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ABSTRACT 

 

Molluscs form an important group in aquaculture as well as in coastal wild systems.  

However, high mortalities in molluscan species, specifically marine bivalves, have been 

encountered in the wild during summer times (summer mortality) as well as in 

aquaculture settings, which present a major economical challenge in many parts of the 

world. The complex interactions between host, environment and pathogens during these 

mortality events require new diagnostic tools and integrated approaches. Metabolomics 

is one of the newest and fastest growing omics. The sensitivity and specificity of 

metabolomics approaches make this a powerful tool for immunological studies, where it 

can provide insights into disease processes as well as the identification of metabolite 

biomarkers for early warning systems. This thesis was designed to provide, for the first 

time, a comprehensive understanding of the metabolic responses of mussel haemocytes 

and other tissues (e.g., gills, hepatopancreas, mantle) to external stimuli (Vibrio sp., 

lipopolysaccharides [LPS], Cu2+) using gas chromatography-mass spectrometry (GC-

MS)-based metabolomics approach. Along with the core metabolomics tool, novel flow 
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cytometry (FCM) protocols were developed in order to assess immunological parameters 

of the host upon stimulation. The combined method allows characterization of the mussel 

immune responses at both cellular and molecular levels and expands the number of 

biomarkers used to understand the animal’s response.  

Initially, tissue-specific metabolic responses of gill, haemolymph and hepatopancreas 

were observed in mussels challenged with Vibrio sp. Then, haemolymph was chosen as 

the target tissue/organ for the rest of the experiments in the thesis (Chapter 4). FCM 

revealed sex-based differences in immune responses of mussels to Vibrio sp. challenge. 

In this case, female mussels had lower haemocyte mortality, production of reactive 

oxygen species (ROS) and apoptotic cells after pathogen exposure compared to male 

mussels (Chapter 5). This suggests that female mussels have more efficient defence 

system than male mussels. However, metabolite profiles of haemolymph showed no 

significant difference between males and females. Subsequently, metabolic profiles of 

mussel haemolymph were intensively investigated in response to Vibrio sp. challenge, 

LPS and copper exposure (Chapter 6, 7 & 8). The alterations of metabolite profiles along 

with changes in immune characteristics due to stimulation provided insights into a 

number of pathways involved in immune responses of the host to Vibrio sp. infection and 

copper exposure.  

The study also identified a number of candidate biomarkers involved in mussel immune 

processes. Among these metabolites, the presence of itaconic acid (ITA) and its 

accumulation were observed in different tissues of mussels following Vibrio sp. 

challenges, suggesting the important role of this metabolite as an antimicrobial compound 

in the innate immune system of bivalves (Chapter 4, 5 & 6). In fact, the challenge 

experiment (Chapter 9) revealed the complete inhibition of ITA on Vibiro sp. growth at 
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6 mM, and Vibrio growth was partially inhibited at 3 mM ITA. This confirmed, for the 

first time, the antibacterial activity of ITA against marine Vibiro sp. and suggests that 

ITA could be used as an antimicrobial compound for antibiotic resistant bacteria in 

aquaculture. Subsequently, the ITA concentrations in different tissues of mussels 

challenged with Vibrio sp. were quantitatively measured (Chapter 10). Interestingly, the 

results revealed that mussels are able to produce an effective amount of ITA to support 

the internal defence system, suggesting that ITA could be a valuable biomarker for health 

assessment of bivalves. In addition, ITA may also involve in anti-inflammation activities 

and other unknown functions in the bivalve innate immune system, which need further 

studies to reveal.  

In conclusion, this thesis has successfully demonstrated the use of novel metabolomics 

approaches for aquaculture and marine science, which contribute new information 

regarding the molluscan immune system. It is envisaged that metabolomics will continue 

to grow as a tool of choice in studies of marine molluscs, as well as the broader field of 

marine science.  
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1.1 GENERAL INTRODUCTION 

1.1.1 Molluscan aquaculture and New Zealand aquaculture  

Molluscan aquaculture 

Molluscs constitute the second largest aquaculture group after farmed fish. In 2016, the 

global aquaculture production of molluscs was 17.1 million tonnes (mt), worth USD 29.2 

billion (FAO, 2018). There are 109 different molluscan species recorded from a total of 

598 “species items” ever farmed in the world (FAO, 2018). Bivalves represent the most 

cultivated group within molluscs, with production increasing steadily since the 1990s 

from 3.3 to a record of 15.3 million metric tonnes (mt) in 2016 (FAO, 2018). Within 

bivalves, clams and cockles are the largest commercial group (38 %), followed by oysters 

(36 %), mussels (13 %) and scallops (13 %). China is the single largest bivalve producer, 

with a production of 13.0 million mt in 2016, which accounted for almost 85 % of the 

global harvest in that year. In the same year, Japan was the second largest producer, with 

0.37 million mt, followed by South Korea (0.3 million mt) and Chile (0.31 million mt). 

Other main bivalve producing countries, included Spain, Thailand, USA, France and Italy 

generated more than 0.10 million mt in 2016.  

New Zealand aquaculture and GreenshellTM mussels 

Aquaculture is an important industry in the economy of New Zealand which aims to 

become a NZD $1 billion primary industry by 2025 (www.aquaculture.org.nz). In 2017, 

aquaculture production in New Zealand reached 116,530 tonnes (FAO, 2019b). This 

harvest mostly comes from three main aquaculture species, including GreenshellTM 

mussels (Perna canaliculus), King salmon (Oncorhynchus tshawytscha) and Pacific 

oysters (Crassostrea gigas) (Table 1.1). Other cultivated species with limited production 

include abalone (Haliotis iris) and flat oysters (Ostrea chilensis). New Zealand is 

committed to develop other potential species for aquaculture, such as geoduck clams 

http://www.aquaculture.org.nz/


 

4 Chapter 1 
 

(Panopea zelandica) (Le, 2016), yellowtail kingfish (Seriola lalandi lalandi), gropers 

(Polyprion oxygeneios) and eels (Anguilla australis, Anguilla dieffenbachia) 

(www.niwa.co.nz).   

New Zealand is considered to be a major producer of marine molluscs worldwide (FAO, 

2018). Molluscan species make up most of the cultivated seafood in New Zealand. With 

a production of 101,5 thousand tonnes, two bivalve molluscs, P. canaliculus and C. gigas, 

contribute 88 % of the national aquaculture industry (Table 1.1). Among these, P. 

canaliculus alone accounts for 85.6 % of total aquaculture production.  

GreenshellTM mussels (P. canaliculus) are endemic to New Zealand and are naturally 

distributed throughout the country. The first attempt in farming of P. canaliculus was 

conducted in the mid-1960s and the first commercial harvest was reported in 1971 (FAO, 

2019a). Since then, the production has risen from 1.2 thousand tonnes in 1971 to 101 

thousand tonnes in 2008, and has fluctuated around that level until now (FAO, 2019b). 

Farming of P. canaliculus is now carried out on longlines, in major farming areas in 

Coromandel, Marlborough Sounds and Stewart Island of New Zealand (FAO, 2019a). 

Mussels normally reach the market size of 90-100 mm in 18-24 months.  

Table 1.1 Production of New Zealand Aquaculture in 2017. Data were obtained from 
FAO FishStat (FAO, 2019b). 

 
Cultivated sspecies  Production 

(000 tonnes) 
Percentage (%) 

GreenshellTM mussels (Perna canaliculus) 99,7 85.6 
King salmon (Oncorhynchus tshawytscha) 14,9 12.8 
Pacific oysters (Crassostrea gigas) 1,8 1.5 
Others 0.1 0.1 
Total  116,5 100 

 

http://www.niwa.co.nz/
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1.1.2 Infectious diseases in marine molluscs and bivalve immunity   

Infectious diseases in marine molluscs 

Infectious diseases have been a primary concern for the growth and sustainability of 

molluscan aquaculture which have negative impacts on production of both hatcheries and 

commercial farms, as well as quality of seafood. The rapid development of aquaculture 

together with the international trade of seafood, transfers and introduction of molluscan 

seeds and stocks have increased the risk of spreading disease causative agents worldwide. 

Molluscan disease outbreaks are often associated with viruses, bacteria and parasites. The 

common pathogens and parasites affecting mollusc listed in manual of diagnostic tests 

for aquatic animals by the Office International des Epizooties (OIE) include two 

herpesviruses (abalone herpesvirus and ostreid herpesvirus 1 microvariants), six parasites 

(Bonamia exitiosa, Bonamia ostreae, Marteilia refringens, Mikrocytos mackini, 

Perkinsus marinus and Perkinsus olseni) and a bacterium (Xenohaliotis californiensis) 

(OIE, 2018). In addition, diverse bacteria in genus Vibrio have been associated with 

mortality outbreaks of bivalves in hatcheries, commercial farms and natural habitats 

(Travers et al., 2015). Examples of common Vibrio species include V. splendidus, V. 

harveyi, and V. tubiashii/coralliilyticus, V. aestuarianus, and V. crassostreae. Members 

of the generus Nocardia and Roseovarius are also considered important pathogenic 

bacteria in bivalve aquaculture (Travers et al., 2015).  

In New Zealand, high mortality events associated with detection of pathogens have 

significantly affected three important molluscan species of the country, including Pacific 

oysters (C. gigas) flat oysters (Ostrea chilensis) and GreenshellTM mussels (P. 

canaliculus). These mortality outbreaks often occurred during the summer months when 

there were elevated temperatures. The summer mortality events in C. gigas are often 

associated with detection of OsHV-1 µvar and a range of bacterial species, such as Vibrio 
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spp. (Alfaro et al., 2018, Nguyen et al., 2018). The mortality outbreaks of O. chilensis 

have been caused by the pathogen Bonamia sp. (Castinel et al., 2014) which led to 

removal of all the farmed oysters in New Zealand in 2017. The causes of mortalities in 

P. canaliculus mussels are currently not clear but are thought to be associated with 

pathogens (e.g., Vibrio bacteria, parasites, virus) and environmental factors (e.g., ocean 

acidification, increased temperatures).  

It is generally agreed that diseases in aquaculture are caused by multiple factors, including 

pathogens infections, environmental stressors and immune system dysregulations. 

Disease dynamics are heavily influenced by environmental factors (e.g., temperature, 

salinity, hydrodynamic forces and water quality) and farming practices (e.g., rearing 

history, farming sites, rearing systems) (Alfaro et al., 2018). Host factors (e.g., sexes, life 

stages, genetic make-up and physiological status) also contribute to the susceptibilities 

and survival capacities of the host to the disease. Hence, it is crucial to take into account 

the complex host-pathogen-environment interactions in immune studies and disease 

management of molluscs.  

Molluscan immune studies  

To adapt with the pathogen-rich environment of marine water, marine molluscs have 

evolved both external and internal defence systems. The external defence is made up of 

several layers of physical or mechanical barriers, including the shell and the mucosal 

layer, while the internal defence mostly relies on the innate immune system. This system 

is driven by  haemocytes and active molecules secreted by haemocytes and released into 

the haemolymph (Allam and Raftos, 2015). Hence, haemocytes are the key players in the 

internal defence of molluscs. The details of the roles of haemocytes and current cellular 
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and molecular tools applied for studies of mollusc haemocytes are presented in Chapter 

2 & 3.  

Due to the frequency of mortality events in molluscs, especially bivalves, and the 

economic importance of many bivalve species in aquaculture and coastal ecosystems, 

there is a growing number of studies on immunology and diseases of these species (Allam 

and Raftos, 2015, Guo and Ford, 2016, Nguyen et al., 2018, Travers et al., 2015). 

Significant progress has been made in the understanding of immunological mechanisms 

of molluscs at both cellular and molecular level (reviewed by Gerdol et al., 2018). 

Different diagnostic methods for molluscs have been developed, from traditional and 

immunodiagnostic methods to applications of clinical medicine for multiplex assays 

(Adams and Thompson, 2012, OIE, 2018). However, there are many knowledge gaps in 

immunology of bivalves as well as molluscs, which remain a challenge for disease 

management and aquaculture development as well as environmental monitoring (Alfaro 

et al., 2018, Gerdol et al., 2018, Green and Speck, 2018, Nguyen et al., 2018, Pernet et 

al., 2016). Nevertheless, the complex host-pathogen-environment interactions during 

mortality events require new molecular approaches, such as omics (1.1.2) along with 

routine cellular tools, such as flow cytometry (1.1.3).  

For P. canaliculus which is the most important cultivated species in New Zealand, the 

number of immune investigations is very limited. Little is known about the immunity of 

P. canaliculus and its cellular and molecular pathways in responses to pathogens. 

Currently, there are only two immune-related scientific reports on this species, including 

isolation of Vibrio pathogens from larvae (Kesarcodi-Watson et al., 2009a) and adult 

challenge experiment with Vibrio sp. (Kesarcodi-Watson et al., 2009b). Since high 

mortalities of P. canaliculus in both hatcheries and commercial farms have become a 
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frequent phenomenon in recent years, this knowledge gap remains a big challenge for 

understanding the disease process and consequently the development of management 

strategies. Hence, this is an urgent need for future investigations. 

1.1.3 Overview of omics and metabolomics 

Omics approaches are based on the holistic view that organic molecules, cells, tissues and 

organs provide powerful information about the organism’s make up, how it functions and 

how it responds to endogenous and exogenous forces (Kim, 2016). Therefore, an 

important application of omics is the identification of key biomarkers and signaling 

molecules, cellular pathways associated with cell processes, infection mechanisms and 

host responses to pathogens (Debnath et al., 2010). Omics technologies are also suitable 

to investigate the complex interactions between genotypes, phenotypes and the 

environment surrounding them (Gómez-Chiarri et al., 2015). Different omics fields focus 

on different portions of the entire life of an organism within its surrounding environment. 

Thus, genomics is the study of an organism’s genome, transcriptomics is the study of the 

transcriptome, proteomics is the large-scale study of proteins, and metabolomics 

investigates metabolites present in cells, tissues and body fluids of an organism. In 

addition to common omics such as genomics, transcriptomics, proteomics, metabolomic, 

there are other omics fields that are continuously being created to focus on specific areas 

and applications within biological sciences (e.g., epigenomics, lipidomics, foodomics, 

nutritional genomics, pharmacogenomics, toxicogenomics). Details of these omics and 

their applications in studies of molluscan haemocytes are presented in Chapter 2. 

1.1.4 Metabolomics applications in aquaculture research  

Metabolomics has been incorporated in life sciences research in recent years (Fig. 1.1).  

However, metabolomics is relatively new in aquaculture and its applications in the field 
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remain limited. During the last few years, metabolomics has been increasingly applied to 

several aspects of aquaculture research, from larval production to nutrition and diet, 

disease and immunology, environmental stress and post-harvesting quality control 

(reviewed by Alfaro and Young 2018).  

 
Figure 1.1  Number of metabolomics publications per year in all fields of science and 

in aquatic research. Data were obtained from Scopus database 
(28/04/2019). “metabolom*” was used as the key word of searching all 
publications in metabolomics field. The number of metabolomics 
publications in aquatic research were searched using key word 
“metabolom*” and either “aquaculture”, “marine science”, “aquatic 
science”, “mollusc*”, “shellfish”, “bivalves”, “fish” and “shellfish”. 

A few authors employed metabolomics to characterize the metabolic responses of 

molluscs to pathogen infections (Liu et al., 2013a, Liu et al., 2013b, Liu et al., 2014, Lu 

et al., 2017) or other environmental stresses (Digilio et al., 2016, Lu et al., 2016). These 

studies mainly used hepatopancreases (digestive gland) (Liu et al., 2013a, Liu et al., 

2013b, Liu et al., 2014, Lu et al., 2017), gills (Liu et al., 2014, Lu et al., 2017, Lu et al., 

2016) and muscle (Lu et al., 2016) as the target tissues for metabolomics analyses. The 

only report on haemolymph was conducted by Digilio et al. (2016) who characterized the 

responses of Mytilus galloprovincialis haemolymph to copper and temperature 
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challenges. Most of these studies employed nuclear magnetic resonance (NMR)-based 

metabolomics which is less throughput than gas chromatography–mass spectrometry 

(GC-MS) or liquid chromatography–mass spectrometry (LC-MS) approaches. No GC-

MS or LC-MS-based metabolomics has been reported for immunological studies of 

molluscs, except for the study by Young et al. (2017) who investigated GC-MS-based 

metabolomics to characterize the metabolite profile of oyster larvae challenged with a 

virulent strain of OsHV-1. To this end, there is a need for GC-MS-based metabolomics 

approach to characterize the metabolomic profiles of molluscan haemolymph together 

with other tissues in response to pathogens and other environmental stressors. The 

sensitivity and specificity of GC-MS techniques together with specific roles of 

haemocytes in the innate immune system, make this approach a powerful tool for 

understanding the endogenous metabolic changes in host organisms during infections and 

also interactions between hosts, pathogens and environment. Furthermore, it can be 

considered to be a valuable mean for biomarker discovery which could be used in early 

diagnosis of diseases. 

1.1.5 Flow cytometry in immunological studies of molluscs 

Flow cytometry (FCM) is a laser-based technique that is used to analyse the physical and 

chemical characteristics of cells or particles in a heterogeneous fluid mixture. There is no 

doubt that FCM is a powerful technique and a routinely used tool in marine science. It 

allows the simultaneous analysis of multiple immunological parameters of organisms on 

an individual cell basis. The FCM is commonly used in immunological studies of 

molluscs for cell sorting, cell count, cell viability, cell cycle analysis, phagocytosis, 

oxidative stress and apoptosis. In addition, FCM is an upstream phenotype tool which 

could be combined with other omics techniques for downstream applications. Details of 
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this tool, its current applications and trends in molluscan immunology are presented in 

Chapter 3.   
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1.2 THESIS AIMS 

This thesis aims to apply GC-MS-based metabolomics approaches to characterise the 

metabolic and biological responses of P. canaliculus mussels, as a model organism, to 

pathogen infections and water contaminants. The findings provide insights into the 

immune mechanisms of bivalves and allow for the identification of relevant biomarkers 

for these processes. In addition to metabolomics, different FCM assays were developed 

to provide fast and accurate characterization of immune responses of mussel haemocytes 

to external stimuli at the cellular level. Such combined approaches allow for a more 

detailed picture of the host’s responses to external stressors at both cellular and molecular 

levels and generate accurate biomarker signatures for management strategies.  

Overall, the thesis includes three main aims:  

1. Identification of tisue-specific and sex-specific immune and metabolic responses 

of mussels to Vibrio infection.   

2. Characterization of metabolite profiles and immune responses of mussel 

haemocytes under different stimulus conditions.  

3. Identification of the antimicrobial activity of itaconic acid against Vibrio sp. and 

its role in the bivalve immune system.  

1.3 THESIS STRUCTURE 

In order to achieve the overall aims of this thesis, seven experiments were conducted. The 

results from these studies were published as peer reviewed articles and are presented in 

this thesis as seven experimental case studies in Chapters 4-10.  These case studies, in 

combination with two review papers, introduction, discussion and conclusion comprise 

the 12 chapters of the thesis, which are divided into five main sections, as follows:  

• Section 1 - Introduction and literature review: Chapter 1, 2 & 3.  
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• Section 2 - Tissue-specific and sex-specific responses of bivalves to pathogen 

infections: Chapter 4 & 5.  

• Section 3 - Metabolomics profile of Perna canaliculus haemolymph: Chapter 6, 

7 & 8.  

• Section 4 - Application of metabolomics to study the antimicrobial role of itaconic 

acid: Chapter 9 & 10.  

• Section 5 - Overall discussion and conclusions: Chapter 11 & 12.  

Section 1 includes an introduction chapter (Chapter 1), and two review chapters about 

current applications of omics (Chapter 2) and flow cytometry (Chapter 3) to provide 

insights into molluscan haemocytes and immune system.  Tissue-specific (Chapter 4) and 

sex-specific (Chapter 5) metabolic responses of P. canaliculus to Vibrio sp. presented in 

Section 2 were conducted to determine the target tissues for the next experiments and to 

identify metabolic variations due to sex differences. Based on results from Section 2, 

haemolymph was chosen as the tissue of interest to investigate metabolomics profiles of 

mussel haemolymph in response to different external stimuli, including Vibrio sp. 

(Chapter 6), LPS (Chapter 7) and copper (Chapter 8).   Experiments from Chapter 4 to 

Chapter 8 (Section 3) identified a number of candidate biomarkers of interest (e.g., 

alanine, glutamic acid, glutathione, itaconic acid). Among them, itaconic acid was 

accumulated during pathogen infections, suggesting the special role of this metabolite in 

the molluscan immune system. Hence, the antimicrobial role of itaconic acid against 

Vibrio sp. and its role in the molluscan immune system was investigated in Section 4. The 

final section (Section 5) comprises of an overall discussion (Chapter 11) and conclusions 

(Chapter 12).  
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In addition, there are many other studies that are not included in this thesis but may 

directly relate to the thesis. These are mentioned in 1.4.    
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ABSTRACT 

Recent advances in high-throughput technologies for omics analyses and bioinformatics 

for data interpretation have led to the application of omics approaches across all fields of 

life sciences. There has also been an expansion of omics research in immune studies of 

marine invertebrates, such as bivalves to gain insights into pathogenic infections and 

disease progression. Many of these omics research have been conducted on haemocytes 

and haemolymph, which are the most important components of the bivalve immune 

system. Characterization of transcriptomes, proteomes and metabolomes of bivalve 

haemocytes in response to pathogenic infections and other environmental stressors have 

revealed valuable information regarding the mechanisms that drive the innate immune 

system in response to stress challenges, as well as insights regarding complex host-

pathogen-environment interactions across bivalve species. For instance, detailed analysis 

of haemocyte transcriptomes has resulted in the discovery of a number of coding and non-

coding transcripts involved in immune and stress responses. In addition, comprehensive 

examination of the proteome and metabolome of bivalve haemocytes following stress 

exposure has helped identify changes in the physiological status of the organism, 

including specific molecular pathways involved in these processes. Furthermore, the 

differently expressed molecules that have been identified through these omics studies can 

be used as candidate biomarkers with applications in breeding selection programs, disease 

diagnosis and environmental monitoring. However, despite these significant 

biotechnological advances, the application of omics tools for bivalve haemocyte research 

is currently hindered by several challenges and bottlenecks. In this contribution, we aim 

to review the major advances, current perspectives and future directions of three main 

omics (transcriptomics, proteomics and metabolomics) with regards to their application 

in bivalve haemocyte and aquaculture research. 
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2.1 INTRODUCTION 

Bivalves, such as mussels, oysters, clams and scallops are important in aquaculture. The 

world aquaculture production of bivalves reached 15.7 million tonnes in 2017, worth 

USD 26.6 billions (FAO, 2019). In addition to this economic value, bivalves sustain many 

marine ecosystems by filtering xenobiotic compounds and pathogenic microorganisms 

(Board and Council, 2010, Gosling, 2015). Pathogen loads can be extremely high in some 

regions and seasons, and these may cause massive mortalities, especially during summer 

months. For example, massive mortality events in Pacific oysters (Crassostrea gigas) 

(Alfaro et al., 2018) and flat oysters (Ostrea chilensis) (Lane et al., 2016) have resulted 

in significant economic losses. These summer mortality events are often associated with 

different type of pathogens, such as viruses (e.g., Ostreid herpesvirus 1) (Alfaro et al., 

2018), bacteria (e.g., Vibrio spp.) (Allam and Raftos, 2015), and parasites (e.g., 

protozoans) (Lane et al., 2016). Lacking the adaptive immune system that vertebrates 

have, bivalves mostly rely on their innate immune system to defend against these 

pathogens (Fletcher and Cooper-Willis, 1982). The non-specific innate defence system 

of bivalves is composed of cellular components, which include haemocytes and epithelial 

cells, and soluble components, which are active molecules secreted by haemocytes and 

released into the haemolymph (Allam and Raftos, 2015). In addition, haemocytes 

participate in a range of non-immune related processes (e.g., wound healing, shell 

production, excretion and digestion) which have not been well studied (Gosling, 2015, 

Mount et al., 2004).  

Circulating haemocytes and the haemolymph are the main components of the immune 

system and have been the focus of most immunological studies in bivalves. In the past, 

haematological investigations have been limited to various methods of cytochemical 

staining and microscopic observation for morphological characterization of haemocytes. 
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Examples of these studies include many bivalve species, such as  Mya arenaria 

(Beckmann et al., 1992), Tapes philippinarum (Cima et al., 2000), Ruditapes decussatus 

(López et al., 1997), Saccostrea glomerata (Aladaileh et al., 2007), Meretrix lusoria and 

C. gigas (Chang et al., 2005a). The development of flow cytometry has facilitated a more 

extensive characterization of haemocytes, including a range of quantitative parameters 

such as total cell count and cell viability (Nguyen et al., 2019a), sorting of cell sub-

populations (Goedken and De Guise, 2004), DNA content (Benabdelmouna and Ledu, 

2016), phagocytosis (Gagnaire et al., 2006), oxidative stress and apoptosis (Nguyen and 

Alfaro, 2019). Furthermore, different omics approaches, such as transcriptomics, 

proteomics and metabolomics have been applied to characterize the complex interactions 

between haemocytes and environmental stressors, such as pathogens and water 

contaminants (Table 2.1, 2.2 & 2.3). Omics approaches aim to characterize the structure, 

function and dynamics of genes (genomics), expressed genes (transcriptomics), proteins 

(proteomics), and low molecular weight metabolites (metabolomics) in a biological 

sample using high-throughput analytical technologies (Fig. 2.1). The sensitivity and 

specificity of most omics makes them powerful tools in immune studies. Hence, major 

omics investigations on haemocytes have significantly contributed to a better 

understanding of bivalve immunity. In this contribution, we provide a review of the use 

of omics approaches to investigate responses of haemocytes to pathogen infections and 

environmental stressors, as well as applications for disease management and 

environmental monitoring within aquaculture settings.  
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Figure 2.1  Schematic representation of omics approaches, their molecules of interest, 

level of information that can be obtained from each approach, analytical 
platforms, and the relationship between genes, RNAs, proteins and 
metabolites. The arrows (bottom left) demonstrate the relationships of 
each omics to the chemical diversity (number of chemicals), 
environmental and physiological influence, and the number of molecules 
(genes, transcripts, proteins and metabolites). The stronger colors denote 
higher diversity, more molecules or stronger influence. 2-DE, two-
dimensional gel electrophoresis; 2D-DIGE, two-dimensional difference 
gel electrophoresis; LC-MS/MS, liquid chromatography–mass 
spectrometry; HPLC, high-performance liquid chromatography; GC-MS, 
gas chromatography–mass spectrometry; NMR, nuclear magnetic 
resonance; CE-MS, capillary electrophoresis–mass spectrometry; FT-IR, 
fourier-transform infrared spectroscopy.  
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2.2 OVERVIEW OF HAEMOLYMPH AND HAEMOCYTES 

2.2.1 Haemolymph components and roles  

The haemolymph contains haemocytes and various humoral defence factors secreted by 

haemocytes that float in the colourless plasma (Gosling, 2015). The haemolymph usually 

lacks respiratory pigment because its oxygen concentration is similar to or slightly greater 

than that of seawater (Bayne et al., 1979). However, a few bivalves in the Families 

Arcidae (e.g., Tegillarca granosa), Astartidae (e.g., Astarte castanea), Carditidae (e.g., 

Cardita borealis) and Limidae (e.g., Ctenoides ales) are known to have haemoglobin 

pigment in their haemolymph (Bao et al., 2016, Klein, 2017, Terwilliger et al., 1978, 

Weber and Vinogradov, 2001, Yager et al., 1982).  

The haemolymph is a circulatory fluid which plays multiple important roles in bivalve 

physiology, including internal defence, gas exchange, osmoregulation, nutrient 

distribution, waste elimination and hydrostatic pressure for structural support of organs, 

such as labial palps, foot and mantle edges (Gosling, 2015). The haemolymph pressure, 

in combination with muscle action in the foot is used by some bivalves, such as clams, to 

burrow into the substrate (Gosling, 2015). In this review chapter, we have limited the 

focus to the immune role of circulating haemocytes and the haemolymph.  

2.2.2 Haemocyte classification 

Bivalve haemocytes vary greatly from species to species, and there is currently no unified 

nomenclature that applies to all bivalve haemocytes. Generally, bivalve haemocytes are 

divided into two broad categories based on the  presence of cytoplasmic granules, 

including granulocytes and agranulocytes. Granulocytes are about 10–20 mm diameter 

and are characterised by cytoplasmic granules, while agranulocytes are smaller (4–6 mm 

diameter) and have no or few cytoplasmic granules (Gosling, 2015).  



 

28 Chapter 2 
 

Granulocytes usually account for the majority of the haemocytes in the haemolymph of 

most bivalves (Cima et al., 2000, Gosling, 2015), with the exceptions of Pacific oysters 

(C. gigas) (Chang et al., 2005b) and Sydney rock oysters (S. glomerata) (Aladaileh et al., 

2007). Granulocytes are further sub-classified into different categories based on granular 

affinity to specific dyes (acidophilic/ eosinophilic, basophilic and neutrophilic 

granulocytes) (Bayne et al., 1979, Carballal et al., 1997, Chang et al., 2005b). In some 

bivalves, such as California mussels (Mytilus californianus) (Bayne et al., 1979), blue 

mussels (Mytilus edulis) (Carballal et al., 1997) and hard clams (M. lusoria) (Chang et 

al., 2005a), granulocytes are divided into two subclasses: acidophilic and basophilic 

granulocytes. In addition to  basophils and acidophils, neutrophils have been observed in 

some bivalves, such as Manila clams (Ruditapes philippinarum) (Cima et al., 2000) and 

Pacific oysters (C. gigas) (Chang et al., 2005b). Granulocytes are sometimes sub-divided 

based on size (small, medium and large), as can be found in Zhikong scallops (Chlamys 

farreri)  (Zhang et al., 2007).  

Bivalve agranulocytes are often sub-divided into three subclasses: blast-like cells, 

basophilic macrophage-like cells and hyalinocytes (Hine, 1999). However, in some 

bivalves, such as in hard clams (M. lusoria), only two types of agranulocytes 

(hyalinocytes and blast-like cells) have been identified (Aladaileh et al., 2007, Chang et 

al., 2005b).  

Granulocytes are phagocytic cells, and they play a prominent role in phagocytosis of 

pathogens (e.g., bacteria, protozoan parasites) and other particles (e.g., algae, cellular 

debris) (Gosling, 2015). High levels of intracellular enzymes associated with 

immunological activity in granulocytes also enable them to kill pathogens after 
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phagocytosis. In addition, granulocytes are involved in encapsulation of pathogens or 

particles that are too big to be phagocytosed (Gosling, 2015).  

Unlike granulocytes, agranulocytes are less important for phagocytosis (Aladaileh et al., 

2007, Gosling, 2015). In addition, hyalinocytes have been shown to assist in the 

aggregation processes associated with wound healing (Aladaileh et al., 2007, Gosling, 

2015). Haemoblast‐like cells lack the common intracellular enzyme systems associated 

with host defence, and they do not participate in defensive responses (Aladaileh et al., 

2007).  

2.2.3 Haemocyte functions in the internal defence system  

Like other invertebrates, bivalves mostly rely on their non-specific defence mechanisms, 

which is composed of cellular and humoral components (Allam and Raftos, 2015, Song 

et al., 2010). As the backbone of the internal innate immune system, haemocytes act as 

mediators of cellular defences whereas various active molecules in the haemolymph 

secreted by haemocytes are major components of humoral defences (Allam and Raftos, 

2015, Gerdol et al., 2018, Zannella et al., 2017). This section aims to highlight the roles 

of haemocytes in the cellular and humoral defence mechanisms. More details of bivalve 

immunity can be found in a number of recent review papers (Allam and Raftos, 2015, 

Gerdol et al., 2018, Zannella et al., 2017). 

Cellular defence mechanisms  

When bivalves are invaded by pathogens or foreign particles, the host haemocytes 

respond with different types of cellular defence mechanisms, which mainly include 

haemocytosis, phagocytosis, encapsulation, apoptosis and autophagy.  
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Haemocytosis is a cell-mediated immune response which involves an increase in 

circulating haemocytes (Garmendia et al., 2011, Jones et al., 1996, Renault, 1996). Such 

responses have been shown in bivalves during pathogen infections or diseases (Allam et 

al., 2000a, Jones et al., 1996, Mateo et al., 2009, Nguyen et al., 2018a) and environmental 

stresses (Couch, 1985, Hauton et al., 2000, Wedderburn et al., 2000).  

Perhaps the most important mechanism of pathogen elimination in bivalves is 

phagocytosis, which is the engulfment of foreign particles (e.g., bacteria, algae, cellular 

debris, protozoan parasites) by haemocytes. The process of phagocytosis is complex and 

has been well described in several publications (Canesi et al., 2002, Fletcher and Cooper-

Willis, 1982, Gosling, 2015). Phagocytosis includes four steps: chemotaxis, recognition 

and attachment, internalization and intracellular degradation (Gosling, 2015). 

Chemotaxis is the direct migration of haemocytes towards foreign materials through 

chemo‐attractants produced by foreign materials, such as peptides (Fawcett and Tripp, 

1994). Although chemotaxis has been shown in several bivalves, such as Mercenaria 

mercenaria challenged with Escherichia coli (Fawcett and Tripp, 1994) and M. edulis 

stimulated by lipopolysaccharide (LPS) (Schneeweiß and Renwrantz, 1993), the 

mechanism is still poorly understood in bivalves. After non‐self‐recognition, attachment 

of foreign bodies into haemocytes is carried out via cell surface receptors, such as 

integrin‐ and lectin‐like proteins (Humphries and Yoshino, 2003). Internalization of 

foreign material into the cell membrane is conducted via endocytosis to form a primary 

phagosome (Gosling, 2015). The phagosome is then fused with lysosomes to form a 

phagolysosome (secondary phagosome) where the foreign material is degraded by 

numerous enzymes (intra-cellular degradation).  
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Encapsulation is another major mechanism used by haemocytes to eliminate foreign 

particles that are too large to be phagocytosed, such as multicellular parasites (e.g., 

nematodes, cestodes) or experimentally introduced tissues. In general, a capsule of 

haemocytes encloses the foreign body, and then haemocytes release cytotoxic products 

(e.g., degradative enzymes and free radicals) into the invader to destroy it (Jayaraj et al., 

2009). Although encapsulation has been extensively studied in insects, this immune 

response is poorly characterized in marine bivalves. There have been  some reports of 

encapsulation of the trematode Aspidogaster conchicola  (Huehner and Etges, 1981), 

metacercarial cysts of the trematode Himasthla spp. (Wootton et al., 2006) and 

chromatography beads (Jayaraj et al., 2009, Meena et al., 2010, Wootton et al., 2006).  

In addition, haemocytes also contribute to the defensive role of mucosal surfaces (Allam 

and Raftos, 2015). Since bivalves have an open circulatory system, haemocytes are freely 

circulated and abundant haemocytes have been found in peripheral compartments (Allam 

and Raftos, 2015). These peripheral haemocytes are known to have the ability to 

phagocytise foreign particles and secrete hydrolytic and antimicrobial compounds that 

contribute to the immune protection of these compartments (reviewed by (Allam and 

Raftos, 2015).  

Another important cellular defence mechanism of haemocytes is apoptosis which is a type 

of programmed cell dead. Details of apoptosis in bivalves have been extensively 

described by Romero et al. (2011), Romero et al. (2015b) who showed that apoptosis in 

molluscs is highly evolutionarily conserved to that of vertebrates with some unique 

features. Autophagy is another type of programmed cell death that involves the innate 

immunity against intracellular pathogens. However, not much is known about the role of 

this process in bivalves. Autophagy have been described in oyster haemocytes (reviewed 
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by (Wang et al., 2018), suggesting that autophagy is involved in the defence system of 

Pacific oysters against pathogens. Hence, there is a need for future investigations to reveal 

insights into the mechanisms of pathogen clearance by autophagy in bivalves and other 

molluscs.  

Humoral defence mechanisms 

Haemocytes are able to secrete a diverse range of antimicrobial peptides (AMPs) and 

other cytotoxic substances into the haemolymph (Gerdol et al., 2018, Zannella et al., 

2017). These  active molecules, together with other nonspecific humoral defense 

molecules (e.g., lectins, lysosomal enzymes) form the humoral components of bivalve 

innate immunity (Gerdol et al., 2018).  

AMPs are small (less than 10 kDa), gene-encoded cationic peptides, which constitute the 

innate immune effectors found among all forms of life. In bivalves, first pioneer 

characterizations of AMPs were reported in haemolymph of the mussel, M. edulis 

(Charlet et al., 1996) and Mytilus galloprovincialis (Mitta et al., 1999). To date, the most 

comprehensive characterization of  AMPs in the animal kingdom has been described in 

bivalves (Allam and Raftos, 2015) where the majority are cysteine-containing peptides 

(Zannella et al., 2017). 

Other types of antimicrobial molecules have been described in bivalve plasma, such as 

lysozymes, proteases, protease inhibitors and phenoloxidase. Lysozymes are 

antimicrobial enzymes that are commonly thought to protect bivalves from pathogen 

invasions (Allam and Raftos, 2015). Different types of lysozymes have been described in 

bivalves (Gerdol et al., 2018) and lysozyme activity has been shown to increase in bivalve 

plasma in response to pathogen exposure (Allam et al., 2000a, Allam et al., 2000b, Chu 

and La Peyre, 1993, Itoh and Takahashi, 2009) and environmental cues (Chu and La 
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Peyre, 1989, Paillard et al., 2004). Similarly, the upregulated levels of proteases (enzymes 

that degrade proteins) and protease inhibitors have been observed in bivalve plasma 

(Allam and Raftos, 2015, Gerdol et al., 2018). For example, Ertl et al. (2016) observed 

the expression of cathepsin transcripts (e.g., cathepsin B and L) in haemolymph of the 

Sydney rock oysters (S. glomerate) exposed to different environmental stressors. The up-

regulation of Kazal-type serine protease inhibitors have been reported in haemolymph of 

the bay scallops (Argopecten irradians) following tissue injury and bacterial challenges 

(Zhu et al., 2006). Phenoloxidase (PO) is a key enzyme in the melanization cascade that 

also serves as an innate defence mechanism in several bivalve species (Gerdol et al., 2018, 

Vaillant, 2001). Strong activity of PO and its zymogen form, prophenoloxidase (ProPO), 

have been observed in haemolymph of different bivalve species (reviewed by (Gerdol et 

al., 2018).  

Pattern recognition receptors (PRRs) are another group of proteins expressed by cells in 

the innate immune system and commonly associated with immune responses of bivalves 

against infections. A number of homologue genes of PRRs were found in the genome of 

C. gigas, including C-type lectins, fibrinogen-related proteins (FREPs), complement 

homologues, scavenger receptors (SRCR), toll-like receptors (TLRs), lipopolysaccharide 

and β-1,3-glucan-binding proteins (LGBP) and peptidoglycan-recognition proteins 

(PGRPs) (Zhang et al., 2012). Genes related to PRRs have also been reported in the 

genome of other bivalves, such as M. galloprovincialis (Murgarella et al., 2016) and 

Bathymodiolus platifrons (Sun et al., 2017). Transcriptomics studies have revealed the 

altered expression of PRRs-related genes in haemolymph of many bivalve species 

challenged with pathogens, suggesting the importance of PRRs in bivalve immune 

responses (reviewed by (Allam and Raftos, 2015).  
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2.3 TRANSCRIPTOMICS  

2.3.1 General overview of transcriptomics 

Transcriptomics is the study of transcriptomes, which are the sum of all coding and non-

coding RNA transcripts produced by the genome during development or under specific 

circumstances. Hence, a transcriptome provides a snapshot of the total transcripts present 

in a cell at a given time, which reflects the genes that are actively expressed (Lowe et al., 

2017). Transcriptomics uses several different techniques, including serial/cap analysis of 

gene expression (SAGE/CAGE), expressed sequence tag (EST), suppression subtractive 

hybridization (SSH), microarrays and RNA sequencing (RNA-Seq) to measure the 

expression of genes in distinct cell populations that are affected by different treatments, 

diseases or environmental factors at different time points. Some of these techniques, such 

as SAGE, CAGE, and EST (based on Sanger sequencing of cDNA or EST) are no longer 

used for transcriptomics analyses. 

SSH is a polymerase chain reaction (PCR-based approach) which amplifies differentially 

expressed cDNAs (complementary DNAs) fragments. SSH offers many advantages in 

profiling gene transcripts, so it is still a widely used method for identification of gene 

expression (Rusaini, 2018). DNA microarrays are a set of microscopic DNA spots which 

are arrayed on a solid substrate (Romanov et al., 2014). Since microarrays can only detect 

sequences homologous to what is on the array, prior genomic knowledge of the organism 

of interest (e.g., annotated genome sequence, ESTs) is required to generate the probes of 

the array (Lowe et al., 2017). Due to the relatively low cost and high throughput, 

microarrays remain a reliable tool in model organisms, where highly standardized 

platforms have been developed over the years. RNA-Seq is a revolutionary tool that uses 

recently developed deep-sequencing technologies combined with computational methods 

for both mapping and quantifying transcriptomes (Lowe et al., 2017, Wang et al., 2009). 
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RNA-Seq methodologies have several advantages (e.g., higher throughput, sensitivity, 

accuracy, long read lengths, no need of prior knowledge of the organism’s genome) and 

have been rapidly adopted over hybridisation-based approaches as the dominant 

transcriptomics technique in the last two decades (Su et al., 2014).  

2.3.2 Transcriptomics for bivalve haemolymph analyses 

The recent identification of genome sequences and genomes for many bivalve species 

(Gómez-Chiarri et al., 2015) has revealed a large number of immune genes. This 

information has allowed for targeted transcriptomics studies to identify gene expression 

and biochemical pathways in different tissues and organs of bivalves in response to biotic 

and abiotic environmental stresses in vivo or in vitro (Gómez-Chiarri et al., 2015). 

Furthermore, transcriptomics studies on bivalve haemocytes have contributed to the 

discovery of previously unknown coding (and non-coding) transcripts. Different 

transcriptomics techniques (from medium to high throughput) have been used for analysis 

of haemocyte transcriptomes, such as ESTs, SSH, microarrays and high-throughput 

RNA-seq (Table 2.1).  

Traditional transcriptomics approaches (ESTs and SHH) have been used in many bivalve 

studies to generate ESTs and SSH libraries of haemocytes (Table 2.1). For example, 

Gueguen et al. (2003) used ESTs generated from a haemocyte cDNA library of bacteria-

challenged oysters (C. gigas) for immune gene discovery. This approach allowed for the 

characterization of 20 genes among the 1142 ESTs generated, which may be involved in 

immune responses. Among them, six genes related to Rel/NF-kB pathway were 

characterized for the first time in a bivalve species. Gestal et al. (2007) obtained 253 

clones from SSH libraries of haemocytes of R. decussatus stimulated with a mixture of 

dead bacteria. Among these, 184 ESTs were identified and were probably involved in 8  
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Table 2.1  Transcriptomics applications on bivalve haemocytes/ haemolymph 

Techniques/ 
platforms  

Bivalve species  Stimulants Key Findings  References  

Expressed 
sequence tag 
(EST) 

Crassostrea gigas A mixture of 
four 
pathogenic 
Vibrio strains 

- 1142 ESTs were generated from 1248 
randomly selected clones.  
- 20 genes may be implicated in immunity 
with 6 genes related to NF-kB signalling 
pathway. 

Gueguen et al. 
(2003) 

Suppression 
subtractive 
hybridizatio
n (SSH) 

Ruditapes 
decussatus 

A mixture of 
dead bacterial 
strains  

- A total of 253 clones was obtained from 
haemocyte SSH libraries.  
- 3.16% of the total identified genes were 
possibly related to immune functions.  
- This is the first report on myticin 
isoforms 1, 2 and 3 and mytilin in clam.  

Gestal et al. 
(2007) 

SSH Mya arenaria Vibrio 
splendidus 

- Approximately 8000 reads were obtained 
from each subtracted cDNA pool.  
- Transcripts were clustered into cellular 
functions including structural proteins, 
immunity, stress proteins, apoptosis, cell 
process, metabolism and signal 
transduction. 

Araya et al. 
(2010) 

SSH Ruditapes 
philippinarum 

V. tapetis - 9098 sequences were obtained with 235 
ESTs from two cDNA libraries.  
- 60% of these ESTs are identical to genes 
involved in different physiological 
functions (e.g., immunity, apoptosis and 
cytoskeleton organization).  

Brulle et al. 
(2012) 

DNA 
microarrays 

R. philippinarum V. 
alginolyticus 

- A 8 ×15 k oligo-microarray was 
constructed from a total of 12,156 
annotated sequences. 
- 579 differentially expressed transcripts 
include numerous immune-related 
sequences, through a time course of 
infection. 

Moreira et al. 
(2014) 

DNA 
microarrays 

Venerupis 
philippinarum 

Perkinsus 
olseni 

A total of 1264 genes were differentially 
expressed in the control and infected 
groups.  

Romero et al. 
(2015a) 

RNA-Seq/ 
454-
pyrosequenc
ing 

R. philippinarum PAMPs  

 

- 974,976 reads were sequenced, 
consisting of 51,265 contigs.  
- The 35 most frequently found contigs 
included a large number of immune-
related genes. 

Moreira et al. 
(2012). 

RNA-Seq/ 
illumina 
sequencing 

R. philippinarum Perkinsus 
olseni 

- 123,195,758 PE reads were sequenced, 
consisting of 33,079 transcripts with 7300 
annotated transcripts.  
- Many transcripts were functionally 
linked to signalling, cell proliferation, cell 
adhesion, immune system and response to 
stress and stimuli.  

Hasanuzzama
n et al. (2017) 

RNA-Seq/ 
454 
pyrosequenc
ing 

M. edulis V. splendidus - 1,024,708 nucleotide reads were 
sequenced  and assembled into 19,622 
annotated sequences.  
- Expression of defensin, lysozyme and 
proteasome 26S was observed in 
haemocytes exposed to V. splendidus.  

Tanguy et al. 
(2013) 

RNA-Seq/ 
illumina 
sequencing 

M. edulis Cadmium - 341,718,828 reads consist of 352,976 
contigs.  
- 1112 transcripts were differentially 
regulated by cadmium exposure. 

Granger Joly 
de Boissel et 
al. (2017) 
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RNA-Seq/ 
Illumina 
HiSeq-2500 

Mytilus coruscus Vibrio 
alginnolyficus 

- A total of 68,924,728 and 61,106,355 
clean reads were obtained from the control 
and V. alginolyticus infected libraries 
respectively.  
- 27,345 unigenes (42.77%) were 
annotated from 63,942 unigenes.  
- Bacterial challenge led to differential 
expression of 1526 genes associated with 
122 pathways.  

Dong et al. 
(2017) 

RNA-Seq/ 
Illumina 
HiSeq-2000 

Mytilus chilensis No 
stimulation 

- 799,899,594 reads were assembled into 
225,336 contigs. 
- 20,306 single nucleotide polymorphisms 
were identified in immune-related 
transcripts in Mytilus chilensis. 

Núñez-Acuña 
and Gallardo-
Escárate 
(2013) 

RNA-Seq/ 
Illumina 
HiSeq-2000 

Mytilus chilensis Saxitoxin - 800 million reads consistof 138,883 
contigs. 
- There were upregulation of PRRs and 
other immune effectors.  

Detree et al. 
(2016) 

RNA-Seq/ 
Illumina 
HiSeq-2000 

Mytilus 
galloprovincialis 

PAMPs and 
Vibrio 
anguillarum, 
heat- 
inactivated 
Vibrio 
anguillarum 

- 393,316 million raw RNA-Seq reads 
were obtained from different tissues and 
assembled into 151,320 non-redundant 
transcripts.  
- Haemocyte and gill transcriptomes 
shared 60 % of the transcripts.  
- Stimulated hemocytes showed abundant 
defense and immune-related proteins. 

Moreira et al. 
(2015) 

RNA-Seq/ 
454 
pyrosequenc
ing 

M. 
galloprovincialis, 
M. edulis and R. 
decussatus 

PAMPs - 400,000 reads were obtained for each 
transcriptome.  
- There is a high abundance of 
sequences directly related to immune 
responses in the three studied species. 

Moreira et al. 
(2018) 

RNA-Seq/ 
Illumina 
HiSeq-2000 

Mya arenaria Disseminated 
neoplasia 
disease  

- 95,399,159 reads consist of 73,732 
contigs.  
- The majority of the cell cycle pathways 
described in vertebrates were identified in 
M. arenaria haemocytes and the majority 
of the transcripts identified in cell cycle 
were highly expressed during the 
development of the disease.  

Siah et al. 
(2013) 

RNA-Seq/ 
Illumina 
HiSeq-2000 

Pecten maximus Inactivated-
Vibrio 
anguillarum, 
PAMPs 

- 216,444,674 sequence reads consist of 
73,732 contigs.  
- 934 contigs encode proteins with a 
putative role in immune response.  

Pauletto et al. 
(2014) 

RNA-Seq/ 
Illumina 
Genome 
Analyzer II 

Crassostrea 
virginica 

No 
stimulation 

- 52,857,842 pair-end reads consist of 
66,229 contigs. 
- Analysis of the gene set yielded a diverse 
set of 657 genes related to innate 
immunity.  

Zhang et al. 
(2014) 

RNA-Seq/ 
454 
pyrosequenc
ing and 8 u 
15 K oligo-
microarray 

O. edulis Bonamia 
ostreae 

- 2,075,254 sequence reads include 
1,042,177 reads from genomic DNA and 
1,033,077 reads from haemocytes. 
- 984 annotated sequences are directly or 
indirectly related to innate immunity.  

Pardo et al. 
(2016)   

RNA-Seq/ 
Illumina 
HiSeq-2000 

Saccostrea 
glomerata 

Different 
environment
al stressors  

- 484,121,702 paired-end reads were 
sequenced.  
- There is a wide range of genes 
potentially involved in innate immunity 
with some haemocyte-specific 
expressed transcripts.  

Ertl et al. 
(2016) 
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RNA-Seq/ 
Illumina 
Hiseq-2000 

Pinctada fucata Vibrio 
alginolyticus 

- 56,345,139 reads were generated with 
33,548,634 raw reads from the control 
group and 36,859,244 from the bacterial 
challenged group.  
- 74,007 unigenes with an average length 
of 680 bp were generated after assembly. 
- 636 genes were significantly 
differentially expressed after bacterial 
challenge.  

Wang et al. 
(2016) 

 

functional categories, including immune defence, cell signalling and adhesion, 

cytoskeleton structure, cell cycle, cell metabolism and respiration chain, ribosomal 

proteins and other unknown functions. For M. arenaria clams, Araya et al. (2010) 

identified large numbers of homologous genes in a SSH library of haemocytes challenged 

with Vibrio splendidus. These were clustered into cellular functional groups, including 

structural proteins, immunity, stress proteins, apoptosis, cell process, metabolism and 

signal transduction. Similarly, SSH analyses of haemocytes of  Manila clams (R. 

philippinarum) subjected to Vibrio tapetis revealed 235 ESTs from two cDNA libraries 

(Brulle et al., 2012). Around 60% of these ESTs were identical to genes involved in 

different physiological functions (e.g., immunity, apoptosis and cytoskeleton 

organization). Overall, these initial transcriptomics studies have led to a significant 

increase in the number of ESTs in databases of bivalve haemocytes, as well as bivalves 

which constitute the basis for DNA microarray technology.  

A few authors have used DNA microarrays to measure the expression levels of large 

numbers of genes from bivalve haemocytes (Moreira et al., 2014, Romero et al., 2015a). 

For example, an immune-enriched DNA microarray was employed to characterize gene 

expression profiles of haemocytes from Venerupis philippinarum triggered by Perkinsus 

olseni at different infection stages (Romero et al., 2015a). The increased expression of 

genes associated with pathogen recognition, production of nitrogen radicals, 

antimicrobial activity and cellular processes (e.g., inhibition of serine proteases and 
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proliferation) were observed at an early phase of infection. At the intermediate stage, 

there were over-expressions of many genes related to cell movement. Metabolic pathway 

genes were the most affected at the later stage of infection (thirty days after infection) 

and apoptosis-related genes mostly expressed during pathogenesis. Similarly, a DNA 

microarray experiment was designed to study the gene transcription profiles of 

haemocytes from R. philippinarum clams infected with V. alginolyticus (Moreira et al., 

2014). The microarray experiment revealed a total of 579 differentially expressed 

transcripts, including numerous immune-related sequences, through a time course of V. 

alginolyticus infection. Functional analysis of these expressed genes revealed insights 

into haemocyte functions in response to Vibrio infection. For example, the main functions 

of haemocytes in early responses against the Vibrio challenge involved cellular 

component organization, biogenesis, cell migration, signalling and death. Expression of 

many cytoskeleton genes suggests a possible chemotactic response in hemocytes. 

Together, these microarray approaches have significantly contributed to our 

understanding of haemocyte immune functions and their responses to pathogens at 

different infection stages.  

High throughput RNA-Seq methods have recently been applied to characterize whole 

transcriptome profiles of haemocytes from many bivalve species (Table 2.1). 

Transcriptomes of bivalve haemocytes range from 400,000 reads in M. galloprovincialis 

and R. decussatus (Moreira et al. 2018) to 800 million sequence reads in Mytilus chilensis 

(Detree et al. 2016). These sequence reads have been assembled into unigenes assigned 

into sub-categories within three major categories: biological processes, cellular 

components and molecular functions (Dong et al., 2017, Pauletto et al., 2014, Siah et al., 

2013, Tanguy et al., 2013). Functional analyses of these haemocyte transcriptomes have 

revealed a large number of transcripts that functionally clustered in common, well-
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recognized immune pathways, such as signal transduction, complement cascades, PRRs 

(e.g., lectin, b-glucan recognition proteins, peptidoglycan recognition proteins, toll-like 

receptors), apoptosis (e.g., IAP, BAX, BAC-2), antimicrobial molecules (e.g., AMPs, 

lysozyme, protease and protease inhibitors) and others (Dong et al., 2017, Hasanuzzaman 

et al., 2017, Moreira et al., 2012, Pauletto et al., 2014, Tanguy et al., 2013, Zhang et al., 

2014). Interestingly, this approach resulted in the discovery of many sequences from 

molecules never before described in bivalves (Moreira et al., 2012). In addition to 

identification of immune related genes and pathways, RNA-Seq transcriptomics 

approaches have been used to investigate specific molecular mechanisms involved in the 

cell cycle, firstly investigate with regard to the development of hemic neoplasia in M. 

arenaria (Siah et al., 2013). The results of that study showed that most cell cycle 

pathways described in vertebrates were also identified in M. arenaria haemocytes, and 

the majority of the transcripts identified in the cell cycle were highly expressed during 

the development of the disease.  

In addition to pathogens, transcriptomic responses of bivalve haemocytes to 

environmental stressors have been conducted by several authors (Detree et al., 2016, Ertl 

et al., 2016, Granger Joly de Boissel et al., 2017). For example, the transcriptome of 

haemolymph and other tissues of S. glomerata exposed to different environmental 

stressors show a low level of similarity at the nucleotide level, but a relatively high 

similarity at the protein level to the C. gigas genome (Ertl et al., 2016). Interestingly, 

some transcripts coding for cathepsins, heat shock proteins, peroxiredoxin and superoxide 

dismutase were found to be expressed only in the hemolymph, suggesting their important 

roles in haemocyte functioning and innate immunity. RNA-seq was used to identify the 

transcriptomic response of M. chilensis haemocytes to saxitoxin (a principal phycotoxin) 

(Detree et al., 2016). This study identified immune receptors and pathways potentially 
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involved in the recognition and defence mechanisms in M. chilensis haemocytes against 

STX’s toxicity. For instance, the upregulation of PRRs in the haemocyte transcriptome 

after saxitoxin exposure, such as toll-like receptors, tumor necrosis factor receptors and 

scavenger-like receptors suggests the involvement of PRRs in response to saxitoxin. 

Similarly, expressions of genes related to TLRs were reported in the transcriptome of M. 

edulis haemocytes exposed to cadmium (Granger Joly de Boissel et al., 2017). In addition, 

cadmium exposure led to induction of superoxide dismutase (SOD), glutathion-s-

transferase (GST), cytochrome P450 2C8 (CYP2C8), a multidrug resistance protein 

(MRP1) and heat shock protein 70 (HSP70), as well as genes involved in phagocytosis 

(actin and CDC42) and apoptosis (caspase 8 and XIAP/IAP), suggesting that cadmium 

can regulate key molecular mechanisms.  

Overall, transcriptomics approaches have led to the extensive characterization of large 

sets of immune-related transcripts in bivalve haemocytes and have significantly improved 

our understanding of haemocyte roles in defence mechanisms. These genes could be good 

candidates to develop genetic markers associated with pathogen susceptibility, which 

could be used in breeding selection programs through marker assisted selection (MAS). 

Haemocyte transcriptomes provide a valuable resource for further studies to elucidate the 

host defence mechanisms of bivalves against pathogens and environmental stressors 

which could provide novel strategies for management of diseases in bivalve aquaculture 

and environmental monitoring.  

2.3.3 Challenges of transcriptomics applications in aquaculture 

The advancement in high-throughput DNA/RNA sequencing technologies has 

significantly enriched genomic databases for many aquatic species. However, 

applications of transcriptomics in immunological studies of bivalves in aquaculture are 
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currently facing some challenges. While the complete genomes of many bivalves have 

been sequenced (Li et al., 2017, Mun et al., 2017), the lack of genomic databases for other 

commercial bivalve species represents a bottleneck for transcriptomic applications in 

bivalve species. In addition, the high heterozygosity and overall complexity of bivalve 

genomes make them difficult to assemble. Furthermore, the lack of specific knowledge 

regarding the function of most bivalve genes remains a difficulty in data interpretation. 

The cost for RNA-seq in many labs is around 300 USD per sample, which is a challenge 

for large scale studies.  
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2.4 PROTEOMICS  

2.4.1 General overview of proteomics 

Proteomics is the large-scale study of the proteome, which is the entire sum of proteins 

in cells, tissues, biofluids or organisms. Similarly to the transcriptome, the proteome is 

highly unstable over time and variable between cell types and changeable in response to 

external stimuli (Fliser et al., 2007). Hence, examination of proteomics captures a 

snapshot of the protein environment at a given time (Graves and Haystead, 2002). 

Proteomics provides not only information on the expression level of relevant genes, but 

also post-translational modifications (Rodrigues et al., 2012).  

Several proteomics techniques have been developed, and are widely used in aquaculture, 

including gel-based and gel-free approaches (Rodrigues et al., 2012). Two-dimensional 

gel electrophoresis (2-DE) is based on two steps of separation of proteins according to 

their isoelectric points, using isoelectric focusing (IEF) followed by molecular weights in 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE). This is the most commonly used 

proteomics methodology due to its simplicity, reliability and affordability (Rodrigues et 

al., 2017). However, the limitation of this traditional method is its low sensitivity. 

Therefore, a gel-free approach based on mass spectrometry (MS) coupled with liquid 

chromatography (LC) has recently emerged and represents the most common approach 

today. Due to its high throughput, LC-MS-based approaches are able to analyze thousands 

of peptides in a single sample, thus making it highly effective in protein quantitation and 

post-translational modification analysis (Rodrigues et al., 2017). 

2.4.2 Proteomics for bivalve haemolymph analyses 

With recent advances in genomic sequencing and analytical technologies, proteomics has 

been increasingly applied in diverse research aspects of marine science (Debnath et al., 
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2010, Rodrigues et al., 2012). Using bivalves as model organisms, several studies have 

employed proteomics to understand the underlying host response mechanisms to 

pathogens (Corporeau et al., 2014, Ji et al., 2013, Vaibhav et al., 2017) and environmental 

stress (e.g., heavy metals, temperature, organic pollutants) (Campos et al., 2012, 

Tomanek, 2014).  

Plasma proteins have been characterized in several bivalves (Abebe et al., 2007, Hattan 

et al., 2001, Li and Flemming, 1967, Renwrantz et al., 1998), and are known to play 

multifunctional  roles in immune responses, heavy metal transport, antioxidation, wound 

repair and shell mineralization (Itoh et al., 2011, Koutsogiannaki and Kaloyianni, 2010, 

Xue et al., 2012). This suggests that haemolymph could be a useful targeted organ for 

proteomics. Consequently, alterations in haemolymph proteomes due to exposure to 

stress and diseases have been reported in several bivalves (Table 2.2) which provide 

several novel insights into the role of haemocytes in bivalve innate immunity.  

Proteomics approaches have been investigated to characterize haemolymph proteomes in 

response to diseases (e.g., QX, bonamiosis) (Cao et al., 2009, Simonian et al., 2009), 

pathogen infections (Chen et al., 2011, Novoa et al., 2016) and immunostimulant (e.g., 

Poly I:C) (Green et al., 2016, Jiang et al., 2018). These studies have mainly focused on 

identification of proteome maps, protein biomarkers, and characterization of specific 

functions of proteins or specific immune processes of haemocytes (e.g., phagocytosis). 

For example, haemolymph proteomics has been used to identify biomarkers of QX 

disease-resistance in selectively bred Sydney rock oysters (S. glomerata) caused by 

protozoan Marteilia sydneyi infection (Simonian et al., 2009).  Six proteins in proteome 

maps were clearly associated with QX disease resistance and two proteins (p9 and p11) 

were identified as potential markers for selective breeding of QX disease-resistant  
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Table 2.2  Proteomics applications on bivalve haemocytes/ haemolymph 

Techniques/ 
platforms  

Bivalve species  Stimulants Key Findings  References  

2-DE Ostrea edulis and 
C. gigas 

Bonamiosis 
caused by the 
protozoan 
Bonamia 
ostreae 

Protein spots exclusive to healthy and 
infected groups were detected. 

Cao et al. 
(2009) 

2-DE S. glomerata QX disease by 
protozoan 
parasite 

Proteome maps were developed for QX 
disease-resistant and -susceptible oysters 

Simonian et 
al. (2009) 

2-DE S. glomerata Metals 
(copper, lead 
or zinc) 

Eighteen of the 25 spots were significantly 
affected by just one of the three metals. 

Thompson et 
al. (2011) 

2-DE and 
MALDI-
TOF-MS 

Chlamys farreri Acute viral 
necrosis virus 
(AVNV) 
infection 

42 proteins were identified which were 
classified into eight categories.  

Chen et al. 
(2011) 

2-DE  and 
LC–MS/MS 

S. glomerata Metals 
(cadmium, 
copper, lead 
and zinc) 

- The identified proteins include some that 
are commonly associated with 
environmental monitoring, such as HSP 
70, and other novel proteins. 
- The most common biological functions 
of proteins were associated with stress 
response, cytoskeletal activity and protein 
synthesis. 

Thompson et 
al. (2012a) 

2-DE S. glomerata Metal 
contamination 
in the field 

- An average of 514 spots were identified 
per oyster proteome.  
- There were unique protein expression 
profiles for each field trial that mostly 
associated with cytoskeletal activity and 
stress responses.  

Thompson et 
al. (2012b) 

LC-MS/MS S. glomerata Heavy metals 
(PbCl2, CuCl2, 
or ZnCl2) 

84 proteins were identified, and statistical 
analysis revealed 56 potential biomarker 
proteins.  

Muralidharan 
et al. (2012) 

2-DE and 
ESI-Q-TOF 
MS/MS 

M. 
galloprovincialis 

Males vs 
Females 

No differences were observed in the 
profiles obtained for male and female 
serum proteins. 

Oliveri et al. 
(2014) 

2-DE and 
LC-MS/MS 

S. glomerata Elevated 
carbon dioxide 

- An average of 320 protein spots were 
detected among each of the 27 2-DE gels 
analysed.  
- Proteins that differed significantly in 
concentration between pCO2 treatments 
fell into five broad functional categories: 
energy metabolism, cellular stress 
responses, the cytoskeleton, protein 
synthesis and the extracellular matrix.  

Thompson et 
al. (2016) 

LC-MS/MS M. 
galloprovincialis 

Herpesviruses - Myticin C peptides were identified in 
both mussel haemolymph and haemocytes.  
- Modified myticin C peptides showed 
antiviral activity against human herpes 
simplex virus types 1 (HSV-1) and 2 
(HSV-2).  

Novoa et al. 
(2016) 

2-DE and 
LC-MS/MS 

C. gigas Poly(I:C) - A total of 110 and 77 protein spots were 
identified in the two separate batches of C. 
gigas hemolymph, respectively.  
- Poly(I:C) injection increased the relative 
in- tensity of four protein spots, including 
a small heat shock protein (sHSP), 

Green et al. 
(2016) 
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poly(I:C)-inducible protein 1 (PIP1) and 
two isoforms of C1q- domain containing 
protein (C1qDC). 

nano-HPLC-
ESI-MS/MS 

M. 
galloprovincialis 

Vibrio 
cholerae and 
Escherichia 
coli 

The extrapallial protein present in 
serum of M. galloprovincialis  enhanced 
adhesion to and killing by hemocytes of V. 
cholerae, expressing the MS hemagglutin 
(MSHA), as well as of E. coli, carrying 
type 1 fimbriae. 

Canesi et al. 
(2016) 

LC-ESI-
MS/MS 

C. gigas FITC-labeled 
latex beads 

352 significantly high expressed proteins 
were identified within the phagocyte 
proteome. 

Jiang et al. 
(2018) 

2D-PAGE 
and LC-
MS/MS 

M. 
galloprovincialis 

Injury  6 proteins were identified different 
between control and experimental mussels, 
including myosin, tropomyosin, CuZn 
superoxide dismutase (SOD), 
triosephosphate isomerase, EP protein and 
small heat shock protein. 

Franco-
Martínez et al. 
(2018a) 

 

oysters. Similarly, a proteomics approach was developed to analyze the bases of 

tolerance/resistance to bonamiosis in the European flat oysters (Ostrea edulis) and Pacific 

oysters (C. gigas) (Cao et al., 2009). This study demonstrated that the expression of 

haemolymph proteins could be used to understand the interaction between oysters and 

Bonamia ostreae, and to find the bases of tolerance/resistance to bonamiosis. A 2-DE 

approach was used to analyse protein expression profiles from the haemocytes of C. 

farreri infected with acute viral necrosis virus (AVNV) (Chen et al., 2011). A total of 42 

proteins were identified in haemolymph profiles which were classified into different 

biological and molecular categories (e.g., metabolism, immunity, transcriptional 

regulation, transduction). Using a proteomic approach, Novoa et al. (2016) identified 

myticin C peptides and observed the expression of myticins and antimicrobial peptides in 

mussel haemocytes exposed to OsHV-1, suggesting antiviral activity against OsHV-1. In 

addition to pathogens, injection with poly(I:C) led to increases of four proteins in 

haemolymph of C. gigas compared to relative seawater-injected controls (Green et al., 

2016). Furthermore, proteomics has been combined with transcriptomics to provide 

insights into the phagocytic killing of C. gigas haemocytes (Jiang et al., 2018). The results 



 

47 Chapter 2 
 

showed 352 significantly highly expressed proteins within the phagocyte proteome and 

262 correspondingly highly expressed genes in the transcriptome. The pathway analysis 

of these significantly expressed proteins revealed a number of antimicrobial-related 

biological processes of phagocytes, including oxidation-reduction and lysosomal 

proteolysis processes.  

Many authors employed proteomics to analyse different expressions of haemolymph 

proteins in response to different environmental stressors (Table 2.2). Overall, stress 

stimulation has led to expressions of haemolymph proteins that belong to broad functional 

categories. Many of these expressed proteins can be considered to be single biomarkers 

or combinational biomarkers of stress responses, such as metal contamination in Sydney 

Rock oysters (Thompson et al., 2012a). Metal exposure (e.g., cadmium, copper, lead and 

zinc) was also reported to lead to different expressions of proteins of S. glomerata 

haemolymph in both laboratory (Muralidharan et al., 2012, Thompson et al., 2011, 2012a) 

and in field studies (Thompson et al., 2012b). These haemolymph proteins were mostly 

associated with stress responses, cytoskeletal activity and protein synthesis. Similarly, 

expressed proteins in haemolymph proteomes of S. glomerata oysters exposed to ambient 

and elevated carbon dioxide (pCO2) belong to five broad functional categories, including 

energy metabolism, cellular stress responses, the cytoskeleton, protein synthesis and the 

extracellular matrix (Thompson et al., 2016).  In addition, the induced muscle injury by 

puncture of adductor muscles for three consecutive days was reported to lead to 

alterations in the haemolymph proteome of M. galloprovincialis mussels (Franco-

Martínez et al., 2018b). Many of these proteins were related to muscle damage (troponin, 

creatine kinase and aspartate aminotransferase) and oxidative stress (SOD, trolox 

equivalent antioxidant capacity and esterase activity).  
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Overall, these initial proteomics applications for the characterization of bivalve 

haemolymph demonstrate the applicability and reliability of using proteomics for insights 

into the role of bivalve haemolymph in response to external stressors. Further 

development of proteomics to understand the molecular mechanisms underlying immune 

responses and identification of protein biomarkers for environmental pollution and 

disease resistance in marine bivalves would be extremely useful for biomonitoring and 

stock assessment in aquaculture.  

2.4.3 Challenges of proteomics applications in aquaculture   

Although proteomics appears to be a powerful tool in aquaculture, its application in this 

field is currently facing several bottlenecks. The first challenge is the limited information 

at the genomic level (DNA and expressed RNAs) of aquaculture species, which is needed 

for the interpretation of proteomic data and protein identification (Rodrigues et al., 2012). 

However, present advances in genome sequencing technologies and the decrease in costs 

for full genome sequencing suggest that more genomes and transcriptomes of aquaculture 

species will be generated in the near future, which may clear this bottleneck for 

aquaculture proteomics research (Rodrigues et al., 2012). However, the high costs of 

proteomics analyses (approximately 300 – 400 USD per sample) remains a limitation for 

many large-scale projects. To this end, there is a need for cost-effective high-throughput 

proteomics workflows to make this approach more accessible to researchers.  
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2.5 METABOLOMICS 

2.5.1 General overview of metabolomics 

Metabolomics is the scientific study of the set of metabolites within biological samples 

(e.g., tissues, body fluids, entire organisms), which is called the metabolome. 

Metabolomics is one of the newest omics and has been rapidly growing in the last decade. 

Since metabolites are end-product of gene expression and cell activity, they are highly 

sensitive to environmental change. Thus, metabolomics can represent a physical snapshot 

of what is actually happening in the organism at a given time (Alfaro and Young, 2018). 

To this end, metabolomics is applied to characterize endogenous metabolic changes in 

biological samples within different environmental conditions and biomarkers involved in 

these processes.  

Metabolomics uses various analytical platforms, such as infrared spectroscopy (IR), 

raman spectroscopy, nuclear magnetic resonance (NMR) and many mass spectrometry 

(MS) techniques, including direct-infusion mass spectrometry (DI-MS), matrix-assisted 

laser desorption/ionization mass spectrometry (MALDI-IMS), capillary electrophoresis–

mass spectrometry (CE-MS), gas chromatography–mass spectrometry (GC-MS), and 

liquid chromatography–mass spectrometry (LC-MS). With sufficient high throughput 

and resolution capabilities, NMR and MS are the most widely applied analytical tools 

(Young and Alfaro, 2016). 

2.5.2 Metabolomics for bivalve haemolymph analyses 

The low molecular weight of compounds found in bivalve haemolymph has resulted in 

fewer metabolomics studies on this biofluid compared to other tissues. However, several 

recent metabolomics approaches have revealed the important biological functions of 
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metabolites in bivalve haemolymph in response to environmental stresses or pathogen 

infections (Table 2.3).  

Table 2.3  Metabolomics applications on bivalve haemocytes/ haemolymph 

Techniques/ 
platforms  

Bivalve species  Stimulants Key Findings  References  

Untargeted 
GC-MS 

Perna canaliculus Vibrio sp. - Metabolite profiles of haemolymph, gills 
and hepatopancreas were characterized 
with a large number of metabolite different 
between control and infected tissues 
- There were tissue specific metabolic 
responses between these tissues against 
Vibrio infection.  

Nguyen et al. 
(2018d) 

Untargeted 
GC-MS 

Perna canaliculus Vibrio sp. - A large number of metabolites different 
between control and infected mussel 
haemolymph.  
- No difference in metabolite profiles of 
haemolymph from male and female 
mussels exposed to Vibrio sp. 

Nguyen et al. 
(2018c), 
Nguyen et al. 
(2018e) 

Untargeted 
GC-MS 

Perna canaliculus Copper - There were alterations of 25 metabolites 
within the metabolite profile of copper 
exposed haemolymph (125 μM) compared 
to those of control samples.  
- Changes in levels of these metabolites 
may be considered important signatures of 
oxidative stress (e.g., glutathione) and 
apoptosis processes (e.g., alanine, glutamic 
acid).  

Nguyen et al. 
(2018b) 

Untargeted 
GC-MS 

Perna canaliculus LPS 11 metabolites were elevated in metabolite 
profiles of LPS-exposed mussel 
haemocytes.  

Nguyen et al. 
(2019a) 

Untargeted 
GC-MS 

Perna canaliculus Storage 
conditions 

- There were changes of 11 metabolites 
between the different temperatures and 
sampling times.  
- Among them, lactic acid, succinic acid, 
malic acid, fumaric acid and glutamic acid 
were identified as significantly affected by 
both storage condition and period. 

Alfaro et al. 
(2019) 

NMR M. 
galloprovincialis 

Copper and 
temperature 

- 27 metabolites were identified 
unambiguously in spectrum of 
haemolymph. 
- Alanine, lysine, serine, glutamine, 
glycogen, glucose and protein aliphatics 
were strongly affected by copper 
exposition while high temperature (24 °C) 
and high copper levels caused a coherent 
increase glucose, serine, and lysine. 

Digilio et al. 
(2016)  

Targeted 
GC-MS 

Perna canaliculus Vibrio sp. - The concentrations of itaconic acid were 
successfully measured in haemolymph and 
different tissues of mussels after Vibrio 
exposure.  
Identification the role of itaconic acid in 
bivalve immune system.  

Nguyen and 
Alfaro (2019) 
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For example, Nguyen et al. (2018e) compared the metabolite profiles of mussel Perna 

canaliculus haemolymph exposed to Vibrio sp. and non-exposed mussel haemolymph, 

using a GC-MS-based metabolomics approach. The authors identified 22 metabolites that 

differed between the two groups with 10 up-regulated metabolites and 12 down-regulated 

in infected mussel haemolymph samples. Alterations of these metabolites were suggested 

to be involved in several perturbations of the host innate immune system following 

infection. For instance, altered glutathione metabolism and the transsulfuration pathway 

(cysteine and methionine metabolism) were shown after a decrease of free methionine 

content, and increased levels of glutamic and succinic acids, which were thought be 

related to oxidative stress. The elevated levels of succinic acid, fumaric acid and malic 

acid were suggested to be a consequence of the interruption of the tricarboxylic acid 

cycle. Accumulation of succinic acid, ITA and decreases of gamma-aminobutyric acid 

(GABA) may suggest inflammatory responses in infected mussels. Finally, decreases in 

several amino acids in infected mussel haemolymph suggested diverse disruptions of 

amino acid metabolism and protein biosynthesis.  

Similarly, GC-MS-based metabolomics was employed to characterise the metabolic 

profile of mussel (P. canaliculus) haemolymph exposed to copper in vitro (Nguyen et al., 

2018b). Results showed alterations of 25 metabolites within metabolite profiles of Cu2+-

exposed haemolymph (125 μM) compared to those of control samples. Changes in levels 

of these metabolites may be considered important signatures of oxidative stress (e.g., 

glutathione) and apoptosis (e.g., alanine, glutamic acid). Along with metabolomics, flow 

cytometric analyses showed significant increases in haemocyte mortality, production of 

reactive oxygen species (ROS) and apoptosis (via alteration of caspase 3/7 activation and 

mitochondrial membrane potential) of Cu2+-exposed haemocytes which further 
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confirmed the oxidative stress and apoptosis induced by copper exposure at the cellular 

level.  

In addition to GC-MS, NMR was employed to characterise the metabolic responses of 

mussel (M. galloprovincialis) haemolymph to copper and temperature challenges (Digilio 

et al., 2016). The results showed that the metabolic disturbances in mussel haemolymph 

due to elevated temperature was increased by the presence of copper. In fact, copper 

exposure at low temperatures (16 °C) led to metabolic changes in alanine, lysine, serine, 

glutamine, glycogen, glucose and protein aliphatics, which strongly contributed to the 

classification model. At high temperatures (24 °C), copper exposure caused a coherent 

increase of glucose, serine and lysine in mussel haemolymph.  

Metabolomics is also a powerful tool for biomarker discovery. In fact, studies of the 

metabolomic profiles of bivalve haemolymph have revealed a number of candidate 

metabolite biomarkers involved in different biological processes (Alfaro et al., 2019, 

Nguyen et al., 2018b, Nguyen et al., 2018c). As an example, the accumulation of itaconic 

acid has been reported in haemolymph and others tissues of P. canaliculus mussels 

following pathogen exposure to Vibrio sp., suggesting the antimicrobial role of this 

metabolite in the bivalve innate immune system (Nguyen et al., 2018a, Nguyen et al., 

2018c, Nguyen et al., 2018d). Subsequently,  itaconic acid concentrations were 

quantitively measured in haemolymph and different tissues of mussels following Vibrio 

exposure (Nguyen and Alfaro, 2019). Interestingly, a challenge experiment of Vibrio sp., 

with itaconic acid (6 mM) led to the complete inhibition of bacterial growth (Nguyen et 

al., 2019b). These metabolomics studies indicate that marine bivalves are able to produce 

itaconic acid to inhibit Vibrio bacteria upon infection, and itaconic acid could be use as 

metabolite biomarker for bacterial infection and health status of marine bivalves.  
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Overall, these studies demonstrate that haemolymph serum is suitable for metabolomics 

studies and could be used to detect detailed and rapid changes in the physiological status 

of bivalves. These original investigations of haemolymph metabolomics also open the 

doors for using haemolymph metabolites as biomarkers for early diagnosis of pathogen 

infection and pollutant-induced stress syndrome in marine bivalves. 

2.5.3 Challenges of metabolomics applications in aquaculture   

 There is no doubt that metabolomics will play an increasing and more important role in 

all aspects of aquatic research. However, applications of metabolomics in aquaculture are 

facing several challenges. Although several different platforms  are being applied in 

aquaculture, each technique has some specific limitations (Young and Alfaro, 2016). 

Since metabolomics is a relatively new omics, metabolite databases are not completely 

available. Hence, unknown metabolites are sometimes encountered, and their analysis is 

limited, which represents an obstacle for biological interpretation. However, as larger 

databases are constructed for a range of marine organisms, this problem should be 

overcome in the near future. For targeted metabolomics, which is a quantitative approach 

of metabolomics, there are a number of challenges related to identification of unknown 

metabolites, especially small molecules, validation of biomarkers and inter-laboratory 

reproducibility (Nagana Gowda and Raftery, 2013, Roberts et al., 2012). Like proteomics, 

the limited databases for genomics and transcriptomics makes it difficult for integrated 

omics to link gene expression with altered proteins and physiological states of the host 

under a variety of perturbations. Metabolomics is relatively cheap compared to other 

omics approach (e.g., transcriptomics, proteomics), which may be around 30-40 USD per 

sample. However, a large-scale metabolomics study is an expensive effort, especially if 

high quality instruments are required.  



 

54 Chapter 2 
 

2.6 CONCLUSIONS AND FUTURE PERSPECTIVES 

The growing fields of omics and their applications to bivalve haemocyte studies have 

significantly improved our understanding of the functions of haemocytes in response to 

pathogen infections and environmental stress. These studies also demonstrated that 

bivalve haemocytes are a good model system for omics studies of innate immune 

responses. However, future development of omics applications for bivalves and bivalve 

haemocytes face several challenges, especially for emerging omics technologies which 

lack extensive libraries and databases (e.g., genomics databases across a range of species) 

and/or require complex data processing and interpretation of results. Identification of 

unknown proteins and metabolites still presents a problem for data interpretation, as well 

as the relative high costs of some analyses and instrument accessibility.  

Despite these challenges, there is no doubt that omics applications will continue to expand 

in bivalve haemocytes, as well as other tissues. Future investigations of omics in bivalve 

haemocytes should also consider the following directions. Firstly, the integration of 

different omics approaches can greatly expand our knowledge of bivalve haemocytes 

regarding identification, characterisation and functional aspects across biological 

processes. However, such deep integrated approach is still at the development stage and 

will require complex methodologies that involve large-scale data sets and data structures 

from different omics platforms (Nguyen et al., 2018e). In addition, the applications of 

other omics (e.g., metagenomes, epigenomes) are still unexplored for bivalve 

haemocytes, which presents opportunities for future investigations to enhance our 

knowledge of haemocyte–pathogen interactions in bivalves. As downstream tools, omics 

could be combined with upstream phenotyping tools, such as flow cytometry to 

characterize the omics profiles of different cell subpopulations. The novel knowledge 

generated from emerging approaches will no doubt improve our understanding of bivalve 
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physiology, especially with regards to immune defences to pathogens and environmental 

stresses, and is likely to provide a much needed highly informative tool for managers 

within aquaculture settings in the near future. 
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ABSTRACT 

Flow cytometry (FCM) is routinely used in fundamental and applied research, clinical 

practice, and clinical trials. In the last three decades, this technique has also become a 

routine tool used in immunological studies of molluscs to analyse physical and chemical 

characteristics of haemocytes. Here, we briefly review the current implementation of 

FCM in the field of molluscan immunology. These applications cover a diverse range of 

practices from straightforward total cell counts and cell viability to characterization of 

cell subpopulations, and further extend to analyses of DNA content, phagocytosis, 

oxidative stress and apoptosis. The challenges and prospects of FCM applications in 

immunological studies of molluscs are also discussed.  
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3.1 INTRODUCTION 

FCM is an extremely powerful method for cell analysis that is  fast, accurate, simple to 

use and can achieve simultaneous measurement of multiple cellular parameters. Modern 

flow cytometers have been around for over 70 years since the first impedance-based flow 

cytometry device with an electronic cell volume calculator patented in 1953 (Coulter, 

1956). Recent advances in instrumentation, software and fluorochrome chemistry have 

led to the emergence of FCM applications in a number of fields, including haematology 

(Brown and Wittwer, 2000),  food industry (Comas-Riu and Rius, 2009), virology 

(Zamora and Aguilar, 2018), pathology (Quirke and Dyson, 1986), plant biology (Doležel 

et al., 2007), marine biology (Darevsky et al., 1997), molecular biology (Boeck, 2001) 

and immunology (Cordier, 1986, Fleisher and Oliveira, 2019).  

In immunological studies, FCM is a standard laboratory tool used for both fundamental 

and applied research, especially for clinal studies (Cordier, 1986, Cossarizza et al., 2017, 

Fleisher and Oliveira, 2019). Immunologists use FCM to enumerate specific cell 

subpopulations and measure a diverse number of cytometric parameters, such as 

membrane surface and intracellular characteristics, cell death, phagocytosis, autophagy, 

mRNA, transcription factors, signal transduction pathways, lymphocyte metabolism 

(Cossarizza et al., 2017, Fleisher and Oliveira, 2019).  In molluscan immunological 

research, FCM has been applied to investigate haemocytes since the 1990s, but mostly in 

bivalve species (Ashton-Alcox and Ford, 1998, Brousseau et al., 1999, Fisher and Ford, 

1988, Ford et al., 1994, Friedl et al., 1988). The applications of FCM for gastropods 

mainly emerged in the 2000s (Russo and Madec, 2007, Travers et al., 2008). In these 

early applications, FCM was primarily used for identification of cell populations and 

viability (Ashton-Alcox and Ford, 1998, Ford et al., 1994, Friedl et al., 1988). Currently, 

the use of FCM has been expanded to multiple parameters of molluscan immunology, 
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including cell count and viability, cell types, phagocytosis, oxidative stress, apoptosis, 

DNA and protein content. However, the number of FCM parameters used in 

immunological studies of molluscan species are limited compared to those used in 

vertebrate immunology.  

This contribution highlights the emerging applications of FCM in immunological studies 

of molluscs for morphological and functional analyses of haemocytes. In addition, we 

highlight the challenges of using FCM and perspectives for the future development and 

application of this tool in molluscan immunology.  
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3.2 OVERVIEW OF FLOW CYTOMETRY 

FCM is a laser-based technique that is used to analyse the physical and chemical 

characteristics of cells or particles in a heterogeneous fluid mixture as they pass through 

a light source. In principle, cell components are stained with fluorescently labelled dyes, 

so that the quantity of a particular cell component is calculated based on the fluorescence 

intensity. When the suspensions of cells are injected into the flow cytometer, cell 

components are excited by the laser, which emits light in a band of wavelengths. Hence, 

the fluorescence intensity is measured for each particular cell at the rate of thousands of 

particles per second (Fig. 3.1). This allows rapid and quantitative analysis of cells in a 

heterogeneous fluid mixture.  

FCM analyses are conducted with different flow cytometric instruments that normally 

consist of four core components: an illumination source, a fluidic system, an optical 

bench, electronics and a computer control system (Jaroszeski and Radcliff, 1999, Shapiro, 

2003). In brief, the fluidic system transports stained cells from a suspension into the laser 

intercept (light beam) in a single file for laser interrogation by one or more light sources. 

These light sources generate light signals at a specific frequency which are collected, 

filtered and directed by the optical system to photodetectors. The photodetectors, in turn, 

measure scatter light signals and convert them into electronic signals which are converted 

by the electronics system to data for storage, visualization and subsequent analysis by 

software (Jaroszeski and Radcliff, 1999) (Fig. 3.1). There are two measurements of the 

light scatter by two optical detectors, including forward scatter (FSC) and side scatter 

(SSC). FSC scatters along the path of the laser which allows identification of cells by 

size. The measurement of SSC is at a 90°C angle relative to the laser which is helpful for 

identification of the internal complexity (e.g., granularity) of a cell. The combination of 

FSC and SSC allows physical sorting a heterogeneous cell mixture into different 
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populations in specialized flow cytometers with sorting capabilities (Shapiro, 2005). 

Another type of light used in FCM for cell sorting is fluorescent light. It is emitted by 

fluorophores that have been stained with a specific structure on the cell. 

In FCM, cells need to be labelled with fluorescent reagents which include a wide range 

of commercially available dyes, stains, monoclonal antibodies (mAbs) and quantum dots 

(QDs). A fluorochrome (fluorophore or simply flours) is a fluorescent chemical 

compound that absorbs and re-emits light of different wavelengths upon excitation. 

Fluorophores are typically directly coupled to antibodies to create labelled antibody 

regents (fluorophore-conjugated antibodies). There are a number of commonly available 

fluorochromes in the market, such as fluorescein isothiocyanate (FITC), peridin 

chlorophyll protein (PerCP), allophycocyanin (APC) and phycoerythrin (PE) (Fleisher 

and Oliveira, 2019). There are other specific dyes for cell functional studies, such as DNA 

dyes (e.g., ethidium bromide [EtBr], propidium iodide [PI]), glutathione-sensitive dyes 

(e.g., 7-amino-4-chloromethylcoumarin, monochlorobimane), calcium-sensitive dyes 

(e.g., fluo-4, fura red) and hydrogen peroxide (H2O2)–responsive dyes (e.g., 

dihydrorhodamine 123, 2’,7’-dichlorofluorescein) (Darzynkiewicz et al., 2010, Fleisher 

and Oliveira, 2019, Rabinovitch et al., 1993, Vowells et al., 1995).  In addition, quantum 

dots (QDs), a new class of inorganic fluorochromes produced from semiconductor 

materials, is now emerging in polychromatic flow cytometry (Chattopadhyay et al., 

2010).  



 

73 Chapter 3 
 

 

Figure 3.1 Schematic diagram of a flow cytometer. Abbreviations: SSC, side scatter; 
FSC, forward scatter; PMT, photomultiplier; ADC, analog-to-digital 
converter; FL, fluorescence.  
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3.3 CURRENT APPLICATIONS OF FCM IN IMMUNOLOGICAL 

STUDIES OF MOLLUSCS 

3.3.1 Total haemocyte counting  

As haemocytes are chief immuno-effector cells that play a critical role in the innate 

immune system of molluscs, alternations of total haemocyte counts (THC) in 

haemolymph are an important immunological parameter to assess the health state of the 

host. In fact, changes in circulating haemocytes represent a common response of molluscs 

to infections or diseases (Allam et al., 2000, Jones et al., 1996, Mateo et al., 2009, Nguyen 

et al., 2018a) and environmental stresses (Couch, 1985, Hauton et al., 2000, Wedderburn 

et al., 2000). Traditionally, cell counting was carried out by microscopic methods (Ford 

et al., 1994, Fournier et al., 2001, Strober, 2001) which are time-consuming and relatively 

less accurate. In this regard, FCM provides a fast, easy, convenient and affordable 

alternative for counting mollusc haemocytes. In principle, various DNA-binding dyes 

(e.g., SYTO 9, SYTO 13 and SYBR Green) are used to stain all cells with a nucleus 

(nucleated cells) which can be discriminated with debris and non-nucleated cells.  

FCM has been intensively used to quantify circulating haemocytes of molluscs under 

normal conditions (Donaghy et al., 2010, Donaghy et al., 2009) and in response to 

environmental stress, such as bacterial infections (Ashton-Alcox and Ford, 1998, Nguyen 

et al., 2018a, Nguyen et al., 2018b, Parisi et al., 2008) and temperature variations (Chen 

et al., 2007). For example, THC variations of Mytilus galloprovincialis mussels have been 

reported when injected with living or heat-killed Vibrio anguillarum and Micrococcus 

lysodeikticus (Ashton-Alcox and Ford, 1998). Nguyen et al. (2018a) observed a 

significant increase in THC in mussels at 6 h post-infection with Vibrio sp. (8.01 × 106 

cfu·ml−1) compared to controlled mussels (2.68 × 106 cfu·ml−1).   
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THC is normally performed along with other parameters in multiparameter assays, such 

as viability (Nguyen et al., 2018b), ROS (Nguyen et al., 2018c) and apoptosis (Nguyen 

et al., 2018c). Some studies have used fixed haemocytes (Chen et al., 2007, Donaghy et 

al., 2010, Donaghy et al., 2009) and others have used fresh cells (Alfaro et al., 2019, 

Grandiosa et al., 2018, Nguyen et al., 2019).  

3.3.2 Cell types 

Different types of mollusc haemocytes have different functions (Gosling, 2015). Hence, 

identification of cell subpopulations is important to understand the immune function of 

each cell type. In specialized flow cytometers with sorting capabilities, cell populations 

can be separated into subpopulations typically based on size, morphology and expression 

of surface proteins (Cossarizza et al., 2017). In immunological studies of molluscs, 

identification of haemocyte subtypes have been mostly based on relative flow-cytometric 

morphological parameters: FSC and SSC. These studies have led to the characterization 

of different haemocyte subpopulations of different molluscan species such as disk 

abalones (Haliotis discus discus), spiny top shells (Turbo cornutus) (Donaghy et al., 

2010), Eastern oysters (Crassostrea virginica) (Goedken and De Guise, 2004), 

Mediterranean mussels (M. galloprovincialis) (Parisi et al., 2008) and European flat 

oysters (Ostrea edulis) (Xue et al., 2001). For example, there are two types of haemocytes 

(blast-like cells and hyalinocytes) in H. discus discus and four main haemocyte types 

(blast-like cells, type I and II hyalinocytes and granulocytes) in T. cornutus (Donaghy et 

al., 2010). Interestingly, differences in immune-related activities were observed among 

the cell types (Donaghy et al., 2010). C. virginica haemocytes were grouped into three 

morphologically different sub-populations, including hyalinocytes, granulocytes and 

intermediate cells (Goedken and De Guise, 2004). Similarly, haemocytes of O. edulis 

(Xue et al., 2001) and M. galloprovincialis (Parisi et al., 2008) were classified into three 
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subclasses, including small hyalinocytes, large hyalinocytes and granulocytes. 

Characterization of molluscan haemocyte subpopulation is often combined with other 

multiple parameter assays to determine differences between cell types in immune-related 

activities, such as phagocytosis (Aladaileh et al., 2007, Donaghy et al., 2009), oxidative 

stress  (Labreuche et al., 2006a, Labreuche et al., 2006b, Wang et al., 2012) and apoptosis 

(Xue et al., 2001).  

3.3.3 Viability  

A cell viability assay is the quantification of the amount of live or death cells in a 

population. The cell viability or cell death is an important parameter for health assessment 

of the host. In addition, it is often necessary to detect and exclude dead cells which could 

unwantedly uptake of fluorescent probes, resulting in artefacts. The Trypan blue staining 

technique is a routine method of viability determination (Cossarizza et al., 2017, Strober, 

2001). In principle, live cells have intact cell membranes that exclude certain dyes (e.g., 

trypan blue, eosin, or propidium) whereas dead cells with damaged and permeable 

membranes do not. Stained cells are visually exampled with a hemocytometer under a 

conventional microscope to determine whether cells take up (blue cytoplasm) or exclude 

dyes (clear cytoplasm) (Strober, 2001). However, this technique is time consuming and 

has many other limitations (Strober, 2001). Alternatively, FCM is a rapid and reliable 

method which allows the analysis of not only cell viability, but a variety of parameters at 

the same time. In FCM, cells are stained with intercalating dyes that bind to DNA, such 

as PI, EtBr, 7-aminoactinomycin D (7-AAD). Hence, non-viable cells (dead cells) are 

characterized with high fluorescence whereas viable cells are non-fluorescent (Cossarizza 

et al., 2017).  
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The viability is often assessed via viability assays which have been extensively applied 

to measure the viability of molluscan haemocytes in response to different stress 

conditions, such as pathogen infections or diseases (Nguyen et al., 2018b), water 

contaminants (Nguyen et al., 2018c), thermal stress (Hégaret et al., 2003) or other stress 

conditions (Alfaro et al., 2019, Ashton-Alcox and Ford, 1998, Nguyen et al., 2019). The 

assay provides a quantitative number/percentage of live and dead cells in the population 

(Fig. 3.2). For example, decreases of haemocyte viability were reported in P. canaliculus 

exposed to Vibrio sp. (Nguyen et al., 2018b) and copper (Nguyen et al., 2018c). Similarly, 

significantly slower percentages of live haemocytes were found in C. virginica oysters 

after the temperature increase (Hégaret et al., 2003). 

 

Figure 3.2 Viability profile of Perna canaliculus haemocytes under normal condition 
(control) (A) and Vibrio sp. infection (B). Viability of haemocytes was 
accessed by viability assay using a MuseTM Cell Analyzer. The red lines 
were used to separate live cells (left) and dead cells (right).  

The viability determination of mollusc cells is often combined with other parameters in 

multiple cellular parameter assays, using fluorescent dyes with very different absorptions 

and wavelengths. For instance, live/dead cell distinction with 7-AAD was used in 

combination with Annexin V apoptosis measurements to determine percentage of late 

apoptosis in P. canaliculus haemocytes in vivo challenged with Vibrio sp. (Nguyen et al., 
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2018d) or Haliotis iris haemocytes under different probiotic-supplemented diets 

(Grandiosa et al., 2018). Similarly, 7-AAD was combined with dyes for caspase-3/7 and 

mitochondrial potential to identify early and late apoptosis in P. canaliculus haemocytes 

in vitro exposed to copper (Nguyen et al., 2018c).  

Alternatively, cell viability can be accessed via light-scattering measurement without any 

staining. Dead cells or cells with damaged and permeable membranes possess a reduction 

of FSC signals and an increase in SSC signals. Hence, the combination of FSC and SSC 

parameters could be used to distinguish live cells and dead cells (Cossarizza et al., 2017). 

3.3.4 Phagocytosis   

The internal defences of molluscs rely only on the innate immune system, and 

phagocytosis is the most important line of defense in this system (Naik and Harrison, 

2013). Phagocytosis is the engulfment of foreign particles (bacteria, algae, cellular debris 

and protozoan parasites) by phagocytes. Granulocytes are phagocytic cells, and they play 

a prominent role in phagocytosis of molluscs while agranulocytes are less important for 

phagocytosis (Aladaileh et al., 2007, Gosling, 2015).  

FCM provides unique integration of functional and phenotypic information for 

phagocytosis studies (Cossarizza et al., 2017). FCM has been used to identify the 

phagocytotic activity in haemocytes of molluscs under different stress conditions, such 

as salinity (Gagnaire et al., 2006a), temperature (Gagnaire et al., 2006a), heavy metals 

(Brousseau et al., 1999) and different contaminants (Ladhar-Chaabouni and Hamza-

Chaffai, 2016). In phagocytosis assays, molluscan haemocytes are often incubated with 

fluorescent target particles, such as fluorescent beads  (Brousseau et al., 1999, Donaghy 

et al., 2010, Donaghy et al., 2009, Xue et al., 2001) or zymozan particles (Lambert et al., 

2003, Travers et al., 2008). Phagocytosis is then measured as phagocytosis index which 



 

79 Chapter 3 
 

is determined by the percentage of phagocytic cells that had ingested beads. However, 

determination of phagocytic cells is different from study to study. Some authors defined 

phagocytic cells with at least one fluorescent bead (Brousseau et al., 1999, Donaghy et 

al., 2010), while others used at least two (Araya et al., 2009) or three fluorescent beads 

(Delaporte et al., 2003, Hégaret et al., 2003). This makes it difficult to compare 

phagocytic activity levels across studies. Along with the phagocytosis index, Donaghy et 

al. (2010) also used the mean number of beads per phagocytic haemocytes to identify 

phagocytic activities in haemocytes from H. discus discus and T. cornutus stimulated by 

latex beads. Although the phagocytosis index was similar between these two species, the 

mean number of engulfed beads was slower in T. cornutus than in H. discus discus.  

Many authors compared phagocytotic activity between different cell types (Aladaileh et 

al., 2007, Donaghy et al., 2009). For example, Donaghy et al. (2009) used FCM to identify 

different subpopulations of Crassostrea ariakensis haemocytes and phagocytic activities 

of each cell type. The results showed that granulocytes were the main phagocytic cells, 

while hyalinocytes also showed a certain level of phagocytosis, and no phagocytic 

activity was observed in the blast-like cells. Similarly, Aladaileh et al. (2007) observed 

the ingestion of yeast cells in both granulocytes and hyalinocytes of Sydney rock oysters 

(Saccostrea glomerata), but granulocytes were more efficient phagocytes than 

hyalinocytes. 

Upon phagocytosis of pathogen, phagocytic cells release ROS which triggers apoptosis 

in molluscan haemocytes (Terahara and Takahashi, 2008, Torreilles et al., 1996). On the 

other hand, phagocytosis of apoptotic cells helps to clean of unwanted cells or cell 

components that might trigger inflammatory response (Savill, 1997). Hence, assessment 

of phagocytosis via FCM is often combined with simultaneous measurement of other 
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functional parameters, typically oxidative stress (Donaghy et al., 2010, Donaghy et al., 

2009, Goedken and DeGuise, 2002, Hégaret et al., 2003, Noël et al., 1993) or apoptosis 

(Goedken and DeGuise, 2002, Höher et al., 2012, Liu et al., 2016).  

3.3.5 Oxidative stress 

Reactive oxygen species (ROS), such as superoxide anion (O2
−), hydrogen peroxide 

(H2O2) and hydroxyl radical (HO•) are naturally produced as by-products of normal 

metabolism of oxygen and in responses to endogenous and exogenous stimuli (Sies et al., 

2017). ROS generation plays an important role in different biological processes, cell 

signalling, homeostasis and protective mechanisms (Jabs 1999; Torreilles et al. 1996). 

However, excess ROS production during endogenous and exogenous stimuli leads to an 

imbalance between ROS and antioxidants in favour of ROS which is called oxidative 

stress (Sies et al., 2017). The excessive ROS production can cause oxidative damage to 

cells and tissues via degradation of DNA, proteins and lipids (Jabs 1999; Torreilles et al. 

1996). 

Originally, ROS production of molluscs was measured using reduction of nitroblue 

tetrazolium (NBT) assays (Anderson et al., 1992b, Gómez-Mendikute and Cajaraville, 

2003, Pipe, 1992) and luminol-dependent chemiluminescence (Anderson, 1994, López et 

al., 1994). With its advantages, FCM has progressively replaced these assays for 

identifying ROS production. FCM assays use different dyes based on auto-oxidation, 

photochemical reactions, mitochondrial respiration, and various enzymes (e.g., 

cytochrome P450, NADPH oxidase) (Cossarizza et al., 2017). Most of these dyes are 

photostable fluorogenic probes which are permeable DNA-specific dyes (Cossarizza et 

al., 2017). 2’,7’-dichlorofluorescein (H2DCF) and dihydroethidium (DHE), have been 

used extensively to measure hydrogen peroxide (H2O2) and superoxide anion (O2‐), 
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respectively, in mollusc haemocytes. DCFH-DA is a nonfluorescent fluorescein analogue 

which is a membrane permeable probe. The method used in molluscs studies was adapted 

from Bass et al. (1983). When added into haemocytes, DCFH-DA diffuses into the cell 

membrane where it is hydrolysed to 2′,7′-dichlorofluorescein (DCFH) by esterase 

enzymes. DCFH is then oxidized to DCF molecule by ROS (mostly of hydrogen peroxide 

and related superoxide species). DCF can be detected on the FL1 detector of the flow 

cytometer which results in green fluorescence, indicating haemocytes with oxidative 

activity.  

DCFH-DA has been successfully used to determine the levels of H2O2 in mollusc 

haemocytes under normal conditions (Wang et al., 2012) or in response to pesticides 

(Patetsini et al., 2013), zymosan (Buggé et al., 2007, Castellanos-Martínez et al., 2014),  

heavy metals (Mottin et al., 2010), temperature (Donaghy and Volety, 2011), pathogens 

(Labreuche et al., 2006a, Lambert et al., 2003), interactive effects of metals and 

pathogenic organisms (Paul-Pont et al., 2010) and other physiological conditions (Park et 

al., 2012). In addition, the DCF green fluorescence levels were used to evaluate ROS 

production of  haemocyte subpopulations distinguished according to their relative size 

(FSC) and complexity (SSC) (Labreuche et al., 2006a, Labreuche et al., 2006b, Wang et 

al., 2012). For instant, during the infection with Vibrio aestuarianus strain on Crassostrea 

gigas, Labreuche et al. (2006a) found a strong enhancement of ROS production in 

hyalinocytes and granulocytes which was higher in granulocytes than in hyalinocytes. In 

contrast, very low ROS production was observed in small agranulocytes. Similarly, Wang 

et al. (2012) found higher ROS production in granulocytes than in hyalinocytes of  Perna 

viridis mussels.   
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Another common dye used in detection of superoxide production in mollusc studies is 

dihydroethidium (DHE). DHE is a cell permeable dye which freely permeate cell 

membranes and react with superoxide anions to form 2-hydroxyethidium which 

intercalates with DNA resulting in red fluorescence (Carter et al., 1994, Rothe and Valet, 

1990, Zhao et al., 2005). This dye has been used to measure ROS production in mollusc 

haemocytes under different external stimuli, such as pathogen infections (Nguyen et al., 

2018b, Nguyen et al., 2018d), LPS (Nguyen et al., 2019), heavy metal (Koutsogiannaki 

et al., 2014, Nguyen et al., 2018c), pesticide (Patetsini et al., 2013) and storage conditions 

(Alfaro et al., 2019). As an example, Nguyen et al. (2018b) used Muse® Oxidative Stress 

kit (EMD Millipore) based on DHE staining to measure ROS production in Perna 

canaliculus haemocytes challenged with Vibrio sp. This assay requires no wash and takes 

30 min to incubate 20 μl of haemocytes (1 × 106 cell·ml-1) in 180 μl of working solution 

containing DHE dye at 37 °C. The measurement was performed via Muse® Cell Analyzer 

which normally takes less than 1 minute per sample, depending on cell concentration and 

desired number of events to acquire. The assays provide total cell count and percentage 

of cells produced ROS in the population (Fig. 3.3).  

 
Figure 3.3   ROS profile of Perna canaliculus haemocytes under normal condition 

(control) (A) and Vibrio sp. infection (B). ROS percentage was determined 
by oxidative stress assay with DHE dye using a Muse® Cell Analyzer. M1 
indicates cell population without ROS (ROS–) while M2 is cell population 
with ROS (ROS+).  
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3.3.6 Apoptosis 

Apoptosis is a form of programmed cell death that occurs in multicellular organisms 

during various important cellular processes, ranging from embryonic development to host 

defense against pathogen infections (Elmore, 2007). Apoptosis is generally characterized 

by distinct morphological and biochemically characteristics (Elmore, 2007) which are 

regulated via two major pathways: intrinsic and extrinsic pathways (Estevez-Calvar et al., 

2013, Kiss, 2010, Sokolova, 2009, Terahara and Takahashi, 2008, Zhang et al., 2011). 

The intrinsic pathway (mitochondrial-mediated apoptotic pathway) is stimulated by 

various types of intracellular stressors, while the extrinsic pathway (death receptor-

mediated apoptotic pathway) is activated by external stimuli. Apoptosis is a conserved 

mechanism across taxa and components of apoptotic pathways in molluscs seem to be 

similar to those of vertebrates with some unique features (Romero et al., 2011, Romero 

et al., 2015). Apoptosis is an important internal defence mechanisms in molluscs in 

response to environmental changes, pollutants and pathogens (Romero et al., 2015). 

FCM has become the most widely used method of choice for multiparametric analysis of 

apoptosis (Telford et al., 2011). Many distinct characteristics of an apoptotic cell can be 

measured using FCM, including plasma membrane changes, changes in mitochondrial 

transmembrane potential, caspase activation and DNA cleavage (Allen and Davies, 2007, 

Fleisher and Oliveira, 2019). In immunological studies of molluscs, annexin V, 

mitochondrial transmembrane potential (Δψm), capsase activation are common 

biomarkers used in characterization of apoptosis.  

Annexin V 

Annexin V is a cellular protein in the annexin group that has the ability to bind to 

phosphatidylserine (PS) of cells. Translocation of PS from the cytosolic side of the intact 
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plasma membrane to the extra-cellular surface is a hallmark of early apoptosis (Telford 

et al., 2011). The Annexin V assays utilize annexin V as a useful marker for detection of 

PS on the external membrane of apoptotic cells during early apoptosis (Van Engeland et 

al., 1998). Annexin V staining must always be used in conjunction with a cell dead marker 

(e.g., PI, 7-AAD) as an indicator of the integrity of the cell membrane to rule out “leaky” 

necrotic cells as well as distinguish between live, dead and apoptotic cells (Cossarizza et 

al., 2017, Telford et al., 2011). Annexin V assays have been successfully used to 

characterize early apoptotic haemocytes of molluscs under different experiments, such as 

responses of P. canaliculus to Vibrio sp. infection (Nguyen et al., 2018d), Haliotis iris to 

multi-strain probiotics (Grandiosa et al., 2018), and cadmium-induced apoptosis in oyster 

haemocytes (Sokolova et al., 2004). As an example, Nguyen et al. (2018d) used a Muse® 

Annexin V and Dead Cell assay with annexin V for apoptosis and 7-AAD for dead cells  

 

Figure 3.4 Apoptosis profile of Perna canaliculus haemocytes under normal 
conditions (A) and Vibrio sp. infection (B). Detection of apoptosis by 
concurrent staining with Annexin V and 7-AAD. Bivariate analysis of 
Annexin V/7-AAD staining distinguishes four populations of cells, 
including non-apoptotic cells (Annexin V−, 7-AAD−), early-stage 
apoptotic cells (Annexin V+, 7-AAD−), late-stage apoptotic cells (Annexin 
V+, 7-AAD+) and dead cells (Annexin V−, 7-AAD+) (Nguyen et al., 
2018d).  
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to characterize the apoptosis in P. canaliculus following Vibrio sp. infection. They 

observed the increase of apoptotic cells and dead cells along with the decrease of live 

cells upon Vibrio sp. infection (Fig. 3.4). 

Mitochondrial transmembrane potential 

During the early apoptotic process, cells decrease mitochondrial transmembrane potential 

(Δψm) before rupture of the plasma membrane (Green and Reed, 1998, Ly et al., 2003). 

Thus, Δψm loss is another reliable indicator of apoptosis. Assessment of Δψm can be 

performed using fluorescent dyes, such as JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′- 

tetraethylbenzimi- dazolylcarbocyanine iodide), 3,3’ dihexyloxacarbocyanine iodide 

(DIOC6),  JC-10, tetramethylrhodamine methyl ester perchlorate (TMRM) (Fleisher and 

Oliveira, 2019). This method is based on the fact that these dyes are cationic probes that 

accumulate in healthy mitochondria resulting in high fluorescence. In cells with 

depolarized mitochondria, the dye is released, thereby resulting in a decrease in 

fluorescence and a downward shift. These dyes are often used with PI or 7-AAD to 

distinguish between apoptotic and nonapoptotic cells.  

Determination of Δψm has become a method of choice for characterization of apoptosis 

in molluscs (Donaghy et al., 2012, Gervais et al., 2015, Nguyen et al., 2018c, Xue et al., 

2001). JC-10 is a common dye which has been used to measure the MMP in O. edulis 

haemocytes exposed to UV (Gervais et al., 2015) and the parasite Bonamia ostreae 

(Gervais et al., 2016), and Crassostrea gigas haemocytes through the use of chemical 

inhibitors  (Donaghy et al., 2012). Others used tetramethylrhodamine, ethyl ester 

perchlorate (TMRE) for monitoring changes in MMP in M. galloprovincialis haemocytes 

exposed to commercial nanosized carbon black (NCB) (Canesi et al., 2008) and 

nanoparticles (Canesi et al., 2015, Ciacci et al., 2012). Nguyen et al. (2018c) used a 
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commercial MitoPotential dye and 7-AAD to measure the Δψm and cell death in P. 

canaliculus haemocytes exposed to increasing concentrations of copper (Fig. 3.5). 

Furthermore, the use of DIOC6 dye for measurement of Δψm combined with 

morphometric parameters (FSC and SSC) were applied to compare the Δψm in different 

sub-populations of O. edulis haemocytes (Xue et al., 2001). 

 

Figure 3.5 Apoptosis profile of Perna canaliculus haemocytes under normal 
conditions (A) and copper exposure (B). Detection of apoptosis was 
conducted by MitoPotential assay which provides four distinguishable cell 
populations, including live cells with depolarized mitochondrial 
membranes, live cells with intact mitochondrial membranes,  dead cells 
with depolarized mitochondrial membranes and dead cells with intact 
mitochondrial membranes (Nguyen et al., 2018c). 

Caspase activation 

Caspase activation is another hallmark of apoptosis (Allen and Davies, 2007). Caspases 

(cysteinyl-directed aspartate-specific proteases) constitute a family of protease enzymes 

which are the key molecular components of both intrinsic and extrinsic pathways (Cohen, 

1997, Fan et al., 2005). Functionally, caspases are categorized into three major types, 

including initiators (caspase-2,-8,-9,-10), effectors or executioners (caspase- 3,-6,-7) and 

inflammatory caspases (caspase-1,-4,-5,-11,-12,-13) (Galluzzi et al., 2016, Riedl and Shi, 

2004). Several caspases have been identified in different mollusc species, including 
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caspase-2 (Romero et al., 2011, Zhang et al., 2011, Zhang et al., 2014), caspase-8 (Huang 

et al., 2010, Romero et al., 2011, Xiang et al., 2013) and caspase-3/7 (Motta et al., 2013, 

Romero et al., 2011).  

A number of assays have been developed for detection of apoptosis based on the pivotal 

and early involvement of caspases in cell death events (Cossarizza et al., 2017, Kaufmann 

et al., 2008). Activation of caspases can be identified by different techniques, such as 

immunoblotting, flow cytometry and microscopic techniques (Kaufmann et al., 2008). In 

FCM, cell populations are stained with the intracellular mAbs or small inhibitor peptides 

conjugated to a fluorophore which are assigned as affinity ligands to active site of relevant 

caspases (Cossarizza et al., 2017). Hence, antibodies/inhibitors-caspase complexes are 

detected based on the presence of the fluorescent tag (FITC or SR) inside viable cells 

(Pozarowski et al., 2003, Smolewski et al., 2002). Caspase dyes are often used together 

with dead cell stains (e.g., 7-AAD, PI) to distinguish between apoptotic, live and necrotic 

cells.  

Caspase-3 is a frequently activated death protease in apoptotic cells of both vertebrates 

(Porter and Jänicke, 1999) and invertebrates (Guo et al., 2017, Lacoste et al., 2002, Motta 

et al., 2013, Sokolova et al., 2004). Using the FCM method, increases of caspase-3 

activation have been reported in P. canaliculus haemocytes exposed to copper (Nguyen 

et al., 2018c) or LPS (Nguyen et al., 2019), and Mytilus edulis haemocytes exposed to 

copper (Höher et al., 2013). As an example, Nguyen et al. (2018c) used the Muse® 

Caspase-3/7 kit to quantitative measurements of apoptotic status in P. canaliculus 

haemocytes in vitro exposed to copper. The kit utilizes a Muse® Caspase-3/7 reagent 

NucView® for the detection of caspase-3/7 activity along with 7-AAD as a dead cell 

marker. The assay provided relative percentages of four cell subpopulations, including 
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live cells, early apoptotic cells, late apoptotic cells and dead cells (Fig. 3.6). They 

observed significant increases of dead cells and apoptotic cells in copper-exposed 

haemocytes compared to the control haemocytes.  

 

Figure 3.6  Apoptosis profile of Perna canaliculus haemocytes under normal 
conditions (A) and copper exposure (B). Apoptotic changes were detected 
using MuseTM Caspase-3/7 assay. The assay provides four distinguishable 
cell populations, including live cells, early apoptotic (live) cells, late 
apoptotic (dead) cells and dead cells.  

3.3.7 DNA content and cell cycle characteristics of haemocytes 

FCM is the most valuable technique of choice for cellular DNA content and cell cycle 

analysis (Benabdelmouna and Ledu, 2016). It allows for the characterization of cells in 

the major phases of the cell cycle (G0/G1, S and G2/M), determining frequency of 

apoptotic cells based on fractional DNA content, and additionally detecting DNA 

amounts (polyploid or aneuploid) of the cell population (Benabdelmouna and Ledu, 2016, 

Darzynkiewicz et al., 2017). Comparatively to other available traditional methods (e.g., 

histology and hemocytology), FCM is a rapid, accurate, non-subjective and cost-effective 

approach (Benabdelmouna and Ledu, 2016). The analysis of DNA content and cell cycle 

characteristics are based on the staining of DNA with fluorescent dyes (e.g. PI, 7-AAD, 

Hoechst stains, TO-PRO-3, SYTOX, acridine orange, pyronin Y) (Cossarizza et al., 

2017). 
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FCM has been extensively used to characterize DNA content and cell cycle in various 

mollusc species (Benabdelmouna and Ledu, 2016, Da Silva et al., 2005, Delaporte et al., 

2008, Grand et al., 2010, Moore et al., 1991, Reno et al., 1994, Siah et al., 2008). For 

example,  FCM has been successful used to determine the DNA content and genomic 

characteristics of abnormal cells affected with hemic neoplasia in the haemolymph of 

many molluscan species, such as in the Mytilus mussels (Elston et al., 1990), the soft shell 

clams (Mya arenaria) (Delaporte et al., 2007, Reno et al., 1994) and in the common 

cockles (Cerastoderma edule) (Da Silva et al., 2005, Grand et al., 2010). These studies 

have successfully distinguished between negative and heavily affected bivalves using 

FCM. Recently, Benabdelmouna and Ledu (2016) used FCM to determine genomic 

abnormalities in haemocytes of blue mussels, Mytilus spp. associated with mortality 

outbreaks in from the Atlantic coast of France. Different thresholds of genomic 

abnormalities (GA %) based on the percentage of haemocytes in S-G2/M phase were set 

up at individual and populations levels. The results provide evidence of heavy genomic 

abnormalities and GA % was found to be significantly predictive of the final mortality. 

Together, these studies demonstrate that FCM is a powerful tool for accurate diagnosis 

of diseases in marine bivalves. 

3.3.8 Protein analysis 

FCM has been appears to be an important tool for future protein analysis which could be 

applied for routine assays to quantify the number of proteins expressed in a cell and on 

the cell surface (Hogg et al., 2015). This is based on the principle that intracellular 

proteins in the complex mixture can be specifically labelled using fluorophore-conjugated 

antibodies which can be quantify using FCM.  
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There are a few studies using FCM for protein analysis in mollusc species (Friedl et al., 

1988, Rey-Campos et al., 2019). For example, Friedl et al. (1988) measured the total 

protein in haemocytes of the American oysters (C. virginica) by FCM. They observed a 

broad uniform distribution of proteins which was similar to that obtained for cell size. 

Rey-Campos et al. (2019) used FCM to measure myticin C, the most expressed 

antimicrobial peptides in mussels, in different haemocyte populations of M. 

galloprovincialis mussels infected with Vibrio splendidus, and observed the decrease in 

the number of myticin C positive haemocytes after infection.  
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3.4 CHALLENGES AND PERSPECTIVES 

One of the big challenges of working with molluscan haemocytes is cell aggregation. To 

prevent haemocytes from clumping during bleeding, many different types of anti-

aggregant solutions have been used, such as Alsever's solution, modified Alsever's 

solution, heparin sodium solution and modified Leibovitz L15 (Gagnaire et al., 2006b, 

Jiang et al., 2016, Wang et al., 2017, Zhou et al., 2017). However, the use of anticoagulant 

for molluscan haemocytes may inhibit haemocyte activities (Gagnaire et al., 2004). For 

example, the use of modified Alsever's solution was reported to decrease oxygen 

metabolite production in bivalves (Torreilles et al., 1999). The aggregation of molluscan 

haemocytes could be reduced or prevented by the maintenance of haemocytes on ice or 

low temperature, such as 4 °C (Anderson et al., 1992a, Auffret and Oubella, 1997). 

Hence, in our recent studies, we have simply used cold filtered artificial seawater to mix 

with haemolymph in order to prevent cell clotting (Alfaro et al., 2019, Nguyen et al., 

2018b, Nguyen et al., 2018c, Nguyen et al., 2018d, Nguyen et al., 2019). This method 

requires a minimal sample manipulation (no lyse, no cell wash) to mimic physiological 

conditions.  

In addition to anticoagulants, the use of staining dyes may be toxic for cells. It may cause 

a loss in cell viability and in certain situations even apoptosis or severe damage 

(Cossarizza et al., 2017).  Hence, it is important to take into account the toxicity of the 

dyes for the haemocytes and the combination of different assays is sometimes necessary 

to identify the true value of the measured parameters.  

Recently, there has been an emergence of metabolomics applications in molluscan 

immunity studies (Liu et al., 2014, Nguyen et al., 2018c, Nguyen et al., 2018e, Nguyen 

et al., 2019). Many authors also combined FCM and untargeted GC-MS metabolomics in 
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molluscan immunology (Nguyen et al., 2018b, Nguyen et al., 2018c, Nguyen et al., 

2018d). For example, Nguyen et al. (2018c) employed FCM and GC-MS metabolomics 

to characterize effects of copper on haemocytes. Along with the increase of an oxidative 

stress biomarker, ROS, in copper-exposed haemocytes, they found the accumulation of 

glutathione and other metabolites in glutathione pathways, suggesting the role of 

glutathione as a metabolite maker of oxidative stress. Similarly, the increases of apoptosis 

hallmarks including caspase 3/7 activation and Δψm loss were found to be linked with 

the increase in alanine and decrease of glutamic acid in the taurine metabolism, which 

plays a key role in apoptosis regulation (Nguyen et al., 2018c). Hence, these examples 

demonstrated that the combination of FCM and metabolomics could expand the number 

of cell and molecular markers to provide an extensive evaluation of functional markers. 

Such kind of integrated approach could be expanded to combinations between multiple 

FCM parameters and other omics (e.g., transcriptomics, proteomics) or integrated omics 

to create a detailed picture of immune responses within cells and generate accurate 

biomarker signatures of molluscan diseases.  

Recent advances in technology have led to a comprehensive range of innovative flow 

cytometers. Many of these are small in size and simple in operation, and allow for routine 

sampling in the field. As an example, the Muse® Cell Analyzer has been extensively used 

in our lab for both field and laboratory measurement of many cell health parameters of 

molluscs. At the moment, only the cell count and viability assays appear to be suitable 

for field sampling because they are simple and fast and the dye used can just be stored at 

cool temperature (2-8 °C). Other assays, such as oxidative stress and apoptosis, require 

the dyes to be stored at –20 °C and they need long incubation times (30 minutes), which 

are not likely to be suitable for the field. Hence, future modifications of storage conditions 

of these dyes or greater molecular and cellular labelling techniques will make other assays 
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more applicable in the field. Furthermore, continued advances in instruments along with 

the decrease in the price will allow for the wider use of FLC in  essentially any setting.  

The use of FCM in immunological studies has advanced in vertebrates with a diverse 

range of measurable parameters (Cossarizza et al., 2017, Fleisher and Oliveira, 2019). 

However, FCM parameters used in molluscan immunological studies are limited to a few 

measurable parameters. This is a great opportunity for marine scientists to continue to 

explore the advantages of modern FCM to provide insights into molluscan immunology. 

However, the lack of standardized cellular reference materials for molluscan haemocytes 

remains a big challenge for the development and validation of new assays. Among the 

current parameters used, only viability and cell subpopulations has been validated (Allam 

et al., 2002, Ashton-Alcox and Ford, 1998, Donaghy et al., 2010, Ford et al., 1994). There 

are currently no guidelines for the validation of FCM methods to be used in molluscan 

species. Hence, there is a need to conduct appropriate validations for the numerous FCM 

assays used in molluscan immunological studies.  
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3.5 CONCLUDING REMARKS 

A variety of FCM assays currently exist for immunological studies of molluscs which 

have enabled deep understanding of molluscan immunology. FCM analyses in molluscs 

have focused on characterization of cell types, response of haemocytes to a particular 

stress, diseases or toxic agent and diagnosis of diseases. However, applications of FCM 

in marine molluscs as well as in invertebrates are quite limited compared to those in 

vertebrates. To this end, marine scientists could take advances by applying and optimizing 

FCM methodologies that have been developed for mammalian cells for studies in mollusc 

species. As a tool, FCM can be used in combination with other techniques, such as omics 

approaches, which have advanced significantly in recent years.  Ultimately, this will lead 

to a more improved understanding of molluscan immunology, and contribute to defining 

accurate biomarker signatures of diseases or stress conditions within wild and aquaculture 

settings.   
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ABSTRACT 

While tissue-specific immune responses are well-understood in mammals, such studies 

are lacking for marine bivalves. In this study, we investigated immune responses in gill, 

hepatopancreas and haemolymph of mussels (Perna canaliculus Gmelin, 1791) following 

experimental infection with Vibrio sp. DO1 (Vibrio coralliilyticus/neptunius-like isolate). 

Significant differences in metabolite profiles and metabolic responses between tissues 

were observed. Overall, haemolymph and gills shared common metabolic responses 

characterised by increases in itaconic acid and decreases in other amino acids (e.g., 

branched-chain amino acids , lysine, tryptophan) and fatty acids (e.g., DHA, EPA, 

palmitoleic acid). Increases in itaconic acid, decreases in fatty acids and increases in 

amino acids were found in hepatopancreas tissues. The alterations of these metabolites 

suggest osmotic stress, oxidative stress, changes in amino acid metabolism and protein 

synthesis in the immune system of P. canaliculus caused by Vibrio sp. infection. 

Interestingly, the accumulation of itaconic acid in all three tissues of infected mussels 

suggests that this metabolite has an important role in the mediation of bivalve 

antimicrobial activities and immune responses. These results indicate that careful 

consideration should be given to tissue sampling choices for immunological and 

metabolomics studies. In addition, further investigations are needed to elucidate 

mechanistic responses across different tissues associated with pathophysiological 

processes in bivalves.  
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4.1 INTRODUCTION 

Bivalves represent one of the most important groups in aquaculture, with mussels, 

oysters, clams, and scallops being the most widely cultivated. Global bivalve production 

has increased from 3.3 million metric tonnes in the 1990s to 15.3 million metric tonnes 

in 2016 (FAO, 2019). In some countries, such as New Zealand, bivalve farming accounts 

for more than 88 % of the country’s aquaculture production (FAO, 2019). In New 

Zealand, GreenshellTM mussels (P. canaliculus) and Pacific oysters (Crassostrea gigas), 

together with king salmon (Oncorhynchus tshawytscha), represent the three main 

cultivated species for this growing aquaculture sector. However, infectious diseases 

caused by viruses (e.g. OsHV-1), bacteria (e.g., Vibrio sp.) and parasites (e.g., Bonamia 

sp.) are one of the main challenges for further expansion and growth (Alfaro et al., 2018, 

Castinel et al., 2014). Among these pathogens, Gram-negative bacteria belonging to the 

genus Vibrio (e.g., V. aestuarianus,  V. coralliilyticus V. splendidus and V. harveyi) have 

been associated with a number of infectious diseases with sometimes devastating 

consequences for bivalve stocks worldwide (Travers et al., 2015). Vibrio coralliilyticus, 

is a well-known coral pathogen (Ben-Haim et al., 2003, Rozenblat and Rosenberg, 2004), 

and has contributed to dramatic bivalve aquaculture losses, and prompted considerable 

research interest in recent years (Nguyen et al., 2018a). For example, Vibrio sp. DO1 (V. 

coralliilyticus-like isolate) was isolated from P. canaliculus larvae (Kesarcodi-Watson et 

al., 2009a) and was confirmed to be pathogenic when used in experimental challenges of 

mussel larvae (Kesarcodi-Watson et al., 2009b) and adults (Nguyen et al., 2018a, Nguyen 

et al., 2018b). Despite the fact that V. coralliilyticus is known to affect a range of bivalve 

species worldwide, there is limited information about its pathogenicity, infection 

mechanisms and disease mitigation. 
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Studies have started to emerge relating to the overall health and immune system of 

shellfish with commercial importance (reviewed by Guo and Ford 2016, Zannella et al. 

2017). These studies have used a range of immunological and analytical tools to target 

diverse sets of tissues and organs. Haemocytes for example, which play a key role in the 

innate immune system (e.g., phagocytosis, encapsulation and nacrezation of foreign 

particles), are commonly used to investigate immune responses of bivalves to pathogens 

(Allam et al., 2000, Allam et al., 2006, Ciacci et al., 2017, Oubella et al., 1994, Pruzzo et 

al., 2005). Bivalve gills are also often analysed in immunological studies, since they 

accumulate marine pathogens and are targets of infection (Liu et al., 2014, Lu et al., 

2017). The molluscan hepatopancreas is an integrated organ of immunity and metabolism 

(Rőszer, 2014), also making it one of the most common target tissues in immune studies 

(Jiang et al., 2017, Liu et al., 2014, Lu et al., 2017, Ren et al., 2017). 

It is well-known that characteristics of the tissue microenvironment in mammals can 

shape the outcome of innate immune responses (Chieosilapatham et al., 2018, Hu and 

Pasare, 2013). However, such tissue-specific regulation of innate immune responses are 

not well-characterized in bivalves. To our knowledge, the only study thus far to 

investigate tissue-specific immune responses in bivalves was conducted by Liu et al. 

(2014), who compared metabolite profiles in gills and hepatopancreas of mussel (Mytilus 

galloprovincialis) after a Vibrio harveyi challenge using NMR-based metabolomics. 

Differential metabolic responses to the infection between the tissues were observed, with 

glucose synthesis and ATP/AMP turnover in hepatopancreas tissues being altered, and an 

elevation of phosphocholine levels being detected in gill tissues. Comparisons between 

immune responses of haemolymph/haemocytes and other tissues (e.g., gills, 

hepatopancreas) has not yet been investigated in marine bivalves. 
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Our recent studies have demonstrated the power of gas chromatography-mass 

spectrometry (GC-MS)-based metabolomic approaches to characterise changes in 

endogenous metabolites underlying metabolic responses of bivalve haemocytes against 

external stresses (e.g., pathogens, contaminants, temperature) (Alfaro et al., 2019, 

Nguyen and Alfaro, 2018, Nguyen et al., 2018c). However, we did not investigate such 

metabolic responses in other tissues (e.g., gills, hepatopancreas). In the present study, 

GC-MS-based metabolomics was applied to compare the endogenous metabolic changes 

in haemolymph, gills and hepatopancreas of the New Zealand GreenshellTM mussels (P. 

canaliculus) following Vibrio sp. infection. Thus, the study aims to characterize tissue-

specific immune responses which are crucial for understanding of bivalve immune system 

and pathogenesis of Vibrio bacteria. In addition, we also intended to identify potential 

biomarkers underlying these processes in mussels. 
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4.2 MATERIALS AND METHODS 

4.2.1 Experimental design and bacterial culture 

Adult mussels (weight = 80.41 ± 18.81 g; shell length = 10.51 ± 0.93 cm) were obtained 

from Westpac Mussel Distributors Ltd (Auckland, New Zealand) and acclimatized for 

one week in a re-circulation system (5 µm filtered seawater [FSW]; temperature = 16 ± 

0.5  °C; salinity = 35 ppt; pH = 8.0). A pool of 20 mussels were randomly divided into 

two equal groups and placed into plastic tanks containing 50 l of filtered seawater that 

were continuously aerated with air stones. Ten mussels in one tank were injected with 50 

μl of fresh Vibrio sp. DO1 suspended in autoclaved phosphate-buffered saline (PBS) at a 

concentration of 1 × 107 cells·ml-1 in the posterior adductor muscle. Mussels in the control 

groups were only injected with 50 μl of PBS. 

The bacterial strain Vibrio sp. DO1 (V. coralliilyticus/neptunius-like isolate, 99.5 % 16S 

rDNA sequence similarity with V. corallyliticus, Genbank: EU358784), which was 

previously isolated by Kesarcodi-Watson et al. (2009a) was provided by Cawthron 

Institute (Nelson, New Zealand). Bacterial suspensions were prepared following the 

method described by Kesarcodi-Watson et al. (2009b) with modifications. Briefly, the 

bacterial isolates, which were stored at –80 °C in 50 % glycerol were revived by thawing 

for one hour prior to incubation in 10 ml volumes of sterilized Marine Broth 2216 (MB, 

Difco) at room temperature for 12 h on a G10 Gyrotory shaker (New Brunswick Scientific 

Co., Edison, NJ, U.S.A) at 100 rpm. The bacterial suspension was streaked on thiosulfate 

citrate bile salts sucrose (TCBS) agar plates (Fort Richard Laboratories, Auckland, New 

Zealand) and sub-cultured three times to ensure purity. Bacterial colonies were cultured 

in 10 ml MB for 12 h, then transferred into 500 ml MB and incubated for 36 h at room 

temperature on a G10 Gyrotory shaker at 100 rpm. The final broth cultures were 

centrifuged on an Eppendorf Centrifuge 5810 R (Eppendorf AG, Hamburg, Germany) at 
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2423 × g for 10 min, and washed twice in PBS (137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HPO4, 2 mM KH2PO4, pH 7.4). The bacterial suspension was re-suspended in 

autoclaved PBS to the original concentration (~108 CFU·ml–1). A series of 10-fold 

dilutions in PBS was prepared and measured on a spectrophotometer (Ultrospec 2100 pro 

UV–Vis, Biochrom Ltd, Cambridge, UK) at 600 nm to determine the cell concentration 

of final broth cultures. In addition, 100 µl from each dilution was spread on TCBS agar 

plates to verify experimental concentrations.  

Twenty-four hours after injection, mussel haemolymph was withdrawn from the posterior 

adductor muscle of all animals using a 23 gauge and 1/4″ needle attached to a 3-ml sterile 

syringe (Terumo, Belgium) (Fig. 4.1). Haemolymph samples were immediately 

transferred to 2 ml Eppendorf tubes kept on ice, and 300 μl were sub-aliquoted into 2 ml 

Cryovial (BioStor™) and flash-frozen in liquid nitrogen (LN). The remaining 

haemolymph was kept on ice to use for bacterial counts and flow cytometric assays. Gill 

and hepatopancreas tissues were quickly excised after haemolymph withdrawal and flash-

frozen in LN. All samples in LN were stored at –80 °C until metabolite extractions could 

be undertaken. 
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Figure 4.1  The external and internal features of the New Zealand GreenshellTM 
mussels (P. canaliculus). 

4.2.2 Bacterial quantification 

Bacteria were enumerated using the spread plate method with a turntable and glass 

spreader, according to Sanders (2012). Briefly, for non-infected control mussels, 0.1 ml 

of haemolymph was directly spread on thiosulfate citrate bile salts sucrose (TCBS) agar 

plates (Fort Richard Laboratories, Auckland, New Zealand). For infected mussel 

haemolymph, a series of dilutions (up to 10-4) were prepared by diluting the stock 

haemolymph with ASW, and 0.1 ml from each diluted haemolymph was spread on TCBS 
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agar plates with three replicates for each. All plates were incubated at room temperature 

for 24 h,  then plates with 30 to 300 colony forming units (cfu) were enumerated; where 

cfu·ml-1 = (no. of colonies x dilution factor) / volume of each sample. 

4.2.3 Quantification and viability of haemocytes 

After withdrawal from the mussels, 200 μl of fresh haemolymph were immediately 

diluted with 200 μl of cold (4 °C) filtered (0.2 µm) ASW and mixed thoroughly to avoid 

cell aggregation. Samples were kept on ice and transferred to the laboratory for analysis 

within 30 minutes. Haemocyte concentrations and viability were measured via flow 

cytometry on the Muse® Cell Analyzer (EMD Millipore, Hayward, CA, USA) using the 

Muse® Cell Count and Viability kit (Merck Millipore, Abacus dx, New Zealand), 

following the following the manufacturer’s specifications with modifications for bivalve 

haemocytes. Briefly, 20 μl of diluted haemolymph were mixed with 380 μl of Muse® 

Count and Viability assay reagent in a 1.5 ml micro-centrifuge tube and incubated for 5 

min in the dark at room temperature. Finally, the samples were mixed thoroughly and run 

on the Muse® Cell Analyzer (flow rate = 0.59 μl·sec-1; number of events = 1000; RED 

threshold = 11; FSC threshold = 10).  

4.2.4 Metabolite extraction and derivatization 

Stored gill and hepatopancreas samples were freeze-dried overnight, then ground using a 

mortar and pestle. Approximately 5 mg of gill and hepatopancreas tissues were weighted 

and placed into 1.5 ml micro-centrifuge tubes for metabolite extractions. Stored mussel 

haemolymph samples were dried in a SpeedVac Concentrator with a Refrigerated Vapor 

trap (Savant™ SC250EXP, Thermo Scientific) for 4 h (0 °C, vacuum ramp 3, 42 

torr/min). All samples were co-extracted with an internal standard (L-alanine-2,3,3,3-d4) 

in cold methanol-water solution (MeOH:H2O), according to Smart et al. (2010) with 
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minor modifications. Briefly, each dried sample was mixed with 20 μl of d4-alanine (10 

mM) and 500 μl of cold (−20 °C) 50 % MeOH:H2O solution. The mixture was 

homogenized for 1 minute using a Geno/Grinder® - automated tissue homogenizer and 

cell lyser (SPEX CertiPrep, Metuchen, NJ, USA), re-frozen on dry ice and then thawed 

again on ice. Extracts were cold (−6°C) centrifuged at 587 u g for 10 minutes (Centrifuge 

5424, Eppendorf AG, Hamburg, Germany) and the supernatants from the extractions 

were collected in 2 mL plastic vials placed on dry ice. The second extraction was carried 

out with 500 µL of cold (−20°C) methanol-water (80% v/v, MeOH:H2O) with the same 

process as the first extraction. The supernatant was collected, then mixed with the first 

supernatant and kept on dry ice. The mixture was dried using a Savant™ SC250EXP 

SpeedVac Concentrator with a Savant™ RVT5105 Refrigerated Vapor Trap as specified 

above.  

Extracted metabolites were derivatized based on the protocol described by Smart et al. 

(2010). Briefly, dried samples were re-suspended in 400 μl of 1 M sodium hydroxide and 

quantitatively transferred to silanized borosilicate glass tubes (12 × 75 mm) (KimbleTM, 

ThermoFisher, Auckland, New Zealand) containing 334 μl of methanol and 68 μl of 

pyridine. This was followed by a series of reagent additions and vortexing: 40 μl of MCF 

reagent – 30 s, 40 μl of MCF – 30 s, 400 μl of chloroform – 10 s, and 800 μl of 50 mM 

sodium bicarbonate – 10 s. The mixture was centrifuged at 1174 g on an Eppendorf 

Centrifuge 5810 R (Eppendorf AG, Hamburg, Germany) for 6 minutes. The upper 

aqueous layer was discarded, and a small amount of anhydrous sodium sulphate was 

added to remove residual water. The chloroform phase containing the MCF derivatives 

was transferred to 2 ml amber CG glass vials fitted with 150 μL inserts with bottom-

spring (Sigma-Aldrich, St. Louis, MO, USA) for GC-MS analyses. 
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4.2.5 GC-MS measurements and quality control 

The derivatized samples were analysed with a gas chromatograph GC7890B coupled to 

a quadrupole mass spectrometer MSD5977A (Agilent Technologies, CA, USA), with a 

quadrupole mass selective detector (EI) operated at 70 eV. The system was equipped with 

a ZB-1701 GC capillary column (30 m × 250 μm id × 0.15 μm with 5 m guard column) 

(Phenomenex, Torrance, CA, USA). The instrumental setup parameters for MCF 

derivatized samples were set according to Smart et al. (2010). The GC-oven temperature 

was initially held at 45 °C for 2 minutes, and then raised with a series of gradient increases 

as following: increased 9 °C per minute to 180 °C, held for 5 minutes; increased 40 °C per 

minute to 220 °C, held for 5 minutes; increased 40 °C per minute to 240 °C, held for 

11.5 minutes; increased 40 °C per minute to 280 °C, held for a further 2 minutes. The 

interface temperature was set to 250 °C, the source was set at 230 °C and the quadrupole 

temperature was set at 150 °C. Samples (1 μl) were injected under pulsed splitless mode 

with the injector temperature at 260°C. Helium was used as the carrier gas and was held 

at a constant flow of 1 ml per minute. The GC column was equilibrated for 6 minutes 

prior to each analysis. The mass spectrometer was operated in scan mode, starting after 

6 minutes with mass range 38–650 AMU at 1.47 scans per second and detection threshold 

of 100 ion counts.  

Several types of quality control (QC) samples were employed to ensure reproducibility 

of GC-MS measurements. The first QC samples were chloroform solvent and non-

derivatized n-alkanes (C10-C40). The alkane samples were also used to check Kovats 

retention index and create the calibration file. Secondly, six standard amino acid mixtures 

(20 µL, 20 mM) were similarly derivatized and measured as the protocol for samples. 

Thirdly, six blank samples containing 20 μL of 10 mM d4 alanine were extracted, 

derivatized and analysed using the sample protocol as above. The final two QC samples 
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were pooled samples from both infected and noninfected (controlled) mussels that were 

processed as samples. These QC samples were injected at the beginning and after every 

ten samples. Together, QC samples made up more than 30% of all injections performed. 

4.2.6 Data processing 

Raw spectra data were transformed into AIA format (.cdf) files using ChemStation 

(Agilent Technologies, Inc., US) and processed using automated mass spectral 

deconvolution and identification system (AMDIS) software (online software distributed 

by the National Institute of Standards and Technology, USA - http://www.amdis.net/) 

integrated with an automated in-house R-based package (Aggio et al., 2011).  GC-MS 

data mining was carried out using an automated in-house R-based package (Aggio et al., 

2011). Identification was performed using an in-house MS library with the minimum 

matching percentage of 70% based on both the MS spectrum of the metabolite and its 

respective retention time. Other parameters used to accomplish this analysis were: 

retention time (RT) window (0.2 minute), RT range (6.5-34.0 minute), component width 

(14), QA/QC (solvent tailing: 83 m/z, column bleed: 207 m/z) and scan sets (3). 

Annotated metabolites were manually checked with ChemStation software (Agilent 

Technologies, Inc., US) and AMDIS for the presence of contaminants. Repeats (based on 

ID number, match factor and retention time) and aberrant records were removed. Data 

were normalized to the internal standard (d4 alanine) to compensate for potential technical 

variations (e.g. variable metabolite recoveries) prior to data analyses. 

4.2.7 Data analyses 

Metabolite profile data were analysed using MetaboAnalyst 3.0 (Xia et al., 2015). Data 

were generalized log (glog) transformed and mean centred to make individual features 

more comparable. Unsupervised principal components analysis (PCA) was used to 
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identify natural groupings of all tissue samples based on the underlying structure of the 

data. Supervised partial least squares - discriminant analysis (PLS-DA) was applied to 

distinguish two groups from each other and to perform a classification and regression 

model. The PLS-DA model performance was validated using leave one out cross 

validation (LOOCV), which was assessed via accuracy, multiple correlation coefficient 

(R2) and cross-validated R2 (Q2). The important classifiers were identified via their 

variable importance in projection (VIP) scores. All metabolites with VIP score values 

greater than one were considered important for the separation among infected and control 

groups. For these relevant compounds, univariate analyses were performed (t-test and 

fold change) for distinguishing infected and control group in each tissue. A 95 % 

confidence interval ellipses was applied for all the tests. 

Differences in bacterial concentrations, total haemocyte counts and viability between 

control and infected mussels were analysed with independent student’s t-tests using 

SPSS® software (version 23.0) (IBM, Armonk, NY, USA). 
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4.3 RESULTS   

4.3.1 Bacterial quantity, haemocyte concentrations and viability 

Vibrio counts were significantly higher in haemolymph from infected mussels (1.87 × 

106 r 1.18 x 106 cfu·ml-1) than those of non-infected (control) mussels (70.0 r 35.0 

cfu·ml-1) (t8 = –1.59; p = 0.033) (Fig. 4.2A). There was a significant increase in total 

haemocyte concentration in infected mussels (8.01 x 106 r 1.18 × 106 cfu·ml-1) compared 

to controlled mussels (2.68 × 106 r 4.46 x 106 cfu·ml-1) (t38 = –3.83; p = 0.036) (Fig. 

4.2B). However, the percent viability of haemocytes was lower in infected mussels (51.94 

r 4.20  %) than in controls (71.74 r 1.79  %) (t38 = 4.34; p = 0.002) (Fig. 4.2C). 

 

Figure 4.2  Enumeration of bacteria and haemocytes. Enumeration of Vibrio sp. in 
mussel haemolymph (Log10 cfu·ml-1) (A). Log10 haemocyte concentrations 
(cells·ml-1) in mussel haemolymph (B). Viability of haemocytes (C). Data 
are represented as mean ± SE (n = 6). Significant differences relative to 
the control are marked with an asterisk (*) (t-test, p < 0.05). 

4.3.2 Metabolomics 

A total of 73 metabolites that matched with the in-house library were identified from GC-

MS spectra. These metabolites belong to broad chemical classes of amino acids (e.g., 

serine, valine, cysteine), fatty acids (e.g., DHA, EPA, oleic acid), organic acids (e.g., 
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succinic acid, fumaric acid,  itaconic acid), and vitamins (e.g., nicotinic acid), among 

others. 

The PCA score plot showed a good separation between gill, hepatopancreas and 

haemolymph samples (Fig. 4.3). Supervised PLS-DA analyses were used to sharpen the 

discrimination between control and infected groups in all tissues/organs and to build the 

classification and prediction model. The PLS-DA model of gill tissues showed an 

accuracy of 94.4 %, an R2 value of 92.0 % and a Q2 value of 74.7 %. Similarly, the PLS-

DA model for hepatopancreas had high accuracy (94.4 %), R2 (92.0 %) and Q2 (74.7 %). 

These parameters indicate optimal fitness and prediction performance of the PLS-DA 

models for gill and hepatopancreas tissues. For the haemolymph PLS-DA model, the 

accuracy (82.1 %), R2 value (76.1 %) and Q2 value (55.0 %) were lower than those of the 

gill and hepatopancreas models, but they were still considered reasonable for 

classification and predictive purposes. 

Furthermore, PLS-DA also provided the list of metabolites that are important classifiers 

of these models, based on their VIP scores. With VIP scores > 1.0, there were 29, 28 and 

28 metabolites in haemolymph, gills and hepatopancreas, respectively, that were 

identified as contributing strongly towards class discriminations. Ten of these metabolites 

were common important model contributors across all tissues. In addition, gills shared 11 

and 2 common important classifiers with haemolymph and hepatopancreas, respectively. 

Similarly, haemolymph and hepatopancreas have 3 common metabolites that strongly 

contributed to the classification models (Fig. 4.4). T-test analyses (p < 0.05) of these 

metabolites revealed 26 metabolites that were differently expressed in haemolymph of 

control and infected mussels with 2 up-regulated and 24 down-regulated metabolites. 

Gills showed the alteration of all 28 important classifiers with 2 up-regulated and 26 
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down-regulated. For the hepatopancreas samples, there were increases in 19 metabolites 

and decreases in 6 metabolites. Details of t-test analyses and fold change values of these 

metabolites are presented in Table A.1, 2 & 3 in the appendix. 

 

Figure 4.3  Multivariate data analysis of haemolymph, gills and hepatopancreas in 
infected and non-infected (control) mussels. PCA score plot of gill, 
hepatopancreas and haemolymph in infected and control mussels (A). 
PLS-DA score plot of gill tissue (B), hepatopancreas (C) and haemolymph 
(D). Gil, gill tissues; Hae, haemolymph; HP, hepatopancreas; C, control 
(PBS injected; non-infected); V, Vibrio bacteria (Vibrio DO1 injected; 
infected). 

(A)

(D)(C) (D)
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Figure 4.4  List of metabolites that were identified as contributing strongly to 
classification models based PLS-DA VIP Score (> 1) of haemolymph, gills 
and hepatopancreas. Metabolites in bold, italic and underlined are 
common compounds among the three tissues. Metabolites in bold are 
common metabolites between gills and haemolymph samples, while 
metabolites in italic are common classifiers between haemolymph and 
hepatopancreas. Underlined metabolites represent the common 
metabolites between hepatopancreas and gills. 

  

Myristic acid, Citraconic
acid, Itaconic acid, 
Creatinine, Valine, 
Isoleucine, Linoleic acid, 
Palmitic acid, Leucine, 
Tridecanoic acid -
Palmitoleic acid, Stearic 
acid, Margaric acid, Gondoic
acid, Oleic acid, trans-
Vaccenic acid, DHA, 
Pentadecanoic acid, EPA, 
11,14-Eicosadienoic, 
Methionine - Tryptophan,
Tyrosine, Lysine - Creatinine, 
Benzoic acid, 2-
Aminobutyric acid, 13,16-
Docosadienoic acid, 
Ornithine, Glutaric acid, 
Linoleic acid, Aspartic acid

Myristic acid, Citraconic acid, Itaconic acid, Creatinine, Valine, Isoleucine, Linoleic acid, Palmitic acid, Leucine,
Tridecanoic acid - Palmitoleic acid, Stearic acid, Margaric acid, Gondoic acid, Oleic acid, trans-Vaccenic acid, DHA,
Pentadecanoic acid, EPA, 11,14-Eicosadienoic, Methionine - Serine, Asparagine - 2, Aminobutyric acid, Linolelaidic
acid, 2,4-Di-tert-butylphenol, Myristoleic acid, Alanine, Lactic acid
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4.4 DISCUSSION 

V. coralliilyticus is a ubiquitous bivalve pathogen that has contributed to dramatic losses 

in shellfish aquaculture worldwide in recent years (Nguyen et al., 2018a). In this study, 

we challenged mussels with Vibrio sp. DO1 (V. coralliilyticus-like isolate) and observed 

significantly higher Vibrio bacterial loads and lower haemocyte viability in haemolymph 

of infected mussels compared to non-infected control mussels after 24 hours. 

Furthermore, circulating haemocyte numbers were higher in infected mussels, which is 

consistent with other reports of bivalves exposed to pathogens (Allam et al., 2001) or 

environmental stressors (Pipe et al., 1999). Since haemocytes participate in phagocytosis 

and other important immune responses, the increase of haemocytes in infected mussels is 

suggestive of a stimulation of the immune system. 

Metabolically, we observed differences in metabolite profiles among haemolymph, gills 

and hepatopancreas, and between infected mussels and control mussels in each tissue. 

There were 10 common metabolites identified as contributing strongly towards 

classification models, but their regulations were different from tissue to tissue. While 

there were increases in itaconic acid and decreases in free fatty acids (e.g., myristic acid, 

linoleic acid, palmitic acid, tridecanoic acid) in all tissues, free amino acids (e.g., valine, 

isoleucine, leucine, creatinine) decreased in gills and haemolymph, but increased in 

hepatopancreas. These results suggest common and different metabolic responses among 

these tissues of mussel challenged with Vibrio sp. 

For haemolymph, we found significant increases in itaconic acid and glutaric acid, and 

decreases in 24 metabolites of infected mussels compared to those in the control group. 

Itaconic acid is an antimicrobial metabolite that is synthesised de novo during pathogen 

infections in mammalian macrophages (Cordes et al., 2015), and more recently 
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demonstrated in invertebrate cells (Nguyen et al., 2018b, Nguyen et al., 2018a, Young et 

al., 2017). Furthermore, previous studies on mussels following Vibrio-challenge have 

shown that itaconic acid may participate in regulation of the tricarboxylic acid cycle and 

inflammation (Nguyen et al., 2018a). Hence, the increase in itaconic acid suggests an 

important role of itaconic acid in antimicrobial and other immune responses of mussel 

haemocytes against the Vibrio infection. 

Glutaric acid is a metabolic product of some amino acids, including lysine and tryptophan 

and key metabolites in glutaryl co‐enzyme (Gholson et al., 1959, Neuberger and Sanger, 

1944, Sauer et al., 2005). The involvement of glutaric acid in the pathogenesis of diseases 

has been demonstrated in several vertebrate studies. For example, glutaric acid reportedly 

plays roles in the activation or facilitation of excitotoxic mechanisms and oxidative stress 

(de Oliveira Marques et al., 2003, Kölker et al., 2004), the imbalance in glutamatergic 

and GABAergic neurotransmission (Porciúncula et al., 2000), the inhibition of energy 

metabolism (Ullrich et al., 1999), and the uncompetitive inhibition of the tricarboxylic 

acid cycle (TCA) (Sauer et al., 2005). Although less is known about glutaric acid function 

in invertebrates, the increased level of GA and decreases in a number of amino acids, 

including lysine and tryptophan in the gills and haemolymph of infected mussels, may 

suggest an involvement of glutaric acid in the pathogenesis of Vibrio sp. Thus, future 

investigations are needed to discover functions of this metabolite in the internal defense 

mechanism of invertebrates. 

Among the altered metabolites, all fatty acids were decreased (Table 4.A.1). Since 

immune responses of marine bivalves against pathogenic infections are known to be 

energetically costly (Flye-Sainte-Marie et al., 2007), this result may suggest the use of 

fatty acids as an energy source for the host due to high energy demands of mussels in 
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response to Vibrio sp. infection. Branched-chain amino acids (BCAAs), including 

leucine, isoleucine and valine are essential metabolites for the immune system, which 

provide energy and act as the precursors for biosynthesis of proteins (Calder, 2006). The 

decrease in BCAAs has been previously reported in mussel haemolymph challenged with 

Vibrio sp. DO1 (Nguyen et al., 2018a). In the present study, the decreased level of BCAAs 

in infected mussel haemolymph may indicate high demands for BCAAs as energy sources 

and for immune activities. In marine molluscs, amino acids can be oxidized to generate 

energy (Viant et al., 2003). Hence, the reduction of others amino acids in haemolymph of 

Vibrio-infected mussels may suggest the use of amino acids for the high energy demands 

of the immune response. 

For the gills, a similar pattern of metabolite alterations during the infection was found as 

in haemolymph. They include the 11 common metabolites identified as important 

classifiers, the increases in itaconic acid, and decreases in fatty acids (e.g., gondoic acid, 

DHA, EPA) and amino acids (e.g., tryptophan, lysine, GABA) (Table 4.A.2). In addition 

to common features with haemolymph, the infected gills showed a decrease in other fatty 

acids (myristoleic acid and tridecanoic acid) and other amino acids (methionine, alanine, 

lactic acid). Together, these results suggest the elevated metabolic demands for the 

activated immune system of mussels during Vibrio infection. These similar patterns 

between gills and haemolymph may reflect the fact that the gills have rich haemolymph 

supplies, and thus, the metabolic responses of the gills are somewhat similar to those of 

haemocytes. Another possibility is that the challenge method by injection of Vibrio sp. 

directly to the adductor muscle may not activate specific responses of other cell types in 

gills (e.g., epithelial cells, mucocytes) in the same way that gills would respond to water-

borne pathogens in the aquatic environment. However, future investigations are needed 

to confirm these hypotheses. 
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The metabolic responses of hepatopancreas to Vibrio sp. challenge was found to share 

some common features with the gills and haemolymph (Table 4.A.3). For example, the 

accumulations of itaconic acid in the hepatopancreas, gills and haemolymph of infected 

mussels suggest this is a common feature across the body of mussels. Similarly, the 

decreases in fatty acids (tridecanoic acid, myristic acid, palmitic acid and linoleic acid) 

indicate the increased energetic demand in infected mussels. 

In contrast to gills and haemolymph, hepatopancreas showed increased levels in many 

major amino acids (e.g., BCAAs, tyrosine, lysine, cysteine and glutathione). In agreement 

to these findings, elevated amounts of amino acids in hepatopancreas have been reported 

in marine bivalves exposed to pathogens (Liu et al., 2013, Lu et al., 2017) or 

environmental stress (Lu et al., 2016). For example, elevated BCAAs were observed in 

hepatopancreas of Manila clams (Ruditapes philippinarum) following a V. harveyi-

challenge (Liu et al., 2013). The increases in other amino acids (e.g., lysine, choline and 

glutamine) have been reported in hepatopancreas of abalone exposed to V. 

parahaemolyticus (Lu et al., 2017). Generally, the accumulation of these amino acids is 

known to result from a disturbance in energy metabolism during infection (Ji et al., 2013). 

In the present study, amino acids increased in hepatopancreas, but decreased in gills and 

haemolymph, which may suggest that hepatopancreas could produce amino acids to 

provide to other tissues. Since hepatopancreas is an integrated organ of immunity and 

metabolism, a metabolic shift in hepatopancreas can fuel immune responses in molluscs 

(Rőszer, 2014). 

From the elevated amino acids in the hepatopancreas, there were increases in metabolites 

involved in glutathione synthesis (e.g. serine, cysteine, glutathione). Glutathione is an 

important and abundant low-molecular-mass thiol and antioxidant that plays diverse roles 
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in many cellular processes, including amino acid transport and synthesis, protein 

synthesis, regulation of enzyme activity and metabolism of xenobiotics, carcinogens and 

ROS (Grant and Dawes, 1996). Glutathione in a reduced form (GSH) can react with 

electrophilic oxidants (e.g. ROS) by converting two GSH molecules into its oxidized 

form (GSSG) (Espinosa-Diez et al., 2015). The role of glutathione and its synthesis 

pathway in regulation of oxidative stress has been recently demonstrated in marine 

bivalves following the Vibrio sp. challenge (Nguyen et al., 2018a). In adition, the 

supplementation of serine was reported to alleviate oxidative stress in mice via supporting 

the methionine cycle (transsulfuration pathway) and glutathione synthesis (Zhou et al., 

2017). Cysteine is a glutathione residue and its free sulfhydryl groups can be easily 

oxidized in response to a wide range of ROS (Chen et al., 2016, Ma, 2013, Reina et al., 

2016, Templeton et al., 2010). Hence, elevated levels of glutathione, serine and cysteine 

indicate the activated glutathione pathway and thus an oxidative stress in mussel 

hepatopancreas caused by Vibrio infection. Together, the increases in amino acids in 

infected mussel hepatopancreas tissues suggest the activated pathways of their immune 

system. 
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4.5 CONCLUSION 

In summary, this is the first study that demonstrates the application of GC-MS-based 

metabolomics to characterize the tissue-specific immune responses in haemolymph, gill 

and hepatopancreas of P. canaliculus following Vibrio sp. infection. Overall, there were 

increases in itaconic acid and decreases in fatty acids in all tissues. However, amino acids 

were decreased in haemolymph and gills, but increased in hepatopancreas. The alterations 

of these metabolites indicate high energy demands and oxidative stress in infected 

mussels. The endogenous metabolite changes in different tissues provide insights into 

host-pathogen interactions at the metabolic level. Among the altered metabolites, the 

elevation of itaconic acid in all tissues suggests the important role of this compound in 

the bivalve defence mechanism. In a recent surprising discovery, itaconic acid was 

recognized as an immune-supportive metabolite in mammalian immune cells. However, 

the role this metabolite in invertebrate cells is unclear. Therefore, it would be critical for 

future investigations to establish whether itaconic acid has an antimicrobial role in 

bivalves, and how it might be involved in regulation of immune-related metabolism. That 

would lead to the better understanding of bivalve immune system and the use of itaconic 

acid as the important metabolite biomarker for early detection of pathogen infection and 

the health status of the host. Such kind of knowledge and approach would be contribute 

to the development of effective management strategies for infectious diseases in bivalves 

such as the summer mortality events affecting New Zealand GreenshellTM mussels (P. 

canaliculus). 
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4.6 APPENDIXES 

Table 4.A.1  List of metabolites with PLS-DA VIP Scores (> 1) and its p value (t-test) 
and Log2 FC in haemolymph. 

Compounds PLS-DA VIP 
Scores 

P value  
(t-test) Log2 FC Vibrio effects 

Valine 1.62 0.006 -3.36 ↓ 
Tryptophan 1.50 0.006 -2.90 ↓ 
Stearic acid 1.46 0.004 -7.95 ↓ 
Leucine 1.46 0.010 -2.84 ↓ 
Isoleucine 1.46 0.011 -2.65 ↓ 
Myristic acid 1.45 0.007 -6.85 ↓ 
11,14-Eicosadienoic 1.45 0.017 -8.16 ↓ 
Margaric acid 1.43 0.005 -7.94 ↓ 
Pentadecanoic acid 1.42 0.005 -7.91 ↓ 
Palmitoleic acid 1.42 0.008 -8.03 ↓ 
Creatinine 1.42 0.022 -1.98 ↓ 
Benzoic acid 1.41 0.005 -4.13 ↓ 
2-Aminobutyric acid 1.41 0.028 -2.45 ↓ 
Palmitic acid 1.39 0.004 -7.90 ↓ 
13,16-Docosadienoic acid 1.36 0.017 -5.52 ↓ 
Tyrosine 1.35 0.058 -2.38 - 
trans-Vaccenic acid 1.34 0.007 -7.86 ↓ 
Ornithine 1.34 0.037 -2.62 ↓ 
Oleic acid 1.34 0.007 -7.86 ↓ 
Gondoic acid 1.32 0.024 -8.04 ↓ 
Glutaric acid 1.28 0.007 7.31 ↑ 
Linoleic acid 1.20 0.015 -7.76 ↓ 
Itaconic acid 1.17 0.023 7.61 ↑ 
Lysine 1.12 0.035 -7.85 ↓ 
Aspartic acid 1.12 0.044 -2.67 ↓ 
DHA 1.10 0.042 -7.86 ↓ 
EPA 1.08 0.040 -7.80 ↓ 
Methionine 1.07 0.073 -1.84 - 
Tridecanoic acid 1.04 0.087 -1.57 - 
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Table 4.A.2   List of metabolites with PLS-DA VIP Scores (> 1) and its p value (t-test) 
and Log2 FC in gill tissues.  

Compounds PLS-DA  
VIP Scores 

P value 
(t-test) Log2 FC Vibrio 

Effects 
Myristic acid 1.57 0.001 -6.37 ↓ 
Itaconic acid 1.56 <0.001 8.50 ↑ 
Creatinine 1.53 0.001 -8.67 ↓ 
Valine 1.50 0.001 -8.44 ↓ 
2-Aminobutyric acid 1.47 0.001 -8.42 ↓ 
Isoleucine 1.47 <0.001 -8.41 ↓ 
Linolelaidic acid 1.43 0.003 -8.43 ↓ 
Palmitoleic acid 1.37 0.003 -8.40 ↓ 
2,4-Di-tert-butylphenol 1.37 0.007 -3.56 ↓ 
Linoleic acid 1.33 0.004 -8.42 ↓ 
Myristoleic acid 1.23 0.021 -6.37 ↓ 
Methionine 1.23 0.012 -2.92 ↓ 
Stearic acid 1.22 0.008 -4.99 ↓ 
Margaric acid 1.20 0.014 -4.45 ↓ 
Serine 1.19 0.044 1.43 ↑ 
Gondoic acid 1.18 0.010 -8.01 ↓ 
Oleic acid 1.15 0.012 -8.27 ↓ 
trans-Vaccenic acid 1.15 0.012 -8.27 ↓ 
Alanine 1.13 0.022 -3.16 ↓ 
DHA 1.13 0.020 -3.17 ↓ 
Pentadecanoic acid 1.13 0.032 -3.04 ↓ 
EPA 1.10 0.013 -4.45 ↓ 
Palmitic acid 1.08 0.019 -6.22 ↓ 
Lactic acid 1.08 0.033 -2.58 ↓ 
Leucine 1.07 0.013 -7.95 ↓ 
Asparagine 1.07 0.026 -6.47 ↓ 
Tridecanoic acid 1.05 0.024 -3.22 ↓ 
11,14-Eicosadienoic 1.04 0.020 -3.56 ↓ 
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Table 4.A.3  List of metabolites with PLS-DA VIP Scores (> 1) and its p value (t-test) 
and Log2 FC in hepatopancreas tissues. 

Compounds PLS-DA VIP 
Scores 

P value  
(t-test) Log2 FC Vibrio Effects 

2-Aminoadipic acid 1.14 0.043 6.90 ↑ 
4-Aminobutyric acid 1.24 0.528 4.24 - 
Asparagine 1.36 0.052 -1.13 ↓ 
Caprylic acid 1.32 0.055 -8.45 ↓ 
Creatinine 1.35 0.013 4.13 ↑ 
Cysteine 1.59 0.005 8.44 ↑ 
Glutathione 1.13 0.048 2.39 ↑ 
Isoleucine 1.25 0.042 2.46 ↑ 
Itaconic acid 1.66 0.005 8.63 ↑ 
Leucine 1.54 0.002 3.37 ↑ 
Linoleic acid 1.09 0.123 -8.33 ↓ 
Lysine 1.46 0.023 5.63 ↑ 
Maleic acid 1.14 0.037 5.67 ↑ 
Malic acid 1.25 0.016 8.10 ↑ 
Malonic acid 1.46 0.012 2.27 ↑ 
Myristic acid 1.23 0.067 -7.61 ↓ 
Octanoic acid 1.32 0.055 -8.45 - 
Palmitic acid 1.21 0.062 -8.16 ↓ 
Phenylalanine 1.35 0.012 3.34 ↑ 
Proline 1.44 0.023 2.80 ↑ 
Putrescine 1.31 0.013 8.16 ↑ 
Serine 1.56 0.002 8.31 ↑ 
Succinic acid 1.09 0.053 8.24 - 
Threonine 1.07 0.038 7.93 ↑ 
Tridecanoic acid 1.57 0.017 -8.39 ↓ 
Tryptophan 1.54 0.007 8.42 ↑ 
Tyrosine 1.10 0.039 5.24 ↑ 
Valine 1.60 0.007 3.56 ↑ 
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ABSTRACT 

Massive mortalities due to pathogens are routinely reported in bivalve cultivation that 

have significant economic consequences for the global aquaculture industry. However, 

host-pathogen interactions and infection mechanisms that mediate these interactions are 

poorly understood. In addition, gender-specific immunological responses have been 

reported for some species, but the reasons for such differences have not been elucidated. 

In this study, we used a gas chromatography-mass spectrometry (GC-MS)-based 

metabolomics platform and flow cytometry approach to characterize metabolic and 

immunological responses in haemolymph of male and female mussels (Perna 

canaliculus) experimentally infected with Vibrio sp. Sex-based differences in 

immunological responses were identified, with male mussels displaying higher 

percentage of mortality, oxidative stress and apoptosis after pathogen exposure than 

female mussels. However, central metabolic processes appeared to be similar between 

two sexes at 24 h post injection with Vibrio sp. DO1. Significant alterations in relative 

levels of 37 metabolites were detected between infected and uninfected mussels. These 

metabolites are involved in major perturbations on the host’s innate immune system. In 

addition, there were alterations of seven metabolites in profiles of mussels sampled on 

the second day and mussels that survived six days after exposure. These metabolites 

include itaconic acid, isoleucine, phenylalanine, creatinine, malonic acid, glutaric acid 

and hydroxyproline. Among these, itaconic acid has the potential to be an important 

biomarker for Vibrio sp. DO1 infection. These findings provide new insights on the 

mechanistic relationship between a bivalve host and a pathogenic bacterium, and 

highlight the need to consider host sex as a biological variable in future immunological 

studies.   
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5.1 INTRODUCTION 

Sex-specific differences in immune responses of hosts toward foreign antigens (e.g., 

fungi, bacteria, viruses) and self-antigens  have been reported for a number of 

invertebrates (Kurtz et al., 2000, Matozzo and Marin, 2010) and vertebrates (Fargallo et 

al., 2007, Pap et al., 2010). In vertebrates, sex-based differences in immune responses 

have been well documented (Klein and Flanagan, 2016) with differences described 

between males and females for both innate (Berghöfer et al., 2006, Griesbeck et al., 2015, 

Marriott et al., 2006, Pisitkun et al., 2006, Rettew et al., 2008, Torcia et al., 2012) and 

adaptive immune responses (Abdullah et al., 2012, Lee et al., 1996, Leposavic et al., 

2011, Leposavić et al., 1996). Generally, immune responses are stronger in females than 

males (Klein and Flanagan, 2016, Roved et al., 2017, Zuk, 1990, Zuk and McKean, 1996). 

These sex-based differences contribute to variation in susceptibility of the hosts to 

infectious diseases, occurrence of auto-immune diseases and malignancies and responses 

to vaccines (Klein and Flanagan, 2016).  

In invertebrates, sex differences in immuno-competence and immune responses have 

been studied in a number of insect species. For example, studies on X (chromosome)-

linked immune genes of the common fruit fly (Drosophila melanogaster) showed that 

genetic variations in many of the genes is associated with sex differences, and sex-specific 

induction was observed following fungal or bacterial infection (Hill-Burns and Clark, 

2009, Taylor and Kimbrell, 2007). Female scorpionflies (Panorpa vulgaris) have been 

reported to have higher lysozyme-like and phagocytosis activities than males (Kurtz et 

al., 2000), as well as higher activity of phenoloxidases (PO) and enzymes catalyzing the 

formation of melanins during wound healing and parasite encapsulation, suggesting 

higher immunocompetence (Kurtz and Sauer, 2001). The influence of sex on 

immunocompetence via PO activity was also reported in crickets (Gryllus texensis) 



 

141 Chapter 5 
 

exposed to the bacterium Serratia marcescens; immunocompetence increased in 

reproductively active females (Adamo, 2004). In contrast, females of the dampwood 

termites (Zootermopsis angusticollis) were found to have lower encapsulation ability than 

males during colony foundation, which may be due to the high demands of oocyte 

maturation and egg production in reproductive females (Calleri et al., 2007). In addition 

to insects, sex-linked differences in immunocompetence have been reported in 

invertebrates such as fairy shrimp (Streptocephalus dichotomus) (Radhika et al., 1998) 

and sea cucumbers (Apostichopus japonicas) (Jiang et al., 2017). These studies suggest 

that sex-based differences in disease susceptibility and immune function are a common 

feature of fauna.  

Many studies of bivalves have reported impacts of external factors, such as temperature 

(Monari et al., 2007), salinity (Matozzo et al., 2007) and season (Duchemin et al., 2007) 

on haemocyte immune parameters, however, there have been few reported investigations 

of sex-related differences in immune response (Dang et al., 2012, Duchemin et al., 2007, 

Matozzo and Marin, 2010). The first evidence of sex-related differences in immune 

parameters of bivalves were reported by Duchemin et al. (2007) who observed 

significantly higher phagocytic activities in female triploids than in male triploid and 

female and male diploid Pacific oysters, Crassostrea gigas. Female clams (Ruditapes 

philippinarum) have been shown to have significantly higher numbers of granulocytes in 

the haemolymph than males during the pre-spawning period (Matozzo and Marin, 2010). 

Since granulocytes are considered to be the major effector cells of the innate immune 

system in bivalve molluscs (Foley and Cheng, 1975, López et al., 1997, Tripp, 1992), the 

higher proportion of active haemocytes in female clams is thought to lead to higher 

endocytotic and haemolymph lysozyme activities and more efficient defence pathways 

against oxidative stress than those of males (Matozzo and Marin, 2010). In oysters (e.g., 
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Saccostrea glomerata and Pinctada fucata), although sex-related differences have not 

been observed for total and differential haemocyte counts or phagocytosis capacity, the 

intracellular oxidative metabolism is reportedly higher in males than females (Dang et 

al., 2012). These studies have provided evidence of sex-based differences in some 

immune parameters. However, whether there are differences in immunological responses 

of male and female bivalves toward a pathogen infection remain uncertain.  

To fill this gap, the aim of this study is to use an integrated approach of flow cytometry 

(cell viability, oxidative stress and apoptosis) and gas chromatography-mass 

spectrometry (GC-MS)-based metabolomics to characterize the sex-specific differences 

in immunological and metabolic responses in haemolymph of Greenshell™ mussels 

(Perna canaliculus) after exposure to Vibrio sp. DO1 (V. coralliilyticus/neptunius‐like 

isolate). This study also provides insight into bivalve immunology and host-pathogen 

interactions between a bivalve and a Vibrio species at the metabolic level.  

  



 

143 Chapter 5 
 

5.2 MATERIALS AND METHODS 

5.2.1 Experimental design  

Adult mussels (weight: 52.29 ± 9.37 g and shell length: 8.86 ± 0.55 cm) were obtained 

from Westpac Mussels Distributors Ltd. (Auckland, New Zealand). Upon arrival to the 

Auckland University of Technology Aquaculture Laboratory, mussels were separated by 

sex after opening valves slightly to observe gonad colouration. The gonad colour of male 

mussels is milky white while that of female mussels is yellow orange (Fig. 5.1). Male and 

female mussels were acclimatized separately in two 50 l tanks for 7 days on a 

recirculation system as condition described in Chapter 4 (4.2.1). A pool of 20 male 

mussels (weight: 58.75 ± 14.36 g and shell length: 9.14 ± 0.74 cm) were selected and 

randomly divided into two equal groups (control male group [n = 10] and infected male 

group [n = 10]). Females (weight: 46.56 ± 3.56 g and shell length: 8.51 ± 0.40 cm) were 

similarly grouped. All mussels were placed individually in 10 l plastic tanks (n = 40 tanks) 

containing 5 l of FSW seawater that was continuously aerated with air stones and 

maintained at 16 °C.  

Mussels within the infection treatment groups were injected in the adductor muscle with 

50 μl of Vibrio sp. DO1 suspension (106 cells·ml−1) in phosphate-buffered saline (PBS) 

(137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4). The bacterial 

strain (Vibrio sp. DO1; 99.5 % 16S sequence similarity with V. corallyliticus and V. 

neptunius; Genbank: EU358784) was kindly provided by Cawthron Institute (Nelson, 

New Zealand) and bacterial suspensions were prepared in accordance with the protocol 

described in Chapter 4 (4.2.1). Mussels in the control group were only injected with 50 

μl of PBS. After injection, all animals were returned to their respective tanks. After 24 

hour post inoculation (hpi), 1 ml of haemolymph was collected from each animal by 

gently inserting a needle (25 gauge and 5/8″ needle) attached to a 3 ml sterile syringe 
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(Terumo, Japan) into the posterior adductor muscle and transferred to 2 ml Eppendorf 

tubes kept on ice for flow cytometry assays and bacterial counts. Aliquots of 300 μl were 

additionally transferred to 2 ml cryovials (BioStor™), snap frozen in liquid nitrogen, and 

stored at –80 °C for metabolomics analyses. After haemolymph withdrawal, mussels were 

returned to their tanks to observe mortality for an additional 5 days. At the end of the 

experiment (n = 6 days), additional haemolymph samples were taken from all surviving 

mussels for metabolomic analyses (n = 4 for infected female mussels and n = 8 for 

uninfected mussels).  

 

Figure 5.1  Differences in matured gonads of male (A – milky white) and female (B – 
yellow orange) New Zealand Greenshell™ mussels (Perna canaliculus). 

(A)

(B)
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5.2.2 Flow cytometric analyses  

Flow cytometric analyses of total cell count, haemocyte viability, production of 

intracellular reactive oxygen species (ROS), and apoptosis were performed using the 

Muse® Cell Analyzer (Millipore, Hayward, CA, USA) and commercially available assay 

kits.  

Total haemocyte count and viability parameters were measured using the Muse® cell 

Count and Viability kit (Catalog No. MCH100102, Merck Millipore, USA), following 

the manufacturer’s specifications, as previously described (Chapter 4 – 4.2.3).  

 Intracellular ROS production (namely superoxide radicals) were measured using the 

Muse® Oxidative Stress kit (Catalog No. MCH100111, Merck Millipore, USA), 

following the manufacturer’s specifications, as previously described (Grandiosa et al., 

2016). This kit uses dihydroethidium (DHE), a reagent that has been extensively used to 

detect ROS in cells (Bindokas et al., 1996). In brief, haemolymph samples from infected 

and control mussel groups were diluted in 1X assay buffer at an optimal concentration of 

1 × 106 haemocytes per ml, mixed with the Muse® Oxidative Stress working solution 

(1:20 dilution) and incubated for 30 minutes at 37 °C. The samples were mixed 

thoroughly and run on the Muse® Cell Analyzer (flow rate = 0.59 µl·sec−1, number of 

events = 1042-8058, FSC threshold = 10). The assay provide the quantity and percentage 

of cells with ROS (ROS +) and without ROS (ROS –).   

The proportion of healthy non-apoptotic, early- and late-stage apoptotic and dead 

haemocytes were quantified using the Muse® Annexin V & Dead Cell kit (Catalog No. 

MCH100105, Merck Millipore, USA) following the manufacturers specifications. The 

assay is based on annexin V (annexin V) and 7-aminoactinomycin D (7-AAD) co-staining 

to detect phosphatidylserine (PS) on the external membrane of apoptotic cells. Bivariate 
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analysis of annexin V/7-AAD staining distinction of four populations of cells, including 

non-apoptotic cells (annexin V−, 7-AAD−), early-stage apoptotic cells (annexin V+, 7-

AAD−), late-stage apoptotic cells (Annexin V+, 7-AAD+) and dead cells (annexin V−, 7-

AAD+). Briefly, 100 μl haemolymph was incubated with 100 μl of Muse® Annexin V & 

Dead Cell reagent for 20 minutes (min) at room temperature prior to flow cytometric 

analysis on the Muse® Cell Analyzer. The assay was performed at a flow rate = 0.59 

µl·sec−1 and FSC threshold = 29. 

5.2.3 Metabolite profiling  

Metabolite extractions, derivatizations of mussel samples, GC-MS measurement and 

quality control were conducted as described in Chapter 4 (4.2.4-5). Raw spectra were 

processed using automated mass spectral deconvolution and identification system 

(AMDIS) software (version 2.66) integrated with the MassOmics R-based package (The 

University of Auckland) and ChemStation software (Agilent Technologies) (Details in 

Chapter 4 – 4.2.6).  

5.2.4 Statistical analyses 

Statistical analyses for the log-transformed count data and flow cytometric assays were 

performed using two-way ANOVA with IBM® SPSS® Statistics software (version 23).  

Statistical analyses of metabolite data were conducted using Metaboanalyst 3.0 (Xia et 

al., 2015). Peak intensity data were normalized by generalized log (glog)-transforming 

and mean centering. A two-way ANOVA was used to identify differences in metabolite 

profiles between sex and treatments after 24 hpi (2nd day) and 144 hpi (6th day). To further 

access the difference between infected and control mussels with a larger data set, we 

grouped male and female mussel samples after 24 hpi together and performed univariate 

and multivariate analyses to compare the metabolite profile of infected and uninfected 
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mussels. The fold change analysis was performed to compare the absolute value of change 

between control and infected group. Multivariate data analyses including unsupervised 

principal components analysis (PCA), supervised projection to latent structures 

discriminant analysis (PLS-DA) and validation of PLS-DA model performance were 

conducted in accordance with the protocol described in Chapter 4 (4.2.7).  

5.2.5 Pathway analysis  

Quantitative enrichment analysis (QEA) using global test algorithm (Xia and Wishart, 

2010) and network topology analysis (NTA) using relative-betweeness centrality 

(Nikiforova and Willmitzer, 2007) were performed to investigate functional relationships 

among the annotated metabolites for pathway analyses. Pathways involving two or more 

annotated metabolites that matched with the Kyoto encyclopedia of genes and genomes 

(KEGG) database (Kanehisa and Goto, 2000) with simultaneous QEA p-values < 0.05, 

QEA false discovery rates (FDRs) < 0.1, and with NTA pathway impact (PI) scores > 0.1 

were considered as potential primary pathways of interest, as previously described 

(Young et al., 2017). 
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5.3 RESULTS 

5.3.1 Mussel mortality  

Strong effects of Vibrio treatments and host sex were identified within the mussel 

mortality data (Fig. 5.2A). At 24 hpi, 10 % mortality was recorded in infected groups, 

while no mortality was observed in control treatments and sex-related differences were 

not apparent at this time. However, after 36 hpi, infected male mussels experienced 60 % 

mortality, and 100 % mortality was observed at 144 hpi (6th day). The mortality of 

infected female mussels increased slowly compared to that of male mussels and reached 

60 % at 148 hpi and remained unchanged until the end of the experiment. No mortality 

was recorded in uninfected female mussels, while uninfected male mussels suffered 20 

% mortality by the end of the experiment.  

5.3.2 Bacterial accumulation in mussel haemolymph 

There was no significant difference in bacterial counts between male and female mussels 

in both control and infected groups (p > 0.05) at 24 hpi. The concentration of Vibrio 

bacteria in the haemolymph of control and infected mussels were 2.46 × 103 and 5.85 × 

106 CFU·ml−1, respectively, and these values were significantly different from each other 

(F1,20 = 101,573; p < 0.001). Bacterial colonies on thiosulfate-citrate-bile salts-sucrose 

(TCBS) agar plates from haemolymph samples of control and infected mussels at 24 hpi 

and log10 bacterial concentrations are represented in Fig. 5.2B,C. No interaction between 

sex and treatments was recorded (p > 0.05).  

5.3.3 Flow cytometric analyses of mussel haemolymph  

Although there was no interaction between the effects of sex and bacterial treatments on 

all parameters (cell viability, ROS production and apoptotic profile) (p > 0.05), the effects 

of Vibrio sp. DO1 on mussels were strongly impacted by host sex.  
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Figure 5.2  (A) Percent mortality of male and female mussels within control and 

infected groups during the six-day experiment. (B) Vibrio colonies on 
TCBS agar plates from haemolymph samples of control (left, dilution: 100) 
and infected mussels (right, dilution: 10-3) at 24 hpi. (C) Log10 CFU·ml−1 
in mussel haemolymph at 24 h post-injection. The error bars represent the 
standard errors. Significant differences relative to the control and males 
are marked with an asterisk (*) and two asterisks (**), respectively. 

The cell viability profile showed no significant difference between male and female 

mussels at 24 hpi (p = 0.108), but there was a remarkable decrease in cell viability in 

infected compared to control mussels (F1,31 = 23.12, p < 0.001) (Fig. 5.3A). The percent 

viability of haemocytes in infected and uninfected mussels were 45.0 % ± 5.4 % and 66.4 

± 3.1 %, respectively. 

We observed a significant increase of intracellular ROS production in both male and 

female mussels exposed to Vibrio sp. DO1 compared to their non-exposed counterparts 

(F1,25 = 19.12, p < 0.001) (Fig. 5.3B). There was also a significantly higher level of ROS 

production in male compared to female mussels in both infected and control groups (F1,25 
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= 4.78, p = 0.038). These findings indicate that infection of Vibrio sp. DO1 induced an 

increase of intracellular ROS level in both male and female groups with higher ROS 

production in male mussels.  

 

Figure 5.3  Flow cytometric parameters of mussel haemolymph at 24 h post-injection 
with Vibrio sp. A)  Viability of haemocytes. B) ROS production. C) 
Apoptotic cell subpopulations. The error bars represent standard errors. 
Significant differences relative to the control and males are marked with 
an asterisk (*) and two asterisks (**), respectively.  

There was a significantly higher percentage of dead haemocytes in infected mussels 

compared to control animals (F1,20 = 10.26, p = 0.004), and males had higher numbers of 

dead cells compared to females (F1,20 = 8.74, p = 0.008). Similarly, there were more late 

apoptotic cells in infected mussels than uninfected mussels (F1,20 = 5.80, p = 0.026) and 

more in infected males than infected females (F1,20 = 5.87, p = 0.025). On the other hand, 
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lower numbers of early apoptotic cells were detected in infected mussels compared to 

controls (F1,20 = 22.22, p < 0.001). In addition, female mussels in both infected and control 

groups had a higher percentage of early apoptotic cells than male mussels (F1,20 = 10.81, 

p = 0.004).  

5.3.4 Metabolite profiles of male and female mussels  

We identified and annotated 63 metabolites from spectra of mussel haemolymph samples. 

Two-way ANOVA analyses of metabolite profiles revealed non-significant differences 

between males and females in both control and Vibrio sp. infected groups. There was also 

no interaction between treatment and sex. This result indicates that there was little effect 

of sex on the metabolic responses in mussel haemolymph as a result of the Vibrio sp. 

challenge.  

5.3.5 Metabolomics responses of mussels to Vibrio sp. DO1 

Although metabolite profiles of male and female mussels were similar post-pathogen 

challenge, exposure to Vibrio sp. DO1 led to alterations in 37 metabolites in infected 

mussels compared to control mussels (two-way ANOVA; p < 0.05). The list of these 

metabolites with fold change values (log2 fold change [infected/control] of the 

untransformed data) is represented in Fig. 5.4A. Among them, 13 metabolites were up-

regulated, while 24 metabolites were down-regulated in infected mussels, compared to 

uninfected controls.  

Using the combined male and female mussel samples, we performed multivariate 

analyses to compare the metabolite profile of infected and uninfected mussels. A PCA 

revealed a clear separation between infected and uninfected mussels along PC1 (Fig. 

5.4B). The PCA score plot corresponding to the first two principal components 

demonstrated that PC1 and PC2 explained 50.0 % and 24.9 %, respectively, of the dataset 
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total variance. Compared to the distribution of uninfected mussels in the score plot, that 

of infected mussels is more dispersed which may indicate different infection levels in 

 
Figure 5.4 Univariate and multivariate analyses of metabolite profiles from infected 

and uninfected mussels at 24 h post-injection.  (A) List of 43 metabolites 
identified as differently expressed between the two mussel groups (two-
way ANOVA; p < 0.05); where x axis = log2 fold change (infected/control) 
of the untransformed data. (B) Principal component analysis (PCA) 2D 
score plot (95 % confidence interval ellipses). (C) Projection to latent 
structure discriminant analysis (PLS-DA) 2D score plot (95 % confidence 
interval ellipses). 

mussels exposed to Vibrio sp. DO1. In addition, a PLS-DA model (Fig. 5.4C) showed 

high discriminative and predictive capability with an accuracy of 93 %, R2 of 90 %, and 

Q2 of 78 % (three component model). Twenty-seven metabolites with VIP scores > 1.0 

were identified as contributing strongly to the model (Table 5.A.1 in Appendix). All of 
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these important classifiers were identified as differently expressed between infected and 

control mussels by two-way ANOVA.  

5.3.6 Pathway analysis  

Combined QEA and NTA analysis identified 42 biochemical pathways within the KEGG 

database that were relevant based on the list of metabolites we obtained. Among these, 

15 pathways involving at least two annotated metabolites with simultaneous QEA p-

values < 0.05, QEA FDR values < 0.1, and NTA pathway impact (PI) values > 0.1 were 

screened as potential primary target pathways of interest relating to the treatment effect 

(Table 5.1).  

Table 5.1  List of altered metabolic pathways that were identified as primary target 
pathways in metabolite profiles of mussels exposed to Vibrio sp. 

Pathways Hits/ Total 
compounds 

Raw p FDR Impact 

Glycine, serine and threonine metabolism 5/31 <0.001 <0.001 0.570 
Cysteine and methionine metabolism 
(transsulfuraiton pathway) 

4/29 <0.001 <0.001 0.338 

Valine, leucine and isoleucine biosynthesis 5/13 <0.001 <0.001 1.000 
Aminoacyl-tRNA biosynthesis 17/67 <0.001 <0.001 0.103 
Arginine and proline metabolism 6/43 <0.001 <0.001 0.322 
Methane metabolism 2/9 <0.001 <0.001 0.400 
Alanine, aspartate and glutamate metabolism 7/24 <0.001 <0.001 0.570 
Phenylalanine, tyrosine and tryptophan 
biosynthesis 

2/4 <0.001 0.001 1.000 

Phenylalanine metabolism 2/11 <0.001 0.001 0.407 
Tyrosine metabolism 4/44 <0.001 0.001 0.164 
Glutathione metabolism 6/26 0.005 0.008 0.418 
beta-Alanine metabolism 2/16 0.013 0.017 0.395 
Citrate cycle (TCA cycle) 4/20 0.014 0.018 0.136 
Glyoxylate and dicarboxylate metabolism 3/18 0.039 0.048 0.148 
Tryptophan metabolism 2/39 0.041 0.049 0.155 
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5.3.7 Metabolomics profiling of female mussels that recovered from Vibrio 

infection 

Forty percent of female mussels were alive 6 days after injection with Vibrio sp. DO1. 

These mussels had shown signs of infection (e.g., slow closing valves when disturbed, 

low haemocyte viability) after 24 hpi, but there were signs of recovery (e.g. faster closing 

valves when disturbed) on the sixth day. Haemolymph metabolite profiles from these 

mussels revealed significant changes in seven metabolites compared to those of 

uninfected controls, and from infected mussels at 48 hpi. These metabolites included 

itaconic acid, isoleucine, phenylalanine, creatinine, malonic acid, glutaric acid and 

hydroxyproline. Among them, itaconic acid was identified as highly different by both 

treatment and sampling time (p < 0.05). Indeed, itaconic acid was significantly higher in 

infected mussels compared to infected mussels after 24 hpi, but it was decreased on the 

sixth day. Isoleucine, phenylalanine and creatinine were only determined as different 

between two sampling times, whereas malonic acid, glutaric acid and hydroxyproline 

were only different between treatments (Fig. 5.5). Two-way ANOVA showed no 

interaction effect between treatments and sampling times (p > 0.05).  
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Figure 5.5  Alterations of metabolites in haemolymph of female mussels at 2nd and 6th 

day post-infection identified by two-way ANOVA (p < 0.05). The error 
bars represent standard errors. 
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5.4 DISCUSSION 

Bacteria belonging to the genus Vibrio (e.g. V. aestuarianus, V. coralliilyticus, V. 

tubiashii, V. tapetis, V. spendidus and V. harveyi) have been associated with a number of 

infectious diseases in marine bivalves (reviewed by Travers et al. 2015). Among them, 

infections with V. coralliilyticus have been reported in several marine organisms, 

including coral (Pocillopora damicornis) (Ben-Haim et al., 2003, Rozenblat and 

Rosenberg, 2004), fish (Austin et al., 2005) and shellfish (Kesarcodi-Watson et al., 2012, 

Richards et al., 2015). A V. corallyliticus-like isolate (Vibrio sp. DO1, 99.5 % 16S rDNA 

sequence similarity with V. corallyliticus, GenBank: EU358784) was identified as a 

highly pathogenic species for New Zealand Greenshell™ mussel larvae (P.  canaliculus) 

(Kesarcodi-Watson et al., 2009a, Kesarcodi-Watson et al., 2009b). In the present study, 

we challenged P. canaliculus with injections of 50  μl of Vibrio sp. at a concentration of 

106 cells·ml−1 (5x104 cells/mussel) and observed mortality of 100 % in males and 60 % 

in females after six days. The successful challenge protocol allowed us to investigate 

whether there were sex-based responses elicited by Vibrio sp. in P. canaliculus and 

provided insights into the immunological and metabolic responses of mussels toward 

Vibrio infection.  

5.4.1 Immunological responses of mussels to Vibrio infection 

Generation of ROS at a basal level is a general protective mechanism of most organisms 

against stressors (e.g., pathogen, contaminants) (Torreilles et al., 1996). However, an 

imbalance between the production of ROS and antioxidants in favour of ROS can lead to 

oxidative stress, loss of cell function and cell death (Winston, 1991). The increase of ROS 

in haemolymph in response to pathogenic bacteria or stimulation with pathogen-

associated molecular patterns has been previously reported in several marine bivalves 

(Buggé et al., 2007, Costa et al., 2009, Goedken and De Guise, 2004, Lambert et al., 
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2003). It has also been demonstrated that accumulation of ROS could induce apoptosis 

under both pathologic and physiological stress (Guo et al., 2017, Pierce et al., 1991, 

Simon et al., 2000). For example, a study on molecular responses to copper stress in L. 

vannamei confirmed that inhibitor of apoptosis protein (IAP) interacts with caspase-3 to 

regulate apoptosis caused by superfluous ROS generation (Guo et al., 2017). In the 

present study, we observed significantly higher ROS production in Vibrio-infected 

mussels and an increased percentage of dead and late-stage apoptotic cells. This suggests 

that generation of ROS during a Vibrio infection could result in oxidative stress and 

eventual cell death by apoptosis.  

Interestingly, there were significant differences between male and female mortality, ROS 

production and apoptotic profiles of haemocytes. Some sex-related differences in immune 

parameters of bivalve haemocytes have previously been demonstrated (Dang et al., 2012, 

Duchemin et al., 2007, Matozzo and Marin, 2010). Bivalve haemocytes are generally 

divided into three types of cells, including granulocytes, hyalinocytes and small 

agranulocytes (Dang et al., 2012). Among these, granulocytes are considered to be the 

major effector cells of the innate immune system of bivalves that participate in a number 

of antimicrobial activities, especially in phagocytosis (Foley and Cheng, 1975, López et 

al., 1997, Tripp, 1992). The higher proportion of granulocytes in females than males in 

the clam R. philippinarum was suggested to lead to higher phagocytosis capacity and 

more efficient defence pathways against oxidative stress in females than males (Matozzo 

and Marin, 2010). In the present study, we observed higher mussel mortality and ROS 

production of haemocytes in male mussels compared to females, suggesting that males 

are more susceptible to oxidative stress. Similarly, higher percentages of dead and late-

stage apoptotic haemocytes were recorded in males. These results suggest that female 

mussels may have a more efficient apoptotic pathway against pathogen infection than 
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male mussels, which leads to a lower mortality in females. Hence, it is important to take 

into account the impact of intrinsic parameters, such as host sex when studying the 

immune parameters of marine bivalves.   

5.4.2 Metabolic responses of mussels to Vibrio infection 

No sex-based differences in metabolite profiles of male and female mussel haemolymph 

were observed after 24 h post-challenge with Vibrio sp. DO1. However, when all mussels 

were grouped by infection status, infected mussels displayed clear changes in levels of 

metabolites. Among these, 13 metabolites were up-regulated in infected mussels 

compared to control (uninfected) mussels. Accumulation of these metabolites are thought 

to be associated with several innate immune responses, such as oxidative stress and 

apoptosis. For example, the increase of itaconic acid (ITA) in infected mussels may be a 

result of antimicrobial activity as part of the host’s defence system. ITA is an unsaturated 

dicarboxylic acid, and is synthesized in mammalian immune cells during macrophage 

activation (Sugimoto et al., 2012), and more recently was reported in marine bivalves 

following bacterial and viral infections (Nguyen et al., 2018, Young et al., 2017). The 

role of ITA has also recently been identified as an immune-supportive metabolite 

involved in regulation of succinate levels, mitochondrial respiration and inflammatory 

cytokine production during macrophage activation (Lampropoulou et al., 2016). The gene 

responsible for its synthesis, immune-responsive gene 1 (Irg1), was over-expressed in 

activated macrophages during pathogen infection (e.g., Mycobacteria, S. enterica) or 

LPS-stimulation (Basler et al., 2006, Li et al., 2013, Michelucci et al., 2013, Shi et al., 

2005). Irg1 encodes for immune-responsive gene 1 protein/cis-aconitic acid 

decarboxylase (IRG1/CAD) which catalyses production of ITA from cis-aconitate in 

vitro (Michelucci et al., 2013, Vuoristo et al., 2015). In the present study, ITA was 

identified as an important metabolite for PLS-DA classification and prediction model, 
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and its level was elevated in mussels exposed to Vibrio sp. DO1, suggesting that 

invertebrate immune cells are able to produce ITA similar to mammalian cells infected 

by bacteria. Interestingly, in infected female mussels which survived the challenge 

duration, ITA showed a remarkable decrease 6 days post-inoculation compared to levels 

at 2 days post-inoculation. These mussels were unable to close their valves when 

disturbed on the third day post-inoculation but showed a significant recovery (faster 

closing valves) in the following days. These results suggest the potential use of ITA as a 

biomarker for pathogen infection and/or health status in marine bivalves.   

We observed accumulations of glutamic acid, glycine and hydroxyproline in 

haemolymph of infected mussels. Glutamic acid is a key compound in cellular 

metabolism, and the accumulation of extracellular glutamic acid appeared to be involved 

in tissue damage (Amaya et al., 2013, Hassel et al., 2014). Similarly, glycine is another 

amino acid in collagen, and increase of glycine were found to be relative to degraded 

collagen (Turban-Just and Schramm, 1998). Hydroxyproline is a major component of 

protein collagen (Etherington and Sims, 1981), and accumulation of hydroxyproline in 

serum and urine has been known to be associated with degradation of connective tissue 

(Buccino et al., 1969, Kelleher, 1979, Ofulue and Thurlbeck, 1988), muscle damage 

(Nogueira et al., 2011), depression, and stress (Lee et al., 2011). The elevated levels of 

these metabolites in infected mussels may suggest collagen degradation and tissue 

damage caused by infection of Vibrio sp. Interestingly, the decrease of hydroxyproline in 

infected mussels on the sixth day, like ITA, may be relevant to the recovery of mussels 

from infection.  

In agreement with the finding of increased ROS production in infected mussels, 

accumulations of metabolites in the transsulfuration pathway (i.e., S-
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Adenosylmethionine) and glutathione (GSH) metabolism (i.e., GSH, glutamic acid, 

pyroglutamic acid, glycine) further substantiate oxidative stress in haemocytes as a 

response to bacterial infections. GSH metabolism plays a critical role in regulating ROS 

and defending cells against oxidative stress (Hayes and McLellan, 1999). Oxidation of 

GSH directly scavenges ROS by metabolising hydrogen peroxide into water (Espinosa-

Diez et al., 2015) or indirectly is involved in repairing ROS-induced damage (Apel and 

Hirt, 2004, Knight, 2000). Although the alteration of GSH as a metabolic response to 

pathogen infection has not yet been reported in marine bivalves, the expression of 

antioxidant enzymes, which regulates GSH turnover and/or the genes which encode them 

have been described (Corporeau et al., 2014, He et al., 2015, Schmitt et al., 2013). 

Changes in levels of glycine, glutamic acid and pyroglutamic acid also indicated an effect 

on GSH regulation, which culminated in the GSH metabolic pathway being identified as 

a perturbed system via secondary pathway analyses (Table 5.1). Furthermore, pronounced 

accumulations of S-Adenosylmethionine (SAMe) and subtle but coordinated changes in 

levels of methionine and serine also led to the transsulfuration pathway being detected as 

likely being affected. The transsulfuration pathway was identified as an altered metabolic 

pathway due to the Vibrio effect (Table 5.1). In transsulfuration, SAMe is transformed 

through a series of enzymatic steps to cysteine, a precursor of GSH (McBean, 2012). In 

combination, these results support the importance of the ROS-regulatory system in 

bivalve immunity to against pathogen infections.  

The accumulation of malonic acid, fumaric acid, lactic acid and ITA in infected mussels 

suggests that the TCA cycle functioning of the host was affected by Vibrio sp. infection. 

Accumulations of TCA intermediates in activated mice macrophages are a consequence 

of TCA cycle interruption (Jha et al., 2015). Similarly, elevated levels of TCA 

intermediates have been reported in marine bivalves challenged with pathogens (Nguyen 
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et al., 2018, Young et al., 2017). In a previous pilot study, we challenged P. canaliculus 

with a higher dose (107 cells·ml−1) of Vibrio sp. DO1 and observed significant increases 

in three metabolites within the TCA cycle (succinic acid, fumaric acid and malic acid). 

At the lower dose (106 cells·ml−1) used in this study, we observed only accumulation of 

fumaric acid. However, increased levels of malonic acid, ITA and lactic acid also indicate 

disruption to basal cellular respiration. Malonic acid is a competitive inhibitor of 

succinate dehydrogenase in the TCA cycle (Pardee and Potter, 1949), which may limit 

oxidation of succinic acid to fumaric acid in infected mussels. The accumulation of citrate 

due to the break in the TCA cycle has been shown to generate ITA via the enzyme 

immune-responsive gene 1 (IRG1) (Michelucci et al., 2013). Production of ITA from its 

cis-aconitate precursor, also indicates disruption of the TCA cycle as previously reported 

in mammals and marine bivalves (Michelucci et al., 2013, Nguyen et al., 2018, Young et 

al., 2017). The increase in ITA, together with other intermediates of TCA cycle have been 

previously reported for Greenshell™ mussels exposed to Vibrio sp. (Nguyen et al., 2018). 

Lactic acid is the end product of anaerobic glycolysis (Bakker et al., 2013, Rogatzki et 

al., 2015). In addition, the TCA cycle itself was identified as being affected by Vibrio 

infection via secondary pathway analysis (Table 5.1). The accumulation of lactic acid in 

our study suggests that the TCA cycle was also being disrupted by a switch towards 

anaerobic respiration, and potentially limiting conversion of pyruvate to citrate.   

 Vibrio sp. DO1 led to the decrease of 29 metabolites in mussel haemolymph. Many of 

them are important amino acids that are involved in energy metabolism and protein 

synthesis. The decrease of amino acids, such as branched chain amino acids (BCAAs), 

creatinine and linoleic acid in infected mussels suggests the disruption of amino acid 

metabolism caused by Vibrio sp. DO1. BCAAs, including valine, leucine and isoleucine 

have diverse metabolic and physiological roles, such as protein synthesis, signalling 
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pathways, and glucose and energy metabolism, among others (Monirujjaman and 

Ferdouse, 2014). Pathogen infections are known to lead to remarkable increases in 

demand of BCAAs for energy and substrates for biosynthesis of new protective molecules 

by the immune system (Calder, 2006). In our study, the significant depletion of BCAAs 

in the haemolymph of infected mussels suggests that there was a high demand of BCAAs 

for host energy production in response to Vibrio sp. DO1 infection. Creatinine is a 

breakdown product of high-energy compound phosphocreatine in muscle tissues (Taylor, 

1989), and is a valuable source of carbon and nitrogen (Yoshimoto et al., 2004).  The 

decrease of creatinine in this study may also be a result of the high energy demand of 

infected mussels. The lower levels of free amino acids in infected mussels suggest 

disruptions in protein and amino acid metabolism. In fact, many amino acid metabolisms 

were altered in infected mussels compared to control mussels (Table 5.1). Among these 

amino acids, decreases in tyrosine, phenylalanine and lysine have also been reported in 

metabolic responses of abalone (H. diversicolor) to V. parahaemolyticus infection (Lu et 

al., 2017). Interestingly, levels of creatinine, isoleucine and phenylalanine increased in 

infected but recovering female mussels on the sixth day compared to the second day post-

injection. These changes, along with the decreases in ITA and hydroxyproline towards 

baseline levels as discussed above, support that surviving female mussels were recovering 

after being exposed to Vibrio sp. DO1. These results also suggest that the alterations of 

metabolites such as ITA, hydroxyproline and amino acids could be used to indicate the 

health status of mussels.   
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5.5 CONCLUSION  

This study is the first to report on sex-based differences in immune responses of mussels 

exposed to a pathogenic Vibrio. Female mussels appeared to have a more effective 

defence response against pathogen infection than male mussels. However, there was no 

significant difference in the metabolic profiles measured in haemolymph of males and 

females following Vibrio sp. DO1 infection. The infection of Vibrio sp. DO1 caused an 

alteration of 43 metabolites in the mussel haemolymph that are involved in many 

important immune activities, including oxidative stress, apoptosis, energy metabolism, 

amino acid metabolism and protein biosynthesis. We discovered that mussel immune 

cells are able to produce ITA similar to mammalian macrophages during bacterial 

infection. The change of ITA during Vibrio infection may be associated with mussel 

immune responses and infection status. Although recent studies have revealed the role of 

ITA as a mammalian antimicrobial metabolite, there are no previous reports on the 

involvement of ITA in bivalve immune system. Further studies should be directed 

towards ITA and its antimicrobial function in invertebrate immune cells to provide data 

for identification of new intervention points and develop remediation strategies for 

infectious diseases in aquaculture. The application of flow cytometry and metabolomics 

provide complementary information regarding sex differences and metabolic responses 

that can be used to explore new research questions in this field. 
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5.6 APPENDIXES 

Table 5.A.1  List of metabolites identified as differently expressed between infected 
and control mussels. 

 Two-way ANOVA 
Log(FC) 

PLS-DA 
VIP 

Score 

Vibrio 
effect Compounds Treatment Gender Interaction 

Hydroxyproline 0.001 0.830 0.365 4.748 3.173 ↑ 
S-Adenosylmethionine 0.001 0.779 0.730 4.184 2.539 ↑ 
Lactic acid 0.002 0.987 0.777 3.007 1.639 ↑ 
Asparagine <0.001 0.334 0.530 -1.853 1.608 ↓ 
Valine <0.001 0.322 0.730 -1.869 1.523 ↓ 
Phenylalanine <0.001 0.107 0.730 -1.925 1.496 ↓ 
Itaconic acid 0.001 0.344 0.974 2.290 1.442 ↑ 
Isoleucine <0.001 0.331 0.730 -1.757 1.382 ↓ 
Glutaric acid 0.006 0.628 0.730 2.344 1.377 ↑ 
Leucine <0.001 0.538 0.736 -1.708 1.369 ↓ 
3-Aminoisobutyric acid <0.001 0.614 0.730 -1.688 1.367 ↓ 
γ-Aminobutyric acid (GABA) <0.001 0.628 0.740 -1.668 1.340 ↓ 
Methionine <0.001 0.628 0.730 -1.760 1.305 ↓ 
Glutamic acid 0.010 0.852 0.199 1.706 1.302 ↑ 
Tyrosine 0.002 0.107 0.530 -1.258 1.249 ↓ 
Glutathione 0.009 0.948 0.232 1.678 1.244 ↑ 
2-Aminobutyric acid <0.001 0.770 0.730 -1.582 1.226 ↓ 
Lysine 0.006 0.364 0.691 -1.812 1.213 ↓ 
Fumaric acid 0.007 0.770 0.691 1.622 1.196 ↑ 
Ornithine 0.010 0.779 0.530 -1.290 1.171 ↓ 
Tryptophan 0.045 0.261 0.740 -1.203 1.160 ↓ 
Palmitelaidic acid 0.001 0.096 0.934 -1.430 1.156 ↓ 
Creatinine <0.001 0.334 0.740 -1.470 1.151 ↓ 
Threonine <0.001 0.533 0.530 -1.372 1.142 ↓ 
beta-Alanine <0.001 0.322 0.416 -1.399 1.109 ↓ 
Serine 0.005 0.852 0.416 -1.195 1.019 ↓ 
Palmitic acid <0.001 0.106 0.928 -1.259 1.013 ↓ 
Pyroglutamic acid 0.032 0.948 0.265 1.240 0.985 ↑ 
Glycine 0.003 0.183 0.099 0.895 0.974 ↑ 
Myristic acid 0.001 0.106 0.767 -1.061 0.886 ↓ 
EPA 0.034 0.106 0.740 -0.883 0.759 ↓ 
cis-vaccenic acid 0.005 0.118 0.767 -0.794 0.597 ↓ 
Linoleic acid 0.006 0.106 0.767 -0.783 0.588 ↓ 
Glyoxylic acid 0.004 0.948 0.767 0.770 0.522 ↑ 
Malonic acid 0.015 0.948 0.691 0.762 0.515 ↑ 
Nicotinic acid 0.009 0.948 0.538 0.615 0.478 ↑ 
gamma-linolenic acid 0.047 0.106 0.666 -0.472 0.324 ↓ 
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ABSTRACT  

Vibrio coralliilyticus is a bacterial pathogen which can affect a range of marine 

organisms, such as corals, fish and shellfish, with sometimes devastating consequences. 

However, little is known about the mechanisms involved in the host-pathogen interaction, 

especially within molluscan models. We applied gas chromatography-mass spectrometry 

(GC-MS)-based metabolomics to characterize the physiological responses in 

haemolymph of New Zealand Greenshell™ mussels (Perna canaliculus) injected with 

Vibrio sp. DO1 (V. coralliilyticus/neptunius-like isolate). Univariate data analyses of 

metabolite profiles in Vibrio-exposed mussels revealed significant changes in 22 

metabolites at 6 hours post-infection, compared to non-exposed mussels. Among them, 

10 metabolites  were up-regulated, while 12 metabolites were down-regulated in infected 

mussels. Multivariate analyses showed a clear distinction between infected and non-

infected mussels. In addition, secondary pathway analyses indicated perturbations of the 

host innate immune system following infection, including oxidative stress, inflammation, 

and disruption of the tricarboxylic acid (TCA) cycle, change in amino acid metabolism 

and protein synthesis. These findings provide new insights into the pathogenic 

mechanisms of Vibrio infection of mussels, and demonstrate our ability to detect detailed 

and rapid host responses from haemolymph samples using a metabolomics approach.  
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6.1 INTRODUCTION 

Bacteria in the genus Vibrio (e.g. V. aestuarianus, V. tubiashii, V. coralliilyticus, V. 

tapetis, V. spendidus and V. harveyi) have been associated with a number of infectious 

diseases in marine bivalves (reviewed by Travers et al. 2015). Among them, infections 

with V. coralliilyticus have been reported in several marine organisms. This bacterium is 

a well-known coral pathogen that causes tissue lysis of Pocillopora damicornis in the 

Indian Ocean and Red Sea (Ben-Haim et al., 2003, Rozenblat and Rosenberg, 2004). 

Recently, it has been shown to cause mortality in a number of fish and shellfish species 

(Austin et al., 2005, Genard et al., 2013). V. coralliilyticus is a gram-negative, motile and 

facultative anaerobic bacterium (Plumb and Hanson, 2011), which is phylogenetically 

related to V. tubiashii (Ben-Haim et al., 2003). Therefore, many marine isolates of V. 

coralliilyticus from shellfish were misidentified as V. tubiashii until recently when the 

genomes of several V. coralliilyticus strains have been sequenced (Kehlet-Delgado et al., 

2017, Richards et al., 2014). Therefore, previous emergences of V. tubiashii in bivalve 

shellfish aquaculture on the west coast of North America (Brown, 1981, Dumbauld et al., 

2011, Elston et al., 1981, Elston et al., 2008) were possibly caused by V. coralliilyticus 

(Richards et al., 2015). In previous work, pathogen challenges with V. coralliilyticus 

induced significant larval mortality in New Zealand green-lipped mussels (P.  

canaliculus) (Kesarcodi-Watson et al., 2009a, Kesarcodi-Watson et al., 2009b), great 

scallops (Pecten maximus), European flat oysters (Ostrea edulis) (Kesarcodi-Watson et 

al., 2012), Eastern oysters (Crassostrea virginica) and Pacific oysters (Crassostrea gigas) 

(Richards et al., 2015). These suggest that V. coralliilyticus is an important pathogen for 

bivalves that has contributed to dramatic losses in shellfish aquaculture worldwide in 

recent years. Despite the fact that V. coralliilyticus appear to be a global bivalve pathogen, 

there is limited information about its pathogenicity, infection mechanism and/or disease  
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mitigation.  

As filter feeders, bivalves are always exposed to pathogen-rich environments, and mostly 

rely on an innate immune system with non-specific defence mechanisms composed of 

cellular and humoral components (Song et al., 2010). Cellular components include 

haemocytes and epithelial cells, whereas humoral components include various active 

molecules secreted by haemocytes and released into the haemolymph (Allam and Raftos, 

2015, Song et al., 2010). Haemocytes are considered to be the backbone of the bivalve 

immune system and they play major roles in phagocytosis, encapsulation and nacrezation 

of invading pathogens and parasites (Allam and Raftos, 2015, Anderson and Good, 1976, 

Song et al., 2010). These specialized cells are also involved in other biological functions, 

such as wound healing, food digestion, transport of nutrients, gonad resorption, shell 

formation and secretion of humoral factors (Allam and Raftos, 2015, Bachère et al., 

2015). Despite a recent proliferation of cellular and molecular studies focusing on bivalve 

immunology (Allam and Raftos, 2015, Bachère et al., 2015), immune response to 

pathogenic infections of bivalves is not fully understood (Bassim et al., 2015, Estes et al., 

2004, Yue et al., 2013). Part of the reason for this lack of understanding may be that 

current immunological and molecular biology techniques are still not sufficiently 

advanced to clearly elucidate the complex mechanisms of infections within a host-

pathogen model. 

‘Omics’ is an encompassing term for  relatively new approaches to the study of large sets 

of biological molecules, and comprises genomics, transcriptomics, proteomics and 

metabolomics (Smith et al., 2005). The advancement of high-throughput technologies 

and rapid development of bioinformatics have led to an expansion of omics applications 

in a variety of life science fields (Alfaro and Young, 2018, Gómez-Chiarri et al., 2015, 
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Guo and Ford, 2016). Amongst these omics, transcriptomics (the study of the 

transcriptome, or group of mRNA molecules present in a biological system) has been 

widely used in many areas of aquaculture research, such as selective breeding, stress 

physiology and toxicology,  developmental biology, disease resistance and immunology 

(reviewed by Li (2014). In bivalve immunity studies, high-throughput transcriptomics 

has been used for finding the immune-related genes/ transcripts or pathways in oysters 

(Fleury et al., 2009, Rosa et al., 2012, Zhang et al., 2014), mussels (Moreira et al., 2014, 

Philipp et al., 2012, Venier et al., 2009), clams (Hasanuzzaman et al., 2017, Milan et al., 

2011, Moreira et al., 2012) and scallops (Pauletto et al., 2014, Sun et al., 2014, Zhang et 

al., 2017). Compared to transcriptomics, metabolomics (study of the complete set of 

small-molecules or metabolites present in cells, tissue body fluids and entire organisms) 

is relatively new and its application in aquaculture research is limited (Alfaro and Young, 

2018, Young and Alfaro, 2016). However, since metabolites are the end-products of 

cellular regulatory processes, the metabolome (total set of metabolites within a biological 

sample) is highly sensitive to environmental change. Thus, metabolomics can represent a 

better picture of what is actually happening in the organism at a given time (Alfaro and 

Young, 2018). Due to its strong predictive power of phenotypes, metabolomics may 

provide a novel tool for understanding endogenous metabolic changes caused by many 

diseases across a range of host-pathogen interactions. Furthermore, metabolomics 

approaches can be used in early diagnosis of diseases, leading to the development of 

therapies and health monitoring systems.  

In the present study, we report on the application of GC-MS-based metabolomics 

approach integrated with flow cytometry to characterize the metabolic and 

immunological responses in haemolymph of New Zealand Greenshell™ mussels (Perna 

canaliculus) following infection with V. corallyliticus-like isolate. This is an innovative 
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metabolomics-based study of non-lethally collected haemolymph as the target sample to 

investigate the interaction between a bivalve host and a marine pathogen. The knowledge 

acquired from this study leads to a better understanding of V. coralliilyticus pathogenicity 

and future development of disease management strategies in aquaculture production. 
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6.2 MATERIALS AND METHODS 

6.2.1 Animal preparation and challenge experiment  

Adult mussels were obtained from Westpac Mussels Distributors Ltd (Auckland, New 

Zealand) and acclimatized for 7 days in a re-circulation system as the condition described 

in Chapter 4 (4.2.1). Only male mussels were used in this experiment to avoid potential 

variations due to gender-specific responses, as previously reported for other species (Liu 

et al., 2014b, Lu et al., 2017). A pool of 20 mussels were selected (mean weight = 75.96 

± 10.29 g; mean shell length = 10.24 ± 0.62 cm), and randomly divided into two equal 

groups, and placed into 50 l rectangular plastic tanks filled with continuously aerated 

FFSW.  

The challenge experiment was performed with the bacterial suspension of Vibrio sp. DO1 

(V. coralliilyticus/neptunius-like isolate) which was prepared as the protocol described in 

Chapter 4 (4.2.1). Ten mussels were injected with 50 μl of Vibrio sp. DO1 suspension 

(107 cells·ml–1) into the adductor muscle. The ten remaining mussels (control group) were 

injected with 50 μl of PBS only. After injection, all animals were put back into their 

respective tanks. After 6 hours post-injection, approximately 1 ml of haemolymph was 

collected from each animal (Chapter 4 – 4.2.1). Immediately after withdrawal, samples 

were transferred into 2 ml Eppendorf tubes and kept on ice. 300 μl of haemolymph were 

subsequently pipetted into 2 ml Cryovials (BioStor™), immediately flash-frozen in liquid 

nitrogen, and stored at –80°C until metabolite analyses were carried out. The remaining 

haemolymph was stored briefly (ca. 30 min) on ice for bacterial counts and flow 

cytometry assays.  
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6.2.2 Bacterial quantification  

Bacteria in each mussel group were enumerated using the spread plate method, as 

previously described in Chapter 4 (4.2.2).  

6.2.3 Flow cytometric analyses  

Sub-samples of the remaining haemolymph were used to assess total cell count, 

haemocyte viability, and production of intracellular reactive oxygen species (ROS) via 

flow cytometry using a Muse® Cell Analyzer (EMD Millipore, Hayward, CA, USA). 

Haemocyte concentration and viability parameters were measured for each sample using 

the Muse® Cell Count and Viability kit (Chapter 4 – 4.2.3), while relative quantification 

of reactive oxygen species (ROS) in haemocytes was estimated using the Muse® 

Oxidative Stress kit (Chapter 5 – 5.2.2).  

6.2.4 GC-MS-based metabolomics analyses and data processing 

Metabolites from haemolymph samples of both mussel groups were co-extracted with an 

internal standard (L-alanine-2,3,3,3-d4) in cold methanol-water solution (MeOH:H2O), 

then derivatized via methyl chloroformate (MCF) alkylation, as the method described in 

Chapter 4 (4.2.4-5). After derivatisation, the MCF derivatives were analysed via a GC-

MS system and spectral processing was conducted in accordance with the protocol 

described in Chapter 4 (4.2.6).  

6.2.5 Statistical and pathway analysis  

Bacterial count and flow cytometric data were analysed with independent student’s t-tests 

using SPSS® software (version 23.0) (IBM, Armonk, NY, USA).   

Metabolite data were normalized by generalized log (glog) transforming, and mean 

centering prior to statistical analysis using MetaboAnalyst 3.0 software (Xia et al., 2015).  
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Univariate analyses were performed to identify metabolite differences between infected 

and control groups, including students t-test, significance analysis of 

microarrays/metabolites (SAM) and empirical bayesian analysis of 

microarrays/metabolites (EBAM). Multivariate data analyses of unsupervised principal 

components analysis (PCA) and hierarchical cluster analysis (HCA) (Euclidian distance; 

Ward’s criterion) were used to identify natural groupings of samples based on the 

underlying structure of the data. The supervised projection to latent structures 

discriminant analysis (PLS-DA) and validation of PLS-DA model via leave one out cross 

validation (LOOCV) were performed as described in Chapter 4 (4.2.7).  

Quantitative enrichment analysis (QEA) (Xia and Wishart, 2010) and network topology 

analysis (NTA) (Nikiforova and Willmitzer, 2007) were performed to investigate 

functional relationships among the annotated metabolites for pathway analyses (Chapter 

5 – 5.2.5).  
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6.3 RESULTS   

6.3.1 Bacterial cell counts 

Vibrio counts were significantly higher (t-test; p < 0.05) in haemolymph from infected 

mussels (ca. 3.22 × 105 cfu·ml–1), compared to those of non-infected (control) mussels 

(ca. 278.33 cfu·ml–1) (Fig. 6.1A).  

 
Figure 6. 1  Flow cytometric analyses of bacterial and mussel haemolymph. (A) Log10 

bacterial cell count on TCBS agar plates. (B) Log10 haemocyte cell counts. 
(C) Viability of mussel haemocytes (%). (D) Percentage of ROS (+) cells 
(cells exhibiting ROS) in the haemolymph. Significant differences relative 
to the control are marked with an asterisk (*) (Student's t-test, p < 0.05). 
Error bars represent standard deviations. 

6.3.2 Haemolymph cell counts and viability  

Haemocyte cell concentrations in haemolymph of infected and non-infected mussels were 

similar (ca. 4.14 × 106 cells·ml–1) (Fig. 6.1B). However, the proportion of haemocytes 

which was viable in haemolymph of infected mussels (ca. 18 %) was substantially lower 

than in non-infected mussels (ca. 64 %) (t-test; p < 0.05) (Fig. 6.1C).  
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6.3.3 ROS analyses  

At 6 hours post-injection, the number of haemocytes generating ROS were significantly 

(p < 0.05) higher in mussels injected with Vibrio sp. DO1 (8.53 ± 2.36 %) compared to 

control mussels injected with PBS only (3.01 ± 1.25 %) (Fig. 6.1D).  

6.3.4 Metabolite profiles 

We reliably annotated 71 metabolites across broad chemical classes from the 

haemolymph spectra (e.g., amino acids, organic acids, fatty acids, sterols, tripeptides, 

vitamins).   

Univariate data analysis 

Univariate statistical analyses showed a number of differences in the metabolite profiles 

between infected and non-infected mussels. Firstly, t-test analysis identified 24 

metabolites as being significantly different between infected and non-infected mussels (p 

< 0.05). Similarly, SAM and EBAM  revealed an alternation of 23 metabolites that were 

differentially expressed between infected and non-infected mussels. With a fold-change 

cut-off threshold of 2, we identified 22 common metabolites that were significantly 

different between two treatment groups. Among them, 10 metabolites were up-regulated, 

while 12 metabolites were down-regulated in infected mussels (Fig. 6.2).  

Multivariate data analyses 

Multivariate analyses of the haemolymph metabolite profiles showed good separations 

between infected and non-infected mussels (Fig. 6.3). PCA correctly grouped the samples 

by their class labels, with the distribution of non-infected mussels (green dots) being 

clearly separated from that of infected mussels (red triangles) along the PC1 axis (Fig. 

6.3A).  
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Figure 6.2 Alternations of metabolites in Vibrio sp. infected and non-infected mussels 

at 6 hrs post-infection. Box plots of metabolites are based on t-test 
analysis, showing relative abundances of metabolites in control (green) 
and infected mussels (red). l-Leucine, N-: l-Leucine, N-methoxycarbonyl, 
methyl ester). 

These sample groupings were independently supported via unsupervised HCA (Fig. 

6.3B), with the dendrogram revealing two clear discriminative clusters based on the 

treatment that they received. Supervised PLS-DA analysis sharpened the discrimination 

between control and infected groups (Fig. 6.3C). The PLS-DA model showed an accuracy 

of 100 %, a multiple correlation coefficient (R2) of 95.6 %, and a cross-validated 

predictive ability (Q2) of  92.3 %. These parameters indicate optimal fitness and 
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prediction performance of the PLS-DA model. Fifteen metabolites with VIP scores > 1.0 

were identified as contributing strongly to the model (Fig. 6.3D).  

 
Figure 6. 3  Multivariate cluster analyses of metabolite profiles of Vibrio sp. infected 

and non-infected (control) mussels. (A) 2D PCA score plot.  (B) 
Dendrogram (Euclidian distance; Ward's method). (C) 2D PLS-DA score 
plot. (D) Top 15 metabolites with VIP scores for the PLS-DA model. Up 
and down arrows, respectively, demonstrate increased and decreased 
metabolites in infected mussels compared to non-infected mussels.   
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Pathway analysis   

Pathway topology analysis showed 44 biochemical pathways that matched the KEGG 

database. Among these, 15 pathways involving at least two annotated metabolites with 

QEA p-values < 0.05, QEA FDR values < 0.1, and NTA PI values > 0.1 were screened 

as potential primary target pathways of interest relating to the treatment effect (Table 6.1).  

Table 6.1  List of altered metabolic pathways that identified as primary target pathways 
in mussel haemolymph during Vibrio sp. DO1 infection. 

Pathways: metabolites Hits/ Total 
compounds Raw p -LOG(p) FDR Impact 

Alanine, aspartate and glutamate metabolism: 
aspartic acid, alanine, glutamic acid, gamma-
aminobutyric acid, glutamine, asparagine, fumaric 
acid, succinic acid. 

8/24 0.000 23.456 0.000 0.719 

Arginine and proline metabolism: glutamine, 
ornithine, aspartic acid, glutamic acid, proline, 
gamma-aminobutyric acid, fumaric acid. 

7/43 0.000 22.919 0.000 0.322 

Citrate cycle (TCA cycle): succinic acid, malic 
acid, citric acid, fumaric acid. 

4/20 0.000 19.214 0.000 0.151 

Tyrosine metabolism: Tyrosine, fumatic acid, p-
Hydroxyphenylacetic acid. 

3/44 0.000 18.906 0.000 0.137 

Histidine metabolism: Glutamic acid, histidine, 
aspartic acid. 

3/14 0.000 18.176 0.000 0.238 

Aminoacyl-tRNA biosynthesis:  
asparagine, histidine, phenylalanine, glutamine, 
cysteine, glycine, aspartic acid, serine, 
methionine, valine, alanine, lysine, isoleucine, 
leucine, threonine, tryptophan, tyrosine, proline, 
glutamic acid.  

19/67 0.000 17.265 0.000 0.103 

Glyoxylate and dicarboxylate metabolism: 
citric acid, malic acid.  

2/18 0.000 15.184 0.000 0.296 

D-Glutamine and D-glutamate metabolism: 
glutamic acid, glutamine 

2/5 0.000 13.846 0.000 1.000 

Glutathione metabolism: glutathione, glycine, 
cysteine, glutamic acid, ornithine, pyroglutamic 
acid.  

6/26 0.000 13.414 0.000 0.418 

beta-Alanine metabolism: beta-alanine, aspartic 
acid.  

2/16 0.000 11.437 0.000 0.395 

Phenylalanine, tyrosine and tryptophan 
biosynthesis: phenylalanine, tyrosine.  

2/4 0.001 7.551 0.001 1.000 

Phenylalanine metabolism: phenylalanine, 
tyrosine. 

2/11 0.001 7.551 0.001 0.407 

Valine, leucine and isoleucine biosynthesis: 
valine, leucine and isoleucine. 

4/13 0.003 5.874 0.005 1.000 

Cysteine and methionine metabolism: 
cystathionine, serine, methionine, cysteine. 

4/29 0.008 4.883 0.014 0.443 
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6.4 DISCUSSION  

Recent NMR-based metabolomics studies have shown changes in metabolites underlying 

several metabolic pathways in different bivalve organs, such as hepatopancreas and gills 

of individuals infected with pathogenic Vibrio species (Liu et al., 2014a, Liu et al., 2013a, 

Liu et al., 2014b, Liu et al., 2013b). However, metabolic alterations in the host’s 

haemolymph during Vibrio infections have until now been elusive. Using a GC-MS 

platform, we observed many metabolic responses reflected in the haemolymph of mussels 

6 hours post-infection with Vibrio sp. DO1. In infected mussels, these metabolic changes 

included up-regulation of 10 metabolites and down-regulation of 12 metabolites. These 

endogenous metabolites are important signatures of metabolic pathways and mechanisms 

(e.g. oxidative stress, inflammation, disruptions of TCA cycle, amino acid metabolism 

and protein synthesis) that are relevant to the innate immune response of mussels when 

infected with Vibrio sp. DO1.  

6.4.1 Oxidative stress 

ROS are a natural by-product of different biological processes and have important role in 

protective mechanism of most organisms (Jabs, 1999, Torreilles et al., 1996). However, 

excess of ROS production due to changes of intra- and extra-cellular environmental 

conditions that leads to an imbalance between ROS and antioxidants in favour of ROS 

can cause oxidative stress and long-term damage to cells and tissues via degradation of 

DNA, proteins and lipids (Jabs, 1999, Torreilles et al., 1996). In this study, we observed 

a significantly higher percentage of ROS-producing cells in infected mussels compared 

to non-infected mussels, demonstrating that P. canaliculus haemocytes up-regulated ROS 

production in response to Vibrio sp. DO1 infection. In agreement with this finding, 

previous studies have also reported increases in ROS within haemolymph samples of 

several other marine bivalves in response to pathogenic bacteria or stimulation of 
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pathogen-associated molecular patterns (PAMPs) (Buggé et al., 2007, Costa et al., 2009, 

Goedken and De Guise, 2004, Lambert et al., 2003).  

In addition to the flow cytometry assay, metabolomic analyses also revealed some 

important metabolite signatures of potential oxidative stress in infected mussels, 

including altered glutathione metabolism and transsulfuration pathway (cysteine and 

methionine metabolism), decreased free methionine content, and increased levels of 

glutamic and succinic acids. Glutathione in reduced form (GSH) is an important and 

abundant antioxidant molecule, which can react with electrophilic oxidants (e.g., H2O2) 

by converting two GSH molecules into oxidized form (GSSG) (Fig. 6.4) (Espinosa-Diez 

et al., 2015). The GSH:GSSG ratio is thus often considered to be a biomarker for 

oxidative stress in various physiological and pathophysiological situations (Asensi et al., 

1999, Gurer-Orhan et al., 2004, Jones, 2002, Zitka et al., 2012). In the present study, we 

identified total glutathione (GSH and GSSG) which was not different between infected 

mussels and control mussels, but we could not discriminate between GSH and GSSG due 

to the technical limitations of the GC-MS approach, so the GSH:GSSG ratio was not 

obtained. However, we identified six metabolites (glutathione, glycine, cysteine, glutamic 

acid, ornithine and pyroglutamic acid) within the glutathione metabolic pathway, and 

secondary pathway analysis screened glutathione metabolism as an affected target 

pathway of interest relating to the treatment effect (p = 0.000, FDR = 0.000, PI = 0.418) 

(Table 6.1). The transsulfuration pathway is a source of cysteine for GSH synthesis under 

low-mid stress conditions (McBean, 2012), and was also identified as a differentially 

regulated pathway (p = 0.008, FDR = 0.014, PI = 0.443). During transsulfuration, 

methionine acts as a precursor for homocysteine, which combines with serine to form 

cysteine through a cystathionine intermediate. Cysteine in turn combines with glutamic 

acid and then glycine to form GSH (Fig. 6.4) (McBean, 2012). Hence, the decrease in 
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methionine in infected mussels may suggest a high demand of methionine for the 

transsulfuration and glutathione pathways. The elevated levels of glutamic acid 

(precursor of GSH) in infected mussel haemolymph could affect GSH synthesis. 

Increases of intracellular glutamic acid has been reported to decrease GSH levels and 

eventually trigger ROS production in Riluzole-treated cells (Seol et al., 2016). These 

combined results may indirectly suggest the involvement of GSH in regulating elevated 

ROS production in haemolymph of Vibrio-infected mussels.   

 

Figure 6. 4  Schematic representation of the relationship between transsulfuration 
pathway, glutathione pathway and oxidative stress.  Compounds with red 
dash outlines are metabolites that were identified in this data set whereas 
compounds in red characters and red dash outlines were significant 
different between control and infected mussels. Enzymes are shown in 
bold and blue characters. Hcy, homocysteine; S-AdoMet, S-
adenosylmethionine; S-AdoHcy, S-adenosylhomocysteine; Met-Hcy cycle, 
Methionine- homocysteine cycle. 

Succinic acid is an intermediate of TCA cycle, but also plays an important role in several 

other metabolic pathways, including the formation and elimination of ROS (reviewed by 

Tretter et al. 2016). Succinic acid has been shown to drive reverse electron transport 
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(RET) and generate ROS production by RET during ischemia-reperfusion injury 

(Chouchani et al., 2014). Recently, Mills et al. (2016) found that increased succinate-

driven oxidation by succinate dehydrogenase (SDH) and an elevated mitochondrial 

membrane potential combine to drive mitochondrial ROS production. In this study, we 

observed an increase of both ROS and succinic acid, which may suggest the significant 

contribution of succinic acid towards a greater production of mitochondrial ROS in 

infected mussels. The flow cytometry and metabolomics results herein suggest that P. 

canaliculus haemocytes are capable of producing ROS in response to Vibrio infection, 

and that may lead to oxidative stress in infected mussels.  

6.4.2 Citric cycle 

The citric acid cycle (TCA cycle) is a key metabolic pathway in all aerobic organisms 

that generates energy through oxidation of fuel molecules (e.g. glucose, fatty acids and 

certain amino acids) into carbon dioxide. Interruption of the TCA cycle in mammalian 

macrophages is known to lead to massive accumulations of TCA intermediates (citric 

acid, succinic acid, fumaric acid and malic acid) (Jha et al., 2015). These accumulations 

are due to two characteristic breaking points in the TCA cycle (Jha et al., 2015, Tannahill 

et al., 2013). The first break occurs at isocitrate dehydrogenase (IDH), which catalyzes 

the oxidative decarboxylation of isocitrate into alpha-ketoglutarate. Thus, the IDH break 

leads to accumulation of citric acid that can act as a precursor to generate fatty acids for 

membrane biogenesis, prostaglandin production (Infantino et al., 2011, O'Neill et al., 

2016) and itaconic acid (ITA) (Michelucci et al., 2013). In this study, we did not observe 

a significant increase of citric acid, but the accumulation of ITA suggests that any excess 

citric acid was used as its precursor during infection  (Fig. 6.5).  
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Figure 6. 5  Two TCA cycle break-points in V. coralliilyticus infected mussels. The 
first break was after citrate, resulting in accumulation of citrate, which was 
used to generate itaconate in mussel haemolymph. The second 
characteristic break-point of TCA cycle occurred at succinate 
dehydrogenase/respiratory Complex II (SDH/CII) that leads to the 
accumulation of succinate. Elevated levels of succinate replenishes 
production of fumarate and malate. Box plots of metabolites are based on 
t-test analysis, showing relative abundances of metabolites in control 
(green) and infected (red) mussels. 

The second characteristic break-point of the TCA cycle occurs at the succinate 

dehydrogenase/respiratory Complex II (SDH/CII), which can lead to an accumulation of 

succinic acid (reviewed by Gaber et al. 2017). As a consequence, it has been suggested 

that the presence of an active variant of the aspartate-arginosuccinate shunt replenishes 

production of fumaric acid and malic acid, which inhibits the activity of succinate 

dehydrogenase (Gaber et al., 2017, Jha et al., 2015). In mussels challenged with Vibrio 

sp. DO1, we observed significantly elevated levels of succinic acid, fumaric acid and 

malic acid, which could be due to a similar second break-point feature of the TCA cycle 

in vertebrate macrophages/haemocytes. Previous studies have also reported the 
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accumulation of ITA and succinic acid in virus-exposed oysters (Young et al., 2017). 

These results suggest that a similar mechanism of TCA cycle interruption may be a 

consequence of pathogenic infections across diverse taxa.  

6.4.3 Inflammation  

Accumulation of ROS, succinic acid and ITA in mussels exposed to Vibrio sp. DO1 may 

suggest inflammatory responses in infected mussels. Inflammation is a complex 

biological response of tissues to harmful stimuli (i.e. pathogens, irritants) and is 

considered to be a critical first line of defence of both vertebrates and invertebrates 

(Rowley, 1996). Inflammation also is a protective mechanism involving humoral and cell 

mediators of the immune system. In mammalians, well described molecular mediators 

are cytokines, prostaglandins, NO and ROS produced by both innate and adaptive 

immune cells (Mills and O’Neill, 2014). Numerous studies on the biology and pathology 

of molluscs over the last decades has predominantly revealed that the inflammatory 

response in molluscs may be driven by a pool of functionally conserved molecules, such 

as those observed in vertebrates (De Vico and Carella, 2012, Humphries and Yoshino, 

2003, Ottaviani et al., 2010, Rowley, 1996).  

ROS are signalling molecules and mediators that play a central role in the progression of 

inflammatory responses (Mittal et al., 2014). An increase in ROS, which leads to acute 

inflammation has been well described in many studies (Fubini and Hubbard, 2003, Mittal 

et al., 2014, Zhou et al., 2010). Hence, the increase of ROS production observed in 

infected mussels in this study may also trigger inflammation.   

Succinic acid is known as a metabolic signal in inflammation (Mills and O’Neill, 2014, 

Tannahill et al., 2013). In mammalians, succinic acid directly stabilizes the transcription 

factor hypoxia-inducible factor-1α (HIF-1α) (Mills and O’Neill, 2014, Tannahill et al., 
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2013) or indirectly stabilizes HIF-1α by accumulation of mitochondrial ROS levels via 

oxidation of succinic acid to form fumaric acid by succinate dehydrogenase (SDH) (Mills 

et al., 2016). Once stabilized, HIF-1α activates target genes that support the inflammation 

(Mills et al., 2016, Tannahill, 2013). In marine bivalves, the critical role of HIF-α in 

regulation of respiratory burst activity of the Pacific oyster (Crassostrea 

gigas) hemocytes has been demonstrated (Choi et al., 2013). Thus, accumulation of 

succinic acid in Vibrio-exposed mussels may play an important role in inflammatory 

responses of these mussels in this study.  

ITA is a highly induced metabolite during macrophage activation, and it presently has 

been recognised as a major physiological regulator of inflammation (Lampropoulou et 

al., 2016). Lampropoulou et al. (2016) investigated the role of ITA in LPS-activated 

macrophages, and found that ITA regulates succinic acid levels, mitochondrial respiration 

and ROS production. Similarly, we observed a significant increase in ITA, succinic acid 

and ROS production in mussels exposed to Vibrio sp. DO1. This suggests that a similar 

critical role of ITA in inflammatory responses may exist in marine bivalves. However, 

further investigation is needed to confirm the involvement of ITA in regulation of 

succinic acid and inflammation in invertebrates.  

The amino acid gamma-aminobutyric acid (GABA), is well known as an important 

inhibitory neurotransmitter in the central nervous system for inflammation suppression 

of both vertebrates and invertebrates (Eriksson and Panula, 1994). Molecular cloning of 

GABAA receptor-associated protein (GABARAP) from abalone (Haliotis diversicolor) 

and its expression in different abalone tissues after bacterial challenge suggest its vital 

role in the innate immune system of molluscs (Bai et al., 2012). Indeed, a decrease in 

GABA was found in the haemolymph of Pacific oysters (Crassostrea gigas) 6 h after 
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LPS stimulation (Li et al., 2016). Interestingly, GABA could indirectly inhibit cellular 

immune and humoral immune responses by reducing the production of pro-inflammatory 

cytokines (CgIL-17 and CgTNF) and immune effectors (CgSOD and CgBPI) (Li et al., 

2016). In our case, we also observed the decrease of GABA in infected mussels, 

suggesting that this metabolite may have a function in suppression of the immune-

mediated pro-inflammatory reactions.  

6.4.4 Amino acid metabolism and protein synthesis  

Decreases in a number of amino acids in infected mussels suggest diverse disruptions of 

amino acid metabolism and protein biosynthesis. For example, the branched-chain amino 

acids (BCAA), including leucine, isoleucine, and valine are essential metabolites for the 

immune system, which provide energy and act as the precursors for biosynthesis of new 

molecules and cells, especially lymphocytes (Calder, 2006). When infection occurs, there 

is a high demand of BCAA for lymphocytes to synthesize protein, RNA, and DNA and 

other immune cell functions (Calder, 2006). Similarly, we observed a decrease of BCAAs 

in haemolymph of mussels challenged with Vibrio sp. DO1, which suggest the high 

demand in BCAAs for immune activities. In contrast, Liu et al. (2013a) found an increase 

of BCAAs in the hepatopancreas of clams exposed to V. anguillarum. These differences 

in results from tissue and haemolymph analyses may be due to tissue-specific responses 

of hosts to infections, which have been reported in several studies (Liu et al., 2014a, Lu 

et al., 2017). In addition to BCAAs, we found significant decreases in other amino acids, 

such as tryptophan and aspartic acid. Tryptophan is an essential amino acid that is 

required by all life forms for the regulation of protein synthesis. It is also a substrate for 

other major biosynthetic routes, such as the synthesis of serotonin, essential cellular 

factors and the kynurenine pathway (Schröcksnadel et al., 2006). Aspartic acid, is an α-

amino acid that is used in protein biosynthesis (Voet et al., 2016). Hence, the decrease in 
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these important amino acids in haemolymph of infected mussels suggests an immune 

stimulation by Vibrio sp. DO1 infection and the disturbance of amino acid metabolism 

and protein biosynthesis by the pathogen.  

6.5 CONCLUSION  

We report the first evidence of metabolic profiling of the New Zealand Greenshell™ 

mussel (P. canaliculus) haemolymph exposed to Vibrio sp. DO1. We found several major 

perturbations on the host innate immune system of mussels resulting from Vibrio sp. DO1 

infection, including oxidative stress, inflammation, disruption of TCA cycle, changes in 

amino acid metabolism and protein synthesis. We identified significant alteration in a 

number of important metabolites. Among them, succinic acid, itaconic acid and BCAAs 

are involved in diverse metabolic and physiologic roles and could potentially be 

considered as biomarkers of Vibrio infection in bivalves. Hence, further characterization 

of these metabolites would be essential for development of health biomarkers. 
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ABSTRACT 

Apoptosis or programmed cell death is a fundamental process essential for an  organism’s 

development and homeostasis in immune system of both vertebrates and invertebrates. 

However, little is known about apoptotic process in marine bivalves which require 

investigations to elucidate mechanisms and identify molecular effectors of cell death 

pathways. In this study, we characterized cellular and molecular mechanisms of apoptosis 

induced by lipopolysaccharide (LPS) in New Zealand Greenshell™ mussel (Perna 

canaliculus) haemocytes. Mussel haemocyte samples were exposed to different LPS 

concentrations (0, 50 and 100 μg·ml−1) and incubated at 19 °C for 3 h prior to assessment 

of various cell health parameters via flow cytometry assays and gas chromatography-

mass spectrometry (GC–MS)-based metabolomic analyses. Flow cytometry results 

showed slightly higher, but non-significant differences in production of reactive oxygen 

species between LPS-exposed and control (no LPS) samples. However, percentages of 

apoptotic cells determined via depolarization of the mitochondrial membrane potential 

and caspase-3/7 activity in LPS-exposed samples were significantly higher than in control 

samples, providing mechanistic information regarding initiation and progression of the 

apoptotic cascade. The metabolite profile of LPS-exposed haemocytes showed elevated 

levels of 11 metabolites compared to that of the control. These metabolites may be 

involved in protein and lipid degradation as a consequence of apoptosis and other immune 

or physiological responses. This study demonstrates that LPS could trigger apoptosis in 

mussel haemocytes and provides insights into apoptotic processes in mussel haemocytes. 

Such knowledge could be useful for understanding the immune responses of farmed 

bivalves to waterborne pathogens and identification of molecular biomarkers for disease 

management in aquaculture.  



 

205 Chapter 7 
 

7.1 INTRODUCTION 

Bivalves are important cultured species in New Zealand aquaculture industry (FAO, 

2019b). The country produced 95,983 metric tonnes of bivalves in 2016, contributing to 

88 % of the national aquaculture harvest. Two bivalves, including Pacific oysters 

(Crassostrea gigas) and GreenshellTM mussels (P. canaliculus), together with King 

salmon (Oncorhynchus tshawytscha) are the most important cultivated seafood species in 

the country (FAO, 2019b). Among these species, P. canaliculus is endemic to New 

Zealand which naturally distribute throughout the country but more common in the North 

Island. Farming of P. canaliculus is carried out on longlines, which Coromandel, 

Marlborough Sounds, and Stewart Island are major farming areas. In 2016, production of 

P. canaliculus was 94,037 metric tonnes, which equated to more than 86 % of the 

aquaculture production of New Zealand in that year (FAO, 2019a). However, high 

mortality events effecting mussels during summer months are major challenges for this 

industry. The causes of these mortality events are currently not clear, but are thought to 

be associated with pathogens and environment factors (e.g., elevated temperature, ocean 

acidification). Pathogens and diseases associated with farmed P. canaliculus mussels that 

have been recorded in New Zealand include apicomplexan parasite X (APX), Bonamia 

exitiosa, digestive epithelial virosis (DEV), invasive ciliates, shell-boring worms 

(mudworms) and Vibrio sp. bacteria (Castinel et al., 2014).  

Like other invertebrates, bivalves mostly rely on the innate immune system which 

includes cellular and humoral components (Song et al., 2010). As part of the internal 

innate immune system, haemocytes act as mediators of cellular defences whereas various 

active molecules in haemolymph secreted by haemocytes are major components of 

humoral defences (Allam and Raftos, 2015, Song et al., 2010). Thus, haemocytes 

represent the foundation of the bivalve innate immune system and haemocyte-mediated 
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immunity is considered to be the main internal defence mechanism of marine bivalves 

(Zannella et al., 2017). Haemocytes play a key role in phagocytosis, but also in 

encapsulation, nacrezation of biotic and abiotic foreign particles (Allam and Raftos, 2015, 

Anderson and Good, 1976, Bachere et al., 1995, Song et al., 2010) and apoptosis (Romero 

et al., 2011, Sunila and LaBanca, 2003).  

Apoptosis or programmed cell death plays a fundamental role in homeostasis and the 

development of many organisms and tissue systems in both vertebrates and invertebrates 

(Kiss, 2010, Sokolova, 2009). In addition, apoptosis is known as a host defence 

mechanism against pathogen infections (DeLeo, 2004, Koyama et al., 2000). The 

apoptosis process in mollusc is conversed to that of vertebrates, and is regulated via two 

major pathways: the intrinsic pathway (or mitochondrial-mediated apoptosis) which is 

activated in response to various types of intracellular stressors, and the extrinsic pathway 

(or death receptor-mediated apoptosis) which is initiated by external cell stimuli (Estevez-

Calvar et al., 2013, Kiss, 2010, Sokolova, 2009, Terahara and Takahashi, 2008, Zhang et 

al., 2011). A number of studies have demonstrated that apoptosis in bivalve cells can be 

triggered by exposure to different stress factors (e.g., heavy metals, UV light, pathogens) 

(Gervais et al., 2016, Gervais et al., 2015, Nguyen et al., 2018a, Sokolova et al., 2004). 

However, the knowledge of apoptosis in bivalve molluscs remains limited, especially at 

the metabolic level.  

Metabolomics is the broad-scale analysis of metabolites in biological samples, and it is a 

rapidly growing field with significant applicability in aquaculture research, such as larval 

production, nutrition and diet, disease and immunology and post-harvest quality control 

(Alfaro and Young, 2018). Metabolomics provides a novel tool for understanding 

endogenous metabolic changes of an organism throughout the course of a biological 
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process promoted by disease or environmental perturbation (Klassen et al., 2017). We 

recently demonstrated that metabolomics analyses of bivalve haemocytes can be used to 

provide insights into the molecular mechanisms of bivalve biological responses against 

pathogens (Nguyen et al., 2018b, Nguyen et al., 2018c), water contaminants (Nguyen et 

al., 2018a) and aerial exposure (Alfaro et al., 2019). In addition, the flow cytometry 

analyses using a Muse® Cell Analyzer for rapid and accurate characterization of health 

parameters of bivalve haemocytes (e.g., viability, oxidative stress, apoptosis) have been 

successfully reported in our recent studies (Grandiosa et al., 2018, Nguyen et al., 2018b, 

Nguyen et al., 2018c, Nguyen et al., 2018d). Hence, the combination of metabolomics 

approach and flow cytometry analysis would provide inside into host-pathogen 

interactions at both cellular and molecular levels.   

In the present study, we applied GC-MS-based metabolomics combined with flow 

cytometry to characterize apoptosis in LPS-exposed haemocytes from New Zealand 

Greenshell™ mussel (P. canaliculus). The flow cytometry analyses were used to measure 

the alteration of two apoptosis biomarkers including depolarization of the mitochondrial 

membrane potential and caspase-3/7 activity which were successfully demonstrated in P. 

canaliculus haemocytes exposed to copper (Nguyen et al., 2018a). The untargeted 

metabolomics analysis was performed to compare metabolite profiles of mussel 

haemolymph in the LPS exposure and the control. Generation of a metabolic signature 

specific to apoptosis induced by LPS exposure could provide valuable information to 

elucidate the mechanisms of apoptosis in marine bivalves and could be used to generate 

signatures of other immune responses, leading to better management of aquaculture stock.  
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7.2 MATERIALS AND METHODS 

7.2.1 Experimental design 

Adult mussels (shell length: 7.86 ± 0.35 cm) were obtained from Westpac Mussel 

Distributors Ltd. (Auckland, New Zealand) and acclimatized for 7 days using the same 

protocol previously described in Chapter 4 (4.2.1). Approximately 1–2 ml of 

haemolymph were collected from each animal by gently inserting a needle (23 gauge x 

1.5”) attached to a 3 ml sterile syringe (Terumo, Japan) into the posterior adductor 

muscle. Immediately after withdrawal, haemolymph samples were transferred into 10 ml 

Eppendorf tubes and kept on ice. For each treatment, haemolymph samples from five 

mussels were pooled and homogeneously mixed to reduce inter-individual variations, and 

to provide enough haemolymph for subsequent laboratory tests (Gagnaire et al., 2006). A 

total of 15 mussels were used for three treatments (0, 50 and 100 μg·ml−1) with 7 

replicates for each treatment.   

Cold artificial seawater (ASW) was mixed with mussel haemolymph at the ratio 1:1 as 

the anti-coagulant (Gagnaire et al., 2006, Nguyen et al., 2018b, Zhou et al., 2017) and 

Salmonella-derived  LPS (Sigma-Aldrich, New Zealand) was used to stimulate immune 

responses of mussel haemocytes (Hernroth, 2003, Xian et al., 2009). Hence, LPS stock 

solutions, including 100 and 200 μg·ml−1 were prepared by adding 1 mg and 2 mg LPS 

to 10 ml of 0.22 μm-filtered ASW, respectively, and then kept at 19 °C. The exposure 

experiment was conducted by adding 1 ml of haemolymph with 1 ml of different 19 °C 

LPS solutions. The final working concentrations of LPS after adding the haemolymph 

were 50 and 100 μg·ml−1. The LPS concentrations were determined based on previous 

publications (Costa et al., 2009, Ordás et al., 2000) and our pilot study. The control 

treatment was prepared by adding 1 ml of haemolymph with 1 ml of cold ASW. There 
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were seven replicates per treatment. The haemolymph samples were incubated at 19 °C 

for 3 h prior for flow cytometric and metabolomics analyses.  

Since Cu2+ has been reported to induce reactive oxygen species (ROS) production and 

apoptosis in bivalve haemocytes (Nguyen et al., 2018b), a copper (II) sulfate pentahydrate 

solution (3.20 μg·ml−1 Cu2+) was added to three additional haemolymph samples and 

incubated at 19 °C for 3 h as positive controls for ROS production and apoptosis. Hence, 

the Cu2+exposed samples were used to establish the correct instrument settings based on 

the manufacturer’s specifications.  

7.2.2 Flow cytometry 

The effect of LPS on haemocyte health parameters were assessed on a Muse® Cell 

Analyzer (EMD Millipore, Hayward, CA, USA) using four different assays: Muse® Cell 

Count & Viability, Muse® Oxidative Stress, Muse® MitoPotential, and the Muse® 

Caspase-3/7. All the assay kits were purchased from Merck Millipore (Abacus dx, New 

Zealand). These assays were conducted according to the manufacturer’s specifications 

with modifications and performed in 1.5 ml LightSafe micro centrifuge tubes (Sigma-

Aldrich, Germany) to protect the reagents from light degradation.  

The Muse® Cell Count and Viability kit was used to quantitatively analyse the count and 

viability of haemocytes  (Chapter 4 – 4.2.3) while the Muse® Oxidative Stress kit was 

used to gain quantitative measurements of reactive oxygen species (ROS) (Chapter 5 – 

5.2.2). 

The Muse® MitoPotential assay utilizes the MitoPotential dye to detect changes in the 

mitochondrial membrane potential (MMP) and 7-AAD as a dead cell marker during the 

early stages of apoptosis. Briefly, 100 μl of haemolymph (105 haemocytes per ml) was 
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incubated with 95 μl Muse® MitoPotential working solution at 37 °C for 20 min. Then, 5 

μl 7-AAD dye was added and incubated for 5 min at room temperature (20 °C) prior to 

measuring with the Muse® Cell Analyzer (flow rate = 0.59 μl·sec-1 and FSC threshold = 

135). The assay provided four distinguishable populations of cells including: (LL) Live 

cells with depolarized mitochondrial membranes [MitoPotential (-) and 7-AAD (-)], (LR) 

Live cells with intact mitochondrial membranes [MitoPotential (+) and 7-AAD (-)], (UR) 

dead cells with depolarized mitochondrial membranes [MitoPotential (+) and 7-AAD (+)] 

and (UL) dead cells with intact mitochondrial membranes [MitoPotential (-) and 7-AAD 

(+)].  

The Muse® Caspase-3/7 assay utilizes a novel Muse® Caspase-3/7 reagent NucViewTM 

for the detection of caspase-3/7 activity and a dead cell marker (7-AAD) as an indicator 

of cell membrane structural integrity (cell death). Briefly, 5 μl of MuseTM Caspase-3/7 

working solution was mixed with 50 μl of haemolymph and incubated at 37 °C for 

30 min. It was followed by addition of 150 µl of 7-AAD working solution and incubation 

for 5 min at room temperature (20 °C) prior to measuring with the Muse® Cell Analyzer 

(flow rate = 0.59 μl·sec-1 and FSC threshold = 61). The assay provides relative 

percentages of live cells [Caspase-3/7(–) and 7-AAD(–)], early apoptotic cells [Caspase-

3/7 (+) and 7-AAD(–)], late apoptotic cells [Caspase-3/7(+) and 7-AAD(+)] and dead 

cells [Caspase-3/7(–) and 7-AAD(+)].  

7.2.3 GC-MS-based metabolomics analysis and data processing 

Only the treatment with 100 μg·ml−1 LPS and the control were sampled for metabolomics 

purposes at 3 h post incubation (n = 7). A total of 500 μl of each haemolymph sample 

were pipetted into 2 ml BioStorTM cryovials (National Scientific Supply Company, 

Carlifornia, USA), immediately flash-frozen in liquid nitrogen and stored at –80 °C until 



 

211 Chapter 7 
 

they could be analyzed. The method for metabolite extraction, derivatization, GC-MS 

measurement, quality control and spectral processing were performed as described in 

Chapter 4 (4.2.4-6).  

7.2.4 Statistical analyses  

Statistical analyses for flow cytometric assays were performed using one-way ANOVAs 

(Tukey post hoc test) with IBM® SPSS® Statistics software (version 23). 

Statistical analyses of metabolite data were conducted using Metaboanalyst 4.0 (Chong 

et al., 2018, Xia et al., 2015). Resulting data were normalized by generalized log (glog) 

transforming and mean centring prior to statistical analyses. Univariate students t-tests 

were used to identify differences between metabolite profiles of the LPS-exposed 

heamolymph and control samples. Multivariate date analysis of partial least squares-

discriminant analysis (PLS-DA), validation of PLS-DA model, identification of 

important classifiers were conducted as described in Chapter 4 (4.2.7). 
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7.3 RESULTS  

7.3.1 Effect of LPS on haemocyte mortality and ROS production 

The total haemocyte count in haemolymph samples was 1.42 × 106 which was not 

significantly different among three treatments (p > 0.05). However, LPS exposure 

increased haemocyte mortality in a dose-dependent manner; from 11.4 r 1.3 % in the 

control to 16.6 r 0.8 % in the 50 μg·ml−1 LPS treatment and 26.9 r 2.8 % in the 100 

μg·ml−1 LPS treatment after 3 h incubation at 19 °C (Fig. 7.1A). However, a significant 

difference was only found between the control and the 100 μg·ml−1 LPS treatment (p = 

0.010).  

Although ROS production was slightly higher in LPS treatments compared to that of the 

control, there was no significant difference between treatments (p = 0.533).  ROS 

production in the control, 50 and 100 μg·ml−1 LPS treatments was 20.8 r 2.52 %, 25.0 r 

3.8 % and 24.8 r 1.64 %, respectively (Fig. 7.1A).   

7.3.2 Effect of LPS on haemocyte apoptosis 

LPS exposure increased the percent of cells with depolarized mitochondrial membranes 

in a dose-dependent manner. The percent of live depolarized cells increased from 18.6 r 

2.1 % in the control to 23.8 r 2.0 % in the 50 μg·ml−1 LPS treatment and 30.0 r 1.0 % in 

the 100 μg·ml−1 LPS treatment, with statistically significant difference between control 

and 100 μg·ml−1 LPS treatment (p = 0.008). Percentages of dead depolarized cells were 

low (< 3 %) and no different between the control and treatments (p = 0.105). Together, 

the total number of depolarized cells were significantly different only between the control 

(20.8 r 2.1 %) and 100  μg·ml−1 LPS treatment (32.6 r 0.3 %) (p = 0.007) (Fig. 7.1B).  
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Similarly, the effect of LPS on the apoptosis profile of mussel haemocytes via caspase 

3/7 activity increased the percent of dead apoptotic cells from 4.0 r 0.4 % in the control  

 

Figure 7.1  Effect of LPS on health parameters of mussel haemocytes determined via 
flow cytometry analyses. (A) Haemocyte mortality and ROS production 
in haemocytes. (B) Percentage of subpopulations of depolarized 
haemocytes. (C) Percentage of subpopulations of apoptotic haemocytes. 
Data are shown as the mean ± S.E. (n=3). Significant differences relative 
to the control are marked with an asterisk (*) (p < 0.05). 
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to 7.2 r 0.9 % in the 50  μg·ml−1 LPS treatment and 9.8 % in 100  μg·ml−1 in the LPS 

treatment (Fig. 7.1C). However, a significant difference was only found between the 

control and the 100  μg·ml−1 LPS treatment (p = 0.001). There was no significant 

difference in the percent of live apoptotic cells in the control and treatments, which were 

less than 4.0 % (p = 0.639). The percentage of total apoptotic cells was significantly 

different only between the control (7.2 r 2.0 %) and the 100  μg·ml−1 LPS treatment (14.3 

r 0.7 %) (p = 0.011).  

7.3.3 Effect of LPS on metabolite profiles  

A total of 387 features were detected in the chromatograms of mussel haemolymph 

samples of both the 100  μg·ml−1 LPS-exposed treatment and the control. Among them, 

55 metabolites were reliably annotated as identified metabolites. There were 11 

metabolites that showed significant differences between paired groups (100 μg·ml−1 and 

the control), which were all higher in the LPS-exposed haemolymph compared to the 

control (t-test, p < 0.05).  These metabolites include three branched-chain amino acids 

(leucine, isoleucine and valine), lysine, phenylalanine, histidine, tryptophan, tyrosine, 

proline, methionine and creatinine (Table 7.1).  

PLS-DA of metabolite profiles showed clear discrimination between the LPS-exposed 

haemolymph and the control (Fig. 7.2A). The distribution of non-treated haemolymph 

(green-filled circles) was clearly separated from that of LPS-exposed haemolymph (red- 

filled triangles). The PLS-DA model showed an accuracy of 92.86 %, a multiple 

correlation coefficient (R2) of 80.99 %, and a cross-validated predictive ability (Q2) of 

62.41 %, which indicate good cross-validated model performance. PLS-DA similarly 

recognised the 11 metabolites that were significantly different between the LPS-exposed 

treatment and the control with a t-test, and these were the most important metabolites for 
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the classification model via their VIP scores (> 1.0). In addition to these metabolites, 

PLS-DA also recognised arachidic acid, cis-vaccenic acid, myristic acid, succinic acid, 

threonine as being important classifiers with their VIP scores greater than 1 (Fig. 7.2B). 

A combined heatmap and cluster analysis of these 16 metabolites revealed that they were 

generally increased in LPS-exposed haemocytes/haemolymph (Fig. 7.2C).  

Table 7.1  List of altered metabolites identified by t-test (p < 0.05) and fold change 
(LPS/control) and PLS-DA VIP score of each metabolite. FDR, false 
discovery rate; PLS-DA, partial least squares discriminant analysis; VIP, 
variable importance in projection.  

Metabolites t-test Fold change 
(LPS/control) 

PLS-DA – 
VIP score t.stat p.value FDR 

Phenylalanine -8.88 <0.001 <0.001 117.85 1.94 
Valine -8.13 <0.001 <0.001 116.37 1.92 
Isoleucine -7.80 <0.001 <0.001 115.62 1.90 
Leucine -7.41 <0.001 <0.001 114.6 1.89 
Tryptophan -5.62 <0.001 0.001 49.56 1.77 
Creatinine -5.33 <0.001 0.002 73.38 1.75 
Tyrosine -5.25 <0.001 0.002 21.41 1.74 
Lysine -5.22 <0.001 0.002 113.62 1.73 
Proline -4.85 <0.001 0.003 102.96 1.69 
Methionine -4.58 0.001 0.004 104.45 1.66 
Histidine -3.66 0.003 0.016 9.52 1.51 
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Figure 7.2  Multivariate data analyses of non-targeted metabolomics of LPS-exposed 
mussel haemolymph (100  μg·ml−1) and the controls. (A) PLS-DA score 
plot. (B)  PLS-DA VIP Scores of top 16 metabolites with VIP Scores 
greater than 1.0.  (C). Heatmap of 16 important classifiers identified by 
PLS-DA VIP scores.  
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7.4 DISCUSSION  

Pathogen-associated molecular patterns (PAMPs) are conserved microbial molecules that 

are recognized by receptors of the innate immune system, such as toll-like receptors and 

other pattern recognition receptors in macrophages and antigen-presenting cells (Merien, 

2016, Silva-Gomes et al., 2016). One of the most widely studied PAMPs is LPS, which 

is a highly abundant glycolipid of the outer walls of Gram-negative bacteria (Raetz and 

Whitfield, 2002). LPS is a powerful stimulator of innate immunity in eukaryotic species 

(Ulevitch and Tobias, 1995) and has been used extensively to elicit immune responses in 

vertebrates (Bahador and Cross, 2007, Laiakis et al., 2012, Opal, 2007, Rittirsch et al., 

2007). In marine bivalves, LPS has been used to stimulate immune responses in mussel 

(Mytilus spp.) haemocytes, such as antibacterial peptide responses (Hernroth, 2003), 

expression of a membrane molecule related to the α chain of the IL-2 receptor (Cao et al., 

2004) and expression of immune genes (e.g., myticin C, mytilin B and lysozyme) (Costa 

et al., 2009). This suggests that LPS could be an effective proxy for pathogen effects in 

bivalve studies. However, the effect of LPS on apoptosis in bivalve cells has not been 

extensively investigated. In our study, we confirmed that LPS induces activation of 

caspase-3/7 proteases in mussel haemocytes and causes depolarisation of the 

mitochondrial membrane potential; both key mechanisms of programmed cell death.  

Mitochondria produce adenosine triphosphate and are responsible for controlling cellular 

energetics, and the initiation and execution of apoptosis (Estaquier et al., 2012, Green and 

Reed, 1998). Most of the important events in the apoptosis process appear to be related 

to changes of mitochondrial membrane potential (MMP) (Green and Reed, 1998, Ly et 

al., 2003). Perturbation of MMP associated with apoptosis has been well documented in 

vertebrate models (Ferreira et al., 2013, Petit et al., 1995, Vayssiere et al., 1994, Zamzami 

et al., 1995), and it has been recently reported in several invertebrate models, such as 
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Drosophila melanogaster (Zimmermann et al., 2002), Lymnea stagnalis (Russo and 

Madec, 2007), and Penaeus monodon (Xian et al., 2010). In marine molluscs, genes of 

the mitochondrial apoptotic pathway have been extensively analysed in Crassostrea 

gigas (Zhang et al., 2011) and Mytilus galloprovincialis (Estevez-Calvar et al., 2013). 

Recently, the mitochondrial-mediated pathway of apoptosis was demonstrated in oyster 

(Ostrea edulis and C. gigas) haemocytes exposed to UV radiation (Gervais et al., 2015, 

Li et al., 2017). Hence, the increased proportion of cells expressing depolarised MMPs in 

LPS-treated haemocytes suggests that LPS can stimulate apoptosis via a mitochondrial-

mediated apoptotic pathway.  

Caspases (cysteinyl-directed aspartate-specific proteases) are a family of protease 

enzymes that play a vital role in apoptosis (Cohen, 1997, Fan et al., 2005). Among them, 

caspase-3 is a frequently activated death protease in mammalian apoptotic cells (Porter 

and Jänicke, 1999), and also has been reported in invertebrates (Guo et al., 2017, Lacoste 

et al., 2002, Sokolova et al., 2004). Hence, activation of caspase-3 is considered to be an 

indicator of apoptosis (Porter and Jänicke, 1999). In bivalves, caspase-3 activity has been 

reported in individuals exposed to various heavy metals (Kefaloyianni et al., 2005, 

Sokolova et al., 2004) and organic chemicals (Lacoste et al., 2002). Hence, a significant 

increase of apoptotic cells via the presence of active caspase-3 in LPS-treated haemocytes 

compared to the controls suggests LPS exposure induced apoptosis in a caspase-

dependent pathway.  

LPS-induced ROS generation has been reported in various vertebrate cell types (Cheong 

et al., 2017, Lee et al., 2013, Wang et al., 2004, Yamada et al., 2006). However, LPS was 

not effective at stimulating ROS and nitrite production in other cell types, such as 

peritoneal macrophages from diabetic rats (de Souza et al., 2007). Although the 
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generation of ROS production during phagocytosis has been widely observed in molluscs 

(Bramble and Anderson, 1997, Buggé et al., 2007, Labreuche et al., 2006, Lambert et al., 

2003), there is no report of LPS-induced ROS generation in marine molluscs. In the 

present study, we did not observe a significant difference in ROS production between the 

LPS-exposed haemocytes and the controls. In agreement with this finding, previous 

studies found that LPS did not provoke nitric oxide (NO) and ROS production in 

haemocytes of other bivalves (Costa et al., 2009, Novas et al., 2004). Taking together, 

this may indicate that LPS is ineffective to stimulate ROS in bivalve haemocytes. 

Furthermore, accumulation of ROS is known to trigger apoptosis in both vertebrates 

(Brodská and Holoubek, 2011, Higuchi et al., 1998, Luzio et al., 2013, Orrenius, 2007, 

Zhang et al., 2015) and invertebrates (Guo et al., 2017). In this study, apoptotic cells were 

higher in the LPS-exposed treatment (100 μg·ml−1) compared to the controls, whereas 

LPS-induced ROS production were not differently different among the LPS treatments. 

These results suggest that LPS may stimulate apoptosis in a ROS-independent pathway 

in mussel haemocytes.  

Apoptosis is often accompanied by degradation of cellular and nuclear contents (He et 

al., 2009, Nagata et al., 2003). Hence, increased levels of free amino acids (cis-vaccenic 

acid, myristic acid and arachidic acid) in our study may signal the occurrence of lipid 

damage. In addition, caspase-mediated proteolysis is known to occur during the apoptotic 

process (He et al., 2009, Sanghavi et al., 1998), and the accumulation of numerous free 

amino acids that we observed in LPS-exposed haemolyph/haemocytes is consistent with 

the occurence of protein degradation. Some of these amino acids are also known to have 

specific functional roles which may have relevance in this case. For example, BCAAs 

(leucine, isoleucine and valine) are involved in mechanisms of protein synthesis and 

turnover (Monirujjaman and Ferdouse, 2014), inflammation, ROS production, and 
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mitochondrial dysfunction (García-Martínez et al., 1995, Moreira et al., 2017, Zhenyukh 

et al., 2017). Methionine is a key metabolite in the transsulfuration pathway which plays 

an important role in regulating overproduction of ROS and mitigation of oxidative stress 

(McBean, 2012, Nguyen et al., 2018e). The change of methionine due to Vibrio spp. 

infections has been previously reported in mussel (P. canaliculus) haemocytes (Nguyen 

et al., 2018e). Increased levels of tryptophan and proline in mice serum after LPS 

injection has been associated with having antimicrobial roles (Bera et al., 2015, Larsson 

et al., 2016), and accumulations of creatinine in serum, an important marker of renal 

dysfunction (Wyss and Kaddurah-Daouk, 2000), can inhibit bacterial replication 

(McDonald et al., 2012). The increase of these metabolites in LPS-exposed haemocytes 

may indicate occurrence of other immune or physiological responses of haemocytes to 

LPS, such as successful regulation of oxidative status, provision of antimicrobial activity, 

and changes in other currently unknown processes/functions. 
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7.5 CONCLUSION  

This study successfully applied an integrated approach that combines GC-MS-bases 

metabolomics and flow cytometry to investigate apoptosis in mussel haemocytes induced 

by LPS-exposure. We observed significant increases in caspase-3/7 activation and MMP 

in LPS-exposed haemocytes, which suggests LPS induced apoptosis via both caspase- 

and mitochondria-dependent mechanisms. Furthermore, accumulations of free fatty acids 

and free amino acids in LPS-exposed haemolymph indicate degradation of lipids and 

proteins, and the potential influence on other immune-related processes. This study 

demonstrates the capacity of fast and accurate characterization of apoptotic processes 

using a flow cytometry approach and provides supporting evidence at the metabolic level 

via GC-MS-based metabolomics. This opens up new perspectives on applying this 

integrated approach to other aspects of aquaculture research to provide insights into 

complex biological processes, such as pathogen infections and environmental 

disturbances. However, the results presented in this study were from short term in vitro 

exposure of mussel haemocytes to LPS. In vivo expression of apoptosis signals induced 

by LPS in mussel haemocytes in comparation to real pathogen effects needs to be 

expressed in the future studies to provide a comprehensive understanding of apoptosis in 

marine bivalves. Such knowledge would be important for development of disease 

management strategies and biomarkers for early detection of pathogens in aquaculture.  
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ABSTRACT 

Copper is a common contaminant in aquatic environments, which may cause 

physiological dysfunction in marine organisms. However, the toxicity mechanisms of 

copper in marine bivalves is not fully understood. In this study, we applied an integrated 

approach that combines flow cytometry and gas chromatography-mass spectrometry 

(GC-MS)-based metabolomics to characterize cellular and molecular mechanisms of 

copper immunotoxicity in New Zealand Greenshell™ mussel (Perna canaliculus) 

haemolymph. Flow cytometric results showed significant increases in haemocyte 

mortality, production of reactive oxygen species and apoptosis (via alteration of caspase 

3/7 and mitochondrial membrane potential) of haemocytes exposed to increasing total 

concentrations of Cu2+ (62.5, 125.0 and 187.5 μM) compared to a low Cu2+ concentration 

(25 μM) and control (0.0 μM). In addition to flow cytometric data, our metabolomics 

results showed alterations of 25 metabolites within the metabolite profile of Cu2+-exposed 

haemolymph (125.0 μM) compared to those of control samples. Changes in levels of 

these metabolites may be considered important signatures of oxidative stress (e.g., 

glutathione) and apoptosis processes (e.g., alanine, glutamic acid). This study provides 

insights into the cellular and molecular mechanisms of oxidative stress and apoptosis in 

marine bivalves and highlights the applicability and reliability of metabolomic techniques 

for immunotoxicological studies in marine organisms.  

 

  



 

231 Chapter 8 
 

8.1 INTRODUCTION 

Increased pollution in natural and farmed environments has resulted in a growing focus 

on the adverse effects of toxic substances and the mechanisms that underpin biological 

responses in a wide range of organisms. Heavy metals (e.g., copper, cadmium) are not 

degradable and persist for long periods of time when introduced into aquatic ecosystems 

and may pose serious physiological problems by affecting the defence system of aquatic 

organisms (e.g., immunosuppression). Among heavy metals, copper is widely used in 

industry and agriculture and is a common chemical contaminant in aquatic environments. 

Copper, at low concentrations, is an essential trace element that is vitally important for 

numerous physiological processes of all living organisms (Loftleidir, 2005), including 

facilitation of a well-functioning immune system (Djoko et al., 2015). Although precise 

roles of Cu2+ in innate immune function are not yet well defined, it has been hypothesized 

that phagocytes may concentrate Cu2+ intracellularly to reduce survival of phagocytised 

pathogens due to its bactericidal activity (Djoko et al., 2015). However, accumulation of 

copper at high concentrations is known to have toxic effects (Flemming and Trevors, 

1989, Nielsen and Wium-Andersen, 1970). Aquatic organisms, especially filter feeding 

marine bivalves, are likely to accumulate high levels of copper over their life time. Also, 

they have relatively long life spans and high numerical abundances (Bayne, 1989, Eisler, 

2009). Hence, bivalves have been extensively used as model organisms for 

immunotoxicological studies. Indeed, the toxic effects of copper on bivalves have been 

intensively investigated during the last decades (Foster et al., 2011, Giacomin et al., 2014, 

Gómez-Mendikute and Cajaraville, 2003, Manley and Davenport, 1979, Suresh and 

Mohandas, 1990). However, applications of metabolomics approaches to characterize 

molecular mechanisms involved in these toxic effects of copper on bivalves still remain 

limited.  
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Metabolomics is one of the newest omics, which has been rapidly growing in the last 

decade. Metabolomics generates information about metabolites, which are end products 

of the metabolism, thus provides a strong reflection of phenotypes (Alfaro and Young, 

2018).  Such a phenotyping tool can be used to understand endogenous metabolic changes 

of an organism throughout the course of a biological process triggered by disease or 

environmental perturbation (Klassen et al., 2017, Villas-Boas et al., 2007). Therefore, 

metabolomics is an emerging approach in environmental science to characterize the 

interactions of organisms with their environment (Bundy et al., 2008). Different 

analytical platforms, such as nuclear magnetic resonance (NMR) spectroscopy, mass 

spectrometry (MS) have been developed for environment studies. While NMR, with its 

specific advantages, has been the primary analytical tool for environmental 

metabolomics, mass spectrometry with the higher sensitivity begins to revolutionise our 

ability in this growing field (Viant and Sommer, 2013). Within MS-based metabolomics, 

several approaches have been used in environmental metabolomics, including non-

targeted gas chromatography-MS (GC-MS), non-targeted directed infusion MS, and both 

non-targeted and targeted liquid chromatography–MS. Among them, non-targeted GC-

MS-based metabolomics, which allows a wide range of metabolites to be detected, has 

become the most commonly used technique in metabolomics, including environmental 

metabolomics (Viant and Sommer, 2013, Young and Alfaro, 2016). This approach has 

been applied in diverse aspects of environmental science, such as organismal 

ecophysiology (Allen et al., 2011), ecotoxicology (Booth et al., 2011), environmental 

stress in trees (Wallis et al., 2011), plant–animal interactions (Robert et al., 2010) and 

host-pathogen interactions in marine shellfish (Nguyen et al., 2018). Although the use of 

NMR to study the metal toxicity is gaining importance in aquatic organisms, especially 
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marine bivalves (García‐Sevillano et al., 2015), there is currently no report on the 

application of GC-MS approaches on copper toxicity on mussel haemocytes.  

In addition, flow cytometry is a laser-based technology, which is a popular approach in 

marine science to obtain information about cellular processes. Recent studies have 

successfully demonstrated applications of a novel flow cytometric approach based on a 

robust and compact Muse® Cell Analyzer (Merck Millipore, Germany) for fast and 

accurate characterization of the mollusc haemocytes (Grandiosa et al., 2016, Nguyen et 

al., 2018). The combination of this flow cytometry approach with metabolomics 

technique could provide valuable insights into the toxic mechanism of heavy metals in 

marine bivalves at both the cellular and molecular levels. In this study, we provide the 

first report on the combined approach of GC-MS-based metabolomics and novel flow 

cytometry to characterize the toxic effects and elucidate the toxicity mechanism of copper 

on New Zealand Greenshell™ mussel (Perna canaliculus) haemocytes.  
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8.2 MATERIALS AND METHODS 

8.2.1 Mussel samples  

Adult mussels (shell length: 8.06 ± 0.45 cm) were obtained from Westpac Mussels 

Distributors Ltd. (Auckland, New Zealand). Mussels were acclimatized for 7 days in a 50 

l tank on a seawater recirculation system as condition described in Chapter 4 (4.2.1).  

Haemolymph was collected from each animal by gently inserting a needle (23 gauge × 

1.5”) attached to a 3 ml sterile syringe (Terumo, Japan) into the posterior adductor 

muscle. For each mussel, 1–2 ml of haemolymph was collected. Immediately after 

withdrawal, haemolymph samples were transferred into 10 ml Eppendorf tubes and kept 

on ice. Haemolymph samples from five mussels were pooled and homogeneously mixed 

to reduce inter-individual and sex variations, and to provide enough haemolymph for 

subsequent laboratory tests.  

8.2.2 Copper exposure  

A 0.05 M Cu2+ stock solution was prepared by dissolving 5 g copper (II) sulfate 

pentahydrate CuSO4.5H2O (ECP, Auckland, New Zealand) in 100 ml 0.22 μm filtered 

artificial seawater (ASW). Four Cu2+ working solutions (50, 125, 250 and 375 μM) were 

subsequently prepared by diluting the stock solution with 10 ml filtered ASW.  

Copper treatments were administered in vitro by mixing 0.5 ml of haemolymph with 0.5 

ml of working Cu2+ solution at 4 °C. Following addition of haemolymph, the final 

exposure concentrations of Cu2+ were 25.0, 62.5, 125.0 and 187.5 μM. The negative 

control was prepared by adding 0.5 ml of haemolymph to 0.5 ml of cold ASW. Each 

treatment was conducted with three replicates. Treated haemolymph samples were 

incubated at 19 °C for 3 h, then assessed for haemocyte mortality, ROS production, and 

apoptosis. For metabolomics, 500 μl of each sample from the 125.0 μM Cu2+ treatment 
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and control were pipetted into 2 ml BioStorTM Cryovials (National Scientific Supply 

Company, California, USA), immediately flash-frozen in liquid nitrogen and stored at –

80 °C until metabolite analyses could be performed.  

8.2.3 Effect of copper on haemocyte viability and ROS production 

Following copper exposures (see above), cell viability was measured for each sample 

with a Muse® Cell Count and Viability kit (Merck Millipore, USA), as previously 

described (Chapter 4 – 4.2.3). The Muse® Oxidative Stress kit (Merck Millipore, USA) 

was used to gain quantitative measurements of ROS, namely superoxide radicals in cells 

undergoing oxidative stress (Chapter 5 – 5.2.2).  

To assess ROS production kinetics, haemocytes were exposed to different levels of Cu2+ 

(0.0, 25.0 and 125.0 μM), incubated at 19 °C, and assessed for ROS production at 0.25, 

0.5, 1.0, 3.0, 12.0, and 24.0 hours post-incubation. ROS production was measured by the 

Muse® Oxidative Stress kit using the DHE, as described above. 

8.2.4 Effect of copper on apoptosis 

The effect of copper on apoptosis was assessed by two flow cytometry assays (Muse® 

MitoPotential kit and Muse® Caspase-3/7 kit), and read by Muse® Cell Analyzer (Merck 

Millipore, Abacus dx, New Zealand) (Chapter 7 – 7.2.2).  

8.2.5 GC-MS-based metabolomics analyses and data processing 

Metabolite extractions, derivatizations and GC-MS analyses, quality control and spectral  

processing were performed as previously described (Chapter 4 – 4.2.4-6).  

8.2.6 Statistical analyses 

Statistical analyses for flow cytometric assays were performed using one-way ANOVAs 

and two-way ANOVAs with IBM® SPSS® Statistics software (version 23).  
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Statistical analyses of metabolite data were conducted using Metaboanalyst 3.0 (Xia et 

al., 2015). Normalized peak intensity data were generalized logarithm (glog) transformed 

and mean centered. Then, univariate analyses were performed using students t-tests to 

identify metabolite differences between Cu2+-exposed and control groups. Multivariate 

date analysis of partial least squares-discriminant analysis (PLS-DA), validation of PLS-

DA model, identification of important classifiers were conducted as described in Chapter 

4 (4.2.7).  

8.2.7 Pathway analyses 

Combined quantitative enrichment analysis (QEA) (Xia and Wishart, 2010) and network 

topology analysis (NTA) (Nikiforova and Willmitzer, 2007) were performed to 

investigate treatment effects on functionally related metabolites, as described in Chapter 

5 (5.2.5).  
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8.3 RESULTS  

8.3.1 Effect of copper on haemocyte viability and ROS production 

The increased Cu2+ concentrations caused a significant effect on haemocyte viability after 

3 h exposure. Except for the 25.0 μM Cu2+ treatment, which had no significant difference 

in mortality compared to the control (one-way ANOVA, p = 0.848), significant increases 

in mortality were observed in all other treatments (62.5, 125.0 and 187.5 μM) (one-way 

ANOVA, p < 0.001) (Fig. 8.1). The haemocyte mortalities were 19.0, 16.6, 32.1, 86.5 

and 94.5 % in 0.0, 25.0, 62.5, 125.0 and 187.5 μM Cu2+ groups, respectively.  

 

Figure 8.1 Mortality of mussel haemocytes incubated with 5 different concentrations 
of Cu2+ (0.0, 25.0, 62.5, 125.0 and 187.5 μM, respectively) for 3 h. Data 
are presented as mean percent (± SE, n = 3). 
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Generally, ROS production showed a significant increase in a dose-dependent manner 

(one-way ANOVA, F4,36 = 214.4, p < 0.001). The proportion of cells that produced ROS 

significantly increased with increasing Cu2+ concentration from 14.60 % in the 25.0 μM 

Cu2+ treatment to 26.15, 60.84 and 82.03 % in the treatments with 62.5, 125.0 and 187.5 

μM Cu2+, respectively, after 3 h incubation at 19 °C (Fig. 8.2A). There was no difference 

in ROS production between the control and the treatment with 25.0 μM Cu2+ (one-way 

ANOVA, p = 0.433). Based on this experiment, we selected one low (25.0 μM) and one 

high Cu2+ concentration (125.0 μM) to perform over-induction of ROS in mussel 

haemolymph following Cu2+ exposure.  

ROS production kinetics showed a higher ROS level in the 125.0 μM Cu2+ treatment and 

lower in the 25.0 μM Cu2+ treatment compared to the control (two-way ANOVA, F2,384 = 

631, p < 0.001) (Fig. 8.2B). In all treatments, ROS reached a peak after 30 minutes, then 

it declined and peaked for a second time after 24 h. In fact, haemocytes exposed to 125.0 

μM of Cu2+ resulted in the highest ROS level (53.69 %) after 30 minutes exposure, 

followed by a 13 % decrease after 1 h and an increase to the second peak of 63.55 % at 

24 h. In the control, ROS reached 44.04 % at 30 minutes and then declined to 14.24 % 

after 3h.  

It was then increased to 43.23 % after 24 h. In the treatment with 25.0 μM Cu2+, ROS 

went up to 27.13 % after 30 minutes post-incubation, then decreased to a basal level of 

5.58 % after 12 h, followed by a slight increase to 20.18 % after 24 h of incubation.  



 

239 Chapter 8 
 

 

Figure 8.2 Effect of Cu2+ on ROS production in mussel haemocytes. (A) ROS profiles 
of haemocytes after 3 h incubation at 19 °C with increasing concentrations 
of Cu2+ (0.0, 25.0, 62.5, 125.0 and 187.5 μM). (B) Kinetics of ROS 
production (mean ± SE, n = 3) in mussel haemocytes exposed to different 
Cu2+ concentrations (0, 25.0 and 125.0 μM) at 19 °C. 
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8.3.2 Effect of copper on apoptosis  

Caspase-3/7 activation 

Generally, increased Cu2+ concentrations caused a simultaneous increase of apoptotic 

cells in a dose-dependent manner (Fig. 8.3). The percentage of apoptotic cell death (late 

apoptosis) increased from 1.63 % in the control to 2.40 %, 13.87 %, 26.40 % and 36.08 

% in treatments with 25.0, 62.5, 125.0 and 187.5 μM Cu2+, respectively. However, the 

proportion of live apoptotic cells (early apoptosis) was very low in all treatments (less 

than 1.38 %). Hence, the late apoptotic sub-population approximately represents the total 

apoptotic haemocytes.  

 

Figure 8.3 Effect of Cu2+ on caspase 3/7 activation in mussel haemocytes. 
Percentages of different cell sub-populations (mean ± SE, n = 3) following 
treatment with 5 different Cu2+ concentrations (0, 25.0, 62.5, 125.0 and 
187.5 μM).  
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Mitochondrial membrane potential 

The exposure of Cu2+ showed effects on mitochondrial potential and cellular plasma 

membrane permeabilization with a simultaneous increasing number of depolarized cells 

in a dose-dependent manner (Fig. 8.4). The low Cu2+ concentrations (25.0 and 62.5 μM) 

caused a significant increase in depolarised live cells compared to those in the control, 

while the high concentrations of Cu2+ (125.0 and 187.5 μM) led to a remarkable increase 

of depolarized dead cells. Together, the total depolarized cells showed a dose-dependent 

pattern, which rose from 17.75 % in the control to 28.85, 43.55 and 99.85 % in the 

treatments with 25.0, 62.5, 125.0 and 187.5 μM Cu2+, respectively.  

 

Figure 8.4 Effect of Cu2+ on mitochondrial membrane potential in mussel 
haemocytes. Percentages of different cell sub-populations (mean ± SE, n 
= 3) following treatment with 5 different Cu2+ concentrations (0, 25.0, 
62.5, 125.0 and 187.5 μM). 
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8.3.3 Effect of copper on metabolite profiles  

A total of 64 metabolites were reliably annotated across the haemolymph samples. A t-

test analysis revealed a significant difference of 25 compounds between the Cu2+-exposed 

and control groups (t-test, p < 0.05) (Fig. 8.5A). A heatmap cluster analysis of these 25 

metabolites showed a clear separation between the Cu2+-exposed group and the control 

group. In addition, the heatmap also separated these compounds into two groups: a group 

of 11 down-regulated metabolites in the Cu2+-exposed haemolymph (e.g., phenylalanine, 

methionine, histidine) and another group of 14 metabolites which were highly expressed 

in Cu2+-exposed haemolymph (e.g., palmitic acid, glycine, GABA).  

A PLS-DA of the entire metabolite profiles showed clear discrimination between the 

Cu2+-exposed and control groups (Fig. 8.5B). The distribution of control mussels (green 

dots) was clearly separated from that of Cu2+-exposed mussels (blue triangles) along the 

LV1 axis. The PLS-DA model showed an accuracy of 100 %, a multiple correlation 

coefficient (R2) of 98.6 %, and a cross-validated predictive ability (Q2) of 94.4 % (Fig. 

8.6C). These parameters indicate optimal fitness and prediction performance of the PLS-

DA model.  
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Figure 8.5 Analysis of metabolite profiles in mussel haemolymph exposed to 125.0 

μM Cu2+ for 3 h. (A) Heatmap of the top 25 metabolites identified as being 
significantly different between groups (t-test; p < 0.05), with their relative 
expressions and VIP scores in the PLS-DA model. (B) PLS-DA score plot 
(ellipses represent 95 % confidence intervals). (C) Cross validation 
(LLOCV) of the PLS-DA model. 
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Figure 8.6 Metabolites and pathways involved in oxidative stress and apoptosis 

caused by Cu2+ exposure in mussel haemocytes. Box plots of metabolites 
were based on t-test analysis, showing relative abundances of metabolites 
in Cu2+-exposed haemocytes (blue) and un-treated haemocytes (green). 
Hcy, homocysteine; S-AdoMet, S-adenosylmethionine; S-AdoHcy, S-
adenosylhomocysteine. 
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8.3.4 Pathway analysis  

Secondary pathway analyses identified 42 relevant biochemical pathways within the 

KEGG database. Among these, 15 pathways which matched our selection criteria were 

screened as potential primary target pathways of interest relating to the Cu2+ effects (Table 

8.1).  

Table 8.1 List of altered metabolic pathways that were identified as primary target 
pathways in mussel haemolymph exposed to Cu2+. 

Pathways & hits  Hits/ Total 
compounds 

Raw p FDR Impact 

Cysteine and methionine metabolism:  
Serine, Methionine and Cysteine 

3/29 <0.001 <0.001 0.276 

Glycine, serine and threonine metabolism:  
Serine, Glycine, Threonine, Cysteine 

4/31 <0.001 <0.001 0.570 

Alanine, aspartate and glutamate metabolism:  
Aspartic acid, Alanine, Glutamic acid, Glutamine, 
Asparagine, Fumaric acid, Succinic acid 

7/24 <0.001 <0.001 0.605 

Citrate cycle (TCA cycle):  
Succinic acid, Malic acid, Citric acid, Fumaric acid 

4/20 <0.001 <0.001 0.151 

Aminoacyl-tRNA biosynthesis:  
Asparagine, Histidine, Phenylalanine, Glutamine, 
Cysteine, Glycine, Aspartic acid, Serine, Methionine, 
Valine, Alanine, Lysine, Isoleucine, Leucine, 
Threonine, Tryptophan, Tyrosine, Proline, Glutamic 
acid 

19/67 <0.001 <0.001 0.103 

Glyoxylate and dicarboxylate metabolism:  
Citric acid, Malic acid 

2/18 <0.001 <0.001 0.296 

Glutathione metabolism:  
Glutathione, Glycine, Cysteine, Glutamic acid 
Ornithine, Pyroglutamic acid 

6/26 <0.001 <0.001 0.418 

Histidine metabolism:  
L-Glutamic acid, Histidine, Aspartic acid 

3/14 <0.001 <0.001 0.238 

Arginine and proline metabolism: 
Glutamine, Ornithine, Aspartic acid, Glutamic acid, 
Proline, Fumaric acid 

6/43 <0.001 <0.001 0.309 

D-Glutamine and D-glutamate metabolism:  
Glutamic acid, Glutamine, Glutamine, Glutaric acid, 
Glutamic acid 

2/5 <0.001 0.001 1.000 

Tyrosine metabolism: 
Tyrosine, Fumaric acid, Hydroxyphenylacetic acid 

3/44 0.002 0.004 0.137 

Methane metabolism: 
Glycine, Serine 

2/9 0.012 0.018 0.400 

Phenylalanine, tyrosine and tryptophan 
biosynthesis: 
Phenylalanine, Tyrosine 

4 0.021 0.031 1.000 

Phenylalanine metabolism:  
Phenylalanine, Tyrosine 

11 0.021 0.031 0.407 

beta-Alanine metabolism:  
Beta-Alanine, Aspartic acid 

16 0.050 0.065 0.395 
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8.4 DISCUSSION 

In the present study, we challenged mussel haemolymph with the increasing Cu2+ 

concentrations (0.0, 25.0, 62.5, 125.0 and 187.5 μM), and we observed significant 

increases in mortality, ROS production and apoptosis of haemocytes of mussels exposed 

to Cu2+ at high concentrations (25.0 μM = 1.60 ppm and greater). In addition, there were 

alterations of metabolic profiles in Cu2+ exposed haemolymph compared to the controls. 

These results indicate that Cu2+ induced toxicity for mussel haemocytes. The high dose 

of Cu2+ used in this study aimed to stimulate the cumulative toxicity of copper during the 

short-term in vitro exposure. The background levels of copper in seawater were found to 

be 0.003 ppm in open sea and 0.01 ppm in coastal regions (Hodson et al., 1979, Nielsen 

and Wium-Andersen, 1970), but copper concentrations have been recorded as high as 0.3 

ppm in coastal water off the Dutch coast, following dumping of copper sulphate solution 

in 1965 (Clark et al., 1989) and 0.6 ppm in the Carnon River, feeding the Fal Estuary, 

Cornwall, UK (Bryan and Langston, 1992). Under laboratory condition, in vivo exposure 

of copper for 7 days at 0.2 – 0.5 ppm was known to be toxic for mussels (Mytilus edulis) 

(Pipe et al., 1999).  

Several mechanisms have been proposed to explain Cu2+ induced cellular toxicity, and 

the propensity of copper to initiate oxidative damage and apoptosis via generation of ROS 

is widely accepted (Gaetke et al., 2014, Rico et al., 2009). Accumulation of ROS in 

biological systems can cause damage to tissues, cells and cellular components, called 

oxidative stress. Hence, ROS are well known molecular biomarkers of oxidative stress in 

aquatic organisms in relation to toxic environmental pollutants (Valavanidis et al., 2006). 

Indeed, Cu2+ exposure is known to induce increased ROS production in cells of plants 

(Ahsan et al., 2007, Drążkiewicz et al., 2004, Wang et al., 2004) and animals (Bopp et 

al., 2008, Geracitano et al., 2004, Qian et al., 2005). For marine molluscs, copper-induced 
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ROS production has been reported in brown mussels (Perna perna) (Brahim Errahmani 

et al., 2014), but was not found in Mediterranean mussels (Mytilus galloprovincialis) 

(Gómez-Mendikute and Cajaraville, 2003) or Chinese scallops (Chlamys farreri) (Zhang 

et al., 2010). In this study, we observed a remarkable increase in ROS production with 

increasing Cu2+ concentrations (62.5, 125.0 and 187.5 μM), suggesting that Cu2+ induces 

oxidative stress in mussel haemocytes.  

ROS production kinetics reached the first peak after 30 minutes exposure in all treatments 

(0.0, 25.0, 125.0 μM). In agreement, the rapid release of ROS (oxidative burst) is 

normally recorded at 15 to 70 minutes post-stimulation in bivalve haemocytes (Buggé et 

al., 2007, Lambert et al., 2003). The increase of ROS production in the control may have 

been due to environmental stress when haemocytes were withdrawn from mussels. 

However, the haemocytes were later acclimatized to the in vitro environment and the 

ROS level dropped down to a basal level at 3 h post exposure. This result supports the 

practice of incubating the haemocytes for 3 h prior sampling, as was done in this study. 

Interestingly, we observed lower levels of ROS in the 25.0 μM Cu2+ treatment compared 

to the control. This indicates that low concentration of Cu2+ reduced the levels of ROS in 

mussel haemolymph. The antioxidant capacity of copper is due to its function as ligand 

in antioxidant proteins (e.g., metallothionein) (Luza and Speisky, 1996) and antioxidant 

enzymes (e.g., superoxide dismutase) (Gaetke and Chow, 2003). However, elevated 

levels of free  Cu2+ accelerated the formation of ROS by directly participating in the 

Haber–Weiss reaction that generates hydroxyl radicals (•OH) and/or other ROS from 

hydrogen peroxide (H2O2) (Bremner, 1998, Stohs and Bagchi, 1995).  

Apoptosis is a conserved mechanism across taxa, and is an important internal defence 

mechanisms in molluscs (Romero et al., 2015). Apoptosis can be regulated via two major 
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pathways; intrinsic and extrinsic pathways (Estevez-Calvar et al., 2013, Kiss, 2010, 

Sokolova, 2009, Terahara and Takahashi, 2008, Zhang et al., 2011). The intrinsic or 

mitochondrial-mediated apoptotic pathway is activated in response to various types of 

intracellular stressors, while the extrinsic or death receptor-mediated apoptotic pathway 

is stimulated by external stimuli. Caspases (cysteinyl- directed aspartate-specific 

proteases) are the key molecular components of both intrinsic and extrinsic apoptosis, 

and they play vital roles in the induction, transduction, and amplification of intracellular 

apoptotic signals when apoptosis is initiated (Cohen, 1997, Fan et al., 2005). Among 

them, caspase-3 is a frequently activated death protease in mammalian apoptotic cells 

(Porter and Jänicke, 1999), and has recently been reported in invertebrates (Guo et al., 

2017, Lacoste et al., 2002, Sokolova et al., 2004). Hence, activation of caspase-3 is 

considered to be an indicator of apoptosis (Porter and Jänicke, 1999). Caspase-3 

activation has been reported in haemocytes of Crassostrea virginica oysters and  Mytilus 

edulis mussels exposed to cadmium (Sokolova et al., 2004) and copper (Höher et al., 

2013), respectively. The caspase-3 activation has also been observed in mantle tissues of 

M. galloprovincialis mussels exposed to various heavy metals (Kefaloyianni et al., 2005). 

In our study, we observed a significant increase of apoptotic cells via the presence of 

caspase-3/7 activation in the Cu2+-exposed haemolymph compared to the control, 

suggesting Cu2+-exposure causes apoptosis via caspase-dependent pathway.  

In addition, most of the important events in apoptosis processes appear to involve 

signalling via the mitochondria, including the release of caspase activators (e.g., 

cytochrome c), alterations in electron transport, altered cellular redox status, participation 

of pro- and antiapoptotic Bcl-2 family proteins and loss of MMP (Green and Reed, 1998, 

Ly et al., 2003). Thus, changes in the MMP has become increasingly important in the 

study of apoptosis (Ly et al., 2003, Smaili et al., 2013). Perturbation of the MMP 
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associated with apoptosis has been reported in several invertebrate models, including 

Drosophila melanogaster (Zimmermann et al., 2002), Lymnea stagnalis (Russo and 

Madec, 2007) and Penaeus monodon (Xian et al., 2010). For marine molluscs, genes of 

the mitochondrial apoptotic pathway have been extensively analysed in Mediterranean 

mussels (M. galloprovincialis) (Estevez-Calvar et al., 2013) and Pacific oysters 

(Crassostrea gigas) (Zhang et al., 2011). Recently, UV induced apoptosis through the 

mitochondria-mediated pathway was demonstrated in haemocytes of flat oysters (Ostrea 

edulis) (Gervais et al., 2015). In agreement with these studies, we obtained a significant 

increase in the percent depolarization of inner MMP in the copper-exposed haemolymph 

compared to the non-exposed haemolymph, suggesting that copper-induced apoptosis 

was involved in the mitochondria-mediated apoptotic pathway. Finally, the alteration of 

caspase-3/7 activation and MMP indicated that Cu2+ exposure induced apoptosis in 

haemolymph of P. canaliculus.  

Excessive production of ROS is known to induce cell apoptosis (Guo et al., 2017, 

Orrenius, 2007, Winston, 1991). Recently, a study on molecular responses to copper 

stress in Litopenaeus vannamei shrimp suggested that the generation of ROS may cause 

oxidative stress and eventually result in apoptosis in shrimp under copper exposure (Guo 

et al., 2017). These authors found that inhibitors of apoptosis protein (IAP) interact with 

caspase-3 to regulate apoptosis caused by superfluous ROS generation (Guo et al., 2017). 

Furthermore, caspase-3 is known to inhibit ROS production and is required for efficient 

execution of apoptosis (Brentnall et al., 2013). In the present study, ROS production, and 

apoptotic cells (both via capase-3/7 and MMP) were significantly increased in a dose-

dependent manner after copper exposure. These results suggest that Cu2+ exposure 

triggered the generation of excessive ROS, which may lead to oxidative stress and 

apoptosis in Cu2+-exposed haemocytes.   
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For metabolomics, we observed a significant alteration of 25 metabolites in metabolite 

profiles of haemolymph exposed to high Cu2+ level (125.0 μM) compared to the control. 

Among them, many metabolites were identified as important signatures of oxidative 

stress and apoptosis. For example, glutathione (GSH), an important antioxidant, is a well-

known biomarker of oxidative stress (Isaksson et al., 2005, Rossi et al., 2006). GSH can 

directly react with electrophilic oxidants (e.g., H2O2) resulting in conversion of two GSH 

molecules into its oxidized form (GSSG) (Espinosa-Diez et al., 2015, Meister, 1989). In 

this study, we observed a remarkable reduction of GSH in Cu2+-exposed haemolymph 

compared to control samples. The decrease of GSH, concomitantly with increased levels 

of ROS, suggests that GSH reacted with ROS to form GSSG in haemolymph exposed to 

Cu2+. Copper-induced reduction of GSH has been previously reported in different tissues 

of several mollusc samples, including the digestive gland of scallops (Adamussium 

colbecki) (Regoli et al., 1997), the gills and digestive gland of mussels (M. 

galloprovincialis) (Canesi et al., 1999, Viarengo et al., 1990), and the digestive gland 

tissue of snails (Theba pisana) (El-Gendy et al., 2009). GSH is synthesized from three 

amino acids, including glycine, glutamic acid, and cysteine in the glutathione metabolic 

pathway. We identified six metabolites within the glutathione metabolic pathway 

(glutathione, glycine, cysteine, glutamic acid, ornithine and pyroglutamic acid) in 

metabolite profiles of mussel haemolymph. In addition to GSH, cysteine and glutamic 

acid were significantly decreased in the Cu2+-exposed group compared to the control. 

Secondary pathway analysis screened glutathione metabolism as a target pathway of 

interest relating to the treatment effect (p < 0.001, FDR < 0.001, PI = 0.418) (Table 8.1).  

In addition, the transsulfuration pathway (cysteine and methionine metabolism), which is 

a source of cysteine for glutathione was also identified as a potential primary target 

pathway (p = 0.001, FDR < 0.001, PI = 0.276). Hence, the decrease in cysteine and 
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methionine in the Cu2+-exposed haemolymph suggests a high demand of these 

metabolites for the transsulfuration pathway and glutathione pathway to regulate ROS 

production in mussels exposed to Cu2+. The VIP scores of these metabolites also revealed 

that they were major contributors towards the PLS-DA classification model.  

The altered levels of alanine and glutamic acid in various cell types driven into apoptosis 

has been reported as important signatures of apoptosis (Halama et al., 2013, Rainaldi et 

al., 2008, Xiao et al., 2016). In this study, Cu2+-exposed haemolymph that had a 

remarkable increase in percent of apoptosis showed a significantly higher level of alanine 

and lower level of glutamic acid compared to non-exposed haemolymph, suggesting the 

involvement of alanine and glutamic acid during the apoptosis process.  

The changes of alanine and glutamic acid during apoptosis have been proposed to be 

associated with taurine metabolism (Halama et al., 2013). According to this model, 

taurine is metabolized to glutamic acid by taurine 2-oxoglutarate transaminase and to 

alanine by taurine pyruvate aminotransferase during apoptosis (Halama et al., 2013). 

Rainaldi et al also reported decreases in glutamic acid, together with taurine and other 

metabolites in cells of the HL60 promyelocytic leukemia cell line driven into apoptosis 

by either a physical (ionizing radiation) or a chemical (doxorubicin) agent (Rainaldi et 

al., 2008).  These studies suggest a positive correlation between taurine and glutamic acid. 

Although we did not detect taurine in metabolite profiles of mussel haemolymph due to 

the technical limits, the increased alanine and decreased glutamic acid may suggest the 

involvement of taurine during the apoptosis in Cu2+-exposed haemocytes. Accordingly, 

the decrease of taurine in blood serum has also been reported in copper-laden rats (Xu et 

al., 2015). In addition, taurine is a sulfur-containing amino acid derived from the 

transsulfuration pathway (Redmond et al., 1998). We observed the decrease of 
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methionine and cysteine in the transsulfuration pathway and the transsulfuration pathway 

itself was identified as significantly impacted by Cu2+ treatment, which may indirectly 

suggest the decrease of taurine in Cu2+-exposed haemolymph. Furthermore, apoptosis 

plays a central role in the maintenance of tissue homeostasis (Jacobson et al., 1997, Kiss, 

2010, Thompson, 1995), and oxidation and reduction of cysteine and methionine are 

known to be involve in regulation of cellular redox homeostasis (Hoshi and Heinemann, 

2001). Hence, the decrease of cysteine and methionine may relate to the alteration of 

taurine and apoptosis.  

From these findings, we propose that the processes of oxidative stress and apoptosis in 

Cu2+-exposed haemocytes may be involve in the transsulfuration pathway, glutathione 

metabolism and taurine metabolism, as described previously. In this model, Cu2+ 

exposure led to the excessive ROS production that caused the decreases of GSH, 

methionine, cysteine then taurine. The decrease of taurine, in turn, would have led to the 

decrease in glutamic acid and accumulation of alanine.  
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8.5 CONCLUSION  

In this study, we successfully demonstrated a simple in-vitro model for using mussel (P. 

canaliculus) haemolymph to study the toxic mechanism of copper. Cu2+-exposed 

haemocytes showed a remarkable increase in ROS production, which in turn induced 

oxidative stress and apoptosis. The metabolite profiles of mussel haemolymph further 

confirm a toxic pathway at the molecular level.  The reduction of metabolites within the 

transsulfuration pathway (cysteine and methionine) and glutathione metabolic pathway 

(cysteine, glutamic acid and GSH) could explain the metabolic pathway of Cu2+-induced 

oxidative stress in mussel haemocytes. However, further targeted metabolomics studies 

will need to be conducted to confirm this assertion. The decrease in these metabolites 

together with the increase of alanine were found to be involve in the apoptosis mechanism 

of Cu2+-exposed haemocytes. Among these alterations, decreased GSH and increased in 

alanine could be used as biomarkers for oxidative stress and apoptosis, respectively. For 

the first time, this study confirms Cu2+-induced oxidative damage via oxidative stress and 

apoptosis at both cytometric and metabolomics levels.  
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ABSTRACT 

The antimicrobial role of itaconic acid (ITA) has been recently discovered in mammalian 

cells. In our previous studies, we discovered that marine molluscs biosynthesize 

substantial quantities of ITA when exposed to marine pathogens, but its antimicrobial 

function to Vibrio bacteria is currently unknown. Thus, in this study, we used an 

untargeted gas chromatography-mass spectrometry (GC-MS) platform to identify 

metabolic changes of Vibrio sp. DO1 (V. corallyliticus/neptunius-like isolate) caused by 

ITA exposure. Vibrio sp. DO1 was cultured in Luria-Bertani broth supplemented with 3 

mM sodium acetate and with different concentrations of ITA (0, 3 and 6 mM) for 24 h. 

The results showed that ITA completely inhibited Vibrio sp. growth at 6 mM and partially 

inhibited the bacterial growth at 3 mM. A principal component analysis (PCA) revealed 

a clear separation between metabolite profiles of Vibrio sp. DO1 in the 3 mM ITA 

treatment and the control, which were different in 25 metabolites. Among the altered 

metabolites, the accumulation of glyoxylic acid and other metabolites in glyoxylate cycle 

(cis-aconitic acid, isocitric acid and fumaric acid) together with the increase of isocitrate 

lyase (ICL) activity in the 3 mM ITA treatment compared to the control suggest that ITA 

inhibited Vibrio sp. growth via disruption of central carbon metabolism. 
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9.1 INTRODUCTION 

Itaconic acid (ITA), or 2-methylenesuccinic acid, is an unsaturated dicarboxylic acid that 

is a well-known precursor for polymer synthesis in the industrial production of polymers. 

In addition, ITA is known to have antimicrobial function which was first described in 

Gram-negative bacterium Vogesella indigofera (Williams et al., 1971). The inhibitory 

effect of ITA was subsequently reported in other bacteria, including Pseudomonas 

indigofera (McFadden and Purohit, 1977, Williams et al., 1971), Yersinia pestis (Hillier 

and Charnetzky, 1981), Mycobacterium tuberculosis and Salmonella enterica 

(Michelucci et al., 2013).  

Recently, ITA was surprisingly discovered in mammalian immune cells. Shin et al. 

(2011) reported the presence of ITA in lung tissue of mice infected with M. tuberculosis, 

and it was hypothesized that ITA was originated from the bacteria in this association. 

However, Sugimoto et al. (2012) subsequently detected ITA in mouse macrophage-like 

cell lines stimulated with lipopolysaccharide (LPS), which demonstrated an intracellular 

source. The biological function of ITA as a novel mammalian metabolite was then 

highlighted by Strelko et al. (2011) who suggested roles in macrophage-based immune 

functions after observing increased ITA production and secretion in mouse peritoneal 

macrophages activated by LPS and IFN-γ. Similarly, the highly increased levels of ITA 

in human primary macrophages under LPS-induced inflammatory conditions (Michelucci 

et al., 2013). Taken together, these findings indicate the role of ITA as mammalian 

antimicrobial metabolite.  

In addition to mammalian macrophages, increased biosynthesis of ITA was recently 

reported in marine bivalves during pathogen challenges (Nguyen et al., 2018a, Nguyen et 

al., 2018b, Young et al., 2017). The first detection of ITA in bivalves was reported by 
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Young et al. (2017) in Pacific oyster larvae challenged with a marine herpesvirus (OsHV-

1 µVar). Accumulation of ITA was then detected in mussel haemolymph following an in 

vivo experimental challenge with a pathogenic strain of Vibrio sp. (Nguyen et al., 2018a, 

Nguyen et al., 2018b, Nguyen et al., 2018c).  Interestingly, ITA increased during initial 

stages of infection in mussels then decreased in those individuals which survived and 

recovered from the infection after a week (Nguyen et al., 2018a). These results suggest 

that ITA could be a potential biomarker for pathogen infections, and indicate health status 

of molluscan hosts (Nguyen et al., 2018a). Taken together, these studies demonstrate that 

marine bivalves have the capacity to synthesize ITA, with potential immune functions 

during pathogen infections. However, it is currently unknown whether ITA can inhibit 

growth of specific pathogenic marine bacteria, as it does in some terrestrial strains.  

Vibrio is a genus of Gram-negative bacteria, possessing a number of pathogenic strains 

that associated with infectious diseases in marine bivalves (Travers et al., 2015).  To test 

the potential inhibitory role of ITA on growth of a virulent Vibrio strain, we cultured 

Vibrio sp. DO1 in different concentrations of ITA. This Vibrio strain (Vibrio 

coralliilyticus/neptunius-like isolate, Genbank: EU358784) was isolated from Perna 

canaliculus larvae (Kesarcodi-Watson et al., 2009a) have been showed to be pathogenic 

to both P. canaliculus larvae (Kesarcodi-Watson et al., 2009b) and adults (Nguyen et al., 

2018a, Nguyen et al., 2018b, Nguyen et al., 2018c). GC-MS-based metabolomics was 

performed to compare metabolite profiles of the Vibrio sp. cultures and evaluate 

mechanistic effects of ITA on bacterial metabolism.  
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9.2 MATERIALS AND METHODS  

9.2.1 Chemicals 

Most of the chemicals used in this study were of analytical grade and obtained from 

Sigma-Aldrich (St Louis, MO, USA) with the following exceptions: LB broth (Miller, 

Code: 244610) and thiosulfate citrate bile salts sucrose (TCBS) agar from Fort Richard 

Laboratories (Auckland, New Zealand), chloroform from Merck (Darmstadt, Germany).  

9.2.2 Bacterial culture and itaconic acid effects  

Vibrio sp. DO1 (99.5 % 16S sequence similarity with V. corallyliticus and V. neptunius; 

Genbank: EU358784) isolated from Greenshell™ mussel larvae (Kesarcodi-Watson et 

al., 2009b) was kindly provided by Cawthron Institute (Nelson, New Zealand). The 

bacterial suspension was prepared in LB broth using the same protocols previously 

described in Chapter 4 (4.2.1).  

The effects of ITA on Vibrio were assessed by adding 100  μl of Vibrio sp. stock (8.7 × 

107 cells·ml–1) into glass bottles containing 100  ml LB with three different ITA 

concentrations (0, 3, 6 mM) supplemented with 3 mM sodium acetate. The bacterial 

cultures were incubated at 25 °C and sampled every 6 h up to 24 hpi for bacterial growth 

using a spectrophotometer (Ultrospec 2100 pro UV–Vis: Biochrom Ltd., Cambridge, 

UK) to measure absorbance at 600 nm. For metabolomics analyses, bacteria were 

harvested at 24 hpi. One  ml of bacterial culture was centrifuged at 2438 × g for 10 

minutes at 4 °C on an Eppendorf Centrifuge 5810 R (Eppendorf AG, Hamburg, 

Germany). The pelleted cells were washed with FAS and re-suspended with 1  ml of FAS. 

The final cell pellets were flash frozen in liquid nitrogen and stored at –80 °C until 

metabolite extraction and enzyme analyses could be performed. For isocitrate and 

isocitrate lyase assays, 1  ml bacterial culture was sampled and stored at –80 °C.  
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9.2.3 Isocitrate assay 

The concentrations of isocitrate in Vibrio sp. samples were measured by isocitrate assay 

kit (Sigma-Aldrich, St Louis, MO, USA). The assay was performed according to the 

manufacturer’s protocol. In summary, isocitrate standards containing 0, 4, 8, 12, 16, 20 

nmole per well were prepared in a 96-well plate from 20  μl of 100 mM isocitrate stock. 

One hundred  μl of Vibrio sp. in LB broth was homogenized in 100  μl of isocitrate assay 

buffer and centrifuged at 13,000 × g for 10 minutes (Centrifuge 5810 R, Eppendorf AG, 

Hamburg, Germany) to remove insoluble material. Twenty-five  μl of each sample were 

added into each well and mixed with 25  μl of isocitrate assay buffer. A standard mix 

containing 46  μl isocitrate assay buffer, 2  μl substrate mix and 2  μl substrate mix was 

added into each of the wells and mixed. Blank samples contained 48  μl isocitrate assay 

buffer and 2  μl substrate mix only. All samples, blanks and standards were incubated for 

30 minutes in the dark at room temperature prior to measuring at 450 nm with a 

microplate reader (Multiskan FC, Thermo, Waltham, MA, USA). Concentrations of 

isocitrate in the samples were calculated based on absorbance and standard curves.  

9.2.4 Isocitrate lyase assay 

Quantification of isocitrate lyase in Vibrio sp. samples was conducted following 

published protocols (Chell et al., 1978). In brief, reagents were prepared and added into 

suitable cuvettes as follows: 0.50  ml of 50 mM imidazole buffer (pH 6.8 at 30 °C), 0.1  

ml of 50 mM magnesium chloride solution (MgCl2), 0.1  ml of 10 mM 

ethylenediaminetetraacetic acid solution (EDTA), 0.1  ml of 40 mM phenylhydrazine 

hydrochloride solution and 0.1  ml of 10 mM DL-isocitric acid solution (isocitrate). 

Cuvettes containing the reagent mixture was equilibrated to 30 °C in a water bath. For 

each Vibrio sp. sample, 0.1  ml was combined with the reagent mix immediately measured 

in a spectrophotometer at 324 nm (Ultrospec 2100 pro UV–Vis: Biochrom Ltd., 
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Cambridge, UK). Samples were placed back in the 30 °C water bath re-measured after 5 

minutes. Alternatively, 0.1  ml of imidazole buffer was added to blanks and similarly 

measured. ICL concentrations in each sample was calculated based on A324 per minute of 

samples and blanks. 

9.2.5 Metabolomics 

Metabolite extractions, derivatizations, GC-MS measurement, quality control and 

spectral  processing were performed as previously described (Chapter 4 – 4.2.4-6).  

9.2.6 Statistical and pathway analysis 

Metabolite profile data were analysed using MetaboAnalyst 4.0 (Chong et al., 2018). Data 

were normalized by generalized logarithm (glog) transforming and mean centring to 

make individual features more comparable. Multivariate analyses, including 

unsupervised PCA and supervised PLS-DA were used to assess variability among 

samples and between sample classes. Validation of the PLS-DA model was performed 

using leave one out cross validation (LOOCV), which was assessed via accuracy, R2 and 

Q2 values (Szymańska et al., 2012). Univariate analysis was performed using t-test to 

identify differences between metabolite profiles of ITA-treated and control cultures of 

Vibrio sp. A heatmap of altered metabolites was generated to assess the abundance of 

these metabolites (low/high) via intuitive visualization. Classical univariate ROC 

analyses for individually altered metabolites in glyoxylate shunt and multivariate ROC 

analysis (using linear support vector machines) for all of these features were performed 

to assess the accuracy of biomarker models.  

Quantitative enrichment analysis (QEA) using global test algorithm (Xia and Wishart, 

2010) and network topology analysis (NTA) using relative-betweeness centrality 

(Nikiforova and Willmitzer, 2007) were performed to investigate functional relationships 
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among the annotated metabolites in accordance with the protocol described in Chapter 5 

(5.2.5). The Escherichia coli K-12 MG1655 was used as the reference pathway library.  
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9.3 RESULTS  

9.3.1 Effect of ITA on the growth of Vibrio sp. DO1.  

To test the antimicrobial effect of ITA on bacterial growth, we cultured Vibrio sp. in a 

Luria-Bertani (LB) broth with different concentrations of ITA (0, 3 and 6 mM). Luria-

Bertani broth was chosen since growth in this medium is carbon limited (Sezonov et al., 

2007). Growth of Vibrio sp. was measured via spectroscopy every 6 h for 24 h (Fig. 9.1A). 

The results show that the growth of Vibrio sp. was completely inhibited in the 6 mM ITA 

treatment. Growth in the 3 mM ITA treatment was significantly slower than the growth 

in the control at all recorded times (p < 0.05). Furthermore, to test whether ITA has the 

capacity to inhibit isocitrate lyase (ICL) of the glyoxylate shunt, we measured the 

concentrations of isocitrate and activity of ICL at 24-hour post-incubation (hpi). The 

results show the significantly higher levels of isocitrate (t10 = –5.878, p < 0.001) and ICL 

activity (t8 = –12.52, p < 0.001) in the ITA treatment compared to the control (Fig. 

9.1B,C). 

9.3.2 Effect of ITA on metabolite profiles of Vibrio sp. DO1  

Untargeted GC-MS-based metabolomics was performed to compare metabolite 

differences between the 3 mM ITA treatment and the control. A total of 565 features were 

detected by GC-MS in Vibrio sp. samples and 63 metabolites were successfully annotated 

using an in-house library. The majority of these metabolites were amino acids (43 %), 

followed by organic acids (30 %), fatty acids (19 %) and others (8 %).   

Principal component analysis (PCA) was used to identify natural groupings of all 

bacterial samples based on the underlying structure of the metabolite data. A PCA score 

plot shows clear separations between the ITA treatment and the control (Fig. 9.2). Partial 

least-squares discriminant analysis (PLS-DA) was revealed a very robust model for 
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discrimination between sample classes with an accuracy of 1.0, a multiple correlation 

coefficient (R2) of 0.99 and a cross-validated predictive ability (Q2) of 0.90. T-tests 

identified 25 metabolites that were significantly altered by ITA treatment, compared to 

control cultures (see 'Availability of materials and data' for more information). A heatmap 

was generated to visualise the relative abundance of these metabolites in each group (Fig. 

9.3). Overall, clear differences were observed between the treatment and control, where  

 
Figure 9.1  Effects of ITA on growth of Vibrio sp. at different levels isocitrate and 

isocitrate lyase (ICL). (A) The absorbance (600 nm) of Vibrio sp. cultured 
in different ITA concentrations (0, 3 and 6 mM) supplemented with 
sodium acetate over 24 h. (B) Level of isocitrate in the 3 mM ITA 
treatment and the control at 24 hpi. (C) Activity of ICL in the 3 mM ITA 
treatment and the control at 24 hpi. Data are presented as mean r S.D. (n 
= 6). Significant differences relative to the control are marked with an 
asterisk (*) (t-test, p < 0.05). 
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most of the metabolites in the ITA treatment were elevated with exception of trans-4-

hydroxyproline. 

 
Figure 9.2 PCA score plot of metabolite profiles of Vibrio sp. bacteria in the 3 mM 

ITA treatment and the control. CON, control treatment (no ITA); ITA, 3 
mM itaconic acid treatment. 
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Figure 9.3 Heatmap of 25 metabolites identified as significantly different between the 
ITA treatment and the control by t-test (p < 0.05). CON, control treatment 
(no ITA); ITA, 3 mM itaconic acid treatment. 

9.3.3 Effect of ITA on the glyoxylate shunt 

Eight metabolites related to the glyoxylate shunt and TCA cycle were identified in 

metabolite profiles of Vibrio sp., including citric acid, cis-aconitic acid, isocitric acid, 

succinic acid, fumaric acid, malic acid, glyoxylic acid, pyruvic acid, 2-oxoglutaric acid 

and 2-phosphoenolpyruvic acid. The addition of ITA led to alterations of 4 metabolites 

which were elevated in the ITA treatment, including cis-aconitic acid, fumaric acid, 

glyoxylic acid and 2-oxoglutaric acid (Fig. 9.4A).  
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Classical univariate ROC curve analyses were performed to assess the biomarker 

specificity and sensitivity of these significantly altered metabolites based on the area 

under the ROC curve (AUC). The results reveal that all these metabolites had AUC higher 

than 0.8, and cis-aconitic acid had AUC equal to 1 (Fig. 9.4B). In addition, ROC curve 

analyses identified isocitric acid as significantly different between the treatment and 

control with t-test p-value < 0.05 and AUC = 0.81. The multivariate ROC curve-based 

model evaluation, which combined potential biomarkers, showed a very high AUC of 

0.972 (Fig. 9.4C).  

 
Figure 9.4  Effects of ITA on glyoxylate shunt of Vibrio sp. cultured in LB media with 

and without ITA. (A) Altered metabolites of glyoxylate shunt identified 
by t-test (p < 0.05). Box plots show relative abundances of metabolites 
after normalization. (B) Univariate ROC curve analysis of significantly 
altered metabolites (ITA/Non ITA) of the glyoxylate shunt. (C) 
Multivariate ROC curve-based model evaluation of all altered metabolites 
in the glyoxylate shunt identified by ROC curve analysis. 
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9.3.4 Pathway analysis 

Pathway analysis was used to identify potentially altered metabolic pathways induced by 

ITA. This analysis identified 28 pathways with p < 0.05, which contained at least two 

identified metabolites (Table 9.1). Among these, 15 pathways with impacts > 0.1 were 

considered as pathways of interest relating to ITA effects (Table 9.1), while those with 

an impact < 0.01 may have slight effects. These pathways are involved in carbohydrate 

metabolism (e.g., TCA cycle, pyruvate metabolism), energy metabolism (e.g., nitrogen, 

Table 9.1 List of metabolic pathways in Vibrio sp. that were significantly affected 
by ITA exposure.  

Pathways Hits/Total 
compounds Raw p FDR Impact 

Alanine, aspartate and glutamate metabolism 6/18 <0.001 <0.001 0.479 
Glycine, serine and threonine metabolism 6/32 0.001 0.001 0.473 
Pyruvate metabolism 3/26 0.005 0.007 0.438 
Glutathione metabolism 5/21 <0.001 <0.001 0.381 
Citrate cycle (TCA cycle) 8/20 <0.001 <0.001 0.301 
Butanoate metabolism 4/18 <0.001 0.001 0.255 
Cysteine and methionine metabolism 6/34 0.001 0.001 0.230 
Arginine and proline metabolism 8/41 <0.001 0.001 0.215 
Glycolysis or gluconeogenesis 2/29 0.192 0.192 0.168 
Methane metabolism 2/11 <0.001 <0.001 0.167 
Aminoacyl-tRNA biosynthesis 18/66 <0.001 <0.001 0.130 
Glyoxylate and dicarboxylate metabolism 5/29 <0.001 <0.001 0.102 
Nicotinate and nicotinamide metabolism 2/13 0.001 0.001 0.089 
Sulfur metabolism 2/13 0.001 0.001 0.069 
Valine, leucine and isoleucine biosynthesis 5/26 <0.001 <0.001 0.036 
C5-Branched dibasic acid metabolism 2/6 <0.001 <0.001 0.000 
Benzoate degradation via CoA ligation 3/10 <0.001 <0.001 0.000 
Valine, leucine and isoleucine degradation 3/23 <0.001 <0.001 0.000 
beta-Alanine metabolism 2/16 <0.001 0.001 0.000 
Nitrogen metabolism 5/18 <0.001 0.001 0.000 
Phenylalanine, tyrosine and tryptophan 
biosynthesis 4/23 <0.001 0.001 0.000 
Thiamine metabolism 2/19 <0.001 0.001 0.000 
Lysine biosynthesis 2/13 <0.001 0.001 0.000 
Cyanoamino acid metabolism 4/8 0.001 0.001 0.000 
Phenylalanine metabolism 4/23 0.001 0.001 0.000 
Pantothenate and CoA biosynthesis 4/23 0.001 0.001 0.000 
Tyrosine metabolism 2/10 0.002 0.003 0.000 
Biosynthesis of unsaturated fatty acids 3/6 0.011 0.015 0.000 
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metabolism, sulfur metabolism), amino acid metabolism (e.g., valine, leucine and 

isoleucine biosynthesis; arginine and proline metabolism), lipid metabolism (e.g., 

biosynthesis of unsaturated fatty acids), oxidative stress (e.g., glutathione metabolism), 

metabolism of cofactors and vitamins (e.g., pantothenate and CoA biosynthesis), among 

others.   
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9.4 DISCUSSION  

The glyoxylate cycle is an anabolic variation of the TCA cycle used during carbon 

limitation in plants, bacteria, protist and fungi (Lorenz and Fink, 2002). This mechanism 

differs from the TCA cycle in which the two decarboxylation reactions (isocitrate→α-

ketoglutarate→succinyl-CoA) are bypassed via the glyoxylate shunt pathway (Fig. 9.5). 

In this pathway, isocitric acid is converted into glyoxylic acid and succinic acid by 

isocitrate lyase (ICL). Glyoxylic acid is further combined with acetyl-CoA to form malic 

acid by malate synthase (MLS) (Kondrashov et al., 2006, Sharma et al., 2000). When 

initiated during glycolytic sugar (C5-6) starvation, bypassing the CO2-producing steps of 

the TCA cycle helps the glyoxylate shunt preserve carbon atoms of acetyl-CoA for 

gluconeogenesis, which is critical for biomass production (White et al., 2007). The 

glyoxylate cycle thus allows microorganisms to utilize carbon compounds other than 

glucose, such as acetate and fatty acids, as carbon sources for growth under different 

nutrient conditions (Hillier and Charnetzky, 1981, Maloy et al., 1980). During host 

infection, pathogenic bacteria are known to up-regulate the glyoxylate cycle (Hillier and 

Charnetzky, 1981).  

The glyoxylate bypass is a potential drug target, which could be inhibited by natural or 

synthetic compounds, such as ITA (Lee et al., 2015). ITA strongly inhibits the glyoxylate 

shunt by acting as a potent competitive inhibitor of ICL (McFadden and Purohit, 1977, 

Patel and McFadden, 1978, Williams et al., 1971). Inhibition of bacterial growth by ITA 

exposure has been demonstrated in several bacteria, such as Pseudomonas indigofera 

(McFadden and Purohit, 1977, Williams et al., 1971), Yersinia pestis (Hillier and 

Charnetzky, 1981), M. tuberculosis and S.enterica (Michelucci et al., 2013). For example, 

Michelucci et al. (2013) reported that supplementation of  25-50 nmol⋅l-1 ITA 

significantly inhibited the growth of M. tuberculosis and S. enterica. In our study, the 
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growth of Vibrio sp. was completely inhibited in culture media supplemented with 6 mM 

ITA and reduced growth in the 3 mM ITA treatment compared to the control. 

Furthermore, glyoxylic acid and other intermediates of the glyoxylate cycle (cis-aconitic 

acid, isocitric acid and fumaric acid) were significantly higher in the ITA treatment 

compared to the control. However, most surprisingly, the activity of  ICL was not 

inhibited by ITA in our experiment, which indicates that a different toxic mechanism may 

be responsible for the antimicrobial effect. 

 
Figure 9.5  The general scheme for tricarboxylic acid (TCA) cycle (black arrows) and 

glyoxylate cycle (blue arrows). Box plots show relative abundances of 
metabolites after normalization and significant differences relative to the 
control are marked with an asterisk (*) (t-test, p < 0.05). 
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In addition, we observed elevated levels of many amino acids (e.g., alanine, glutamic 

acid, glycine) in ITA-exposed Vibrio sp. Increases in many amino acids have previously 

been reported in bacteria exposed to environmental stress (Boroujerdi et al., 2009, Kim 

et al., 2017, Zhou et al., 2017). For example, glutamic acid, which is involved in many 

metabolic pathways was reported to be synthesized by Escherichia coli (Dinnbier et al., 

1988) and Vibrio costicola (Kamekura and Kushner, 1984) to balance the K+ uptake from 

the media. The up-regulation of glutamic acid with increasing temperature was observed 

in Vibrio coralliilyticus (Boroujerdi et al., 2009). Accumulation of alanine is a common 

phenomenon in response to various stresses in both plants and animals (Ben-Izhak 

Monselise et al., 2003). Therefore,  the level of alanine has been proposed to be a 

universal stress signal (Ben-Izhak Monselise et al., 2003). The increases in alanine were 

demonstrated in V. parahaemolyticus exposed to various concentrations of ferric iron 

(Zhou et al., 2017). Hence, the accumulation of many amino acids and an activated amino 

acid metabolism (indicated via the pathway analysis) in ITA exposed Vibrio sp. may 

indicate stress responses and disturbance of amino acid metabolism of ITA on Vibrio sp. 

We observed the accumulation of fatty acids, including pimelic acid, stearic acid, capric 

acid, and a secondary pathway analysis revealed biosynthesis of unsaturated fatty acids 

as an altered pathway due to the ITA effect. This may suggest the change of lipid 

metabolism of Vibrio sp. exposed to ITA. However, the mechanisms underlying the 

increases in these fatty acids is currently unknown. In addition, the accumulation of other 

organic acids (e.g., lactic acid, adipic acid, malonic acid, maleic acid) remains uncertain.  

Among the altered metabolites, trans-4-hydroxyproline (Hyp) was the only down-

regulated metabolite in the metabolite profiles of ITA exposed Vibrio sp. Hyp is a non-

essential amino acid that is a major component of collagen in animals (Szpak, 2011) and 
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glycoproteins in plant cell walls (Cassab, 1998). Hyp is synthesized in plants and animals 

by hydroxylation of proline by prolyl hydroxylase following protein synthesis (as a post-

translational modification). Bacteria are able to metabolize Hyp released by protein 

degradation of animals and plants (White et al., 2012). The accumulation of Hyp has been 

reported in Thermococcus spp (Lamosa et al., 1998), Brevibacterium sp. (Nagata et al., 

1996) and Halobacillus halophilus (Kim et al., 2017) under high salt conditions, 

suggesting that Hyp may be a widespread osmoprotectant in halophilic and halotolerant 

bacteria. However, we observed the decrease of Hyp in ITA exposed Vibrio sp. This may 

be due to species-specific responses of different bacteria or stressor-specific responses. 

Nevertheless, these results suggest the important role of Hyp in stress responses of Vibrio 

bacteria, which should be investigated in future studies.  

Overall, the findings from this study strongly indicate antimicrobial activity of ITA to 

marine bacteria. This points toward the potential use of ITA as an antimicrobial 

metabolite for bacterial control in aquaculture. However, ITA is known to be unsuitable 

as drug for mammal due to its toxicity to host cells (Lee et al., 2015). For marine bivalves, 

we recently identified the increase of ITA in their tissues during the pathogen exposure 

(Nguyen et al., 2018a, Nguyen et al., 2018b, Nguyen et al., 2018c) which indicates ITA 

is internal metabolite and may not toxic for host at low concentration. However, whether 

exposure of aquatic organisms to high concentrations of ITA (e.g., 6 mM ITA like in this 

study) to fight intracellular and drug-resistant bacteria are safe for the host which needs 

to be investigated prior to application in aquaculture.  
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9.5 CONCLUSION 

To our knowledge, this is the first study to report antibacterial properties of ITA to a 

marine Vibrio sp. bacterium. After ITA exposure, we observed reduced microbial growth, 

and higher levels of metabolites in the TCA cycle (glyoxylic acid, cis-aconitic acid, 

isocitric acid and fumaric acid), amino acids and fatty acids in ITA-exposed bacterial 

cultures. This indicates that ITA inhibits Vibrio sp. growth and disruption of central 

carbon metabolism and other metabolic changes. However, ICL activity was higher in 

the ITA treatment compared to the control, suggesting that ITA did not inhibit ICL in the 

glyoxylate shunt of this Vibrio isolate and another toxic mechanism may be responsible 

for the antimicrobial effect of ITA. Hence, there is a need for future investigations to 

explore the antimicrobial mechanism of ITA in marine Vibrio bacteria and other marine 

pathogens which may lead to the use of ITA as an antimicrobial compound in aquaculture 

practices.   
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ABSTRACT 

Itaconic acid (ITA) has recently been identified as an antimicrobial metabolite in 

mammalian immune cells. The presence of ITA was reported in different tissues of 

marine molluscs, indicating its role as an endogenous metabolite of molluscs. In addition, 

the accumulation of ITA has been observed in different tissues of mussels following 

pathogen challenge. However, the concentration of ITA in mussel tissues and the possible 

role of this metabolite in the molluscan innate immune system remain unknown. This 

study aims to quantitatively measure ITA levels in different tissues of marine mussels 

following an experimental challenge with Vibrio sp. DO1 isolate, and to identify the 

antimicrobial role of ITA in the innate immune system through the measure of metabolic 

and immune alterations in tissues following the challenge. 

In this study, adult Perna canaliculus mussels were experimentally challenged with a 

pathogenic Vibrio sp. DO1 isolate. The metabolite profiles of five different tissues, 

including mantle, gill, muscle, hepatopancreas and haemolymph were obtained, and 

levels of ITA in each tissue were characterized using a gas chromatography-mass 

spectrometry (GC-MS) metabolomics approach. Flow cytometry was also employed to 

measure cell health parameters, including oxidative stress via reactive oxygen species 

(ROS) production, apoptosis via changes in mitochondrial membrane potential (MMP) 

and haemocyte viability. The ITA levels in mantle, gill, muscle and hepatopancreas 

tissues at 18-hour post infection (hpi) with Vibrio sp. were 40.31, 41.71, 11.61 and 41.66 

ng·mg-1, respectively. In haemolymph, the level of ITA was significantly increased from 

95.25 ng·ml-1 at 6 hpi to 174.36 ng·ml-1 at 18 hpi and 572.12 ng·ml-1 at 60 hpi. In line 

with the accumulation of ITA, we observed increased levels of metabolites within the 

tricarboxylic acid (TCA) cycle, anti-inflammatory metabolites and alterations of other 
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metabolites associated with immune responses of the host. The flow cytometry analyses 

revealed increases in ROS production, apoptotic cells and decreases in cell viability.  

We reported on the production of ITA in different tissues of P. canaliculus mussels 

challenged with a marine pathogen which confirmed ITA as an antimicrobial metabolite. 

The findings revealed insights into the biosynthesis of ITA and suggests its role in 

antimicrobial and anti-inflammatory activities in the innate immune system. This study 

also provided insights into the innate immune system of bivalves and highlight the 

potential use of ITA as a biomarker for shellfish health assessment in aquaculture.   
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10.1 INTRODUCTION 

Molluscan immune defences comprise of physical barriers and a cellular and humoral 

innate immune system. The main physical protective barriers are behavioural avoidance, 

shell and mucus barriers (Gerdol et al., 2018). The mucus that covers the soft body of 

molluscs contains abundant haemocytes and humoral factors, and represents the first line 

of immune defence (Allam and Raftos, 2015). Circulating haemocytes mediate cellular 

immune responses via phagocytosis, encapsulation, apoptosis and autophagy (Gerdol et 

al., 2018). The humoral defence components of molluscs include diverse molecular 

effectors, such as antimicrobial peptides, lysozymes, bactericidal/permeability-increasing 

proteins and others pore-forming molecules, proteases and protease inhibitors and the 

phenoloxidase cascade (Gerdol et al., 2018). In addition, marine molluscs have received 

considerable attention as important sources of bioactive secondary metabolites that have 

immunological properties and antimicrobial activities (Grabley and Thiericke, 1999, Pati 

et al., 2015). For example, diverse antimicrobial secondary metabolites, including 

kabiramide C, ulapualide A and B, aplysianin A and E, thisaplysianin E and tyrian purple 

have been identified in marine gastropod egg capsules and egg masses (Kaviarasan et al., 

2012). Santhi et al. (2013) reported the antimicrobial activity of extracts from Babylonia 

zeylanica, against various pathogenic bacterial and fungal strains. The GC-MS analyses 

of B. zeylanica extracts revealed the probable antimicrobial activity of compounds, such 

as 2-piperidinone, undecanal, 2-methyl-, 1,2- benzenedicarboxilic acid, diisooctyl ester, 

3-hexadecyloxycarbonyl -5- (2-hydroxyethyl) -4- methylimidazolium ion, a-D-

mannofuranoside, farnesyl-, trans-a-bergamotene, diethyl phthalate,phenol,2-methyl-5-

(1,2,2- trimethylcyclopentyl)-(S), and 2,2-dimethyl-6- methylene-1-(3,5-dihydroxy- 1-

pentanyl) cyclohexane-1-perhydrol. In recent studies, accumulation of itaconic acid 

(ITA) has been observed in different tissues of marine bivalves following pathogen 



 

288 Chapter 10 
 

challenge, again supporting the antimicrobial function of this metabolite (Nguyen et al., 

2018a, Nguyen et al., 2018b, Nguyen et al., 2018c, Young et al., 2017).  

ITA is an industrial compound that is used in the production of polymers. ITA is also 

well-known for its antimicrobial function, which has been demonstrated in many different 

bacteria species (Hillier and Charnetzky, 1981, McFadden and Purohit, 1977, Michelucci 

et al., 2013, Nguyen et al., 2019a, Williams et al., 1971). In recent discoveries, ITA was 

revealed to be a mammalian antimicrobial metabolite (Cordes et al., 2015). Detection of 

increased biosynthesis of ITA was reported in lung tissues of mice infected with 

Mycobacterium tuberculosis (Shin et al., 2011), mouse macrophage-like cell lines 

stimulated with lipopolysaccharide (LPS) (Strelko et al., 2011, Sugimoto et al., 2012) and 

human primary macrophages under LPS-induced inflammatory conditions (Michelucci 

et al., 2013). In marine molluscs, detection of ITA was firstly reported in Pacific oyster 

(Crassostrea gigas) larvae challenged with OsHV-1 μVar virus (Young et al., 2017). 

Subsequently, accumulation of ITA has been observed in different tissues of New 

Zealand Greenshell™ mussels (Perna canaliculus) following experimental challenges 

with Vibrio sp. DO1 (Nguyen et al., 2018a, Nguyen et al., 2018b, Nguyen et al., 2018c). 

Together, these studies suggest that ITA may be a universal antimicrobial metabolite 

secreted by both vertebrates and invertebrates. However, not much is known about the 

role of this metabolite in the defence system of marine molluscs and on the conditions of 

ITA production in marine molluscs.  

This study aims to quantitatively characterize ITA levels in different tissues of mussels 

following a pathogen challenge, and to identify the antimicrobial role and associated 

functions of this metabolite in the bivalve immune system. For this purpose, we 

experimentally exposed P. canaliculus mussels to Vibrio sp. DO1 and measured the 
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concentrations of ITA in mantle, gill, muscle, hepatopancreas and haemolymph. In 

addition to ITA, we also compared the metabolite profiles of these tissues in order to 

identify tissue-specific responses of the host to infections. For a more comprehensive 

study, we also measured different immune parameters, including haemocyte viability, 

reactive oxygen species (ROS) production, changes in mitochondrial membrane potential 

(MMP) which confirm the role of ITA at the cellular level.  
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10.2 MATERIALS AND METHODS 

10.2.1 Chemicals 

Most of the chemicals used in this study were of analytical grade and obtained from 

Sigma-Aldrich (St Louis, MO, USA), except for chloroform which was sourced from 

Merck (Darmstadt, Germany).  

10.2.2 Biological samples and challenge experiment 

Adult mussels (weight = 90.95 ± 6.29 g; shell length = 10.93 ± 8.43 cm) were obtained 

from Kaiaua mussel farms (Whakatiwai, New Zealand) and acclimatized for 7 days 

(Chapter 4  – 4.2.1). A pool of 80 mussels was randomly divided into 20 plastic tanks 

containing 10 l of filtered seawater that was continuously aerated with air stones. Mussels 

in 10 tanks were individually injected with 50 μl of fresh Vibrio sp. DO1 suspended in 

autoclaved artificial seawater (ASW) at a concentration of 1 × 107 cells·ml-1 in the 

posterior adductor muscle. The bacterial strain (V. coralliilyticus/neptunius-like isolate) 

was kindly provided by Cawthron Institute (Nelson, New Zealand), and the suspension 

was prepared using the same protocol described in Chapter 4 (4.2.1). The remaining 

mussels were only injected with 50 μl of ASW and served as non-infected control 

mussels.  

10.2.3 Sampling 

At each sampling time, 8 mussels were sampled from each group (treatment and control) 

which was done immediately after taking each mussel out of its container. Haemolymph 

was sampled at 6, 18 and 60 hpi. Immediately after withdrawal from the posterior 

adductor muscle, approximately 1 ml of haemolymph was transferred to a 1.5 Eppendorf 

tube for each sample and kept on ice. Then, 200 μl of haemolymph sample were mixed 

with 200 ml of cold ASW in a 1.5 ml Eppendorf tube and incubated on ice for flow 
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cytometry analyses. 400 μl of haemolymph were collected into 2 ml Cryovial (BioStor™) 

and quenched in liquid nitrogen (LN) for metabolomics analyses. In addition to the 

haemolymph, mantle, gills, adductor muscle and hepatopancreas samples were separately 

collected into 2 ml Cryovial (BioStor™) and quenched in LN for metabolomics analyses. 

All samples in LN were stored at –80 °C until metabolite extractions could be undertaken. 

During the experiment, dead mussels were taken out of the tank and recorded for 

mortality calculations.  

10.2.4 Flow cytometry and data analyses 

The effects of the Vibrio sp. infection on oxidative stress, apoptosis and haemocyte 

mortality were assessed via two different assays, including Muse® Oxidative Stress assay 

(Chapter 5 – 5.2.2), Muse® MitoPotential assay (Chapter 7 – 7.2.2), respectively. 

Statistical analyses for flow cytometry measurements were performed using SPSS® 

software (version 23.0) (IBM, Armonk, NY, USA). Significant differences in ROS 

production between infected and control mussels were performed with students’ t-test. 

One-way ONOVA was used to compare the percentage of each cell sub-population (live 

cells, dead cells and depolarized cells) at different sampling times and control.  

10.2.5 Metabolomics 

The preparation of stored samples, metabolite extraction, derivatization, GC-MS 

measurement, quality control were performed as described in Chapter 4 (4.2.4-5).  

10.2.6 Itaconic acid quantification  

The concentration of ITA in each sample was measured based on the standard curve of 

ITA. A 10 mM ITA stock solution was prepared by adding 0.0131 g ITA (Sigma-Alrich, 

I29204-100g) into 10 ml of Milli-Q water.  A series of standard concentrations were made 
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by diluting the quantitative amounts of stock solution with Milli-Q water, including 6.25, 

12.05, 31.25, 62.50, 93.75, 125.00, 156.25, 321.5, 486.75, 625.00 μM. These standard 

samples were co-extracted with 20 μl of 10 mM d4 alanine, derivatized and analysed with 

GC-MS system as protocol described for samples. The intensity of ITA standard samples 

was normalized with d4 alanine prior generation of standard curve and equation for 

calculation of ITA concentrations in mussel samples.  

10.2.7 Data processing and data analyses 

Raw spectra data were transformed into AIA format (.cdf) files and processed using the 

same protocol described in Chapter 4 (4.2.6).  

Metabolite profile data were analysed using MetaboAnalyst 4.0 (Chong et al., 2018). Data 

were generalized log (glog) transformed and mean centred to make individual features 

more comparable. The multivariate data analyses including principal components 

analysis (PCA) and partial least squares – discriminant analysis (PLS-DA) were 

performed to assess the discrimination between tissues and treatments. The univariate 

data analysis with t-test was performed for each tissue to identify metabolite different 

between infected and non-infected tissue. The fold change (FC) analysis was used to 

compare the absolute value of change between two group means of each tissue. The 

important classifiers of metabolites were identified via their PLS-DA variable importance 

in projection (VIP) scores. Classical univariate receiver operating characteristic (ROC) 

analyses for ITA in each tissue (using linear support vector machines) were performed to 

assess the specificity and sensitivity of this metabolite for biomarker models based on the 

area under the ROC curve (AUC).  
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10.3 RESULTS  

10.3.1 Mussel mortality and flow cytometry analyses of haemocytes 

Following Vibrio sp. infection, mortality of mussels and health parameters of haemocytes 

were assessed via flow cytometry analyses. The first dead mussel was recorded at 6 hpi, 

and mortality reached 27.5 % at 18 hpi and 47.5 % at 60 hpi (Fig. 10.1A). The percentage 

of ROS production in haemocytes of infected mussels was significantly higher than that 

of control mussels at all recorded times (t-test, p < 0.05), and increased from 24.73 % at 

6 hpi to 38.39 % at 18 hpi then dropped down to 15.77 % at 60 hpi (Fig. 10.1B). In non-

infected mussels, the percentage of ROS production fluctuated around 12.87 %. The 

infection with Vibrio sp. led to significant alterations of haemocyte subpopulations, 

including the decrease of live cells and the increase of depolarized cells and dead cells 

(Fig. 10.1C). Indeed, the percentage of live cells at 60 hpi decreased from 86.32 % in 

control mussels to 41.68 % in infected mussels. The highest percentage of total 

depolarised cells (40.53 %) was recorded at 18 hpi, while the percentage of dead cells 

reached a peak of 41.88 % at 60 hpi.  
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Figure 10.1 The effects of Vibrio sp. exposure on mussel mortality and health 
parameters of haemocytes. (A) Mussel mortality (%). (B) ROS production 
(%). (C) Different cell subpopulations. CON, control (non-infected); VIB, 
Vibrio sp.  

10.3.2 Metabolite profiles of mussel tissues 

Overall, we identified 102 metabolites with 81 annotated metabolites and 21 unknown 

metabolites from 395 features in the metabolite profiles of all mussel tissues. The majority 

of these metabolites were amino acids, fatty acids and organic acids. PCA score plots 

revealed clear separations between infected tissues and non-infected tissues for the 

different tissues (Fig. 10.2A). PLS-DA score plots provided even better discrimination 

among tissues (Fig. 10.2B).  
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Figure 10.2 Effects of Vibrio sp. on metabolite profiles of different tissues of P. 
canaliculus. (A) PCA score plots. (B) PLS-DA score plots. MT, mantle; 
GI, gill; MS, muscle; HP, hepatopancreas; HE, haemolymph; CON, 
control; VIB, Vibrio sp.  

A univariate data analysis with t-test showed a large number of metabolites that were 

different between infected and non-infected mussels in each tissue type (Table 10.1). For 

mantle tissues, there were 40 metabolites that differed between infected and non-infected 

samples with 3 decreased metabolites and 37 increased metabolites in infected mussels 

compared to non-infected ones. Similarly, metabolite profiles of infected gills showed 

differences of 40 metabolites compared to non-infected tissues with 11 increased 

metabolites and 29 decreased metabolites. There were 34 different metabolites between 

infected and non-infected muscle tissues (30 increased and 4 decreased). The 

hepatopancreas from infected mussels differed from those of non-infected mussels in 28 

metabolites, which were all elevated. Haemolymph had the highest number of metabolite 

differences between infected and non-infected mussels, including 11 increased and 49 

decreased metabolites.   

(A) (B)
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Table 10.1 List of altered metabolites in mantle (MT), gill (GI), muscle (MS), 
hepatopancreas (HP) and haemolymph (HE) of P. canaliculus exposed to 
Vibrio sp.  

Compounds Tissues Compounds Tissues 
MT GI MS HP HE MT GI MS HP HE 

TCA-cycle related metabolites Amino acids 
Citric acid n - n - - Alanine n p n - p 
Fumaric acid n - n n n beta-Alanine - - - - n 
Pyruvic acid n n n n n Creatinine n - n n p 
cis-Aconitic acid n - n - - Asparagine - p - - p 
Succinic acid n - n n n Glutamine p p p - p 
Malic acid n - - - n Histidine n n - n p 
2-Oxoglutaric acid n - n n - Isoleucine - - n n p 
Itaconic acid n n n n n Leucine n - n n p 
Oxidative stress related metabolites Lysine - - - - p 
Glutamic acid n p - - - Phenylalanine n - n n - 
Glutathione n p - - - Proline n - - n - 
Glycine - p - - - GABA - p n - p 
Homocysteine - p - - - cis-4-Hydroxyproline n n n - - 
Methionine n - n n p Aspartic acid - p p - p 
Cystathionine n - - n - Threonine n n - n p 
Serine n n - n p Valine - - n n p 
Fatty acids Ornithine p - - - - 
DHA - - - - p Tryptophan n - - n p 
DL-3-Aminoisobutyric - p - n - Tyrosine - p - n p 
DPA - - - - p trans-4-Hydroxyproline n n n n n 
EPA - - - - p Others 
Caprylic acid n - n - - S-Adenosylme. - p n - - 
Myristic acid - p - - p 2-Phosphoenolpyruvic 

a. 
n - n - - 

Myristoleic acid n - n n - Nicotinamide - - - - p 
Palmitelaidic acid - p - - p NADP_NADPH n - - - - 
Pentadecanoic acid - - - - p Putrescine - - - - p 
Linoleic acid - - - - p 10,13-dime. - p - - p 
Stearic acid - p - - p 2- Hydroxyglutaramic 

a. 
n - n n n 

Arachidic acid - p p - p 4-Hydro. - - n n - 
gamma-Linolenic - p - - p 4-Methyl-2-oxo - p - - p 
Gondoic acid - - - - p Gallic acid - - n - - 
trans-Vaccenic a. - p - - p 2-Aminoadipic a. - p n - - 
Tridecanoic acid - - - - p 2,4-Di-tert-butylphenol - p - - p 
10-Heptadecenoic acid - - n - p Unknown  071 - - - - p 
9-Heptadecenoic acid - - - - p Unknown  071-2 - - - - p 
11,14- Eicosadienoic - - - - p Unknown  074 - p - - - 
11,14,17-Eico. - - - - p Unknown  082 n p - - - 
13,16-Doco.  - - - - p Unknown  086 - p p - p 
Organic acids 

     
Unknown  088 - - n - - 

Citraconic acid n n - n - Unknown  088-2 - - - - p 
Lactic acid n - n n n Unknown  114 n n - n - 
Glyoxylic acid n - n - - Unknown  115 n n - n p 
Malonic acid n - - - n Unknown  116 p p - - p 
Margaric acid - p - - p Unknown  142 - - - - p 
Glutaric acid n n n n n Unknown  142-2 - - - - p       

Unknown  232 n p - - -       
Unknown  249 - p - - p 
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The arrows denote changes in metabolite abundance of Vibrio-exposed mussels 
compared to controls. a., acid; 11,14,17-Eico., 11,14,17-Eicosatrienoic acid; 13,16-
Doco., 13,16-Docosadienoic acid; 4-Methyl-2-oxo., 4-Methyl-2-oxopentanoic acid; 
10,13-dime., 10,13-dimethyltetradecanoic acid; 4-Hydro., 4-Hydroxyphenylacetic acid. 

10.3.3 Effects of Vibrio sp. exposure on ITA  

Among the altered metabolites, ITA differed between infected and non-infected mussels 

in all tissues (Table 10.1&2). The highest fold changed value (infected/non-infected) was 

observed in mantle (27.96), while the hepatopancreas had the lowest value (8.88). PLS-

DA VIP scores of ITA were > 1.0 in all tissues, with mantle having the highest VIP score 

of 4.33. These results indicate that Vibrio sp. infection significantly affected ITA levels 

in mussel tissues.  

Table 10.2  Statistical values of ITA in mantle, gill, muscle, hepatopancreas and 
haemolymph of P. canaliculus mussels exposed to pathogenic Vibrio sp. 
at 18 hpi.  

Tissues 
t-test Fold Change PLS-DA 

t.stat p.value FDR Fold 
Change log2(FC) VIP COEF 

Mantle -9.30 <0.001 <0.001 27.96 4.81 4.33 100.00 
Gill -10.09 <0.001 <0.001 9.32 3.22 3.51 100.00 
Muscle -6.31 <0.001 <0.001 12.97 3.70 2.33 52.09 
Hepatopancreas -10.28 <0.001 <0.001 8.88 3.15 2.52 48.87 
Haemolymph -2.77 0.015 0.030 9.26 3.21 1.30 40.35 

 

10.3.4 Quantitative characterization of ITA levels in different tissues 

For haemolymph, the ITA levels in non-infected mussels were very low and decreased 

slightly from 29.72 ng·ml-1 at 6 hpi to 18.12 ng·ml-1 at 18 hpi and 12.29 ng·ml-1 at 60 hpi 

(Fig. 10.3A). In contrast, the ITA levels in the haemolymph of infected mussels increased 

from 95.25 ng·ml-1 at 6 hpi to 174.36 ng·ml-1 at 18 hpi and 572.12 ng·ml-1 at 60 hpi. The 

ITA levels in mantle, gill and hepatopancreas of infected mussels were similar and 

approximately 40 ng·mg-1. These values were significantly higher than those of muscle 
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tissues of infected mussels (11.61 ng·mg-1) (p < 0.05). In non-infected mussels, ITA 

levels were very low compared to those of infected mussels, which were 1.34, 4.48, 0.82 

and 4.69 ng·mg-1 in mantle, gill, muscle and hepatopancreas, respectively (Fig. 10.3B).  

 

Figure 10.3 ITA levels in haemolymph and tissues of mussels exposed to Vibrio sp. 
(A) ITA level (ng ITA per 1 ml haemolymph) in mussel haemolymph at 
6, 18 and 60h hpi. (B) ITA level (ng ITA per 1 mg dried tissue) in mantle, 
gill, muscle and hepatopancrease at 18 hpi. Data are presented as mean r 
S.E. (n = 8). CON, control (non-infected); VIB, Vibrio sp.  
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10.3.5 ROS curve analysis of ITA in each tissue  

Classical univariate ROC curve analyses revealed that AUC of ITA very high in all 

tissues, which were equal to 1 in mantle, gill, muscle, hepatopancreas and equal to 0.891 

in haemolymph (Fig. 10.4). These results suggest that ITA could be an important and 

accurate biomarker for classification of infected and non-infected mussels.  

 

Figure 10.4 Univariate ROC curve analysis of ITA in mantle (A), gill (B), muscle (C), 
hepatopancreas (D) and haemolymph (E) of P. canaliculus mussels 
exposed to pathogenic Vibrio sp. at 18 hpi. AUC, are under the curve; MT, 
mantle; GI, gill; MS, muscle; HP, hepatopancreas; HE, haemolymph; 
CON, control; VIB, Vibrio sp. 

  

(A) (B)

(C) (D)

(E)
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10.4 DISCUSSION 

In previous studies, we detected the presence of ITA in larvae and different tissues of 

adult bivalves (Nguyen et al., 2018a, Nguyen et al., 2018b, Nguyen et al., 2018c, Young 

et al., 2017). In addition, the accumulation of ITA has been observed following pathogen 

challenges (Nguyen et al., 2018a, Nguyen et al., 2018b, Nguyen et al., 2018c, Young et 

al., 2017). In this study, we quantitatively measured ITA concentrations in 5 different 

tissues of mussels (haemolymph, mantle, gill, muscle and hepatopancreas) after challenge 

with Vibrio sp. The presence of ITA was recorded in all tissues irrespective of pathogen 

challenge and suggests that this metabolite is not a tissue-specific by-product. The ITA 

concentrations in haemolymph of infected mussels at 18 hpi was 174.36 ng·ml−1 (1.37 

μM), while it was around 40 ng·mg−1 (0.80 μM) in mantle, gill and hepatopancreas tissues 

and 11.61 ng·mg−1 (0.22 μM) in muscle. The ITA concentrations in infected mussels 

appear to be very low compared to ITA production in other organisms. For example, the 

fungus Aspergillus terreus biotechnologically produces up to 86 g·l−1 of ITA through a 

fermentation process (Cordes et al., 2015). The ITA concentration in mouse immune cells 

was 8 mM, which was two orders of magnitudes higher than that in human macrophages 

(∼60 μM) after LPS activation (Michelucci et al., 2013). However, whether these ITA 

concentrations measured in mussels’ tissues are sufficient to inhibit Vibrio growth is 

unknown. In a recent study, Nguyen et al. (2019b) found that addition of ITA into a Vibrio 

sp. culture could reduce bacterial growth at 3 mM ITA (390 mg·l−1) and completely 

inhibit bacterial growth at 6 mM ITA (792 mg·l−1). These concentrations are many orders 

of magnitude higher than ITA levels measured in mussels’ tissues. However, it’s not 

relevant to compare ITA concentrations across these two studies because one study is in 

vivo challenge while another one is in vitro exposure. In the tissue microenvironment with 

other innate immune pathways, ITA may inhibit bacteria more effective. In another study, 
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Nguyen et al. (2018b) observed a remarkable increase of ITA in mussel haemolymph on 

the second day after injection with Vibrio sp., when all mussels were seriously infected. 

This reaction was followed by the decrease of ITA on the sixth day when the animals 

showed signs of recovery (e.g., faster closing valves). Together, these studies suggest that 

marine mussels are able to produce ITA as an antimicrobial compound to support their 

immune system in response to pathogen infections.  Nevertheless, more research is 

needed to characterize the occurrence and amounts of ITA in different marine bivalves in 

a more natural infection mode (e.g., longer infection time, lower dose of bacteria) with 

different pathogenic Vibrio species or other marine pathogens. Such approaches may lead 

to the use of ITA as a biomarker for pathogen infection and health state of the host.  

In this study, we observed significant increases of many tricarboxylic acid (TCA) cycle 

intermediates (citric acid, fumaric acid, pyruvic acid, cis-aconitic acid, succinic acid, 

malic acid and 2-oxoglutaric acid) in different tissues of infected mussels along with the 

increase of ITA, suggesting the involvement of the TCA cycle in ITA biosynthesis (Fig. 

10.5). In Aspergillus terreus, ITA has been reported to be produced through the 

decarboxylation of cis-aconitic acid, a TCA cycle intermediate by the enzyme cis-aconitic 

acid decarboxylase (CAD), encoded by the gene cadA (Bentley and Thiessen, 1957, 

Bonnarme et al., 1995). A similar mechanism of ITA biosynthesis has been described in 

mammals (Michelucci et al., 2013). The catalysing of ITA from cis-aconitic acid in 

mammals is carried out by immune-responsive gene 1 protein (IRG1), which is the CAD 

homologue in mammals (Michelucci et al., 2013). Therefore, IRG1 protein in mammals 

is often referred as CAD/IRG1 and encoded by immuno-responsive gene 1 (Irg1) (Cordes 

et al., 2015, Michelucci et al., 2013). During the synthesis of ITA in A. terreus and A. 

niger., Bonnarme et al. (1995) observed the increased concentrations of TCA cycle 

intermediates, including pyruvic acid, oxaloacetic acid and citric acid. Hence, the 
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accumulations of ITA and other metabolites in the TCA cycle in this study suggests that 

ITA may be produced by decarboxylation of cis-aconitic acid from TCA cycle in these 

infected mussels, similarly to the biosynthesis of ITA in mammals and fungi, as described 

above. However, we did not characterize the Irg1 gene and its expression in this study, 

which needs to be investigated in future works.  

The Vibrio sp. exposure may lead to inflammatory responses and increased levels of ITA 

may be involve in anti-inflammatory reactions. Biosynthesis of ITA was found to be 

linked to inflammation in mammalian immune cells (Sugimoto et al., 2012). Recent 

studies have revealed that ITA is a crucial anti-inflammatory metabolite that disrupts the 

activity of succinate dehydrogenase (SDH), a crucial pro-inflammatory regulator (Mills 

et al., 2018). ITA is also required for the activation of the anti-inflammatory transcription 

factor Nrf2 (Mills et al., 2018). Succinate itself was reported as a metabolite signal of 

inflammation, which plays multiple functions in inflammation (Mills and O’Neill, 2014). 

In LPS-activated macrophages, Mills et al. (2016) observed the increased mitochondrial 

oxidation of succinate via SDH, which combined with the increase of MMP, drive 

mitochondrial ROS production. The increased mitochondrial ROS generation, in turn, 

causes inflammatory responses, which results in mitochondrial dysfunction (López-

Armada et al., 2013, Yue and Yao, 2016). In addition to succinate, citrate and NAD+ are 

known to be signal metabolites of inflammation (Mills and O’Neill, 2014). In this study, 

we observed the accumulation of ROS production, MMP, succinate and NADP_NADPH 

in haemolymph, elevation of citrate in mantle and muscle, and increases of succinate in 

mantle, muscle, hepatopancreas, suggesting the inflammatory response of mussels to 

Vibrio challenge. Together, these results indicate that the increased levels of ITA in all 

tissues may be the result of anti-inflammatory activity, which suggests a similar anti-

inflammatory process as that found in vertebrates.  
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Figure 10.5 Alterations of metabolites in TCA cycles and itaconic acid in adductor 
muscle tissue of mussels following Vibrio sp. challenge. The boxes and 
whisker plots demonstrate the relative abundances of metabolites after 
normalization.    

In line with the induction of ITA production, we observed the common alterations of 

other metabolites which may be involved in other immune responses of mussels to Vibrio 

infection. The disruption of the TCA cycle that leads to accumulation of intermediates 

has been reported in marine bivalves exposed to pathogens (Nguyen et al., 2018a, Nguyen 

et al., 2018b, Nguyen et al., 2018c, Young et al., 2017). In this study, we observed the 

accumulation of TCA cycle intermediates in all tissues along with the increase of lactic 

acid, which is an end product of anaerobic glycolysis (Bakker et al., 2013, Rogatzki et 

al., 2015). This determines the disturbance of aerobic TCA metabolism and a shift toward 

an anaerobic metabolism in infected mussels. Other common features across tissues were 

the increases of glutaric acid and trans-4-hydroxyproline, among others. Hydroxyproline 

is a major component of protein collagen and can be used as an indicator of collagen 

levels (Etherington and Sims, 1981, Weiss and Klein, 1969). The increase of 
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hydroxyproline in urine and/or serum is normally associated with the degradation of 

connective tissue (Dull and Henneman, 1963, Ofulue and Thurlbeck, 1988, Weiss and 

Klein, 1969). Hence, elevated levels of trans-4-hydroxyproline (an optically active form 

of 4-hydroxyproline having L-trans-configuration) in all tissues suggest the damage of 

these tissues caused by the infection of Vibrio sp. Glutaric acid is produced during the 

metabolism of some amino acids, including lysine and tryptophan. The abnormally high 

levels of glutaric acid in serum, brain and other tissues are associated with different kinds 

of inborn errors of metabolism, such as glutaric acidemia type I (Goodman, 1995). Hence, 

the high levels of this organic acid in all tissues of infected mussels may indicate toxic 

effects caused by Vibrio sp. infection.  

Tissue-specific metabolic responses of molluscs to pathogen infections have been 

described in several studies (Liu et al., 2014, Lu et al., 2017, Nguyen et al., 2018b). In 

this study, we note that there were many different trends in metabolite alterations among 

the tissues. For example, while fatty acids and amino acids were decreased in 

haemolymph samples, these metabolites increased in hepatopancreas samples. The 

decreased levels of amino acids and fatty acids in haemolymph may be due to the high 

energy demand of the host in response to the infection. Consistent with this study, 

previous challenge experiment of P. canaliculus with Vibrio sp. also revealed decreases 

in fatty acids and amino acids in haemolymph (Nguyen et al., 2018b). In contrast, there 

were increases of fatty acids and amino acids in hepatopancreas. Since the hepatopancreas 

is an integrated organ of immunity and metabolism (Rőszer, 2014), it may able to increase 

its fatty acid and amino acid syntheses to compensate for high energy demands during 

the infection. In agreement with this study, increased levels of many amino acids have 

been reported in hepatopancreas of mollusc during environmental stress (Liu et al., 2013, 

Lu et al., 2017, Lu et al., 2016). In addition, we observed many oxidative stress-related 
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metabolites in the metabolite profiles of mussels (Table 10.1).  While many of these 

metabolites increased in mantle and muscle tissues, they decreased in gills and 

haemolymph. The alterations of other metabolites in different tissues may be associate 

with others host immune responses which need future investigations. These findings 

suggest that there are tissue-specific immune responses of P. canaliculus to Vibrio sp. 

infections, which may be important to take into account when considering the role of ITA 

in the innate immune system.  

10.5 CONCLUSION  

To the best of our knowledge, this is the first study to report on the quantitative levels of 

ITA in different tissues of a marine bivalve species infected with a Vibrio species. This 

finding confirm that marine bivalves could produce ITA as an antimicrobial compound 

that support for their internal defence system. Hence, the level of ITA could be used as a 

biomarker of bacterial infections in marine bivalves. In addition to this antimicrobial 

function, ITA appeared to be involved in anti-inflammatory activities following infection 

and possibly other functions within the innate immune system which require future 

investigation. To this end, future studies could fruitfully explore this issue further by 

characterization the occurrence and amounts of this metabolite in marine bivalves in a 

more natural infection mode with different pathogenic Vibrio species or other marine 

pathogens. Due to its antimicrobial activity, ITA has the potential to be used as an 

antimicrobial agent to combat antibiotic-resistant strains of pathogenic microorganisms 

in marine bivalves. This is very much the key component in future attempts to test any 

negative effects of ITA for aquaculture species upon exposed in order to use it to control 

microorganisms in aquaculture systems.  
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Aquaculture is the fastest growing food-producing sector, with a current production of 

80.03 million tonnes and expected to reach 109 millions tonnes by 2030 (FAO, 2018). 

Molluscs are an important group for cultivation throughout the world, accounting for 

21.4% of the total aquaculture production in 2016 (17.1 million tonnes). However, the 

rapid and intensive development of molluscan aquaculture during the last decades has led 

to the emergence of diseases and mortality events in most global regions (Chapter 1). 

However, many knowledge gaps in molluscan immunology present a considerable 

challenge for disease management, environmental monitoring and overall aquaculture 

production. Hence, there is a need for new integrated approaches to unravel the 

complexities of molluscan immunology and the mechanisms that mediate biological 

pathways at the centre of pathogen-host-environment interactions. To this end, this thesis 

was designed to provide both cellular and molecular characterization of immune 

responses of mussels to stress stimulation using a gas chromatography-mass spectrometry 

(GC-MS)-based metabolomics approach and novel flow cytometry protocols. This 

chapter aims to discuss these tools and the insights gained from the application of these 

techniques in aquaculture research, as well as the challenges and major trends in current 

metabolomics research.  

11.1 METABOLOMICS 

GC-MS-based metabolomics is the backbone of this thesis, which was intensively used 

to characterize responses of mussels to pathogen infections and external stress 

stimulation. Changes in metabolite profiles of mussels upon biological and physico-

chemical challenges revealed many new insights into molluscan immunity.  

At the beginning of this work, tissue-specific metabolic responses of gills, 

hepatopancreases and haemolymph of mussels to Vibrio sp. were compared in order to 



 

313 Chapter 11 
 

select the target tissue/organ for the rest of the experiments in the thesis (Chapter 4). 

Significant differences in metabolite profiles and metabolic responses were observed 

between tissues, suggesting that it is important to have a careful consideration of tissue 

choices for immunological and metabolomics studies (Nguyen et al., 2018d). Among 

these tissues, haemolymph was chosen as the target tissue for the next experiments, due 

to the specific metabolic signals obtained from haemolymph and the possibility to 

integrate these data with flow cytometry results. Similarly, the metabolic and 

immunological responses of male and female mussels were compared following a Vibrio 

challenge (Chapter 5). Although clear differences in immunological responses were 

observed between males and females, metabolite profiles were not different between the 

two sexes (Nguyen et al., 2018c). It may be due to the possibility that annotated 

metabolites identified in mussel haemolymph which are mostly amino acid, organic acids 

and fatty acids may not involve sex-based differences. Other unidentified compounds or 

other type of compounds (e.g., sugars and their derivatives) may be responsible for such 

differences in immune responses between male and female mussels.    

In this thesis work, responses of haemolymph to external stressors were intensively 

characterized using the GC-MS-based metabolomics approach, which revealed, for the 

first time, several metabolic and immunological responses of mussel haemolymph to 

pathogen infections, lipopolysaccharides (LPS) stimulation and copper exposure.  These 

response pathways include oxidative stress, apoptosis, inflammation, antimicrobial 

activation, disturbance of tricarboxylic acid (TCA) cycle, amino acids metabolism, 

protein synthesis and other unknown pathways.  

Oxidative stress is an imbalance between reactive oxygen species (ROS) production and 

antioxidants in favour of ROS, which is a common denominator of the immune system 
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in response to toxicity or stress (Gagné, 2014). ROS production is well known to be 

regulated by glutathione (GSH) metabolism in vertebrates (Espinosa-Diez et al., 2015, 

Sies et al., 2017). However, the molecular pathways of ROS regulation is less known in 

molluscan haemocytes. Within this thesis, the alterations of many metabolites in GSH 

metabolism and the transsulfuration pathway, which provides cysteine for GSH synthesis 

were observed in the metabolome of mussel haemolymph exposed to Vibrio sp. and 

copper (Chapter 4, 5, 6 & 8). Furthermore, pathway analyses revealed both 

transsulfuration pathway and GSH metabolism active pathways of interest due to effects 

of stress stimulation (Chapter 5, 6 & 8). These results suggest the involvement of GSH 

metabolism in regulating elevated ROS production in mussel haemocytes and provide 

insights into the pathway of ROS-regulation in bivalve immunity. 

Apoptosis is programmed cell death which is conserved across taxa with some unique 

features in molluscs (Romero et al., 2015). Using the metabolomics approach, significant 

alterations of many metabolites were observed in Cu2+-exposed haemocytes (Chapter 8). 

Based on biological functions of these metabolites and pathway analysis, it is proposed 

that the processes of oxidative stress and apoptosis in Cu2+-exposed haemocytes may be 

involved in the transsulfuration pathway, glutathione metabolism and taurine metabolism, 

as described in Chapter 8 (Nguyen et al., 2018b).  

Inflammation is a complex biological response of tissues to harmful stimuli (i.e. pathogens 

and irritants), which is considered to be a critical first line of defense for both vertebrates and 

invertebrates (Rowley, 1996).  Succinic acid, citric acid and itaconic acid (ITA) are known 

signal metabolites of inflammation (Mills and O’Neill, 2014, Sugimoto et al., 2012). In 

addition, gamma-aminobutyric acid (GABA) is involved in the suppression of immune-

mediated pro-inflammatory reactions by reducing the production of pro-inflammatory 
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cytokines (CgIL-17 and CgTNF) and immune effectors (CgSOD and CgBPI) (Li et al., 

2016). Furthermore, a recent study revealed that ITA is a crucial anti-inflammatory 

metabolite (Mills et al., 2018). Hence, increases of these metabolites in mussels exposed 

to Vibrio sp. may suggest inflammatory and anti-inflammatory responses in infected 

mussels (Chapter 6 & 11). The findings from this thesis suggest that a similar anti-

inflammatory process to that of vertebrates may exist in marine molluscs.  

The massive accumulation of TCA intermediates (e.g., citric acid, succinic acid, fumaric acid 

and malic acid) and ITA as a consequence of the interruption of the TCA cycle were reported 

in mammalian macrophages following immune stimulation  (Jha et al., 2015). In metabolite 

profiles of Vibrio-exposed haemolymph, increases of many TCA intermediates (e.g., succinic 

acid, fumaric acid and malic acid) and ITA were observed (Chapter 5 & 6). Lactic acid, which 

is the end product of anaerobic glycolysis (Bakker et al., 2013, Rogatzki et al., 2015) was also 

elevated in haemolymph of Vibrio-exposed mussels (Nguyen et al., 2018c). These findings 

suggest the disruption of the TCA cycle and a switch towards anaerobic respiration in mussel 

cells by Vibrio infection. These studies suggest that interruption of the TCA cycle as a 

consequence of pathogenic infections may be a similar mechanism across diverse taxa.  

Marine molluscs are known as important sources of bioactive secondary metabolites that 

have immunological properties and antimicrobial activities (Grabley and Thiericke, 1999, 

Pati et al., 2015). ITA is a well-known compound with antimicrobial functions (Cordes 

et al., 2015). In recent discoveries, ITA was revealed to be a mammalian antimicrobial 

metabolite (Cordes et al., 2015). In this thesis, the presence of ITA was reported in 

different tissues of mussels, and accumulations of ITA were observed following pathogen 

challenges, supporting the antimicrobial function of this metabolite (chapter 4, 5 & 6). 

Subsequently, effects of ITA on marine Vibrio pathogens and its role in the molluscan 
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immune system were intensively investigated in chapter 9 and 10, respectively, which are 

some of the first reports to date on the antimicrobial role of ITA in marine invertebrates.  

The alterations of other metabolites in the profiles of mussel haemolymph and other 

tissues suggest the involvement of other interactions between host immune cells and 

pathogens (Chapter 4, 5, 6, 10). For example, decreases of a number of amino acids in 

haemolymph of Vibrio-infected mussels suggest disturbance of amino acid metabolism 

and protein biosynthesis by the pathogen (Nguyen et al., 2018d, Nguyen et al., 2018e). In 

contrast, amino acids levels were increased in hepatopancreas upon infection, suggesting 

that a metabolic shift in the hepatopancreas can fuel immune responses in molluscs 

(Nguyen et al., 2018d). Decreases of fatty acids in different tissues indicate the high 

energy demands of bivalve immune responses (Nguyen et al., 2018d).  

Metabolomics is a powerful tool for biomarker discovery and early diagnosis of diseases 

thanks to its specificity and sensitivity (Monteiro et al., 2013). This is based on the fact 

that metabolites are important players in biological processes and important indicators of 

physiological or pathological states of organisms (Monteiro et al., 2013). However, there 

is currently no metabolite biomarker available for disease diagnostics in marine molluscs. 

Using the metabolomics approach, this thesis identified and reported on a number of 

candidate metabolites in marine bivalves following experimental immune stimulation. 

These metabolites have the potential to be biomarkers for immunological processes in 

marine bivalves, such as oxidative stress (e.g., glutathione), apoptosis (e.g., alanine, 

glutamic acid), inflammation (e.g., succinic acid), antimicrobial activity (e.g., ITA), 

tissue degradation (e.g., hydroxyproline) and anaerobic metabolism (e.g., lactic acid). 

Therefore, future investigations on these metabolites are essential to understand their role 
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in the biology and immunology of molluscs and to use them as valuable biomarkers for 

health assessment and disease diagnosis.  

Among candidate biomarkers, ITA is a metabolite of interest for biomarker investigation 

due to its specific role in the bivalve innate immune system (Chapter 9 & 10). The 

accumulation of ITA in different host tissues has been observed in challenge experiments 

of mussels with Vibrio sp., suggesting the antimicrobial role of this metabolite as marine 

mussels are able to produce it to inhibit bacterial infection (Nguyen et al., 2018c, Nguyen 

et al., 2019b, Nguyen et al., 2018d, Nguyen et al., 2018e). To confirm this, we cultured 

Vibrio sp., supplemented with different concentrations of ITA and we observed the 

complete inhibition of Vibrio growth by ITA at 6 mM (Nguyen et al., 2019b). This was 

the first study that reported the antimicrobial activity of ITA against a Vibrio bacterium. 

Subsequently, we quantitatively characterized the levels of ITA in different tissues of 

mussels following Vibrio challenge (Chapter 10). The metabolomic profiles revealed 

insights into the role of ITA in antimicrobial activities, inflammation and possibly other 

functions. Together, this thesis confirms that marine mussels are able to produce ITA to 

support their immune system against bacterial infection and the level of ITA could be 

used to access the health status of mussels. Furthermore, it is likely that ITA has the 

potential to be used as an antimicrobial agent to combat antibiotic-resistant strains of 

pathogenic microorganisms in marine bivalves.  

11.2 FLOW CYTOMETRY 

Flow cytometry (FCM) is a powerful tool used in immunological studies of molluscan 

haemocytes, as discussed in Chapter 3. Within this thesis, several FCM assays were 

developed for measurements of cell health parameters of mussel haemocytes, including 

cell count and viability, oxidative stress (via ROS production) and apoptosis. Apoptosis 
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was measured by three different assays: annexin V, caspase 3/7 activation and 

mitochondrial transmembrane potential (Δψm). The common features of these assays are 

short incubation time and measurement time, and a small sample volume is required. 

Among these assays, cell count and viability only need 5 minutes for incubation with a 

dye prior to measuring on the MuseTM Cell Analyzer. Incubation time for other assays 

range from 20-30 minutes. Within this thesis, these protocols were successfully used to 

characterize the changes in cell concentration, viability, oxidative stress and apoptosis of 

mussel haemocytes in vitro or in vivo exposed to Vibrio sp., LPS and copper. The FCM 

results provide insights into molluscan immunity and support for metabolomics results at 

the cellular level. The protocols developed in this thesis are now being applied to 

characterize the immune parameters of haemocytes in other molluscan species in our lab, 

such as abalone,  oysters, geoducks and other clams.  

Identification of suitable anticoagulants and cell treatment methods in order to maintain 

cells in good condition after withdrawing is critical for FCM analyses. Several solutions 

such as Alserver's solution (AsS), modified Alserver's solution (MAS) and artificial 

seawater (ASW) have been successfully used to prevent clumping of haemocytes from 

marine bivalves (Gagnaire et al., 2006, Zhou et al., 2017). In addition to fresh cells, other 

authors have centrifuged cells and re-suspended them in modified Leibovitz L15 (ML15) 

medium to preserve morphology and viability of haemocytes (Jiang et al., 2016, Wang et 

al., 2017). At the beginning of this thesis, we compared the effects of different anti-

coagulant methods on mussel haemocyte viability, including cold ASW, MAS (22.5 g·l−1 

of NaCl, 20.8 g·l−1 of glucose, 8 g·l−1 of sodium citrate [Na3C6H5O7], 3.36 g·l−1 of EDTA) 

and ML15. The results clearly showed higher cell viability in ASW than controls and 

other treatments over 24 h after incubation (unpublished work), suggesting that ASW is 

the most suitable reagent for maintaining the viability of mussel haemocytes. In addition, 
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the use of anticoagulant for molluscan haemocytes is thought to be toxic to molluscan 

haemocytes (Fryer and Adema, 1993, Hinzmann et al., 2013). Indeed, MAS can inhibit 

releasing of ROS in mussel (Mytilus galloprovincialis) haemocytes by chelating calcium 

ions, so it was not recommended as an anticoagulant for studies relating to reactive 

oxygen metabolites in bivalves (Torreilles et al., 1999). The aggregation of mollusc 

haemocytes could be reduced or prevented by keeping haemocytes on ice or a 

temperatures of 4°C (Anderson et al., 1992, Auffret and Oubella, 1997). Hence, in our 

recent studies, we simply used cold filtered ASW to mix with mollusc haemolymph in 

order to prevent cell clotting (Alfaro et al., 2019, Nguyen et al., 2018b, Nguyen et al., 

2019a, Nguyen et al., 2018c, Nguyen et al., 2018e). This method requires a minimal 

sample manipulation (no lyse and no cell wash) to mimic physiological conditions.  

11.3 COMBINED APPROACH OF METABOLOMICS AND FLOW 

CYTOMETRY 

This research provided the first report to date on the combination of molecular analyses 

using GC-MS-based metabolomics and cellular analyses via flow cytometry in marine 

organisms. This is based on the principle that FCM works well as an upstream 

phenotyping tool to analyse the physical and chemical characteristics of cells which can 

be linked with downstream low-weight molecules of gene expression and cellular 

processes. This combined approach was successfully used to gain information on immune 

responses with the main focus on oxidative stress and apoptosis of mussel haemocytes to 

Vibrio sp. (Chapter 4, 5, 6, 10), LPS (Chapter 7) and copper (Chapter 8). As an example, 

FCM and GC-MS metabolomics were employed to characterize effects of copper on 

mussel haemocytes (Chapter 8). The in vitro experimental exposure of mussel 

haemocytes to copper showed the increase of oxidative stress biomarkers and ROS, along 

with the accumulation of glutathione and other metabolites in the glutathione pathways, 
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suggesting the role of glutathione in ROS regulation. Similarly, increases of caspase 3/7 

activation and Δψm loss which are apoptosis hallmarks were found to be linked with the 

increase of alanine and decrease of glutamic acid in the taurine metabolism, which has a 

key role in apoptosis regulation (Nguyen et al., 2018b). Hence, these examples 

demonstrate the significant benefits of the combination of FCM and metabolomics which 

could expand the number of cell and molecular markers and produce a detailed picture of 

immune responses within cells. Such approach could be expanded to combinations 

between multiple FCM parameters and other omics (e.g., transcriptomics, proteomics) 

for more comprehensive studies in the future.  

11.4 CHALLENGES AND PERSPECTIVES OF METABOLOMICS 

IN AQUACULTURE AND MARINE SCIENCE 

Recent advances in modern analytical tools and bioinformatics have led to the rapid 

growth of metabolomics. However, metabolomics is still the newest addition to the omics 

disciplines, which has many challenges for applications, especially in marine science.  

The first challenge is metabolite identification. Since metabolite databases are not 

completely available, unknown metabolites are often observed, and their analysis is 

limited, which represents an obstacle for pathway analysis and biological interpretation. 

As an example, the number of annotated metabolites in this thesis were less than 100 

metabolites from around 300 to 400 components. The high number of unknown 

compounds leaves the door open for future investigations to build more comprehensive 

libraries of bivalve metabolomes.  

Another major challenge in targeted metabolomics research is the biological validation 

of markers. This process would require a large set of individual samples (hundreds of 

specimens) to assess the specificity and sensitivity (both analytical and clinical) of a given 
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biomarker (Horvatovich and Bischoff, 2010). Unfortunately, these analyses are costly 

and require a lot of effort. Furthermore, a range of high throughput targeted analytical 

methods (e.g., LC-tandem mass spectrometry) may be required to identify potential 

biomarkers (Horvatovich and Bischoff, 2010). Inter-laboratory reproducibility of 

biomarkers is another challenging task for biomarker validation (Nagana Gowda and 

Raftery, 2013, Roberts et al., 2012).  

Metabolomics is relatively cheap compared to other omics approaches (e.g., 

transcriptomics, proteomics). However, large-scale metabolomics studies can be costly 

and complex to interpret. The relatively high-costs of the instruments required alone make 

metabolomics inaccessible in many laboratories, especially in developing countries.  

Other challenges remaining in the field of metabolomics include complex data analysis 

and issues of sample-to-sample variability, which require more streamline processes 

before this approach can become a routine analytical tool in clinical practices (Riekeberg 

and Powers, 2017). Nevertheless, there is no doubt that metabolomics will continue to 

make important contributions to all aspects of life sciences, including marine ecology and 

aquaculture.  

Based on the limitations of this thesis, it is envisioned that future metabolomics research 

in molluscan immunology, as well as in marine science, should combine different 

derivatization techniques, analytical platforms and omics approaches. To this end, there 

is a need to combine different derivatization techniques to expand the detected 

metabolites. For example, silylation derivatization using trimethylsilyl derivatives  

(TMS) is most efficient for sugars and their derivatives (sugar alcohols, amino sugars, 

and others) but unstable for many amino acids and some organic acids (Villas-Bôas et al., 

2011). In contrast, alkylation derivatization using methyl chloroformate (MCF) can result 
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in the analysis of over a hundred amino acids and non-amino acids (Smart et al., 2010). 

Hence, the use of silylation and alkylation in parallel will maximize the number of 

metabolites in the sample profiles. Within this thesis, only MCF derivatization was 

employed. Hence, the combination of both derivatization methods needs to be explored 

in future studies. 

As the goal of metabolomics is to identify as many metabolites as possible, it is a good 

strategy to combine different analytical platforms (e.g., GC-MS, LC-MS, NMR). Such 

multi-platform metabolomics approaches are necessary for a more comprehensive 

metabolome coverage. However, this approach is more expensive compared to single 

platform analyses and difficult for data interpretation.   

Currently, there is an increasing interest in integrated multi-omics, which can be more 

powerful, especially when large datasets are available. This approach allows multi-

faceted insights into complex biological processes. Hence, marine scientists may take 

advantage of this emerging approach to greatly advance our understanding of complex 

host–pathogen–environment interactions, such as during mass mortality outbreaks of 

wild and cultivated stocks. This integrated approach is also more likely to lead to the 

identification of  relevant biomarkers. However, multi-omics is still at the developmental 

stage and is facing big challenges due to lack of easy-to-use workflows to integrate big 

data obtained from different omics platforms. To this end, future advances in 

bioinformatics and AI-based algorithms are expected to bridge the gap and provide 

effective tools for multi-omics data integration in the coming years.   
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Metabolomics is one of the youngest omics technologies. Although metabolomics has 

been well-established in current clinical practices, its application in marine science or 

aquaculture is still in a very early stage. To this end, this thesis has successfully 

demonstrated the use of metabolomics as a powerful tool for immunological studies of 

molluscs. Within this thesis, molecular pathways underlying the responses of bivalve host 

to pathogens and environmental stress have been described and many candidate 

biomarkers involved in these processes have been identified. These findings provide 

perspectives for future applications of metabolomics for validation of biomarkers and 

more comprehensive understanding of molluscan diseases which could contribute to the 

development of disease management strategies in aquaculture and wild stocks. This thesis 

also reported, for the first time, the antimicrobial role of itaconic acid as an endogenous 

antimicrobial metabolite of mussels that could inhibit Vibrio’s growth. This suggests that 

itaconic acid could have potential to be used as an antimicrobial compound for antibiotic 

resistant bacteria in aquaculture and level of itaconic acid could be a potential biomarker 

of pathogen infection or health status of the host. Hence, there is a need for future studies 

with comprehensive experiment designs with a large set of individual samples to validate 

this biomarker in marine bivalves. It is important to investigate the occurrence and 

amounts of this metabolite in other farmed bivalves and other aquaculture species in a 

more natural infection setting with different pathogenic Vibrio species and other marine 

pathogens.  

In this thesis, only gas chromatography-mass spectrometry (GC-MS)-based 

metabolomics based on alkylation derivatization using methyl chloroformate (MCF) was 

applied which could identify over a hundred amino acids and non-amino acids. However, 

other types of metabolites such as sugars and their derivatives (sugar alcohols, amino 

sugars and others) could not analysed with this method. Future research should consider 
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the combination of different extraction/derivatization methods and analytical platforms 

in order to obtain larger data set and more diverse metabolites of interests. In addition, 

immunological studies of molluscs should combine metabolomics approaches with other 

omics (e.g., transcriptomics, proteomics, lipidomics) to create integrated multi-omics 

approaches. Such kind of approaches allow multi-faceted insights into complex biological 

processes and may lead to novel discoveries and development of new diagnostic tools 

which could help in disease management in mollusc aquaculture and environmental 

monitoring. Overall, it is envisioned from this thesis that there will be an emergence of 

metabolomics applications in the aquaculture and marine biology in the coming years.   
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