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1 Introduction

This paper reports a new method of computing the coeffi-
cients of the modal expansion of the velocity potential for
the so-called linear hydroelasticity problem. Two examples
of the hydroelasticity problems are studied, semi-infinite
plate and finite-gap cases. The finite-gap depicts the sit-
uation when the ocean surface is covered with a thin elastic
plate and the plate has a gap of a constant width. The
mathematical model in this paper, a thin elastic plate cou-
pled with an inviscid, incompressible fluid, is often used to
describe sea-ice sheets and floating runways. The model can
describe the dynamics of these objects for the wavelengths
and wave-magnitudes typically found in the ocean. This
article reports mainly the technical side of the method of
solution and does not dwell on the geophysical and offshore
engineering aspects of the problem.
Boundary-value problems of this kind, concerning a body

of fluid with discontinuous boundary conditions, are usually
numerically solved using the so-called mode-matching tech-
nique (Fox and Squire 1994; Lawrie and Abrahams 1999).
The mode-matching technique uses the fact that the ve-
locity potential of the fluid can be expressed as a modal
expansion over the roots of the dispersion equation for the
boundary conditions, e.g., elastic plates or open water. The
modal expansion for the regions are then matched at the
discontinuity. A system of equations for the coefficients of
the modes is obtained as the result. The method of solu-
tion described in this paper, the Residue Calculus Technique
(RCT) uses a complex function, which is constructed in such
a way that the coefficients of the modes correspond to the
residues at the function’s poles. The closed form solution
for the wave propagation across an infinite crack in an ice
sheet has been reported in (Williams and Squire 2002) (us-
ing Green’s function for an elastic plate) and in (Chung and
Fox 2002) (using the Wiener-Hopf technique based (Evans
and Davies 1968)).
The method here closely follows the method described in

(Linton 2001) (rigid plate), particularly the introduction of
the finite-length correction terms. The formula is based on
the solution for the semi-infinite plate problem. The inter-
action between the ocean waves and the semi-infinite plate
is solved in (Linton and Chung 2002) using the RCT. A dif-
ficulty arises when the plate is elastic, because there are two
modes with complex wavenumbers (neither the real nor the
imaginary part is zero). This is in contrast to the case of a
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rigid plate, where the vertical modes are cosπn (z +H) /H,
n = 0, 1, 2, ... under the rigid plate. In order for the coeffi-
cients to be determine completely, the boundary conditions
to be applied at the plate ends called the edge conditions,
are required. In (Linton and Chung 2002) the edge condi-
tions were accommodated by introducing two arbitrary con-
stants in the associated complex function. To the authors’
knowledge, this method of incorporating the edge conditions
to the RCT has not been reported before.

2 Method of solution

2.1 Governing equations

Consider a water way between two semi-infinite elastic
plates. A plane wave is obliquely incident from infinity
at an angle θ (to the x-axis). which is represented by
exp [iβ (x+ L) + i ly]. Assuming that the incident wave is
sinusoidal in time, exp (− iωt), the y and t dependent part
of the solution can be removed, because of the linearity of
the system. Thus the boundary problem becomes a two
dimensional problem in the (x, z) plane, i.e., the velocity
potential, can be written as

Ψ (x, y, z, t) = Re
[

Φ(x, z) ei(ly−ωt)
]

where Φ (x, z) is a complex valued function.

The width of the water way is 2L and the flexural rigidity
of the surrounding plates are D. The wave number along
the y-axis, l, is given by the incident angle to the x-axis,
θ, i.e., l = β sin θ where iβ is the imaginary wave number
corresponding to the mode propagating to infinity.

The system can be non-dimensionalized using length scale
and time scales denoted by lc and tc, respectively. They are
defined as

lc =

(

D

ρg

)1/4

, tc =

√

lc
g

where D is the flexural rigidity, ρ is the mass density
of the water, and g is the acceleration due to grav-
ity. The flexural rigidity is computed using the formula,
D = Eh3/

(

12
(

1− ν2
))

, where E is the constant effective
Young’s modulus, h is the thickness of the plate, and ν is
Poisson’s ratio (set to be 0.3). The non-dimensionalization
regime for sea-ice dynamic problem using the so-called char-
acteristic length and time is reported in (Fox 2000).

The resulting non-dimensional differential equations for
Φz (x, 0), z-derivative at the surface, and Φ (x, z), the (x, z)-
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part of the velocity potential are (see (Chung and Fox 2002))

(

∂4x + 1− δ
)

Φz − ω
2Φ = 0 for z = 0, |x| > L,

(

∇2
x,z − l

2
)

Φ = 0 for −H < z < 0,
Φz = 0 for z = −H,

Φz − ω
2Φ = 0 for z = 0, |x| < L.

For simplicity the inertial term is set as δ = mω2, where m
is the non-dimensional mass density per unit area of the
plate (normalized by ρlc). The plate covered region for the
semi-infinite plate case is x > 0, and the region x < 0 is free
surface.

2.2 Method of solution

For simplicity the potential is decomposed into antisymmet-
ric and symmetric potentials denoted by Φ− and Φ+, respec-
tively, i.e., the solutions Φ± satisfy the boundary conditions
Φ+x = 0, Φ

− = 0 on x = 0.

Define orthogonal sets of functions of z in the free surface
region and plate covered region,

φn (z) = N−1n cos kn (z + h) ,

N2
n =

1
2h

(

1 +
sin 2knh

2knh

)

, for n ≥ 0

ψn (z) =M−1
n cosκn (z + h) ,

M2
n =

1
2

(

hω2 −
(

5κ4n + 1− δ
)

sin2 κnh
) for n ≥ −2

where kn and κn are the roots of the dispersion equation

ω2 + kn tan knh = 0,

ω2 +
(

κ4n + 1−mω
2
)

κn tanκnh = 0,

respectively. The orthogonality relation for free-surface re-
gion is

∫ 0

−h

φm (z)φn (z) dz = δmn.

The subscript n for ψ includes−2 and−1 which are complex
roots of the dispersion equation and that κ−2 = κ∗−1 (∗
denotes the complex conjugate). The normalizing factors
Mn are chosen so that

ω2
∫ 0

−h

ψm (z)ψn (z) dz = δmn +
(

κ2m + κ
2
n

)

ψ′m (0)ψ
′
n (0)

(2.1)
where the prime indicates the z-derivative.

The modal expansion of the potentials are

Φ± (x, z) =
(

e−β0(x+L) +R±eβ0(x+L)
)

ψ0 (y)

+
∞
∑

n=−2,n6=0

b±n e
βn(x+L)ψn (z) ,

x < −L,

Φ± (x, z) =
∞
∑

n=0

a±n
(

eαnx ± e−αnx
)

φn (z) , − L < x < 0,

where αn =
√

k2n + l
2 and βn =

√

κ2n + l
2. Note that the

pure imaginary wave numbers are α0 = − iα and β0 = − iβ
for the positive real numbers α and β. The reflection and the
transmission coefficients can be obtained from R = R+ +
R−, T = R+ −R−.

From the continuity conditions for Φ± and Φ±x at x = −L,
the equations for a±n and b

±
n after applying the orthogonality

relation for φn are

2c0m +
∞
∑

n=−2
b±n cnm = ±a

±
m

(

eαmL ± e−αmL
)

,

∞
∑

n=−2
b±n βncnm = ∓a

±
mαm

(

eαmL ∓ e−αmL
)

.
(2.2)

cnm =
AmBn

β2
n
−α2

m

, Am =
cos kmh
Nm

, Bn =
κn sinκnh+ω

2 cosκnh
Mn

.

Notice that Am and Bn are O (1) as n → ∞. Eliminating
a±m from the two equations then gives

∞
∑

n=−2

V ±n

(

1

βn − αm
±

e−2αmL

βn + αm

)

=
1

β0 + αm
±
e−2αmL

β0 − αm

(2.3)
where V ±0 = R± and the coefficients V ±n = b±nBn/B0 are
the unknowns which will be determined using the residue
calculus.

2.3 RCT

Define a function f± (ζ), ζ ∈ C,

f± (ζ) =
G±g± (ζ)

(ζ + β0) (ζ − β−2) (ζ − β−1)

∞
∏

n=0

1− ζ/αn
1− ζ/βn

,

g± (ζ) = ζ2 + γ±1 ζ + γ
±
2 +

∞
∑

n=0

C±n
ζ − αn

.

The function f± has simple poles at ζ = βn, n ≥ −2 and
at ζ = −β0, but no zeros at ζ = αn, n ≥ 0 contrary to the
semi-infinite case. Note the polynomial of

(

γ±1 , γ
±
2

)

of g± (ζ)
determines the unique solution of the boundary value prob-
lem because of f± having a proper asymptotic behaviour.
It can be shown that f± (ζ) = O

(

ζ−1
)

as |ζ| → ∞ us-
ing the same argument in Appendix A of (Linton 2001),
since αn = πn/H +O

(

n−1
)

and βn = πn/H +O
(

n−4
)

as
|ζ| → ∞.
Consider the contour integration and use the Cauchy’s

residue theory

1

2π i

∫

Γ

f± (ζ)

(

1

ζ − αm
±
e−2αmL

ζ + αm

)

dζ = 0

where Γ is an integral contour that can be expanded to
include all βn’s. The above equation is then equivalent to
Eqn. 2.3, given that the following conditions are satisfied,

f± (αm)± e
−2αmLf± (−αm) = 0, for m = 0, 1, ... (2.4)

Rewriting Eqn. 2.4 for C±n gives

C±m ±Dm

∞
∑

n=0

C±n
αm + αn

= ±Dm

(

α2m − γ
±
1 αm + γ

±
2

)

(2.5)

where

Dm = e−2αmL 2αm(αm+β0)(αm−β−2)(αm−β−1)(αm−βm)
(αm−β0)(αm+β−2)(αm+β−1)(αm+βm)

×
∞
∏

n=0,n6=m

(1−αm/βn)(1+αm/αn)
(1+αm/βn)(1−αm/αn)



for m ≥ 0. Note that C±m decays exponentially as m be-
comes large because Dm decays exponentially asm becomes
large. Hence only a small number of C±m will be required
to obtain acceptable values for f± (ζ). This is precisely the
reason for the use of the residue calculus technique. The
normalizing constant G± can be determined by the ampli-
tude of the incident wave, which is set to be 1. It is possible
to prove that the system of equations given by Eqn. (2.5)

has a unique solution with
∑∞

m=0 (C
±
m)

2
< ∞, using the

method described in Appendix B of (Evans 1992).

From Eqn. 2.5, {C±n } can be expressed as a polynomial of
γ±1 and γ

±
2 with known coefficients. The coefficients {b

±
n }

can then be expressed as linear functions of γ±1 and γ±2 .
When the edges of the plate are free of shear forces and
bending moment the solution satisfies

Φ±zxxx − l
2ν′Φ±zx = 0,

Φ±zxx − l
2νΦ±z = 0,

}

at x = −L− 0, z = 0 (2.6)

where ν′ = 2 − ν. Four linear equations of γ±1 and γ
±
2 can

be formulated by substituting the modal expansion of Φ±

into Eqn. 2.6.

2.4 Coefficients of free surface

The coefficients αn can be found from Eqn. 2.2 (instead of
eliminating αm), then

∞
∑

n=0

V ±n

(

1

βn + αm
±

e−2αmL

βn − αm

)

=
1

βn − αm
±

e−2αmL

βn + αm

∓ αma
±
me
−αmL sinh 2αmL.

The equivalent contour integration is

1

2π i

∫

Γ

f± (ζ)

(

1

ζ + αm
±
e−2αmL

ζ − αm

)

dζ = 0.

This time, the resulting system of equations from the similar
procedure as in the previous section is

±
4αma

±
m

AmB0
e−αmL sinh 2αmL = f± (−αm)±e

−2αmLf± (αm) .

Furthermore, because of Eqn. 2.4, the above equation be-
comes

a±m = ±
f± (−αm) e

−αmLAmB0
4αm

. (2.7)

Note that the procedure shown here gives the formula for a±m
without repeating the mode matching shown in the previous
section.

2.5 Semi-infinite plate

The semi-infinite plate can be simplified further, because
there are no length correction terms ({Cn}). The complex
function for the semi-infinite plate case is

f (ζ) =
G
(

ζ2 + γ1ζ + γ2
)

(ζ − β0) (ζ − β−2) (ζ − β−1)

∞
∏

n=1

1− ζ/αn
1− ζ/βn

.

The system of equations from the mode-matching are re-
produced by the contour integrations,

1

2π i

∫

Γ

f (ζ)

ζ − αn
dζ = 0, for βn

1

2π i

∫

Γ

f (ζ)

ζ + αn
dζ = 0, for αn

The reflection coefficient is then given, with β−2 = σ + i τ ,
α0 = − iα and β0 = − iβ, by

R =
w−γ (α) (α− iβ0)

w+γ (α) (α+ iβ0)
exp [2 iχ (α)] ,

w±γ (α) = α2 ± i γ1α− γ2,

χ (α) =
π

2
+ tan−1

α+ τ

σ
+ tan−1

α− τ

σ

+

∞
∑

n=1

(

tan−1
α

βn
− tan−1

α

αn

)

.

The modulus of T can be obtained from the following simple
relationship,

|R|
2
+

β

αω2
|T |

2
= 1.

The value of T is given by

T =
2α (α− β)w+γ (β)

A0B0w
+
γ (α)

P,

P =
(α− iβ−2) (α− iβ−1)

(β − iβ−2) (β − iβ−1)

∞
∏

n=1

(1 + iβ/αn) (1 + iα/βn)

(1 + iβ/βn) (1 + iα/αn)
.

It is a straightforward procedure to derive the reflection
and transmission coefficients for the case of plate to water,
i.e., wave is incident from x = ∞. The complex function
that is required for the solution is

f (ζ) =
G
(

ζ2 + γ1ζ + γ2
)

(ζ + β0) (ζ − β−2) (ζ − β−1)

∞
∏

n=0

1− ζ/αn
1− ζ/βn

.

The conservation of energy relationship now is

|R|
2
+
α0ω

2

β0
|T |

2
= 1.

Further simplification when δ = θ = 0 is given in (Linton
and Chung 2002).

3 Results and analyses of the com-

putation

The numerical computation requires minimal computation
technique, which is one of the advantages of the RCT. Figs. 1
and 2 show the results of the computation with the reflection
coefficients and the magnitude of the surface. The rapidly
fluctuating feature ‘spikes’ seen in the high frequency region
in Fig. 1 is due to ‘resonance’. The curves of the reflection
coefficient show a series of discrete frequencies that corre-
spond to perfect transmission. Fig. 2 shows the magnitude
of the surface deflection for ω = 0.2, 0.5, 1, 3. The magni-
tude of the incident wave is one for all cases. Note that in
the preceding sections the magnitude of the potential was
one.



An advantage of the RCT over the direct mode-matching
technique is that the coefficients {a±n } can be determined
using the same function f± (ζ). The formulae expressed by
the infinite products are stable and fast convergent due to
the fast convergence of the roots of the dispersion equations.
The formulae for the coefficients can easily be implemented
to computer codes that are computationally efficient and
stable for a wide range of physical parameters. The deriva-
tion of the formulae is analogous to that of the finite-dock
problem. The finite-length correction terms are added to
the solution for the semi-infinite problem. It is shown that
the formula for R reverts back to the formula for the semi-
infinite problem as L/H → ∞. The two sets of the edge
conditions are incorporated into the complex valued func-
tion as the polynomial of the second degree and its two
unknown coefficients.
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Figure 1: The reflection and transmission coefficients ver-
sus non-dimensional radial frequency ω (logarithmic scale).
The incident angles are varied, θ = 0, π/6, π/4, π/6. The
parameters are H = L = π/3. Number of length correction
terms is 3.

Incorporation of the second order polynomial into the
complex functions f assures the uniqueness of f (Liouville’s
theorem.) The order of the polynomial is determined by the
asymptotic behaviour of the infinite products that involve
the terms (1± ζ/αn) and (1± ζ/βn), i.e., the positions of
the roots of the dispersion equations. Therefore, one is able
to determine the solution and the uniqueness of it only from
the knowledge of the positions of the roots of the dispersion
equations without resorting to the complicated theories of
elliptic partial differential equations and functional analysis.
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