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Introduction

When is the hyperspace of a given topological space X

(hereditarily) Baire?

Here, by a hyperspace of X, we mean the family 2X (resp.
K(X)) of all nonempty closed (resp. compact) subsets of X

equipped with certain topology.

This question was first considered by McCoy in 1975 for the
case of the Vietoris topology. Since then, there has been a
great progress towards its complete solution. In particular,
the following people have made their contributions:
Zsilinszky, Bouziad, Hola, Chaber, Pol, Cao,
Garcia-Ferreira, Gutev, Tomita.
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McCoy’s theorems

What McCoy did in 1975 can be summarized as follows:

McCoy’s First Theorem: If either X is T1 and (2X , τv) is
Baire or (K(X), τv) is Baire, then X is Baire.

McCoy’s Last Theorem: If X is a quasi-regular and Baire
space having a countable pseudo-base, then (2X , τv) is
Baire. Further, if X is quasi-regular and (K(X), τv) is Baire,
then Xn is a Baire space for all n < ω.

Thus, if we take a metric Baire space X whose square X2 is
not Baire, then (K(X), τv) is not Baire. In 2007, Cao, Gutev
and Garcia-Ferreira showed this is also true for (2X , τv).
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Main techniques of McCoy

McCoy used the game-theoretic characterization of Baire
spaces. Moreover, he introduced a topology τ ∗ on Xω so
that he could link Baireness of the Vietoris topology with
that of (Xω, τ∗).

Given a finite sequence U0, U1, ..., Un of open sets of X, let

[U0, ..., Un] =
(
∏

i≤n Ui

)

×
(
⋃

i≤n Ui

)ωr(n+1).

Then, τ∗ is a topology on Xω having the family of all sets of
the above form as a base. This topology is called the
pinched-cube topology by Piotrowski, Rosłanowski and
Scott in 1983.
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Modifications

McCoy’s techniques have been modified and applied to
study Baireness of a variety of hyperspaces.

In 1996, Zsilinszky extended McCoy’s techniques to
investigate Baireness of hit-and-miss topologies.

In 2001, Bouziad, Hola and Zsilinszky extended McCoy’s
techniques to characterize hereditary Baireness of
(K(X), τv) for Moore spaces X.

Recently, Zsilinszky, Cao and Tomita modified McCoy’s
techniques to investigate Baireness of the Wijsman
topology.
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Recent applications

Given a metric space (X, d), Zsilinszky modified the
pinched-cube topology on Xω so that a basic open set
having the form

[U0, ..., Un]B =
(
∏

i≤n Ui

)

× (X r B)ωr(n+1),

where B is a finite union of closed balls. Then, he applied
this topology to characterize Baireness of 2X with the
Wijsman topology for an almost locally separable metric
space (X, d).

Recently, Cao and Tomita extended the method they
developed on Tychonoff cube Xω, and solved a problem
posed by Zsilinszky in 2006.
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The hit-and-miss topology

Given a space X, E ⊆ X and V ⊆ τ(X), let

E+ =
{

A ∈ 2X : A ⊆ E
}

,
V− =

{

A ∈ 2X : A ∩ V 6= ∅ for all V ∈ V
}

.

These are basic building blocks for the hit-and-miss
topology on 2X .

Let ∆ ⊆ 2X ∪ {∅}. Then the upper ∆-topology τ+
∆ on 2X is

generated by
{

(X r E)+ : E ∈ ∆
}

. The lower Vietoris
topology τ− is generated by

{

V− : V ∈ [τ(X)]<ω
}

. The
∆-topology τ∆ is just τ+

∆ ∨ τ−.
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The proximal hit-and-miss topology

Let (X, U ) be a Hausdorff uniform space, and E ⊆ X. Let

E++ =
{

A ∈ 2X : U(A) ⊆ E for some U ∈ U
}

.

The upper proximal ∆-topology τ+
p∆ on 2X is generated by

{

(X r E)++ : E ∈ ∆
}

. The proximal ∆-topology τp∆ on 2X

is just τ+
p∆ ∨ τ−.

When ∆ varies, we obtain various hypertopologies. For
example, τ∆ is the Vietoris topology and τp∆ is the proximal
topology when ∆ = 2X ; τ∆ is the ball topology and τp∆ is the
proximal ball topology when ∆ is the collection of proper
closed balls of a metric space (X, d).
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All hypertopologies are hit-and-miss

In 2002, Naimpally showed that all existing hypertopologies
are hit-and-miss.

Let (X, U ) be a uniform space, and U ∈ U . Let

H(U) =
{

(A, B) : B ⊆ U(A), A ⊆ U−1(B)
}

.

The Hausdorff uniformity H(U ) on 2X is generated by
{H(U) : U ∈ U }.

It can be shown that the upper Hausdorff uniformity
topology on 2X is the same as the proximal topology; and
the lower Hausdorff uniformity topology on 2X is generated
by {V− : V ∈ L}, where L is some collection of locally finite
families of open sets.
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The Wijsman topology

Given a metric space (X, d), recall that the Wijsman
topology τwd

on 2X is the weakest topology such that d(·, x)
is continuous for all x ∈ X.

This topology can also be split into two parts: the lower part
is τ−; and the upper part τ+

wd
is generated by

{

{A ∈ 2X : d(A, x) > ε} : x ∈ X, ε > 0

}

.

Although the Wijsman topology is also hit-and-miss, to work
with the Baire property, it is easier to consider a closely
related topology, namely the ball topology.

• (2X , τ+
wd

) is Baire if and only if (2X , τ+
b

) is Baire.
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The upper topologies – I

Theorem 1: Let X be a T1-space, and N the family of
closed nowhere dense sets in X.

(i) Suppose that for any A ∈ 2X and B ∈ N with A ∩ B = ∅,
there exists an E ∈ ∆ such that B ⊆ E and A ∩ E = ∅, that
is, ∆ separates elements in N from arbitrary elements in
2X . If

(

2X , τ+
∆

)

is Baire, then X is Baire.

(ii) If X is Baire and ∆ is a π-base for 2X , then
(

2X , τ+
∆

)

is
Baire.

Furthermore, if (X, U ) is a Hausdorff uniform space, then

(iii)
(

2X , τ+
∆

)

is a Baire space if and only if
(

2X , τ+
p∆

)

is Baire.
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The upper topologies – II

• A T1 topological space X is Baire if and only if
(

2X , τ+
v

)

is
Baire.

• For a Hausdorff uniform space (X, U ), the following are
equivalent:
(i) (X, U ) is Baire;
(ii)

(

2X , τ+
p

)

is Baire;

(iii)
(

2X , τ+
H(U )

)

is Baire;

(iv)
(

2X , τ+
v

)

.

• For a metric space, (2X , τ+
wd

) is Baire if and only if (2X , τ+
pb

)

is Baire, if and only if (2X , τ+
b

) is Baire..
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Quasi-Urysohn families

We shall call a family ∆ ⊆ 2X ∪ {∅} quasi-Urysohn provided
that whenever B ∈ Σ(∆) and Wi ∈ τ(X) r {∅} are disjoint
for each i ≤ n, there is D ∈ Σ(∆) such that B ⊆ intD ⊆ D,
and Wi ∩ (X r D) 6= ∅ for each i ≤ n.

Which families of closed subsets are quasi-Urysohn?

• {∅} is quasi-Urysohn.

• If X is quasi-regular, then 2X is quasi-Urysohn.

• The family of all closed proper balls in a metric (X, d) is
quasi-Urysohn.
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A generic theorem

Theorem 2. Let X be a Hausdorff space. Suppose that ∆ is
a quasi-Urysohn family. If Xω is Baire, then (2X , τ∆) is Baire.

Corollary 2.1. Let X be a Hausdorff space. If Xω is Baire,
then (2X , τ−) is Baire (∆ = {∅}).

Corollary 2.2. [Cao and Tomita, 07] Let X be a
quasi-regular space. If Xω is Baire, then (2X , τv) is Baire
(

∆ = 2X
)

.

Corollary 2.2. [Cao and Tomita, ??] Let (X, d) be a metric
space. If Xω is Baire, then (2X , τwd

) is Baire
(∆ = { proper closed balls }).
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Sketch of the proof

The basic idea is to use the game characterization of
Baireness with a careful inductive construction of strategies.

A space is Baire if and only if the first player (β) in the
Choquet game has no winning strategy.

Suppose that σ is a strategy for β in the Choquet game
played in the hyperspace (2X , τ∆) with the initial step

σ(∅) =
(
⋂

i≤n0
U0(i)

−
)

∩ (X r B0)
+,

where B ∈ Σ(∆). We may require that U0(i)
′s are pairwise

disjoint, and they are all disjoint from B0.

We construct a strategy θ for β in Xω inductively by letting
the initial step as follows:
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Sketch of the proof continued

θ(∅) =
∏

i<n0
U0(i) ×

∏

i≥n0
X.

Suppose that the second player α responds by

Π0 =
∏

i<n0
V0(i) ×

∏

i<m0
W0(i) ×

∏

i≥m0+n0−1 X.

Then, in the hyperspace,
(
⋂

i<n0
V0(i)

−
)

∩ (X r B0)
+ ⊆ σ(∅).

Using the strategy σ, we assume that β’s next move is
(
⋂

i<n1
U1(i)

−
)

∩ (X r B1)
+.

such that U1(i) ⊆ V0(i) for all i < n0 and B0 ⊆ B1.

Since ∆ is quasi-Urysohn, we can require B0 ⊆ intB1.
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Using the strategy σ, we assume that β’s next move is
(
⋂

i<n1
U1(i)

−
)

∩ (X r B1)
+.

such that U1(i) ⊆ V0(i) for all i < n0 and B0 ⊆ B1.

Since ∆ is quasi-Urysohn, we can require B0 ⊆ intB1.
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Sketch of the proof continued

Next, we construct θ(Π0) as follows

θ(Π0) =
∏

i<n0
U1(i) ×

∏

i<m0
W0(i) ×

∏

n0≤i<n1
U1(i) ×

∏

i≥m0+n1−1 X.

Here, the special “splitting trick" is applied. The process can
be carried on inductively. We can construct θ for all possible
legal partial plays Π0, ..., Πn of α.

At the end, since θ cannot be a winning strategy for β in Xω,
there must be a full play {Πn : n < ω} for α with nonempty
intersection. Then, we collect a coordinate from each
column corresponding to Un(i). Finally, we can close it up
by putting these coordinates together and taking the
closure.
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Sufficient conditions

In the light of Theorem 2, we may want to know for which
classes of spaces X, must Xω be Baire? Some of them are
listed below:

Baire spaces having a countable π-base;
Metric hereditarily Baire spaces;
Separable metric Baire spaces;
Weakly α-favorable spaces;
Metric almost locally separable Baire spaces;
Čech-complete spaces;
Baire spaces having a countable-in-itself π-base;
Almost locally uK − U Baire spaces (D. Fremlin, T.
Natkaniec and I. Reclaw, Fund. Math. 165 (2000), 239-247;
or L. Zsilinszky, Fund. Math. 183 (2004), 115-121.)
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A short summary

Let X be a quasi-regular space belonging to any class such
that Xω is Baire. Then (2X , τv) is Baire. Conversely, in
2007, Cao and Tomita constructed a metric Baire space
such that (2X , τv) is Baire, but Xω is not Baire.

For unform or metric spaces, the Baireness of proximal
hypertopologies is equivalent to that of the corresponding
non-proximal versions of hypertopologies.

For a metric space (X, d), belonging to any class such that
Xω is Baire. Then (2X , τwd

) is Baire. There is a non-Baire
metric space whose Wijsman hyperspace is Baire. The
Baireness of Wijsman topology is equivalent to that of ball
topology.
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Some questions

Question 1. Given a metric Baire space (X, d), must
(2X , τwd

) be Baire?

There is a metric space (X, d) such that (2X , τwd
) is Baire,

but (2X , τv) is not Baire.

Question 2. Is there a metric Baire space whose Vietoris
hyperspace (2X , τv) is Baire, but whose Wijsman
hyperspace (2X , τwd

) is not Baire?

Question 3. Let X be a metrizable space. Suppose that
(2X , τwd

) is Baire for all compatible metric d. Must (2X , τv)
be Baire?
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Some questions continued

The previous three questions were posed by Zsilinszky in
2006.

As we have seen, the Hausdorff uniformity topology, or
Hausdorff metric topology is hit-and-miss. But, there is not
much information on the Baire property for this topology.

Question 4. Let (X, d) be a Baire metric space. Must
(2X , τ(dH)) be Baire? If the answer is “no", when is
(2X , τ(dH)) Baire?

One possible direction towards this question is to work on
the locally finite topology.
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Connections with orders

Note that there are some interesting connections between
hyperspaces and ordered spaces.

First, if 2X is ordered by the reverse inclusion: A v B if and
only if B ⊆ A. Then V− is a lower set in sense that if
A ∈ V−, then B ∈ V− for any A v B. On the other hand U+

is an upper set in sense that if A ∈ U+, then B ∈ U+ for any
A v B.

So, it would be interesting to look at topologies on partially
ordered sets that arise as the joint of a topology of a lower
sets and a topology of an upper sets.

Erice 08 – p. 22/23



Connections with orders

Note that there are some interesting connections between
hyperspaces and ordered spaces.

First, if 2X is ordered by the reverse inclusion: A v B if and
only if B ⊆ A. Then V− is a lower set in sense that if
A ∈ V−, then B ∈ V− for any A v B. On the other hand U+

is an upper set in sense that if A ∈ U+, then B ∈ U+ for any
A v B.

So, it would be interesting to look at topologies on partially
ordered sets that arise as the joint of a topology of a lower
sets and a topology of an upper sets.

Erice 08 – p. 22/23



Connections with orders

Note that there are some interesting connections between
hyperspaces and ordered spaces.

First, if 2X is ordered by the reverse inclusion: A v B if and
only if B ⊆ A. Then V− is a lower set in sense that if
A ∈ V−, then B ∈ V− for any A v B. On the other hand U+

is an upper set in sense that if A ∈ U+, then B ∈ U+ for any
A v B.

So, it would be interesting to look at topologies on partially
ordered sets that arise as the joint of a topology of a lower
sets and a topology of an upper sets.

Erice 08 – p. 22/23



Connections with orders cont.

Further, some important topologies in the domain theory
and computational metric space theory, such as the
Lawson topology and the formal ball topology have the
previous mentioned nature. It is known that completeness
property plays an important role in the computing theory. It
may be interesting to explore the Baire property of these
topologies as well.

Thank You for Your Attention!
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