
Auto-Code Generation for Fast Embedded
Model Predictive Controllers

Jonathan Currie
Electrical and Electronic Engineering

AUT University
Auckland, New Zealand

Email: jocurrie@aut.ac.nz

Arrian Prince-Pike
Electrical and Electronic Engineering

AUT University
Auckland, New Zealand

David I. Wilson
Industrial Information and Control Centre

AUT University
Auckland, New Zealand

Abstract—The implementation of Model Predictive Controllers
(MPC) on low-cast hardware such as micro-controllers has been
traditionally hampered by the high computing and associated
memory demands of the algorithm. This paper describes a
completely automatic way to implement an MPC controller on
embedded hardware starting from a dynamic model in MATLAB.
The resultant controller runs stand-alone on the embedded
hardware, is extremely fast, exhibits a modest memory footprint
and best of all, requires no particular embedded programming
experience from the user.

I. INTRODUCTION

Model Predictive Control, or MPC, is a one of the most
successful control advanced algorithms in common use to-
day [1]. Due to its ability to handle multivariable systems,
explicitly take into account equipment and state constraints,
the algorithm is popular in applications where good control
is economically vital (chemical plants, utility systems), or
good control is needed for safe operations (aircraft systems).
However, in many of these cases the process time constants
are modest, and the support available in terms of people and
resources is considerable.

Our specific research is in the area of embedded MPC,
taking the benefits of constrained, multivariable control and
applying it to small agile systems with fast dynamics, such as
UAVs [2], aircraft [3], spacecraft [4], and a multitude of other
systems. There is however a large hurdle to implementing
MPC on an embedded platform; the significant computational
requirements of the algorithm, as detailed in [5], [6], which
require state-of-the-art algorithms and performance hardware.

In this paper we present our practical framework for auto-
matically synthesizing MPC controllers that are fast (sampling
rates in the kHz), that posses a small memory footprint (KB),
and are modestly priced (≈$100) using MATLAB and a custom
auto-coding toolset. Rather than target specialized hardware
such as FPGAs [7] with their inherently long compilation
times (making implementation tuning near impossible), we
have opted for simple microcontrollers incorporating a floating
point unit. We have also opted to avoid the explicit MPC
formulation [8], which while far superior in speed (sample
rates approaching MHz), requires prohibitively large memory
requirements even for tiny problems. Therefore we do not
purport to have the fastest embedded MPC, nor the smallest.

However we have yet to see another implementation that is
competitive to ours for applications that employ five to ten
inputs and outputs using horizons from 10 to 20 operating at
kHz sampling rates with hardware costing less than say $150.

II. MODEL PREDICTIVE CONTROL

MPC is a multivariable control strategy that optimally
computes control moves that not only aim to keep the process
output at the setpoint, but also to keep it within predetermined
system limits. This is achieved by solving a constrained
optimization problem at each sample, which delivers a future
sequence of control moves, ∆u, over the immediate future
control horizon, Nc, such that the weighted sum of the squared
deviations between the predicted output, ŷ and setpoint y? and
control moves

J =

Np∑
j=1

||γŷk+j|k − y?k+j|k||
2 +

Nc∑
j=1

||λ∆uk+j|k||2 (1)

is minimised. Equation 1 is the standard quadratic cost func-
tion of a MPC controller, where the prediction, Np, and con-
trol, Nc, horizons and weighting vectors γ and λ are important
tuning parameters. The objective function is constrained by
linear plant dynamics and possible linear output, input, and
input rate constraints. Rearranging and substituting system
matrices the objective function and constraints can be re-
written as

min
∆u

J =
1

2
∆uTH∆u + fT∆u

subject to: A∆u ≤ b
(2)

which is a standard Quadratic Program (QP) to be solved at
each sample time [9].

A. Quadratic Programming Solvers

As part of our work in MPC we have also developed a
number of algorithms for solving quadratic programs, with a
focus on efficient memory use and high speed convergence.
Our fastest algorithm is based on the work by Stephen Wright
[10], which is a solver tailored for the quadratic problems
arising from a MPC formulation. Specifically, the algorithm
does not exploit sparsity, as the MPC problem is predominately
dense, (as illustrated in Fig. 1 from [11]), as well as only

19th International Conference on Mechatronics and Machine Vision in Practice (M2VIP12), 28-30th Nov 2012, Auckland, New-Zealand

© 2012 ISBN: 978-0-473-20485-3 122

supporting inequality constraints, noting from Equation 2 that
no equality constraints are required. We have further refined
the algorithm by pre-factorizing where possible, using the
most efficient factorizations (Cholesky Decomposition) when
required, and heuristics for warm starting the algorithm. It has
also been hand coded to optimize memory usage, allowing for
a small and very fast QP solver. We have named this algorithm
quadwright and have not found a faster QP solver for MPC.

To validate our claim, we benchmarked 500 quadratic pro-
grams resulting from 500 randomly generated MPC controllers
across a range of competitive QP solvers. Each MPC controller
was built with a random model with five states, two inputs,
and two outputs, and with the prediction and control horizons
set at 10 and 8 respectively. This configuration resulted in
QPs with 16 decision variables and 104 constraints, which are
typical sizes for the intended MPC implementations.

Fig. 1. Results of 5 QP solvers across 500 MPC QPs.

As can be seen in Figure 1, the quadwright algorithm
out-performs all other solvers, including CVXGEN [12], a
solver advertised as high speed and suitable for real time
embedded applications. It is worth noting the CVXGEN solver
required more than 6 minutes to generate, download and
compile, will only work for a fixed problem size (given it is a
completely unrolled implementation), and is much too large to
fit in flash (greater than 1MB). In contrast the quadwright
solver compiles in seconds, will work for any problem size,
requires a few KB to store and yet is still faster.

The remaining solvers are not suitable for implementation
on a microcontroller due to the large source libraries associated
with them, as well as uncompetitive solve times. However they
provide a clear comparison between fast solvers, and current
state of the art for MPC.

B. The jMPC Toolbox

Our primary tool for MPC research is the jMPC Toolbox
[11], [13], a MATLAB based toolbox our research team devel-
oped which allows a user to create, tune, and simulate linear
model predictive controllers for both linear and nonlinear
environments. By leveraging off the built-in functionality of
MATLAB and the Control Systems Toolbox, jMPC allows an

MPC controller to be created and simulated succinctly within
a few lines of MATLAB code:

%Linearized Discrete Rotating Antenna Model
A = [1 0.1; 0 0.9];
B = [0; 0.0787];
C = [1 0];
D = zeros(1,1);
%Build jSS object
Plant = jSS(A,B,C,D,0.1);
Model = Plant; %no model-plant mismatch

%Horizons & Simulation Time
Np = 10; Nc = 3; T = 50;
%Setpoint & Constraints
setp = 2*ones(T,1);
con.u = [-2 2 1];
%Tuning Weights
uwt = 1; ywt = 3;

%Build MPC & Simulation
MPC1 = jMPC(Model,Np,Nc,uwt,ywt,con);
simopts = jSIM(MPC1,Plant,T,setp);
%Simulate & Plot Result
simresult = sim(MPC1,simopts);
plot(MPC1,simresult)

The above code snippet will generate Figure 2 which
demonstrates MPC control of an unstable rotating antenna
assembly from [14], which was built, simulated and plotted
in less than a quarter of a second.

Fig. 2. MPC control of an unstable rotating antenna assembly.

As well as standard linear MPC simulation, the jMPC
Toolbox provides advanced MPC functionality such as control
move blocking, soft output constraints, state estimation to
recover unmeasured outputs, measured disturbances for pre-
diction modelling, setpoint look ahead as well as standard load
and noise disturbance simulations. We have also developed
high level routines for building and linearizing nonlinear mod-
els, so that the linearized model can be used as the controller
model, and the nonlinear model as the plant, for more accurate
simulations. The toolbox, including all functionality in this
paper, is open-source and available free from our website,
www.i2c2.aut.ac.nz.

123

III. AUTO-CODE GENERATION

Auto-coding tools for MATLAB are not new and there are
several, now mature tools available, such as the MATLAB and
SIMULINK Compiler. An auto-coded implementation for MPC
was described in [6] where the authors used a Simulink model
and the Real-Time Workshop to generate an embedded MPC
controller. We experimented with this workflow but found it
was too restrictive, primarily as the QP algorithm cannot be
succinctly expressed in Simulink. Therefore we have opted
to design our own toolset to enable hand optimized code to
be generated, as well as enabling us to generate architecture
specific code, customised memory management routines, and
automatic testbenches.

As the target platforms for this research are microcontrollers
and microprocessors, our auto coding tool generates ANSI C
directly from the jMPC Toolbox. It does this in two ways:
first by reading and copying a series of hand coded templates,
containing the bulk of the mathematical and solver routines;
and secondly by generating the required constants, variables,
and application specific routines based on the controller being
generated. The result is a combination of hand-optimized
solvers written in C, auto-generated routines and auto-coded
system matrices and vectors.

To generate the C code for an MPC controller designed in
MATLAB, one simply calls embed on the jMPC object (noting
the toolbox is written using the object orientated functionality
of MATLAB). For the radar MPC controller presented in Figure
2, a C code MPC controller is generated in less than 50ms,
together with an accurate estimate of the memory required
by the controller. For this problem written in single precision,
the utility routine embed estimates that 1KB of flash will
be required by program constants, while 1.1KB of RAM
will be required by program variables, which is suitable for
implementation on a range of small microcontrollers.

The output of embed are five C source files and a common
header file. The source files are divided as follows, a) constants
declared for easy inspection, b) linear algebra routines, c) the
quadratic program solver, d) the MPC engine and e) interface
code for Processor In the Loop (PIL) simulation. Together,
the 6 files contain all the algorithms and information required
to implement high speed MPC on an embedded platform.
It is worth noting that the code generated contains the full
functionality of a jMPC MATLAB controller, including soft
constraints, control move blocking and other functions previ-
ously described.

A. Code Verification

It is not sufficient to simply generate code without ensuring
it performs exactly as the original algorithm. Therefore embed
can optionally generate up to four testbench files to test both
the QP solver and MPC engine, both in MATLAB and on
the target microcontroller. By default, MATLAB Executable
(MEX) interfaces to the auto-generated QP solver and the
MPC engine will be automatically created and compiled,
and a test run will be executed for each. This allows the
code to be tested on the development computer and results

inspected, prior to actual deployment on an embedded device.
An example verification plot is shown in Figure 3 showing the
difference between a MATLAB double precision simulation
and a auto-coded, single precision simulation via a MEX
library.

Fig. 3. Verification of the auto-coded MPC engine in MATLAB.

Once the code has been verified on the development com-
puter, two automatically generated testbenches can be used to
verify the code on the target device. The target QP testbench
performs two functions, firstly running a test solution run of
the first QP to be solved in the MPC simulation, then secondly
re-running the solver to determine the worst case solution time.
This is done by fixing the iterations run by the QP solver
to the maximum (typically 30), as well as requiring a KKT
step length calculation for every iteration. Using the maximum
execution time of the QP, together with the execution of
the MPC engine, we can determine the maximum achievable
sampling rate for our embedded MPC implementation. The
MPC testbench is run in a similar fashion, except that all
simulation results are recorded so they can be inspected post
execution.

B. Single Precision vs Double Precision

Hardware Floating Point Units (FPU) implementing IEEE
754 are not common on embedded devices such as small
microcontrollers, thus typically computations are performed
in fixed point (or integer) or by using software floating point
libraries. There are however a few select small microcon-
trollers with a single precision hardware FPU, such as the
Texas Instruments Delfino series and ATMEL UC3 series.
These enable high performance computations by allowing
instructions such as a floating point multiply in a single cycle.
While the advantage of a hardware FPU is attractive, being
limited to single precision can cause numerical issues, as noted
in [15]. Other authors have opted for full double precision
floating point, such as in [16] using a PowerPC, however we
have found that a properly scaled system, with reasonable
constraints (i.e. do not use 106 for unwanted constraints,
but remove the constraint instead) can result in good control

124

without any significant numerical problems. By using the auto-
coder, both single and double precision implementations can
be automatically generated, allowing the user to exploit the
hardware available on their chosen target.

IV. EMBEDDED MPC

For this research we are implementing our embedded MPC
algorithm on two hardware platforms; a Texas Instruments (TI)
32bit microcontroller and an ARM microprocessor. Both tar-
gets contain a single precision hardware FPU, however MPC
on the TI microcontroller is run as a procedural application,
while the ARM runs a Linux kernel and the algorithm is
implemented as an application of the operating system.

A. Texas Instruments Delfino C28343

The TI C28343 is a 32bit, 200MHz microcontroller with a
32bit FPU and 260KB of on-chip RAM. The IC is targeted at
real time control applications in the automotive and aerospace
industries which require a small footprint, low power and high
performance characteristics. The Integrated Circuit (IC) itself
is available from US$12, while the control card pictured in
Figure 4 only costs US$109 and contains an onboard power
supply, external ADCs, and EEPROM, as well as breaking
out all General Purpose Input / Output (GPIO) pins via a
DIM100 connector. In summary, the control card measures
90mm x 30mm x 3mm, runs at 5V and draws typically less
than 300mA. We consider this an ‘off the shelf’ product, and,
due to its small form factor, believe it can be implemented as
is in a range of embedded hardware applications.

Fig. 4. Texas Instruments Delfino C28343 Control Card.

The auto-generated code is loaded into TI’s Code Composer
Studio (CCS), a mature Integrated Development Environment
(IDE) based on Eclipse, together with an optimizing C/C++
compiler. Using a Blackhawk JTAG emulator, the IC can be
programmed in just over a second, even with more than 80KB
of program memory, because the program code is executed
from RAM using this platform. Using this target, together with
the software framework we developed, an embedded MPC
controller can be generated, compiled and programmed to the
target in less than 10 seconds. This is a substantial speed
increase over work flows requiring compilation of a hardware
based language such as Verilog, VHDL, or Handel-C, which
are consistent with compilations times in the tens to hundreds
of minutes for MPC problems, a factor of 100 or more.

B. PandaBoard ARM Cortex A9

The PandaBoard is a low cost single board computer based
on a dual core ARM Cortex A9 processor running at 1 GHz.

As well as a single precision hardware FPU, the board contains
1GB of off-chip RAM and numerous peripherals such as
USB, ethernet and HDMI. The board is available for US$174
allowing for a fully featured embedded computer in a small,
low power platform.

Fig. 5. PandaBoard with Dual Core ARM Cortex A9.

In contrast to the TI target, auto-generated code is compiled
as a standalone executable and run as an application of the
Operating System (OS), which in this case is Ubuntu 11.10.
As this a processor in the loop implementation, as described
in the next section, we are not concerned with regular timing
of the OS. However for future work, we are investigating use
of the real-time Linux kernel allowing for the deterministic
sampling required of a control loop.

C. Processor In The Loop Implementation

In this work we will simulate the plant to be controlled using
a Processor In the Loop (PIL) implementation. As shown in
Figure 6, PIL uses the development computer to simulate the
plant to be controlled, with the MPC controller implemented
in hardware on the target device. Communication between the
two pieces of hardware is done via a simple USB-serial link.

Fig. 6. Processor In the Loop MPC Implementation.

Using this approach we have not implemented regular
sampling on the target, as the communications delay is much
more significant than the computation time. Instead the con-
troller waits until a sample is received via the serial interface,
performs the control calculation, then immediately sends the
control moves back via the serial interface. It is important to
note this communications delay is only present with the PIL

125

implementation. In an industrial implementation the sample
rates of typical Analog to Digital Convertors (ADCs) and Dig-
ital to Analog Convertors (DACs) are of orders of magnitude
faster than the controller.

In order to assess how fast the controller is calculating
control moves, a 1µs timer is used to measure the computation
period required for each iteration of the implementation. To-
gether with the control moves and model and QP information,
the timing information is transmitted back for subsequent
analysis. To initiate a PIL implementation using the jMPC
Toolbox is as easy as running a MATLAB simulation. Instead
of using the default MATLAB simulation target, PIL can be
selected for the implementation and the same controller run
on the target hardware:

%PIL Simulate & Plot Result
simresult = sim(MPC1,simopts,'PIL');
plot(MPC1,simresult)

Assuming the target has been programmed and is ready to
go, the above commands will automatically begin the MPC
implementation, transmitting and receiving data via a nom-
inated serial port. To further ease this process, all required
PIL code has been auto-generated by embed, meaning apart
from setting a few include paths and compiler settings, the
auto-generated code can be literally dropped in to the desired
IDE, compiled, programmed, and a PIL embedded MPC
implementation run.

V. CASE STUDIES

To validate our algorithms and framework we present two
case studies. The first is an example from one of the fastest
reported embedded MPC applications, while the second is a
rigorous nonlinear implementation.

A. Rotating Antenna

The following linearized discrete rotating antenna model is
presented in [14] for their SoC implementation of real-time
model predictive control.

ẋ =

[
1 0.1
0 0.9

]
x+

[
0

0.0787

]
u (3)

y =
[
1 0

]
x (4)

As in [14] the horizons are set as Np = 20 and Nc varied
from 3 to 10, with the sample time of 0.1. While not stated,
the reference figure suggests that the control voltage is limited
to ± 2V, at a maximum rate of change of ± 1V. Implemented
using the jMPC Toolbox and our auto-code framework the
PIL implementation results for Nc = 3 on the TI C28343 are
shown in Figure 7.

Figure 7 shows the plant output (angle of the antenna),
plant input (motor voltage) as well as the actual computation
time and number of QP iterations required. Most noticeable
is that solving the QP is only required when the constraints
are active. Using our algorithm solving the QP can be skipped
if it is determined that no constraints are active, thus saving
a significant amount of power. To compare the speed of our

Fig. 7. Rotating antenna PIL implementation results.

implementation with those published, consult Table I. Note the
timing information given for the TI and ARM column is based
on the worst case sample rate (i.e. the the maximum execution
time to calculate the MPC control moves), as measured on
the device. The SoC column assumes a worst case of 15
optimization iterations, as the timing information in [14] is
per optimization iteration only.

TABLE I
EMBEDDED MPC RESULTS FOR A ROTATING ANTENNA MODEL

Nc RAM Flash TI ARM SoC [14]
[KB] [KB] [ms] [ms] [ms]

3 1.18 1.52 0.60 0.15 6.75
4 1.58 1.80 0.93 0.27 8.66
5 2.02 2.14 1.36 0.34 10.98
6 2.49 2.52 1.91 0.49 13.65
7 3.01 2.94 2.58 0.76 16.76
8 3.56 3.42 3.65 1.01 20.78
9 4.16 3.94 4.72 1.25 24.83
10 4.80 4.52 5.51 1.71 29.29

Based on the results presented so far, it is evident our MPC
algorithm is not only much faster (with sampling rates in the
kHz range achievable), but also requires a very small memory
footprint. There are however two problems with the simulation
results presented so far, firstly the horizons are artificially
large for the problem, and secondly the physical system itself
has no need for such fast control, given the time basis is in
minutes. In fact using tuning values of Np = 8 and blocking
Nc as [4, 4], this results in near identical control, and at over
a 3kHz sampling rate. Therefore for the next case study we
will examine a system which will push the required sampling
rate of our algorithm.

B. Inverted Pendulum on a Moving Cart

The inverted pendulum on a linear cart is a simple yet chal-
lenging control problem requiring high speed control to keep
the pendulum balanced. For this case study we are considering

126

the fourth order single inverted pendulum manufactured by
Quanser [17], described by the following nonlinear equations:

ÿ =
F
m + lθ2 sin θ − g sin (θ cos θ)

M
m + sin2 θ

(5)

θ̈ =

−F
m cos θ + M+m

mg sin θ − lθ
2 sin θ cos θ

l
(
M
m + sin2 θ

) (6)

where the system input is F, the force applied to the cart in
newtons, and the system outputs are y, cart position in metres
and θ, angle of the pendulum from vertical, in radians. M is the
mass of the cart and m is the mass of the pendulum, specified
as 0.455kg and 0.21kg, respectively. l is the distance to the
centre of mass of the pendulum, specified as 0.305m, while g
is the gravitational constant, 9.81m/s2.

To design a jMPC linear controller the system must first
be linearized about a suitable operating point. Using the
jMPC linearize method, the system can be automatically
linearized about an input point, operating point, or both. For
this example we have linearized about the input point F = 0N:

%Create a jNL Nonlinear Plant
Plant = jNL(@nl_pend,C,param);
%Linearize the Plant to create the controller model
Model = linearize(Plant,0);

With a linear model, an MPC controller can be constructed
and tested against the ‘real’ nonlinear plant. This allows a more
realistic validation of both the controller, and controller tuning,
increasing the chance of better control performance once
implemented in a physical system. Given the fast dynamics
of the system, together with a limit on the problem size that
can be solved within a fixed time, a sampling rate of 20Hz was
chosen and the model discretized at this rate. At this sample
rate, the horizons were set as 25 and 5 for the prediction and
control horizons, together with tuning weights of uwt = 2 and
ywt = [1.5, 0]. Note that the second output weight is set as 0,
indicating that we don’t want to control the pendulum angle,
however we do want to constrain it. This simple modification
halves the size of the output prediction matrix, allowing faster
computation times, as well reducing the need for a redundant
setpoint. Finally the input is constrained to ±5N, the cart is
constrained to ±2m from the starting point, and the pendulum
constrained to ±45◦ from vertical.

Using the PIL framework described earlier, the linear in-
verted pendulum MPC controller can be generated and pro-
grammed to the target, whilst the full, nonlinear, differential
equations can be simulated on the development computer. To
further add realism to the implementation, artificial measure-
ment noise is added to the sensor measurements to stress test
the system. The implementation results are shown in Figure
8.

An interesting observation is that even with a small amount
of noise, the MPC controller must now solve a QP at most
of the simulation steps, due to perturbations pushing the
open-loop unstable nature of the system. It can also be seen
that the QP solver often reaches the maximum number of

Fig. 8. Inverted Pendulum PIL implementation results.

iterations (30), however the intermediate solution found keeps
the system stable for this implementation. A comparison of
memory requirements and maximum sampling rates versus
control horizon are presented in Table II.

TABLE II
EMBEDDED MPC RESULTS FOR A NONLINEAR INVERTED PENDULUM

Nc RAM [KB] Flash [KB] TI [ms] ARM [ms]
3 8.18 5.25 11.38 2.50
4 8.98 5.95 14.19 3.42
5 9.81 6.70 17.50 4.73
6 10.69 7.50 21.44 5.92
7 11.60 8.35 26.35 7.41
8 12.56 9.25 31.89 9.22
9 13.56 10.19 37.83 11.38
10 14.59 11.18 44.67 13.58

Given that the current implementation could run at up to
57Hz on the TI target it could be suggested that the sampling
rate of the system be increased. It is easy to assume that a
faster sample rate can improve the controller performance,
given that it can react to disturbances faster. Up to a certain
point this is valid, however a major problem with this approach
concerns the prediction horizon of MPC. If we double the
sample rate, the prediction horizon is now only half as long,
which can substantially reduce the control performance. If we
also double the prediction horizon, the QP constraint matrix
A now roughly doubles in length, adding a significant amount
more memory, as well as reducing the computational efficiency
of the solver. We have also observed numerical errors in single
precision with large prediction horizons, presumably due to
the large number of times the model state matrix is squared
to form the constraint Hankel matrix.

VI. CONCLUSION

This paper has presented a MATLAB framework for gener-
ating fast model predictive controllers suitable for implemen-
tation on a range of embedded targets. Moreover we demon-
strated a processor in the loop implementation on two targets,

127

a Texas Instruments Delfino microcontroller and an ARM
Cortex 9 microprocessor. Using the TI target we achieved
sampling rates up to 3kHz and on the ARM up to 11kHz.
The implementation was also shown to be highly memory
efficient, with less than 20KB of RAM required for control of
a nonlinear model using reasonable horizons of 25 and 5 for
the prediction and control horizons. The framework has also
demonstrated how an embedded model predictive controller
can be automatically generated, compiled, and implemented in
as little as 10 seconds on cost effective off-the-shelf hardware.

ACKNOWLEDGMENT

Financial support to this project from the Industrial In-
formation and Control Centre, Faculty of Engineering, AUT
University, New Zealand is gratefully acknowledged.

REFERENCES

[1] D. I. Wilson and B. R. Young, “The Seduction of Model Predictive
Control,” Electrical & Automation Technology, pp. 27–28, Dec/Jan 2006,
ISSN: 1177-2123.

[2] M. Pachter and P. R. Cjhandler, “Challenges of autonomous control,”
IEEE Control Systems Magazine, vol. 18, no. 4, pp. 92–97, 1998.

[3] A. Hennig and G. J. Balas, “MPC supervisory flight controller: A case
study to flight EL AL 1862,” in AIAA Guidance, Navigation and Control
Conference, 2008.

[4] V. Manikonda, P. O. Arambel, M. Gopinathan, R. K. Mehra, and F. Y.
Hadaegh, “A model predictive control-based approach for spacecraft for-
mation keeping and attitude control,” in American Control Conference,
1999, p. 4258.

[5] L. G. Bleris, J. Garcia, M. V. Kothare, and M. Arnold, “Towards Em-
bedded Model Predictive Control for System-on-a-Chip Applications,”
Journal of Process Control, vol. 16, no. 3, pp. 255–264, 2006.

[6] A. Richards, W. Stewart, and A. Wilkinson, “Auto-coding Implementa-
tion of Model Predictive Control with Application to Flight Control,” in
European Control Conference, 2009, pp. 150–155.

[7] K. V. Ling, B. F. Wu, and J. M. Maciejowski, “Embedded Model
Predictive Control (MPC) using a FPGA,” in The 17th World Congress
of the International Federation of Automatic Control (IFAC), 2008, pp.
15 250–15 255.

[8] T. A. Johansen, W. Jackson, R. Schreiber, and P. Tondel, “Hardware
Synthesis of Explicit Model Predictive Controllers,” IEEE Transactions
on Control Systems Technology, vol. 15, no. 1, pp. 191–197, 2007.

[9] L. Wang, Model Predictive Control System Design and Implementation
using MATLAB. Springer, 2009.

[10] S. J. Wright, “Applying New Optimization Algorithms to Model Pre-
dictive Control,” in Chemical Process Control-V, CACHE, AIChE Sym-
posium, vol. 93, 1997, pp. 147–155.

[11] J. Currie and D. I. Wilson, “A Model Predictive Control toolbox intended
for rapid prototyping,” in 16th Electronics New Zealand Conference (EN-
ZCon 2009), T. Molteno, Ed., Dunedin, New Zealand, 18–20 November
2009, pp. 7–12.

[12] J. Mattingley and S. Boyd, “CVXGEN: A Code Generator for Embedded
Convex Optimization,” Optimization and Engineering, vol. 13, no. 1, pp.
1–27, 2012.

[13] J. Currie and D. I. Wilson, “Lightweight Model Predictive Control
Intended for Embedded Applications,” in 9th International Symposium
on Dynamics and Control of Process Systems (DYCOPS), Leuven,
Belgium, 5–7 July 2010, pp. 264–269.

[14] P. Vouzis, L. Bleris, M. Arnold, and M. Kothare, “A System-on-a-Chip
Implementation for Embedded Real-Time Model Predictive Control,”
IEEE Transactions on Control Systems Technology, vol. 17, no. 5, pp.
1006–1017, 2009.

[15] M. S. K. Lau, S. P. Yue, K. V. Ling, and J. M. Maciejowski, “A Compar-
ison of Interior Point and Active Set Methods for FPGA Implementation
of Model Predictive Control,” in European Control Conference, 2009,
pp. 156–161.

[16] L. G. Bleris and M. V. Kothare, “Real-Time Implementation of Model
Predictive Control,” in American Control Conference, 2005, pp. 4166–
4171.

[17] Quanser, “Linear Control Challenge: Inverted Pendulum,”
http://quanser.com/, 2012.

128

