
Preprint of an article published in the International Journal of Software Engineering and Knowledge Engineering, Vol. 28, No. 6, 2018, 869-

892. https://doi.org/10.1142/S0218194018500262 © [copyright World Scientific Publishing Company

https://www.worldscientific.com/worldscinet/ijseke

MULTI-OBJECTIVE RECONSTRUCTION OF SOFTWARE ARCHITECTURE

Frederik Schmidt, Stephen G. MacDonell & Andy M. Connor

Design erosion is a persistent problem within the software engineering discipline. Software designs tend to deteriorate over time

and there is a need for tools and techniques that support software architects when dealing with legacy systems. This paper presents

an evaluation of a Search Based Software Engineering (SBSE) approach intended to recover high-level architecture designs of

software systems by structuring low-level artefacts into high-level architecture artefact configurations. In particular, this paper

describes the performance evaluation of a number of metaheuristic search algorithms applied to architecture reconstruction

problems with high dimensionality in terms of objectives. These problems have been selected as representative of the typical

challenges faced by software architects dealing with legacy systems and the results inform the ongoing developed of a software tool

that supports the analysis of trade-offs between different reconstructed architectures.

Keywords: Search Based Software Engineering, Software Architecture, Architecture Reconstruction, Software Maintenance.

1. Introduction

Contemporary software systems that comprise any reasonable amount of functionality are invariably accompanied

by a non-trivial degree of complexity [1]. Additionally, organisations face a steady increase of legacy code that is

hard to maintain, highly integrated with other components and therefore very hard to independently refactor or

even replace. Furthermore, any given system structure is not static; the structure of the system changes through

maintenance, requirements changes, added features and refactorings [2]. This creates difficulties for individuals

attempting to understand the design, structures, and dependencies that form the architecture of a software system.

Adding new functionality to an existing software system without considering the conceptual architecture or

maintaining the integrity of the software system can result in system erosion. As a consequence software quality

decreases and the system will be less flexible, less robust and harder to maintain and understand. Therefore, the

software maintenance cost increases. To confine or even reverse system erosion, methods of intensive reverse

engineering, manual analysis and refactoring are generally required to re-establish a structured, violation-free and

current architectural design. However, development stakeholders often hesitate to engage in such complex and

labour intensive tasks due to other pressing commitments and deadlines [3].

This paper outlines a semi-automated approach to re-establish an appropriate architectural design for legacy

software systems. This approach is based on the use of multi-objective evolutionary computation approaches in

conjunction with software metrics to empower a software architect to select a preferred architecture. Hence, this

paper presents also a performance evaluation of a set of six multi-objective evolutionary algorithms (MOEA) in

the targeted problem domain. This set of algorithms is not exhaustive, however is reasonable representative of

other methods that could or have been applied to this class of problem.

 The remainder of this paper is structured as follows. Section II outlines some of the related work in this area,

whilst Section III describes the architecture reconstruction approach. Section IV outlines the result obtained

applying different metaheuristic algorithms to a number of different system evaluations. Finally, Section V

concludes the paper.

2. Background and Related Work

Erosion of software systems is not a new phenomenon and so it has been widely discussed to date. Lehman [4]

formulates a set of laws that explain the inevitable and continuous evolution of software systems. These laws

express the phenomena of continuing change, steady development, continuing growth, increasing complexity,

declining quality and self-regulation. The existence of these laws has been empirically confirmed in a wide range

of software system projects [5]. Consequently, it appears that the erosion of software systems is an inevitable side-

effect that is likely to become evident in non-trivial software systems.

The increase in complexity combined with an often evident lack of documentation hinders development

stakeholders to maintain design aspects of a system [6, 7]. Consequently, uninformed design decisions might

https://doi.org/10.1142/S0218194018500262

Preprint of an article published in the International Journal of Software Engineering and Knowledge Engineering, Vol. 28, No. 6, 2018, 869-

892. https://doi.org/10.1142/S0218194018500262 © [copyright World Scientific Publishing Company

https://www.worldscientific.com/worldscinet/ijseke

impact the architectural integrity of the system. Unhindered deterioration can lead to unsustainable designs, which

leave only a complete redesign as a feasible option [3]. However, even if a software system does not become

completely inoperative, erosion will make the system more predisposed to defects, high maintenance costs and

degrading performance. This in turn is likely to lead to even more erosion. This cycle of erosion can degrade the

value, usefulness and technical dominance of a software product.

2.1. Design of software architecture

The architecture of a software system is an abstract model of that system, where fine-grained entities are classified

into increasingly abstract modules. An architectural view of a system therefore raises the level of abstraction,

hiding details of implementation, algorithms and data representations [8]. Having a current representation of the

system architecture is crucial in order to maintain, understand and evaluate a large software application [9]. De

Silva and Balasubramaniam [3] state that a good understanding of the physical design of the system and of the

flaws in the system is by itself most likely insufficient to prevent the erosion of design if no understanding of the

targeted design exist. In this sense, the targeted design can be considered as both the implementation design and a

conceptual design [10].

Fowler [11] describes the conceptual design as a view onto the system from a coarse grained and abstract level.

The implementation design artefacts are partitioned into coarse grained artefacts such as packages, directories,

libraries, subsystems, layers and maybe even layer groups. These coarse grained conceptual artefacts serve as

containers in which to accumulate more detailed design artefacts or even finer grained conceptual artefacts from

lower conceptual design levels that feature a mutual architectural design attribute [8]. From a conceptual

architecture design perspective it is aspired that conceptual artefacts accumulate artefacts that comply with a

certain technical, domain or environment aspect [12]. For example, high-level artefacts might accumulate view,

client or database functionality. Correspondingly, high-level artefacts should disclose details about the technical

implementation or frameworks applied within the application [13].

The conceptual architecture of an application can be modelled to facilitate different architecture patterns [12].

These architecture styles support different domain, quality and environment requirements. Depending on the

requirements and purpose of the system, multiple styles are combined to define a complete conceptual architecture

model. Murphy, Notkin and Sullivan [14] emphasise that the compliance of the physical architecture and the

conceptual model needs to be continuously checked and that the two should be aligned as needed, to obtain a

violation-free architecture. Ideally, the physical dependencies should align with the conceptual architecture model

of the system [12], although in practice this may not always be achieved. An architecture violation is therefore

understood as a dependency within the physical dependency structure which conflicts with the defined

dependencies of the conceptual architecture [11]. Identified architecture violations need to be eliminated to reflect

the desired architecture design and obtain a code base [11].

The research described in this paper focuses exclusively on the implementation perspective of software

architectures. The representation and analysis of software architecture on the implementation and dependency

level supports the understanding of the current design of a system and is crucial in enabling the identification of

design flaws [15].

2.2. Quality assessment of software architecture

The presence of erosion can be inferred by considering metrics determined from the software system and so there

is potential to use appropriate software metrics to direct a semi-automated approach to software architecture

reconstruction to reverse or limit software erosion. The research described in this paper implements a search based

driven software modularisation approach. The concept suggested by Harman and Clark [16] to utilise software

metrics as a fitness function is implemented in this research to evaluate the generated architecture configurations

and enable the navigation through the search space. To that end, different software metrics can be considered as

measures of quality of a software architecture or a software system.

There is general consensus within the software engineering community that high cohesion within artefacts and

low coupling between artefacts is a desired design goal and an indicator of good design [13]. The benefit of such

a design is that artefacts that feature high cohesion are easier to understand, test and maintain. Various approaches

to measure cohesion and coupling on compilation unit level have been applied in single objective optimisation

approaches to guide the search process [17, 18]. Gui and Scott [19] suggested to measure cohesion on higher

https://doi.org/10.1142/S0218194018500262

Preprint of an article published in the International Journal of Software Engineering and Knowledge Engineering, Vol. 28, No. 6, 2018, 869-

892. https://doi.org/10.1142/S0218194018500262 © [copyright World Scientific Publishing Company

https://www.worldscientific.com/worldscinet/ijseke

abstraction levels to evaluate component re-usability, and as such they defined the cohesion of a high-level artefact

as the mean of the cohesion measures of all members of the artefact. Given the focus of this work, cohesion metrics

that operate on higher abstraction levels such as package, subsystem and system level are relevant in terms of

addressing the objective of the present research.

Coupling measures the strength of dependency between artefacts [20]. Consequently, coupling gives an

indication to what degree a software artefact relies on each one of the others. Low or loose coupling indicates that

the source code is organized in such a way that it features no strong dependencies between each of its members

[21]. Design techniques to achieve low coupling within software systems are, for example, prevention of cyclic

dependencies, maintenance of high-level dependency structures, referencing of interfaces instead of concrete types

and application of dependency injection frameworks. The existence of cyclic dependencies limits reusability,

testability and the impact analysis of changes in the involved system artefacts. Empirical evidence supports that

cyclic dependencies are evident in almost all non-trivial software systems on lower abstraction levels [22]. Recent

research empirically underpins that most cycles on compilation-unit level do not deteriorate the testability and

reusability of software systems [23]. Falleri, Denier, Laval, Vismara, and Ducasse [24] argue that the composition

of individual cycles should be considered, to assess the impact on the quality of a software system. For example,

longer cycles have a more negative impact on the structural quality of a software system. Hence, an established

principle of good architectural design is that software architectures feature a cycle-free design on package and

higher abstraction levels to support quality attributes such as testability, reusability and understandability [13].

Furthermore, Lakos [10] expresses the quality of a solution based on dependency characteristics of the system

through the use of the Normalised Cumulative Component Dependency (NCCD) metric. The metric suggests that

the components of system should be organized using a balanced binary model. This organization can lead to high

reusability, good analyzability and testability. Thus, the optimisation of architecture compositions towards designs

that feature a low number of cycles and binary tree like structures is a worthwhile objective and hence pursued in

this research.

The research described in this paper addresses the reconstruction of a software architecture design by

classifying low level-artefacts (e.g. compilation units and/or packages) into artefacts of higher abstraction levels

(e.g. packages, subsystems and layers). Previous research in this area focused on the grouping of elements into the

next highest abstraction level [18, 25, 26]. When dealing with different abstraction levels it is worth considering

the structure of the elements (e.g. desired dependency flow, cycle free organisation) within high-level artefacts

and to discuss the impact on quality aspects of the reconstructed architecture.

2.3. Search based modularisation

This paper presents an approach that applies MOEA implementations in architecture reconstruction. This approach

is implemented as a software modularisation approach that considers a conceptual architecture model during the

modularisation process. Whilst a number of approaches have been described in the literature that involve the

discovery of an architecture [27, 28], the work in this paper differs in that a conceptual architecture is applied and

existing compilation units mapped into the architecture. This builds on various approaches that implement search

based techniques within low-level software modularisation. Mancoridis, Mitchell, Chen and Gansner [29] and

Seng, Bauer, Biehl and Pache [30] present the main approaches to applying SBSE techniques to reengineer the

structure of a software system.

Mancoridis et al. [29] show that the structure and complexity of cluster analysis as applied to software systems

is a promising approach to create feasible solutions. The objective of the approach is to discover a cluster

configuration which features high cohesion within clusters and low coupling between clusters and has been

extended by Mitchell [17], Mitchell and Mancoridis [18] and Mitchell and Mancoridis [31]. Other work in this

areas has included the evaluation of different metrics for using in the clustering approaches and the implication for

the robustness of software modularisation [32].

Abdeen, Ducasse, Sahraoui, & Alloui [25] apply Simulated Annealing to optimise class partitioning within the

existing package structure of a software system. Seng et al. [30] also present a single objective approach that

searches for an optimal subsystem decomposition by optimizing metrics and heuristics of good subsystem design.

This approach groups compilation units into a higher abstraction level. From a software design perspective, the

subsystems can be understood as packages or folders of the software system. Similarly, Schmidt, MacDonell and

Connor [33] present a feasibility study of the application of an automatic refactoring approach to increase cohesion

https://doi.org/10.1142/S0218194018500262

Preprint of an article published in the International Journal of Software Engineering and Knowledge Engineering, Vol. 28, No. 6, 2018, 869-

892. https://doi.org/10.1142/S0218194018500262 © [copyright World Scientific Publishing Company

https://www.worldscientific.com/worldscinet/ijseke

of packages, reduce coupling between packages and reduce the number of architecture violations in the model of

a software system by source code refactoring on that enabled the resolution of dependencies on compilation unit

level.

Etemaadi and Chaudron [34] propose a conceptual framework for the application of multi-objective

optimisation for the design of embedded architectures. Additionally, they highlight NSGA-II and SPEA2 as

promising algorithm candidates for the implementation of such a framework. Praditwong et al. [35] also approach

software clustering from a multi-objective perspective by implementing the concepts of Pareto Optimality and

Non-Dominance. This work highlights that most previous studies only utilised fixed weighted agglomerations of

high cohesion and low coupling as a single objective function as opposed to a true multiobjective approach. Barros

[36] extends this line of thinking and compares the performance of a multi-objective clustering approach with

three different objective configurations.

The research described in this paper was completed in 2014, since that time other research has emerged related

to multiobjective remodularisation of software systems. For example, Mkaouer et al. [37] utilise the NSGA-III

algorithm on the remodularisation of a number of different software systems. Whilst this work utilises software

metrics as the foundation of the fitness function, the research is based around determining the efficiency of the

approach which differs from the work outlined in this paper. The Rearchitecturer system is a practical tool that

allows filtering of solutions across any number of multiple objectives to allow a software architect to inspect

multiple potential solutions. The Rearchitecturer tool itself is not described in this paper, but is available as an

open source solution* for researchers to access.

In general, interesting techniques and approaches have been proposed to overcome challenges in the

application domain of search based software modularisation. However, there is still considerable scope to consider

how MOEA implementations can be applied to assist software architects with the challenges of dealing with

software erosion.

3. Architecture Reconstruction Approach

A prototype, namely the Rearchitecturer system, has been designed and developed to enable the reconstruction of

software architecture configurations based on the application of multi-objective optimisation techniques. The

objective of the system analysis and evaluation stage is to gather data that enables the formulation of conclusions

on the feasibility, contributions and limitations of the developed system.

3.1. Reconstruction scenarios

The present research applies the concepts presented in Harman and Clark [16] that outline the application of

software metrics as fitness functions to determine the fitness of a generated solution. The approach developed in

this research facilitates the classification of software artefacts into conceptual architecture models on multiple

abstraction levels. Additionally, conceptual architecture models can be reconstructed as part of the reconstruction

process. However, following Breivold, Crnkovic and Larsson [38], Fowler [11] and Martin [1], this research

considers the conceptual architecture model as a blueprint of the desired design of the system. A conceptual

architecture model is supposed to describe the design of the system based on domain aspects [1]. Hence, the design

of the conceptual model is ideally driven by domain aspects and their relationships. The implementation of the

system should adapt to this blueprint. Correspondingly, the conceptual model should not reflect the implementation

of the system. Hence, from an architecture design perspective the rebuilding of the conceptual architecture based

on the structures of the physical source code artefact conflicts with the ideas presented in the mentioned

architecture design literature. Therefore, experiments are conducted in the evaluation of this research that consider

predefined conceptual architecture models. These conceptual architecture models operate as target architectures

during the classification process.

The conceptual architecture model can be utilised to model different system architectures. For example, a

transient architecture style can be utilised if the application is running on one machine and no machine boundaries

exist [11]. A strict layer dependency, in which a layer can only access artefacts in the directly depending layer, can

be applied to model machine boundaries [11]. The structure of the conceptual architecture is considered by some

* https://sourceforge.net/projects/rearchitecturer/

https://doi.org/10.1142/S0218194018500262

Preprint of an article published in the International Journal of Software Engineering and Knowledge Engineering, Vol. 28, No. 6, 2018, 869-

892. https://doi.org/10.1142/S0218194018500262 © [copyright World Scientific Publishing Company

https://www.worldscientific.com/worldscinet/ijseke

of the employed architecture design metrics. Hence, the employment of different architecture styles within the

evaluation is useful to reveal information on the applicability of the approach within different architecture styles.

Principles of good architecture design envisage that classification of physical source code artefacts into

conceptual high-level artefacts is driven by the intended functionality of the physical artefacts [1]. The optimisation

implemented in this research is based on established architectural design indicators and does not automatically

consider functionality aspects of the physical artefacts. However, stakeholders might understand this intended

functionality for some of the physical artefacts that they want to have included in the solution. Hence, stakeholders

can assign artefacts prior to the execution of the search to include their domain knowledge into the architecture

reconstruction process by assigning class or package patterns to certain high-level artefacts. The developed

approach considers such predefined assignments. As a result, any visited solution will feature the predefined

artefact assignments. The consideration of such a manual assignment impacts the solution space of the search and

impacts the performance of the employed search. Hence, the inclusion of an experiment scenario that considers

predefined artefact assignments is helpful to gather data on the performance of the employed MOEA

implementations.

However, the presented results focus on an experimental set in which the feasibility of a randomised

assignment of source code artefacts combined with the subsequent execution of MOEA implementations in

constraint classification scenarios is evaluated. It is necessary to conduct multiple iterations of the randomised

assignment of physical source code artefacts and the subsequent optimisation to gain a set of results that enables

representative conclusions.

3.2. Evaluation systems

The defined problem scenarios and MOEA configurations are applied on a set of software systems to enable

conclusions to be drawn on the performance, applicability and scalability of the developed approach. The approach

has been evaluated on the following five software systems: Apache Log4j, Apache Commons Math, Apache Ant,

Lucene and the Rearchitecturer system itself. These systems (other than Rearchitecturer) were chosen because

they exhibit the following characteristics.

All the systems are established open-source projects with an active user community. Multiple developers are

permanently involved in the maintenance and enhancement of these projects. These systems feature a module-

based architecture that is publicly available on the corresponding system webpages. The modules in these systems

are maintained as separate projects. The dependencies between the modules are organised with Maven. Hence, at

a project level the systems are cycle free and have a defined dependency structure. The systems also represent

different sizes and complexity that potentially provides insight as to how a MOEA reconstruction approach might

scale to different applications. However, it is noted that all the systems are generally on the small side when

compared to the full set of possible software systems that could be used.

In contrast, the Rearchitecturer system has been developed as a prototype for the evaluation of this research.

Thus, one developer was involved in the development of the Rearchitecturer system and no active user-community

exists at this stage. It is a completely known system in which the intended architecture is both defined and

understood.

The selected systems are of different size, structure and maturity. Table 1 depicts software metrics that describe

aspects of the size and structure of the selected software systems.

Table 1. Size metrics of evaluation systems

Name No. Packages Lines of Code No. Types

Apache Ant v.1.9.2 276 131,212 1,772

Apache Math v.3.2 140 171,171 2,106

Apache Log4j v.1.2.17 40 30,456 453

Lucene v.4.4.0 50 151,340 2,264

Rearchitecturer 51 33,231 537

3.3. Selected Algorithms

This research investigates the performance of a set of six MOEA (AbYSS, GDE3, MOEAD, NSGAII, OMOPSO,

Random) implementations across the five different software systems described in the previous section. The

https://doi.org/10.1142/S0218194018500262

Preprint of an article published in the International Journal of Software Engineering and Knowledge Engineering, Vol. 28, No. 6, 2018, 869-

892. https://doi.org/10.1142/S0218194018500262 © [copyright World Scientific Publishing Company

https://www.worldscientific.com/worldscinet/ijseke

implementations of the JMetal MOEA framework are utilised in the present research and details of the specific

algorithms are available in the description of the JMetal framework [39]. The selection of algorithms is intended

to be representative of parallel search methods but not intended to be an exhaustive study of all available

algorithms.

3.4. Optimization Objectives

The Rearchitecturer system features a large number software quality metrics that can be considered based on the

needs of the development stakeholders. However, only a small number of these metrics are used in this paper as

an example of the capabilities of the approach. The selection of optimization objectives has been driven with a

strong focus on best software engineering practices as discussed in the literature review. The following set of eight

selected optimisation goals is utilised in this research:

1. Relational cohesion in subsystems (maximise)

2. Normalised cumulative component dependency of subsystems (converge to 1.0)

3. Efferent coupling of subsystems (minimise)

4. Afferent coupling of subsystems (minimise)

5. Distance in subsystems (minimise)

6. Number of forbidden outgoing type dependencies (minimise)

7. Number of package cycles (minimise)

8. Range of compilation units in subsystems (minimise)

An exception to the strategy of selecting best practice metrics is the range of compilation units in subsystems

metric. It has been found through the course of this research that there was a tendency of the optimisation

approaches to organise low-level artefacts into a small number of high-level artefacts to reach good performance

in the number of cycles on package level, number of architecture violations on compilation unit level and coupling

metrics. The other metrics have not been able to counteract this movement. As a result, the employment of the

original seven software engineering optimisation goals led to an unacceptable number of solutions that featured

an organisation of most low-level artefacts in only a few big high-level artefacts. The range of compilation units

in subsystems metric has been introduced to counteract this tendency. However, it is acknowledged that the

minimisation of the range of compilation units in subsystems metric is not an architecture design metric that would

usually be seriously considered in the manual design process of software architecture configurations.

Whilst it is noted that the relatively large number of objectives can produce poor performance, this research

purposefully sets out to consider problems that are representative of the typical challenges faced by software

architects attempting to improve the quality of legacy software systems. A more detailed performance analysis of

the algorithms on a smaller set of objectives could be undertaken as future work.

To thoroughly evaluate the performance of a multi-objective approach, all the employed objectives need to be

taken into consideration. Hence, the performance assessment of multi-objective based optimisation approaches is

more complex. The major difficulty of multi-objective assessment is that the output of the optimisation process is

not a single solution but rather a non-dominated Pareto-Front. The performance evaluation of the algorithms should

consider both the ability to converge to a set of solutions that exhibit desirable objectives but also how

representative the Pareto-Front is of the solution space. This can be undertaken using performance indicators to

assess the quality of Pareto-Fronts [40-42]. Such performance indicators do not provide any insight to the quality

of solutions found in the objective (fitness) space, but do provide insight into the performance of the algorithm in

terms of both exploring the solution space and convergence.

Generally, performance indicators that assess convergence (e.g. Generational Distance, Epsilon Indicator) and

diversity (e.g. Spacing) aspects of Pareto-Fronts can be differentiated. However, hybrid forms, which express

convergence and diversity aspects in one metric exist [43] (e.g. Hypervolume). Some performance indicators

require the true Pareto-Front in order to determine a value. The true Pareto-Front is understood as the best

achievable Pareto-Front of a problem [44]. Often the true Pareto-Front is not known or cannot be calculated for a

problem. This certainly applies for the research presented in this paper, as the true Pareto-Front, that entails all

non-dominated architecture configuration solutions for a selected optimisation configuration, is not known and

cannot be generated deterministically. The developed evaluation approach creates a super Pareto-Front from the

https://doi.org/10.1142/S0218194018500262

Preprint of an article published in the International Journal of Software Engineering and Knowledge Engineering, Vol. 28, No. 6, 2018, 869-

892. https://doi.org/10.1142/S0218194018500262 © [copyright World Scientific Publishing Company

https://www.worldscientific.com/worldscinet/ijseke

individual optimisation runs that can be considered an approximation of the true Pareto-Front. The creation of such

a super Pareto-Front is an established technique of evaluation and has been applied in other optimisation research

[36, 45, 46]. A limitation of utilising an approximation instead of the true Pareto-Front is that the performance

indicator only calculates a relative convergence and diversity. Hence, results that have been created with different

super Pareto-Fronts are not directly comparable. In the present research this needs to be considered if Pareto-Fronts

are calculated with different objective settings or with different software systems. Hence, an approach is suggested

that relies on the application of normalisation techniques to enable the comparison of performance indicator results

from such incompatible Pareto-Front calculations.

4. Results

This section demonstrates the application of the developed multi-objective evaluation framework in the problem

domain of architecture reconstruction. Three dimensions are considered

4.1. MOEA Performance in Multiple Architecture Reconstruction Scenarios

In this research, a pre-defined conceptual architecture model is considered and so the conceptual architecture

is not discovered during the reconstruction process. Correspondingly, the reconstruction configuration employs

the assignment of compilation units into the existing packages of the system and the assignment of the packages

into the layers of the conceptual target architecture.

Experiments with transient and strict conceptual architecture models with a different number of layers (2, 3

and 4 layers) have been conducted in this research. The general structure of these conceptual models is based on

the C2-architecture-style to support separation of concerns and high-level modularisation of the reconstructed

system [12].

As expected it has been found that the application of conceptual architecture models with a higher number of

layers is a more complex search problem. Consequently, the absolute achievement of MOEAs in conceptual

architecture target models with a lower number of layers is better. Nevertheless, it has been found that the

application of a different number of conceptual architecture layers does not impact the individual MOEA

implementations in comparison to one another. Hence, in the experiment presented in this section only conceptual

architecture models that feature four conceptual layers are employed. However, three different conceptual

architecture paradigms are used to evaluate the performance of MOEAs in different architecture reconstruction

scenarios.

The first conceptual target architecture model features four transient layers in which each top layer can access

any bottom layer. Figure 1(a) depicts the employed transient architecture model. Such an architecture design is

common when no distribution of the system is evident and consequently all the artefacts are available on the same

machine.

The second conceptual target architecture model features four strict layers in which each top layer can access

only one directly depending layer. Figure 1(b) depicts the employed strict architecture model. Such an architecture

design can, for example, be used to model a distribution of layers across machine boundaries. Displayed equations

should be numbered consecutively in the paper, with the number set flush right and enclosed in parentheses.

(a)

(b)

Fig. 1. Transient and strict architecture models

https://doi.org/10.1142/S0218194018500262

Preprint of an article published in the International Journal of Software Engineering and Knowledge Engineering, Vol. 28, No. 6, 2018, 869-

892. https://doi.org/10.1142/S0218194018500262 © [copyright World Scientific Publishing Company

https://www.worldscientific.com/worldscinet/ijseke

In the third reconstruction scenario, the strict target conceptual architecture as presented in Figure 1b is utilised

and at the beginning of each seed the packages of the optimised software system are assigned randomly to each

layer. The compilation units that are included in the corresponding packages are not reassigned. Hence, every

solution features the initial package assignment of the corresponding seed. The idea of the chosen start

configuration is to simulate that the original compilation unit configuration represents a fairly good solution that

ideally needs only a fine-grained reorganisation instead of a complete reassignment of packages and compilation

units. Additionally, development stakeholders might have a reasonable understanding of the quality of the original

assignment of some packages and would like to include this knowledge in the created solutions.

The MOEA implementations that are considered enable the tuning of a variety of optimisation parameters (e.g.

population size, number of iterations, different crossover and variation operators and the corresponding crossover

and mutation parameter settings). It has been found within the tuning phase that neither population size, mutation

and crossover parameters changes the search outcome significantly. A population size of 50 and the following

variation operator settings are applied in the remaining experiments to enable the traceability of the presented

experiment results: mutation rate= 0.5, mutation distribution index = 10.0, crossover rate = 1.0 and crossover

distribution index = 10.0. Experiments have shown that good convergence of the applied MOEA implementations

is usually achieved within 3,000 – 5,000 iterations. That said, 50,000 iterations are used as a termination criterion

in the following experiments. A total of 90 different experiment configurations (6 MOEA implementations x 5

systems x 3 target architecture reconstruction scenarios) are executed to gather the data presented in this research.

Each search configuration is executed 10 times to accommodate the probability characteristics of the MOEA

implementations. Hence, the described experiment configuration features a total of 900 solution sets.

Search definitions which describe the applied MOEA configuration, software system, target architecture and

number of seeds are generated by the Rearchitecturer system. A search executer schedules the execution of

individual search seeds on designated worker nodes. Hence, a worker node executes a seed at a time. The

optimization result set is streamed back from the worker node to the master after the execution of the seed. A

statistical analytics engine has been implemented through the course of this research that is able to query the

consolidated search results. The evaluation engine allows the calculation of describe statistics of objective and

performance metric achievement based on defined configuration parameters. For example, algorithm performance

can be analysed across different parameter tunings, software systems and target architecture designs. The

classification of the evaluation systems into the different conceptual target architectures features different levels

of complexity. For example, the resolution of architecture violations is harder within a strict architecture than the

classification into a transient target architecture. Additionally, the solution space is constrained in the

reconstruction scenario, in which packages are fixed into layers. Hence, finding solutions that feature good

performance in the subsystem structure metrics is more complex. To demonstrate the impact on the different target

architectures the dataset is sliced by consolidating algorithms and systems and the separation of result sets is based

on the different target architecture designs. The analysis of the sliced datasets confirmed a different level of

performance achievement depending on the level of the complexity of the reconstruction scenario. This can be

demonstrated by considering how the Non-Dominated-Pareto-Front (NDPF) develops by considering all of the

collected data split by reconstruction scenario.

Figure 2 depicts the corresponding Hypervolume performance development graph for the three cases of

transient layering, strict layering and strict layering with mounted packet assignments.

https://doi.org/10.1142/S0218194018500262

Preprint of an article published in the International Journal of Software Engineering and Knowledge Engineering, Vol. 28, No. 6, 2018, 869-

892. https://doi.org/10.1142/S0218194018500262 © [copyright World Scientific Publishing Company

https://www.worldscientific.com/worldscinet/ijseke

Fig. 2. Development of hypervolume

The graph shows that the transient- and strict- reconstruction scenarios achieve equally good Hypervolume

performance. Understandably, the Hypervolume performance of the third architecture example is substantially

lower due to the increase of complexity based on the upstream assignment and mounting of packages into

subsystems.

In the results relating to objective space presented later in this paper, the performance of the employed MOEA

implementations across the three reconstruction scenarios is evaluated. The three architecture reconstruction

datasets are consolidated to enable such an analysis. However, a prerequisite for the validity of such a comparison

is that each reconstruction scenario contributes to the approximated true Pareto-Front, as the analysis relies mainly

on achievement in the objective space and convergence of the optimal Pareto-Fronts. The solution sets of a

reconstruction scenario are excluded from the analysis if the optimal Pareto-Front of that reconstruction scenario

is not contributing to the approximated true Pareto-Front and the slicing is based on the employed MOEA

implementations. For example, if the least complex architecture reconstruction scenario dominates the optimal

Pareto-Front of the more complex architecture scenarios the analysis only considers the solution sets of the least

complex architecture reconstruction solution sets. The Contribution performance metric is useful in this regard to

confirm if each reconstruction scenario can contribute towards the approximated true Pareto-Front. Figure 3

depicts the development of the contribution performance metric through the search process in the individual

reconstruction scenarios.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

H
y
p
er

v
o
lu

m
e

Number of Iterations

Transient Layering Strict Layering Strict Layering with Mounted Package Assignments

https://doi.org/10.1142/S0218194018500262

Preprint of an article published in the International Journal of Software Engineering and Knowledge Engineering, Vol. 28, No. 6, 2018, 869-

892. https://doi.org/10.1142/S0218194018500262 © [copyright World Scientific Publishing Company

https://www.worldscientific.com/worldscinet/ijseke

Fig. 3. Development of contribution

The contribution graph depicts that the complexity of the search impacts the Contribution outcome. However,

the optimal Pareto-Fronts of the individual reconstruction scenarios feature a similar contribution to the

approximated true Pareto-Front despite the different complexity evident in the individual reconstruction scenarios.

Hence, it can be concluded that the analyses of the MOEA implementations is representative for all three employed

reconstruction scenarios.

4.2. MOEA performance in the objective space

The main objective of this research is the application of multi-objective optimisation techniques in the application

domain of architecture reconstruction. High-level architecture design metrics are employed as objectives to

implement this research project. Such high-level architecture design metrics have not been employed in related

research efforts. The review of the capability of the employed optimisation techniques to advance the individual

objective dimensions is necessary to enable statements on the applicability of the selected high-level architecture

design metrics to be made.

No generally accepted method has been established in other multi-objective research to assess the achievement

in the objective space. Within the present approach the explicit reliance on the application of multi-objective

performance metrics that calculate relative convergence of similarity to a best optimal Pareto-Front might be

misleading. For example, two optimisation configurations might reduce the number of architecture violations to

500 and 800. A convergence-based performance metric will confirm a better performance for the approach that

achieved 500 architecture violations if we ignore the existence of other solutions and objectives in this example.

However, both solutions are most likely still too complex to allow stakeholders to understand the solution and

manually resolve remaining forbidden dependencies. Hence, both configurations would be infeasible for use in the

target application domain. Hence, assessment of the objective achievement is an important component to assess

the overall feasibility of the developed approach.

Theoretically, the objective achievement can be assessed based on any of the solution sets evident in a multi-

objective optimisation. These kinds of solutions sets are: the complete set of visited solutions, the current

population, and the optimal Pareto-Front. The implemented evaluation framework supports the assessment of the

objective achievement based on all three of these solution sets. Descriptive statistics are calculated for the

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
o
n
tr

ib
u
ti

o
n

Number of Iteration

Transient Layering Strict Layering Strict Layering with Mounted Package Assignments

https://doi.org/10.1142/S0218194018500262

Preprint of an article published in the International Journal of Software Engineering and Knowledge Engineering, Vol. 28, No. 6, 2018, 869-

892. https://doi.org/10.1142/S0218194018500262 © [copyright World Scientific Publishing Company

https://www.worldscientific.com/worldscinet/ijseke

individual solution sets at each performance snapshot. The selection of the solution set and the descriptive statistics

depends on the user’s research interest.

The first analysis demonstrates the convergence in the individual objectives. Hence, the solutions of the

generational populations or more specifically the solution that features the best performance in the desired

objective is used.

This evaluation uses the same data configuration as described earlier with only one variation operator setting.

The results are sliced by the applied MOEA implementation. Correspondingly, a total of 150 (900/6) seeds are

considered to determine the performance for each MOEA implementation at each performance snapshot. Multiple

runs of the algorithm ensure that any variability in performance that arises from the stochastic nature of the

algorithms is mitigated. The evaluation framework reports descriptive statistics for each performance snapshot. In

this evaluation, the interval for performance snapshots is aligned with the population size of the generations and

is correspondingly set to 50 iterations. Hence, based on the 1,000 generations that are conducted in the experiment

setup also a corresponding set of performance snapshots is calculated for this analysis.

Figure 4 depicts the mean development of the best achievement of the eight employed objectives. The mean

for each objective is presented for each performance snapshot.

Fig. 4. Objective

achievement in

populations for the eight

objectives

The objective

development depicts

that each of the

employed MOEA

implementations

features better

performance than

Random in seven of

the eight objective

dimensions.

Additionally,

OMOPSO features

the best overall

advancement in the

same seven

objectives.

Furthermore, no

specific performance

differences can be

reported between

NSGA-II, GDE3,

ABYSS and

MOEAD in these

seven objective

dimensions. It has

been noted in the

literature that MOEA

performances rapidly

degrades with

increasing

dimensionality in

terms of the number of objectives [40], so improved performance in most algorithms could be achieved through

https://doi.org/10.1142/S0218194018500262

Preprint of an article published in the International Journal of Software Engineering and Knowledge Engineering, Vol. 28, No. 6, 2018, 869-

892. https://doi.org/10.1142/S0218194018500262 © [copyright World Scientific Publishing Company

https://www.worldscientific.com/worldscinet/ijseke

reducing the number of objectives. However, the intention of this research is not to provide an optimal set of

solutions but instead to provide potentially feasible options for a software architect to explore and choose between.

An exception is the “range of types in subsystems” objective in which only AbYSS shows better convergence

than Random. However, it needs to be considered that the presented results are the mean of the best performances

per population at each generation of the search. Hence, it is not a representation of the overall search process or

achievement in that objective. The presented results are simply an indication of the feasibility of the approach to

converge the individual objectives.

It may be suggested that the review of the objective achievement of the optimal Pareto-Front is a better

evaluation instrument to assess the general feasibility of an optimisation approach in the individual objective

dimensions. However, the presentation of the mean development of the objective progress of the optimal Pareto-

Front solution set is most likely also an unreliable means to assess the performance of a configuration setting. The

reason for this is that the trade-off concept of optimal Pareto-Fronts leads to the inclusion of solutions that dominate

any area of the objective space. These solutions therefore might feature poor performance in the reviewed

objective. Hence, while a good progress in the minimum and maximum value of an objective is achieved the mean

progress might be relatively constant in the reviewed objective. Hence, it is suggested in this research that the

reporting of descriptive statistics, and in particular the review of minimum, maximum and distribution

characteristics of objective achievement of the optimal Pareto-Front, are more valuable methods to review

achievement in the objective space.

This analysis relies on achievement in the objective space in the optimal Pareto-Fronts. The normality

condition is not fulfilled in these datasets. Hence, no valid conclusions can be drawn on the distribution of the data

based on the Mean and SD measures. Consequently, this paper only considers the Minimum, Maximum and

Median of the objective measures of the optimal Pareto-Fronts. A full analysis of all of the objectives is beyond

the scope of this paper, hence only one objective is considered as an exemplar of the analysis process.

The populations for these descriptive measures are created based on the objective measures of the solutions of

the optimal Pareto-Fronts of the created slices. The results presented in the tables are sliced by the applied MOEA

implementation and system to enable the assessment of the objective performance of MOEAs in the individual

systems.

Table 2 presents the numerical data relating to the pareto-optimal solutions found by each algorithm for a

single objective, the number of forbidden type dependencies.

Table 2. Descriptive statistics: Number of forbidden type dependencies

System Algorithm Min Max Median

Apache Ant AbYSS

GDE3

MOEAD

NSGAII

OMOPSO

Random

460.00

320.00

220.00

500.00

1.00

2000.00

3000.00

3000.00

3000.00

3000.00

3000.00

3000.00

2033.37

1784.63

1524.63

1770.56

1656.58

2711.85

Apache Math AbYSS

GDE3

MOEAD

NSGAII

OMOPSO

Random

11.00

13.00

12.00

13.00

0.00

15.00

19.00

19.00

19.00

19.00

19.00

19.00

16.46

17.49

17.44

17.54

12.57

17.64

Apache Log4j AbYSS

GDE3

MOEAD

NSGAII

OMOPSO

Random

660.00

330.00

600.00

400.00

1.00

0.00

3000.00

3000.00

3000.00

3000.00

3000.00

3000.00

2119.18

1953.53

1909.11

1910.24

1458.10

2792.83

https://doi.org/10.1142/S0218194018500262

Preprint of an article published in the International Journal of Software Engineering and Knowledge Engineering, Vol. 28, No. 6, 2018, 869-

892. https://doi.org/10.1142/S0218194018500262 © [copyright World Scientific Publishing Company

https://www.worldscientific.com/worldscinet/ijseke

Lucene AbYSS

GDE3

MOEAD

NSGAII

OMOPSO

Random

2.00

1200.00

70.00

850.00

1.00

980.00

2500.00

2500.00

2500.00

2500.00

2500.00

2500.00

2500.00

2500.00

2500.00

2500.00

2500.00

2500.00

Rearchitecturer AbYSS

GDE3

MOEAD

NSGAII

OMOPSO

Random

130.00

10.00

140.00

6.00

1.00

580.00

930.00

930.00

890.00

920.00

900.00

910.00

930.00

930.00

890.00

920.00

900.00

910.00

In general, the presented statistics of the optimal Pareto-Fronts of this objective are similar to those achieved

for the other objectives. In this case, OMOPSO features the best absolute achievement in this objective across all

systems. An exception is Random that discovered a solution with 0.0 forbidden type dependencies in the apache

math system. Additionally, NSGAII and GDE3 can find promising solutions in the Rearchitecturer system and

AbYSS is able to find promising solutions for the lucene system.

The other MOEA algorithms show worse performance in more complex systems apart from this coincidental

discovery by the Random implementation in the apache math and log4j systems. However, each algorithm has

shown the potential to contribute pareto-optimal solutions.

Whilst the reconstruction scenario described in this paper utilised a total of 8 objectives, only a single case

presented though this is representative of the full set [41] and sufficient to show that all of the MOEA

implementations are capable of addressing the reconstruction of the software architecture and find solutions that

are not only pareto-optimal but also demonstrate improved performance in the objective space. The approach

therefore shows promise in terms of its ability to address the issue of software erosion.

4.3. Performance metrics analysis of MOEA algorithms

The analyses based on descriptive statistics for the individual objectives is first of all complex but also not

representative to assess the overall performance of a set of search configurations. For example, differences in

performance would occur in the individual objectives and forming a general conclusion on the performance of the

individual configuration slices is very difficult based on the statistical analysis of the individual objectives. A more

appropriate method to determine the overall performance is the consideration of multi-objective performance

metrics. As discussed previously Pareto-Front performance metrics provide a useful means by which to consolidate

the performance of multi-objective metrics into a single comparable value. Multi-objective performance metrics

such as Hypervolume and Contribution have been presented in earlier sections to reveal performance differences

in multiple architecture reconstruction scenarios. Nevertheless, the consideration of multi-objective performance

metrics in combination with measures of statistical difference testing are a powerful and straightforward approach

to determine and statistically justify the performance differences of multiple search configurations. Hence, the

suggested approach is also applied to determine the absolute difference of performance of the employed MOEA

implementations. Figure 5 depicts the development of the six captured performance metrics based on the discussed

dataset and the slicing into the employed MOEA implementations.

https://doi.org/10.1142/S0218194018500262

Preprint of an article published in the International Journal of Software Engineering and Knowledge Engineering, Vol. 28, No. 6, 2018, 869-

892. https://doi.org/10.1142/S0218194018500262 © [copyright World Scientific Publishing Company

https://www.worldscientific.com/worldscinet/ijseke

Fig. 5. Performance

Indicators - Slicing based

on MOEA
implementation

All but the

Spacing performance

metric confirm that

all MOEA

implementations

feature better

performance than a

Random search. It

cannot be

determined in this

research if a wider

Spacing is a desired

Pareto-Front

attribute in the

targeted problem

domain.

Additionally, the

mean development

of performance

metrics shows that

OMOPSO

outperforms all other

MOEA

implementations in

the presented

performance indicators. In the performance metrics that measure relative convergence (Additive Epsilon Indicator,

Generational Distance, Hypervolume and Inverted Generational Distance) an almost full convergence can be

observed between iteration 2,000-3,000. By comparing the data in Figure 4, Table 2 and Figure 5 then it appears

that the OMOPSO algorithm is performing well both in terms of the objective space (as measured by the objective

values) and the solution space (as measured by the Pareto-Front performance indicators).

No major differences in performance development can be observed that depart from the final performance

outcome of the MOEA implementation slices. Hence, the remaining analysis focuses only on the discussion of the

performance snapshot at iteration 50,000. Table 4 depicts the mean performance indicators of the performance

snapshot at iteration 50,000.

Table 4. Mean performance of MOEA implementations (Iteration 50,000)

Performance

Indicator
ABYSS GDE3 MOAD NSGAII OMOPSO Random

Spacing 0.0131 0.0152 0.0150 0.0120 0.0098 0.0257

Inverted

Generational

Distance

0.2621 0.3047 0.3164 0.3075 0.1189 0.4374

Hypervolume 0.0912 0.0666 0.0765 0.0577 0.4162 0.0047

Additive

Epsilon

Indicator

0.7453 0.8581 0.8690 0.8992 0.5526 0.9538

Contribution 0.0051 0.0039 0.0115 0.0033 0.0910 0.0007

https://doi.org/10.1142/S0218194018500262

Preprint of an article published in the International Journal of Software Engineering and Knowledge Engineering, Vol. 28, No. 6, 2018, 869-

892. https://doi.org/10.1142/S0218194018500262 © [copyright World Scientific Publishing Company

https://www.worldscientific.com/worldscinet/ijseke

Generational

Distance
0.0021 0.0012 0.0016 0.0013 0.0006 0.0033

N 180 180 180 180 180 180

The Kruskal-Wallis test has been applied due to the departure from normality in all populations in the

performance snapshot at iteration 50,000. The pair-wise significance comparisons of the MOEA implementations

with Random search, and of OMOPSO with any other MOEA implementation, confirmed a statistically significant

difference in all performance metrics. The pair-wise comparison of NSGAII, GDE3, AbYSS and MOEAD in the

Additive Epsilon Indicator, Contribution, Generational Distance, Hypervolume, and Inverted Generational

Distance performance indicator measures do not feature any noteworthy statistically significant outcomes. The

presentation of the p-values has limited value in terms of determining the actual performance difference of the

individual MOEA implementations. Hence, the reporting of the p-values is omitted here.

5. Conclusions

This paper has described a framework that enables the reconstruction of software architecture configurations on

different abstraction levels and considers aspects of the desired conceptual architecture model. This reconstruction

is achieved using metaheuristic search algorithms that utilise a number of different software metrics to drive the

architecture reconstruction. This dynamic problem representation in combination with the implemented flexible

objective configuration approach contribute a framework that can help the user to gain valuable insight into the

problem domain of architecture reconstruction and software modularisation. Additionally, the extensible

integration of a range of established optimisation libraries now enables the application and performance evaluation

of a diversity of MOEA implementations and variation operator tunings in architecture reconstruction application

contexts.

The results presented in this paper suggest that many MOEA implementations have the potential to reconstruct

the architecture of systems of different complexity. It has been demonstrated in the evaluation that the search

converges the architecture configurations towards desired software architecture design metrics. Solutions that

feature objective measures, that would be acceptable in practice, in all objectives of the applied objective

configuration, could be identified within the smaller software systems that have been considered in this study.

Additionally, a range of MOEA performance metrics are presented with the outcome that the sophisticated

algorithms perform significantly better than random search. However, the large number of objectives used in this

study potentially limit the performance of the algorithms considered. Since the conduct of this research, there has

been a growing interest in the use of the NSGA-III algorithm [42] for highly dimensional problems. This algorithm

has successfully been applied to a number of software architecture problems [37] and potentially offers significant

benefit in supporting the trade-off analysis in the Rearchitecturer tool.

This work is currently limited as a result of its focus on purely quantitate analysis of the algorithm performance

and the non-inclusion of a qualitative evaluation of the resulting software systems. Future work will address such

a qualitative evaluation involving experienced software architects working with known systems.

References

[1] R. Martin, The clean coder: A code of conduct for professional programmers New York: Prentice Hall,

2011.

[2] J. Bosch, "Architecture in the Age of Compositionality," presented at the 4th European Conference on

Software Architecture, Copenhagen, Denmark, 2010.

[3] L. De Silva and D. Balasubramaniam, "Controlling software architecture erosion: A survey," Journal of

Systems and Software, vol. 85, pp. 132-151, 2012.

[4] M. M. Lehman, "Programs, life cycles, and laws of software evolution," Proceedings of the IEEE, vol.

68, pp. 1060-1076, 1980.

[5] L. Yu and A. Mishra, "An empirical study of Lehman’s law on software quality evolution," International

Journal of Software & Informatics, vol. 7, pp. 469-481, 2013.

[6] A. Forward and T. C. Lethbridge, "The relevance of software documentation, tools and technologies: A

survey," Proceedings of the 2002 ACM Symposium on Document Engineering (DocEng '02), pp. 26-33,

2002.

https://doi.org/10.1142/S0218194018500262

Preprint of an article published in the International Journal of Software Engineering and Knowledge Engineering, Vol. 28, No. 6, 2018, 869-

892. https://doi.org/10.1142/S0218194018500262 © [copyright World Scientific Publishing Company

https://www.worldscientific.com/worldscinet/ijseke

[7] D. L. Parnas, "Precise documentation: The key to better software," in The Future of Software Engineering,

S. Nanz, Ed., ed Berlin, DE: Springer, 2011, pp. 125-148.

[8] L. Bass, P. Clements, and R. Kazman, Software architecture in practice, 2nd ed. Reading, MA: Addison-

Wesley Professional, 2003.

[9] I. Sora, G. Glodean, and M. Gligor, "Software architecture reconstruction: An approach based on

combining graph clustering and partitioning," Proceedings of the International Joint Conference on

Computational Cybernetics and Technical Informatics (ICCC-CONTI), pp. 259-264, 27-29 May 2010.

[10] J. Lakos, Large-scale C++ software design vol. 1. Boston, MA: Addison-Wesley Professional, 1996.

[11] M. Fowler, Patterns of enterprise application architecture. Boston, MA: Addison-Wesley, 2002.

[12] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture: Foundations, Theory, and

Practice vol. 1. New York, NY: Wiley, 2009.

[13] R. Martin, Clean code: A handbook of agile software craftsmanship. New York, NY: Pearson Education,

2008.

[14] G. C. Murphy, D. Notkin, and K. J. Sullivan, "Software reflexion models: Bridging the gap between

design and implementation," Software Engineering, IEEE Transactions on, vol. 27, pp. 364-380, 2002.

[15] R. Koschke, "Architecture reconstruction: Tutorial on reverse engineering to the architectural level,"

Proceedings of the International Summer School on Software Engineering (ISSSE), pp. 140–173, 2008.

[16] M. Harman and J. Clark, "Metrics are fitness functions too," Proceedings of the International Software

Metrics Symposium (METRICS 2004), pp. 58-69, 2004.

[17] Mitchell, "A heuristic search approach to solving the software clustering problem," PhD, Drexel

University, Drexel, Philadelphia, (unpublished PhD thesis), 2002.

[18] Mitchell and Mancoridis, "On the automatic modularization of software systems using the Bunch tool,"

IEEE Transactions on Software Engineering, vol. 32, pp. 193-208, 2006.

[19] G. Gui and P. D. Scott, "Coupling and cohesion measures for evaluation of component reusability,"

Proceedings of the 2006 International Workshop on Mining Software Repositories (MSR) pp. 18-21,

2006.

[20] B. Meyer, Object-oriented software construction vol. 2. New York, NY: Prentice Hall, 1988.

[21] C. Szyperski, J. Bosch, and W. Weck, "Component-oriented programming," Proceedings of the

Conference on Object-Oriented Technology (ECOOP’99) pp. 184-192, 1999.

[22] H. Melton and E. Tempero, "An empirical study of cycles among classes in Java," Empirical Software

Engineering, vol. 12, pp. 389-415, 2007.

[23] H. A. Al-Mutawa, J. Dietrich, S. Marsland, and C. McCartin, "On the Shape of Circular Dependencies in

Java Programs," in Software Engineering Conference (ASWEC), 2014 23rd Australian, 2014, pp. 48-57.

[24] J.-R. Falleri, S. Denier, J. Laval, P. Vismara, and S. Ducasse, "Efficient retrieval and ranking of undesired

package cycles in large software systems," in Objects, Models, Components, Patterns, ed: Springer, 2011,

pp. 260-275.

[25] H. Abdeen, S. Ducasse, H. Sahraoui, and I. Alloui, "Automatic package coupling and cycle

minimization," Proceedings of 16th Working Conference on Reverse Engineering (WCRE'09), pp. 103-

112, 2009.

[26] K. Praditwong, M. Harman, and X. Yao, "Software module clustering as a multi-objective search

problem," IEEE Transactions on Software Engineering, 2011.

[27] C. L. Simons and I. C. Parmee, "Elegant object-oriented software design via interactive, evolutionary

computation," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),

vol. 42, pp. 1797-1805, 2012.

[28] A. Ramírez, J. R. Romero, and S. Ventura, "An approach for the evolutionary discovery of software

architectures," Information Sciences, vol. 305, pp. 234-255, 2015.

[29] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner, "Bunch: A clustering tool for the recovery

and maintenance of software system structures," Proceedings of the IEEE International Conference on

Software Maintenance (ICSM'99), pp. 50-59, 1999.

[30] O. Seng, M. Bauer, M. Biehl, and G. Pache, "Search-based improvement of subsystem decompositions,"

Proceedings of the 7th annual Conference on Genetic and Evolutionary Computation (GECCO 2005),

pp. 1045-1051, 2005.

[31] Mitchell and Mancoridis, "On the evaluation of the Bunch search-based software modularization

algorithm," Soft Computing - A Fusion of Foundations, Methodologies and Applications, vol. 12, pp. 77-

93, 2008.

https://doi.org/10.1142/S0218194018500262

Preprint of an article published in the International Journal of Software Engineering and Knowledge Engineering, Vol. 28, No. 6, 2018, 869-

892. https://doi.org/10.1142/S0218194018500262 © [copyright World Scientific Publishing Company

https://www.worldscientific.com/worldscinet/ijseke

[32] M. Harman, S. Swift, and K. Mahdavi, "An empirical study of the robustness of two module clustering

fitness functions," Proceedings of the 7th annual Conference on Genetic and Evolutionary Computation

(GECCO '2005), Washington D.C., USA, 25-29 June, 2005, pp. 1029-1036, 2005.

[33] F. Schmidt, S. G. MacDonell, and A. M. Connor, "An automatic architecture reconstruction and

refactoring framework," in Software Engineering Research, Management and Applications 2012. vol.

377, R. Lee, Ed., ed Berlin, DE: Springer, 2012, pp. 95-111.

[34] R. Etemaadi and M. R. Chaudron, "Varying topology of component-based system architectures using

metaheuristic optimization," Proceedings of the Conference on Software Engineering and Advanced

Applications (SEAA), pp. 63-70, 2012.

[35] Praditwong, Harman, and Yao, "Software module clustering as a multi-objective search problem," IEEE

Transactions on Software Engineering, vol. 37, pp. 264-282, 2011.

[36] M. d. O. Barros, "An analysis of the effects of composite objectives in multiobjective software module

clustering," Proceedings of the 14th annual Conference on Genetic and Evolutionary Computation

Conference (GECCO), pp. 1205-1212, 2012.

[37] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb, et al., "Many-objective software

remodularization using NSGA-III," ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 24, p. 17, 2015.

[38] H. P. Breivold, I. Crnkovic, and M. Larsson, "A systematic review of software architecture evolution

research," Information and Software Technology, vol. 54, pp. 16-40, 2012.

[39] J. J. Durillo and A. J. Nebro, "jMetal: A Java framework for multi-objective optimization," Advances in

Engineering Software, vol. 42, pp. 760-771, 2011.

[40] T. Wagner, N. Beume, and B. Naujoks, "Pareto-, Aggregation-, and Indicator-Based Methods in Many-

Objective Optimization," in Evolutionary Multi-Criterion Optimization: 4th International Conference,

EMO 2007, Matsushima, Japan, March 5-8, 2007. Proceedings, S. Obayashi, K. Deb, C. Poloni, T.

Hiroyasu, and T. Murata, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 742-756.

[41] F. Schmidt, "A Multi-Objective Architecture Reconstruction Approach," PhD, Auckland University of

Technology, 2014.

[42] H. Jain and K. Deb, "An improved adaptive approach for elitist nondominated sorting genetic algorithm

for many-objective optimization," presented at the International Conference on Evolutionary Multi-

Criterion Optimization, 2013.

https://doi.org/10.1142/S0218194018500262

