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Abstract 
The continual search for solutions that are better, faster and more efficient is second nature to 
all engineers. This activity is known as optimisation. But industrial optimisation problems are 
like the mythical beast, the Jabberwocky; they are big, complex, mean, ill-tempered, and prickly. 
What is interesting though is how we arrive at optimal solutions; how we can rapidly discard 
non-contenders, reduce the search-space, and accelerate the passage to the optimum. 
Essentially how do we optimise the optimisation process? 
This paper reviews the recent developments in large-scale optimisation algorithms that are 
suitable for industrial problems. The important issues of correctly formulating the optimisation 
problem, judging when to add constraints, when to introduce binary variables, and which of the 
many numerical algorithms to choose are also highlighted with many actual industrial examples 
such as trajectory planning of the Waiheke ferry, to the optimal operation of steam utility boiler 
systems, to optimal design of microwave cavities, and the classification of the electrical power 
usage of suburbs from Dargaville to Wellsford. The take home message is this: With the right 
tools (many of which are free!), all the world’s problems start to look like optimisation problems 
where even a slightly better solution is better than nothing at all.  
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1 Introduction

If one looks at the common threads in an 
undergraduate engineering curriculum, then a 
clear candidate is the focus on the fostering of 
the development of a solid classical 
mathematical analysis. We can trace this back 
to the remarkable achievements during the age 
of enlightenment in the 18th century. So 
successful was science employing the newly 
developed mathematical tools such as calculus 
and probability in explaining natural 
phenomena, that those intellectuals at the 
forefront were regarded as rockstars. Newton 
ended his days in the politically appointed 
plumb job of Master of the Mint, Laplace was 
removed from his political office by none 
other than Napolean because “he brought the 
spirit of the infinitely small to the 
government”, and poor Lavoisier saw Madam 
Guillotine from the wrong perspective, a 
beheading that shocked even the punch-drunk 
French science community at the time.  
The scientists and engineers were successful 
in their pursuits to tame the wilderness, 
probably more so than any time before or 

since, due to the ingenious ways that could 
create mechanisms to (predominantly) 
improve life. Indeed the very word engineer is 
derived from the Latin ingenium meaning “an 
innate quality, especially mental power, hence 
a clever invention”. 
My reason for this truncated and highly biased 
history of technology is because I am 
interested in how good ideas are generated. 
Following the heady heights of the classical 
era, we hit the somewhat confused and chaotic 
period of the early 20th century where the 
universe suddenly became much stranger. 
Labelling the plethora of recently discovered 
sub-atomic particles (quarks) after a cryptic 
quote in an obscure work (Finnegan’s Wake) 
by an impenetrable, penniless Irish author 
(James Joyce) shows just how desperate things 
had become. Things got worse of course, 
although there is nothing like a world war or 
two to stimulate the advancements of 
technology. Theoretical physics ‘left the farm’ 
about the time Sir Ernest fell out of his apple 
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tree, and became the big science it is today 
and engineers redefined their roles.  
 
2 Optimising the optimisation process 

For many engineers, their day is spent in the 
unending pursuit of improving something. 
The question is: how does one come up with 
these improvements, how can we shorten the 
development time, and how can we reduce the 
risk of failure? This continual search for 
improvement is essentially optimisation and 
we can embark on this in essentially two 
ways. The first, one currently favoured by the 
pedagogues, is to formulate an objective 
function, and then follow a well-programmed 
approach to reach an optimum, perhaps using 
some of the tools developed centuries earlier 
following what we now call classical 
optimisation strategies. An alternative search 
technique is to simply thrash about and hope 
that in our drunken wanderings we might 
stumble across a situation that is better than 
where we started. These strategies are known 
as random search or genetic algorithms. Both 
strategies have their adherents in the 
optimisation community and discussions can 
reach almost religious fervour.  

But to get either approach to yield a 
significant finding, we need a preferably 
succinct and efficient model of the problem 
under consideration. Furthermore we need a 
scalar objective function that is a function of a 
collection of decision variables. It is these 
decision variables inputs to the problem that 
are actually the optimisation problem’s 
solution. What is not often realised is that the 
simple act of crafting a well-posed 
optimisation problem is in itself a useful 
exercise. This forces one to think carefully 
about what the business is really trying to 
achieve, and what manipulated variables one 
can use to do this. We are forced to weight 
various competing objectives which in turn 
forces us to ascribe value. Simultaneously we 
explicitly state not only assumptions, but also 
state the constraints.  

2.1 Where is the optimisation taught? 
In the introduction I argued that mathematics 
was the glue within a professional engineering 
education. However looking at the typical 
curricular, we see a dominance of calculus 
and complex algebra, and the mastery of 
certain operations such as Laplace transforms, 
solving 2nd order ODEs and perhaps inverting 
modestly sized matrices. In my university, the 
content is not surprisingly driven by the 
various requirements of staff members 
delivering specialised senior level topics such 
as fluid mechanics, automatic control, 
electronics etc. What is missing though is a 
modern treatment of optimisation. Not the 
classical concepts, (such as solving for turning 
points in smooth univariate functions), but the 
tools and techniques for large-scale problems 
regularly seen in industrial optimisation. 
Ironically the one place we do see 
optimisation is the solving of linear programs 
(LPs) which is often included as part of our 
management or business courses 

2.2 The “industrial optimisation problem” 
Industrial optimisation problems are like the 
mythical beast, the Jabberwocky; they are big, 
complex, mean, ill-tempered, and prickly. 
They also do not like being conquered. To 
tackle them you need special tools, a steadfast 
mind, and good luck.  

 
Figure 1: The Jabberwock from Louis 
Carroll’s Through the Looking Glass as 
illustrated by the very disturbed John Tenniel. 

 
Industrial-sized optimization problems exhibit 
the following characteristics: 

(1) They are large and typically scale 
poorly. 
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(2) The objective function is never clear, 
and could well be considered multi-
objective. (The hydra’s multiple 
heads?) 

(3) They are non-convex and it is often 
infeasible or even impossible to 
extract the partial derivatives of the 
objective function and constraints, 
hence the prickles.  

(4) Real problems are always 
constrained which introduces the 
dilemma: Do we explicitly include 
the constraints to ‘help’ the optimizer 
by reducing the search space, or do 
we quietly ignore them. 

(5) Algorithms that work for small-scale 
low-dimensional problems rarely are 
competitive for industrial-sized 
problems. 

(6) Near optimality is generally good 
enough, and guarantees of globalist 
or quality of solution, while 
desirable, are of only secondary 
concern.  

 
All these characteristics are well recognised 
and considerable time and expertise has been 
spent in developing hardware to address these 
problems. What is sometimes forgotten 
though is that the underlying algorithms 
themselves have also been in rapid 
development, and as Rice [1] shows in Fig 1, 
these software developments have at least 
kept pace with the oft-quoted Moore’s law 
exponential hardware improvements.  
 

 
Figure 2: Comparing the improvements in 
speed due to both hardware and mathematical 
algorithms over the last 40 years. 

 
The algorithms given in Fig 1 are only 
concerned with a single, but extremely 
important, computational task, that of solving 
linear equations. An important question is: Is 
it fair to extrapolate these improvements 
across all scientific computing, or even 
numerical optimization? To answer that, we 
must establish what are the key tasks, or 
computational molecules, used in scientific 
computing. One such list is known as the “7 
Dwarfs of Supercomputing” originally 
proposed by Phil Collela, [2],  

(1) Dense linear algebra 
(2) Sparse linear Algebra 
(3) Spectral methods, FFT 
(4) N-body methods 
(5) Structured grids 
(6) Un-structured grids 
(7) Monte-Carlo 

and subsequently expanded by others to an 
unwieldy 13 dwarfs, [3]. In this context, a 
“dwarf” is a numerical method that Colella 
believed that was important for scientific 
computing. The field of numerical 
optimisation draws on almost all of these 7 
computing paradigms while in the expanded 
version, dwarfs number 10 (dynamic 
programming) and 11 (backtracking and 
branch-and-bound) are of special interest in 
the fields of optimization. It is important 
therefore to leverage off these developments 
in both hardware and algorithms when 
choosing between competing optimization 
strategies. The good news is that many of 
these developments are incorporated in a 
transparent manner to the end-user.  
 

2.3 The “industrial user” 
One of the aims of our research group 
(www.i2c2.aut.ac.nz) is to evangelise the idea 
of optimisation; that is using optimisation to 
aid the design process and improve the 
outcome. The key point here is that we must 
always remember when talking to our 
customers or clients is this: they are the 
customer; their business is to manufacture rice 
cakes or milk power, to ensure that electricity 
is delivered in an efficient and timely manner 
or to improve the efficiency of a microwave to 
cook human biowaste (“poo” in the 
vernacular). They are not typically specialists 
in numerical linear algebra, they are 
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uninterested in the constant upgrading of 
processors to be in the top 500, and their 
optimisation problem tomorrow will almost 
certainly be quite different from the problem 
of today, especially if we are successful. 
Furthermore they tend to be reluctant to port 
their problem over to a super-computing 
cluster, possibly because of intellectual 
property concerns, but also because they may 
(mistakenly) believe that current generic 
installations are ill-equipped to deal with their 
specific problems.  
This group we call the “industrial user”, [4], 
and they comprise a surprisingly large and 
predominantly untapped market. These 
experts in their particular niche industry, but 
beginners in the field of operations research or 
optimisation, are the focus of our research 
group and the focus of this paper.  
 
3 Some examples of industrial 

optimisation  

The following four industrial examples each 
illustrate an interesting characteristic of 
industrial optimisation. Each case is an actual 
problem that our research group has worked 
on for an industrial client.  
 

3.1 Robust solving of algebraic equations: 
friction factors in pipe flow 

A common example in the optimum design of 
piping is the determination of the friction 
factor which requires solving the nonlinear 
algebraic expression (known as the Colebrook 
equation) 





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


+−=

f

de

f Re

57.2
7.3

/
log0.2

1
  (1) 

for f. Solving Eqn (1) for f can be cast as a 
least-squares minimisation problem using 
standard algorithms. This is a classic piping 
design problem, although most textbooks 
(such as [5]) will sidestep the computational 
problem by choosing appropriate starting 
estimates and ensuring that the problems to be 
solved are well in the turbulent regime using 
some sort of direct iteration method. Such an 
approach is fine for one-off calculations, but 
in our case, we wished to design a set of mini-
tool plugins for Excel that needed to be both 

fast and most importantly robust. In this case 
that meant we needed to devise robust starting 
algorithms for all reasonable piping problems, 
something that is difficult to achieve. 
Furthermore, when solving piping network 
problems, we need to be able to solve multi-
variable algebraic versions of Eqn 1. This 
again is an optimisation problem where we 
have chosen to cast the problem to minimise 
the norm of the residuals. Such multivariable 
algebraic equation problems are notoriously 
hard to solve, especially at high dimensions, 
and the success rate depends strongly on the 
quality of the starting estimate. In this case, 
we know a considerable amount about the 
underlying physics of the problem, and we 
can place specific bounds in the parameter 
space in which to reduce the area in which to 
search for optimal solutions. Using this 
domain specific information is key to 
developing robust mini-tools, but at the 
expense of generality.  
 

3.1 Large-scale least-squares regression 

The state-owned enterprise Transpower is the 
electrical grid owner in New Zealand 
responsible for delivering electricity to the 
local retailers at 80 or so points around the 
country known as grid-exit points. To 
minimise the cost of correcting equipment, 
Transpower needs to regress a dynamic model 
of each exit point. Essentially this means that 
from Transpower’s perspective, each suburb 
can be approximated by a single large static 
load and a single large dynamic motor.  

 
Figure 3: Fitting the reactive and active 
power models to experimental data at the 
Henderson grid exit point during a fault. 
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The characteristics of this optimisation 
problem are that the objective function was 
non-smooth, partly due to the embedded ODE 
inside the optimiser, but also due to the 
saturation components in the motor model. 
Consequently gradient-based numerical search 
techniques failed, but those using heuristic 
particle swarm techniques, whilst slow, did 
find adequate solutions. An interesting 
characteristic of this problem was that 
Transpower needed to regress these dynamic 
models for each of the 80 or so grid exit 
points; for different combinations of outages 
during weekends and weekdays, summer and 
winter comprising of almost 1000 
combinations. Clearly such a procedure must 
be automated, particularly since we need to 
continually refine these models. Some of the 
exit points feed predominantly domestic 
suburbs; others feed areas of light industry, 
and some such as Glenbrook Steel mill, 
exhibit very unusual behaviour and 
occasionally require manual intervention. 
Such problems however are embarrassingly 
parallel and well suited to a naive parallel 
computing implementation.  
 

3.2 Computationally expensive problems 
used to optimise mechanical design 

To reduce the amount of municipal waste 
going to landfill, our client had the idea that 
he would pyrolise the wet media using 
microwaves. The resultant inert carbon could 
then be easily disposed or even used as 
fertiliser. The problem was an efficient design 
of the microwave cavity, [6]. Figure 4 shows 
the results of an electromagnetic simulation 
using the 3D finite element package 
COMSOL. In this case we needed to tweak 
the mechanical design in order to achieve 
even heating throughout the waste material 
tube which was extruded in a cylinder without 
exceeding a known temperature limit where 
undesirable dioxins would be produced.  
 
This type of optimisation problem is 
characterised by an extremely 
computationally expensive function 
evaluation since we are to solve a full multi-
physics PDE system, modelling both 
electromagnetic fields and the associated heat 
transfer. Parallel computing can help to a 
degree for these sorts of problems.  

 

 
 
 

Figure 4: The temperature and surrounding 
magnetic flux density due to microwave 
heating of a tube of human waste biomatter 
flowing through a microwave cavity.  
 
 

3.3 Dynamic optimisation: Trajectory 
planning of a car ferry 

 
The various routes shown in Figure 5 give 
some idea of the choices the captain of the 
500 tonne car ferry must make when 
travelling from the island of Waiheke to 
Auckland city in the Hauraki Gulf, [7]. The 
distance is relatively short, but shallow, and 
the area is subjected to strong tidal streams. 
Simply continually aiming at the destination 
results in a “hooked curve” which is clearly 
not optimal. Blindly following an initially 
correct bearing (perhaps while having a cup of 
tea) will put the vessel on the rocks! 
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Figure 5: Find the optimum trajectory for a 
500 ton passenger ferry battling tides and 
negotiating varying depths.  

To find the optimum route in this case we 
must decide if we are to minimise fuel, 
passenger discomfort, passage time, or some 
combination. Furthermore the solution is a 
curve which means the solution is has an 
infinite dimension and one we could find 
using techniques such as variational calculus 
if the problem was smooth, which it isn’t. 
These sorts of problems are known as an 
optimal control problem (OCP), and even if 
we were to use more modern techniques such 
as Pontryagin’s method, we still need to 
embed an optimiser inside a boundary value 
differential equation solver. Again, these 
problems are notoriously delicate to initial 
conditions and prove difficult to solve, 
especially if the underlying dynamic system is 
non-smooth. However recent numerical 
improvements in the quality of the BVPs 
using collocation have improved the situation 
slightly.  
As evident in Figure 5, we chose not to 
compute the true continuous solution, but 
rather discretise the problem into a number of 
discrete control moves. 
 

3.4 Optimisation problems with integer 
constraints 

Probably the most challenging optimisation 
problems are those where the objective 
function is nonlinear, and where some of the 
constraints are restricted to only integer or 
even binary variables. Such optimisation 
problems are non-convex and the current 
solution algorithms scale very poorly (non-
polynomial).  
Figure 6 shows a simplified version of a steam 
utility system our group developed for an 
international oil and gas company in South 
East Asia which wanted to establish optimum 

operating conditions given varying 
downstream demands for steam, and varying 
electricity supply costs, [8]. The problem 
requires integer constraints due to the 
possibility that boilers are shut down, or that 
turbines are bypassed. We, when formulating 
the optimisation problem, also have the option 
to approximate continuous nonlinear 
constraints as piecewise linear constraints 
combined with binary variables. It should be 
noted that simply truncating the relaxed 
optimum solution to integer or binary values 
does not typically result in the optimum, or 
even feasible solution.  
 

 
Figure 6: Establishing the optimum operating 
condition for a steam utility plant designed to 
service a large petrochemical plant is an 
integer optimisation problem. 

A main hurdle in solving plant-specific 
optimisation problems is that the plant is 
continually changing topology and capability 
due to upgrades, or pieces of machinery being 
taken into, and out of, service. Unless the 
optimisation model is updated in parallel, any 
results should be treated with suspicion. For 
these sorts of applications, our research team 
developed a modelling environment that 
would automatically generate models that we 
termed “optimisation friendly”. That is, the 
models executed quickly, and functions 
returning the partial derivatives of the 
objective function with respect to the decision 
variables are automatically generated, some 
even using symbolic calculations.  
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In this case, we could also optimise the steam 
utility system using a global optimiser, 
BARON, [9]. The interesting feature here is 
that while global strategies are orders of 
magnitude slower than competing algorithms, 
and the fact that they are applicable only to a 
reduced class of nonlinear problems, they do 
find better solutions. Of course whether that is 
significant or not depends on the application.  
 
4 A general optimisation environment 

The Industrial Information and Control Centre 
has developed a comprehensive optimisation 
suite which collects together a number of 
public domain optimisation codes to solve 
linear, quadratic and nonlinear programs (LPs, 
QPs and NLPs), mixed integer linear and 
nonlinear programs (MILPs, MINLPs), and 
nonlinear least-squares problems. The 
package is available from www.i2c2.aut.ac.nz 
in the software section and is designed to run 
via Matlab although most of the underlying 
algorithms are written in C/C++ or even 
Fortran. Some of the underlying algorithms 
such as IPOPT, CPLEX are generally 
regarded as world class in their specific 
domains, and the latter is available at no cost 
for academics.  
 
5 Conclusions 

Our research group encourages the many 
engineers who are charged with the 
challenging task of improving their product or 
process to pause for a moment to think about 
advantages of the discipline of optimisation. 
While optimisation in its own right is not 
often particularly stressed, or even taught in 
the undergraduate engineering curriculum, the 
readily available tools, (many of which are 
free), coupled with the rapid proto-typing 
environments such as Matlab (or the free 
Scilab) mean that even the non-specialists can 
take a structured, disciplined, and hopefully 
fruitful journey into the world of optimisation. 
We also argue that even if one decides not to 
continue formally to search for an optimal 
solution, the very act of constructing an 
objective function forces one to state what is 
really important for the organisation; the act 
of listing the decision variables forces one to 
acknowledge what is under their control and 

what is not, and the listing of constraints 
should be regularly revised since if some turn 
out to be relaxed, then the optimal solution 
may well turn out to be very different.  
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