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Abstract 

Modern films, games and virtual reality are highly dependent on convincing computer 

graphics. Models of high complexity are a requirement for the successful delivery of 

many animated scenes and environments. While workflows such as rendering, 

compositing and animation have been streamlined to accommodate increasing 

demands, modelling of complex models is still a laborious and costly task.  

This research introduces the computational benefits of Interactive Genetic Algorithms 

to computer graphics modelling while compensating the negative effects of user fatigue, 

a commonly found issue with Interactive Evolutionary Computation. A multi-agent 

system is used to integrate Genetic Algorithms with computational agents and human 

designers. This workflow accelerates the layout and distribution of basic elements to 

form highly complex models. It captures the designer’s intent through interaction, and 

encourages playful discovery. 

A modelling pipeline integrating commercially available tools with Human-based 

Genetic Algorithms is implemented, and a Renderman Interface Bytestream (RIB) 

archive output is realized to provide easy adaptability for research and industry 

applications.  

Comparisons between Interactive Genetic Algorithms and Human-based Genetic 

Algorithms applied to procedural modelling of computer graphics cities indicate that an 

agent-based evolutionary approach outperforms a purely human-centric solution: More 

iterations are possible in less time, which ultimately leads to better results and a 

superior user experience. Based on initial testing, a range of suggestions for future 

investigation are given. 

 



1 Introduction 

Convincing Computer Graphics models are a necessity for the creation of successful 

games, movies and virtual reality environments. Designing high-quality content is a 

laborious and costly task that requires substantial skill, time and resources (Okun & 

Zwerman, 2010; Shiffman, 2012). Often, many iterations are necessary to achieve the 

desired results. Some natural and architectural objects of higher complexity intensify 

this problem as they necessitate fine detail and a large number of smaller elements, 

which are the building blocks of the whole. This research addresses these issues by use 

of human-centric evolutionary computation in conjunction with autonomous agents in 

order to determine whether this process can be facilitated by semi-autonomous 

approaches. Interactive Genetic Algorithms, driven by user input, plus computational 

software agents that support the user in the decision making process, are the core of 

the solution presented in this thesis. By shifting the workload from the human user into 

computational areas, the laborious tasks of modelling are simplified and the process is 

partially automated. This study is concerned with two main ideas: First, it applies a 

hybrid intelligent system to interactive design and second, it seeks to explore the 

procedural generation of cities. Procedural city design is used as an example to 

demonstrate the process, identify potential benefits, and find possible issues of hybrid 

intelligent systems in design contexts. This research aims to identify whether the 

addition of two combined artificial intelligence methods, Interactive Evolutionary 

Computation and Autonomous Agents are beneficial to the human designer in design 

practice. In order to be able to find a solution to this question, the problem definition is 

being broken down into the following smaller pieces. First, Evolutionary Algorithms in 

general are discussed, and how to integrate the human user into the process to make 

Evolutionary Computation interactive. Further, a definition of Autonomous Agents in 

this specific context is provided. The agent architecture is being discussed and a 

software system to study the hybrid intelligent system is introduced. Finally, Generative 

Design in context of procedural city design as an example is being demonstrated, which 

serves as one of the two case study for this thesis. 
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1.1 Definitions 

CG Computer Graphics, the field of media creation by use of computer 

software including images, sound or animation 

CGI Computer Generated Images, specifically referring to images created by 

use of computer software 

DCC Digital Content Creation, field of producing digital media content such as 

images, sound or animation by use of computer software 

EC Evolutionary Computation, the field of computer science using biologically 

inspired search and optimization techniques 

IEC Interactive Evolutionary Computation, biologically inspired search and 

optimization techniques with a human user typically replacing a 

mathematical fitness function 

GA Genetic Algorithm, probably the most common Evolutionary Computation 

algorithm 

IGA Interactive Genetic Algorithm, Genetic Algorithm with a human user 

typically replacing a mathematical fitness function 

HBGA Human-based Genetic Algorithm, a multi-agent system replacing 

recombination and selection with human and/or computational agents 

RIB Renderman Interface Bytestream, file format used to describe scene data 

for Renderman compliant render engines 

UI User Interface, sometimes GUI (Graphical User Interface) 

1.2 Background 

The motivation for this research originated from personal experience of the author. 

Having spent a significant number of years in the visual effects industry, amongst all 

existing workflows, modelling always stood out as a very slow, laborious task. Especially 

large and highly complex models, for example the beautiful, highly detailed, digital 

version of New York in the 1920s for Peter Jackson’s “King Kong” took months to finish 

and require large teams to do the mostly manual work. As a consequence, complex 

models are also a substantial figure in every visual effects budget (Okun & Zwerman, 

2010).  
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In order to reduce the amount of time and labour necessary, this study seeks to use 

computational solutions such as Evolutionary Computation and Agents for some of the 

tasks involved in modelling large structures. 

1.3 Research Questions 

This study is driven by the main research question “To what extent can Interactive 

Evolutionary Algorithms combined with autonomous agents support designers in 

complex form finding tasks?” In order to address the various parts of this multifaceted 

problem, it is broken down into several sub-questions: 

• What are the issues that designers face in complex form finding tasks? 

• How does the complexity of the task influence the selection of design tools? 

• Which is a suitable choice of algorithm, selected from variety of evolutionary 

algorithms, to answer the main research question? 

• How does the addition of an autonomous agent benefit the form finding 

process? 

• How can the proposed combination of Interactive Evolutionary Algorithm and 

agents reduce the skills requirements for the designer, yet enable the designer 

to produce very complex structures? 

 

1.4 Significance of Research 

Design and creation of Computer Generated models is an important foundation for 

several different fields such as Games, Film, Visualization and Virtual Reality, to name a 

few. Convincing and seemingly complex models are necessary to create an immersive 

experience for the targeted audience across all fields (Okun & Zwerman, 2010). With 

computer hardware, digital cinemas and UHD television set, the mark for detailed 

models has been set even higher and content creators are seeking to improve the quality 

of their products without having to invest more money in today’s high risk environment. 

Artists and designers who are supplying the models have to adapt to very complex 

Digital Content Creation software (DCC), which often utilizes hundreds or thousands of 

parameters to drive the designs of the models. Naturally, modern DCC software has a 
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very steep learning curve (Kostic, Radakovic, Cvetkovic, Trajkovic, & Jevremovic, 2012). 

The increasing complexity of the DCC software combined with the  inversely 

proportional decrease in available budgets for the created content, leads to a 

predicament, which this research seeks to address by using computational intelligence 

rather than manual labour. The conflict between rising demands and shrinking budgets 

underlines the importance of this body of work and sets the foundation for this study. 

Some research into design systems that reduce manual work and utilize computing 

power instead has been done prior to this study (Renner & Ekárt). Those systems are 

mostly driven by the computer and not the designer. Resulting models are evidence of 

the capability of the software programmer creating the software, rather than the 

designer using the software. This study seeks to include the designer rather than running 

an exclusive automated process lacking the designer’s intent. Capturing the vision and 

using the designers aesthetic preference to drive the final design is an important 

element (Anderson, Buchsbaum, Potter, & Bonabeau, 2008) which based on the 

outcomes of a thorough literature review appears to have not yet been applied to 

complex three dimensional modelling based on computational methods. This too 

emphasizes the importance of this study. 

Finally, this research adds another important element to existing knowledge by 

accounting for the main implication found in interactive design systems – user fatigue 

(Kamalian, Yeh, Zhang, Agogino, & Takagi, 2006). Numerous iterations, slow render 

times that create potentially unproductive periods and the before-mentioned 

complexity of DCC software contribute largely to the user’s incrementing lack of 

concentration. Todd and Werner (Todd & Werner, 1999) formed the term “fitness 

bottleneck” in this context. This study addresses the issue by adding an autonomous 

agent to the software system, which supports the user and reduces the number of 

required interactive iterations. 

1.5 Summary of Main Contributions 

This thesis presents two main contributions to existing knowledge. First, an original 

method to integrate asset creation using Evolutionary Computation and RenderMan 

compliant outputs is discussed and demonstrated. This enables future researchers as 
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well as pipeline programmers in the creative industries to utilize advanced Artificial 

Intelligence algorithms in conjunction with standard commercial render engines. 

The second main contribution is the integration of an Interactive Genetic Algorithm with 

an Autonomous Agent system to support the human user in the process of creating 

models and lessen the effects of fatigue while increasing the number of possible 

iterations to refine the final product. Although the development of the workflow and 

the software system consumed most of the time of this research, initial testing of the 

academic prototype showed promising results and the foundation for further research 

in this field has been laid. 

1.6 Structure 

This Thesis is structured into four main parts, namely the Literature Review, 

Methodology and Research Design, Results and Observations, and finally Discussion and 

Conclusions.  

The Literature Review unpacks the three main research components of this study: 

Generative Design, Evolutionary Computation and Agents. The section about Generative 

Design gives a short insight and definition of what this term in context of the vast field 

of Design encapsulates and how Generative Design is situated within the wider area of 

Computer Aided Design. The second component discusses the current knowledge about 

Intelligence, Machine Intelligence and more specifically Evolutionary Computation. The 

struggle to grasp what Intelligence in general means, as well as the ongoing discussion 

about machines and software and their capacity to exert seemingly intelligent behaviour 

is discussed. Finally, the field of Agents and Agent Systems as part of the third and 

probably most innovative component of this research is looked at. 

Methodology and Research Design discusses practice-led, design science, action and 

empirical research as they are part of the overall Methodology being used in this study. 

The experimental process as well as the software systems used to measure performance 

of Interactive Evolutionary Computation with Agents is being introduced. 

In the third main section of this thesis, results and observations are presented and 

discussed. The differences between Interactive Evolutionary Computation with and 

without Agents are highlighted in order to address the research questions. Further, the 
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successful integration of Evolutionary Computation and standard render engines used 

by the visual effects industry is demonstrated. 

Finally, the fourth section of this study, discusses the outcomes and presents the 

conclusions that can be drawn from this research. This section also discusses limitations 

of the current work and provides an outlook into possible future research.  
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2 Literature Review 

2.1 Introduction 

The problem discussed in this study is a multi-layered issue, and to answer the main 

research question, an investigation into two main fields is necessary: Design and 

Artificial Intelligence. Both are very broad fields of research and to narrow these further, 

and to address only the core matters of this enquiry, Generative Design (as part of 

Design), as well as Genetic Algorithms and Agents (both sub-fields of Artificial 

Intelligence) are discussed in more detail in the following literature review. These three 

main components address and inform the research questions, and specify the field of 

study in this thesis. This aids to identify the gap in existing knowledge, which this thesis 

attempts to fill.  

It is important to note, that a deeper look into Genetic Algorithms and Agents will be 

taken, and only briefly at Interactive Evolutionary Computation in general, in order to 

understand the prerequisites of Human-based Genetic Algorithms, which are the centre 

of the Artificial Intelligence section of this research. 

2.2 Generative Design 

Generative Design, often also referred to as Procedural Design, is the area of form and 

shape finding by use of algorithmic help (Bohnacker, 2012). It is the overarching field 

that form finding is located in. There are some significant differences between manual 

design aided by computer software and automated design provided by computer 

software. This section of the literature review will help to understand where this 

research is placed. 

While Computer Aided Design (CAD) systems and other tools to create three 

dimensional objects with help of computers are technically based on algorithms and 

program code in general, they require the designer to manually operate the software 

and provide the inputs necessary to create any shape and form. Some of the processes 

may be partially automated, but the designer still needs to draw the objects on screen. 

These objects are often primitives such as circles, rectangles, cubes, spheres and other 

two or three dimensional shapes, which when combined, form the desired complex 
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object (Greenberg, 2007). While this manual process lays the foundation for Generative 

Design, it is not part of this study, because the goal is to investigate automated or semi-

automated design processes, driven by algorithms.   

Generative Design is the process of writing or applying often simple and small fragments 

of code that show objects on screen automatically, without the necessity to have the 

designer create underlying shapes in the first place (Greenberg, Xu, & Kumar, 2013). The 

creation of shapes is done by software, driven by an algorithm. The combination of many 

simple shapes, creates larger compound structures.  These two or three dimensional 

structures (or objects) tend to be rather complex, given the simplicity of a few lines of 

code (Shiffman, 2012). For example, to create a complex procedural structure made of 

hundreds or thousands geometric primitives such as cubes and spheres, only 8 lines of 

code are required. These structures also often use recursive elements, i.e. functions or 

procedures that call themselves over and over again and therefore assemble a complex 

object from small, identical building blocks, much like some plants such as ferns or trees 

are complex structures that are made from very few, very simple individual elements 

(Reas & McWilliams, 2010). In case of the fern for example, the fractal or recursive 

nature is visible from a large scale to a microscopic level: The same shape is found over 

and over again, from plant to branch, and from branch to leaf, and so forth. This is 

usually referred to as self-similarity (Mandelbrot, 1983; Shiffman, 2012). In case of a 

procedurally modelled city, it is possible to apply some very similar techniques, while 

not fully self-similar, they are still based on repetition of simple building blocks, which 

when used in large numbers, resemble rather complex structures. An example would be 

windows on an office building, which are simple elements, but make up most of a large 

structure. Another example are streets. While most streets have similar, simple building 

blocks, as a whole they present a very complex and large system of gaps between 

buildings.  

Further, there is little evidence in the literature that a computer generated city has been 

made using Generative Design driven by the user in conjunction with algorithmic help. 

While there have been a few attempts to create procedural three dimensional cities as 

laid out by Parish and Müller (2001), these were entirely computer driven and provided 

no user interaction. This leads to a computer generated city as such, but does not reflect 
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the designer’s intent at all. The city is a result of the programmer’s imagination and it 

can therefore be argued that it is similar to manual Computer Aided Design, with the 

difference that the user (or programmer) does not draw objects on screen, but writes 

code to create these objects. This study follows a different approach in that the user is 

enabled to influence the design and layout by choosing preferred layouts. Parish and 

Müller allow the user simply to run the software, which then produces a random result, 

which may or may not resemble the designer’s vision. There have also been other 

studies into components of generatively designed cities, for instance street structures 

or building structures (Lechner et al., 2004), but these researchers did not consider 

interactive user input at all. Therefore, this study aims to fill a significant gap in the 

existing literature, by using Generative Design driven by user interaction to create 

complex structures while seeking to reach the designer’s original vision.   

Using computers to explore the space of possible images, sculptures or other complex 

artistic forms such as musical compositions, has enabled researchers and artists to 

evolve pieces of art and led to the exploration of new ideas, from simple arbitrary color 

blobs to working functional forms such as boat designs, architectural forms or electronic 

circuits. Designers are being enabled to study more solutions in less time and to find 

forms that are outside the convention and expand their conceptual understanding. 

Evolutionary approaches have also led to new methods and principles, which can be 

exploited in future designs (Bentley, 2002). 

Bohnacker (2012) demonstrates a variety of typographic and abstract graphics in his 

book about Generative Design. Other examples include Generative Art using L-Systems 

(Pearson, 2011), Generative Design using very simple autonomous agents (Shiffman, 

2012) and studies in Architecture (Reas & McWilliams, 2010), to name a few. 

Generative Design has become more common for a variety of reasons, the most 

significant probably being the abundance of computing power and also the arrival of 

suitable frameworks such as Processing (Greenberg et al., 2013) and Openframeworks 

(Perevalov, 2013). This study employs Generative Design for Infographics and 

Procedural Cities, by use of Processing (Greenberg et al., 2013) for the UI and 3Delight 

(“Welcome | 3delight,” 2014), a RenderMan compliant engine to create the actual CG 

images. 
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2.3 Artificial Intelligence 

In this section of the literature review a brief overview of the current understanding and 

discussion about intelligence and in particular artificial intelligence is given. Further, 

knowledge representation and finally problem solving is discussed. This will set the 

context for the Artificial Intelligence algorithms and paradigms explored in this study. 

While Artificial intelligence is understood to be located in the area of Intelligence in 

general, this research is concerned with Evolutionary Computation and Agents in 

particular as outlined in Figure 1. 

 

Figure 1 - Positioning Artificial Intelligence in the overall context (only relevant areas shown) 

 

2.3.1 Definition of Artificial Intelligence 

In his book about Evolutionary Computation, David Fogel (2006) suggests that the term 

artificial intelligence itself, might be misleading. In Fogel’s view, intelligence just needs 

to be represented properly in form of a defined process to lose its artificial connotation. 

He claims that methods for generating intelligence need to be understood and applied 

in the same way, whether living beings, systems or machines are concerned, as these 

processes then become fundamentally similar and follow the same physics (Fogel, 

Intelligence

Biological 
Intelligence

Artificial 
Intelligence
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2006). In this, he goes contrary to the majority of research in artificial intelligence, which 

has simply attempted to simulate intelligent behaviour as being shown by humans. Fogel 

proposes a definition independent of human behaviour, stating that intelligence is “the 

capability of a system to adapt its behaviour to meet its goals in a range of 

environments” (Fogel, 2006). This seems to be a very narrow definition compared to 

what other researchers such as Russell and Norvig (1994) break down into two main 

issues. Systems that imitate the thinking process of humans, and systems that attempt 

to model human behaviour, and respectively act like humans. The first could be 

represented by the research concerned with thinking or behaviour of humans. And the 

second, is reflected by the goal to imitate human behaviour, but idealize the behaviour 

first, to apply this ideal standard subsequently. The approach to imitate thinking is 

anchored in the interdisciplinary field of cognitive science, which combines AI computer 

models and experimental methods from psychology as well as neuroscience in an 

attempt to theorize how the human mind works, how humans think (Russell & Norvig, 

1994). 

A popular example for the  modelling of human behaviour is the Turing Test (Turing, 

1950). The British mathematician Alan Turing proposed to use a simple test instead of 

lists of definitions that reflect intelligence. Using separate rooms, a man and a woman 

communicate to an interrogator only through a computer. The goal is to deceive the 

interrogator into believing that the man is a woman and vice versa. Then, in a second 

phase, the man is replaced by a computer. The goal stays the same, the computer is 

tasked to convince the interrogator that it is a woman, whereas the female participant 

tries to imitate the behaviour of a man. The computer would be able to make mistakes 

and provide unclear responses, just as a human might do. Turing assumed, that if the 

computer is able to deceive the human interrogator the same way the man did, it would 

have passed the intelligent behaviour test (Turing, 1950). Turing predicted in 1950, that 

a computer fifty years later would be able to stand the test successfully. While his 

prediction was not entirely accurate, contemporary research into cognitive science has 

achieved remarkable results. 

One of the most prominent examples for an approach based on cognitive science is IBM 

Watson, a supercomputer that imitates several different methods in the human thinking 
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process in order to compete in Jeopardy games against human opponents (Ferrucci, 

Levas, Bagchi, Gondek, & Mueller, 2013). For instance, the main contribution to 

Watson’s successful strategies to understand the questions (or in case of Jeopardy, the 

answers) is the imitation of linguistic features such as narratives analysis derived from 

natural languages research (Lally et al., 2012). Using an expert system that derives the 

questions to the answers given in Jeopardy from a large database, would take too long 

and require too much storage by todays hardware and software standards. Instead, 

Watson imitates different processes of human behaviour to learn, understand and 

combine knowledge to be successful in the game (Prager, Brown, & Chu-Carroll, 2012). 

In this study, artificial intelligence is understood to be an imitation of human behaviour, 

as this research is concerned with systems that expose seemingly intelligent properties, 

and not with the cognitive process itself. Using methods that imitate human behavior 

leaves room to include systems that are classified as artificial intelligent approaches like 

optimization, search and knowledge engineering, contrary to Fogel’s rather narrow 

definition (Fogel, 2006). These additional systems are not necessarily adaptive, but 

rather statistical, and expose a behaviour similar to what is considered intelligence and 

therefore could be included in the broad field of intelligence and particularly artificial 

intelligence (Negnevitsky, 2004). This study makes use of both, adaptive as well as 

statistical optimization and search methods, as discussed in sections 2.4 and 2.5. 

Also noteworthy is the divide throughout the literature between hard AI and soft AI, 

basically referring to the difference of an AI system acting like a human, therefore 

mimicking human behaviour (hard AI), and using any technique that works to solve a 

particular problem in an seemingly intelligent way (soft AI).This topic is discussed in 

depth in context of autonomous agents in section 2.5. 

2.3.2 Artificial Intelligence Systems 

Buckland (2004) suggests that there a distinction has to be made between “Academic AI 

vs. Game AI” (Buckland, 2004) as Academic AI is concerned with an optimal solution to 

a problem, whereas Game AI is more concerned with the limitation of resources in order 

to keep the program using the Artificial Intelligence component interactive. While this 

is true in some cases, it is arguable that there are two implications with this viewpoint. 
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First, there are many researchers in the field of Computer Science engaged in the topic 

of optimization of algorithms, which require the program to run as efficiently as possible, 

not just optimally: Algorithmic efficiency seeks to achieve results not just by 

optimization at any cost, but achieving optimization with the least resources possible. 

For example, many problems in applied computation and engineering need to be solved 

in a time critical manner and the systems incorporate a balanced approach between 

speed and optimization. An example is the Genetic Algorithm, which will be discussed in 

a later section (2.4.1) of this thesis. The entire purpose of Genetic Algorithms is to solve 

an otherwise impossible (due to time constraints) problem in a reasonable timeframe. 

If that was not the intention, a brute force algorithm would certainly guarantee an 

optimal solution, given enough time. Second, in computer games and other applications, 

the issue of balance could lead to less engaging user experiences, if the resulting solution 

seems to be too ‘stupid’ to provide an exciting engagement. If the user loses interest or 

fatigues due to lack of quality, this would be similarly problematic as the lack of 

responsiveness. Academic research is concerned with finding different solutions in such 

cases, for example hybrid intelligent systems, which could offer a balance between 

speed and optimization (Negnevitsky, 2004). This is particularly relevant for this study, 

as it employs a hybrid intelligent system made of Genetic Algorithms, which are an 

Evolutionary Computation approach, in combination with human and computational 

agents. The details are shown throughout the following sections. 
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2.4 Evolutionary Computation 

Evolutionary Computation is the field of research that is concerned with computation 

based on the concepts of natural evolution. Figure 2 gives an overview of Evolutionary 

 

Figure 2 - Field of Evolutionary Computation 

Computation and its subfields. Specifically, it borrows ideas from Darwin’s theory of 

evolution, which states that individuals as part of a population increase their chances of 

survival and reproduction by way of natural selection. This selection process allows for 

small variations of each individuals’ properties, which are then passed on to the next 

generation through inheritance. Darwinism in conjunction with Mendel’s concept of 

genetics formed what is known in biology as modern evolutionary synthesis (Keeton, 

1996). 

Biological evolution encapsulates the following concepts (Pimpale & Bhande, 2007): 

• DNA (Deoxyribonucleic acid) is the molecular structure that encodes the genetic 

information of each cell of all living organisms. It is represented as a double helix. 

• Chromosomes are strings of DNA. 

• Genotype is the hereditary information encoded in the DNA. 

• Phenotype are the observable properties as a result of the DNA. 

• Reproduction is the creation of offspring by (usually) two parents, inheriting 

parts from both parents’ DNA. 

• Crossover is the process of synthesizing an offspring DNA, creating a new 

chromosome. 

Evolutionary 
Computation (EC)

Evolutionary 
Computation based 

on mathematical 
fitness function

Genetic Algorithm 
(GA)

Evolutionary 
Computation based 
on user interaction

Interactive Genetic 
Algorithm (IGA)

 
Page | 14 

 



• Mutation is a small accidental change in the offspring DNA, potentially resulting 

in slight variations to a straight, non-mutated crossover. Mutation happens with 

a very low probability. 

• Survival of the fittest is the concept of only the strongest properties of a DNA 

being sustained over many reproduction cycles. Weaker DNA properties could 

result in weaker offspring, which in turn has a lower chance of survival. Over 

many generations, this leads to the elimination of weak DNA. This is also used 

synonymously with the term Evolution in the literature (Pimpale & Bhande, 

2007).  

Modern evolutionary synthesis serves as the foundation for the many different types of 

evolutionary computation. While evolutionary computation borrows ideas and the 

notion of biological evolution from the natural process, evolutionary computation is 

merely an abstraction of evolutionary synthesis to emulate soft intelligent behaviour in 

computer software. The concepts were applied in different ways and evolved over time, 

so that there are now a multitude of different algorithms, which all borrow from the 

underlying idea of natural evolution. Examples are Genetic Algorithms (Holland, 1975), 

Evolution Strategies (Beyer & Schwefel, 2002) and Genetic Programming (Koza, 1992). 

While these all simulate natural evolution to an extent, they differ significantly in how 

they apply the evolutionary principles. Genetic Algorithms are heuristic search 

algorithms, used to find a solution in the space of all possible solutions. Evolution 

Strategies are designed to find solutions to technical optimization problems 

(Negnevitsky, 2004), and Genetic Programming generates computer programs that in 

turn attempt to solve the actual problem (Koza et al., 2003). Genetic Programming 

therefore programs computers by finding an optimal set of rules or section of code. 

This study uses Genetic Algorithms, which are detailed in the following section. 

2.4.1 Genetic Algorithm 

The focus of this research is on Genetic Algorithms for two reasons. First, they are 

simple, yet powerful search algorithms. This study seeks to find at least one solution that 

fulfills the user’s intent within the virtually infinite number of possible city structures, 

shapes, layouts and forms. A search algorithm that is able to get to a result while other 
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solutions such as random generation of cities might never create the vision of the 

designer, seems to be a reasonable choice, which is also strongly supported by existing 

research. Renner and Ekart (2003) conclude that “Genetic Algorithms are capable of 

solving surprisingly complex design problems”. Second, they have been successfully 

applied to much simpler, but somewhat similar design problems as presented in this 

thesis, for instance finding coloured blobs and stripes that reflect the intent of the 

designer in the solution space of all possible combinations of colour blobs and stripes 

(Anderson et al., 2008). This research seeks to extrapolate the positive results to the 

more complex design issue of Infographics and Procedural City models. Using the 

existing research into Genetic Algorithms for design problems, seems to be a solid 

starting point. 

Genetic Algorithms (GA), being part of the heuristic optimization or search algorithms, 

are very popular due to their relative simplicity, and are also well researched and 

understood (Fogel, 2006). They were introduced in the 1970s by John Holland and mimic 

natural evolution by abstracting the chromosomes into binary digits (Holland, 1975). 

These chromosomes are passed on from one population to a new population after 

genetics-inspired processes of crossover and mutation. An evaluation function called 

fitness function is then applied to establish each chromosome’s performance towards 

the final goal. If the chromosome performs poorly, it is likely to be dropped from the 

pool of future ‘parents’. Otherwise, if the chromosome’s fitness is high, it is more likely 

to be selected for reproduction. The actual reproduction process is performed by using 

a crossover operator, which mixes parts of two parent’s chromosomes to form the new 

child’s chromosome. Finally, a mutation operator is applied to some of the new found 

chromosome in order to ensure a certain variation of the child’s properties. This 

mutation operator randomly changes the value of individual digits of the chromosome 

binary string. Mutation operator and crossover operators effectively represent the 

probability of each operation (mutation and crossover) to happen. The process of 

simulating natural evolution is repeatedly applied for many generations and as a result, 

the fittest members of a population dominate, while the less fit become extinct. The 

underlying mechanisms of Genetic Algorithms are very simple, yet capable of showing 

seemingly complex behaviour and the ability to solve difficult problem sets 

(Negnevitsky, 2004). 
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While simple search and optimization algorithms such as hill climbing or gradient 

descent might have a tendency to get stuck in local maxima or minima, Genetic 

Algorithms avoid this issue due to their inherent creation of diversity by mutation. 

Genetic Algorithms are  highly effective in many cases, and given that a robust fitness 

function and solid parameters for crossover and mutation have been selected, tend to 

avoid local optima in favour of a global solution (Fogel, 2002).  

To verify the performance of Genetic Algorithms, including the parameters for selection 

and mutation probabilities, but also the correct implementation of the fitness function, 

mathematical test functions, which provide consistent conditions for testing, are usually 

employed. Figure 3 shows a three dimensional plot of the sphere function which is a 

standard test function for optimization problems in computer science. The sphere 

function is defined by the equation: 

𝑓𝑓(𝑥𝑥) = �𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 

From the plot it is easy to see that there is just one minimum right in the centre of a 

 

Figure 3 - Sphere function 
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large ‘valley’. A computer algorithm should be able to find the global minimum quickly 

and with a large chance of success. 

In contrast, Figure 4 plots the Levi function N.13, again a standard test function defined 

by the equation: 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = sin(3𝜋𝜋𝜋𝜋)2 + (𝑥𝑥 − 1)2(1 + sin(3𝜋𝜋𝜋𝜋)2) + (𝑦𝑦 − 1)2(1 + sin (2𝜋𝜋𝜋𝜋)2 

This second function has a multitude of local minima and maxima. While humans can 

quickly point out the global minimum, a heuristic search algorithm might get stuck in 

any of the local minima and never find the global optimum. 

Many different techniques to avoid this behaviour have been invented, for instance by 

randomizing part of their search instead of relying entirely on local optimization. The 

drawback of these potential improvements are longer runtimes and less efficiency 

(Bentley, 1999). Accordingly, careful selection of operators driving the GA is important 

and can be a tedious and time consuming task. 

 

Figure 4 - Levi function N.13 
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Given that the Genetic Algorithm is the ‘weapon of choice’ in this study, a more detailed 

discussion of the principles will be given in the following paragraphs, breaking the GA 

down into smaller steps. This breakdown is loosely based on Melanie Mitchell’s textbook 

on Genetic Algorithms (M. Mitchell, 1998). For this study, slight variants of this textbook 

approach have been adopted, as discussed in the relevant chapters 3.2 (Software 

System) and 3.3 (Experimental Process). 

1. Assuming that the problem to be solved has been clearly defined, the problem can 

be represented as a string of 𝑛𝑛 elements. The length of the string is fix. Each element 

is a 1-bit digit and denotes the chromosome 𝑥𝑥 of one possible candidate solution. 

 

2. Define a population 𝑁𝑁  with a size 𝑆𝑆  as a fixed number of chromosomes 𝑥𝑥 . Also 

define a crossover operator 𝑝𝑝𝑐𝑐 as well as a mutation probability 𝑝𝑝𝑚𝑚. 

3. Start by randomly generating a population 𝑁𝑁1. 

4. Then, calculate the fitness 𝑓𝑓(𝑥𝑥) of all elements 𝑥𝑥 in 𝑁𝑁1. 

5. Selection takes place. Pick a pair of chromosomes 𝑥𝑥1 and 𝑥𝑥2 based on their fitness 

𝑓𝑓(𝑥𝑥): The higher the fitness 𝑓𝑓(𝑥𝑥), the higher the probability of being selected. This 

ensures that the fittest 𝑥𝑥 have the best chance to reproduce, while the 

chromosomes with the lowest fitness are unlikely to pass their DNA on to the next 

generation (population 𝑁𝑁2). It is important to note that selection is done without 

removing the chromosome from the mating pool, so that parents can be selected 

multiple times.  

6. Create a pair of offspring chromosomes using the crossover probability 𝑝𝑝𝑐𝑐  as 

follows: Both parents chromosomes are crossed over at a point randomly chosen 

based on a uniform probability. In the special case that no crossover occurs, the 

parent chromosomes are each copied to the two offspring. 

0 0 1 0 1 1 0 1 1 0 
 

1 0 0 1 1 0 0 1 0 1 
 𝑥𝑥1 𝑥𝑥2 

0 0 1 0 1 0 0 1 0 1 
 

0 0 1 0 1 1 0 1 0 1 
 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2 

0 0 1 0 1 1 0 1 1 0 
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7. Each of the two offspring are mutated with probability 𝑝𝑝𝑚𝑚 i.e. individual bits are 

switched from 0 to 1 or 1 to 0 accordingly. 

8. Both offspring are placed in a new population 𝑁𝑁2. 

9. Repeat from step 5 until 𝑁𝑁2 is the size of 𝑆𝑆. 

10. Start over from step 4 using 𝑁𝑁2 to select parent chromosomes for breeding the next 

population 𝑁𝑁3   and so forth, until a termination condition, for instance a certain 

fitness 𝑓𝑓(𝑥𝑥)across the population is reached. 

A single iteration is known as a generation and the whole process of all generations is 

termed run (M. Mitchell, 1998). By the time of writing about one and a half decades ago, 

Mitchell states, probably due to the limitations in computing power and memory 

availability, that a typical run involves “50 to 500 or more generations”. With today’s 

desktop computers, let alone workstations or supercomputers, 10,000 to 100,000 or 

more generations are the norm. That is based on the observation that contemporary 

problems are often magnitudes more complex and require larger bit encoding. 

Therefore, the desire to keep runs small is still the same, but the amount of data 

required is much larger and necessitates more generations to satisfy the termination 

criterion. 

The above mentioned process describes the foundation for most applications of GA. But 

over time, some variations and even significant changes to GA have been introduced. 

Typical examples are multi-point crossover, tournament selection, truncation selection 

or elitism the latter often referred to as replace worst (Lanzi, 2011). Further, many 

different models for the application of GA have been developed, such as Island Genetic 

Algorithms (iGA), which utilize several parallel running GA to reduce the tendency of GA 

of getting stuck in local maxima of complex functions (Skolicki & Jong, 2004). 

Genetic Algorithms, which are being employed by this study in an extended form (see 

section 2.6), have successfully been applied to a range of different areas such as 

Engineering, Arts and Computer Science. Some examples include the optimization of 

machinery (Connor, 1996), evolved particle systems (Shiffman, 2012), generative jazz 

0 0 1 0 1 0 1 0 0 1 
 

0 1 1 0 1 1 0 1 0 1 
 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2 
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music (Biles, 1994) or optimizing the weights of neural networks (Fogel, 2002). 

According to Li & Kou (2001), Genetic Algorithms characterize them as being implicitly 

parallel, robust and scalable, as well as powerful in global search and optimization.  

The question, why GA are valued as very powerful tools for search and optimization, 

finds a simple answer in an example of a small optimization exercise, the knapsack 

problem. The goal is to pack a number of items of different weights (sometimes the 

problem is also formulated with sizes) into a backpack. Not all items are going to fit, i.e. 

there is a limiting overall weight or size, but the intent is to identify the maximum 

number of items possible. If attempted manually, packing a random number 𝑛𝑛 of items, 

weighing the backpack until the best possible outcome is reached, would take up to a 

maximum of 2𝑛𝑛 solutions. While this might be practical for a number of 4 items, due to 

the exponential growth of the problem, a count of 64 items becomes 264  potential 

solutions, which is impractical to test: Running this problem implemented as brute force 

(that is by random selection of items) on a fast contemporary workstation computer, 

testing all 18,446,744,073,709,551,616 candidates is going to take about 27,000 years 

based on about 200,000 individual fitness calculations per second. The GA in turn solved 

this problem in just under 10 seconds. While this seems to be an impressive result, it is 

important to note that the GA might not have found the single best possible solution to 

the problem, but a very high level of optimization. In general, GAs are not necessarily 

finding the best solution to certain search and optimization problems, but tend to find 

at least a solution relatively quickly, especially with rising complexity and otherwise 

impossibly large candidate spaces. 

It is important to note that a huge range of different techniques with regards to encoding 

the phenotype (the actual representation of the DNA string) into a suitable genotype 

(the underlying representation, for example as a bit string) are available. This is also true 

for the process of crossover and mutation. Amongst other methods, encoding can be 

done by binary encoding, value encoding or tree encoding (Pimpale & Bhande, 2007). 

Binary encoding is the simplest form, using a string of binary information to encapsulate 

the high level phenotype, for example representing a RGB color value as three 8-bit 

numbers concatenated into a 24-bit string. Value encoding is a high level representation, 

for example using three float values to represent a RGB color. Here the DNA string is not 
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a 24-bit string that is used for recombination and mutation, but three numbers that can 

be recombined from two parents into a child’s DNA of three float numbers. In value 

encoding the DNA could be any type of value, including numbers, characters or whole 

words. 

Crossover methods have evolved from simple single point crossover into many different 

ideas. To name a few, there is two-point crossover, where the DNA is split twice and the 

resulting three parts are recombined from two parents or uniform crossover, where a 

probability takes individual genes from both parents with a given probability (M. 

Mitchell, 1998). Instead of mixing bit strings, randomly taken from the DNA, the gene 

structure is preserved. For example, if three 8-bit color values were encoded into a 24-

bit string, the split would only happen so that the 24-bits are not split randomly, but only 

every 8-bits. This maintains the consistency of the color values Red, Green and Blue 

instead of potentially splitting in the middle of the blue value. Therefore, consistency of 

parameters that are to be preserved through the evoluationary process is easier to 

manage than in single point or multi-point crossover (Pimpale & Bhande, 2007). 

2.4.2 Interactive Evolutionary Computation 

Genetic Algorithms (GA) belong to the simpler of Evolutionary Computation algorithms. 

They are relatively easy to implement and can be very effective if the solution space is 

very large. While GA have some disadvantages such as the tendency to get stuck in local 

maxima if not properly tuned (Goldberg, 1989; Skolicki & Jong, 2004) and the 

requirement of a fitness function, which can be a challenge if soft factors such as 

aesthetics come into play (Takagi, 2001), GAs have been well studied and well 

documented. 

The GA was selected for this study based on its simplicity, but the specific 

implementation does not use a mathematical fitness function. Instead it integrates the 

user (designer/artist) into the process: The user provides the necessary fitness 

evaluation in the selection stage of the GA.  This is known as Interactive Evolutionary 

Computation (IEC). The underlying idea of IEC was first introduced by Dawkins in the 

third chapter of his book “The Blind Watchmaker”. Dawkins demonstrates the process 

of evolution based on Darwinian theories in a software program called “biomorphs”, 
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which uses human interaction to evaluate factors such as aesthetics, appeal or 

attractiveness (Dawkins, 1986). Karl Sims (1992) has taken this idea of user-computer 

interaction for Genetic Algorithms further and suggests that the human user does not 

have to understand the underlying process of creating the candidates, while still being 

able to produce results of high complexity. He argues that Interactive Evolution enables 

the computer as well as the human to achieve results that neither could have produced 

on their own. The term ‘Interactive Evolutionary Computation’ was finally formed by 

Takagi (2001), who also evaluated IEC in context of several different fields of research 

as a method to integrate computational optimization and human evaluation. Beside the 

ability to combine both optimization and evaluation for design subjects, IEC can also 

offer a significant benefit over other computational design methods such as Genetic 

Algorithms or manual computer aided design: The user can change their evaluation 

during the evolutionary process and drive the resulting populations into a different 

direction. This could potentially lead to the discovery of previously unknown outcomes 

and expose features that were not expected initially. Changing the objectives in regular 

Genetic Algorithms would require re-coding and is not practical nor efficient. IEC allows 

for alterations on the fly and as a result has been recognized as a ‘novelty generator’ 

(Gu, Xi Tang, & Frazer, 2006). 

It is important to note, that the user does not necessarily evaluate the genotype or 

phenotype of the candidates of the Genetic Algorithm directly, but a different 

representation which is easier to grasp. For example, instead of a numerical bit string 

(genotype) or the associated colour values (phenotype) of some elements of an image, 

a user might select whole images that are based on both elementary parts 

(genotype/phenotype) (Takagi, 1998). This is an approach chosen for this research as 

detailed in section 3.2.3.2. The user is able to select rendered images, which are each 

based on an underlying set of parameters. These parameters are encoded into a 

collection of numerical strings, the DNA. This DNA is then modified (mutated) and 

crossed over by the Genetic Algorithm. The resulting parameter set is rendered back as 

a new image, which is then presented to the user for selection, and so forth. 

While this is an elegant way to both capture the user’s preference and also avoid forming 

a mathematical function for aesthetics or user preference, it poses a significant problem, 
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which is related to the nature of humans. After a number of iterations, human users 

tend to fatigue and get slower to select, get distracted more easily and lose 

concentration due to the high number of visual triggers (Takagi & Iba, 2005). The effects 

of time saving while defining a computational solution for the design problem could 

potentially result in a less effective and less successful overall outcome of the interactive 

evolutionary process due to this fatigue effect. In the following section (2.5), Agents and 

Agent Systems are being discussed, as they could serve as a possible solution to this 

inherent problem of Interactive Evolutionary Computation.  

Interactive Evolutionary Computation offers significant benefits over non-interactive 

approaches, as it removes the necessity to find a mathematical solution for the fitness 

function. The intractable nature of writing an equation for aesthetics, taste and 

preference is elegantly avoided. Instead, the user is employed to directly provide the 

selection of potential candidates, which makes this approach possibly a solution for this 

research. 
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2.5 Agents 

Research into agents or autonomous agents is a relatively young field, which has been 

studied for about the past two decades. Most publications from the early 1990s 

presented agent definitions that are still valid and that build the foundation of our 

current understanding of the field. One of the main questions that arise when 

confronted with agents for the first time is what makes such an agent and how it differs 

from other software in general. Interestingly, it seems that the recent popularity of 

agents has led to a wide application and the explosive growth of agent applications. This 

caused a lot of confusion of what can be regarded to be ‘an agent’ and what is ‘just 

software’. The lack of clarity has led to a variety of definitions. As D’Inverno and Luck 

(2004) point out, evidence of such difficulties can be found in the large number of 

different agent definitions. Franklin and Graesser (1996) provide ten of those definitions 

of renown researchers of the field. 

Russell and Norvig (1994) state in their standard textbook about Artificial Intelligence, 

that an agent perceives its environment and acts on that environment through sensors 

and effectors accordingly. Smith, Cypher and Spohrer (1994) add the important attribute 

of agents being persistent, meaning they act based on their own ideas, following their 

own agendas when completing a task. This could also be interpreted as independence 

or autonomy, according to Wooldridge and Jennings (1995), who claim that agents need 

to act without human intervention and have to be in control of their actions and their 

internal state. While all of the former include or focus entirely on software, Brustoloni 

(1991) and Franklin (Franklin, 1997) require autonomous agents to be situated in the 

real world.  

In essence for this research it is assumed that an agent is acting in some environment or 

is part thereof. It is capable of deriving inputs from its environment and act accordingly 

in an independent, autonomous manner. Further, an agent runs over a period of time, 

until it finishes its task and not necessarily when the human user decides to stop it. Some 

agents, e.g. on the internet might even act beyond the control of any human user 

(Franklin & Graesser, 1996).  

D’Inverno and Luck (2004) offer classifications of agents based on the type, applications 

and purposes of agents. They consider software agents, interface agents, personal 
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assistant agents, believable agents, electronic mail agents, information agents and 

teaching agents. Others, such as Franklin and Graesser (1996) base their classification 

on agent’s inherent properties, namely reactive, autonomous, goal-oriented, temporally 

continuous, communicative, learning, mobile, flexible and character-based agents. 

Further there are Russell and Norvig (1994), who originally suggested to classify agents 

based on their degree of perceived intelligence and capability. In the following chapter, 

each of these potential classifications will be examined to determine, which ones are 

more suitable for the research conducted in this thesis.  

Agents have been employed in a variety of different applications, ranging from financial 

trading agents (Barbosa & Belo, 2008), that autonomously trade foreign currencies in 

real-time on the financial markets, agents in art, which create new patterns (Greenberg 

et al., 2013) or structured three dimensional objects (Bohnacker, 2012), furthermore, 

agents are widely used in computer games (Buckland, 2004) and as AI characters (Bourg 

& Seemann, 2004). Agents have also been used to create stories (Riedl, Thue, & Bulitko, 

2011) and play online chess games (Fogel, 2002). In general, Agents can be found in so 

many fields, that it is probably easier to distinguish them by their underlying architecture 

and the type of application they represent (Franklin & Graesser, 1996). This will be 

discussed in the following section of the Literature Review. 

2.5.1 Agent Architectures 

Russell and Norvig (2003) classify agents into five groups based on the agent’s level of 

intelligence and capability. 

• Simple reflex agents act based on their current perception and their function 

follows the condition-action rule, which is usually implemented as a simple 

if-then decision. They require a fully observable environment in order to 

succeed. See Figure 5 (as per Russell & Norvig, 2003). 

• Model-based reflex agents differ from the above mainly through their ability 

to handle partially observable environments. They store descriptions of the 

un-observable environment and act similar to the reflex agent following a 

condition-action rule. 
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• Goal-based agents are model-based and use a database of desirable 

situations for their decision making process. The agents simply choose one 

of the multiple possibilities that lead to the desired goal. 

• Utility-based agents store goal-states and non-goal states, from which they 

choose the most desirable state. This decision is made based on a utility 

function, which maps the state to a measure of the utility of a particular 

state. 

• Learning agents are able to operate in unknown (or non-observable) 

environments through learning. These agents become more knowledgeable 

over time, compared to their initial state. See also Figure 6 (as per Russell & 

Norvig, 2003). 

This research specifically involves Learning Agents, in order to capture the user’s intent, 

which is unknown at the time of programming and therefore presents a set of non-

observable parameters of the agent’s environment when the process of form finding is 

started. But through observation of the user’s action and accordingly through evaluation 

of success and failure by comparison of the agent’s prediction and the user’s input, the 

agent will become more knowledgeable. 

 

Agent 

Environm
ent 

Current state of the 
world 

Action to be 
taken 

Condition-action rules 

Figure 5 - Simple reflex agent (Russell & Norvig, 2003)  
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To be able to develop an agent of the Learning class, it is important to select a suitable 

architecture. The agent architecture is the core of an agent system, similar to the brain 

in humans. It resembles the underlying algorithm of the agent behaviour so that the 

agent is capable to solve the problem effectively. In case of this study, the aim is to 

choose the right candidate solutions for the following generation of the Genetic 

Algorithm.  It is the computational methodology that creates the behaviour agents show 

in their respective environments. There are a multitude of different methodologies 

mentioned in the existing literature, which are driven by the viewpoint namely external 

or internal (Gómez-Sanz & Pavón, 2004). The external viewpoint reflects the classical 

description of an agent as autonomously interacting with its environment, while the 

internal viewpoint is concerned with the particular architecture and whether it is based 

on beliefs, goals or plans. For multi-agent systems, these two basic viewpoints have 

often been extended by different methodologies, which take for instance user and 

organization into account (Ricordel & Demazeau, 2002). 

 

Sarker and Ray (2010) divide agent architectures into three categories: deliberative, 

reactive and hybrid. Deliberative architectures utilize an explicit world model to make 

decisions based on reasoning, pattern detection and via symbolic manipulation. 

Deliberative agents might take a long time to make decisions as they select the best 

possible action based on extensively collected information. Reactive architectures use 
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Figure 6 - Learning Agent (Russell & Norvig, 2003) 
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current observations instead of symbolic reasoning to perform actions and have no 

inherent symbolic world model. While these architectures may be faster than 

deliberative agents, their outcome might not be optimal, as the decision process is 

instant, and does not incorporate any formal search for better solutions or incremental 

creation of an optimized world model. The third category, hybrid architectures are a 

combination of these two previous concepts and might provide a more effective and 

efficient solution in a reasonable time (Sarker & Ray, 2010). This categorization of agent 

architectures is relevant to this research, because a hybrid system seems to provide a 

way to account for a small, yet evolving data set (or subsequently world model), while 

achieving improved results in a reasonable time frame. 

There are several development tools for agents and multi-agent systems available 

including GUI based frameworks and collections of libraries (Gómez-Sanz & Pavón, 

2004). For this study, the WEKA (Hall et al., 2009) library has been employed to develop 

the learning agent for the software system. WEKA offers both a GUI based approach and 

a collection of Java libraries for modelling, learning, classification and ensemble learning 

techniques (Witten, Frank, & Hall, 2011). 

2.5.2 Learning Agents 

The idea of learning as opposed to simple behaviour is that perception is not only used 

to trigger certain actions depending on the observed changes in the environment, but 

that it is used to improve future decisions by the agent system. It is not a reaction to the 

environmental change, but rather a reaction to the agent’s own experience (Russell & 

Norvig, 2003). 

Many different forms of learning are being used in agent research. Some examples 

include Decision Trees, which is learning from observations to generate a decision flow 

chart, expert systems, which extract rules from examples or Reinforcement Learning, 

which is learning the value of actions by getting rewards or punishment depending on 

previously made decisions and applying these updated learned values to future actions 

(Sutton & Barto, 1998). In general, learning can be classified into three main categories: 

supervised, unsupervised and reinforcement learning (Russell & Norvig, 2003).  
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Supervised learning is based on examples, which are used as a training dataset to teach 

the system. This training set includes the right and wrong answers to a problem, which 

the system then learns as a function of inputs and outputs, or in other words as a 

relationship between actions and outcomes. This can be as simple as detecting whether 

an image contains a certain element (Shiffman, 2012) or which action to take, when a 

certain event occurs in the observed environment (Bourg & Seemann, 2004). It is 

important to note, that supervised learning does not require a teacher to provide the 

actual value for the correct solutions to the agent. The solution can also be derived by 

the agent from looking at all possible candidates through its own perception and getting 

the correct solution pointed out by the teacher. The difference is that the former 

requires some sort of table or key-value pairs for all right and wrong solutions, whereas 

the latter just requires someone to point to the right ones. This means that an agent in 

a fully observable environment might be able to perceive the consequences of its 

decisions, and learn from them to make future decisions. In a partially observable 

environment, this is more difficult and the agent needs more comprehensive feedback 

from the teacher in order to make future predictions (Russell & Norvig, 2003). 

Unsupervised learning differs in that it requires detection of patterns in the 

observations, because the right and wrong solutions are not provided prior to the 

decision making process. Examples of unsupervised learning methods are statistical 

learning methods or some neural network implementations. Neural networks imitate 

the processes in the brain by using multiple simple units with inputs and outputs called 

neurons or in their simplest form perceptrons, which are connected in a network like 

structure. Inputs provide sensory information, which gets evaluated in one or more 

layers of neurons. The resulting sum of outputs by the neuron layers generate a 

behavioural pattern: If certain values reach the input side, a consistent response is 

created as an output (Negnevitsky, 2004). 

Reinforcement learning is probably the most complex, but also most general learning 

method (Russell & Norvig, 2003). Actions taken by the agent inevitably lead to 

consequences, good or bad. The evaluation of successful and unsuccessful actions is 

used to maximize a reward function. The agent is not being led through the learning 

process as in supervised learning, but instead derives the most successful actions from 
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the rewards it gains by trying them out (Sutton & Barto, 1998). Therefore, reinforcement 

learning does not require an expert, who provides the right or wrong solutions, which is 

an important feature of this type of learning. But more significantly, the agent is able to 

engage with uncertain, unknown new territory, because it learns entirely from its own 

experiences and not from a knowledgeable teacher. But reinforcement learning also 

imposes an important issue on the design of the agent architecture: Depending on the 

problem set and the intended use of the agent, a balance between exploration and 

exploitation must be maintained. If the agent has to prefer actions that lead to 

maximum rewards in order to arrive at a certain goal. At the same time, this implies that 

some actions which have not been tried before, might never be explored, although they 

could lead to even higher rewards and ultimately to the best outcome overall (Wiering 

& Otterlo, 2012). 

Agent research, and study of learning agents specifically, a vast field of research and 

many concepts have been developed to improve aspects of agent architecture, 

communication and performance. One performance enhancement of learning 

algorithms, among many others, is Boosting. Boosting is a generic and often effective 

method of creation reliable predictions in machine learning (Freund, Schapire, & Abe, 

1999). Learning algorithms often suffer from noise in the data or small numbers of 

training examples (T. Mitchell, 1997). Analysing and tracking the training error by use of 

a test set, and combining multiple resulting classifiers based on their training error score 

into a meta-classifier, enables the Boosting algorithm to classify instances better than 

individual classifiers based on noisy or small training data as shown by Schapire (1999). 

Human-centric evolutionary computation works with relatively small data sets, where 

tens or hundreds of iterations are typical, compared to non-interactive Genetic 

Algorithms, where thousands or millions of generations are possible depending on the 

computational resources. Therefore, the ability to train learning algorithms using 

advanced methods such as Boosting gain more importance in Interactive Evolutionary 

Computation as suggested by Kamalian et al. (2006) in context of electronics engineering 

design. 
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2.5.3 Multi Agent Systems 

Multi Agent Systems (MAS) are computational systems that integrate more than one 

type of agent. These agents might interact and communicate with each other and 

perform different or similar tasks (Gómez-Sanz & Pavón, 2004). MAS are employed 

when a single agent might fail to solve problems by itself, because the problem is either 

too difficult to encapsulate into a single agent or it is impossible to do so. For example, 

if a human (agent) and a computational agent interact while working on a task, or if 

multiple different agent architectures have to be employed to solve an issue because 

the problem is beyond the scope of an individual agent (Balaji & Srinivasan, 2010). 

MAS can be classified into homogeneous and heterogeneous architectures. In case of a 

homogeneous structure, all agents have the same underlying architecture. They only 

differ with regards to the environment they are in. Every agent contributes to the overall 

system by observing parts of the environment that other agents can not perceive. 

Sometimes there is an overlap between the observations made, in case that agents 

partially share the same part of the environment. In contrast, heterogeneous systems 

are made of agents of different architectures. The agents perform different tasks in 

different ways and complement each other. The most extreme example for a 

heterogeneous structure might be a MAS of human and computational agents. 

Homogeneous systems are relatively fast to create as they only require a single agent 

architecture. The advantage of heterogeneous systems is their ability to account for a 

wide range of different tasks, while keeping the individual agent relatively simple (Balaji 

& Srinivasan, 2010). 

This study aims to combine interactive computation with autonomous computational 

agents. Therefore, the concept of MAS is important to understand. But as this study uses 

MAS in a very specific way, communication between agents and their hierarchical 

structure differs from common MAS and is detailed in the following section 2.6, in 

context of Human-based Genetic Algorithms. 

2.6 Human-based Genetic Algorithm 

Human-based Genetic Algorithms (HBGA) are an extension of Interactive Genetic 

Algorithms, which in turn are a sub-set of Interactive Evolutionary Computation (Figure 
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7). They employ the concept of multiple agents including the human user in a multi-

agent system (MAS), which allows for a flexible, modular approach to combine the 

processes of selection, mutation and crossover. Accordingly, they are also referred to as 

multi-agent Genetic Algorithms (Kosorukoff, 2001). This section of the literature review, 

considers their layout and design, and will discuss how the previous sections are linked 

to Human-based Genetic Algorithms, and how they contribute to the software system 

as part of this research. 

 

Figure 7 - Human-based Genetic Algorithms in the field of Artificial Intelligence 

2.6.1 Multi-agent Genetic Algorithms 

First introduced by Alex Kosorukoff as part of his research into knowledge management, 

Human-based Genetic Algorithms (Kosorukoff, 2001) are an additional class of genetic 

algorithms. Kosorukoff describes them as a form of outsourced primary genetic 

operators, which are the processes of selection, crossover and mutation. Drawing the 

parallel to a business organization, he exemplifies outsourcing as the transfer of 

“ownership of a business process to an external agent” (Kosorukoff, 2001). Kosorukoff 
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further points out, that outsourcing effectively means the transfer of a function from 

the organization to an external agent. This function will be performed independently 

and unsupervised by the agent, sometimes even without any knowledge of how the 

agent works, which methods the agent employs and most importantly, partially or fully 

beyond the control of the organization. The organization only controls the choice of 

agents, but not their functionality. Similarly, an organizational function is introduced to 

coordinate the system of multiple agents. 

In Human-based Genetic Algorithms, the three primary are simplified into selection and 

recombination (merging crossover and mutation). These two main functions can be 

taken over by either human or computational agents – not just exclusively, but even in 

combination. For example, there may be a computational recombination agent, a 

human selection agent like in Interactive Genetic Algorithms plus an additional 

computational selection agent (Figure 8). This is the defining feature of Human-based 

Genetic Algorithms. The term Human-based Genetic Algorithms may be considered to 

be slightly misleading for a number of reasons. Firstly, this class of Genetic Algorithms 

does not exclusively incorporate human agents. Secondly, the distinguishing feature is 

the use of a multi-agent system not necessarily a human-based system. Kosorukoff’s 

own publication (Kosorukoff, 2001) also used the term multi-agent Genetic Algorithms, 

which would be a more distinguished term and probably less prone to be 

misinterpreted. Also, please note, in order to simplify reading this text, any human agent 

will be referred to as ‘human’ and any computational agent as ‘agent’. 

 

Figure 8 – Example of Genetic Algorithm as multi-agent system 
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Kosorukoff also identified a significant implication of Human-based Genetic Algorithms: 

The organizational function needs to be efficiently and carefully designed in order to 

allow for effective agent-agent or agent-human interaction (Kosorukoff, 2001). While 

this indication seems to be correct, it is equally true for simple Genetic Algorithms and 

especially Interactive Genetic Algorithms. The program structure defines how the 

entities (computational or human) interact, how effectively they perform and whether 

it is possible to achieve any sensible, desired outcomes at all. Therefore it seems as if 

this seemingly generic problem is outweighed by the robustness and flexibility of a 

multi-agent system. In relation to this study, it seems to be a huge advantage to be able 

to utilize agents in addition to human selection in order to augment the before 

mentioned issue of user fatigue. If a computational agent performs one or many 

iterations of selection instead of the human user, the capability of the human is probably 

utilized in a better, more effective way, and therefore allows for an overall larger 

number of iterations, which in turn leads to a better convergence of desired and 

achieved results. This is one of the core ideas, which this research seeks to explore. 

In context of Human-based Genetic Algorithms, the idea to add several agents to the 

multi-agent system in order to perform the same task in a similar fashion, but based on 

different learning algorithms is called ensemble learning (Witten et al., 2011). 

Specifically, multiple classification models could be combined in order to increase 

performance of the overall system. This is known as Boosting in machine learning and 

has been established and thoroughly investigated by Freund and Schapire (1999). While 

this could be an interesting extension of this study, as it might lead to improved learning 

ability of the selection agent, it has to be reserved for future as it is beyond the scope of 

this thesis research (see section 5.4.3 - Boosting Human-based Genetic Algorithms). 

2.7 Summary 

In the literature review, three main areas relevant to this research have been 

highlighted. Procedural Cities in context of Generative Design, Genetic Algorithms as 

part of Evolutionary Computation, and the concept of Autonomous Agents and Multi 

Agent Systems.  A critical discussion of some of the aspects of Genetic Algorithms, and 

in particular Interactive Genetic Algorithms has been provided. Extensions of the 

concept using an Agent-based approach have been shown and gaps in existing 
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knowledge have been revealed. While the literature provides an understanding of what 

Generative Design and Evolutionary Computation contribute to current knowledge, 

there are only few examples of applying Interactive Genetic Algorithms for Design 

applications. In particular, there is no existing research using Human-based Genetic 

Algorithms, which employ human and computational agents to counteract the effects 

of fatigue in a computer graphics design context. The following section discusses the 

mixed method Methodology of this study, and introduces software systems and 

experimental process as part of the research design.  
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3 Methodology and Research Design 

3.1 Methodology 

This study uses a practice-led methodology (Candy, 2006) in conjunction with Design 

Science Research as suggested by Hevner et al (2004). Elements from Action Research 

(Davison, Martinsons, & Kock, 2004) and Empirical Research (Cohen, 1995) are also 

employed. As a result, the research is characterized by a pragmatic research philosophy 

using a mixed methods approach. 

Practice-led research is an offspring of practice-based methods and both share a similar 

foundation and have many overlaps (Dean & Smith, 2009). But there are some 

significant differences, most importantly, practice-led research is not so much 

concerned with an actual product or artefact as its main outcome. Practice-led research 

aims to enhance the knowledge about processes and practice instead. The objective is 

to advance techniques and workflows, rather than merely creating an artefact. Practice-

led research also seeks to create a better understanding of practice (Candy, 2006). The 

selection of procedural city generation as an application seeks to do this, namely 

through using different processes to create the building blocks of such cities. For 

example, this study employs an approach based on Delaunay triangulation (Okabe, 

Boots, Sugihara, & Chiu, 2000)  for the street system (section 3.2.3.2) instead of a self-

connecting L-system as proposed by Parish and Müller (2001). This allows the 

integration of global goals for the street system as pointed out by Parish and Müller. 

With a larger, coarse Delaunay mesh in addition to the smaller, fine grained local street 

level, the impression of main arteries in the street system is achieved as discussed in 

section 3.3. 

Design Science Research (Hevner et al., 2004) on the other hand, adds the intent to 

widen the knowledge about human behaviour and predict its outcome. It aims to 

improve human (and organizational) capabilities, while creating new artefacts, a 

property shared with practice-led research. Further, Design Science Research is 

concerned with the improvement the performance of an artefact, which leads to the 

core of this study: Combining two existing, well researched and proven areas of artificial 

intelligence, to enable the designer to create very complex structures with 
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comparatively little effort. The outcome is a process that allows users with limited 

knowledge about the huge parameter set of a design system to achieve significant 

outcomes. 

The process involved has been detailed as a sequence of five phases (Figure 9) including 

an outcome expected for each individual step (Vaishnavi, 2008). The first phase is called 

Awareness of the problem and basically involves successfully identifying an issue in the 

field of research or sometimes an adaption of a problem from an allied discipline. The 

outcome of this phase is a formal or informal proposal. The second phase is closely 

related and somewhat intertwined with the Awareness, and is named Suggestion. 

Suggestion is essentially the first step towards a possible solution of the problem 

identified, and is usually a combination of existing elements, or new and existing 

elements, which offer new or improved functionality. The outcome is a provisional or 

tentative design.  

 

Figure 9 - Design Science Process 

In phase three, called Development, the provisional design is further refined and 

implemented, resulting in an artefact. According to Vaishnavi (2008) this elaboration of 

the provisional design might require a significant creative effort and potentially the use 

of a high-level tool or package for its software development. The fourth phase of 

Evaluation is often the start of an iterative process: The artefact is evaluated and new 

ideas, insights, additional knowledge gained from producing the artefact or running it, 

are fed back into Suggestion to start a new iteration. Performance measures guide the 

Evaluation and provide a tool to gauge the improvements in this iterative loop. Finally, 

the fifth phase concludes the process of Design Science Research and produces results, 

which may be consolidated and written up. Results can often be categorized into firm, 

that is verifiable and repeatable outcomes, and remaining loose ends which defy 

explanation or expose anomalies in their behaviour. These are usually subject to future 
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research. While the method is assumed to be linear from start to end, in practice it is 

often cyclic, as pointed out by Vaishnavi (2008).  

This study combines both practice-led research and Design Science Research. The 

rationale for this springs from the idea to create a new workflow, specifically using 

RenderMan file format to synthesize a new pipeline for procedural city modelling. As 

later discussed in section 3.2.2, the use of RenderMan specific file formats bears quite a 

few technical advantages, and is a novelty in context of computationally generated city 

models. The development of the new workflow is done through practice-led research. 

Contrary to this first main contribution of this study, the implementation of an 

interactive evolutionary software tool and adding autonomous agents to the process 

required an iterative approach. Therefore, Design Science Research has been employed 

as a second methodology in order to enable a more traditional software development 

process. Especially the introduction of a graphical user interface (GUI) required quite a 

few iterations. Mainly, to create a simple interface, as any complex user interaction 

could have had an additional impact on the measurement of user fatigue. A steep 

learning curve might accelerate user fatigue and could potentially lead to misinterpreted 

results of this study. Simplifying the user interface as much as possible seemed to be a 

good choice, as a high number of UI elements requires more responses from the user 

(at least to understand what is presented to them) and therefore might impact on the 

overall fatigue. A reduced number of UI elements in turn, would focus this research on 

the fatigue caused by a large number of iterations, and therefore focus on the difference 

that an agent might make to an interactive genetic algorithm. 

Action Research has also been considered as an appropriate methodology for this 

research. Action Research in computer science aims to understand real-world problems 

and design potential solutions, while simultaneously expanding scholarly knowledge. It 

therefore differs from most empirical methodologies as it does not just observe the 

world in its current state, but actively improves the studied situation (Easterbrook, 

Singer, Storey, & Damian, 2008). It could be argued that this study presents a new 

software system, based on a newly developed pipeline, which seeks to solve the issue 

of complex model creation in computer graphics. At the same time an evaluation of the 

process used to solve the real world problem, namely employing Interactive 
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Evolutionary Computation and adding agents to compensate for inherent problems 

resulting from the interactive process, is given. But comparing Design Science Research 

and Action Research, it seems that the focus of this study is on solving a technical 

problem using a development and evaluation process that introduces a new 

technological solution, namely using RIB archives, RenderMan compliant output and 

interactive design software in conjunction with Evolutionary Computation and Agents. 

This leads to the decision to employ Design Science Research, rather than Action 

Research, which focusses on understanding the problem more than providing a 

technical solution for it (Iivari & Venable, 2009). 

The final element of the methodology used in this study is based on concepts from 

Cohen (1995). In his book “Empirical Methods for Artificial Intelligence” (Cohen, 1995), 

the author draws comparisons between research with moderately intelligent animals 

and agents. The latter behave fairly similar in the sense that the required methods can 

be borrowed from biological or behavioural research. For example, the scientific task is 

identical, whether the subject of study is a lab animal like a rat or an agent program, and 

is based on the following three elemental research questions (here for the case of an 

agent program): 

1. How will a change in the agent’s structure affect its behaviour given a 
task and an environment? 

2. How will a change in an agent’s task affect its behaviour in a particular 
environment? 

3. How will a change in an agent’s environment affect its behaviour on a 
particular task? 

(Cohen, 1995) 

To be able to answer these questions, an empirical generalization strategy is used, which 

is centred around the idea of building a program that shows a certain behaviour, while 

running in a particular environment. Next, features that lead to this behaviour have to 

be identified and built into a causal model. This model, once its predictions are accurate, 

is generalized and used to make predictions in other environments or for other tasks 

(Cohen, 1995). This essentially resembles the development of the agent architecture as 

discussed in section 3.2.4 in greater detail.  

In context of the research design for this study it is also noteworthy that an interactive 

design process versus a fully automated approach has been preferred not just for the 
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reason of practicality of finding a function for aesthetic as mentioned before. It is also 

about allowing a user with very limited knowledge about computer graphics modelling 

to create complex models. Changing from a purely (or predominantly) computational to 

an interactive approach, shifts the design process from the programmer creating the 

software system to the user of such software system. If a computational process was 

chosen, the programmer would implement the selection function and therefore 

predetermine all or most of the final layout of the city. While the software could still 

create variations, it would still converge towards the optimal solution of the 

mathematical aesthetic function as implemented during programming. Different 

preferences and taste of designers could not be captured by such system. The 

interactive evolutionary approach provides a reflection of what the user intends at run 

time of the software. Should the user decide to change the intent, the system adapts to 

that. Some evidence of this is shown in Results and Observations (section 4). Further, 

some of the implications of this are discussed in section 5. 

3.2 Software System 

The problem discussed in this research is rather complex: It is multidisciplinary and is 

comprised of three major sub-problems. Accordingly, the presented solution has 

multiple software components and utilizes two different AI techniques: Genetic 

Algorithms and Agents. To account for the complexity of the issue and to reduce the 

chance of creating hidden issues which negatively influence the outcome of the 

research, a simple approach known as Dynamic Programming (Sniedovich & Lew, 2006) 

has been chosen: The topic is broken down into smaller problems to be solved 

individually before merging the solutions to resolve the overarching issue. 

Firstly, a rather simple Interactive Genetic Algorithm for solving a design problem has 

been implemented. The design issue resolved with this approach was the creation of 

Infographics, specifically Geotagged maps of New Zealand. Geotagged maps incorporate 

location markers into the design. For this specific application, the map colours, the 

marker shape and colours as well as the angle of the observing camera haven been 

chosen as parameters of the design problem.  
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Secondly, the Interactive Genetic Algorithm was applied to the considerably more 

complex task of creating a three dimensional digital city model. The process was also 

expanded through the concepts of Human Based Genetic Algorithms, by dividing the 

software system into agents, computational and human. Both human and 

computational agents are supervised by an organizational entity, which also runs the 

actual evolutionary process as explained in section 2.6. From a design stand point, the 

goal was to assemble a CG scene with full three dimensional geometry, the option to 

apply textures and adjust the virtual camera, and visualize by rendering images using a 

commercially available render engine. These requirements were intentionally chosen in 

order to guarantee that the study reflects a practical situation and therefore provides 

outcomes that are measureable and verifiable. The city model also introduces a 

significantly higher complexity and much larger set of adjustable parameters. In a 

manual modelling situation, the user would have to understand and work with this 

parameter set. In case of this study, this is being avoided through the use of evolutionary 

computation. The user interface has been kept as simple as possible to achieve results 

that can be easily reproduced. Further, the simplicity reduces the potential of 

misinterpretation of the result observed. 

Both case studies were designed with slightly different goals in mind. The former, 

Interactive Genetic Algorithm was targeting an understanding of computer graphics 

applications in context of evolutionary computation. As mentioned in the literature 

review, there are very few and very simple graphics design applications using interactive 

evolutionary computation such as the colour or pattern finding projects. Other examples 

include engineering design, which aims to achieve mechanical, physical or mathematical 

design goals, but not any aesthetic intent. This gap is filled by the Interactive Genetic 

Algorithm creating Infographics. 

The latter case study, using Human Based Genetic Algorithms to create three 

dimensional computer graphics models, specifically models of urban environments, had 

the goal to build on the first case and add computational agents to support the user. The 

agent runs some of the selections and therefore reduces the workload on the user, 

potentially counteracting fatigue and perhaps increasing the number of possible 

iterations to refine the final model. Another aspect is the possibility to discover new 
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designs, which have not been anticipated during conceptualization of a particular city 

design. The idea of using agents as an entity to create diversity is known as Novelty 

Search (Velez & Clune, 2014). While novelty search is not part of this thesis, Human-

based Genetic Algorithms lay a foundation for this type of research, due to their inherent 

flexibility in agent configuration and organization.   

Both case studies are detailed in sections 3.2.3.1 and 3.2.3.2. 

The software prototypes have been developed using the Java programming language. 

The render engine used to visualize the results is RenderMan/3Delight (“Welcome | 

3delight,” 2014) and renders RIB archives written in ASCII mode. The GUI is based on the 

Processing framework (Fry & Reas, 2004).  

The final sections 3.2.4 discusses the specifics of the Agent architecture as it has been 

implemented for the software prototype of the Human Based Genetic Algorithm. 

3.2.1 Pipeline 

The workflow, commonly labelled as “pipeline” in design and computer graphics 

contexts (Okun & Zwerman, 2010), simply describes a serial set of individual processes, 

much like the instructions in a recipe. Unlike an algorithm, which has a similar underlying 

structure, but features decisions, loops and other control elements, it usually 

encapsulates a linear process.  

A resemblance of a state of the art visual effects pipeline including commonly used 

commercial software packages has intentionally been selected for this study for the 

following reasons. Using some of the tools of the industry such as Autodesk Maya, 

RenderMan compliant 3Delight renderer and common file formats found in most visual 

effects and design pipelines might make the core contribution very useable with little or 

no adaption work to be done by game and digital effects facilities. Therefore, the 

outcomes are widely applicable. Also, time constraints of this study were an additional 

factor: Developing every element from scratch would have been beyond the scope of 

this thesis. But the main reason behind the choice is consistency. When looking for 

testable and repeatable results, and draw defendable conclusions based on measured 

data, any hidden error in the software system, would prove to be problematic. 

Commercial software produced for a range of very large industries like game and film is 
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tested and revised through many iterations and quality assurance processes as pointed 

out by Okun and Zwerman (2010). Within the scope of a research project like this one, 

a thorough and deep testing of components that are not directly related to the core 

concern of the study would be impossible, at least at the depth and scale of what 

commercial suppliers such as Pixar or Autodesk provide. Therefore, every component 

and every step of the presented pipeline has been carefully selected with the idea of 

consistency in mind. 

The number of possible options and parameters of some of the steps in the process has 

also been reduced quite intentionally, following the same notion of stability and 

repeatability. For example, while it would have been possible to evolve each individual 

building that is used as part of the evolutionary computation for the final city, this 

additional layer has been removed. Another important reason was the limited hardware 

accessible for this study compared to what companies such as Weta Digital or Pixar 

provide.  Without the use of a commercial size renderfarm, additional detailing is simply 

prohibitive both in terms of render times, but also regarding memory size and storage 

space. Instead, instances of one object are being used, which are simply copies of the 

same object at different scale in height and width. This work uses a combinations of 

multiple instances to form new variations of buildings, but overall this decision has 

reduced the number of possible variants, which leads to simpler appearance, but 

significantly more consistency in measurable results. The aim is not to create the most 

believable and pretty city, but to evaluate the performance of the proposed workflow 

in conjunction with a human user. Reducing the options focusses the user’s attention on 

fewer details and allows for more accurate statements about the process. Probably the 

largest variable in measured data is the human designer expressing taste, preference 

and ideas through selection. It therefore seems necessary to reduce the variance were 

it is possible and least problematic. And while the simplification potentially offers less 

visual appeal than a fully photo-realistic render of a city, this decision probably did not 

impact on the final renderings as a suitable vehicle for this study, as render quality and 

realism are not part of this investigation.  

A simplified overview of the city modelling pipeline used in this study is shown in Figure 

10. Possible inputs for the core of this research are 3D building models (either evolved 
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from primitives or manually created) or simple geometric primitives such as cylinders, 

cubes or combinations of both. These basic elements are passed on to the Human-based 

 

Figure 10 - simplified pipeline overview 

Genetic Algorithm, which is a combination of Interactive Genetic Algorithm and agent. 

This is the core of this research and represents, what has been implemented as a main 

part of this study. The output of this stage of the pipeline is a RIB archive as shown in 

the following section of this thesis. The RIB archive is passed on to the render engine, 

which generates the new images for the next generation of candidates. In case of this 

research, 3Delight (“Welcome | 3delight,” 2014) has been used for rendering. The open 

architecture of this pipeline allows for easy adaptation to existing work environments 

and makes the core of this research a very practical component for future study as well 

as industry application. Possible options have been suggested, in order to extend the 

presented pipeline in Section 5.4. 

3.2.2 RIB archives 

The models that are being created during the evolutionary process are saved in RIB files 

(RenderMan Interface Bytestream), which contain the scene and its elements including 

all models, instances, shader calls and texture elements in form of RenderMan Scene 

Description Language (“RenderMan Options and Attributes,” 2014). This file format is 
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available in ASCII and binary, with the former being used in this study for clarity and 

simplicity. RIB files, also called RIB archives, contain the full render description for each 

candidate of a population and therefore each intermediary city model description is 

preserved for the whole process of evolving the final city. This allows for later analysis 

of the process at large, as well as each individual generation of cities. In general, RIB files 

commonly represent one image or one single frame of a sequence to be rendered. Each 

RIB archive gets processed by the RenderMan (or RenderMan compliant) render engine 

separately. The result is a single image, for example Jpeg or Tiff.  

Figure 11 shows an example structure of a RIB archive as used in this study. The 

RenderMan Scene Description Language uses bracketed blocks for some of the items in 

the file such as Attributes, Transforms or the overall frame. Additionally, some common 

items such as frame description and preframe are single lines led in by a predefined 

keyword. Neither the order of the elements, nor the indentation is required and serves 

mere aesthetic and practical purposes to make reading the files easier. 

First, there is the overall frame, which is only preceded by the preframe – normally 

comments. The frame contains global information such as global transforms and 

attributes. The following section in case of this example is a range of object definitions. 

These object definitions can be instanced in the world block. Using instances reduces 

the memory usage and storage requirements, and keeps the file simple and again more 

readable. Object definitions can either be primitives like cylinder, torus and sphere, or 

files that are read by the render engine during render time, for example additional RIB 

archives containing objects made of multiple primitives. Following are additional frame 

definitions that instruct the render engine to perform operations such as camera setup, 

image plane clipping and image file format and size. The next section is the main section 

of the file called world. It is bracketed by a WorldBegin and WorldEnd tag, and contains 

all attributes and objects that are actually to be rendered. In the World block, instances 

of previously defined objects or read-in RIB archives, are stored. Attributes can be single 

line items or blocks and apply to the following object call or instance call. If attributes 

and objects are bracketed by a TransformBegin and TransformEnd, any global transform 

(translate or rotate in the frame section) has no influence on this particular bracketed 

item. Instead, the local translate and rotate information within the transform block is 
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applied. This is similar to pushMatrix() or popMatrix() in other programming languages 

and frameworks like Processing or Openframeworks. 

 

Figure 11 - Structure of a RIB archive 

The example file shows only two objects (a patch and a bilinear), while the RIB archives 

used in this study have an additional number of instances, one for each building. This 

 
Page | 47 

 



means, for the examples shown in this study, more than 10,000 instances have been 

created in the files and rendered into images by the render engine per candidate 

solution. To make the process more accessible, the instances have been simplified and 

are mostly textured cubes and cylinders. Suggestions, on how to expand on this 

foundation and how to increase the level of detail as part of future research, can be 

found in section 5.4 of this thesis. Instancing every object in the file will also enable any 

industry adaption quite easily, as the file name for ReadArchive can simply be replaced 

with any desired model, for example a detailed building. The presented pipeline would 

automatically incorporate such building at render time, and depending on availability of 

render power and memory capacity, significantly more complex city models could be 

generated by the same method. 

Creating and writing RIB archives for this study has been implemented as a Java class, 

which adds all elements line by line and block by block (for the instanced buildings of 

the city). The result is saved as a *.rib file. Rendering the rib into an image file is done by 

a second Java class. This render class calls the RenderMan compliant renderer as a sub 

process and the previously written RIB file is passed as an argument. The rationale 

behind this is to keep the process of creating and rendering RIB files as flexible as 

possible. This allows for easy adaption to other RenderMan compliant render engines 

such as Pixar RenderMan, 3Delight or Pixie. While these all add a lot of features to the 

core RenderMan definition, they are all usable as the RIB file created by the Java class is 

strictly compliant with the original RenderMan format. The advantages of this approach 

are not only the flexibility mentioned above, but also possible adaption for future 

RenderMan compliant render engines and possible expansion using proprietary features 

of the chosen renderer. For example, 3Delight allows to add true Ray tracing features to 

a render. Shaders written to employ Ray tracing for reflections of glass and metal could 

easily be called from the created RIB file and applied to the instanced buildings as 

required. In the spirit of a practical visual effects or game development pipeline, the 

open RIB archive architecture provides expandability and adaptability for a variety of 

requirements as well as future proof extensibility. 
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The actual process of assembling the RIB archive file varies depending on the type of 

objects to be rendered. This is therefore discussed within each of the following 

sections 3.2.3.1 for Infographics and 3.2.3.2 for procedural cities. 

3.2.3 Applications 

This study employs two different applications as detailed in the following two 

subsections. Reasons for this split into multiple applications are given, the underlying 

algorithms described, and the user interface – which is particularly relevant due to the 

interactive nature of the project – is explained. 

3.2.3.1 Infographics 

During the interactive design process, the user is presented with 12 maps generated by 

the algorithm as shown in Figure 12. The user selects one map with the desired water 

colour, landmass colour, location marker shape and marker colour as well as camera 

angle. These attributes of a map are named abstraction parameters in the following, as 

they do not represent a direct parameter of the map such as RGB color values, but an 

abstract description, loosely modelled on human description. These abstraction 

parameters were derived through a phenomenological (empirically relating the 

underlying parameters to abstract description) approach. The idea here is to abstract 

parameters even if they could be directly entered by a savvy user. The reasoning behind 

this is to account for more complex items, which could not as easily be controlled by the 

user and therefore justify computational help. For example, most computer users are 

familiar with colour selection tools from photo editing software or even word 

processors. Such user would have little difficulty entering colours for water and land. 

But when it comes to three dimensional virtual camera control (the perspective that the 

map is shown from), even moderately educated animation artists often struggle, based 

on the researchers experience. A simplification or abstraction for camera control would 

be beneficial. Therefore, in order to keep a consistent control interface, all input 

parameters have been abstracted.  
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In case that the user is not satisfied with any of the 12 maps, he is asked to select the 

closest possible candidate map. Aside from this selection, there is only one dial for the 

user to give a ‘confidence vote’ of his selection and a confirm button. The confidence is 

an abstraction that reflects the level of satisfaction of the selections made in relation to 

the desired design goal. For example, if the map colour and other parameters are all 

fairly close to the design goal, but simply not spot on, the user might select a high 

confidence level. If the maps are all not a match for the desired design, the confidence 

vote would be very low. While this seems to be a very fuzzy, subjective parameter, in 

practice it works really well and had a high influence on the speed of the design process. 

The parameter is part of the fitness evaluation of the Genetic Algorithm and is used to 

control the mutation rate with a fixed crossover probability at 0.5. The high crossover 

rate is based on the small number of candidates in each population. Would the crossover 

probability be significantly lower, a solution would still be reached, but take a high 

number of runs, which might go beyond the attention span of any human user. The 

chosen crossover rate is based on several tests conducted to establish a balance 

between keeping the average number of runs low and finding an acceptable solution. 

The user controlled mutation probability is inversely proportional to the slider setting, 

which means the higher the confidence, the lower the mutation rate. 

Figure 12 - Infographics using Genetic Algorithms 
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3.2.3.2 Procedural Cities 

The first important decision that led to the underlying idea of combining Interactive 

Evolutionary Computation and Agents for this study, was to computationally generate a 

model of a city. The reasoning behind this shift from manual laborious modelling to 

significant computational support, is the complexity and number of parameters that are 

necessary to create such model. While Parish and Müller (2001) point out, that the 

creation of systems of high visual complexity is an established process in computer 

graphics, it still requires a very high level of skill, knowledge and consumes a lot of time. 

Even breaking the overall model down into smaller units such as buildings, streets and 

layout, does not lead to a significant simplification or is less demanding towards the 

computer graphics expertise of the designer. Using computational approaches 

exclusively, pose the same problem on the software developer. Many different 

approaches have been taken to combine smaller, simple elements into a large system. 

These include L-systems for plant generation (Prusinkiewicz & Lindenmayer, 1996), 

dress design (Cho, 2002), level generation for jump and run games (Sorenson & 

Pasquier, 2010) and the before mentioned L-system based city engine by Parish and 

Müller (2001). But none of these processes close the gap between highly complex 

systems and the inclusion of the designer in the creation process. This is where the 

novelty of this solution lies. It enables a moderately skilled designer to create a large 

model of high complexity without compromising on the aesthetic demands to achieve 

said complexity.  

While it seems that it is principally possible to use the proposed system of IGA and 

Agents for nearly any computer generated asset for games, film or virtual reality, a city 

has intentionally been selected as an example of high complexity and composed of many 

individual parts. Another approach would be the creation of a game or virtual reality 

character, which has a similar high number of possible parameters, but poses a different 

complexity, in that characters are not made of many small individual building blocks, but 

have to be organic and seamless in order to be believable. For example, a randomly 

shaped head can only be attached to a differently styled upper body if the goal is to 

make cartoon characters. For realistic humanoid characters, certain proportions have to 

be considered in order to produce believable results. Adding the rigging (skeleton for 

 
Page | 51 

 



animation) into this consideration, a computer generated character is a very complex 

object per se. While it was possible to test the proposed system of IGA and agents in 

two different scenarios, Infographics and Procedural Cities, adding another very 

complex test case such as fully rigged characters would be beyond the scope of this 

thesis. Such an attempt would be a suitable subject for further research into the matter 

of IGA supported by agents, as outlined in section 5.4.  

The design and creation of CG cities is a complex undertaking as pointed out in previous 

sections. By utilizing  the experience from the Infographics generation by use of Genetic 

Algorithms and extrapolating the concept to drive considerably larger sets of 

parameters for city models, it is possible for a relatively novice DCC software user to 

produce an involved design.  

 

Figure 13 - Manhattan grid structure example including height value examples 
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Some of the decisions that could be considered limiting to the achievable design, such 

as using a square matrix to place buildings, separate land and water and drive the height 

and density of the city centre with its higher buildings, are indeed not limiting at all. For 

example, considering a map of the Manhattan peninsula of New York City and overlaying 

a simple square grid (see Figure 13), it is possible to break the complexity of Manhattan 

down into few small units, for example streets, buildings, water and land. Taking the 

idea further, the same grid overlay could be used to build a height-map of the buildings 

on the peninsula by assigning different height values to each grid cell (Figure 14). This is 

effectively reverse engineering the main spatial and aesthetic features of the city. 

Further, this approach does not limit the street layout to be square and grid like. Figure 

15 is based on an underlying square grid, but shows typical non-square, European like 

cities, which evolved from a city centre and spread outwards like a web. And this reverse 

approach is the foundation of the city model as discussed in this study. A simple grid 

structure is introduced to represent buildings, land and water. A street-map is used to 

build the network of streets between the buildings on land, and finally an occupancy 

grid is used to indicate the presence of water.  

  

A height-map is applied to the buildings in the grid, which drives the height of the 

buildings plus a pre-defined variance so that the elevation does not appear too uniform, 

but believable and aesthetically similar to what is expected based on looking at actual 

cities.  Further, only simple instances of buildings are used during the design process. 

 

Figure 14 - New York style streets 

 

 

Figure 15 - European style street layout 
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This is for two reasons, one being the very practical realization that creating and 

rendering times have to be as short as possible to reduce additional user fatigue. 

Secondly, the instances can easily be replaced with prebuild or purchased models of very 

different architectural styles. This also allows us to vary between different cities such as 

North American ‘New York’ type, European or even Asian building types. The 

applicability of this approach is therefore much broader than the presented prototype 

might suggest. Further investigation is of course needed to verify this, but again, the 

limiting factor is predominantly the scope of this study and not the presented process 

itself. 

While the GUI, which was again written in Java using the Processing framework to 

provide some graphics functions, is seemingly similar to the Infographic creation, it has 

the following important differences: There are only two input parameters, which reflect 

the two main parents of each population of the Genetic Algorithm. And there is no input 

for the confidence of the user anymore, as the underlying software system is more 

capable through the addition of the agent plus additional logging of previous selections 

and rejections, and makes decisions without the need of additional information. The 

motivation behind this simplification is the desire to reduce user fatigue. Additional 

inputs would require additional user attention. And as the models, which the user 

designs, grow in complexity, the risk of extending the required attention and interaction 

beyond the point of human capacity is rising as well. Minimizing the number of required 

interactions per iteration seemed the most appropriate way to focus the results of this 

study on said fatigue and avoiding it by adding agents. 

The resulting city model is being kept fairly simple in order to make rendering of 9 

candidates for a number of iterations feasible. This is just a limitation of the available 

hardware and could easily be changed in a commercial environment by using a small 

render farm. But to manage the rendering times (which are purely a result of the 

commercial render engine and not the software system presented here), only simple 

geometric primitives such as cylinders and cubes have been used for the object 

instances. Also, the texture is very small and simple, due to the limited memory available 

in the test system. Given that the software system has been designed to use instances 

of small building blocks instead of copies of existing models, the process of changing 

from this simple type of geometry to a fully textured, shaded, high polygon model for 
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each house is just the mere adjustment of one configuration parameter. The system to 

produce feature film quality renders has been established and poses no limitation to the 

validity of the results. It is just a matter of using high end workstations, which could also 

be done in future research, assuming that the resources would be accessible. 

A typical model, as it is shown to the user for selection, is shown in Figure 16. Some of 

the defining features include a New York style street system which divides the city into 

square blocks, some water visible in the far background as well as a distinct city centre 

on the far left with a number of larger than average buildings surrounding it. 

 

Figure 16 - Candidate showing New York style streets, water in the background, distinct city center 

One aspect which resulted from the previous learnings using Interactive Genetic 

Algorithms to create Infographics, was the necessity to avoid local maxima. In order to 

keep a balance between fast search, which could potentially lead to the trap of local 

maxima and having to run a very high number of generations in order to maintain 

diversity, the agent architecture had to incorporate an indication for the level of 

confidence to be able to identify user preference. This confidence parameter impacts 

on the mutation rate of the Genetic Algorithm to keep the number of required iterations 

as low as possible, while being able to find a valid solution. This is detailed in the 

following section 3.2.4. 
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3.2.4 Implemented Agent Architecture 

In this study, the agent architecture is built in multiple layers. Its foundation is a form of 

long term memory, which stores previous choices made by the agent itself. Plus, the 

memory keeps any user selections as a list of historic events. The second layer is a 

learning unit, which handles current and historic inputs and outputs by the agent and 

the user. The learner classifies new generations of candidates based on several available 

classification algorithms and makes new decisions following these classifications. The 

decisions made lead to actions, in this case selections of new candidates for future 

breeding. These selections are fed back into the Genetic Algorithm. While this 

architecture is relatively straight forward, it is still following the common view of what 

an agents is: As seen in the literature review, Fogel (2006) as well as Russel and Norvig 

(1994), all differentiate an agent from any other software by assuming that the agent 

observes (at least part of) its environment, makes decisions based on these observations 

and takes actions accordingly. All three of those assumptions are found in the agent 

architecture used in this research. 

The main classifiers used in this study are based on decision trees and naïve Bayes. The 

reasoning behind this is to evaluate different learning approaches from different classes 

of learning algorithms. Employing the WEKA machine learning framework allows for a 

fast switch between different approaches, which provides an insight into the 

performance of learning algorithms based on very small training sets as used in this 

study. Given that the aim was to counteract the effects of fatigue by running as few 

iterations as possible, only a small number of user selections per run were available for 

training the agent, before the trained classifier had to evaluate a generation of 

candidates itself. 

This study utilizes the C4.5 algorithm (Quinlan, 1986), which was used to induce the 

decision trees. Specifically, WEKA’s J48 classifier, which is an open source 

implementation of C4.5 revision 8, created the decision tree at runtime and refined it 

after each selection made by the user. This is how the initially untrained agent is able 

observe the actions taken by the user and utilize this information to build the decision 

tree independent of the goal desired by the user at the start of each run. It adapts every 

time the whole interactive process is started and does not rely on any assumptions made 
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by the software developer. Every time the user gives new input, the resulting generation 

of cities is considered a new supervised input. Subsequently, the increasing size of the 

training set, growing with the iterative selection process by the user, improves the 

classifier of the learning algorithm due to the increasing number of valid test samples, 

and therefore the ability of the agent to predict user preference more accurately is 

improved with every interactive step. This also implies that the user only gives feedback 

to the agent’s actions by making new selections, not through a direct 

rewards/punishment system. Therefore, the frequency of interactive and 

computational runs, has to be relatively high at the start, and only when the agent has 

received a certain number of valid test samples to build the classifier, its involvement is 

being increased and more computational selections are being conducted by the agent. 

This ratio between interactive user selection and computational selection by the agent 

can be set before the start of the interactive modelling process. Nearly all experiments 

of this study, are based on a run of 10 interactive selections, followed by another 10 

selections, where the agent and the user made selections every other time. From the 

20th selection run, the agent was responsible for 9 generations, while the user only 

interacted every 10th time. While this required the user to provide an initially high 

number of selections, the workload was relatively quickly reduced to a very low number. 

This pattern was only changed during initial testing, in order to find suitable parameters 

for this study.  

Following the empirical research methods as discussed by Cohen (1995), the agent was 

first developed to run within a very simple environment, based on a fixed training set, 

which was previously generated by interactively creating populations and saving them 

to disk. This training set was used to induce the decision tree, effectively allowing to 

create the agent’s decision unit in a controlled environment. The intent used for the 

creation of the training set was also predetermined in order to achieve verifiable results: 

• A harbor city – implying the presence of water, not just dry land. 

• A large population living in the city – implying high risers rather than 

suburbian one or two level buildings 

• A visible business district – requiring a height map with a clearly focused 

center that leads to very high buildings in a confined area of the city 
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• A modern city layout – calling for a ‘New York style’ street layout, rather 

than an organic web like structure as found in typical European cities. 

The agent was evaluated by use of a predefined testing set, again created by controlled 

user interaction in the same fashion the training set was made. Verifying the agent’s 

behaviour in a number of such scenarios, using varying goals, which had previously been 

determined, allowed to run the computational agent under controlled conditions. 

Finally, once the behaviour was explored and confirmed, the agent was put into 

unknown environments, in this case, run concurrently with user interaction, while 

creating the decision tree at runtime. The interactive tool provided by the WEKA 

framework (Hall et al., 2009) was used to evaluate the classifier. 

To address the issue of balance between number of required iterations and finding a 

solution without getting stuck in local maxima of the search space, the agent employs 

an evaluation that measures the level of confidence in the classifier. WEKA provides 

functions for this, using the training data set and a test data set. In order to be able to 

evaluate the classifier at run time without any previous knowledge of the user’s 

preference, a small fraction of user selected populations were added to the test set 

instead of the training set. The classifier was applied to this test set, as it contains the 

valid user evaluations, and a score for correctly and incorrectly classifying instances 

(populations) is given. The higher this score, the higher the confidence of the agent to 

be able to correctly predict the user’s preference. This confidence in turn, drives the 

mutation probability. A small probability for random mutation is always maintained, 

independent of the agent’s confidence. This allows the user to change direction by 

selecting a sample that does not fit the previously chosen samples. For instance, if the 

user had a tendency to prefer a large amount of water surrounding the city centre and 

suddenly selects a candidate with little or no water areas at all, the sample would 

deviate from the mean of the parameter space quite significantly. Especially towards 

the end of the search process, when the set goal is nearly achieved and the agent’s 

confidence is already very high, this diversion would have an impact on the level of 

confidence of the agent and subsequently on the mutation rate. This in turn, opens the 

search space up again and allows more random samples to be generated, therefore 

creating some diversity.  
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The DNA string used in the Genetic Algorithm is made of the following parameters: 

• Ground 2D integer array, reflecting land or water 

• Heightmap 2D integer array, height of buildings 

• Streets  2D integer array, street map layout 

• Buildings 2D integer array, type of building 

• City  2D integer array, location of city center(s), a few distinct buildings 

One of the necessities for inducing decision trees is to keep the number of attributes as 

low as possible, while still arriving at a solution in form of a usable classifier (Hall et al., 

2009). To accommodate this requirement, the parameters for the agent have been 

abstracted from the candidates DNA string.  

Instead of using each attribute of the DNA, some have been consolidated. For example, 

the height map is a grid-like structure represented as a 2D array in the DNA, which has 

been pre-processed into three parameters: Average building height, number of 

buildings and height of buildings in the city centre (or scale of the buildings compared 

to the average height in the remainder of the city). This reduces the number of 

parameters from originally 10,000 cells in the 2D grid, holding the height value for each 

individual cell, to just 3 attributes, which make induction of a decision possible for the 

agent. 

In summary, the attributes for the agent are: 

• Land/Water ratio 

• Street type (European or New York style) 

• Average building height 

• Number of buildings 

• Height of city centre 

Additionally, the agent receives the class value, which indicates whether this instance of 

the training set has been selected or rejected. Finding the correct class value in new 

instances is ultimately the task of the agent. 
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3.3 Experimental Process 

Using small, simple elements to create a larger, more complex structure is part of this 

research. Our design process will be driven by an algorithm and enable the designer to 

come up with new forms and shapes. The user will be in a position where a set goal of 

designing a complex three dimensional city, can be achieved without manually 

constructing the elements or overall structure. It is therefore important to understand 

the differences between manual Computer Aided Design and Generative Design as 

pointed out above.  

This section of the study discusses the experimental practice and the empirical evidence 

gathered throughout the process. This includes testing the software prototypes and 

their performance. The performance has been measured using different stages of the 

software prototypes, for instance using simple random selection without the Genetic 

Algorithm, as well as performance using the Genetic Algorithm driven by the user. 

3.3.1 Infographics 

The performance of the Interactive Genetic Algorithm was measured using predefined 

goals to ensure consistency for each test. The selected goals were very different, some 

resembling familiar map designs like blue water, green land, others intentionally 

diverting from the convention. Some examples were also worded relatively precisely 

using specific colour or shape instructions, allowing for only narrow interpretation, while 

others were more abstract using attributes such as dark, bright, contrast. Examples of 

such predefined goals include: 

• Blue water, green land mass, red markers, pin needle marker shape 

• Blue water, green land mass, red markers, pyramid marker shape 

• Black water, yellow land, blue marker, pin needle marker shape 

• Dark water, bright land, high contrast marker, sharp marker shape 
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An exemplary run can be broken down as follows (Figure 17): 

 

Figure 17 - Infographics process 

All runs were conducted several times to increase the number of samples collected. And 

in order to generate a control for the Interactive Genetic Algorithm, a second run based 

on the same prerequisites was conducted, using just a random map generation instead 

of the support of the evolutionary process. The times for each run were noted as well, 

as they provide an indication for the attention span required and therefore an indication 

of possible fatigue. 

3.3.2 Procedural City 

Following the experiences from the Infographics experiments, some of the learnings 

have been incorporated into the experimental process of evolving procedural city 

models. The overall experimental process for procedural cities involves three different 

runs: Random, IGA and HBGA, but not necessarily in this order so that the user does not 

attempt the design with a preoccupied idea of how the software might perform. For all 

three variants, the user interaction is exactly the same, so that the underlying software 

system is fully transparent to the user. The differences are detailed in the following 

subsections.  

User selects four candidates, one for each abstraction parameter.

Confidence slider is set, depending on how close the selections 
resemble the final goal

Genetic Algorithm adds selected parents to pool with a high 
probability and unselected candidates with a low probability

Parents are selected from the mating pool and their underlying 
parameters mixed as per crossover probability

Random mutation based on mutation rate (confidence slider) is 
applied to child DNA, and new candidate is rendered based on 
this DNA
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In any case, each iteration of the user interaction starts with a set of 9 rendered city 

models. These are created by the software system depending on the underlying model, 

for example random selection, interactive genetic algorithm without agent and 

interactive genetic algorithm with agent. The user selects two parents with the mouse 

(both show a coloured border around the selection to give visual feedback) and starts 

the algorithm with a press of the space button. Everything else such as log information, 

RIB file creation and sub-processes for the render engine are hidden from the user. This 

keeps the user interface as simple as possible, with the idea to utilize maximum user 

focus for the actual task of selection. 

After computation, including creating the new population of 9 cities, writing the RIB 

archives and rendering the resulting images, the user is presented with the next 

generation ready for selection.  

Each individual approach was conducted based on a predefined set of goals, similar to 

the experimental process of the Infographics. Some of the requests that where made 

include relatively specific elements such as: 

• A city with a lot of blue water, a city centre with very high buildings on the left 

and some smaller buildings on the right hand side of frame 

• A city without water, multiple city centres with few or no small buildings visible 

in frame 

• A city without water, no distinct city centre and only very small buildings 

Other requests were kept abstract using high level description of the desired features. 

Again, this was designed so that the difference between a tight goal driven, perhaps 

client based approach and in difference a free creative design, independent of any 

strong prerequisites and maybe just loosely based on a design idea could be simulated. 

The latter examples include: 

• A harbour city with a large population 

• A city in a valley with a suburban feel 

• A city by the sea with a lot of tourism 

 Similar to the experimental process with Infographics and Genetic Algorithms, a 

number of results were recorded for each different approach. These findings include the 

run times for the overall process from start to finding a result that the designer deemed 
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final, the number of iterations required to get to the final result, and also the subjective 

feeling after performing a full run. While the latter is not necessarily representative for 

the quality of the algorithm, with regards to user fatigue, it might provide an idea 

whether the software system is successfully reducing the workload on the user. 

3.3.2.1 Random Selection 

While the testing of random candidate generation as a control was still feasible for the 

above mentioned Infographics, it turned out to be impractical for more complex issues, 

in this case city models. Preliminary testing lead to the conclusion that the large number 

of parameters and the long render times may not find any solution within hundreds or 

thousands of generations. But in order to provide at least some control measure for this 

study, the following approach has been taken, mainly to make the random selection a 

bit more practical. 

Instead of asking the user to select parents, which are not used for random creation 

anyway, or watch every generation being rendered, which takes a considerable amount 

of time, with little chance of an actual outcome, a different workflow was used. The 

computer generated 100 random generations, which were batch processed overnight. 

The resulting images were numbered and sorted, so that any potential candidate could 

be identified. The user had to go through the 900 images to see if there was any solution 

available, and if so, the population that contained the accepted candidate could be 

noted. To put this in perspective, the longer Interactive runs finished after 56 

generations (or 504 images) that the user selected from.  

3.3.2.2 Interactive Genetic Algorithm 

The Interactive Genetic Algorithm without the support of a computational agent was 

the first type of experiment, which employed the canonical Genetic Algorithm along 

with a human designer for aesthetic selection. Two parents are selected out of 9 

candidates, which are presented as rendered images. These two parents enter the gene 

pool with the highest probability for breeding. Additionally, the rejected 7 candidates 

are entered with a very low probability of being used. Recombination is achieved by 

single point crossover at a random point of the DNA string. Mutation of parameters 

takes place based on a low probability. The resulting candidates are saved as RIB 
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archives and added to a log system for future examination. Finally, the RIB archives are 

rendered using 3Delight (“Welcome | 3delight,” 2014) and presented to the user for the 

next evaluation. While this process is an interactive variant of a purely computational 

Genetic Algorithm, it resembles the idea of simple evolutionary computation very 

closely, in order to provide a control for Human-based Genetic Algorithm as discussed 

in the following section.  

3.3.2.3 Human-based Genetic Algorithm 

The Human-based Genetic Algorithm works similar to the approach detailed in the 

literature review (Kosorukoff, 2001). An Interactive Genetic Algorithm is the centre of 

this approach, with either a human agent or a computational agent being responsible 

for the selection, while the recombination and organizational components are always 

fully computational in this case. The user is presented with a generation of 9 different 

cities. The first generation is always randomly generated, as there are no previous 

selections, which the recombination could be based on. Next, the human-based 

selection is performed as detailed in section 3.3.2. The selected pair of cities is passed 

to the recombination algorithm, which takes both parents, creates the breading pool 

based on the fixed crossover probability and performs a single point crossover to create 

9 new city DNAs. Mutation of the DNA strings is driven by the mutation rate, which is 

initially set to 0.02 based on previous experiments and based on the relatively large 

number of parameters encoded in the DNA string. This rate changes in later generations 

as soon as the agents returns a higher confidence evaluation based on a larger number 

of training sets (user rated city generations). The RIB archives are then created using the 

new 9 DNA strings. Finally, after rendering each RIB archive into a fully shaded, fully 

textured image, the new generation is shown to the user and the next iteration cycle 

begins. 

This process, exclusively based on the selection feedback of the human user is 

performed for 10 iterations. The number of iterations required from the user before the 

agent starts to help is supervised by the organizational component of the Human-based 

Genetic Algorithm and can be changed based on experimental experience. This set of 10 

human user iterations is the initial training set for the agent’s classifier. From generation 

11 onwards, the user and the agent take turns running the selection. The reasoning 

 
Page | 64 

 



behind this is to keep providing suitable training sets (by getting user input), which 

refines the initial training set of 10. Further, this allows the agent to start running 

iterations and therefore reduce the effort required by the human user. This approach 

also allows the agent to evaluate the quality of its classifier and provide a confidence 

vote, which ultimately leads to a reduction of the mutation rate. Finally, reaching 

iteration number 20, the agent runs 9 iterations, while the human user just interacts 

every 10 generations. As mentioned before, these thresholds for agent selection can be 

changed, if required. For example, the human user could continue to run every second 

generation in order to provide a larger training set for the agent. Or, the process could 

increase incrementally, with the agent running 2 out of 3 generations and so on. The 

thresholds chosen for this study were simply based on empirical observation and found 

to be effective. A discussion of this can be found in section 4 of this study. 

3.3.2.4 Testing and Performance Measurements 

In order to facilitate testing and gather information about the process of Interactive 

Evolutionary Computation with and without agent support, a few systems have been 

established at different points of the evaluation prototypes. First, every generation is 

logged as a RIB archive in human readable ASCII format to enable the researcher to 

examine the underlying DNA of each candidate in every generation. Also, the rendered 

images of each generation are saved, which allows for a reasonably fast examination 

compared to the genotype (the raw DNA data), as the images – the phenotype of the 

candidates - are visual representations of the DNA and naturally serve as a visual aid for 

comparisons. Further, different environmental parameters of each run are documented, 

such as run time, number of iterations, time per iteration, recombination parameters 

including crossover and mutation probabilities, as well as goal parameters and final 

candidates. The intent was to capture as much information as possible to identify 

possible signs of fatigue while understanding the conditions that might have led to it. 

With regards to the agents, debugging is slightly more difficult due to the autonomous 

nature of the agents architecture and its evolving decision making process, which is not 

predetermined, but adjusted with every human input. According to Wooldridge (2009) 

and others such as Russell and Norvig (2003), autonomous agents are notoriously 

difficult to debug. In an attempt to resolve this issue for this research, the classifiers as 

 
Page | 65 

 



they were evolving were written out to disk as model files for WEKA (Hall et al., 2009). 

This allowed for offline examination of the decision trees in the interactive tools 

provided by the WEKA framework. The results are discussed in the following two 

sections of this thesis.  
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4 Results and Observations 

4.1 Introduction 

This section presents the findings of the study. Empirical evidence as well as qualitative 

results are described and analysed in preparation for the discussion of the outcomes 

and final conclusions in section 5. 

4.2 Infographics 

A number of different tests were conducted using conditions defined prior to executing 

each individual run, as detailed above in section 3.3.1. Every run was done twice, 

executing two different algorithms. First using just a random map generation algorithm 

without any evolutionary computation. This provided a control for this experiment. The 

second run was done running the interactive genetic algorithm. Both situations were 

then repeated multiple times in order to gather a larger, more representative number 

of samples. 

A fragment from an exemplary random run, with the goal of creating a blue water, green 

land, red pin needle marker infographic, looks as follows: 

 

The first random population shows no 
valid candidates. While there are 
arguably two candidates with blue 
water visible, none of them has green 
land, nor red pin needle markers. 
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The second random population shows 
no valid candidates. There are a few 
candidates with blue water and one 

with green land, but none in 
combination, nor red pin needle 

markers at all. 

 

The third random population 
example shows no valid candidates. 

There are a few candidates with 
blue water and green land, but 

none in combination, nor red pin 
needle markers at all. The only 

candidate that is somewhat close to 
the brief is the second in the middle 

row, with blue water, pale green 
land, but spikey, triangular markers 

in a different colour. 

 

The fourth random population 
example shows individual parameters 

again, but no combination as 
requested. The second candidate in 

the last row has blue water and green 
land, but the wrong marker style and 
colour. The following, third candidate 
in the last row shows the right marker 

style and colour, but not the right 
land nor water. 

 

These few examples are representative of the majority of candidates with randomly 

generated parameters. Although the number of parameters is relatively small compared 

to the case study of procedural cities, a vast number of possible random populations can 

be created without reaching a viable solution. It is important to consider that colour still 

leaves room for interpretation and therefore any candidate that comes close to the brief 

might be considered valid. For example, while the brief for the above random run was 

not ‘pale green land’, the level of saturation (colour intensity) is subject to individual 

interpretation. Any given problem that has a more specific aesthetic parameter than 
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colour, for instance ‘pin needle’, removes this room for subjectivity and therefore 

requires a very specific solution to be presented: If the final result does not contain pin 

needle markers, but triangular markers, it would have to be dismissed. 

The following table shows a full run using Interactive Genetic Algorithms. The run 

finished after 5 iterations, following the initial random generation with a range of valid 

candidates. The brief was the same as for the above random run. 

 

The first random population shows no 
valid candidates. A selection of four 
candidates for water colour, land 
colour, marker style and marker colour 
has been made, including the candidate 
top left, second middle, bottom right. 
All of the candidates show some of the 
desired features such as blue water, 
green land, red pin needle marker. 

 

The second population shows no valid 
candidates. There are more candidates 

with blue water and green land, and 
two with red markers. The two top 

right candidates show promising 
colour combinations. 

 

This population starts to show more of 
the desired colours, while the water is 
still purple and the land very bright 
green. Several examples have pin needle 
markers that are of red colour, while the 
red is still fairly magenta. 
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In this example, the water colour 
converges towards blue in many 

candidates. The left bottom shows a 
more desirable saturation and hue (less 

red), while the land colour in this 
particular candidate is off target 

(blue).Also the number of red pin needle 
markers has not significantly improved. 
At this stage the mutation rate was set 
lower in order to produce less variety 
and instead keep more of the features 

such as blue water. 

 

This population shows a lot more blue 
water of the right colour, several 

examples of green land with red pin 
needle markers. While the run could 
have concluded at this stage, it was 

decided to run again in order to produce 
a more distinct red marker colour. The 

mutation rate was very low at this stage 
to avoid any major diversion from the 

very close to finished results.  
 
 

 

This is the final generation of this run. 
Several nearly identical images indicate, 

that the IGA has converged towards 
these solutions. The final candidate as 
selected by the user is at the bottom 

right.  

 

The following table (Figure 18) shows the summary of 30 experiments conducted with 

the average number of runs and times for random and interactive evolutionary runs: 

 

 Random (# of 
generations) 

Time (s)  IGA (# of 
generations) 

Time 
(s) 

Average 53 154  7 43 
Random/IGA 100 % 100 %  13.2 % 27.9 % 

 
Figure 18 - Summary of experiments 
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The comparison shows significant improvements using an Interactive Genetic Algorithm 

with variable mutation probability over simple random runs. The number of runs 

required is just more than 1/8th and while the IGA runs take much longer than the 

random ones, with the latter merely requiring the click of a button, looking at all 12 

candidates and deciding whether the goal has been (coincidentally) achieved, the overall 

time savings are still quite significant (less than 1/3rd of time required for IGA runs). But 

the statistics, and in particular the times needed, only reflect part of the advantages of 

IGA over random generation. The user has to make a decision every time new candidates 

are presented. This requires concentration. And running an average of 53 generations 

as opposed to an average of 7 could be more tiring based on the render times and the 

user interactions necessary, even though the overall time needed is 27.9 % and not just 

13.2%. While this is a subjective impression, it seems to play a role in user fatigue. The 

willingness to attempt another IGA run was higher than compared to random runs. The 

more engaging interactive evolutionary process seemed to be a factor in this as well. 

The soft factors mentioned can neither be confirmed nor dismissed in this study, and it 

could be interesting to look deeper into these psychological issues in future research. 

Whenever the variety of Infographics did not include any of the desired properties for a 

number of runs, the user set the confidence slider lower, therefore increasing the 

mutation probability and subsequently the diversity of candidates in each population as 

discussed in section 5.2. 

One interesting property of the system is the ability to change course fairly quickly, due 

to the variable mutation rate. For example, one run started with the goal to produce 

blue water, green land, red pin needle markers and a flat camera angle. After 5 runs, 

when the results were starting to converge towards the originally intended design, a 

new goal was set, without resetting the algorithm. The changed intent aimed to deliver 

a dark water, yellow land, red pin needle markers and a flat camera angle. The idea was 

to simulate a change of mind of the user or perhaps a client of the designer in the middle 

of the design process. The generation at that point had no candidate that came close to 

the new brief. Without starting over, the user simply selected candidates that remotely 

resembled the idea of the new goal such as slightly darker water, slightly more green-

yellow land, red markers and a flat camera angle. The first few generations produced no 

useful outcome and the confidence slider was set much lower again. After about 6 
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additional generations the algorithm started to converge towards the new design goal 

again. The whole process took 17 generations to produce the desired result, including 

the originally ‘misleading’ generations towards the first, rejected design goal. This is a 

remarkable reduction compared to the random process, and while starting over with a 

fresh set of candidates could have been more effective based on the average number of 

7 generations, it demonstrates the adaptability of the Interactive Genetic Algorithm and 

its potential to break out of maxima in the fitness function and find another solution 

relatively quickly. This is an important feature in creative and interactive processes. 

While following an originally conceptualized outcome, ideas or requirements might 

change and the designer has to be able to adapt his practice and the software tools used 

should not be a limiting factor. A similar case, where the software system supports the 

designer through added intelligence, involving the support of the computational agent 

is shown in section 4.3.3 in context of the Human-based Genetic Algorithm. 

Using this rather simple design example with an intentionally reduced parameter set 

and a simplified user interface, the validity of Interactive Evolutionary Computation in 

conjunction with design problems in virtual worlds has been successfully confirmed. The 

principles of GUI simplicity and abstraction of parameters has been translated to the 

core of the software system of this research. Its application to a more complex issue 

with a significantly larger set of parameters has been successfully demonstrated as 

discussed in section 4.3 of this thesis. 
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4.3 Procedural City 

As detailed in previous sections, the experimental process involved three different runs: 

Random selection, Interactive Genetic Algorithm without agent and Human-based 

Genetic Algorithm including a computational agent. These were conducted by the 

researcher and supervisor, and more extensive testing with a larger group of 

participants has been suggested as part of future work (see section 5.3). 

The average computational process including rendering takes just under 9 seconds on 

average, when running on a high-end windows workstation (Intel Core i7 – 4770k, 16 GB 

RAM, NVidia GTX780, 2x SSD). The main portion of this time is devoted to rendering the 

images using 3Delight (running 4 cores, 8 threads), while less than a second is consumed 

by the generation of new populations, writing RIB archives and running the agent. It can 

therefore be assumed that the computation time is very similar for all three different 

scenarios as discussed in the following subsections. As a result, the influence of 

computation time of any of the three different approaches is negligible, and any fatigue 

of the user can most likely be linked to the number of required iterations and therefore 

the overall process, rather than differences in the computation times of each individual 

iteration. 

4.3.1 Random Selection 

An exception to the experimental process was the random selection: Initial testing did 

not show any promising candidates, even after a larger number of runs. In a few rare 

cases though, a random sample early on in the process could have been accepted under 

the assumption that the brief was not taken too rigorously, but none of the candidates 

resembled the previously stated goal for that run exactly. But the waiting times for each 

generation are relatively high, with only a slim chance of randomly striking an acceptable 

solution. Therefore, as outlined in section 3.3.2.1, involving the human into the full 

process, just to create a random control was deemed to be impractical. Instead, batch 

processing was realized and the user went through the results only. While this approach 

did not measure the fatigue generated by the actual (redundant) selection plus render 

times for every generation, having to go through 900 pictures proved to be very tiring 

too. 
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Two runs were conducted, and the experiment was not continued for the initially 

envisioned 10 runs. The time it took to evaluate the images seemed to justify the 

conclusion that random selection does not necessarily lead to a result within a practical 

time frame.  

While it could be argued that manual creation takes much longer, this study’s focus is 

on computational solutions, and the run times in the following sections demonstrate the 

difference between a manual / random and a computational approach. 

One interesting finding is the relevance of the design goal though. When looking for a 

very specific outcome, for example a large city by the water with many high rise buildings 

on the left of screen and some flat buildings on the right, it was clear after 100 

generations (or 900 images) that no solution had been found. But when the goal was set 

in a more abstract way, without any specific requirements, for instance large harbour 

city, some of the candidates seemed to fulfil that brief at least very loosely. But in saying 

this, it seems necessary that the set goal has to be specific enough, so that any broad 

interpretation, which might include many very different solutions, is avoided. A loose 

goal setting would not provide any contestable results with regards to the specific 

research question of this study. This research is concerned with the difference between 

pure Interactive Evolutionary Computation and Human-based Genetic Algorithms to 

address fatigue.  

Further, it can be said that the task of looking through a large number of random 

samples seems daunting, despite the chance that there may be a viable solution in the 

random set. This finding leads to another question: Does the presence of a 

computational component such as evolutionary computation or an autonomous agent 

engage the user more, just by providing the impression of support and the identification 

of the user as part of a ‘team’ of human and computational agents? This area of research 

is located outside of the scope of this study as it investigates psychological aspects of 

user experience rather than mental or physical exhaustion in form of fatigue. But looking 

at the subjective perception of the presence of artificial intelligence during the capture 

of data might provide some interesting insights on a different level, and give some clues 

whether an agent needs to be successfully making decisions at all or if its presence alone 

improves the user experience, which in turn might compensate some of the effects of 

fatigue. 
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4.3.2 Interactive Genetic Algorithm 

The following images shows a few examples of a typical run using Interactive Genetic 

Algorithms without the support of a computational agent. The predetermined goal was 

very specific, stating that a city with a lot of blue water, a distinct city center on the left 

and much smaller buildings on the right was to be created. 

 

Figure 19 - Generation 1 of an IGA run 

Figure 19 is the first generation of the example. Typically, the first generation contains 

a number of mixed results, here with 6 of 9 candidates containing just land and no water. 

Consequently, the user selected candidates top/left and bottom/left. 

As a result of mainly choosing candidates that had water present, the user improved the 

number of available options in subsequent generations. The next image (Figure 20) 

shows generation 10, which has significantly more cities with water visible. 
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Figure 20 - Generation 10 of a typical IGA run 

Another 10 generations later (Figure 21), a couple of candidates with water, also start 

developing high buildings on the left and somewhat smaller buildings on the right hand 

side. 

 

Figure 21 - Generation 20 of IGA 
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In generation 30 of this exemplary IGA run (Figure 22), a few issues can be observed, 

which are based on the slow convergence of the Genetic Algorithm. 

 

Figure 22 - Generation 30 of exemplary IGA run 

While all candidates, except number 2, contain water, and candidate 1 has high buildings 

on the left side, the majority of candidates had the buildings on the left. But none of the 

candidates presented the required properties as outlined before the run started. 

Accordingly, another 10 generations were required in order to achieve the first 

promising results, as depicted in Figure 23.  
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Figure 23 - Generation 40 of IGA run 

After 7 additional iterations, the final candidate was found. Figure 24 shows the 

originally requested water, a distinct centre with high buildings on the left and low-rise 

buildings on the right side of frame. While the result satisfied all criteria of the brief, it 

required 47 generations to achieve it. 

 

Figure 24 - Final candidate of IGA run 
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Overall, the Interactive Genetic Algorithm without an agent was tested in 36 runs with 

an average of 37 generations per run. The standard deviation was 11 generations, which 

shows a fairly wide spread. The smallest run was only 1 generation, although this was 

deemed a special case and likely due to the subjective nature of aesthetics combined 

with an element of ‘luck’ arising from the stochastic nature of the algorithms. After 

finding a suitable candidate right in the first generation, another few iterations were 

conducted, which showed even more promising results. The fact that the initial 

conclusion in generation 1, was later reviewed and seemingly better solutions were 

found in subsequent generations, underlines the implications of judging aesthetics 

based on a high level project brief (which was given for this particular run). A more 

detailed brief would probably have led to more iterations in the first place. 

The average time per run was 18 minutes. Figure 25 shows an overview of the statistics 

of all runs conducted using Interactive Genetic Algorithms compared to Human-based 

Genetic Algorithms. For each run, the same brief was given based on examples shown 

in section 3.3.2. Results of both IGA and HBGA are being discussed side by side in the 

following section. 

4.3.3 Human-based Genetic Algorithm 

The Human-based Genetic Algorithm was tested in 36 runs, similar to the Interactive 

Genetic Algorithm and with the same predetermined goals, as discussed in the previous 

section. The average number of generations was 52 with a standard deviation was 14. 

The maximum was 91 generations and the minimum 21. The average time per run was 

12 minutes. It is noteworthy that the total number of iterations is higher compared to 

IGA, but this higher number includes both interactive and computational generations 

conducted by the human designer and the autonomous agent respectively. The mean 

number of generations using HBGA that required user interaction is 18 and therefore 

much lower compared 37 using IGA.  

 

 

Figure 25 - Comparison IGA versus HBGA 

 # runs # generations (interactive) # generations (total) Time (average) 
IGA 36 37 37 18 

HBGA 36 18 52 12 
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The higher number of generations in total indicates that a greater number of possible 

solutions is being explored, though a smaller number are being evaluated by the user in 

person. 

Different initial mutation rates for the Genetic Algorithm were verified, with the 

majority of runs conducted at 0.2 probability. This showed a good performance in terms 

of relatively quick convergence, without the issue of getting stuck in local maxima. The 

latter was experienced at initial mutation rates of 0.02. At this low rate, the system 

seemed to produce little diversity even after only a few runs and the user could not 

achieve the predetermined goal as most candidates looked very similar and left no room 

for additional evolutionary breeding. 

It is interesting to see that the average number of generations using the Human-based 

Genetic Algorithm is significantly higher compared to the Interactive Genetic Algorithm. 

This is not unexpected though. In case of the Interactive Genetic Algorithm, the user has 

to run every generation interactively. The time consumed per iteration is about 10 

seconds render time plus user decision time, which was typically about 15 seconds. This 

means, an average run took just over 15 minutes. Comparing this to the Human-based 

Genetic Algorithm, the time for the first 10 runs is identical. But after that, the non-

interactive generations, driven by the computational agent take virtually no time (under 

1 second) for the decision making process and only the last generation that is to be 

presented to the user for interactive selection again, needs to be rendered, which takes 

the aforementioned 15 seconds. Therefore, many additional generations can be run in 

the same time, which the user seems to take advantage of in case of the Human-based 

Genetic Algorithm.   

For the overall process it can be said, that if the user is less pleased with the results 

returned by the agent, the user will select candidates that are different, rather than 

similar. This triggers the agent to change course as well, running a lower level of 

confidence due to the inherent inability to predict the sudden random selection by the 

user, which in turn creates more diversity through increased mutation probability. 

Consequently, this allows the designer to choose a more intuitive, even unstructured 

approach to the modelling process, and a carefully, clearly planned execution is not a 

requirement anymore. The designer is essentially able to use playful discovery without 

endangering the end product. In a random or manual approach, this would cost either a 
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lot of time, as many hundreds or thousands of parameters would have to be adjusted, 

or it would be impossible, given that a certain appearance of the buildings in the skyline 

can only be altered by changing the layout of the city blocks and the street pattern. 

A few interesting cases could be observed, where an originally weak and seemingly 

unstructured response from the Algorithm in the first 10 iterations, is altered by the 

support of the software agent within a few iterations. The software agent suddenly 

drives the designs into a different direction from what the Genetic Algorithm did, and 

closely follows what it identified based on the human selections. Therefore, the overall 

system performed better than its individual components and provided a better user 

experience. For example, the brief was to create a city without water and flat buildings 

with no distinct city center. The Genetic Algorithm showed a high number of candidates 

with water, an average of 7 out of 9 per generation. The user inevitably selected 

candidates with land and no water. While the Genetic Algorithm continued to present 

candidates with water in higher proportion (Figure 26), the agent’s classifier was trained 

by the user selection. 

 

Figure 26 – Generation 10 of HBGA run presenting mostly water, contrary to the brief given 
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Once the agent came into effect, after only 4 additional generations, there were 

predominantly candidates containing land available (Figure 27). And even the 

candidates still containing water, had proportionally more land and buildings visible. 

 

Figure 27 - Generation 14 of the same HBGA run as above, showing mostly land-based candidates 

It was a bit surprising that the user did not always follow a straight approach towards 

the goal. For example, if a harbour city model was requested, quite a few selections 

involved no water at all. There are a few possible reasons for that. First, perhaps most 

of the other parameters did not fit the brief from the perspective of the user. Or, the 

fact that relatively little effort to create a new city layout was required, compared to 

manual modelling, led to a more playful attitude. Overall, it seems that the user is more 

adventurous using the Human-based Genetic Algorithm, changing direction a few times, 

for example from water on the left to water on the right when asked to make a harbour 

city. One would probably not attempt a drastic change after many man hours of 

modelling manually, as a larger diversion from the original layout might require a re-

start of the whole manual modelling process. Due to the support of the agent and the 

relatively fast ‘modelling’ approach, there seems to be a lower boundary for otherwise 

significant changes. It seems that interactivity on one hand, but also the agent reducing 

fatigue on the other hand, allow for more user iterations and therefore exploration of 

different solutions.  
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The core of the agent architecture used in this study is the decision tree, which is induced 

at run-time and refined in subsequent iterations by use of the additional selections 

made by the user. Figure 28 shows part of a decision tree after 14 user-driven iterations.  

 

Figure 28 - Decision tree visualization with WEKA after 15 generations 

The root attribute is land/water ratio, which gives a clear indication that any candidate 

with more water than 14% is to be rejected, which is true for 86 of all instances of the 

training set. The goal of this run was in fact to find a city with no water, and based on 

the training set, the classifier preferred any candidate with less than 14% of water. The 

full tree has 7 branches and shows a high rate of confidence (88% correctly classified 

instances), although most of the candidates were rejected right at the root, based on 

the amount of water compared to land. This is one indication of a useable classification 

tree, however, some of the other decision trees that have been examined throughout 

this study, were not as clear and had a lower level of confidence. There has been no 

clear indication that the J48 classifier produces viable results in every case. Sometimes 

the tree is not able to reliably identify candidates with a high confidence and the score 

was only around 60%. However, this is still a marginal improvement over a 50/50 ‘coin 

toss’, so there is some value in the use of the agent. It seems that perhaps the noise of 

the training data due to the low number of instance compared to other data mining 

tasks, might be a contributing factor. Hall et al. (2009) discuss this as a possible issue, 
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and other work using J48 has identified that when the number of instances is low 

compared to the number of attributes, the J48 classifier becomes of limited use (Finlay, 

Connor, & Pears, 2011).  In the instance of the procedural city generation, the 

classification is conducted on 5 attributes and typically the training set would include 10 

initial instances. The selection of J48 was initially based on its popularity as a classifier, 

however a potential solution to improve the effectiveness of the classification might be 

the introduction of an alternative classifier, which could be part of future research and 

the matter requires further investigation. The WEKA framework allows for relatively 

easy adaption of different algorithms and the software system presented here, should 

be able to accommodate further testing, as suggested in section 5.4. 
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5 Discussion and Conclusions 

5.1 Contributions 

This thesis discusses two main contributions to knowledge. First, an original workflow 

using RIB archives for easy instancing, and rendering tools based on industry standards 

has been developed, which allows Multi-agent Genetic Algorithms to be employed in 

Computer Graphics design tasks. The open standard using Pixar’s RIB format is widely 

used in the visual effects industry in order to accommodate rendering pipelines for film 

and game cinematics. Incorporating the same existing tools into a new workflow, opens 

new possibilities for research, but allows industry to adapt the offered processes with 

minimal adjustments. 

Second, an enquiry into the viability of Human-based Genetic Algorithms to offset the 

known negative effects of fatigue in conjunction with common Interactive Genetic 

Algorithms has been conducted. Initial findings show some promising prospects in form 

of time savings and high number of possible iterations. The results have been 

documented and first conclusions have been drawn, which provide the cornerstone for 

deeper investigation in future.  

5.2 Findings 

The Infographics, while being only a preparation and test case for the main component 

of the research, the procedural city generation, still provided a number of important 

learnings. 

The control over the mutation rate effectively translates into the ability to maintain a 

high level of novelty (through high mutation) for the presented candidates. In an 

abstractive sense, this helps to avoid the genetic algorithm getting stuck in local maxima 

in search of a global solution. In order to avoid the necessity for such control, which adds 

to the input required and therefore potentially compromises the goal to reduce user 

fatigue and increase the ability to execute a high number of runs if needed, the agent 

implementation of the Human Based Genetic Algorithm for the procedural city 

modelling had to account for the possibility of finding only local maxima in the search 

space. This is done by maintaining a balance between aggressive optimization towards 
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the search goal and rewarding novelty and diversity by allowing a degree of mutation in 

each run. 

An interesting observation is the influence of soft factors such as positive emotions. 

Fatigue seems not just to be based on attention span and focus, but also to be 

compensated by subjective positive emotions. Evaluating the candidate solutions 

presented by the computational agent seems to positively engage the designer more 

than when evaluating those presented by the IGA. The process of using interactive 

evolutionary concepts, which allow the user to observe convergence towards selected 

goals with each iteration, could be almost described as playful. Looking deeper into 

these finding is beyond the scope of this study and also centred in a different field of 

enquiry, though will be discussed briefly in section 5.4.  

Looking at the number of iterations run by the Human-based Genetic Algorithm 

compared to pure Interactive Genetic Algorithm, it seems that the user might be happy 

to allow more iterations, if they are not interactive, but run by an agent. It seems not to 

be about keeping the maximum number of iterations low, but more about optimizing 

the final result within a certain time frame. The average time of the runs between IGA 

and HBGA were very similar, which could indicate that the user is more driven by time 

consumed, rather than the number of selections that have to be made by either the 

human or the agent. This might hint that the driving factor is indeed fatigue or attention 

span, and that a computational agent helps to optimize the result by running additional 

iterations. Based on this prototype, it looks as if the system of Interactive Evolutionary 

Computation and agents shows some promising benefits towards goal optimization, and 

a wider study could probably confirm this indication and provide additional insights. 

When assessing the results it is important to note, that this study has been designed 

with a particular purpose in mind and a quick look at the bigger picture seems 

appropriate at this point. This research fills an important gap, as it provides an academic 

prototype for evolution-based interactive model design. The type of model as well as 

the combination of different agents, human and computational can be adjusted with a 

high flexibility. The long term idea is to take this framework and apply it to a large scale 

study using a significantly more complex modelling topic, namely computer generated 

character design, as part of a PhD. The idea to be able to model entire armies or crowds 

of characters is not new, but the approach is. Currently, character modelling and rigging 
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is one of the most challenging tasks in computer graphics. Modelling an entire crowd, 

assuming that there are very few twins in any crowd, is exponentially more difficult and 

laborious (Wade, 2010). Applying the concepts and methods presented in this study 

could potentially reduce the amount of work not just during the design phase of 

individual characters, no matter if they are cartoon style or photo realistic, but also when 

creating large numbers of variants such as soccer fans in a stadium or soldiers in an army. 

The results of this study might give an indication of the possibilities, and prove that the 

software system works, but a larger collection of measurements would be desirable to 

test the application of agents with interactive genetic algorithms for different models 

and in particular computer graphics characters. 

Summarizing it can be said, that the results of this study do not show conclusive 

evidence that agents lead to consistent improvements of Interactive Genetic 

Algorithms. But there are some indications that this approach has advantages. First, 

there are some promising signs when adding agents to the interactive process, for 

example the cases where the Genetic Algorithm seemed to suffer from a high mutation 

probability, which lead to a high diversity and no clear convergence. Once the agent ran 

some of the generations, a clear shift in direction towards the previous user selection 

was observable. This needs further proof, which a quantitative experiment could 

provide. Second, the observation that the user seemed to enjoy the interactive process 

more, once the agent was engaged, could prove to be a valuable insight. While this 

needs further investigation as well, looking at the psychological aspects of perceived 

intelligence by a computational system could provide additional value, seems like the 

next logical step in understanding the user experience of Interactive Evolutionary 

Computation better. This thesis provides a framework that both a quantitative study 

and an investigation into positive contributions to user experience could build on. 

Another aspect that the researcher intents to deepen in further study, is the application 

of the framework of Human-based Genetic Algorithms to computer generated character 

design. This thesis extends existing knowledge about Interactive Evolutionary 

Computation by providing a generic workflow based on RIB archives and industry 

standard render engines. The findings will make the increased complexity of character 

modelling and rigging manageable, so that a quantitative study is feasible, which might 

provide a better understanding of the mixed mode approach using human and 
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computational agents in evolutionary computation for design. While the matter requires 

a lot more research in different areas, in can be said that this thesis has laid the 

foundation for this direction to be pursued. 

5.3 Limitations 

First of all, the models produced throughout this research are somewhat simplified. 

While justification for this approach has been provided and the software system has 

been designed to easily be expanded to accommodate much more complexity, the study 

has been conducted based on this limitation. As indicated in section 5.4 models with 

higher complexity could be part of future research. Aside from the reasons such as focus 

on the underlying agent research and reduction of additional user fatigue, the available 

hardware resources like memory size and processor speed are limiting factors as well. 

The outcomes are merely academic and would need justification in a commercial 

production environment. It would be desirable to run the model generation on a 

commercial render farm used by visual effects or games companies (game companies 

produce their cinematic sequences in a similar way as visual effects for film and 

television are created, by using non-real time rendering to increase the quality and 

complexity of the resulting movie clips). The purpose of this research is to present a new 

approach to interactive modelling, and not to implement a fully featured commercial 

product. Another hardware limitation is storage space, as this study has been conducted 

using a regular high spec PC, not a production facility sized network server. To get an 

indication of what is required, Weta Digital Ltd used 1 Petabyte of data for the 

production of the movie Avatar, with some individual shots larger than 4 Terabytes 

(Gruzas, 2012). Therefore it can be assumed, that it would be beneficial to run tests on 

a high capacity workstation or small render farm using highly detailed instanced models 

(see also section 5.4.1) in order to demonstrate the outcomes in a real world 

environment. 

A further limitation is the amount of user testing with regards to measureable outcomes. 

While general conclusions can be drawn from the research conducted, it would be 

beneficial to run tests with a larger group of participants from at least two different 

levels of knowledge and skill. The software system has been developed with commercial 

applications, run by specialized users with moderate expertise in modelling, in mind. But 

 
Page | 88 

 



based on the results of this study, even more convincing outcomes might be possible, if 

an approach with a broader participation would be investigated. For example, if two 

groups of experts and entirely novice users of modelling software  would conduct user 

validation tests, it might be possible to demonstrate that even the full absence of 

previous expertise still leads to acceptable results due to the abstraction of parameters 

which the interactive, agent supported approach provides. This is subject to future 

research and beyond the scope of this master thesis. 

5.4 Future Work 

5.4.1 Procedurally generated buildings 

There have been some successful attempts to procedurally generate buildings for city 

models in the past. One example uses shape grammars (Aschwanden et al., 2009) to 

model skyscrapers. Another approach is the use of L-systems as presented by Parish and 

Müller (2001). The generation of the overall city is different from the approach taken in 

this study. The latter uses L-systems for the city layout including available spaces for 

buildings and streets (Parish & Müller, 2001). The former is simply an extension of 

Parish’s and Müller’s work (Aschwanden et al., 2009). Future research into city models 

could make use of the existing L-system based approach. But there is also the possibility 

to evolve buildings using an evolutionary method such as genetic algorithms. Further, it 

would be possible to procedurally generate the textures for the buildings by use of rule 

based systems for example. While Parish and Müller (2001) had to generate all building 

textures by hand, and the same is true for this study, future work could enable more 

variety and complexity by eliminating manual texture painting. 

5.4.2 Evaluation Agents 

Aschwanden et al. (2009) investigate the use of agents to evaluate city model. They use 

a multi agent system to explore the usefulness of a procedural city. Their agent model 

is limited in that it is focused on the path finding and has a set of predefined goals. These 

limitations are purely based on the complexity of the urban environments which require 

long calculation times for each agent. According to Aschwanden et al. (2009) it is also 

virtually impossible to model the decision process of humans. One idea for future 

research into the usability of city models would be the addition of functional agents such 
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emergency workers (firemen or policemen). There is also the possibility of adding 

vehicles for personal and public transport and the simulation of traffic flow. These 

options are subject to future research and might enable a refinement of the city model, 

once the basic structural elements such as streets and buildings have been evolved. 

5.4.3 Boosting Human-based Genetic Algorithms 

Another idea that could not be explored as part of this thesis is the addition of multiple 

learning agents for selection. Instead of running one learning selection agent to the 

Human-based Genetic Algorithm, it could be advantageous to use perhaps two or three, 

in order to improve overall system performance. Every time the user makes a selection, 

the whole population of candidate solutions is added to the training set for the learning 

agent. Both parent candidates selected by the human are added with a positive 

attribute, and all seven remaining unselected candidates are added with a negative 

attribute to the training data. Accordingly, the learning agent uses the learning 

algorithm to classify the population of candidates over and over again, with a growing 

training set and therefore improved quality of classification, and subsequently improved 

level of confidence for the learning agent to select two parents that the human user 

would have chosen as well. But this approach could be applied to the outcomes of the 

computational agent as well. Running the agent concurrently to the user and using every 

instance where the agent failed to classify the population correctly could be used to 

improve future classification modelling by the agent. As pointed out in the literature 

review of this study, this technique is being referred to as Boosting in machine learning. 

Boosting could improve the overall multi-agent system performance. But Boosting has 

also been strongly criticized as not being as effective in some cases as previously 

assumed (Long & Servedio, 2010). It would be interesting to identify whether the 

criticism of Boosting applies in this case as well, or if indeed a performance gain might 

be possible by using these methods. This investigation is beyond the scope of this 

research though and could be part of future work. 

5.4.4 Psychological Aspects   

As mentioned in section 4.2, it could be interesting to evaluate soft factors, which were 

perceived during IGA experiments. Observed engagement through the almost playful 
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experience of selecting candidates for future populations, could be described as a 

gamification of modelling. It could be of value to investigate the effects of this playful 

experience on the overall modelling process in terms of efficiency improvements and 

long term engagement of the designer with the artefact.  

Similarly, the presence of an intelligent system such as an agent seems to make the 

daunting process of waiting for rendered candidates of procedural cities a bit easier as 

it implies that an artificial intelligent system has taken some of the workload of the user. 

It would be interesting to test this objectively by running different tests, with an agent 

and with a placebo, and see if the idea of intelligence softens the effects of fatigue as 

effectively as an actual intelligent system does. This type of research is located in the 

field of psychology though and has to be left for future study. 

5.5 Conclusion 

Comparing Human-based Genetic Algorithms with Interactive Genetic Algorithms shows 

that HBGA is faster in the experiments conducted throughout this study, and allows for 

more iterations in the same time, which illustrates the potential of this approach. Adding 

a computational agent to human-centric Evolutionary Computation for complex 

modelling workflows seems have a positive impact on the designer’s curiosity and 

perhaps also improves the user’s engagement with the design task, which could be a 

viable measure to counteract fatigue. A successful first step in the direction of improving 

user experience in Interactive Evolutionary Computation for Computer Graphics has 

been documented in this thesis, and an adaptable, robust workflow that accesses 

existing pipeline tools has been established.  
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