
CuWITH: A Curiosity driven Robot for Office
Environmental Security

Sean William Gordon

A thesis submitted in partial fulfilment for the degree of Master of Computer and

Information Science

October 1, 2009

School of Computing and Mathematical Sciences

Primary Supervisor: Dr. Paul S. Pang

Secondary Supervisor: Prof. Nikola Kasabov

ABSTRACT

The protection of assets is an important part of daily life. Currently this is done

using a combination of passive security cameras and security officers actively pa-

trolling the premises. However, security officers, being human, are subject to a

number of limitations both physical and mental. A security robot would not suffer

from these limitations, however currently there are a number of challenges to imple-

menting such a robot. These challenges include navigation in a complex real-world

environment, fast and accurate threat detection and threat tracking. Overcoming

these challenges is the focus of my research.

To that end a small security robot, the CuWITH or Curious WITH,has been de-

veloped and is presented in this thesis. The CuWITH utilises a programmable navi-

gation system, curiosity-based threat detection and curiosity-driven threat tracking

curiosity to protect a real office environment.

In this thesis we will first discuss the CuWITH’s system design in detail, with a

particular focus on the components and the architectural strategies employed. We

then move to a more detailed examination of the mathematical underpinnings of

the CuWITHs curiosity based threat detection and curiosity driven threat tracking.

The details of the CuWITH’s navigation will also be explained.

We will then present a number of experiments which demonstrate the effective-

ness of the CuWITH. We show that the programmable navigation of the CuWITH,

although simple, allows for easy modification of the patrol path without risk to the

stability of the system. We will then present the results of both offline and online

testing of the CuWITH’s curiosity based threat detection. The reaction time and

accuracy of the CuWITHs curiosity driven threat tracking will also be illustrated.

As a final test the CuWITH is instructed to execute a patrol in a real office envi-

ronment, with threatening and non-threatening persons present. The results of this

Abstract 3

test demonstrate all major systems of the CuWITH working together very well and

successfully executing the patrol even when moved to a different environment.

CONTENTS

List of Publications and Demonstrations . 10

Acknowledgements . 12

1. Introduction . 13

1.1 Security in an Office Environment . 13

1.2 Challenges for Developing a Mobile Security Robot 14

1.2.1 Security Patrol Navigation . 15

1.2.2 Threat Detection . 16

1.2.3 Threat Tracking . 18

1.3 Objectives of this Research . 18

1.4 Organization of the Thesis . 19

2. Literature Review and Motivation . 21

2.1 Security Robots that have been presented in the Literature 21

2.1.1 iBotGuard: An Internet-based Intelligent Robot Security Sys-

tem using Invariant Face Recognition against Intruder 21

2.1.2 Active People Recognition using Thermal and Grey Images

on a Mobile Security Robot 23

2.1.3 Has something changed here? Autonomous difference detec-

tion for security patrol robots 25

2.1.4 Other Security robots that have been Developed 26

2.1.5 Motivation of CuWITH Development 27

2.2 Curiosity Models and their application to the CuWITH 28

2.2.1 Uncertainty-based Curiosity Modelling 28

2.2.2 Curiosity Modelling based on Prediction Error 30

Contents 5

2.2.3 Curiosity Modelled using Multi-Agent cILDA 31

2.2.4 Motivation for CuWITH’s Curiosity Model 32

3. The Design of the CuWITH System . 34

3.1 Design Strategy . 34

3.2 Design of the CuWITH System . 36

3.3 Core Components of the CuWITH 38

3.3.1 Curiosity Based Threat Detection 38

3.3.2 Curiosity Driven Threat Tracking 39

3.4 Ancillary Components of the CuWITH 40

3.4.1 Programmable Patrol Navigation 40

3.4.2 Object Extraction . 41

3.4.3 Security Manager . 41

3.4.4 Global Thread Interface . 42

3.4.5 Other Components . 42

3.5 CuWITH Process Control . 44

3.5.1 Execution Process . 44

3.5.2 Thread Synchronization . 45

4. Curiosity Based Threat Detection and Curiosity Driven Threat Tracking . 48

4.1 Feature Extraction for Curiosity Modelling 48

4.2 Curiosity Modelling for Threat Detection 49

4.3 Curiosity Driven Threat Tracking . 51

4.4 Implementation of Threat Detection and Tracking 55

4.5 Summary . 56

5. Ancillary Components of the Security Robot System 59

5.1 Programmable Patrol Navigation . 59

5.1.1 Motion Control for the CuWITH 60

5.1.2 An Example of Programmable Patrol Navigation 62

5.1.3 Advantages of Programmable Patrol Navigation 64

5.2 Object Extraction Method . 65

Contents 6

6. Experiments and System Evaluation . 66

6.1 Results of the Programmable Patrol Navigation Testing 66

6.2 Evaluation of Threat Detection . 70

6.2.1 Offline Threat Detection Experiments 71

6.2.2 Online testing in an Office Environment 72

6.3 Evaluation of Curiosity Driven Threat Tracking 80

6.4 Unified System Testing . 82

6.5 Summary . 85

7. Conclusion and Future work . 87

References . 90

Appendix 94

A. Glossary . 95

B. The Specification of the WITH Platform 96

LIST OF FIGURES

2.1 iBot robot used for the iBotGuard robot security system. 22

2.2 The ActivMedia Peoplebot robot used as the experimental platform

by Treptow et al. (2005). 23

2.3 The security robot developed by Andreasson et al. (2007) 25

3.1 Structure of the CuWITH system . 37

3.2 Process diagram of the CuWITH system 46

4.1 The 3D representation of the office environment space used for threat

tracking . 51

4.2 The computation of the objects horizontal displacement jdiff using

the center of the camera image wmid and the center of the object wobj 52

4.3 This illustrates how the distance between the robot and an object is

determined - assuming the size of the object is constant, its apparent

size is proportional to its distance from the robot. 53

5.1 The turn θ CuWITH is required to execute to move to point C, after

moving from point A to point B . 60

5.2 The 8 figures represent different turning situations the robot could

encounter whilst patrolling. In each diagram the robot has moved

from point A to point B and needs to turn to face point C. 61

5.3 Example patrol path for the CuWITH 63

5.4 Procedure for determining robot instructions to execute the patrol

path in Fig. 5.3 . 63

List of Figures 8

6.1 The simple patrol path that was used to test the CuWITH’s pro-

grammable patrol navigation can be seen in the left figure. The ac-

tual path CuWITH took when it performed this patrol path can be

seen to the right . 67

6.2 Patrol path script to execute the designed patrol path in Fig. 6.1a . . 67

6.3 The left figure is the more complex patrol path design that was used

to further test the reliability and robustness of the CuWITH’s nav-

igation. The actual path taken by CuWITH when performing this

patrol path can be seen to the right. 68

6.4 Patrol path script to execute the designed patrol path in Fig. 6.3a . . 68

6.5 Experimental design for the movement reliability tests. The CuWITH

starts at a pre-set initial position and is instructed to move forward

90cm. Two values are measured to determine the CuWITH’s devia-

tion from the path, the x and y difference (sx, sy) between the robots

actual final position and its optimal final position 69

6.6 Results of the path deviation experiment. Each point represents one

experiment, 48 experiments are represented in the graph (two outliers

were excluded) . 69

6.7 The environment of the subjects when obtaining the test data. In

this example an unknown person is present in the environment. . . . 73

6.8 The results of the initial curiosity experiment. The x-axis of this

graph shows the frame count (each frame is captured and processed

by CuWITH in real time). The y-axis displays the raw curiosity value

computed for each frame for both the known and unknown subject . 73

6.9 The results of Fig. 6.8 when the spread over 10 sequential curiosity

values is considered. The y axis displays the curiosity value while the

x-axis displays the frame count. Each box plot displays the spread of

the previous 10 curiosity values, with the box being bounded by the

75th and 25th percentiles. 75

List of Figures 9

6.10 Comparison of the CuWITH’s threat detection performance under

different subject poses and locations. 77

6.11 Comparison of a known person facing to the left and to the right of

the robot. As can be seen, the image on the right is more brightly lit

than the image to the left, despite the fact that the subject and the

CuWITH were in the same location for both images 79

6.12 Results of the threat tracking experiment. The right figure shows the

actual movement of the unknown person, the left figure illustrates

how the CuWITH moved to follow the persons movements 80

6.13 This series of frames shows the reaction time of the CuWITH. Each

frame has a cross (and a set of x,y coordinates) marking the location

of the CuWITH. At tinit the person begins to move to the CuWITH’s

right, 401.5ms after the person starts to move CuWITH detects the

movement and begins to follow the person to the right 81

6.14 The environment used for unified system testing 83

6.15 The first patrol of the robot during the full system test. This patrol

was recorded on video and screen captures at various points of the

patrol are displayed here. A known person was presented to the

CuWITH during this patrol (see Fig. c), as expected the CuWITH

ignored this person and continued its patrol. 83

6.16 The second patrol of the robot during the full system test. As with the

first patrol this was recorded on video and screen captures at various

points of the patrol are displayed here. This time an unknown person

was presented to the CuWITH (see Fig. c). The CuWITH proceeds

to follow the person for several seconds Fig. (c - f) before returning

to the patrol due to the artificial timeout 84

B.1 The WITH robot that the CuWITH was developed on 96

LIST OF TABLES

6.1 Results of the Offline Experiments . 72

B.1 WITH robot specification . 97

LIST OF PAPERS AND DEMONSTRATIONS

• Sean W. Gordon, Shaoning Pang, Ryota Nishioka, Nikola Kasabov and Takeshi

Yamakawa, Vision Based Mobile Robot for Indoor Environmental Security,ICONIP

2008, Part 1, LNCS 5506, pp. 959-966, Springer-Verlag Berlin Heidelberg 2009

• Demonstration at the ICONIP conference 2008, The CuWITH successfully

completed several security patrols over a hour.

• Demonstrated on the Sunrise program on TV3. Online http://tinyurl.com/

cn3mfk, last accessed 7th May 2009

ATTESTATION OF AUTHORSHIP

I hereby declare that this submission is my own work and that, to the best of

my knowledge and belief, it contains no material previously published or written

by another person (except where explicitly defined in the acknowledgements), nor

material which to a substantial extent has been submitted for the award of any other

degree or diploma of a university or other institution of higher learning

Sean William Gordon

ACKNOWLEDGEMENTS

I am grateful to my supervisor Dr. Paul Pang for his constant help and support

during this research. Cooperation with him was highly motivating and I benefited

greatly from his careful advice.

I’d like to thank Kitakyushu Institute of Technology, Japan, for generously sup-

porting this research, in particular by supplying the WITH robot. I especially want

to thank Ryota Nishioka for the time and effort he spent helping to develop the

CuWITH, and for his patience in answering my questions on the WITH.

I would also like to thank Gary Chen for his help in developing the threat detec-

tion of the CuWITH. I thank Stefan Schliebs for his insightful advice on research

and technical writing. In addition I would like to thank all KEDRI staff especially

Prof. Nikola Kasabov, Joyce D’Mello and other staff who were always there to help

me complete my research.

My thanks also go to the many people in and around the KEDRI offices who lent

me their faces during this research, I could not have done this without their help.

My special thanks goes to my family. The relaxation time I could spend with

them and the support they gave me has been essential during this research.

1. INTRODUCTION

1.1 Security in an Office Environment

Security is an important factor in our everyday lives, especially when it comes to

the security of an office environment such as a bank. An office can hold valuable

property such as desktop computers and laptops. The loss of such items can cost the

business time and money. More importantly, offices also commonly hold confidential

client information. If this is stolen, it can cost businesses the trust (and custom) of

clients. The protection of such areas is therefore extremely important, requiring a

security system which can reliably protect an office 24 hours a day, 7 days a week.

For security in a office environment, two types of security systems are popularly

used: stationary security camera monitoring and patrolling mobile security agents.

Security cameras are passive security agents that are often installed in key locations

of the office. These cameras are then constantly monitored in a security room. If an

intruder is seen through one of the security cameras an alarm will be raised. Mobile

security agents, on the other hand, are active security agents that regularly patrol

the office searching for threats. Normally human security guards are used in this

role. If during their patrol they detect an intruder, they can take immediate action

to apprehend the intruder. Each system has its advantages, security cameras can

cover a large area of the office, while a security agent is limited to their immediate

surroundings. However, security cameras suffer from blind spots, areas of the office

which are not in the line of sight of any camera. Furthermore, unlike mobile security

agents, security cameras cannot immediately take action to apprehend an intruder.

In the presented research, mobile security agents are of particular interest. They

are required to regularly patrol the office, actively search for threats and act intel-

ligently and quickly if a threat is detected. Human security guards satisfy these

1. Introduction 14

requirements, however they have several limitations:

• Human security guards can suffer from physiological conditions such as fatigue

and illness. Both can result in the security guard being less alert, decrease their

stamina and strength and (in the case of fatigue) can negatively affect their

mental acuity, resulting in poor decision making.

• The quality of the service that a human security guard provides can vary

greatly both between different individuals and between one day and the next

for a single individual

• Human security guards can also be corrupt and compromise the safety of the

office for their own personal gain.

• Human security guards have limited threat detection capabilities, restricted

to their sense of sight and hearing. The sense of sight in particular is limited,

its effectiveness is severely reduced in low-light conditions and humans cannot

see beyond a specific viewing arc. Equipment can be developed to overcome

this issue, however this equipment is often either expensive or difficult to use.

Although today’s robot technology is not advanced enough, yet, to replace human

security guards, mobile security robots have the potential to overcome some of these

difficulties. A robot will not get sick or fatigued. It can be relied on to provide

the same quality of security at all times and cannot be tempted to compromise the

offices security for personal gain. Security robots can also be upgraded to utilise a

variety of different sensors, including infra-red and omnidirectional cameras.

1.2 Challenges for Developing a Mobile Security Robot

When developing a mobile security robot, there are three major challenges which

must be addressed. These are security patrol navigation, threat detection and threat

tracking.

1. Introduction 15

1.2.1 Security Patrol Navigation

Navigation in an office environment is a complex challenge. Objects (such as tables)

can have unusual shapes and have their locations and orientation modified. The

structure of the office can include a variety of different rooms of different shapes

and sizes. The robot often will suffer from undesirable deviations in its path due to

systematic errors (such as one wheel being larger than the rest) and non-systematic

errors (such as the wheel slipping) (Borenstein, Everett, Feng, & Wehe, 1997; Filliat

& Meyer, 2003). Despite these confounding factors a security robot must be able

to patrol this environment regularly and reliably. The most obvious issue is that of

localisation: how can the robot determine where it is located in the office? There are

a number of methods that can be used, including odometry, landmark navigation,

active beacons and map matching (Borenstein et al., 1997).

Odometry is the simplest of these methods. If the robot knows its starting

location and heading, it can estimate where it is (relative to the starting location) at

any time by integrating its velocity with respect to time. This localisation method is

very simple, fast and has been applied successfully in the past (Chenavier & Crowley,

1992), however it is particularly sensitive to systematic and non-systematic errors

(Filliat & Meyer, 2003; Borenstein et al., 1997). As a result it is only accurate over

short periods of time, eventually the error accumulates and renders the odometry

position meaningless.

Landmark navigation is another method of localization that uses distinct features

in the environment to determine the robots location. This can take a variety of

forms, for example a yellow square may be placed at a specific position on a wall.

If the robot detects this square, it can can match it to a location on a map, and so

the robot can determine its approximate position. This has been used successfully

in security robots that have been developed previously (Shimosasa et al., 2000),

however the use of this method requires landmarks to be placed in the environment.

This makes moving the robot to a different environment more difficult and costly,

also it is preferable that the environment does not need to be modified for the

security robot to navigate.

1. Introduction 16

The use of active beacons is a method of localization which has been used to

localize security robots (Kim, Kim, Lee, & Lee, 2006; Borenstein et al., 1997).

It involves using several transmitters in the environment to determine the robots

location. If the transmitters are located at unique, fixed locations, the robot can

determine its position relative to the transmitters. This method of localization is

reliable and accurate, however it suffers from the same issues as landmark navigation,

namely the difficultly and cost of installing the beacons, and that the environment

needs to be modified.

Map matching is a more complex localization method. It is a two step process,

the robot build a map of its current surroundings using its sensors, then attempts

to match this local map with a global map of the environment. If a match is found,

the robots location has been determined. Map matching has an advantage over

landmark navigation and active beacons in that it does not require the environment

to be modified. However matching the local map to the global map is difficult task.

The local map must be extremely accurate, and if the environment is dynamic or

has a lack of easily distinguishable features map matching can fail. Map matching

has been successfully used for robot navigation in simulation (Rencken, 1993) and

on a real robot (Thrun, 1998; Lee, Chung, & Kim, 2003).

1.2.2 Threat Detection

Threat detection is the core of any security robot. There are several different tech-

niques that can be used to detect threats to the office that the robot is protecting.

The simplest approach is to detect any people in the office (often using an infra-

red sensor or camera). If a person is detected, an alarm is raised. This technique

cannot work unless there is a guarantee that there should be no people present in

the environment - in this situation, any person detected in the environment can be

confirmed as an intruder. However if this can be guaranteed (for example, if the

office closes between the hours of 5.30PM and 8.30AM) then, because it is so simple,

this method of threat detection is robust and reliable. A number of security robots

use this technique (Chien, Su, & Guo, 2005; Luo, Lin, Chen, & Su, 2006; Shimosasa

1. Introduction 17

et al., 2000). However, even given this, a security robot that relies on such simple

threat detection technique cannot provide protection to an office while there are

people working in it. This is a severe limitation.

A more advanced threat detection method is face recognition. In this method,

the robot is trained to recognize a number of people that are allowed in the office.

If the robot detects a face during its security patrol, it will immediately attempt to

recognize this face. If it fails, then the face is classified as a threat and the robot

will take some corrective action. Face recognition can be extremely reliable, robust

to both the lighting and pose of the face (Liu, Wang, & Feng, 2005). However such

an accurate face recognition system is very computationally demanding, and may

require powerful external computers to perform in real time (Liu et al., 2005). Face

recognition can be performed using more limited computational resources, however

these methods are often sensitive to pose, lighting and the distance the face is from

the camera (Treptow, Cielniak, & Duckett, 2005; Zhang, Yan, & Lades, 1997; Turk

& Pentland, 1991). Another limitation of face recognition is that often it relies on

accurate and fast face extraction. Errors can be introduced if the method suffers

from false positives (detecting a non-existent face), and if it cannot crop the face

accurately (i.e. if parts of the background are include with the face data). The

former can cause the robot to raise an alarm for threats that are non-existent, the

latter can deteriorate the reliability of the face recognition. Furthermore, threat

detection based on face recognition is limited because it is so reliant on faces. If the

intruders face is not visible, face recognition is not effective as a threat detection

strategy. Also, an intruder can make changes to the environment (they could break

a door down, for example) which can reliably indicate the safety of the office has

been compromised. A threat detection system that relies on face recognition will

not detect such changes, and is therefore easier to evade.

To overcome the above limitation, a new method for threat detection is envi-

ronmental change detection. This involves the robot learning what the state of the

office should be (the ideal state), and determining if there is a significant difference

between current state and the ideal state. If there is a significant difference then

1. Introduction 18

the security of the environment has been compromised. This method has been im-

plemented in an autonomous security robot (Andreasson, Magnusson, & Lilienthal,

2007) and was capable of detecting both spatial changes and changes in colour. The

limitation of this technique is that it will detect any change in the environment. If

the office is static and there no people in the environment, this could work, how-

ever if this is not the case then a threat detection system using change detection

faces the additional challenge of determining what is a benign change, and what is

a change that indicates a threat to the office. This is not trivial, for example sepa-

rating people that are allowed in the office from people that are not will require the

robot to recognize a person from a wide range of angles, poses, lighting conditions,

and possibly even different clothing and hair style. Furthermore as the complexity

increases the computational complexity will also increase, this may mean that the

security robot is unable to perform threat detection autonomously, as it does not

have the computational power to execute the threat detection in real time.

1.2.3 Threat Tracking

Whenever a threat is detected, a security robot is required to immediately take

some corrective actions. A simple action is to start immediately some kind of secu-

rity alarm to raise alert of people, since security robot has recorded on video any

threat that has been detected, as evidence against the intruder (Shimosasa et al.,

2000). There are also robots that, after detecting something which may be a threat,

advance towards the threat to get a clearer view (Treptow et al., 2005). However

threat tracking for security is not a topic which has been studied extensively in the

literature.

1.3 Objectives of this Research

The topic of security robots is an extremely broad one. Rather than attempt to

cover the entirety of this field, in this masters thesis we choose to focus on threat

detection and a simple security action. To that end a method of threat detection

is presented in this thesis which uses curiosity modelling to detect threats. The

1. Introduction 19

concept of curiosity is that as the robot patrols the office, it can expect to encounter

certain objects (e.g. particular people allowed in the office). If an intruder enters the

environment, they will be outside the robot expectations and so can be regarded as

curious to the robot. This is not necessarily limited to people, this curiosity can also

extend to changes that an intruder can make while in the office (e.g. broken doors

or windows). Because this curiosity based threat detection is not attempting to

recognize individuals it is potentially faster and more reliable than threat detection

methods based on face recognition. Furthermore by focusing specifically on unusual

objects it avoids some of the pitfalls of change detection (sensitivity to insignificant

changes). To complement this curiosity based threat detection, a security action

technique has been developed. This technique uses the curiosity of the robot to

drive its actions, causing it to actively move to investigate and track any threats

that it detects. Considering the above requirements the objectives of this research

are:

• to develop a threat detection method using curiosity modelling that utilises

the difference between what the robot expects to encounter in the office and

what it actually encounters to compute a curiosity value. This curiosity value

is used to determine if a threat is present in the area.

• to implement a curiosity driven technique for tracking and following threats

that have been detected.

• to design and build a small, proof-of-concept autonomous security robot - the

Curious WITH or CuWITH - which can be used as an experimental platform

to test the effectiveness of curiosity modelling for threat detection and curios-

ity driven behaviour for security action. CuWITH is implemented using the

WITH robot developed by Kitakyushu Institute of Technology in Japan (Mori,

Sato, Sonoda, & Ishii, 2007).

1.4 Organization of the Thesis

This Thesis is organized into the following chapters:

1. Introduction 20

Chapter 2 provides a literature review on previous research into security robots and

curiosity modelling. In the review of security robots several are considered,

including robots developed by Liu et al. (2005), Treptow et al. (2005) and

Andreasson et al. (2007). Curiosity Modelling is split into three categories;

models based on uncertainty, models based on prediction error and curiosity

based on multi-agent cILDA.

Chapter 3 discusses the system architecture of the developed CuWITH, including

the programmable patrol navigation, curiosity based threat detection (CBTD)

and the curiosity driven threat tracking. The execution procedure is also ex-

plained, with a particular focus on how the CuWITH’s two major threads (the

navigation thread and the main thread) synchronise and exchange information.

Chapter 4 explains in detail the proposed threat detection method (based on cu-

riosity modelling) and the curiosity driven technique used for threat tracking.

The implementation of these methods on the CuWITH are also described in

detail at the end of the chapter.

Chapter 5 presents several ancillary components that, while not the focus of this

thesis, are necessary to implement the CuWITH. This includes the programmable

patrol navigation, object extraction and camera monitoring components.

Chapter 6 gives the experiments used to investigate the effectiveness of the CuWITH

in protecting an office environment. The three most important components

of the CuWITH (the programmable navigation, CBTD and curiosity driven

threat tracking) are tested separately. A unified system test is also performed,

At the end of the chapter an evaluation of the CuWITH system as a whole is

then presented.

Finally Chapter 7 presents the conclusions of this study as well as directions for

future work.

2. LITERATURE REVIEW AND MOTIVATION

There is a scarcity of research on utilising curiosity to enhance the capabilities of

a security robot. However there is a considerable body of research on the imple-

mentation of a security robot and on curiosity modelling. There are several security

robots that have been presented in the literature and although none use curiosity

to detect threats and drive the robots’ behaviour, they do use powerful techniques

which may be applicable to CuWITH. In developing the CuWITH an appropriate

method of modelling its curiosity must be determined, there are several such im-

plementations in the literature. These can broadly be divided into curiosity models

based on uncertainty, curiosity models based on prediction error and the multi agent

cILDA technique.

2.1 Security Robots that have been presented in the Literature

Several security robots have been developed, and are presented in the literature.

These robot do not utilise curiosity, however they do address some of the problems

that the CuWITH has to face, such as navigation in an indoor environment and

threat detection.

2.1.1 iBotGuard: An Internet-based Intelligent Robot Security System using

Invariant Face Recognition against Intruder

iBotGuard is a robot security system developed at the Hong Kong Polytechnic Uni-

versity by Liu et al. (2005). Developed on the iBot platform (see Fig 2.1), iBotGuard

is intended to use a combination of automated threat detection and robot teleop-

eration to enhance the capacities of human security officers. iBotGuards intruder

detection is built using an invariant face recognition method, implemented in three

2. Literature Review and Motivation 22

Fig. 2.1: iBot robot used for the iBotGuard robot security system.

separate blocks. The first block is responsible for object detection and consists of

three agents, a chroma processing agent and a face-region detection agent which to-

gether detect regions that contain faces, and a model matching agent which detects

faces in these regions. The second block extracts features from faces the first block

has detected using a multi-gradient vector flow snakes paradigm. This is imple-

mented using a divide and conquer strategy, with several workers working together

to process the data under one master controller. The final block uses graph matching

to identify faces. The design of this module assumes that there are several different

face databases over a network that iBotGuard has access to. Given this a matching

agent is used to move through the network attempting to match a new face to one on

the network. A two-step process is used for matching, first a geometric-based coarse

matching then a more accurate dynamic-link architecture-based matching. The ge-

ometric based matching compares the geometric configuration of the new face with

the database face to find a match. The geometric configuration is represented as

the position and size of the main facial features (e.g. eyes,nose and mouth), sup-

plemented by the shape of the outline of the face. Matches that pass the geometric

based matching are put through the dynamic-link architecture-based matching to

evaluate the quality of the match. If the possible match passes the dynamic-link

architecture-based matching then it is considered to be a confirmed match and the

person is identified.

The iBotGuard system navigates using mobile teleoperation through the internet.

The iBotGuard systems robot does not move autonomously, but instead is controlled

remotely by a external user such as a security guard. Video from the iBots camera

2. Literature Review and Motivation 23

is streamed to an external controller which processes the video using the invariant

face recognition. The results of the computation plus the video are then displayed

to the user, who can then move the robot as appropriate to either follow detected

threats or search for threats.

In experiments iBotGuard displayed high rates of correct face detection (95%+)

with only partial sheltering reducing the detection rate (to 85%). Face recognition

rates were also high, with rates of 83%+ despite the face having a pitch or roll of

±20O. iBotGuards face recognition rate in the face of occlusion and face deformation

(the person using different facial expressions and wearing glasses) was lower, but

still a relatively high rate of correct recognition was acheived (77% - 82%). The

iBotGuard robot was also successfully teleoperated by the team developing it.

2.1.2 Active People Recognition using Thermal and Grey Images on a Mobile

Security Robot

Treptow et al. (2005) have developed a security robot system which is more indepen-

dent than iBotGuard and can detect, track and identify people in real time. Their

experimental platform is an ActivMedia Peoplebot equipped with a thermal camera

and greyscale pan-tilt camera as seen in Fig. 2.2.

Fig. 2.2: The ActivMedia Peoplebot robot used as the experimental platform by
Treptow et al. (2005).

The threat detection of the robot consists of three major components.

The first component searches images from the thermal camera for people. If

a person is detected the robot will track the person and drive towards them. A

2. Literature Review and Motivation 24

particle filter combined with a simple elliptical model is used to implement the person

tracking in this robot, this method was chosen for the speed with which it could

be calculated, an important consideration for real-time threat detection. During

testing this method was found to correctly detect whether a person was present

or not between 81% and 95% of all frames. Furthermore a real time framerate of

80Hz was achieved while limited to the relatively modest computational power of an

AthlonXP 1600 processor. This shows not only that this method was accurate, but

also that it was fast enough to run in real time while leaving considerable computing

resources for other components such as face recognition.

The second component detects faces using the pan-tilt camera. The robot deter-

mines the most likely region in the thermal image to contain faces then moves the

pan-tilt camera to focus on this area. The face detection algorithm developed by

Viola and Jones (2001) is then used to detect any faces in the pan-tilt camera image.

This algorithm is well known as being extremely fast and reliable, both necessary

characteristics for real-time face detection.

If a face is detected, the third component attempts to recognise it. This recogni-

tion is done by first attempting to recognise the face using the well known eigenface

method. The result is then used to to update the identity probability (the probabil-

ity that the unknown person is a particular individual) of the person being tracked

using a Bayesian update rule. If over several frames the identity probability goes

above a set threshold the face is identified. This component did not perform as well

as the first component, with a correct face recognition rate of only 41%. The authors

give two reasons for this, the first is that the lighting conditions of the training data

were different from the lighting conditions during the experiments, the second is

that the recognition rate is dependant on the viewing angle and a very accurately

located and cropped face image.

Although the accuracy of the face recognition was not high the robots person

detection and face detection were both accurate and fast. All components of the

system have been combined in a single system which can run in real time and can

perform well in a real environment.

2. Literature Review and Motivation 25

2.1.3 Has something changed here? Autonomous difference detection for security

patrol robots

A security robot developed by Andreasson et al. (2007) uses a different approach to

detecting threats. Rather than rely on face detection and recognition, Andreassons

robot uses the difference between the initial state of its environment and the current

state to determine if the security of its environment has been compromised. This

state is determined by combining 3D range scans of the environment with SIFT

features computed from planar camera images, and storing the data as a Normal

Distribution Transform. An additional registration step is used to make the differ-

ence calculation robust to changes in time and robot pose. The difference probability

of the robots surroundings at a given time t is computed using the spatial and colour

difference between the initial environmental state and the environmental state at t.

In a real-world experiment in a indoor office the robot was able to detect several

environmental changes, including a sliding door that was opened and three chairs

and a small box (∼ 0.4×0.4×0.5m3) that were moved. Furthermore it could detect

changes that were invisible to the range scan but could be detected using colour

data. These changes included two equally sized boxes that were switched and a

coloured strip of paper attached to the floor.

Fig. 2.3: The security robot developed by Andreasson et al. (2007)

2. Literature Review and Motivation 26

2.1.4 Other Security robots that have been Developed

Several other security robots have been developed in addition to these three. The

threat detection of these robots tends to be more simple, with several treating

the detection of a person in the environment as the detection of a threat (Chien

et al., 2005; Luo et al., 2006; Shimosasa et al., 2000). Person detection is often

performed using infra-red sensors, sometimes in combination with other sensors

such as ultrasonic sensors (Luo et al., 2006) and body sensors (Chien et al., 2005).

Not all security robots use threat detection however, the security robot developed

by Ryu et al. (2006) is designed to be teleoperated and does not perform any threat

detection calculation. Instead video is streamed to the users mobile phone, allowing

the user to check the security of the robot environment even if they are a significant

distance away.

Many of these security robots also implement some sort of navigation system.

Most commonly this is some form of obstacle avoidance where distance sensors are

used to detect the presence of obstacles and the robot attempts to navigate around

them (Chien et al., 2005; Luo et al., 2006; Shimosasa et al., 2000). Some security

robot have additional navigation capacities. The security robot developed by Kim

et al. (2006) uses small ‘Cricket’ nodes (a small, low-power device which broadcasts

its position) as points of reference to allow their robot to triangulate its position.

This is used to detect and correct errors in the robots path and in combination with

a home map table (a map of the robots environment) is used to avoid obstacles

and plan a path from the robots current position to the location of some alarm

event. The robot then moves along this path to reach the alarm event location. The

security robot developed by Shimosasa et al. (2000) patrols an office environment

searching for threats. In order to ensure that it keeps on track and does not get

lost the robot uses a combination of landmarks and an environment map to help

the robot to determine its location. The landmarks are either flat walls that are

detected using the robots ultra-sonic sensors or electronic ID cards placed on the

floor of the environment in various locations. These cards are read by the robot and

matched to the position of the ID card in the environment map.

2. Literature Review and Motivation 27

2.1.5 Motivation of CuWITH Development

Many of the previously discussed security robots possess characteristics that con-

tribute greatly to their utility as a security robot. These characteristics are impor-

tant for constructing a security robot system and include autonomy, patrol naviga-

tion and reliable threat detection.

Autonomy means that the security robot does not require access to external

systems to be most effective. This improves the effectiveness of a security robot by

making the robot more robust and reliable. Each external system is another failure

point for the security system and if that system breaks down it can have serious

consequences. For example, if a security robot relies on external RFID devices to

determine its location if even one of these systems is damaged it could prevent the

robot from properly determining its location. Depending on how the robot handles

this situation it could end up stopping or become lost and get trapped against some

obstacle. In either case, the robots ability to protect its environment would be

compromised and the environment would be vulnerable. An autonomous security

robot can avoid this risk. By not relying on external systems the number of failure

points is decreased, the robot is made move stable and reliable, much easier to

deploy and can handle a greater number of different environments where it may not

be possible to install these external systems.

A security robot with patrol navigation can intelligently patrol through an en-

vironment searching for threats and can move to investigate any threats that are

detected. This is a key advantage of mobile security agents, and without it a security

robot becomes little more than an expensive security camera.

Of course the most crucial characteristic of an effective security robot is reliable

threat detection. A security robot must be able to reliably detect threats to the

safety of the area it is protecting while not wasting any time or resources on perceived

threats which are not threats at all. Both of these point are necessary otherwise the

security robot will not be able to protect its charge effectively.

Although a few security robot developed previously possess some of these char-

acteristics, none possess all of them. CuWITH is intended to not only posses all

2. Literature Review and Motivation 28

these important characteristics but to also enhance the threat detection capabilities

of the robot.

2.2 Curiosity Models and their application to the CuWITH

When considering how to implement curiosity on CuWITH a number of curiosity

models were considered. Although a specific method for curiosity-based threat de-

tection has not yet been developed, there are several methods of modelling curiosity

which have been presented in the literature.

2.2.1 Uncertainty-based Curiosity Modelling

One method of modelling curiosity is by using a measurement of how certain the

system is that its model of the environment is accurate. The more uncertain the

system is about the accuracy of a particular part of the model the more curious

regions of the environment that correspond to this part are. It is important to note

that this method is not based on predictions. This curiosity is computed entirely

from its internal model of the environment. Although this model can and often is

updated regularly with new environment data the curiosity is not computed directly

from this new data.

An example of this method in action can be seen in the DIDO system developed

by Scott and Markovitch (1989). The DIDO system represents its environment as a

set of classes, with each entity in this environment belonging to one of these classes.

In a given environment there is also a set of operations that can be performed on

any entity in the environment, and different classes will respond to these operations

in different ways. For each class DIDO keeps track of the possible operations that

can be performed on it, the possible outcomes of performing these operations and

the probability of a given operation on a class having a particular outcome. When

the probability of a given outcome drops below a certain limit, the outcome will be

removed from the list off possible outcomes for that operation on that class. If a

operation on a given class has more than one outcome then its outcome is uncertain.

It is this uncertainty that is used to calculate a curiosity value that drives the robots

2. Literature Review and Motivation 29

exploration of its environment. In experiments DIDO was shown to learn the rules of

an environment after performing only 6% of the experiments possible in the domain.

Uncertainty-based curiosity is also used by by Uǧur, Doǧar, Çakmak, and Şahin

(2007). Here curiosity is used to drive the robot to learn the traversability affordance

of objects for which the traversability is uncertain. The robots environment consists

of a flat plane on which a number of obstacles are placed. Four different types

of obstacles were used for testing the robot - rectangular boxes, spherical objects

and cylindrical objects in either a horizontal or vertical position. The robot uses

a 3D laser range scanner to determine the shape, orientation and position of any

nearby obstacles. If the robot is already certain of the traversability affordance of

a detected obstacle it will be ignored, otherwise the robot will move to interact

with the obstacle and obtain information on the affordance of that obstacle. This

information is used to train a SVM classifier which represents the robots knowledge

of traversability affordance. Whether or not the affordance of an obstacle is certain

is determined by a curiosity parameter - as the value of this parameter increases

a higher level of certainty is required before the traversability of an obstacle is

considered known. If this value is set too high (a value of 1.0 for example) the robot

will waste time learning the traversability of uninteresting obstacles (i.e. obstacles

that it knows enough about to correctly determine their traversability), if it is too

low (i.e. 0.1) the robot will ignore interesting obstacles. The authors selected a

curiosity value of 0.5 for their experiments. The robots ability to learn and use

its knowledge of traversability to navigate was tested in simulation and in a real

environment. In simulation a virtual robot was placed in a simulated environment

that contained many different obstacles. By default the robot will attempt to move

forward, however if this is not possible it will try other movements. Note that

the robot does not simply avoid obstacles but will also drive through obstacles

that afford traversability. In the real environment experiment the robot was able to

correctly determine the traversability affordance of the box, spherical and cylindrical

objects. Furthermore it could also navigate past the obstacles without colliding into

intraversable obstacles while still moving through traversable obstacles.

2. Literature Review and Motivation 30

2.2.2 Curiosity Modelling based on Prediction Error

In this method curiosity is based on the prediction error of the system - the difference

between what instances the system predicts will be encountered and what instances

are actually encountered.

One method of implementing this is to use this error value directly. This error

value is then used to drive the system towards interesting instances - instances which

are significantly different from what the system expects. This has been implemented

in the SAIL robot developed by Huang and Weng (2002). The SAIL robot attempts

to learn its environment, using curiosity to focus the learning process. In experi-

ments the robot was allowed to learn its environment then a small toy placed in the

environment was constantly moved. This was detected by the SAIL robot, causing

it to move to examine the toy and explore this unusual difference. This method is

used by several systems (Huang & Weng, 2002; Marshall, Blank, & Meeden, 2004;

Barto, Singh, & Chentanez, 2004).

Another method of implementing curiosity modelling based on prediction error

first divides the knowledge space of the robot into multiple regions, each of which

is learned by its own independent, unique agent. When a prediction of a given

situation has to be made the agent of the region which covers this situation is used.

An example of this method in practice is in the Intelligent Adaptive Curiosity

(IAC) system developed by Oudeyer, Kaplan, and Hafner (2007). IAC relies on

a memory which stores all the experiences encountered by the robot as a set of

example vectors. These examples are used to incrementally divide the sensorimotor

space into regions, with each region associated with a set of examples. Each region

is also assigned an intelligent agent which learns the examples of that region and

makes predictions based on what it has learned. When the outcome of a particular

situation needs to be predicted, the region associated with that situation is used

to make the prediction. The prediction is made, the true outcome is then recorded

and the robot computes the prediction error, the difference between what the agent

predicted and what actually happened. This error is pushed onto a list unique to

the agent. When deciding what situation should be investigated, the robot uses

2. Literature Review and Motivation 31

this list. If the rate of prediction errors for a particular agent is decreasing (i.e.

it is progressing rapidly to a strong knowledge of its domain) then situations and

actions that that agent covers are more curious. Conversely if the rate of prediction

errors is not decreasing (or worse, increasing) the robot will avoid the situations

and actions governed by that agent. In both simulation and in a real environment

the IAC system demonstrated the ability to focus on situations which it can learn

the easiest from, then progressing to more difficult situations. Furthermore it will

ignore situations which the system either already knows or is unable to learn. This

allows the system to avoid wasting time on known situations and help prevent the

robot from getting stuck attempting to learn a situation that is impossible for it to

learn.

2.2.3 Curiosity Modelled using Multi-Agent cILDA

The curiosity-driven multi-agent competitive and cooperative linear discriminant

analysis algorithm developed by Shimo, Pang, Kasabov, and Yamakawa (2008) is a

powerful example of curiosity modelling. This algorithm is based of the Incremental

LDA (ILDA) method developed by Pang, Ozawa, and Kasabov (2005). LDA is

normally trained in a batch manner, with the LDA system being trained on the

training data then used to analyse a set of data. ILDA improves LDA by allowing

the trained LDA to be updated, be giving the system the ability to update its

knowledge (represented using LDA) with the instances that the system encounters.

However, with ILDA all new instances will be used to update the knowledge base,

even when these instance are already well known. curiosity-driven ILDA, or cILDA,

seeks to overcome this limitation by adding a filter based on curiosity. The essential

idea of cILDA is that before using a new instance to update the ILDA the system

will first compare this new instance to the existing knowledge base. If the new

instance is similar to the instances that are a part of any of the existing knowledge

base then it will be rejected because it adds nothing new to the robots knowledge.

If the new instance discriminates itself from the classes then it is interesting and it

is added to the knowledge of the robot. Thus the curiosity value there is how much

2. Literature Review and Motivation 32

the new instance discriminates itself from the other learned classes - the higher

the discrimination, the higher the curiosity. This is then enhanced through the

use of multiple agents, with each agent assigned a particular region in the problem

space. Each agent then uses cILDA to learn its region. At each timestep thereafter,

the agent with the highest curiosity value is activated and allowed to acquire more

instances and perform cILDA learning, all other agents are deactivated temporarily.

This method has been tested by observing its ability to handle the Face Mem-

bership Authentication (FMA) problem compared to regular LDA. In this problem

the objective is to classify a given face as either part of the membership class (i.e.

the set of faces the cILDA has been trained on) or the non-membership class. A face

database containing 1355 face images of 271 people was used for the experiment, with

the membership size ranging from 20 (i.e. 20 membership faces 251 non-membership

faces) to 135 (i.e. 135 membership faces 136 non-membership faces) with ten person

intervals. Not only was the classification accuracy of cILDA equal to the accuracy

of LDA, yet to attain this level of accuracy only required 240 to 420 instances, only

17.7% - 30.9% of the total dataset. cILDA displays fast and accurate classification,

and has great potential to be used in a security robot as a method of threat detec-

tion. Using cILDA a robot could be easily updated as the office and employees in

the office changed over time while still being effective at detecting threats.

2.2.4 Motivation for CuWITH’s Curiosity Model

Several different methods of modelling curiosity have been presented here, however

these methods are not necessarily applicable to real time threat detection. Many

of these models have a particular focus on learning a particular domain quickly

and efficiently (Scott & Markovitch, 1989; Uǧur et al., 2007; Oudeyer et al., 2007).

However, for a security application, these models are not as useful. When a security

robot is patrolling an area, it is not trying to learn the environment, rather it is

trying to detect threats. These methods may be applicable as a method of quickly

learning the environment, however this is not the focus of a security robot.

A curiosity model which is more applicable to a security robot is multi-agent

2. Literature Review and Motivation 33

cILDA. Rather than learning unusual instances, multi-agent cILDA can be modified

to register them as threats, and therefore be used as the basis of the CuWITH’s

threat detection. Furthermore, a threat detection system based on multi-agent

cILDA could be trained very efficiently and incrementally - knowledge can be added

to the system without retraining it from scratch. However cILDA is a complex

algorithm. The computational resources available to the CuWITH are quite limited

(see section B for more details) and the execution of cILDA in real time may be

beyond its capacities.

A more simple method of modelling curiosity is based on prediction error. There

are several such methods (Huang & Weng, 2002; Marshall et al., 2004; Barto et al.,

2004; Huang & Weng, 2002) which can be applied to threat detection. For example,

the SAIL robot developed by Huang and Weng (2002) learns the environment, then

searches the environment for differences, objects which it does not expect in the

environment. If such an object is discovered SAIL moves to investigate and learn the

curious object. This series of actions requires very little modification to be applied to

the problem of threat detection for a security robot, all that is required is replacing

the final learning action with some kind of security action. The CuWITH’s curiosity

is based on this prediction error approach, with the prediction being performed using

Principal Component Analysis (PCA). The details of how this is done is explained

in Chapter 4.

3. THE DESIGN OF THE CUWITH SYSTEM

When designing the CuWITH system there are a number of properties the sys-

tem should possess. One of these properties is robustness; if the CuWITH system

crashes partway through a security patrol the office is left vulnerable to intrusion.

CuWITH must therefore be robust enough to continue patrolling an office for long

periods of time without any errors or crashes occurring. CuWITH must also be

fast enough to detect threats in real time. If not, then CuWITH will be unable to

react fast enough to check the office in real time, allowing intruders to easily evade

it. CuWITH must also be easy to maintain and modify if it is to be an effective

platform for further research. Designing the CuWITH to be easy to maintain and

modify encourages exploration of the CuWITH’s capabilities, if a researcher want to

test a particular curiosity model this can easily be integrated into the CuWITH and

tested. If CuWITH is difficult to maintain and modify it will discourage changes to

the CuWITH and therefore stifle research the relies on the CuWITH. To ensure the

CuWITH displays these properties a modular design strategy is employed.

3.1 Design Strategy

The key architectural strategy employed when developing the CuWITH system was

the use of a modular design strategy. This strategy divides the system into compo-

nents that can be developed and used independently from one another. There are

several reasons why this strategy improves the quality of the CuWITH system

Use of a modular design strategy allows much more efficient and powerful testing

of the system. Individual components can be separated from the rest of the system

and tested individually to ensure each component is performing its assigned task

reliably. If an issue is discovered during this individual testing, the cause can be

3. The Design of the CuWITH System 35

rapidly narrowed down. This is because it can be guaranteed that the cause is

within the component being tested, not with any other component. If the design

is not modular this individual testing is not possible. if a problem is detected, the

cause could be within several components and narrowing the cause is much more

difficult. Even if one component requires another ancillary component to work,

through the use of constant interfaces a fake ancillary component can be supplied to

the component being tested. This again allows this specific component to be tested

without the risk of bugs in other components contaminating the testing procedure.

For example, when developing the programmable navigation component obviously it

needs to control the robot (through the robot control component). However testing

the programmable navigation component using the robot is time consuming and the

source of any bugs is unclear (is it a issue with the robot interface or the navigation

instructions?). To resolve this issue a fake robot controller was developed that did no

communication with the robot, it only printed out all movement instructions it was

asked to perform. This was immensely helpful for testing because it was immediately

clear not only if there were any issues with the programmable navigation component

but also a good idea of what the issue was (e.g. a velocity value was set to high). By

improving the testing that can be performed on the system, modularity can improve

the reliability and stability of code, both necessary qualities of a security system.

Maintainability is also greatly improved by using a modular design strategy.

This is best demonstrated by considering maintenance of a system which is not

modular i.e. one which each component is tightly coupled to other components.

If a system is not modular then any change to a single component in the system

could propagate through the entire system, causing other components to fail. This

happens because other components depend on the modified component - they may

for example expect the component to contain a particular function component. If

this signature is modified or removed components that are dependant on it will fail.

Fixing such a situation would not only require changing the modified component,

but also every other component dependent on it. Furthermore these changes could

result in needing to change other components that are dependent on the dependent

3. The Design of the CuWITH System 36

components. This can quickly result in the entire system needing to be modified

to accommodate a change in a single component. This makes any modification

potentially difficult and time consuming. These problems can be avoided by using

a modular design. Since each component is not dependent on other components,

changes to one components will not propagate and are relatively straightforward.

Modular design also allows components of the system to be easily reused. If

the architecture of the CuWITH system is significantly modified many of the com-

ponents of the current system can be reused in the new system. This is because

of their modularity - the components are not dependent on the architecture of the

system or other components. Because of this components can easily be moved be-

tween systems without losing any functionality or requiring additional extraneous

code to be added to the system. This greatly speeds the development of the system,

rather than needing to ‘reinvent the wheel’ by writing and debugging a new version

of a component the current version of the component can be used. This component

has already been tested to ensure stability and reliability and thus does not need

intensive development. This saves time and effort to focus on other components of

the new system, such as the components which are being significantly changed.

Despite the advantages of the modular design strategy in the current CuWITH

system there are still some dependencies. This is because CuWITH must not only be

robust and maintainable, it must also be fast. To improve the speed of the CuWITH

system therefore certain components were made more tightly coupled. Also, several

components of the CuWITH are responsible for initialisation and communication

between components and, as a result,are more dependant on other components.

3.2 Design of the CuWITH System

Based on this strategy a design for the CuWITH system has been developed, and

can be seen in Fig. 3.1. As can be seen there are many components within this

design, covering such tasks as threat detection, patrol navigation and curiosity driven

movement. These components can be divided into three groups, threat detection

and tracking, robot navigation and shared global data. The components of the

3. The Design of the CuWITH System 37

threat detection and tracking group can be seen on the left side of Fig. 3.1. These

components are the focus of this research and include the crucial curiosity based

threat detection and curiosity driven threat tracking components. On the right of

Fig. 3.1 is the robot navigation components. These components are executed in

a separate thread from the threat detection and tracking group, this is due to the

manner in which the CuWITH robot is controlled. Moving the CuWITH consists

of three steps; instructing the CuWITH to match a particular velocity, waiting

until the CuWITH has moved the desired distance, then instructing the CuWITH

to halt. Because of the second step in this process the thread is executing the

navigation components will stop and wait while the CuWITH moves. To prevent

the robot navigation from bringing the CuWITH system to a halt while the robot

moves the navigation is executed on a separate thread from the other components of

the CuWITH. However the robot navigation components and the threat detection

and tracking components still need to communicate, to that end a global thread

interface is provided which allows the two threads to communicate in a safe and

reliable manner. These components are discussed in more detail below.

OpenCV
Library

KIT WITH
Library

Curiosity
Evaluator

Curiosity Driven
Threat Tracking

Object Extractor

Programmable
Patrol Navigation

Robot Controller

Security Manager Global Thread
Interface

Camera Monitor Camera Interface

Vision Curiosity
Manager

Fig. 3.1: Structure of the CuWITH system

3. The Design of the CuWITH System 38

3.3 Core Components of the CuWITH

The CuWITH’s has two core components that are the focus of this research; the

curiosity based threat detection and curiosity driven threat tracking components.

3.3.1 Curiosity Based Threat Detection

The curiosity based threat detection component is responsible for modelling curios-

ity and for determining if a threat is present in the environment. It is the most

computationally demanding component of the CuWITH, as it must process a large

amount of data (an image can consist of upwards of 19200 pixels) in real time. As

such, when designing the curiosity based threat detection component dependency

minimisation must be balanced against real time execution. With this in mind the

curiosity based threat detection component can be split into two subcomponents;

the vision curiosity manager and the Curiosity Evaluator.

The vision curiosity manager has three key responsibilities. Firstly it must obtain

images of any objects in the CuWITH’s line of sight. This is implemented by using

the camera interface to get an image from the camera, then using the object extractor

to extract from the camera image a sub image containing an object (an object

image). Secondly the vision curiosity manager must determine whether or not a

given object image is curious, i.e. if an object in the image is not an object CuWITH

is expected to encounter in the environment. This classification is performed using

the curiosity value of the object image (computed using the Curiosity Evaluator)

and is explained in section 4.2. However, the most important responsibility of the

vision curiosity manager is to make a final decision on whether or not there is a

threat in the environment. This decision is made using Eq. 4.8 in section 4.2 and

is based on the ratio of curious to non-curious faces detected in the CuWITH’s

recent history. This responsibility is the most important of the three and the basis

for the security capabilities of the CuWITH. As a result of these responsibilities

the vision curiosity manager is dependant on the camera interface, object extractor

and Curiosity Evaluator. This dependency has however been limited by hiding the

details of how the camera interface, object extractor and Curiosity Evaluator work

3. The Design of the CuWITH System 39

from the vision curiosity manager. The vision curiosity manager does not need to

know about or rely on how exactly the Curiosity Evaluator works or what settings

it has, for example, and as a result the Curiosity Evaluator can be modified without

affecting the vision curiosity manager.

The Curiosity Evaluator is trained on the set objects that are expected in the

environment, and is responsible for computing the curiosity value of a single given

object image. The curiosity value is a measure of how different the encountered

object is from the CuWITH’s expectations, the computation of the curiosity value

is explained in detail in sections 4.1 and 4.2. The knowledge storage and curiosity

computation is completely encapsulated within this subcomponent, this allows over-

head to be reduced and improves the efficiency of this subcomponent. Furthermore,

this subcomponent is only dependant of the OpenCV library used to implement the

curiosity calculation, protecting it from changes to the CuWITH system.

The detection of threats is the most important responsibility of the curiosity

based threat detection component, however when a threat is detected some action

must be taken.

3.3.2 Curiosity Driven Threat Tracking

CuWITH must not only detect threats using curiosity modelling, it must also be

driven by curiosity to track these threats so that they may be neutralised. This role

is performed by the curiosity driven threat tracking component. The responsibility

of the curiosity driven threat tracking component is simple; to compute a robot

movement that will bring the threat into the center of the CuWITH’s field of vision

and a set distance in front of the CuWITH. This computation is described in more

detail in section 4.3. This component is dependant on the physical details of the

CuWITH robot, as the tracking movements are computed assuming a set velocity of

the robot. It is also dependant on the resolution of the camera image. However, the

curiosity driven threat tracking component is not dependant on any other compo-

nent of the CuWITH. This (as with the Curiosity Evaluator) protects the curiosity

driven threat tracking component from changes to the CuWITH system, making

3. The Design of the CuWITH System 40

the component more robust and maintainable.

3.4 Ancillary Components of the CuWITH

The curiosity based threat detection and curiosity driven threat tracking components

are the most important components of the CuWITH for this research, however these

components cannot be used alone. For CuWITH to be effective as a security robot

there are a number of components that, while not directly related to curiosity-based

security, are nonetheless crucial. Of particular note are the programmable patrol

navigation, the object extraction component, the global thread interface and the

security manager.

3.4.1 Programmable Patrol Navigation

To be effective as a mobile security agent the CuWITH must be able to move in

its environment and actively search for threats. If the CuWITH cannot move in

the environment, then it is no better than a stationary security camera. One of

the strengths of a mobile security agent is that it is mobile and can patrol the

environment actively searching for threats, the CuWITH must be able to execute

such a security patrol if it is to be effective in this role. It is towards this end that

the programmable patrol navigation component was developed. This component

computes the instructions necessary for the CuWITH to move from one point in

a given patrol path to another and sends the instructions to the robot. When a

security point is reached (i.e. a point that needs to be checked for the presence of

threats) the navigation thread halts the robot and waits for the presence of a threat

to be either confirmed or denied. If it is denied the programmable patrol navigation

component will continue moving the robot through its patrol. Alternatively, the

programmable patrol navigation component will wait for and execute and driven

movement instructions sent to it from the security manager. This component has

been enhanced by making it programmable. The patrol path is not hard coded into

the component, rather a script is read in by the programmable patrol navigation

component at runtime. This script defines the patrol path that the CuWITH will

3. The Design of the CuWITH System 41

execute. This improves the flexibility and maintainability of the CuWITH as if the

robot is moved to a different environment or the current environment is changed

the system does not need to be modified at all, only the patrol path script need

be changed. Furthermore, the programmable patrol navigation component is only

dependent on the robot interface and the global thread interface. This protects the

programmable patrol navigation component from any modifications to the threat

detection or threat tracking of the CuWITH, communication between these compo-

nents is performed through the global thread interface.

3.4.2 Object Extraction

The responsibility of the object extraction component is to search a given camera im-

age for particular types of object and extract from the camera image the sub-image

containing the object. This is crucial as the threat detection of the CuWITH is

computed based on object images - without this component to supply the CuWITH

with these images threat detection is not possible. Furthermore, this component

must be accurate and have low computational demands. Inaccurate object extrac-

tion can deteriorate the accuracy of the threat detection and lead to the detection of

non-existent threats. High computational requirements could cripple the CuWITH

and render it unable to search for threats in real time, also the more processing

power required by the object extractor, the less processing power there is available

to other components such as the curiosity evaluator. The techniques applied to this

task are discussed in Sec. 5.2 Apart from the OpenCV library this component has

no dependencies.

3.4.3 Security Manager

The security manager controls the threat detection and threat tracking of the

CuWITH system. It is the responsibility of the security manager to determine when

a security check is required, initiate the security check and decide on an appropriate

course of action based on the results of the security check. The security manager

decides when to perform a security check using the current location of the CuWITH.

The patrol path will have certain points in the patrol classified as security points, if

3. The Design of the CuWITH System 42

the CuWITH has reached these points then a security check needs to be performed.

If a security point has been reached, the security manager instructs the curiosity

based threat detection component to perform the check, then examines the results.

If a threat has been detected it is tracked by determining the location and size (in

pixels) of the threat in the camera image, then supplying this data to the curiosity

driven threat tracking component to determine an appropriate movement to follow

the threat. This movement is then sent to the programmable patrol navigation com-

ponent to be executed by the robot. Because the security manager is intended to

control several components and interface with the programmable patrol navigation

component, it is dependant on several other components. This is a necessary price

to pay; to completely eliminate this dependency would be extremely difficult and

the resulting code would be difficult to maintain and would be slower.

3.4.4 Global Thread Interface

The CuWITH system has two threads running co-currently, the main thread which

handles threat detection and tracking and the navigation thread which is concerned

with the movement of the robot. If these two threads cannot communicate and

synchronise with each other, the CuWITH will not be able to function - the security

tests may not be performed at the correct locations (or at all) and driven instructions

may be ignored by the navigation thread. To prevent this from happening a robust

inter-thread communication module is necessary. The global thread interface fulfils

this role. Communication between threads is achieved through shared data and

mutexes encapsulated by public functions of the global thread interface. This ensures

that all communication between the two threads is thread safe while still maintaining

the speed necessary for real time security.

3.4.5 Other Components

Along with the above major components there are three tertiary components that

are focused on hardware access. The robot controller is an example of this. The

robot controller acts as the interface between the WITH robot and the CuWITH

system. Essentially it is a C++ wrapper around the WITH control library supplied

3. The Design of the CuWITH System 43

to KEDRI by KIT, containing functions for setting the robots velocity and accessing

its distance sensors (among other things). To limit dependency on this component

all other components that depend on the robot controller actually depends on a

robot interface. This is a static interface which the robot controller implements,

however because other components are dependant on the interface rather than the

implementation changes to the robot controller do not affect any other components.

The interface also allows the real robot controller to be easily replaced with a fake

controller that merely prints out the instructions it is given. This is extremely useful

for testing and the change required is a simple case of removing one line of code and

replacing it with another.

The camera interface is a similar example, however this component controls

access to the CuWITH’s camera. It is also responsible for ensuring the camera

image has the resolution, colour depth and colour model that the rest of the system

expects. As with the robot controller, rather than being dependant on the The

Camera controller other components are dependant on a camera interface which is

implemented by the Camera controller.

The third tertiary component is the camera monitor. During the development

of the CuWITH the ability to view what the robot was seeing became desirable.

This was for reasons of testing and display. When fine-tuning and debugging the

curiosity-driven threat detection it was very helpful to be able to see what the robot

is seeing, along with any faces detected and whether they were curious or not. This

is because although it is possible to record when and where a face is detected for

example, it is more difficult to record the contextual information. The easiest way

to view and record this information is to display the camera image, along with

some relevant information (e.g. highlighting faces that have been detected). This

way any issues with the object detection or curiosity-driven threat detection can be

identified and resolved more quickly. It is also useful for display purposes. When

demonstrating the CuWITH being able to display the camera image along with

some information about the threat detection process (i.e. highlighting faces that

are curious and not curious) is very helpful to explain what the robot is doing. It

3. The Design of the CuWITH System 44

also has a real security application, using this component allows security officers

to monitor what the robot is seeing. This component was implemented with two

modes. One mode would simply display an image on-screen, this was more useful

when unit testing the curiosity calculation. The other mode transmitted the image

over wireless link to a server on a desktop which would then display the image on the

desktops screen. This was useful when displaying the robot and when performing

full system testing on the CuWITH (the curiosity process is made clearer).

3.5 CuWITH Process Control

3.5.1 Execution Process

CuWITH’s execution procedure is split into two threads, with the Programmable

Navigation component and Robot Control component associated with the navigation

thread and the remaining components (including the Threat Detection Manager)

associated with the main thread. The execution procedure of these threads during

a security patrol can be seen in Fig. 3.2, with both threads going through several

stages. Initially both threads start in the navigation stage. In this stage CuWITH

moves along its patrol path until it reaches a security point. During this stage the

main thread only updates the camera monitor, no threat detection is performed.

Instead the navigation thread moves the CuWITH robot along the patrol path and

at each step updates the current location of the robot. Both threads check if the

robot has reached a security point at every iteration - if a security point has been

reached, the threads transfer to the Security Check state. It is in this state that

threats to the safety of the environment are searched for and detected by the main

thread. During this process the navigation thread stops the robot and waits for the

main thread to decide if there is a threat present in the environment. If a threat

is not detected both threads return to the patrol navigation stage and continue

the patrol. However if a threat is detected both threads switch to the Curiosity

Driven stage, where the CuWITH is driven by its curiosity of the threat to follow

the threat. This is done in two sections, first the main thread computes a driven

move instruction set which will move CuWITH to get a better view of the threat.

3. The Design of the CuWITH System 45

This instruction set is then sent to the navigation thread which executes this move,

then waits for further driven move instructions. This process will continue until

a set timeout, at which point the main thread will switch to the Continue Patrol

stage and send a last ’driven move’ to move the CuWITH back to the security point.

The main thread will then set the current security point as being checked and both

threads will then transfer back to the Patrol Navigation stage, starting the process

again.

3.5.2 Thread Synchronization

Key to this design is the communication and synchronisation of the CuWITH sys-

tems two threads. This is done through the Global Data Storage (represented in Fig.

3.2 as the area between the two threads). This is implemented as a single data struc-

ture that encapsulates everything necessary for communication and synchronisation

between the two threads.

The key communication that occurs between the two threads is the transfer of

the driven move instructions from the main thread to the navigation thread. Here

the global data storage is used as a middleman between the two threads, with the

instructions being first sent to the global data storage. These instructions are then

read by the navigation thread and executed. Synchronisation is implemented by

using the global variable to store the state of the CuWITH. In particular, whether

or not the robot has reached a security point is determined by the Global Data

Storage. Both threads check the Global Data Storage to determine if the robot has

reached a security point, and if so transfer to the Security Check stage. In this

way it is ensured the threads will not be in conflicting states. This prevents errors

and system instability that can be caused if the two threads start working at cross

purposes.

One of the most important elements is the use of mutexes to control access to

shared data, especially if one thread modifies the data. If mutexes are not used,

the system runs the risk of one thread accessing data partway through that data

being modified by the other thread. This results in corrupted data being read by

3. The Design of the CuWITH System 46

Main Thread Navigation ThreadGlobal Thread Interface

Security
Check
Stage

Patrol
Navigation

Stage

Security
Check
Stage

reachedSecurityPt
(false)

check if robot has
reached security point

Update Camera
Monitor

check if robot has
reached security point

check if robot has
reached security point

Move to next patrol
path point

Update
reachedSecurityPt

check if robot has
reached security point

check if point has
already been checked

check if curiosity has
already been detected

Wait for security check

Search for threats
using curiosity-based

threat detection

Set
hasPointBeenChecked

flag to false

hasPointBeenChecked
(false)

Patrol
Navigation

Stage

reachedSecurityPt
(true)

hasPointBeenChecked
(false)

Patrol
Navigation

Stage

Curiosity
Driven
Stage

Wait for driven move
instructionsCompute driven move

Execute driven move

Compute driven move

Execute driven move

Execute driven move

Movement to return to
security point

Set
hasPointBeenChecked

Move to next patrol
path point

Reset
curiosityDetected flag

check if curiosity has
already been detected

check if curiosity has
already been detected

drivenMovementInstructions

check if driven timeout
reached

check if driven timeout
reached

Curiosity
Driven
Stage

Continue
Patrol
Stage

Threat Detected, set
curiosity flag hasCuriosityBeenDetected

(true)

drivenMovementInstructions

drivenMovementInstructions

hasPointBeenChecked
(true)

Update
reachedSecurityPt

Time

Fig. 3.2: Process diagram of the CuWITH system

the thread. This can easily cause the system to fail. However, mutexes are easy

to forget to use, and even one data access not protected by a mutex (or worse, a

data access that locks the mutex without unlocking it afterwards) can cause system

failure. This is solved in CuWITH by accessing shared data through public functions

3. The Design of the CuWITH System 47

of the Global Data Storage. These functions internally ensure that the shared data

is properly protected by mutexes. This protects the system from human error and

improves the systems stability.

4. CURIOSITY BASED THREAT DETECTION AND

CURIOSITY DRIVEN THREAT TRACKING

The core of the CuWITH security system is curiosity based threat detection and

curiosity driven threat tracking - a security robot must be able to both detect threats

to the safety of its environment and track any threats detected. In the CuWITH

this has been implemented through the use of curiosity modelling to detect threats,

and curiosity-driven threat tracking to follow any detected threats. The curiosity

principal applied here is that CuWITH can expect to encounter a particular set of

objects in the environment - people who are allowed in the environment, for example.

If a threat intrudes in this environment by definition it will not be within this set

of expected objects and thus will be curious, something outside the norm. It is this

difference which is harnessed for threat detection in the CuWITH. Although these

techniques are general enough to be effective against any threatening object, the

current implementation on the CuWITH is focused on the face curiosity case study.

For the face curiosity case study the threat detection component learns the faces of

a set of known people, then compares any encountered faces with this set of known

people to determine if the encountered person is known, or a threat.

4.1 Feature Extraction for Curiosity Modelling

For the curiosity modelling to be effective it requires a set of discriminating features

to differentiate between objects that the CuWITH expects to encounter in its en-

vironment and objects that are completely new to the robot. In CuWITH these

features are extracted using PCA, a feature extraction technique that is well known

in the literature (Treptow et al., 2005; Turk & Pentland, 1991; Barreto, Menezes, &

Dias, 2004). The first step in this process is to train the feature extraction. Assume

4. Curiosity Based Threat Detection and Curiosity Driven Threat Tracking 49

X = { ~x1; ~x2; ~x3; . . . ~xN} represents the set of normalised image vectors used to train

the robot (where each image vector is a vectorised image of an object). Given this,

the average vector ~µ of X is defined as

~µ =
1

N

N∑
i=1

~xi. (4.1)

Each image vector differs from ~µ by vector Θ

Θi = ~xi − ~µ for i = 1 . . . N. (4.2)

The discriminate feature space is represented using an eigenvector matrix U =

{ ~u1; ~u2; . . . ~uM}, obtained by solving the following eigen-decomposition function:

UC = λUT , (4.3)

where λ is the eigenvalue matrix and C is the covariance matrix of X, computed

using the following formula:

C =
1

N

N∑
i=1

ΘiΘ
T
i . (4.4)

Although this will represent the discriminant feature space not all of the eigen-

vectors in U are required to represent it fully. U ′ is the subset of U containing the

M ′ (� M) eigenvectors with the largest associated eigenvalue. The features for

each image of an object are found by the security robot using the following formula:

y = U ′T (~x− ~µ), (4.5)

where ~x is the image vector and y is the features of ~x.

4.2 Curiosity Modelling for Threat Detection

The purpose of curiosity modelling is to model the robots expectations of its en-

vironment and to determine if an object is outside these expectations. If such a

curious object is detected, it is classified as a threat.

4. Curiosity Based Threat Detection and Curiosity Driven Threat Tracking 50

Assume there is a trained datasetXtr that represents the knowledge the CuWITH

has about the objects it can expect to encounter in its environment. This dataset

consists of the features (computed using Eq. 4.5) of each training image vector

~x1 . . . ~xN . Xtr is split into clusters Xs1, Xs2 . . . Xsm, with each cluster representing

a different part of the robots knowledge. In practice, the mean feature vector of

each cluster is used to represent each part of knowledge. As a new object image ~x

is acquired by robot, the discriminating features y are extracted from it using Eq.

4.5. Thus, to evaluate the difference of ~x to cluster Xsi, 1 ≤ i ≤ m, a mathematical

residue is defined

ξi = ‖y − x̄si‖ (4.6)

where x̄si = 1
|Xsi|

∑
~xj∈Xsi

~xj is the mean vector of cluster Xsi.

Thus, the general difference over the whole office environment is computed as,

〈e〉 = min(ξ1 . . . ξm) (4.7)

The above residue is applied to detect threats. If the calculated 〈e〉 is greater than a

pre-specified curiosity threshold ω, then the robot has encountered a curious object.

A curious object is not supposed to be present in the CuWITH’s environment and

thus constitutes a security threat.

However, this more simple curiosity calculation is unusable in a real environment

because of the inevitable noise that the robot will encounter. Differing lighting

conditions and shadows can cause the curiosity value of an object to fluctuate,

decreasing the stability of the curiosity value. Furthermore, rarely the CuWITH’s

object extraction will detect a false positive - for example, a blank wall that was

been lit to look like a face. These false positives will result in a high curiosity

value (since there isn’t even an object present, let alone a known object) and may

trigger a security response for a threat that is non-existent. To overcome these issues

the curiosity values over a set period of time κ are considered. Given that over κ

there were 〈e1〉 . . . 〈ep〉 curiosity values computed, a combined curiosity value C is

4. Curiosity Based Threat Detection and Curiosity Driven Threat Tracking 51

calculated as follows:

C =

∑p
i=1 ci
p

, (4.8)

where ci is 1 if the ith object detected is curious, and 0 otherwise. C is therefore the

percentage of objects detected over time period κ that are determined to be curious

by CuWITH. If C is greater than a threat threshold ε, then a threat has infiltrated

the environment. The CuWITH’s next course of action is to track the threatening

object as described in the next section.

4.3 Curiosity Driven Threat Tracking

When developing the CuWITH some form of security action was desired. Raising

an alarm was a trivial action to implement, so a threat tracking component was

developed to allow the CuWITH to follow detected threats in the environment.

This threat action could intimidate a intruder and cause them to leave, it could

also be used by security forces to locate the threat and neutralise it. For driven

movement both the robot and the threat are considered to be in a 3D environment,

with a j, k and l axis as seen in Fig. 4.1,

k

j

l

Front

CuWITH

Threat

Fig. 4.1: The 3D representation of the office environment space used for threat
tracking

The direction of these axes is relative to the robot, with the j-axis extending

to the CuWITH’s left and right, the k-axis extending above and below and the l-

axis extending in front of and behind the CuWITH. Given this there are two axis

the robot can move along, the j-axis (left and right) and the l-axis (forward and

backward). The vertical axis is ignored for driven movement for the simple reason

4. Curiosity Based Threat Detection and Curiosity Driven Threat Tracking 52

that the CuWITH can neither tilt its camera or move up and down. Thus even if

the threat does move up or down there is no action CuWITH can take to follow

it. Movement along the j-axis keeps the threat within the CuWITH’s field of view,

while movement along the l-axis can keep the robot within a certain distance of

the threat. Both movements are defined using two values; a direction r which has a

value of either left,right,forward or backward, and a wait time Twait which determines

how far the CuWITH should move in that direction (the CuWITH’s velocity in a

particular direction is a set constant).

The j-axis driven move is determined using the difference jdiff between the centre

of the camera image wmid and the centre of the threat wobj (see Fig. 4.2) as a measure

of how far to the left or the right of CuWITH the threat is, computed using the

equation jdiff = wobj − wmid .

Camera Image

wmid wobj

Object Image

0 wmax

jdiff

Fig. 4.2: The computation of the objects horizontal displacement jdiff using the
center of the camera image wmid and the center of the object wobj

With jdiff , a j-axis movement can be calculated as follows:

Twait = |jdiff |.Sj.Tconst, (4.9)

r =


left if jdiff < 0

right else
(4.10)

The Sj term in Eq. 4.9 is a sensitivity term that determines the degree to which

CuWITH reacts to a given value of jdiff ; higher values of Sj will result in the robot

moving further for a given value of jdiff , while conversely lower values of Sj will

have the opposite effect. The result of |jdiff |.Sj is shifted to a time in milliseconds

by multiplying the result with a constant Tconst (set to a value of 15). The direction

4. Curiosity Based Threat Detection and Curiosity Driven Threat Tracking 53

of the calculated driven move is computed using the sign of jdiff as seen in Eq. 4.10

- a negative value results in a move to the left, a positive value results in a move to

the right.

The l-axis movement of the robot is computed in a more complex manner. It is

based on the principle that as an object approaches the camera, the area (number

of pixels) it takes up on the camera image increases; conversely, as it retreats from

the camera the area it takes up on the camera image decreases (see Fig. 4.3).

Camera Image

Object

Object

Fig. 4.3: This illustrates how the distance between the robot and an object is deter-
mined - assuming the size of the object is constant, its apparent size is proportional
to its distance from the robot.

Based on this principle how far away a target is from the camera can be estimated

using the area it takes up on the camera image. This is based on the assumption

that the size of the object is constant and in some sense known. In the face-curiosity

use case implemented in CuWITH, it is assumed that all faces are approximately

the same (real) size and thus if the face is the desired distance from the robot it

will always take up a particular area Aopt of the camera image. The distance the

robot needs to move to maintain the desired distance from the threat can therefore

be determined, based on the difference between Aopt and the actual area the face

takes up in the camera image Aobj:

ldiff =
√
Aobj −

√
Aopt, (4.11)

where ldiff is the estimated distance the object is from the robot. The l-axis move-

4. Curiosity Based Threat Detection and Curiosity Driven Threat Tracking 54

ment Twait, r is thus defined as follows:

Twait = |ldiff |.Sl.Tconst, (4.12)

r =


forward if ldiff < 0

backward else
(4.13)

where Sl is the sensitivity variable for ldiff . The direction of the calculated driven

move in this case is computed using the sign of ldiff as seen in Eq. 4.13 – a negative

value results in a move forward while a positive value results in a move backward.

Both calculated moves have to be larger than a set threshold Γmin otherwise they

will be ignored. This is for two reasons. Firstly very small moves of the CuWITH

are insignificant with regards to keeping the object in a particular position relative

to the robot. The second reason is because very small movement instructions –

particularly many small move instructions - can cause the robot to turn slightly to

one side, resulting in the robot deviating from its path. This threshold has the useful

side effect of preventing another issue. Data on the position and area of the face in

the camera image is prone to fluctuations due to the realities of a real environment.

Even subtle changes in lighting - changes too small to be easily detectable by the

human eye - can cause the position or area of the face to change slightly even

though the person may not be moving. Putting a minimum limit on the size of

the movement prevents the CuWITH from constantly making small adjustments in

position to match non-existent changes in the person’s position.

A second threshold Γmax is used to limit the distance the CuWITH robot moves

in a single driven move. If Twait > Γmax then Twait = Γmax. This is done to facilitate

real-time driven movement. If CuWITH spends too much time executing a driven

move it can miss the current motion of the threat. This can cause the robot to move

away from the threat because it is unable to keep up with the speed with which a

threat can change direction.

After the application of these thresholds there are three possible outcomes. The

first is that no move passes the thresholds, in which case no movement is performed

by the robot. The second possibility is that only one of the possible movements

4. Curiosity Based Threat Detection and Curiosity Driven Threat Tracking 55

(either left/right or forward/backward) passes the thresholds, in which case that

movement is executed by the robot. The third possibility is that both possible

movements pass the thresholds, in this case only the largest movement is performed,

the smaller movement is ignored.

4.4 Implementation of Threat Detection and Tracking

The previous sections introduce the techniques we used for curiosity-based threat

detection and curiosity-driven threat tracking. In CuWITH these techniques are

implemented as two separate algorithms, one for detecting threats (Alg. 1), the

second for computing an appropriate driven move for the robot (Alg. 2).

For threat detection (see Alg. 1) the CuWITH system is supplied with the trained

dataset Xtr as described in section 4.2. This dataset is trained separately from the

CuWITH system but all of the training images are taken using the robots camera.

When a security check is required, the curiosity-based threat detection algorithm is

executed and a boolean value is returned to the system - either ’true’ if a threat is

detected or ’false’ if no threat is detected. Note that there is an additional test to

ensure that p is larger than a threshold pmin. This is to ensure the stability and

reliability of the threat detection. Although the object detection of the CuWITH

is fast and reliable, it is not perfect. Rarely it will detect an ’object’ which does

not actually exist. pmin prevents these errors from triggering a response from the

CuWITH.

Assuming a threat has been detected the robot must track the threat as described

in section 4.3. This is implemented as in Alg. 2, with the algorithm receiving the

position jobj and area Aobj of a object image and returning a appropriate driven

move to the system.

Note that there is an additional test on line 3, this is to catch early situations that

will result in no driven movement. Here jmin and lmin are the smallest values jdiff

and ldiff respectively can have before becoming insignificant. If jmin and lmin are

both insignificant then Twait is set to 0. If the returned driven move has Twait = 0

(as is the case at lines 4 and 14) then no driven move will be performed. When

4. Curiosity Based Threat Detection and Curiosity Driven Threat Tracking 56

Algorithm 1 Curiosity-Based Threat Detection Algorithm

Require: Matrix Xsi representing the CuWITH’s knowledge and the minimum
number of objects that must be processed for the curiosity to be valid pmin

Ensure: curiosity is either true or false
1: initialise number of object images processed p to 0
2: initialise number of curious objects detected q to 0
3: repeat
4: Obtain object image
5: Normalise object image to a 60x60 image x with an 8-bit RGB colour space
6: Extract red colour channel vector ~x from normalised object image x
7: Extract features y from ~x using Eq. 4.5
8: for Xsi for i = 1 . . .m do
9: compute difference between y and Xsi using Eq. 4.6

10: end for
11: select smallest distance value 〈e〉 across all clusters
12: if 〈e〉 < ω then
13: increment q
14: end if
15: increment p
16: until t > κ
17: C = q

p

18: if p < pmin then
19: return false
20: else if C < ω then
21: return false
22: else
23: return true
24: end if

determining along which axis the robot should move (the j-axis or the l-axis) at

line 6, rather than a simple comparison the difference between (|jdiff | and |ldiff | is

compared to a threshold φ. This is used to compensate for the inherent variability

of |jdiff | and |ldiff |; both values can vary even if the threat is not actually moving

relative to the robot.

4.5 Summary

To surmise, there are two key components of the CuWITH system with regards

to security; curiosity based threat detection and curiosity driven threat tracking.

Threat detection is obviously necessary for a security robot, and is implemented

using a curiosity based paradigm discussed in section 4.3. Although based on the

well-known eigenface face recognition method developed by M. Turk et all. (Turk &

4. Curiosity Based Threat Detection and Curiosity Driven Threat Tracking 57

Algorithm 2 Curiosity Driven Move Algorithm

Require: jobj >= 0, Aobj >= 0, jmid >= 0, Aopt > 0
Ensure: Twait >= 0, r is one of LEFT,RIGHT,FORWARD,BACKWARD
1: jdiff = wopt − wobj

2: compute and Adiff as seen in Eq. 4.11
3: if jdiff < jmin and ldiff < lmin then
4: return Twait = 0
5: else
6: if (|jdiff | − |ldiff |) > φ then
7: compute Twait using Eq. 4.9
8: determine r (LEFT or RIGHT) using Eq. 4.10
9: else

10: compute Twait using Eq. 4.12
11: determine r (FORWARD or BACKWARD) using Eq. 4.13
12: end if
13: if Twait < Γmin then
14: Twait = 0
15: end if
16: if Twait > Γmax then
17: Twait = Γmax

18: end if
19: return Twait, r
20: end if

Pentland, 1991), curiosity-based threat detection expands the eigenface method by

not attempting to specifically identify specific people in its environment. Rather, all

that is required is a single classification; does the detected face belong to one of the

people allowed in the environment or not. Because of this focus on distinguishing

threat from non-threat rather than individuals, the threat detection system is not

as sensitive to noise and thus more reliable in a real environment.

Once a threat has been detected a security robot must take some action to

counter the threat. Realistically these actions will consist of raising an alarm and

tracking the threat so that it is easier for human security personnel to find and

neutralise it. CuWITH focuses on the latter with curiosity-driven threat tracking.

CuWITH is driven to follow any curious object it has detected, how this driven

movement is computed is discussed in section 4.3. Using data on the location of

the object in the camera image and the area (in pixels) the image takes up on the

camera image CuWITH can estimate the objects position relative to the robot and

determine a driven move, either in the j-axis or l-axis, to keep the object in view.

These are essential components, however additional ancillary components are

4. Curiosity Based Threat Detection and Curiosity Driven Threat Tracking 58

needed for the robot to navigate and to extract objects from the camera image.

These components are discussed in the next chapter

5. ANCILLARY COMPONENTS OF THE SECURITY ROBOT

SYSTEM

In addition to the curiosity based threat detection and curiosity driven threat track-

ing components that are the focus of this research, there are several ancillary compo-

nents of the CuWITH security system. These ancillary components of the CuWITH,

although not the focus of this research, are necessary for the CuWITH to function

effectively. Of particular interest is the programmable patrol navigation component

and the object extractor. Both of these components are crucial if the CuWITH is to

be effective as a research platform for curiosity based threat detection and curiosity

driven threat tracking.

5.1 Programmable Patrol Navigation

One of the most important ancillary components of the CuWITH system is the pro-

grammable patrol navigation component. The major responsibility of the navigation

component is twofold; to navigate the robot correctly through the patrol path and

to quickly execute the movement instructions of the curiosity driven threat tracking

component. A key advantage of this component is that it is programmable - the

principle idea of programmable patrol navigation is that the patrol path is defined

separately from the security system, in the form of a script which is supplied to the

system at runtime. This script is separate from the main system and thus can be

modified without having to change the navigation program. This allows for greater

flexibility when testing the CuWITH under different conditions and in different sit-

uations. Because the path is programmable it is easy to modify to fit any office

environment.

5. Ancillary Components of the Security Robot System 60

5.1.1 Motion Control for the CuWITH

Programmable navigation is dependant on the CuWITH being able to determine

how to move from one point to another. Determination of the robots current po-

sition is the first step to doing this. The CuWITH determines its location using a

simple form of odometry. This is a technique which has been successfully used in

several other robot to navigate (Borenstein et al., 1997; Borenstein & Evans, 1997;

Chenavier & Crowley, 1992). If the CuWITH moves left at a speed of 100mm/s

for 1s then CuWITH assumes it has moved 100mm to the left. However to move

from point to point CuWITH must not only move between patrol path point but

must also turn to face the next point in its patrol. During a patrol, the only in-

formation CuWITH has about its position is the last patrol point it visited (point

A = Ax, Ay), the patrol point it is currently located at (point B = Bx, By) and the

next patrol point (point C = Cx, Cy). Using this data the CuWITH must compute

both the turn magnitude θ and the direction τ necessary to turn to face point C.

The magnitude of the turn needed to face point C is determined using three values

derived from these points - the euclidean distance between points A and B (dab), B

and C (dbc) and between C and A (dca) (see Fig. 5.1). Points A,B and C form a

Fig. 5.1: The turn θ CuWITH is required to execute to move to point C, after
moving from point A to point B

triangle. This can be taken advantage of to determine the magnitude of the turn,

using simple trigonometry to determine the value of φ,

φ = arccos
d2

ab + d2
bc − d2

ca

2.dab.dbc

. (5.1)

5. Ancillary Components of the Security Robot System 61

Since φ and θ are supplementary angles, determining the value of θ is a simple case

of subtracting φ from π.

For determining the direction of this turn, there are eight different situations the

robot will need to contend with, as seen in Fig. 5.2.

C

B A

C

A

A

A

B

B

B

C

C

C

C

C

C

anticlockwise

anticlockwise

anticlockwise

anticlockwise

clockwise

clockwise

clockwise

clockwise

B A

C

A B

C

C

anticlockwise

clockwise

(a)

C

B A

C

A

A

A

B

B

B

C

C

C

C

C

C

anticlockwise

anticlockwise

anticlockwise

anticlockwise

clockwise

clockwise

clockwise

clockwise

C

B A A B

C

C

anticlockwise

clockwise

(b)

C

B A

C

A

A

A

B

B

B

C

C

C

C

C

C

anticlockwise

anticlockwise

anticlockwise

anticlockwise

clockwise

clockwise

clockwise

clockwise

C

B A A B

C

(c)

C

B A

C

A

A

A

B

B

B

C

C

C

C

C

C

anticlockwise

anticlockwise

anticlockwise

anticlockwise

clockwise

clockwise

clockwise

clockwise

C

B A A B

C

(d)

C

B A

C

A

A

A

B

B

B

C

C

C

C

C

C

anticlockwise

anticlockwise

anticlockwise

anticlockwise

clockwise

clockwise

clockwise

clockwise

A

A

B

B

C

C

C

(e)

C

B A

C

A

A

A

B

B

B

C

C

C

C

C

C

anticlockwise

anticlockwise

anticlockwise

anticlockwise

clockwise

clockwise

clockwise

clockwise

A

A

B

B

C

C

C

(f)

C

B A

C

A

A

A

B

B

B

C

C

C

C

C

C

anticlockwise

anticlockwise

anticlockwise

anticlockwise

clockwise

clockwise

clockwise

clockwise

A

A

B

B

C

C

(g)

C

B A

C

A

A

A

B

B

B

C

C

C

C

C

C

anticlockwise

anticlockwise

anticlockwise

anticlockwise

clockwise

clockwise

clockwise

clockwise

A

A

B

B

C

C

(h)

Fig. 5.2: The 8 figures represent different turning situations the robot could en-
counter whilst patrolling. In each diagram the robot has moved from point A to
point B and needs to turn to face point C.

In the simplest case, Ay = By but Ax 6= Bx. In this case there are four possible

situations as seen in Fig. 5.2a – 5.2d. The direction here is determined by two factors

- whether Cy is higher or lower than By, and whether Ax is higher or lower than Bx.

The direction of the turn with these situations is determined as follows

τ =



anticlockwise if Cy > By and Bx > Ax

clockwise if Cy < By and Bx > Ax

clockwise if Cy > By and Bx < Ax

anticlockwise if Cy < By and Bx < Ax

(5.2)

A more complex case is applicable if Ay 6= By and Ax 6= Bx. In this case then

the remaining four situations Fig. 5.2e – 5.2h apply. Which situation is used is

dependent on two different factors. The first is the difference between Ay and By.

The second is based on the line defined by points A and B. The gradient k and

y-intercept e of this line are defined as follows:

k =
Bx − Ax

By − Ay

, (5.3)

5. Ancillary Components of the Security Robot System 62

e = Bx − kBy. (5.4)

A point P = Px, Py is defined on this line, with Py = Cy and Px found as follows:

Px = kCy + e. (5.5)

The second factor that determines which situation is the difference between Px and

Cx. This is used to determine if Cx is ’above’ the AB line or below. The turn

direction (assuming case Fig. 5.2e – 5.2h) can therefore be determined using the

following equation.

τ =



anticlockwise if (Cx − Px) > 0 and (By − Ay) > 0

clockwise if (Cx − Px) ≤ 0 and (By − Ay) > 0

clockwise if (Cx − Px) > 0 and (By − Ay) ≤ 0

anticlockwise if (Cx − Px) ≤ 0 and (By − Ay) ≤ 0

(5.6)

Using these situations it is possible to reliably determine the magnitude and direction

of any turn regardless of the relative positions of point A,B and C.

5.1.2 An Example of Programmable Patrol Navigation

Programmable patrol navigation has been implemented in the CuWITH security

system using a patrol path script file. This consists of a list of patrol points that the

robot is required to visit, in order. The environment is represented as a 2-D plane,

each patrol point is a pair of co-ordinates on this plane.

The patrol design system takes these points and calculates a series of instructions

for the WITH robot to move it in a loop, from its current patrol point to the next

patrol point, until the robot has reached the last patrol point. The robot then moves

back to the first patrol point and restarts the patrol. For example, say the robot

needs to move to three security points in a triangular orientation as in Fig. 5.3.

To effect this a simple patrol script file as seen in Fig. 5.4 can be written. The

script informs the robot that the patrol starts at security point A (0, 0), the second

security point B is located at (0, 900) and the position of the third and final security

5. Ancillary Components of the Security Robot System 63

point is at (450, 900).

This script is translated by the navigation system into robot instructions as the

robot patrols. An example of the low-level instructions that may be computed over

the course of the patrol can be seen in Fig. 5.4. These instructions first instruct

the robot to move forward at a velocity of 100mm/s for 9000ms, bringing it to

security point B (the robot is always assumed to start at the first patrol point,

facing the second patrol point). Next the robot turns at a rate of 1000millirad/s for

1525ms, causing the robot to face patrol point C as instructed by the script. These

instructions continue on, instructing the robot to move to security point C, then to

security point A. Finally the robot turns to face security point B, ready to start the

patrol again.

0,0
A

0,900
B

450,900
C

Fig. 5.3: Example patrol path for the CuWITH

patrol_pt 0.0 0.0 % patrol point A
patrol_pt 0.0 900.0 % patrol point B
patrol_pt 450.0 900.0 % patrol point C

FORWD 100 % move to point B
SLEEP 9000
STOP % arrived at B
TURN -1000 % move to point C
SLEEP 1525
STOP
FORWD 100
SLEEP 4500
STOP % arrived at C
TURN -1000 % move to point A
SLEEP 1975
STOP
FORWD 100
SLEEP 10062
STOP % arrived at A
TURN -1000 % turn to face B
SLEEP 2599
STOP % facing B, ready
 to repeat patrol

Translation by CuWITH

Patrol Script File

Low-level robot
instructions

Fig. 5.4: Procedure for determining robot instructions to execute the patrol path in
Fig. 5.3

5. Ancillary Components of the Security Robot System 64

5.1.3 Advantages of Programmable Patrol Navigation

Programmable patrol navigation improves the maintainability of the CuWITH and

helps protect it from human error.

The patrol path of the CuWITH is defined as a simple script, defining a series of

patrol path points. What improves the maintainability of the CuWITH however is

that this patrol path script can easily be modified to suit the current environment of

the robot. Changes to the structure of the environment, improvements in the design

of the patrol path, moving the CuWITH to a completely different environment

- all these situations can be easily dealt with though simple modification of the

CuWITH patrol script. Furthermore these changes do not require the CuWITH

system proper to be modified. Such modifications, if necessary, run the risk of

introducing bugs into the system, potentially causing the robot to fail and leave the

environment vulnerable. Programmable patrol navigation avoids these risks and

makes maintaining the CuWITH much easier and quicker.

Programmable patrol navigation also protects the CuWITH from human error

because the path is defined at a relatively high level. The patrol path designer

does not have to specify how exactly to move between two points, this can be

determined by the CuWITH. All that is necessary is the location of the points.

If specifying the details of the movement was necessary, there is a great risk of

human error particularly with more complex patrol paths. It is very easy for typos

to slip in or instructions to be left out, resulting in the robot being supplied with

an incorrect patrol path. This can invalidate experiments and could damage the

CuWITH if it was accidentally instructed to collide into (or off) objects in the

office. Programmable patrol navigation prevents this situation from happening.

As can be seen, implementing programmable patrol navigation using a script

file makes patrol paths for the robot easier to implement and modify, and protects

the system from the introduction of bugs through program modification. Another

important ancillary component is the object extractor

5. Ancillary Components of the Security Robot System 65

5.2 Object Extraction Method

The CuWITH security system uses curiosity - particularly face curiosity - to detect

threats in the environment, and is driven to follow the threat while taking some

appropriate action. As part of this the robot needs to take an image from the

camera, extract images of any objects (e.g. faces) from this image and submit

these images for curiosity evaluation. Object extraction here is a key step - it must

be reliable, fast and have low memory and computational requirements. If it is

not reliable then it may submit a image which is not a face at all, resulting in a

high curiosity value for a object that does not exist. If it is not fast it will not

be able to keep up in a real environment. And of course if it has high memory

of computational requirements it will not be possible to implement on the limited

memory and computational resources of the CuWITH robot. Another consideration

is that the focus of the CuWITH project is on curiosity-driven threat detection and

tracking, with some work done on programmable navigation. Attempting to develop

a completely new method of object detection is not within the scope of this project

currently.

It was with these points in mind that the current object detector was designed.

This object detector uses a object detection algorithm proposed by P. Viola et all

(Viola & Jones, 2001) and improved by R. Lienhart et all (Lienhart & Maydt,

2002). This is a very fast an accurate algorithm which was implemented based

on code taken from the OpenCV documentation on object detection. The original

OpenCV code has then modified to extract any faces from the camera image as a

face image. Fortunately trained classifiers for face detection come with the OpenCV

distribution so there was no need to spend weeks training the object detector.

In practical experiments, with the programmable patrol navigation, curiosity-

based threat detection and curiosity driven threat tracking all running, the object

detector showed itself to be fast and accurate in a real environment. The rare

misclassification can be filtered out automatically by the curiosity calculation, as

the curiosity calculation excludes outliers as part of measures to improve curiosity

stability.

6. EXPERIMENTS AND SYSTEM EVALUATION

To evaluate the CuWITH and our curiosity based security methods, a number of

tests have been performed. There are three elements of CuWITH which have been

individually tested to evaluate their effectiveness. For CuWITH to effectively patrol

an office the programmable patrol navigation must be both reliable and flexible. A

series of tests have been performed to determine if this is the case. However the

focus of the CuWITH is curiosity-based threat detection and curiosity driven threat

tracking, to that end both are thoroughly tested for their speed and accuracy. The

CuWITH as a whole has also been tested to determine how well these components

can work together to protect an office.

6.1 Results of the Programmable Patrol Navigation Testing

CuWITH has been designed to not only patrol a particular path but also to utilise

programmable patrol navigation, allowing it to patrol any arbitrary path supplied

to it without needing to change any part of the CuWITH system. There are two

key aspects of this that need to be tested; first the CuWITH must correctly patrol

a given path and it must be possible to change this path without any change to the

CuWITH system - only the script describing the patrol path should be modified.

As an initial test a simple triangular patrol path was designed, as seen in Fig.

6.1a. This path consists of three patrol points, with the CuWITH starting at point

A (0,0), moving to point B (900,0) then to point C (450,900) before returning to

point A. This path was specified in a patrol path script (see Fig. 6.1a) which was

supplied to the CuWITH at the beginning of the test.

During the test the CuWITH performed the patrol on a table covered in paper.

A pen was attached to the rear of the CuWITH to draw the robots path during

6. Experiments and System Evaluation 67

the test. The resulting line was photographed after the test was completed. An

enhanced version of this image can be seen in Fig. 6.1b.

0.0 0.0
A

450.0 900.0
C

900.0 0.0
B

100.6cm100.6cm

90cm

(a) (b)

Fig. 6.1: The simple patrol path that was used to test the CuWITH’s programmable
patrol navigation can be seen in the left figure. The actual path CuWITH took when
it performed this patrol path can be seen to the right

p a t r o l p t 0 .0 0 .0
p a t r o l p t 900.0 0 .0
p a t r o l p t 450.0 900.0

Fig. 6.2: Patrol path script to execute the designed patrol path in Fig. 6.1a

The key question here is did the robot move correctly? This question can be

answered by comparing the desired path with the actual path. The first move

executed by the CuWITH is a straight move to point B. Although this move is

3.1cm shorter than the ideal distance this is not a significant deviation. A more

significant deviation occurs when CuWITH turns to face point C, the turn is too

small. When the CuWITH completes the following move to point C it actually ends

up slightly above and to the right of the ideal position. This is a larger deviation

but still reasonably close to the desired location. Finally, the CuWITH turns and

moves back to point A, however it halts a little too early and ends up above and to

the right of the endpoint. Comparing the designed path (Fig. 6.1a) to the actual

path (Fig. 6.1b) it is clear that the CuWITH was quite close to the desired path,

visiting each point in turn then returning to the origin.

This initial test however uses a simple patrol path, a triangle. In a real setting the

patrol path will be more complex than this. To more thoroughly test the CuWITH’s

ability to handle more complex paths a star-shaped patrol path was designed (see

6. Experiments and System Evaluation 68

Fig. 6.3a). This is a star-shaped path that tests the CuWITH’s ability to both

move precisely and compute the correct turn direction and magnitude. The initial

test was then repeated using the complex patrol path rather than the simple patrol

path. The path the CuWITH took can be seen in Fig. 6.3b.

398.02 398.02
A

864.03 398.02
C

631.025 1115.14
B

254.015 841.222
D

1008.04 841.222
E

(a) (b)

Fig. 6.3: The left figure is the more complex patrol path design that was used to
further test the reliability and robustness of the CuWITH’s navigation. The actual
path taken by CuWITH when performing this patrol path can be seen to the right.

p a t r o l p t 398.02 398.02
p a t r o l p t 631.025 1115.14
p a t r o l p t 864.03 398.02
p a t r o l p t 254.015 841.222
p a t r o l p t 1008.04 841.222

Fig. 6.4: Patrol path script to execute the designed patrol path in Fig. 6.3a

As can be seen the CuWITH followed the path very well, reaching every pa-

trol point and returning to the initial position correctly. However there are still

some small deviations from the ideal path. To more closely examine this error an

experiment was performed to determine if this error was precisely predicable (and

therefore could be easily compensated for), the experimental setup can be seen in

Fig. 6.5.

In the experiment the CuWITH was faced at a pre set initial position on a

table covered in paper (as with the previous experiments). The CuWITH was then

instructed to move forward 90cm in a straight line. This was not performed using

the navigation component of the CuWITH, to exclude the possibility of program

errors a very simple control program was written which only instructed the robot to

move forward exactly 90 cm. After the CuWITH had finished moving, the optimal

final position of the CuWITH (assuming it had moved exactly 90cm forward in a

6. Experiments and System Evaluation 69

sx

sy

Initial Position

+-

+
-

Optimal Final
Position

Actual Final
Position

90cm

Fig. 6.5: Experimental design for the movement reliability tests. The CuWITH
starts at a pre-set initial position and is instructed to move forward 90cm. Two
values are measured to determine the CuWITH’s deviation from the path, the x
and y difference (sx, sy) between the robots actual final position and its optimal
final position

straight line) and the actual final position of the CuWITH were compared. Two

values are key, the horizontal displacement error sx (difference between the actual

distance moved forward and 90cm) and the side displacement error sy (how far

to the left or the right CuWITH deviated from the planned straight path). This

experiment was repeated 50 times, the results of 48 of these experiments can be seen

in Fig. 6.6 (two experiments had values for sx that were considerably higher than

the rest of the data and were excluded as outliers).

10 5 0 5 10
Horizontal Error in cm

80

60

40

20

0

V
e
rt

ic
a
l
E
rr

o
r

in
 c

m

Measured Location
Start Position
Target Position

Fig. 6.6: Results of the path deviation experiment. Each point represents one
experiment, 48 experiments are represented in the graph (two outliers were excluded)

6. Experiments and System Evaluation 70

The first thing that is clear from this data is that at no time did the robot

reach the optimal final position, although sometimes sy is zero CuWITH is always

at least -2.7cm short of the target 90cm. There is also considerable variability in

the deviations. Despite each experiment being performed the same way, CuWITH

experienced a wide array of deviations, both to the left and to the right. The

variation is not systematic or predictable enough to be compensated for without

additional information about the CuWITH’s position.

Despite these errors the fact remains that the CuWITH was able to complete

both a simple and a more complex patrol path without any system modification

required. For the purpose the CuWITH navigation component is intended to serve

(e.g. facilitation of curiosity based threat detection and curiosity driven threat

tracking experiments) the current performance is satisfactory.

6.2 Evaluation of Threat Detection

There are two key aspects of real time threat detection that curiosity based threat

detection should be evaluated by. The first is the reliability of curiosity based

threat detection in a real office environment. While patrolling an office environment,

a security robot may have to deal with differing lighting conditions, a variety of

different object poses and the distance between the robot and an object may change

over time. When evaluating curiosity based threat detection these confounding

factors must be considered. Threats must also be detected in real time, if this is not

possible then intruders could escape detection and compromise the security of the

office. Therefore when evaluating curiosity based threat detection the speed of the

computation must be considered. Furthermore, an autonomous robot may not have

the computational resources available to a desktop computer. To properly examine

the speed of execution, curiosity based threat detection should be performed using

the more limited computational resources of (in this case) the CuWITH, to more

accurately represent the real world demands of a autonomous security robot. Taking

these aspects into account, a number of experiments have been conducted to evaluate

the effectiveness of curiosity based threat detection in real time threat detection.

6. Experiments and System Evaluation 71

6.2.1 Offline Threat Detection Experiments

Before testing curiosity based threat detection in an online experiment on the

CuWITH, an offline experiment was performed using two face databases, the Lab

face database and the BioID face database (BioID Face Database, n.d.).

The Lab face database consisted of the faces of 7 different people present in the

KEDRI offices. All of these face were obtained in the office, using the CuWITH’s

camera, with the person seated in front of the camera. These people were lit from

a fluorescent light above and to their left. The face images were then extracted

from the camera image using the CuWITH’s object extractor. The BioID face

database (BioID Face Database, n.d.) is a large dataset of 1521 images, each of

which shows the frontal view of the face of one of 23 subjects. The BioID database

is focused on real world testing, to that end the images have been taken in a variety

of illuminations, backgrounds and poses.

These databases are divided into two datasets, a training dataset and a much

larger testing dataset. The training dataset contains data on 5 people represented

in the Lab face dataset, for each person a small subset of their faces in the Lab face

database were included in the trained dataset. The remaining face images from both

the Lab face database and the BioID face database was then included in the test

database. Furthermore, to test how robust curiosity based threat detection was to

differing numbers of known people, all tests were repeated using 4,3,2 and 1 people

in the training database.

The experiment was performed by first training the curiosity based threat detec-

tion component using the training dataset, then determining the curiosity value of

each of the faces in the testing dataset (the number of eigenvectors M ′ = 20). If the

square root of the curiosity value of a particular face was higher than a threshold

(70) then that face was designated as curious and a threat, otherwise the face was

known and not threatening. This result was then compared with the true threat

status of the face to see if this classification was accurate. The results of these tests

can be seen in Table. 6.1.

As can be seen, the percentage of threatening (unknown) faces correctly regarded

6. Experiments and System Evaluation 72

Tab. 6.1: Results of the Offline Experiments

known people
Ntrain test faces Tp Rate Tn Rate

(known/unknown)
5 1250 5479 (3617/1862) 83.73 % 85.84 %
4 1000 5230 (3368/1862) 84.75 % 84.76 %
3 750 4724 (2862/1862) 85.45 % 99.65 %
2 499 3032 (1170/1862) 85.61 % 99.915 %
1 248 2356 (494/1862) 89.31 % 100.0 %

as threats ranges between 83% and 89%, while the percentage of known faces which

were not regarded as threats is above 99% for three fifths of the tests. Although both

these numbers are lower than our best expectations, we believe this is due to PCAs

sensitivity to changes in light, viewing angle and face size. This is a well known

limitation of PCA (Turk & Pentland, 1991; Zhang et al., 1997). Despite this PCA

has a distinct advantage in its low computational requirements. The robots VGN-

UX70 minicomputer has relatively low computing power, a very accurate algorithm

would exceed its capabilities and not run in real time. As will be demonstrated in

the next section, PCA not only can run in real time on the minicomputer but can

also attain good accuracy.

6.2.2 Online testing in an Office Environment

To test the real-time performance of curiosity based threat detection the accuracy

and frame rate of CBTD was tested in a real environment. This environment was a

room in the KEDRI offices and consisted of the CuWITH on a table facing a subject

seated in front of a bookcase (see Fig. 6.7). The subject was lit by a light above

and to the left of the subject, as well as by several more distant lights.

Training data was collected in this environment, using the CuWITH to obtain

face images of two people in this office environment, located in the same position as

the unknown person in 6.7. The CBTD was then trained on this data and tested

using two different test subjects. One of these was a known person (i.e. one of the

people the CBTD had been trained on), the other was a person who was unknown

to the CuWITH. Each test subject was placed in front of the CuWITH (as seen in

Fig. 6.7) and the computed curiosity values for that person were recorded over 60

6. Experiments and System Evaluation 73

Fig. 6.7: The environment of the subjects when obtaining the test data. In this
example an unknown person is present in the environment.

seconds.

The first experiment concerned the easiest case, with the subject looking directly

at the camera. In this experiment 753 and 756 frames were processed for the known

and unknown person respectively. The curiosity values for each frame processed

during this experiment can be seen in Fig. 6.8.

100 200 300 400 500 600 700
300

400

500

600

700

800

900

1000

Frame

C
om

bi
ne

d
C

ur
io

si
ty

 V
al

ue

Curiosity Values for a Known and Unknown Person over 750 frames (12.5fps)

Known
Unknown

Fig. 6.8: The results of the initial curiosity experiment. The x-axis of this graph
shows the frame count (each frame is captured and processed by CuWITH in real
time). The y-axis displays the raw curiosity value computed for each frame for both
the known and unknown subject

6. Experiments and System Evaluation 74

When judging how effective the curiosity computation is, the major considera-

tion is separability - can the unknown and known person be differentiated, and if

so how significant is the difference between the two. It is also expected that the

curiosity values of the unknown subject are higher than the curiosity values for the

known subject - the unknown subject should be much more curious than the known.

Curiosity should also be calculated in real time, otherwise the CuWITH may miss

important security events occurring in the environment.

The test results for both the known and unknown person were collected over the

course of 60 seconds. 753-756 frames over 60 seconds means that the CuWITH’s

CBTD achieved a frame rate of 12.575 fps ±0.025. This is sufficient for real-time

processing, demonstrating not only that the CuWITH is capable of reliably detecting

threats in a real environment but also that it can do this in real time.

As can be seen, the curiosity values for the unknown person (shown in red) are

almost all ≈ 100 above the curiosity values for the unknown person (shown in blue).

However there are some fluctuations in the values, and some of these fluctuations are

severe enough that the curiosity value gap between the known and unknown people

disappears. For example, frame 108 of the unknown person has a curiosity value

of only 656.7, while the curiosity value of the known person is as high as 668.8 at

frame 140 and 672.8 at frame 612. The severity of these fluctuations can be reduced

by evaluating the curiosity values over some time period κ rather than individually.

In CuWITH this has been implemented by examining the values over a time

period (t − κ)...t to determine at time t if a threat is present, as seen in Eq. 4.8.

Each curiosity value in the group is evaluated as either unknown or known, if the

percentage of unknown evaluations is higher than a threshold a threat is detected.

Noise in the data being acquired can therefore be marginalised - if the majority of

curiosity values are relatively low (for example if only a known person is present)

a single abnormally high value cannot overshadow this and cause a false positive

detection.

To demonstrate this let us take the data presented in Fig. 6.8 and divide it into

sequential groups of ten. Each group of ten is displayed as a box plot in Fig. 6.9,

6. Experiments and System Evaluation 75

numbered in time order.

Unknown Person

Known Person

Fig. 6.9: The results of Fig. 6.8 when the spread over 10 sequential curiosity values
is considered. The y axis displays the curiosity value while the x-axis displays the
frame count. Each box plot displays the spread of the previous 10 curiosity values,
with the box being bounded by the 75th and 25th percentiles.

The box of each box plot in Fig. 6.9 stretches between the 75th and 25th

percentiles. Note that for the unknown person the 25th percentile is almost always

higher than 700, and even the two exceptions to this are higher than 650. This

means that for the majority of the unknown groups at least 75% of the curiosity

values are higher than 700. Conversely with the known person the 75th percentile of

the majority of the groups are below 625. What is key to note is that the difference

between the 25th percentiles of the unknown person and the 75th percentiles of the

unknown person is realtively large - in most cases it is larger than 75. This clearly

shows that there is a reliable difference between the known and unknown person.

With such a gap, it is possible to reliably detect threats - a threshold can be set

which will reliably classify most known face images as known, and most unknown

face images as unknown.

The results for this base experiment are encouraging, however they assume a best

case scenario where the person will be looking directly at the camera. In reality this

cannot be relied on so several other test cases were used to evaluate the reliability

of the CuWITH’s CBTD under different subject poses. These test cases involved

the subject facing to the left and right (from the CuWITH’s perspective) and the

6. Experiments and System Evaluation 76

subject being significantly closer and further away from the CuWITH.

The experimental setup was the same as the initial experiment, with the subject

sitting before the CuWITH for 60 seconds, however in this instance the subject

assumed one of the aforementioned poses. Some data was lost here as the different

poses (particularly the poses that had the subject facing left or right) occasionally

caused the face detection to fail, but still a significant amount of data was obtained.

The data collected through these experiments was compared to the baseline data

to see how the different poses affected the performance of CBTD. More specifically,

the most important values of the baseline were used for comparison - the 25th

percentile of the unknown baseline and the 75th percentile of the known baseline.

This was compared to the 75th percentile of the known person test data and the

25th percentile of the unknown person test data. This can be seen in Fig. 6.10

The first series of experiments are the ’close’ experiments (Fig. 6.10a and 6.10b),

where the subject was significantly closer to the CuWITH than with the baseline

data. The combined curiosity values for the unknown subject when they are close

to the CuWITH (Fig. 6.10b) are clearly slightly higher than the unknown subject

baseline. This is in line with what is required of the CuWITH’s threat detection

- despite the change in pose the curiosity value for the unknown subject is within

acceptable boundaries. The CuWITH’s curiosity computation does not perform

as well for the known subject when they are close to the CuWITH (Fig. 6.10a).

The computed curiosity values are slightly higher than the known subject baseline,

however the values are still below the unknown subject baseline by at least ≈ 20,

with the majority of the values having a much higher difference. The first 33 frames

are an exception to this, with known test values as high as the unknown subject

baseline. Despite this the majority of test values are still below the unknown subject

baseline, allowing for a threshold to be set with reasonable room for error.

The second series of tests examine CuWITH’s performance against subjects

which are relatively distant from the robot (Fig. 6.10c and 6.10d). The unknown

subject is the case that is handled best, with combined curiosity values well above

the unknown subject baseline. The case of the known subject however performs very

6. Experiments and System Evaluation 77

0 10 20 30 40 50 60
200

300

400

500

600

700

800

900

1000

1100

1200

Group Number

C
ur

io
si

ty
 V

al
ue

3rd Quartile of Known subject baseline
1st Quartile of Unknown subject baseline
Test data from known subject close to the CuWITH

(a) Known person close to the camera

0 10 20 30 40 50 60
200

300

400

500

600

700

800

900

1000

1100

1200

Group Number

C
ur

io
si

ty
 V

al
ue

3rd Quartile of Known subject baseline
1st Quartile of Unknown subject baseline
Test data from unknown subject close to the CuWITH

(b) Unknown person close to the camera

0 10 20 30 40 50 60
200

300

400

500

600

700

800

900

1000

1100

1200

Group Number

C
ur

io
si

ty
 V

al
ue

3rd Quartile of Known subject baseline
1st Quartile of Unknown subject baseline
Test data from known subject far from the CuWITH

(c) Known person far from the camera

0 10 20 30 40 50 60
200

300

400

500

600

700

800

900

1000

1100

1200

Group Number

C
ur

io
si

ty
 V

al
ue

3rd Quartile of Known subject baseline
1st Quartile of Unknown subject baseline
Test data from unknown subject far from the CuWITH

(d) Unknown person far from the camera

0 10 20 30 40 50 60
200

300

400

500

600

700

800

900

1000

1100

1200

Group Number

C
ur

io
si

ty
 V

al
ue

3rd Quartile of Known subject baseline
1st Quartile of Unknown subject baseline
Test data from known subject facing Left

(e) Known person facing left

0 10 20 30 40 50 60
200

300

400

500

600

700

800

900

1000

1100

1200

Group Number

C
ur

io
si

ty
 V

al
ue

3rd Quartile of Known subject baseline
1st Quartile of Unknown subject baseline
Test data from unknown subject facing Left

(f) Unknown person facing left

0 10 20 30 40 50 60
200

300

400

500

600

700

800

900

1000

1100

1200

Group Number

C
ur

io
si

ty
 V

al
ue

3rd Quartile of Known subject baseline
1st Quartile of Unknown subject baseline
Test data from known subject facing Right

(g) Known person facing right

0 10 20 30 40 50 60
200

300

400

500

600

700

800

900

1000

1100

1200

Group Number

C
ur

io
si

ty
 V

al
ue

3rd Quartile of Known subject baseline
1st Quartile of Unknown subject baseline
Test data from unknown subject facing Right

(h) Unknown person facing right

Fig. 6.10: Comparison of the CuWITH’s threat detection performance under differ-
ent subject poses and locations.

6. Experiments and System Evaluation 78

poorly, with the curiosity values consistently within the same range as the unknown

subject baseline. It is not possible to determine a threshold which could differentiate

between the known subject in this case and the unknown subject baseline.

The third series of tests observes the reliability of the CuWITH’s combined

curiosity calculation when the subject is facing to the left of the CuWITH (Fig.

6.10e and 6.10f). In this case the performance of both the known and unknown

subject is very good. The known subject test values correlate very well with the

known subject baseline, and similarly the unknown subject test values are all within

the range of the unknown subject baseline.

The final series of experiments examines how well the CuWITH performs when

the subject is facing to the right of the CuWITH. The unknown subject is handled

well, with the curiosity values being equal to or higher than the unknown subject

baseline. The known subject is not handled as well, the values are very close to the

unknown baseline. A threshold can still be applied as there is still a gap between

the two sets of combined curiosity values, however it will not be as reliable.

When considering these results there are two unusual trends which can be ob-

served. The first is that the curiosity values of the subject when they are facing the

CuWITH’s right side are higher than when they are facing the CuWITH’s left side.

This is a significant difference which is too large to be caused by the left side of the

subjects face being different from the right side. The answer lies in the environmen-

tal conditions of the experiment; there is a light above and to the left of the subject.

This difference of lighting causes the right side of the face to be less brightly lit than

the left. When the subject faces to the robots left this is not as much of a problem,

the face is lit much the same as when the subject is facing the CuWITH. However

when the subject is facing in the other direction the face is more brightly lit. For

example, the 201st frame of the known subject facing right results in the highest

curiosity value of all the frames in that experiment (see Fig. 6.10g). If one compares

this frame with the 201st frame from the left side experiment a clear difference in

lighting can be seen (Fig. 6.11).

As can be seen the right side face is more brightly lit than the leftside face. there

6. Experiments and System Evaluation 79

(a) (b)

Fig. 6.11: Comparison of a known person facing to the left and to the right of the
robot. As can be seen, the image on the right is more brightly lit than the image
to the left, despite the fact that the subject and the CuWITH were in the same
location for both images

is also a greater variance in the lighting on the right side face - while the left side face

is lit more uniformly, the right side is more varied, with some areas of the face being

more dark and others being more light. I believe it is this which is causing the right

side experiments to report higher curiosity values than the left side experiments.

The second trend that can be seen from these results is the poor results of the

far experiment with the known subject. I believe the most likely explanation is that

as the subject recedes from the CuWITH, the area of the camera image that the

face takes up decreases. This means that the CuWITH has less information about

the face compared to what the baseline experiment (where the subjects face was

closer to the CuWITH) had. This is a well documented limitation of PCA (Turk &

Pentland, 1991; Zhang et al., 1997).

It should be noted that for these tests only a single eigenvector was used, while

this would have made the computation faster it also had severe drawbacks. Although

two people were used to train the curiosity model, only one could ever be correctly

classified as known. We believe this is because only one eigenvector was not enough

to discriminate between these two people, only one or the other could be learned.

Alongside the CBTD of the CuWITH the curiosity driven threat tracking is

another important component of the CuWITH which needs to be tested.

6. Experiments and System Evaluation 80

6.3 Evaluation of Curiosity Driven Threat Tracking

Detection of threats is crucial for effective robot security, however the actions taken

when a threat is detected are just as important. In the case of CuWITH, it is driven

by its curiosity of unknown objects to follow threats as discussed in section 4.3. This

is necessary for the CuWITH to protect its environment effectively; it must keep

track of where the threat is to facilitate threat neutralisation.

To test the accuracy and speed of the curiosity driven threat tracking of the

CuWITH a experiment was performed. This test consisted of CuWITH being shown

a person, who then moved in a particular pattern. The CuWITH’s path was then

recorded to observe if it was capable of following the person correctly. This exper-

iment was performed in a real environment, with the subject initially sitting in a

chair in front of the CuWITH, with a bookcase behind them.

The movement of the person can be seen in Fig. 6.12b. In this diagram the

blue lines represent the movement of the person, the red lines simply clarify the

order in which the movements are executed. As can be seen, the person first moves

backward, then to the right, to the left, back right to the centre then moves forward

past the starting location.

The real path of CuWITH in response to this movement can be seen in Fig.

6.12a.

(a) The path of CuWITH when
following the unknown person

CuWITH

 Person

23cm 32cm

16cm

37cm

(b) The path of the unknown per-
son during the threat tracking ex-
periment

Fig. 6.12: Results of the threat tracking experiment. The right figure shows the
actual movement of the unknown person, the left figure illustrates how the CuWITH
moved to follow the persons movements

6. Experiments and System Evaluation 81

Initially the robot moved forward rather than backward, this is because the

subject was too far away from the robot and thus caused the CuWITH to be driven

forward. After an appropriate distance between the subject and the CuWITH was

attained the test proper began. The subject first moved backwards. As can be seen

in Fig. 6.12a this triggered a response by the CuWITH, with the robot moving

forward following the person. CuWITH also moves side to side, this is because the

subject moved to the left or right slightly while moving backward. CuWITH then

continues to follow the face, moving to the left, then the right, back to the left then

following the person as they move forward. Thus the CuWITH is able to follow the

person accurately as they move in the environment.

This test also provided an opportunity to measure the reaction time of the

CuWITH. By recording the above test using a separate fixed camera it is possi-

ble to estimate how quickly the CuWITH can react to a changing environment.

This reaction time can be seen in the sequence of frames shown in Fig. 6.13:

tinit tinit + 0.0669s

113,165 113,165 113,165 113,165 113,165

113,165 114,165 114,165 115,165 116,165

117,165 118,165 119,165 119,165 120,165

tinit + 0.1338s tinit + 0.2007s tinit + 0.2676s

tinit + 0.3345s tinit + 0.4015s tinit + 0.4684s tinit + 0.5353s tinit + 0.6022s

tinit + 0.6691s tinit + 0.7361s tinit + 0.8030s tinit + 0.8699s tinit + 0.9368s

Fig. 6.13: This series of frames shows the reaction time of the CuWITH. Each frame
has a cross (and a set of x,y coordinates) marking the location of the CuWITH. At
tinit the person begins to move to the CuWITH’s right, 401.5ms after the person
starts to move CuWITH detects the movement and begins to follow the person to
the right

Initially (time tinit) the person is within the centre of the CuWITH’s view.

As the person moves to the CuWITH’s right the CuWITH does not react at first,

6. Experiments and System Evaluation 82

primarily because the face is still within the margin of error. At time tinit + 0.4015s

the CuWITH starts to follow the face right. This can be seen as the image of

the CuWITH moves one pixel to the right to (114,165). This movement continues

on though the next 7 frames, clearly showing that this is actual movement of the

CuWITH rather than noise. This indicates a reaction time of 0.4015s, however the

true reaction time is slightly shorter than this because some of the delay is caused

by the persons face being within the margin of error.

Based on the results of these experiments it is clear that the CuWITH is capa-

ble of both detecting and tracking threats. However, one of the key advantages a

mobile security robot has over a stationary camera is that it can move. A mobile

security robot should be able to patrol its environment and search for threats. This

capacity has been implemented in the CuWITH (discussed in Chapter 5.1) along

with programmable navigation, allowing even complex patrol paths to be specified.

6.4 Unified System Testing

The most important test of the CuWITH is a unified system test that tests all

components of the CuWITH working together to secure an environment. Although

the individual components can perform their duties correctly in real time there are

numerous issues that can come up when these components are combined. These

issues include (but are not limited to) ensuring the navigation and threat detection

components of the CuWITH communicate properly and whether the CuWITH has

the computational power for both components to run in real time simultaneously.

To this end an environment was designed, consisting of two tables side by side

covered by a tablecloth, several chairs and a bookcase as seen in Fig. 6.14.

A patrol path was then designed for the CuWITH. This patrol path was a tri-

angular patrol path (similar to the triangular path in Fig. 6.1a but larger). An

additional step was added to instruct the robot to turn to face the bookshelf at

point C. At this point CuWITH would search for threats and if a threat was de-

tected CuWITH would be driven by its curiosity of the threat to follow it. For

testing purposes an artificial timeout was added, causing the CuWITH to stop fol-

6. Experiments and System Evaluation 83

Fig. 6.14: The environment used for unified system testing

lowing the threat after a set amount of time had passed. Once this timeout had

been reach or if no threats where detected the CuWITH would return to its patrol.

The entire experiment was recorded for later analysis.

The first time the CuWITH executed its patrol a known person was seated in

front of point C. In this case the CuWITH was expected to ignore the subject and

continue with its patrol. Of course the patrol itself should be executed correctly,

each patrol point should be visited and the CuWITH should execute the turn at

point C.

Sample frames from the first patrol can be seen in Fig. 6.15.

(a) t = 0s (b) t = 11.1s (c) t = 20.7s (d) t = 28.36s

(e) t = 29.67s (f) t = 33.34s (g) t = 36.1s (h) t = 45.9s

Fig. 6.15: The first patrol of the robot during the full system test. This patrol was
recorded on video and screen captures at various points of the patrol are displayed
here. A known person was presented to the CuWITH during this patrol (see Fig.
c), as expected the CuWITH ignored this person and continued its patrol.

As can be seen CuWITH does indeed complete the designed patrol path correctly,

visiting each patrol point in turn before returning to the start (Fig. 6.15g) and

6. Experiments and System Evaluation 84

turning to face point B (Fig. 6.15h). Furthermore if one examines the actions the

CuWITH takes at the security checkpoint (Fig. 6.15e - 6.15g) it is clear that the

CuWITH is acting correctly. It turns top face the bookshelf at point C, scans for

threats with a known person before it, then ignores the known person and returns

to the patrol.

The second time the CuWITH performed the patrol the known subject was

replaced with an unknown subject. Sample frames from this patrol can be seen in

Fig. 6.16.

(a) t = 48.04s (b) t = 65.94s (c) t = 78.34s (d) t = 81.94s

(e) t = 83.54s (f) t = 84.86s (g) t = 93.84s (h) t = 107.34s

Fig. 6.16: The second patrol of the robot during the full system test. As with
the first patrol this was recorded on video and screen captures at various points
of the patrol are displayed here. This time an unknown person was presented to
the CuWITH (see Fig. c). The CuWITH proceeds to follow the person for several
seconds Fig. (c - f) before returning to the patrol due to the artificial timeout

The CuWITH performs the patrol as before, however when it reaches point C

and searches for threats there is an unknown person present. This indicates that a

threat has been detected (i.e. the unknown person seated before the CuWITH).

At this point the CuWITH halts its patrol and starts to follow the subject,

moving backward and to the right (Fig. 6.16c - 6.16f). The artificial timeout then

triggers and the CuWITH returns to the patrol.

This test was repeated at the ICONIP’08 conference, with several unknown peo-

ple being presented to the robot. Each person was correctly classified as a threat,

even though the CuWITH was in a different environment with people that it had

never encountered.

6. Experiments and System Evaluation 85

6.5 Summary

In summary, not only have the three major components of the CuWITH shown their

effectiveness in performing their task under realistic experimental conditions but

have shown that all three components can be combined together and run correctly

on a robot in real time.

The programmable patrol navigation component has shown itself to be extremely

flexible. It was able to correctly execute a relatively simple triangular patrol path

(Fig. 6.1b) as well as a significantly more complex star-shaped patrol path (Fig.

6.3b). Switching from the simple patrol path to the complex patrol path requires

only a simple modification of the patrol path script. In both the simple and complex

paths each patrol path point was visited correctly by the CuWITH, demonstrating

the flexibility and accuracy of the programmable patrol navigation component.

The curiosity based threat detection component of the CuWITH has shown itself

capable of detecting threats in real time whilst limited to the modest computational

power of the Sony VAIO VGN-UX70 minicomputer. Initial offline tests demon-

strated the potential of CBTD to reliably detect threats in a real environment.

CBTD was then evaluated using online testing in a real environment. Despite dis-

playing some sensitivity to the lighting conditions and the pose of the subject, CBTD

showed an acceptable ability to reliably detect threats. Furthermore it was able to

compute individual curiosity values in real time (12.5 frames processed per second).

The third and final major component, the curiosity driven threat tracking com-

ponent, also demonstrated its ability to follow a moving threat in real time. Not

only did it react quickly to changes in the threat’s position, it was also able to move

accurately and match the threats motion in real time. All of this was achieved under

true-to-life experimental conditions.

It is insufficient to show that these components are effective individually; they

must be able to work together effectively, and in real time. This was first demon-

strated in a full system test in a real office environment. These tests showed that

each of the components were indeed working together correctly - the patrol navi-

gation was completed successfully, the CBTD correctly ignored the known person

6. Experiments and System Evaluation 86

while detecting the unknown person and the threat tracking component was able to

follow the threat as it moved in the environment. This was demonstrated again at

the ICONIP’08 conference. Despite the environment being completely different the

CuWITH was still able to patrol the environment and detect and handle threats

correctly.

7. CONCLUSION AND FUTURE WORK

This thesis describes the development of the CuWITH, an autonomous mobile robot

for office security. CuWITH implements solutions to a number of typical challenges

of navigation, threat detection and threat tracking that face security robots protect-

ing an office environment.

For such a security robot to be effective it must be able to navigate in a complex

office environment. Furthermore, there are many different offices with different ar-

rangements of corridors, rooms and doors. The developed navigation system must

therefore be able to adapt to any given office. We propose the use of a programmable

patrol navigation system to solve this challenge. In the programmable patrol navi-

gation system we have developed, the patrol path is not hard coded into the system,

but rather is defined in a patrol path script file that is read and executed by the

system at runtime. This script is not only easy to modify to suit any given office,

it also defines the path at a high level, protecting the user from making errors in

defining the path. This system has been tested using the CuWITH, and was shown

to work as expected by executing both a simple and a complex patrol path.

Accurate and fast threat detection is the core of the CuWITH. We propose a

new concept of threat detection based on the notion of curiosity, the intrinsic moti-

vation to investigate unexpected and unusual objects in the environment. Consider

a security robot patrolling an office. The robot can expect to encounter certain

objects during its patrol (e.g. particular people allowed in the office); threats to the

office will be different from what is normally encountered by the robot and therefore

will be curious objects. This curiosity method has been applied to face curiosity,

to detect any unknown person as a threat. In offline tests, the proposed curiosity

based threat detection demonstrated consistently high classification accuracy for

both threats and non-threats, even when the number of different people used to

7. Conclusion and Future work 88

train the system varied. Further in real time experiments, the proposed method has

also demonstrated its accuracy, real time execution time and robustness to different

poses of the object.

Once a threat has been detected, the security robot should take some corrective

action. Except for raising an alarm, threat tracking is researched as a corrective

action, allowing the CuWITH to help security forces to locate and respond to intru-

sions. This is done using a curiosity driven approach, the CuWITH is driven by its

curiosity to follow unusual objects that it detects. Experimental results show that

CuWITH can react quickly and accurately to the movements of threat objects.

The effectiveness of these techniques integration for a security patrol was demon-

strated in the CuWITH. In tests, the CuWITH was given three tasks: to navigate

a patrol path as specified in a script file, to correctly detect a threat and to ignore

a non-threat (i.e. a known person), and finally to follow the detected threat as it

moved in the environment. This test was performed in two different environments,

in the research offices and at the ICONIP’08 conference in Sky City Convention Cen-

tre. In both of these different environments, the CuWITH correctly executed the

patrol path, detected threats while ignoring known people, and successfully tracked

detected threats.

In general, CuWITH has demonstrated its ability to solve some of the challenges

security robots face, and it can be further enhanced in the future. In particular

there is enormous scope for future work with the CuWITH’s curiosity modelling.

The current model could be expanded to consider a greater variety of information,

such as the time of day and the location of the threat. There is also the possibility

of the CuWITH not only detecting definite threats (such as an unknown person in

the office) but also possible threats. For example, a loud noise in the office could be

nothing, but also could be an intruder breaking in. In this situation the CuWITH

should not only detect the possible threat, but should also be driven to investigate

the noise and confirm if it is a threat before raising an alarm. Such a curiosity

model could also allow the CuWITH to prioritise, if the robot hears an unusual

noise and detects an open door at the same time, the CuWITH will have to choose

7. Conclusion and Future work 89

what to investigate first. With a curiosity model that considers possible threats, it

is possible to rank these possible threats (noise and open door) and decide which is

more threatening. This can be combined with other information, during office hours

an open door is not as much of a threat, however at night an open door may be

more of a concern. The navigation system of the CuWITH could also be developed

further through the use of more advanced localisation techniques to determine its

location and correct its path. The camera used by the CuWITH currently can suffer

from blurring if the camera or objects in view move too fast. The severity of this can

be reduced by upgrading the current camera to a camera with a shorter exposure

time. Nevertheless, the developed CuWITH has demonstrated its ability to perform

as a mobile security agent in a office environment.

REFERENCES

Andreasson, H., Magnusson, M., & Lilienthal, A. (2007). Has something changed

here? autonomous difference detection for security patrol robots. In Pro-

ceedings of the 2007 IEEE international conference on intelligent robots and

systems.

Barreto, J., Menezes, P., & Dias, J. (2004). Human-robot interation based on harr-

like features and eigenfaces. In Proceedings of the 2004 IEEE international

conference on robotics and automation.

Barto, A., Singh, S., & Chentanez, N. (2004). Intrinsically motivated learning

of hierarchical collections of skills. In Proceedings of the 2nd international

conference on development and learning.

Bioid face database. (n.d.). Website. Available from http://www.bioid.com/

downloads/facedb/index.php

Borenstein, J., & Evans, J. (1997). The omnimate mobile robot-design, implementa-

tion and experimental results. In Proceedings of the 1997 IEEE international

conference on robotics and automation (Vol. 4, pp. 3505–3510).

Borenstein, J., Everett, H. R., Feng, L., & Wehe, D. (1997). Mobile robot position-

ing: Sensors and techniques. Journal of Robotic Systems , 14 , 231–249.

Chenavier, F., & Crowley, J. L. (1992). Position estimation for a mobile robot using

vision and odometry. In Proceedings of the 1992 IEEE international conference

on robotics and automation (Vol. 3, pp. 2588–2593).

Chien, T. L., Su, K. L., & Guo, J. H. (2005). The multiple interface security robot -

WFSR-11. In Proceedings of the 2005 IEEE international workshop on safety,

security and rescue robotics.

Filliat, D., & Meyer, J.-A. (2003). Map-based navigation in mobile robots:: I. a

review of localization strategies. Cognitive Systems Research, 4 , 243–282.

References 91

Huang, X., & Weng, J. (2002). Novelty and reinforcement learning in the value

system of developmental robots. In Proceedings of the 2nd international work-

shop on epigenetic robotics: Modelling cognitive development in robotic systems

(epirob’02).

Kim, Y.-G., Kim, H.-K., Lee, S.-G., & Lee, K.-D. (2006). Ubiquitous home secu-

rity robot based on sensor network. In Proceedings of the IEEE/WIC/ACM

international conference on inteligent agent technology.

Lee, D., Chung, W., & Kim, M. (2003). A reliable position estimation method of the

service robot by map matching. In Proceedings of the 2003 IEEE international

conference on robotics and automation.

Lienhart, R., & Maydt, J. (2002). An extended set of haar-like features for rapid

object detection. In Proceedings of the 2002 international conference on image

processing (Vol. 1).

Liu, J. N. K., Wang, M., & Feng, B. (2005). iBotGuard: An internet-based inteligent

robot security system using invariant face recognition against intruder. IEEE

Transactions on Systems, Man and Cybernetics - part B: Cybernetics , 35 .

Luo, R. C., Lin, T. Y., Chen, H. C., & Su, K. L. (2006). Multisensor based security

robot system for intelligent building. In IEEE international conference on

multisensor fusion and integration for intelligent systems.

Marshall, J., Blank, D., & Meeden, L. (2004). An emergent framework for self-

motivation in developmental robotics. In Proceedings of the 2nd international

conference on development and learning (ICDL 2004).

Mori, K., Sato, M., Sonoda, T., & Ishii, K. (2007, August). Toward realization

of swarm intelligence. In Proceedings of the 7th POSTECH-KYUTECH joint

workshop on neuroinformatics.

Oudeyer, P., Kaplan, F., & Hafner, V. V. (2007). Intrinsic motivational systems for

autonomous mental development. IEEE Transactions on Evolutionary Com-

putation, 11 .

Pang, S., Ozawa, S., & Kasabov, N. (2005). Incremental linear discriminant analysis

for classification of data streams. IEEE Transactions on Systems, Man and

References 92

Cybernetics - part B: Cybernetics , 35 .

Rencken, W. D. (1993). Concurrent localisation and map building for mobile robots

usingultrasonic sensors. In Proceedings of the 1993 IEEE/RSJ international

conference on intelligent robots and systems (Vol. 3, pp. 2192–2197).

Ryu, J.-G., Kil, S.-K., Shim, H.-M., Lee, S.-M., Lee, E.-H., & Hong, S.-H. (2006).

Intelligence and security informatics. In (Vol. 3975, pp. 633–638). Springer

Berlin/Heidelberg.

Scott, P. D., & Markovitch, S. (1989). Learning novel domains through curiosity

and conjecture. In Proceedings of international joint conference for artificial

intelligence (pp. 669–674).

Shimo, N., Pang, S., Kasabov, N., & Yamakawa, T. (2008). Curiosity-driven multi-

agent competitive and cooperative LDA learning. International Journal of

Innovative Computing, Information and Control .

Shimosasa, Y., Kanemoto, J., Hakamada, K., Horii, H., Ariki, T., Sugawara, Y., et

al. (2000). Some results of the test operation of security service system with

autonomous guard robot. In 26th annual conference of the IEEE on industrial

electronics society (Vol. 1, pp. 405–409).

Thrun, S. (1998). Learning metric-topological maps for indoor mobile robot navi-

gation. Artificial Intelligence, 99 , 21–71.

Treptow, A., Cielniak, G., & Duckett, T. (2005). Active people recognition us-

ing thermal and grey images on a mobile robot. In IEEE/RSJ international

conference on intelligent robots and systems (pp. 2103–2108).

Turk, M. A., & Pentland, A. P. (1991). Face recognition using eigenfaces. In

Proceedings of the IEEE computer society conference on computer vision and

pattern recognition.

Uǧur, E., Doǧar, M. R., Çakmak, M., & Şahin, E. (2007). Curiosity-driven learn-

ing of traversability affordance on a mobile robot. In Ieee 6th international

conference on development and learning.

Viola, P., & Jones, M. J. (2001). Rapid object detection using a boosted cascade of

simple features. In Proceedings of the 2001 IEEE computer society conference

References 93

on computer vision and pattern recognition (Vol. 1).

Zhang, J., Yan, Y., & Lades, M. (1997, sep). Face recognition: Eigenface, elastic

matching, and neural nets.

APPENDIX

A. GLOSSARY

PCA – Principal Component Analysis

LDA – Linear Discriminant Analysis

ILDA – Incremental Linear Discriminant Analysis

cILDA – Curiosity-driven Incremental Linear Discriminant Analysis

WITH – A small mobile robot developed at Kitakyushu Institute of Technology for

use in swarm robotics (Mori et al., 2007)

CuWITH – Curious WITH, the security robot developed in this research.

Curiosity – An emotion that represents a drive to investigate and learn new things.

B. THE SPECIFICATION OF THE WITH PLATFORM

Fig. B.1: The WITH robot that the CuWITH was developed on

The CuWITH is built on top of the WITH robot developed at Kitakyushu In-

stitute of Technology, Japan (Mori et al., 2007). Its specifications are listed in

Table B.1. The WITH robot was designed as a small, mobile robot for research into

swarm intelligence. It is equipped with 8 infra-red distance sensors with a range

of 10-30cm, and is capable omnidirectional movement using its 3 wheels, which are

arranged every 120 degrees. The WITH has been further enhanced by equipping it

with a Sony VAIO VGN-UX70 minicomputer. The VGN-UX70 has built-in wireless

access, considerably more computing power and memory than the WITHs control

chip, and a USB port. The VGN-UX70 also has a built in camera, in combina-

tion with a mirror place directly above the camera this allows the WITH to utilise

omnidirectional vision. The WITH robot used for the CuWITH is also equipped

with a USBCAM30 usb camera, which was used for obtaining vision data for threat

detection.

B. The Specification of the WITH Platform 97

Size Height 120mm, Width 200mm
Weight 1.5kg
Top Speed 440mm/s
Maximum Turn Speed 7.42 rads/s
Actuators Maxon 1.2W DC-Motor x3

CPU
dsPIC30F6014 (Main CPU)
dsPIC30F2010 x3 (Motor Con-
trollers)

Communication
I2C (400kbps max)
UART (1.2Mbps max)
Wireless LAN (115.2kbps max)

Sensor Infrared Distance Sensor x8
Installed Minicomputer Sony VAIO VGN-UX70
camera USBCAM30

Tab. B.1: WITH robot specification

