the memory storage is the top-level decomposition

point and without this static reference additional work will be required to

scan the memory storage.

4.4.3 Extended memoFT

The extended module of memoFT is a wrapper to allow memoFT to calculate

the Fourier coefficients of an entire tree, rather than continuously update

Fourier coefficients at every occurring split in the tree. We call this mode of

operation as lazy evaluation.

Eager evaluation has limited uses, where it is useful only when CPU usage

spikes is not desirable. Otherwise, lazy evaluation would be preferable in most

cases. Note that the DFT is used in tandem with a tree learner algorithm like

follows: The learner grows a tree from data instances and the DFT is later

used to compress the grown tree once conditions to stop growing are fulfilled.

Hence, it would be more efficient to wait until a tree has "matured" as it
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eliminates the need to maintain synchronized states of Fourier coefficients of

that tree.

The extension module of memoFT is shown in Algorithm 4.3. A decision

tree is fully scanned and Fourier coefficients are then calculated incrementally

by processing only the paths leading to class label 1 i.e. where f(x) = 1. In

this approach, f(x) is effectively fdelta(x) because it starts from empty state

f 0(x) = 0.

Suppose we have a matured decision tree as shown in Figure 4.8. The

first step of lazy evaluation is to scan the tree and collect all the paths to

leaf nodes. Paths leading to class label 0 are excluded because they do not

contribute to the calculated coefficients. Paths are then processed starting

from the shortest to the longest. In this case, x3 → x4 is the first to be

processed and x3 → x1 → x4 → x2 is the last.

When the first, second and third paths are processed, there were no

previously-calculated coefficients for the sub-trees where they were located

(shown in Figure 4.9, Figure 4.10 and Figure 4.11 respectively). Hence coef-

ficient tables are created and then stored in memory for all three sub-trees.

When processing the last path, however, it shares the same sub-tree as the

X3

X4

1 0

X1

X4

1 X2

0 1

X2

0 1

Figure 4.8: Example of a decision tree in binary domain to be evaluated by

memoFT.
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X3

X4

1 0

0

x3 x4 f 0(x) fdelta(x) f(x) ωj

0 0 0 1 1 0.25

0 1 0 0 0 0.25

1 0 0 0 0 0.25

1 1 0 0 0 0.25

Figure 4.9: Processing first path of example tree in Figure 4.8

X3

0 X1

X4

1 0

0

x1 x3 x4 f 0(x) fdelta(x) f(x) ωj

0 0 0 0 0 0 0.125

0 0 1 0 0 0 0.125

1 0 0 0 0 0 0.125

1 0 1 0 0 0 0.125

0 1 0 0 1 1 -0.125

0 1 1 0 0 0 -0.125

1 1 0 0 0 0 -0.125

1 1 1 0 0 0 -0.125

Figure 4.10: Processing second path of example tree in Figure 4.8. Reorga-

nized to show partition by X3

second path. In this case, coefficient table for the sub-tree is accessed from

memory and adjustment is made as shown in Figure 4.12.
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X3

0 X1

0 X2

1 0

x1 x2 x3 f 0(x) fdelta(x) f(x) ωj

0 0 0 0 0 0 0.125

0 1 0 0 0 0 0.125

1 0 0 0 0 0 -0.125

1 1 0 0 0 0 -0.125

0 0 1 0 0 0 -0.125

0 1 1 0 0 0 -0.125

1 0 1 0 1 1 0.125

1 1 1 0 0 0 0.125

Figure 4.11: Processing third path of example tree in Figure 4.8. Reorganized

to show partition by X3
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Algorithm 4.2 Adjust and Tabulate changes
Input: tabulation stack S, changed vector x, change direction fdelta(x)

Output: updated state of repository M

1: for all decomposition point P in S do

2: if P is first element in S then

3: if no prior record of P in M then

4: Let T1 be the coefficient table of direct parent sub-tree of

current decomposition point stored in M

5: Calculate new coefficient table T1 based on x and fdelta(x)

6: Assign T2 to the sub-tree where change occurred

7: Assign T1 to the sub-tree not affected by change

8: else

9: Grab coefficient table T of changed sub-tree from M and

adjust the coefficient values based on x and fdelta(x)

10: end if

11: else

12: Let P ′ be the decomposition point processed in a previous iter-

ation,

T ′ be the combined coefficient table of sub-trees linked to P ′

13: Grab record entry for P stored in M and replace the coefficient

table of the sub-tree where change occurred with T ′

14: end if

15: end for
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Algorithm 4.3 memoFT - Lazy Evaluation
Input: decision tree T

Output: Fourier coefficient representation of T , and a memory storage con-

taining coefficient tables of sub-trees

1: Let M be an empty memory storage

2: Scan T layer-by-layer and collect a list L of split nodes closest to class

label 1, i.e. f(x) = 1 //tree analyser

3: for all Split node N in L do

4: Determine change vector x and traversal plan caused by N . Direction

of change is static, fdelta(x) = 1

5: Invoke core memoFT (Algorithm 4.1)

6: end for

7: return coefficient table created at the last invocation of core memoFT
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X3

0 X1

X4

1 X2

0 1

0

x1 x2 x3 x4 f(x) fdelta(x) ω′j

0 0 0 0 0 0 0.1875

0 0 0 1 0 0 0.0625

0 1 0 0 0 0 -0.0625

0 1 0 1 0 0 0.0625

1 0 0 0 0 0 0.1875

1 0 0 1 0 0 0.0625

1 1 0 0 0 0 -0.0625

1 1 0 1 0 0 0.0625

0 0 1 0 1 0 -0.1875

0 0 1 1 0 0 -0.0625

0 1 1 0 1 0 0.0625

0 1 1 1 0 1 -0.0625

1 0 1 0 0 0 -0.1875

1 0 1 1 0 0 -0.0625

1 1 1 0 0 0 0.0625

1 1 1 1 0 0 -0.0625

Figure 4.12: Processing fourth path of example tree in Figure 4.8



4.4. memoFT 63

Summary

In this chapter we have presented the design aspect of our research, starting

from identifying the problems of application of DFT to decision trees where

the size of attribute space increases exponentially. We also presented our so-

lution to reduce the size of attribute space by combining a divide and conquer

strategy with usage of memory storage from theoretical perspective as well

from an implementation (memoFT) perspective. Our next step is to evaluate

our implementation using experiments in various stream conditions which will

be described further in Chapter 5



Chapter 5

Experiments and Results

In the previous chapter we identified our research problems, proposed a so-

lution from a theoretical perspective and presented memoFT as the imple-

mentation algorithm designed to compute the Fourier spectrum efficiently by

applying a divide and conquer strategy to reduce the size of problem space.

In this chapter we will describe the experiments designed to evaluate our al-

gorithm. We will then present its performance, as well as discussing other

findings observed throughout course of the experimentation.

5.1 Data Sources for Stream Mining

We empirically validate our proposed solution by running a series of exper-

iments using both synthetic and real-world datasets. Synthetic datasets are

commonly used in stream mining studies for several reasons (Kirkby, 2007;

Bifet, 2010). A synthetic data generator can easily replicate instances and

thus costs of storage and transmission are relatively small. Another advan-

tage is it enables us to specify the levels and characteristics of concept drifts.

Certain data generator(s) may allow its user to adjust dimensional size of

data streams, which is extremely useful for assessing algorithms in terms of

scalability.

For the purpose of this research, we use data generators provided by MOA

(Massive Online Analysis) stream mining suite. MOA is an open-source frame-

work targeted for mining data streams with concept drift. MOA is conve-
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niently bundled with a collection of data generators frequently used in data

stream mining research (Schlimmer & Granger Jr, 1986; Domingos & Hulten,

2000; Street & Kim, 2001; Hulten et al., 2001). In this study, we are using the

Rotating Hyperplane and Radial Basis Function (RBF) generators in partic-

ular.

Rotating Hyperplane This dataset was firstly introduced by Domin-

gos and Hulten to be used by VFDT (2000), and later used in a comparative

study between CVFDT and VFDT (Hulten et al., 2001). The Rotating Hy-

perplane generator produces data streams containing gradual concept drifts.

A hyperplane of dimension d is a set of points x satisfying the condition:

d∑
i=1

wixi = w0, (5.1)

where xi is the i-th coordinate of x. Instances for which
∑d

i=1wixi ≥ w0

are labelled positive and instances for which
∑d

i=1wixi < w0 are labelled neg-

ative. Rotating hyperplanes are helpful to simulate drifting concepts because

position and orientation of the hyperplane can be changed smoothly by sim-

ply altering the relative ratio of weights. We fixed the number of drifting

attributes to 4, and experimented with drift magnitude 0.01 and 0.05 for this

dataset.

RBF This dataset produces concepts that are not so easily approximated

by decision tree learners (Bifet, Holmes, Pfahringer, Kirkby, & Gavaldà, 2009),

thus introducing a completely different drift characteristics than hyperplane

generator. The RBF (Radial Basis Function) generates n number of centroids

at random position, each assigned with a random class label and weight.

Instances are then generated by randomly picking a centroid where the higher

the weight the more likely a centroid will be selected. Attribute values are
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then displaced by a length that is randomly drawn. Number of centroids is

defaulted to 40, unless mentioned otherwise.

Both dataset mentioned above generate numerical attributes. Because

our implementation is intended for decision trees in the binary domain, all

numerical attributes are firstly normalized and then discretized into two bins

prior to being used as stream input.

There are several other data generators bundled with MOA, such as STAG-

GER (Schlimmer & Granger Jr, 1986) and SEA dataset (Street & Kim, 2001)

which we do not use as we need dataset generators that can produce datasets

with an arbitrary number of attributes.

5.1.1 Real World Data Sources

Finding publicly-available real world datasets with a large number of instances

is not an easy task, especially those containing considerable concept changes.

The UC Irvine machine learning repository 1 has one of the largest collec-

tions of publicly-available real-world datasets, if not the largest. We consider

three datasets for our experiment: Electricity, Forest Covertype and the Flight

dataset.

Electricity dataset Is a dataset drawn from the New South Wales

(NSW) electricity market in Australia 2. In Australia, prices of electricity

are driven by demand and supply, as opposed to fixed pricing. The price is

determined every 5 minutes with classes labelled as UP and DOWN to signify

change of prices with respect to average of prices in the last 24 hours. The

dataset contains 45312 instances with 7 attributes. The dataset was firstly

introduced by Harries and Wales (1999) and is also commonly used in data

stream researches (Gama et al., 2004; Sripirakas & Pears, 2014).
1http://archive.ics.uci.edu/ml/
2http://moa.cms.waikato.ac.nz/datasets/
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Forest Covertype dataset This dataset is used to predict cover type

of forests from cartographic information (elevation, degrees of slope, etc.)

(Blackard & Dean, 1999). The instances are determined from observation

samples of size 30 x 30cm per cell acquired from US Forest Service (USFS)

Region 2 Resource Information Service (RIS) data. The dataset has 581012

instances with 54 attributes and is also frequently used in studies on stream

classification (Oza & Russell, 2001; Gama, Rocha, & Medas, 2003; Bifet, 2010;

Sripirakas & Pears, 2014).

Flight dataset This dataset is provided by NASA and is publicly avail-

able 3 which is drawn from NASA’s FLTz flight simulator. FLTz is a medium-

fidelity flight simulator and is useful to develop adaptive flight control and

planning emergency maneuvers, among other uses (Chu, Gorinevsky, & Boyd,

2010). The Flight dataset is given as 20 different files, each representing the

complete flight data from takeoff to landing. There are four scenarios in total:

takeoff, climb, cruise and landing. A data instance is captured every second.

Velocity is designated as classification target where it is discretized as UP

and DOWN to indicate velocity change with respect to the moving average

velocity for the last 10 seconds. All files are merged and irrelevant attributes

are excluded to form a single file containing 25043 instances and 30 attributes

(Sripirakas, 2015).

5.2 Experiment Settings

DFT process (and memoFT, by extension) discussed extensively in Chapter 4

is a process to transform a decision tree into its equivalent algebraic form. As

such, it needs a tree learner algorithm to generate a tree for the DFT process
3https://c3.nasa.gov/dashlink/static/media/dataset/FLTz_2.zip
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to take place. We select CBDT (Concept-Based Decision Trees) (Hoeglinger

et al., 2009) as the base learner to generate trees that will serve as input to

both DFT and memoFT.

The framework of our experiment is as shown in Figure 5.1, which is

a modified version of the general framework shown in Figure 3.1. CBDT

maintains a forest of Hoeffding Trees and each stream instance is routed to

every tree being managed. Each tree managed by CBDT has an instance of

drift detector (ADWIN) embedded to it. Whenever concept drift is detected,

Figure 5.1: Experiment framework to assess memoFT, adapted from Fig-

ure 3.1
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a model with the highest accuracy is selected as a winner. This winner model

may emerge either from the forest in the form of a one of the trees present in

the forest or from one of the spectra present in the repository. If the winner

emerges from the forest then that tree will then be re-grown from its stump.

As mentioned in Chapter 4, we are interested in the performance of mem-

oFT in both lazy and eager scenarios in comparison to the normal DFT pro-

cess. Performing eager synchronization of Fourier spectrum for every single

tree being managed by CBDT is undesirable because CBDT generates as many

trees as the number of attributes in the stream. To reduce the memory usage

to a more manageable level, memoFT processes (both lazy and eager) only

runs on trees which have been previously declared as winners. Note that this

policy reduces computational overhead on the system as a whole and enables

experimentation to be less time consuming. It does not have a direct bearing

on the research hypothesis that the divide and conquer strategy of applying

the DFT to a decision tree improves computational efficiency.

To ensure correctness of the memoFT implementation, Fourier spectra

generated by lazy and eager implementations of memoFT are checked for

equality in comparison to that resulting from the normal DFT process before

registering a new Fourier spectrum entry in the repository.

5.2.1 Parameter Values

Unless mentioned otherwise, all parameters are set at the following default

values:

• Hoeffding Tree δ = 0.00175, τ = 0.01, n = 100, where (1 − δ) the

desired probability of correctly selecting a split attribute. τ is the tie

tolerance of Hoeffding bound. n is the interval of growth check.

• ADWIN drift detection confidence parameter = 0.01
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• Decision Forest maximum number of managed trees = 40, maxi-

mum number of nodes in forest = 5000.

• Repository maximum number of Fourier spectra = 50, accuracy tie

threshold = 0.01 which is the minimum difference in accuracy between

a tree with highest accuracy in decision tree forest and spectrum in

repository with the highest accuracy for DFT to be activated on most

accurate tree in forest.

• DFT process (memoFT included) order cutoff = 5, winner count

threshold = 2, which is the minimum number of times a tree in the

decision tree forest must be declared as a winner before memoFT is

used to evaluate the Fourier coefficients of the tree (applies to memoFT

only).

5.2.2 Controlled Variables

In addition to the parameters mentioned above, we recognized several fac-

tors affecting the performance of memoFT directly and indirectly. The size

and dimensionality of a tree directly affects the time needed to convert the

tree to its Fourier spectrum representation. This factor is hard to control

because structure of a decision tree is highly dependent on the characteristics

of the examples used to train it. Indirectly, this variable can be controlled

by manipulating the dimensionality of data streams. This is where synthetic

datasets may prove useful to assess memoFT, as reducing the dimensionality

of data streams in real world data risks exclusion of potentially important

features. Hence in our experiments, we only control the dimension of stream

for synthetic datasets, with Forest Covertype as exception, where attributes

are filtered using WEKA4 feature selection as ranked by information gain.
4http://www.cs.waikato.ac.nz/ml/weka/
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Another factor directly affecting time performance of our solution is the value

of order cutoff as shown by Equation 3.13 in Chapter 4 where greater order

cutoff will increase the cost of calculating coefficients.

The controlled variable values in our experiments are as follows:

• Dimensionality of streams

– RBF and Rotating Hyperplane - 10, 20 (default), 40

– Forest Covertype - 30, 40 (default)

• Order cutoff: 2,3,4,5 (default)

5.2.3 System Hardware / Software Setup

The system used in our experiment is developed in C# running on .NET

Framework 4.5 environment. All experiments done in this study were con-

ducted on a system running Windows 7 Service Pack 1 operating system with

Intel i5 CPU and 8GB RAM. To get more accurate and fair performance

measurements, each experiment run was repeated 10 times with .NET run-

time memory cleared in between runs.

5.3 Experiment Results

We focus our study on time profiles of three different DFT processes: normal

DFT, lazy memoFT and eager memoFT. In this section we will present the

general time performance of these processes. We also study the relative ef-

fectiveness of memoFT with respect to dimensionality of streams and order

cutoff.
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5.3.1 Runtime Comparison

We ran experiments on all datasets with default parameter values and mea-

sured the runtime between the three DFT processes, which are compiled in Ap-

pendix C. The results are then plotted as shown in Figure 5.2, 5.3, 5.4, 5.5, 5.6

and 5.7. For the RBF dataset, we have to reduce the winner count threshold

to 1 because there is not detections of concept drift for analysis. We observe

several interesting patterns from the runtime comparison with each of the

datasets.

• As expected, the runtime of memoFT evaluating trees lazily is faster

than normal DFT process. The degree of improvements varies across

datasets, where runtime is improved between 40-64% and 46-59% on

synthetic and real world datasets respectively.

• Another trend observed is the average runtime of eager memoFT per

split is much smaller than the average runtime of lazy memoFT, which

also falls within our expectation. However, when these incremental im-

provements in runtime are aggregated on a per drift basis, eager mem-

oFT performs even worse than normal DFT. A prime example of this

is shown in Figure 5.8 (note that eager memoFT is cumulative in this

Figure).

• There is a couple of contrasting improvement results from RBF and Ro-

tating Hyperplane datasets. While lazy memoFT works well on RBF,

its effectiveness appears to be greatly reduced when processing several

trees trained on the Rotating Hyperplane dataset. For example, there

is an instance where runtime improvement is merely 18% on Rotating

Hyperplane, whereas runtime improvement can be as high as 90% on

RBF. Upon closer inspection, we find that the particular tree on Rotat-

ing Hyperplane has a high amount of reappearing split attributes. It has
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12 split attribute instances, out of which only 5 are distinct. Such tree

structure is possible because of the mechanism of Rotating Hyperplane:

gradually shifting the weights of drifting attributes. This phenomenon is

consistent with Case 2 of Theorem 2 from Chapter 4 which implies that

reoccurring split attributes on different sub-trees reduce the effectiveness

of our solution.

Another interesting finding emerges from runtime measurements of the

DFT processes on the Electricity dataset, as shown in Figure 5.9. On this

particular dataset, both eager and lazy memoFT are faster than normal DFT.

We discovered that the Electricity dataset produces many small trees; most

of the trees generated only contain either 2 or 3 split attributes. It seems

that when the dimensionality of streams is low, the cost of merging Fourier

coefficients is negligible, such that incrementally building Fourier coefficients is

faster than computing the DFT normally. The rest of figures showing memory

profile on drift detection are shown in Appendix D.
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Figure 5.2: Runtime profile of DFT processes on RBF dataset (20 attributes,

minimum winner count = 1)

Figure 5.3: Runtime profile of DFT processes on Rotating Hyperplane dataset

(20 attributes, drift magnitude = 0.01)
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Figure 5.4: Runtime profile of DFT processes on Rotating Hyperplane dataset

(20 attributes, drift magnitude = 0.05)

Figure 5.5: Runtime profile of DFT processes on Electricity dataset
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Figure 5.6: Runtime profile of DFT processes on Flight dataset

Figure 5.7: Runtime profile of DFT processes on Forest Covertype dataset

(40 attributes)
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Figure 5.8: Runtime of DFT processes on Flight dataset measured on drift

detection

Figure 5.9: Runtime of DFT processes on Electricity dataset measured on

drift detection



5.3. Experiment Results 78

5.3.1.1 Effects of Dimensionality to Runtime Performance

We then run more experiments to inspect the effects of dimensionality of

streams and order cutoff to runtime performance of the DFT processes. We

specifically focused our attention on comparing lazy memoFT and normal

DFT in these experiments. Because order cutoff also affects accuracy in ad-

dition to the cost of DFT calculation, we also measure accuracy for these

experiments to show the potential trade-offs between speed and accuracy. We

witness similar patterns of general runtime performance reoccurring as men-

tioned above. Additionally we also notice patterns when dimensionality and

order cutoff are altered.

For easier referencing, from here onwards we relabel the datasets using

a naming scheme listed in Table 5.1 below, where wildcard character ∗ de-

notes the number of attributes in the data stream. The result of these ex-

periments are compiled in Appendix A and Appendix D. We then plotted

average accuracy and runtime improvement for each dataset as shown in Fig-

ure 5.10, 5.11, 5.12, 5.13, 5.14 and 5.15. Runtime improvement shown in

the tables is derived from the runtimes of lazy memoFT and normal DFT

processes, t0 and t1 respectively, using the following formula:

Runtime improvement =
(t1 − t0)

t1
.100%

We notice a couple of patterns emerging:

• As the dimension of data stream is increased from 10 to 40 (RBF and

Rotating Hyperplane), we expected lazy memoFT to scale better in

terms of runtime. This is strongly shown in the RBF dataset where

improvement of runtime is boosted significantly e.g. for order cutoff = 4

runtime improvement grows from 44% to 64% to 73% for 10, 20 and 40

attributes respectively. In contrast, runtime improvement on Rotating

Hyperplane datasets only increased by a smaller amount in comparison
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Dataset Name Description

RBF-* RBF with x attributes

RH1-* Rotating Hyperplane, drift magnitude = 0.01

RH2-* Rotating Hyperplane, drift magnitude = 0.05

Covertype30 Forest covertype, 30 most significant attributes

Covertype40 Forest covertype, 40 most significant attributes

Table 5.1: Relabelled dataset names and description

e.g. on RH1 dataset with corresponding order cutoff and dimension

sizes, runtime improvements are 43%, 40% and 46%.

• It is interesting to note that at times runtime improvement of lazy mem-

oFT on higher dimensionality can be lower than that of lower dimen-

sionality. We suspect that this is caused by several factors. The first

factor has been discussed previously, which is the nature of Rotating

Hyperplane to generate trees with multiple attributes reappearing in

trees. The second factor is the cost of the effort to combine Fourier co-

efficients of sub-trees (discussed in Section 4.3). The fact that runtime

improvement first increases and then drops suggests two things: 1) that

the merging cost is negligible on lower dimensionality. 2) merging cost

grows as dimensionality increased.

The cost to merge Fourier coefficients of sub-trees is affected by the struc-

ture of the tree i.e. the total number of split and distinct attributes in the

tree, how many sub-trees are there in the tree etc. It might be possible to

predict the efficacy of memoFT using meta-information contained within the

tree. This can be useful to build a decision making module for when to use

memoFT. A study on this aspect is identified as part of future work arising

from the present research.
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Figure 5.10: Average Accuracy and Runtime Improvement for various order

cutoffs on RBF-10 (Top), RBF-20 (Middle) and RBF-40 (Bottom)
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Figure 5.11: Average Accuracy and Runtime Improvement for various order

cutoffs on RH1-10 (Top), RH1-20 (Middle) and RH1-40 (Bottom) datasets
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Figure 5.12: Average Accuracy and Runtime Improvement for various order

cutoffs on RH2-10 (Top), RH2-20 (Middle) and RH2-40 (Bottom) datasets
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Figure 5.13: Average Accuracy and Runtime Improvement for various order

cutoffs on Electricity dataset

Figure 5.14: Average Accuracy and Runtime Improvement for various order

cutoffs on Flight dataset
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Figure 5.15: Average Accuracy and Runtime Improvement for various order

cutoffs on Covertype30 (Top) and Covertype40 (Bottom) datasets
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5.3.1.2 Effects of Order Cutoff to Runtime and Accuracy Perfor-

mance

We also noticed an additional pattern emerging when order cutoff is increased

from 2 to 5:

• memoFT process performs much better than normal DFT as order

cutoff is increased. This pattern occurs across many datasets: RBF

(Figure 5.10), RH2-10 (Figure 5.12), Electricity (Figure 5.13)and Flight

(Figure 5.14) datasets. This boost of performance, however, is relatively

small compared to the increase of performance when dimension size is

increased, which is within our expectations. Recall that the problem

space of DFT grows exponentially with respect to dimension size of de-

cision tree; while the growth of significant coefficients is combinatorial

by order (refer Equation 3.13).

• We also found another interesting trend, that most experiments run-

ning on higher order cutoff yielded lower average accuracy. The only ex-

ception was experiments running on RH2-40 and Covertype40 datasets

where accuracy increased as order cutoff was raised. This seems to be

in opposition to properties of decision trees in Fourier domain that has

been discussed in Section 3.8.1. However, it is not actually so. When a

tree is converted in DFT form, order cutoff determines how much infor-

mation is preserved from the original tree. It is very likely that setting

order cutoff to a certain value might actually filter out noise information

from the original tree, thus enabling to generalize better to future data.

In essence, this is very similar to what tree pruning does, improving

generality by collapsing leaf nodes to avoid overfitting.

In practice, it is very hard to determine the value of order cutoff that

is optimal in general. We suggest to firstly experiment with a small sized
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sample starting from order cutoff 1 and incrementally increase the cutoff value

until desired performance is achieved whenever a DFT process is involved.

Another factor to consider when tuning order cutoff is the dimensionality of

trees generated as it learns from the instances. This is because the number

of coefficients to be calculated grows in combinatorial fashion with respect to

dimensionality. Thus, the increase of order cutoff can be counter-productive

in terms of processing speed.

5.3.2 Memory Profile

memoFT is an algorithm that improves runtime performance by making use of

memory storage optimisation. Hence it is important to assess it from the per-

spective of memory consumption. During experiment runs, we also monitor

the memory storage maintained by memoFT on each dataset. Because lazy

memoFT and eager memoFT ultimately generates the same Fourier coefficient

sets, it is quite likely that both processes generate a near identical sized mem-

ory structure, if not identical. The average of measured memory consumption

of memoFT per dataset are then tabulated as shown by Table B.1, B.2 and

B.3.

Once again, we observe that the memory profiles of memoFT on RBF

and Rotating Hyperplane datasets are located at opposite extremes. In the

previous section, RBF datasets benefit greatly from memoFT while the im-

provements enjoyed by Rotating Hyperplane datasets are much lower in com-

parison. From memory perspective, memoFT uses up much more memory

storage on RBF as opposed to Rotating Hyperplane datasets.

Quite curiously, memory usage on real-world datasets are closer to that of

Rotating Hyperplane. In Rotating Hyperplane datasets, decision trees gener-

ated tend to be balanced but containing "high" number of reappearing split

attributes, thus lowering the actual dimensionality of the tree. Trees gener-
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ated by real-world datasets are more likely to contain not as much reoccurring

split attributes for a given tree size. However, they are also more likely to be

less balanced, which translates to less sub-trees to be maintained by memoFT

process.

We also observe the effects of dimensionality and order cutoff to memory

consumption of memoFT:

• As dimensionality increases, memoFT consumes more memory. This is

very much expected because an increase in dimensionality means more

split attributes in the trees, which increases the likelihood of more sub-

trees appearing in the tree.

• Consumption of memory of memoFT also increases when order cutoff

grows. Order cutoff strongly affects how many coefficients to be calcu-

lated (and thus, stored) when memoFT performs DFT on sub-trees. The

increase of memory consumption caused by order cutoff is smaller than

the increase caused by dimensionality due to the same reason mentioned

in previous section.

5.3.3 Recurring Concepts in Real World

We propose that future work on DFT use a shared memory structure to exploit

commonality between Fourier spectra that occurs as a result of concept recur-

rence. This will accelerate the DFT application to different trees that emerge

as winners over time by re-using already generated spectra that correspond

to sub-trees that manifested at previous points in the stream progression.

In many real world scenarios, concepts may reoccur frequently (Sripirakas

& Pears, 2014). Take the Flight dataset for example; it is a collection of

flight information taken from 20 flight runs starting from takeoff to landing.

In total there are only 7 concepts being repeated 20 times over. However, a
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concept does not always reoccur in exact forms; they are bound to reoccur

with differences due to changes in distribution of information in streams.

As discussed in the experimental settings, our experiment framework in-

volves a forest of Hoeffding trees that is grown in parallel as stream instances

are processed. When concept change is detected, a snapshot of the tree with

highest accuracy in the forest will be captured and the tree will be regrown

from stump. This mechanism allows us to capture concepts appearing in

streams (Sripirakas & Pears, 2014).

As we run the experiments, we notice that concepts do indeed reoccur in

real-world datasets. In particular, Flight dataset has a very high frequency of

concept reoccurrences, which is well expected. An example of reoccurrences

are as shown in Figure 5.16 below.

X11

X30

0 1

0

X1

X30

0 1

0

X1

X30

0 1

1

Figure 5.16: Examples of frequently reoccurring concepts in Flight dataset

Concept not only reoccur in "small" tree sizes (like in previous example),

but also reoccur in trees with "higher" dimension size. We notice this phe-

nomenon especially In Covertype30 dataset, where an example of reoccurring

concept in higher dimensionality is shown in Figures 5.17 and 5.18. Both

concepts share very similar structure with three identical sub-trees.

Based on these findings, we predict that it would be highly beneficial to

implement a caching system of coefficients that is shareable between trees in

the forest, as the Fourier spectrum is highly dependent on structure of the
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origin tree. This is beyond the scope of our research as we focused on the

divide and conquer approach of DFT application on decision trees in this

study. The potential benefit of exploiting reoccurring concepts is large; hence

our future works needs to be focused in this area.

Summary

In this chapter, we presented our experimental framework which allowed us

to assess our proposed solution on datasets, both synthetics and real-world,

with varying characteristics of stream and distribution of information. We

have shown that aggressively decomposing decision trees into sub-trees ulti-

mately leads to better runtime performance than normal DFT process across

all datasets used. This approach is also proven to scale better as dimension-

ality and order is increased compared to normal DFT.
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Figure 5.17: Concept captured on Covertype30 dataset
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Figure 5.18: Another concept captured on Covertype30 dataset



Chapter 6

Conclusion and Future works

6.1 Research Achievements

In previous chapters, We framed an important issue raised by application of

the DFT to support mining recurrent concepts on data streams. Represent-

ing decision trees as Fourier spectra is highly beneficial to recurrent concept

mining for numerous reasons. First, it reduces the memory requirement of

storing a tree that has captured a concept while preserving its accuracy. Sec-

ond, Fourier spectra classifiers may generalize better than their uncompressed

counterparts, resulting in higher accuracy. However, the DFT computation

is an expensive operation, where the number of coefficients to compute grows

exponentially. Unfortunately, the well-known FFT algorithm cannot be used

to address this challenge for the reasons outlined in Chapter 3. This cre-

ates a challenge we have to deal with because processing speed is extremely

important in stream mining, whereby data instances arrive at high speed.

Several solutions were proposed to mitigate the exponential feature space

problem (Kargupta & Park, 2004; Sripirakas, 2015), however none of the

solutions mentioned attempted to reduce the size of underlying feature space.

We focused our study to address this issue and presented a solution to reduce

the size of the problem space.

We presented a novel approach to compute the DFT of a decision tree,

called memoFT, which employs a divide and conquer strategy to decompose

a decision tree into sub-trees and compute their Fourier spectra in their own
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localized feature space. The implementation algorithm is similar in spirit to

the FFT algorithm. The difference is that the FFT breaks down the problem

space directly by exploiting the properties of the univariate transform.

Our experimental study of memoFT shows that memoFT in lazy evalua-

tion mode is superior to normal computation of DFT on all tested datasets

with average improvement of about 40-64% on synthetic datasets and 46-

59% on real world datasets. The extent of runtime improvement of memoFT

is highly dependent on dataset type, whereby the runtime improvement can

be as high as 85% on the RBF dataset and as low as 40% on the Rotating

Hyperplane dataset.

Another contribution of this research is the theoretical formulation that

the Fourier spectrum of a decision tree can be inferred from the Fourier spec-

trum of another tree. This is significant as the cost of inferring the Fourier

spectrum of a decision tree from previously-computed spectra can be lower

than computing it from scratch. As described in Chapter 4, this theorem has

several implications in recurrent concept mining: 1) it allows us to eagerly

synchronize decision trees to their respective Fourier spectra and 2) it opens

up the possibility of employing a smart caching mechanism where a spectrum

that has captured a concept can be reused and adapted should the concept

reoccurs with small differences in the stream.

In this study, we inspected the former implication of this theorem and

incorporated it into the core module of memoFT. MemoFT incrementally

builds Fourier coefficients of sub-trees, allowing us to track in eager mode

and synchronize the Fourier spectrum of a growing tree. From our empirical

study, we observed that synchronizing the Fourier spectrum in eager mode

performs worse in general than computing Fourier spectrum lazily with our

proposed divide and conquer strategy. However, eager evaluation has the

lowest average runtime per evaluation run, making it suitable for real-time

systems where bursts of CPU usage are undesirable.
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6.2 Limitations

We identified several limitations of our research which are listed below:

• The proposed solution is highly specific to improving the computation

efficiency of converting decision trees into Fourier spectra. The divide

and conquer strategy proposed can only run on a decision tree structure.

This necessitates the usage of decision tree classifier. While decision

trees are amongst the best classifiers to use in a data stream environment

it is desirable to extend the scope of application of the DFT to other

types of classifiers.

• Streams with very high dimensionality still pose a serious challenge.

As discussed in Chapter 3, the number of coefficients to compute grows

exponentially on dimensionality. Our solution attempts to reduce this by

computing local Fourier spectra of sub-trees and merge them. Streams

with higher dimensionality increases the chance of a higher number of

sub-trees as well as the size of coefficient table of each sub-tree. Streams

with very high dimensionality would have impact not only on runtime

performance, but also on memory consumption because our algorithm

is a memory-based optimization. We suggest limiting the growth of

decision trees to a certain depth to reduce the severity of this problem

when the DFT is applied on very high dimensionality.

• DFT application to decision tree is limited to discrete features. It is

not optimized to handle data streams containing numerical (or contin-

uous) features. Continuous valued features can be discretized as part

of pre-process. However, such procedure may result in drastic increase

of dimensionality, which leads to the same situation described in the

previous point.
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• memoFT would not be suitable for devices with restricted memory re-

source. As discussed in Chapter 4, memoFT used memory optimization

technique. The algorithm requires additional memory requirements as

a tradeoff to gain improvement in runtime performance.

• memoFT is designed for a general-purpose evaluation by incrementally

building Fourier coefficient tables in both eager and lazy mode. The al-

gorithm can be optimized in lazy evaluation mode because it processes

coefficient adjustments to sub-trees on a per schema basis. If a sub-tree

at a lower level contains multiple schemas, the algorithm will perform

multiple memory lookup to apply coefficient adjustments. A more effi-

cient approach in lazy evaluation mode is to collect schemas contained

in that sub-tree and apply coefficient adjustment in a single lookup op-

eration.

• The lack of an average case computational time guarantee. The FFT

algorithm directly divides the problem space into two equal parts and

recursively process each part, resulting in a reduction of time complex-

ity from O(n2) to O(n log n) (Brigham, 1988). However, our solution

indirectly reduces the problem space by dividing a decision tree into

sub-trees. This recursive process does not necessarily decompose a deci-

sion tree into equal-sized sub-trees, which makes it very hard to derive

time performance guarantee.

• Our experiment framework has a dependency on concept change detec-

tion. The performance of change detection affects the overall system

accuracy. When change detection mechanism falsely identifies concept

change, the error will propagate throughout the entire system. This

creates a need to carefully select the best performing change detector in

terms of false negative and false positive rates.
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6.3 Future Work

The time frame given to complete a Master’s Thesis restricts the amount of

work that can be done in this research. In this section, we will discuss several

possible future work in this field.

• Extending the work done in this thesis beyond the binary domain. Our

implementation algorithm is designed to compute Fourier spectra in the

binary feature space as a proof of concept to test the validity of our

theorems. To extend it to work in n-ary feature domain would be a

logical step since most real world datasets involves non-binary features.

• There are cases when computing local Fourier spectra can be more ex-

pensive than the normal DFT computation under a specific tree struc-

ture. An exact decision making mechanism to switch between the two

types of computation can be expensive as it may require multiple scans

of the decision tree. A plausible alternative is to use a meta-learner that

is trained to predict the expected conversion runtime and chooses the

best form of computation accordingly.

• Exploit commonality between Fourier spectra that occur as a result of

concept reoccurrence. In this research, we have yet to unlock the full

potential of Theorem 3 which enables us to infer Fourier spectrum from

an existing one (see Section 4.3). Recall that in recurrent concept min-

ing, concept can reoccur in slightly different form instead of exact form,

which manifested as winner trees sharing similar structures. Using this

Theorem, we can reduce the memory space required to store different

versions of reoccurring concepts in the repository by keeping only one

version of the concept and making adjustments as needed. Another ben-

efit offered by this approach is the huge boost in runtime to infer Fourier

spectra of reoccurring concepts instead of computing them from scratch.
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• Another possible future direction is to extend the setting of our research

into semi-supervised learning domain. In real world situation, incoming

instances may not always be labelled and the effort to label an instance

can be expensive, resulting in a delay in labelling. Similar to REDDLA

(Li et al., 2012), we can incorporate a clustering technique to our ex-

periment framework to tackle both recurring concept and unlabelled

instances.



Appendix A

Average Accuracy and Runtime

Improvements

In this appendix we display the table containing general runtime performance

of DFT processes on all datasets being tested. Please refer to Table 5.1 for

dataset naming convention.

A.1 RBF

Runtime Improvement (%)

Dataset Order Avg. Accuracy Average St Deviation

RBF-10 2 70.404 29.926 26.620

3 70.370 23.715 38.179

4 70.375 40.254 26.954

5 70.375 44.364 15.839

RBF-20 2 84.034 38.770 20.553

3 84.029 53.423 12.225

4 84.027 64.546 14.951

5 84.027 64.470 27.886

RBF-40 2 89.848 47.429 14.766

3 89.845 65.417 7.235

4 89.845 73.035 20.978

5 89.845 85.142 15.992
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A.2 Rotating Hyperplane

Runtime Improvement (%)

Dataset Order Avg. Accuracy Average St Deviation

RH1-10 2 75.507 47.404 10.416

3 75.505 44.902 12.244

4 75.505 43.216 19.828

5 75.505 44.090 11.422

RH1-20 2 69.123 43.888 8.060

3 68.364 40.400 10.363

4 68.364 40.690 11.059

5 68.364 40.108 10.981

RH1-40 2 76.701 49.134 16.438

3 76.701 48.596 16.783

4 76.701 46.247 20.073

5 76.701 47.344 19.607

RH2-10 2 73.186 44.638 10.292

3 71.811 45.209 11.179

4 71.811 45.271 12.458

5 71.811 45.701 12.068

RH2-20 2 73.235 44.986 7.128

3 73.053 42.672 7.230

4 73.049 42.960 6.910

5 73.049 43.536 7.565

RH2-40 2 75.049 47.483 9.863

3 75.785 49.450 7.786

4 75.785 44.442 44.889

5 75.785 48.604 8.948
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A.3 Real world datasets

Runtime Improvement (%)

Dataset Order Avg. Accuracy Average St Deviation

Electricity 2 68.264 55.914 8.841

3 68.264 56.477 7.354

4 68.264 58.770 8.272

5 68.264 59.084 8.339

Flight 2 82.005 46.006 9.246

3 81.992 46.973 10.049

4 81.992 47.878 9.671

5 81.992 49.109 11.302

Covertype30 2 88.026 59.326 18.283

3 88.003 60.747 22.770

4 88.003 59.441 23.054

5 88.003 46.746 13.700

Covertype40 2 88.256 54.460 22.265

3 88.295 54.308 22.733

4 88.295 53.356 25.779

5 88.295 53.506 24.307
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Memory Consumption of memoFT

Dataset Order Avg. Memory Usage (bytes)

RBF-10 2 12027

3 14925

4 17138

5 18205

RBF-20 2 16444

3 21802

4 25821

5 27621

RBF-40 2 19440

3 26301

4 30992

5 32783

Table B.1: Memory usage of memoFT on RBF datasets
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Dataset Order Avg. Memory Usage (bytes)

RH1-10 2 7277

3 7414

4 7444

5 7444

RH1-20 2 8168

3 8418

4 8547

5 8567

RH1-40 2 7914

3 8325

4 8490

5 8517

RH2-10 2 8196

3 8860

4 9046

5 9079

RH2-20 2 7472

3 7531

4 7552

5 7552

RH2-40 2 8559

3 7641

4 7737

5 7753

Table B.2: Memory usage of memoFT on Rotating Hyperplane datasets
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Dataset Order Avg. Memory Usage (bytes)

Electricity 2 5748

3 5755

4 5757

5 5757

Flight 2 5889

3 5985

4 6009

5 6014

Covertype30 2 6411

3 6696

4 6918

5 7054

Covertype40 2 6702

3 7450

4 8018

5 8427

Table B.3: Memory usage of memoFT on Real-world datasets



Appendix C

Overall Runtime Measurements

This appendix enlists the tables containing averaged runtime and standard

deviations of normal DFT and memoFT runtime. The experiment and its

parameters is described in Chapter 5. The total number of Fourier Basis

(FB) calculations performed throughout the stream is also recorded to provide

additional information for analysis.
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Appendix D

Runtime Profile on Drift

Detection

The following figures are the runtime of the three DFT processes measured

whenever concept drift is detected. The eager evaluation in between drifts are

cumulated. Note that due to lack of drifts detected on the RBF dataset, we

also show the runtime measured when eager evaluation has not started.

Figure D.1: Runtime of DFT processes on RBF dataset (20 attributes, mini-

mum winner count = 1) measured on drift detection
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Figure D.2: Runtime of DFT processes on Rotating Hyperplane dataset (20

attributes, drift magnitude = 0.01) measured on drift detection

Figure D.3: Runtime of DFT processes on Rotating Hyperplane dataset (20

attributes, drift magnitude = 0.05) measured on drift detection
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Figure D.4: Runtime of DFT processes on Covertype40 dataset measured on

drift detection
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