

GCMM2012 November 28-30 2012 (www.aut.ac.nz/engineering/gcmm2012)

© School of Engineering, AUT University, Auckland, New Zealand

Navigating the Wilds of Industrial Optimisation

David I. Wilson.
Industrial Information & Control Centre, Auckland, New Zealand

Abstract
The continual search for solutions that are better, faster and more efficient is second nature to
all engineers. This activity is known as optimisation. But industrial optimisation problems are
like the mythical beast, the Jabberwocky; they are big, complex, mean, ill-tempered, and prickly.
What is interesting though is how we arrive at optimal solutions; how we can rapidly discard
non-contenders, reduce the search-space, and accelerate the passage to the optimum.
Essentially how do we optimise the optimisation process?
This paper reviews the recent developments in large-scale optimisation algorithms that are
suitable for industrial problems. The important issues of correctly formulating the optimisation
problem, judging when to add constraints, when to introduce binary variables, and which of the
many numerical algorithms to choose are also highlighted with many actual industrial examples
such as trajectory planning of the Waiheke ferry, to the optimal operation of steam utility boiler
systems, to optimal design of microwave cavities, and the classification of the electrical power
usage of suburbs from Dargaville to Wellsford. The take home message is this: With the right
tools (many of which are free!), all the world’s problems start to look like optimisation problems
where even a slightly better solution is better than nothing at all.

Keywords: Optimisation, algorithms, large-scale, industrial applications, OPTI

1 Introduction

If one looks at the common threads in an
undergraduate engineering curriculum, then a
clear candidate is the focus on the fostering of
the development of a solid classical
mathematical analysis. We can trace this back
to the remarkable achievements during the age
of enlightenment in the 18th century. So
successful was science employing the newly
developed mathematical tools such as calculus
and probability in explaining natural
phenomena, that those intellectuals at the
forefront were regarded as rockstars. Newton
ended his days in the politically appointed
plumb job of Master of the Mint, Laplace was
removed from his political office by none
other than Napolean because “he brought the
spirit of the infinitely small to the
government”, and poor Lavoisier saw Madam
Guillotine from the wrong perspective, a
beheading that shocked even the punch-drunk
French science community at the time.
The scientists and engineers were successful
in their pursuits to tame the wilderness,
probably more so than any time before or

since, due to the ingenious ways that could
create mechanisms to (predominantly)
improve life. Indeed the very word engineer is
derived from the Latin ingenium meaning “an
innate quality, especially mental power, hence
a clever invention”.
My reason for this truncated and highly biased
history of technology is because I am
interested in how good ideas are generated.
Following the heady heights of the classical
era, we hit the somewhat confused and chaotic
period of the early 20th century where the
universe suddenly became much stranger.
Labelling the plethora of recently discovered
sub-atomic particles (quarks) after a cryptic
quote in an obscure work (Finnegan’s Wake)
by an impenetrable, penniless Irish author
(James Joyce) shows just how desperate things
had become. Things got worse of course,
although there is nothing like a world war or
two to stimulate the advancements of
technology. Theoretical physics ‘left the farm’
about the time Sir Ernest fell out of his apple

http://www.aut.ac.nz/engineering/gcmm2012

Wilson, D.I.

© School of Engineering, AUT University, Auckland, New Zealand

tree, and became the big science it is today
and engineers redefined their roles.

2 Optimising the optimisation process

For many engineers, their day is spent in the
unending pursuit of improving something.
The question is: how does one come up with
these improvements, how can we shorten the
development time, and how can we reduce the
risk of failure? This continual search for
improvement is essentially optimisation and
we can embark on this in essentially two
ways. The first, one currently favoured by the
pedagogues, is to formulate an objective
function, and then follow a well-programmed
approach to reach an optimum, perhaps using
some of the tools developed centuries earlier
following what we now call classical
optimisation strategies. An alternative search
technique is to simply thrash about and hope
that in our drunken wanderings we might
stumble across a situation that is better than
where we started. These strategies are known
as random search or genetic algorithms. Both
strategies have their adherents in the
optimisation community and discussions can
reach almost religious fervour.

But to get either approach to yield a
significant finding, we need a preferably
succinct and efficient model of the problem
under consideration. Furthermore we need a
scalar objective function that is a function of a
collection of decision variables. It is these
decision variables inputs to the problem that
are actually the optimisation problem’s
solution. What is not often realised is that the
simple act of crafting a well-posed
optimisation problem is in itself a useful
exercise. This forces one to think carefully
about what the business is really trying to
achieve, and what manipulated variables one
can use to do this. We are forced to weight
various competing objectives which in turn
forces us to ascribe value. Simultaneously we
explicitly state not only assumptions, but also
state the constraints.

2.1 Where is the optimisation taught?
In the introduction I argued that mathematics
was the glue within a professional engineering
education. However looking at the typical
curricular, we see a dominance of calculus
and complex algebra, and the mastery of
certain operations such as Laplace transforms,
solving 2nd order ODEs and perhaps inverting
modestly sized matrices. In my university, the
content is not surprisingly driven by the
various requirements of staff members
delivering specialised senior level topics such
as fluid mechanics, automatic control,
electronics etc. What is missing though is a
modern treatment of optimisation. Not the
classical concepts, (such as solving for turning
points in smooth univariate functions), but the
tools and techniques for large-scale problems
regularly seen in industrial optimisation.
Ironically the one place we do see
optimisation is the solving of linear programs
(LPs) which is often included as part of our
management or business courses

2.2 The “industrial optimisation problem”
Industrial optimisation problems are like the
mythical beast, the Jabberwocky; they are big,
complex, mean, ill-tempered, and prickly.
They also do not like being conquered. To
tackle them you need special tools, a steadfast
mind, and good luck.

Figure 1: The Jabberwock from Louis
Carroll’s Through the Looking Glass as
illustrated by the very disturbed John Tenniel.

Industrial-sized optimization problems exhibit
the following characteristics:

(1) They are large and typically scale
poorly.

 Instructions for Publishing Papers in the Global Congress on Manufacturing and Management GCMM 2012

© School of Engineering, AUT University, Auckland, New Zealand

(2) The objective function is never clear,
and could well be considered multi-
objective. (The hydra’s multiple
heads?)

(3) They are non-convex and it is often
infeasible or even impossible to
extract the partial derivatives of the
objective function and constraints,
hence the prickles.

(4) Real problems are always
constrained which introduces the
dilemma: Do we explicitly include
the constraints to ‘help’ the optimizer
by reducing the search space, or do
we quietly ignore them.

(5) Algorithms that work for small-scale
low-dimensional problems rarely are
competitive for industrial-sized
problems.

(6) Near optimality is generally good
enough, and guarantees of globalist
or quality of solution, while
desirable, are of only secondary
concern.

All these characteristics are well recognised
and considerable time and expertise has been
spent in developing hardware to address these
problems. What is sometimes forgotten
though is that the underlying algorithms
themselves have also been in rapid
development, and as Rice [1] shows in Fig 1,
these software developments have at least
kept pace with the oft-quoted Moore’s law
exponential hardware improvements.

Figure 2: Comparing the improvements in
speed due to both hardware and mathematical
algorithms over the last 40 years.

The algorithms given in Fig 1 are only
concerned with a single, but extremely
important, computational task, that of solving
linear equations. An important question is: Is
it fair to extrapolate these improvements
across all scientific computing, or even
numerical optimization? To answer that, we
must establish what are the key tasks, or
computational molecules, used in scientific
computing. One such list is known as the “7
Dwarfs of Supercomputing” originally
proposed by Phil Collela, [2],

(1) Dense linear algebra
(2) Sparse linear Algebra
(3) Spectral methods, FFT
(4) N-body methods
(5) Structured grids
(6) Un-structured grids
(7) Monte-Carlo

and subsequently expanded by others to an
unwieldy 13 dwarfs, [3]. In this context, a
“dwarf” is a numerical method that Colella
believed that was important for scientific
computing. The field of numerical
optimisation draws on almost all of these 7
computing paradigms while in the expanded
version, dwarfs number 10 (dynamic
programming) and 11 (backtracking and
branch-and-bound) are of special interest in
the fields of optimization. It is important
therefore to leverage off these developments
in both hardware and algorithms when
choosing between competing optimization
strategies. The good news is that many of
these developments are incorporated in a
transparent manner to the end-user.

2.3 The “industrial user”
One of the aims of our research group
(www.i2c2.aut.ac.nz) is to evangelise the idea
of optimisation; that is using optimisation to
aid the design process and improve the
outcome. The key point here is that we must
always remember when talking to our
customers or clients is this: they are the
customer; their business is to manufacture rice
cakes or milk power, to ensure that electricity
is delivered in an efficient and timely manner
or to improve the efficiency of a microwave to
cook human biowaste (“poo” in the
vernacular). They are not typically specialists
in numerical linear algebra, they are

1965 1970 1975 1980 1985 1990 1995 2000
10

-1

10
0

10
1

10
2

10
3

10
4

Sparse Gauss-Seidel

Gauss-Seidel

Successive over-relaxation

Conjugate-gradient

Multigrid

Year

S
pe

ed
up

 fa
ct

or

Ve
ct

or
 s

up
er

co
m

pu
te

r

Hardware
Algorithms

http://www.i2c2.aut.ac.nz/

Wilson, D.I.

© School of Engineering, AUT University, Auckland, New Zealand

uninterested in the constant upgrading of
processors to be in the top 500, and their
optimisation problem tomorrow will almost
certainly be quite different from the problem
of today, especially if we are successful.
Furthermore they tend to be reluctant to port
their problem over to a super-computing
cluster, possibly because of intellectual
property concerns, but also because they may
(mistakenly) believe that current generic
installations are ill-equipped to deal with their
specific problems.
This group we call the “industrial user”, [4],
and they comprise a surprisingly large and
predominantly untapped market. These
experts in their particular niche industry, but
beginners in the field of operations research or
optimisation, are the focus of our research
group and the focus of this paper.

3 Some examples of industrial

optimisation

The following four industrial examples each
illustrate an interesting characteristic of
industrial optimisation. Each case is an actual
problem that our research group has worked
on for an industrial client.

3.1 Robust solving of algebraic equations:
friction factors in pipe flow

A common example in the optimum design of
piping is the determination of the friction
factor which requires solving the nonlinear
algebraic expression (known as the Colebrook
equation)









+−=

f

de

f Re

57.2
7.3

/
log0.2

1
 (1)

for f. Solving Eqn (1) for f can be cast as a
least-squares minimisation problem using
standard algorithms. This is a classic piping
design problem, although most textbooks
(such as [5]) will sidestep the computational
problem by choosing appropriate starting
estimates and ensuring that the problems to be
solved are well in the turbulent regime using
some sort of direct iteration method. Such an
approach is fine for one-off calculations, but
in our case, we wished to design a set of mini-
tool plugins for Excel that needed to be both

fast and most importantly robust. In this case
that meant we needed to devise robust starting
algorithms for all reasonable piping problems,
something that is difficult to achieve.
Furthermore, when solving piping network
problems, we need to be able to solve multi-
variable algebraic versions of Eqn 1. This
again is an optimisation problem where we
have chosen to cast the problem to minimise
the norm of the residuals. Such multivariable
algebraic equation problems are notoriously
hard to solve, especially at high dimensions,
and the success rate depends strongly on the
quality of the starting estimate. In this case,
we know a considerable amount about the
underlying physics of the problem, and we
can place specific bounds in the parameter
space in which to reduce the area in which to
search for optimal solutions. Using this
domain specific information is key to
developing robust mini-tools, but at the
expense of generality.

3.1 Large-scale least-squares regression

The state-owned enterprise Transpower is the
electrical grid owner in New Zealand
responsible for delivering electricity to the
local retailers at 80 or so points around the
country known as grid-exit points. To
minimise the cost of correcting equipment,
Transpower needs to regress a dynamic model
of each exit point. Essentially this means that
from Transpower’s perspective, each suburb
can be approximated by a single large static
load and a single large dynamic motor.

Figure 3: Fitting the reactive and active
power models to experimental data at the
Henderson grid exit point during a fault.

-5

0

5

10

15

P
 &

 Q

Henderson CB1872
Load: p%=14.63%, SSE = 2.276, X'=1.740

 Instructions for Publishing Papers in the Global Congress on Manufacturing and Management GCMM 2012

© School of Engineering, AUT University, Auckland, New Zealand

The characteristics of this optimisation
problem are that the objective function was
non-smooth, partly due to the embedded ODE
inside the optimiser, but also due to the
saturation components in the motor model.
Consequently gradient-based numerical search
techniques failed, but those using heuristic
particle swarm techniques, whilst slow, did
find adequate solutions. An interesting
characteristic of this problem was that
Transpower needed to regress these dynamic
models for each of the 80 or so grid exit
points; for different combinations of outages
during weekends and weekdays, summer and
winter comprising of almost 1000
combinations. Clearly such a procedure must
be automated, particularly since we need to
continually refine these models. Some of the
exit points feed predominantly domestic
suburbs; others feed areas of light industry,
and some such as Glenbrook Steel mill,
exhibit very unusual behaviour and
occasionally require manual intervention.
Such problems however are embarrassingly
parallel and well suited to a naive parallel
computing implementation.

3.2 Computationally expensive problems
used to optimise mechanical design

To reduce the amount of municipal waste
going to landfill, our client had the idea that
he would pyrolise the wet media using
microwaves. The resultant inert carbon could
then be easily disposed or even used as
fertiliser. The problem was an efficient design
of the microwave cavity, [6]. Figure 4 shows
the results of an electromagnetic simulation
using the 3D finite element package
COMSOL. In this case we needed to tweak
the mechanical design in order to achieve
even heating throughout the waste material
tube which was extruded in a cylinder without
exceeding a known temperature limit where
undesirable dioxins would be produced.

This type of optimisation problem is
characterised by an extremely
computationally expensive function
evaluation since we are to solve a full multi-
physics PDE system, modelling both
electromagnetic fields and the associated heat
transfer. Parallel computing can help to a
degree for these sorts of problems.

Figure 4: The temperature and surrounding
magnetic flux density due to microwave
heating of a tube of human waste biomatter
flowing through a microwave cavity.

3.3 Dynamic optimisation: Trajectory
planning of a car ferry

The various routes shown in Figure 5 give
some idea of the choices the captain of the
500 tonne car ferry must make when
travelling from the island of Waiheke to
Auckland city in the Hauraki Gulf, [7]. The
distance is relatively short, but shallow, and
the area is subjected to strong tidal streams.
Simply continually aiming at the destination
results in a “hooked curve” which is clearly
not optimal. Blindly following an initially
correct bearing (perhaps while having a cup of
tea) will put the vessel on the rocks!

Wilson, D.I.

© School of Engineering, AUT University, Auckland, New Zealand

Figure 5: Find the optimum trajectory for a
500 ton passenger ferry battling tides and
negotiating varying depths.

To find the optimum route in this case we
must decide if we are to minimise fuel,
passenger discomfort, passage time, or some
combination. Furthermore the solution is a
curve which means the solution is has an
infinite dimension and one we could find
using techniques such as variational calculus
if the problem was smooth, which it isn’t.
These sorts of problems are known as an
optimal control problem (OCP), and even if
we were to use more modern techniques such
as Pontryagin’s method, we still need to
embed an optimiser inside a boundary value
differential equation solver. Again, these
problems are notoriously delicate to initial
conditions and prove difficult to solve,
especially if the underlying dynamic system is
non-smooth. However recent numerical
improvements in the quality of the BVPs
using collocation have improved the situation
slightly.
As evident in Figure 5, we chose not to
compute the true continuous solution, but
rather discretise the problem into a number of
discrete control moves.

3.4 Optimisation problems with integer
constraints

Probably the most challenging optimisation
problems are those where the objective
function is nonlinear, and where some of the
constraints are restricted to only integer or
even binary variables. Such optimisation
problems are non-convex and the current
solution algorithms scale very poorly (non-
polynomial).
Figure 6 shows a simplified version of a steam
utility system our group developed for an
international oil and gas company in South
East Asia which wanted to establish optimum

operating conditions given varying
downstream demands for steam, and varying
electricity supply costs, [8]. The problem
requires integer constraints due to the
possibility that boilers are shut down, or that
turbines are bypassed. We, when formulating
the optimisation problem, also have the option
to approximate continuous nonlinear
constraints as piecewise linear constraints
combined with binary variables. It should be
noted that simply truncating the relaxed
optimum solution to integer or binary values
does not typically result in the optimum, or
even feasible solution.

Figure 6: Establishing the optimum operating
condition for a steam utility plant designed to
service a large petrochemical plant is an
integer optimisation problem.

A main hurdle in solving plant-specific
optimisation problems is that the plant is
continually changing topology and capability
due to upgrades, or pieces of machinery being
taken into, and out of, service. Unless the
optimisation model is updated in parallel, any
results should be treated with suspicion. For
these sorts of applications, our research team
developed a modelling environment that
would automatically generate models that we
termed “optimisation friendly”. That is, the
models executed quickly, and functions
returning the partial derivatives of the
objective function with respect to the decision
variables are automatically generated, some
even using symbolic calculations.

 Instructions for Publishing Papers in the Global Congress on Manufacturing and Management GCMM 2012

© School of Engineering, AUT University, Auckland, New Zealand

In this case, we could also optimise the steam
utility system using a global optimiser,
BARON, [9]. The interesting feature here is
that while global strategies are orders of
magnitude slower than competing algorithms,
and the fact that they are applicable only to a
reduced class of nonlinear problems, they do
find better solutions. Of course whether that is
significant or not depends on the application.

4 A general optimisation environment

The Industrial Information and Control Centre
has developed a comprehensive optimisation
suite which collects together a number of
public domain optimisation codes to solve
linear, quadratic and nonlinear programs (LPs,
QPs and NLPs), mixed integer linear and
nonlinear programs (MILPs, MINLPs), and
nonlinear least-squares problems. The
package is available from www.i2c2.aut.ac.nz
in the software section and is designed to run
via Matlab although most of the underlying
algorithms are written in C/C++ or even
Fortran. Some of the underlying algorithms
such as IPOPT, CPLEX are generally
regarded as world class in their specific
domains, and the latter is available at no cost
for academics.

5 Conclusions

Our research group encourages the many
engineers who are charged with the
challenging task of improving their product or
process to pause for a moment to think about
advantages of the discipline of optimisation.
While optimisation in its own right is not
often particularly stressed, or even taught in
the undergraduate engineering curriculum, the
readily available tools, (many of which are
free), coupled with the rapid proto-typing
environments such as Matlab (or the free
Scilab) mean that even the non-specialists can
take a structured, disciplined, and hopefully
fruitful journey into the world of optimisation.
We also argue that even if one decides not to
continue formally to search for an optimal
solution, the very act of constructing an
objective function forces one to state what is
really important for the organisation; the act
of listing the decision variables forces one to
acknowledge what is under their control and

what is not, and the listing of constraints
should be regularly revised since if some turn
out to be relaxed, then the optimal solution
may well turn out to be very different.

Acknowledgments

The author acknowledges the assistance of his
past and present students in colleagues,
particularly Jonathan Currie.

References

[1] John R. Rice. (1983) Numerical Methods,
Software, and Analysis. McGraw–Hill.

[2] P. Colella, (2004) Defining Software
Requirements for Scientific Computing,
presentation, 2004. Public presentation
available from Berkley, Media:
DARPAHPCS.ppt

[3] Asanovic, K, Bodik, R, Catanzaro, B C,
Gebis, J, Husbands, P, Keutzer,
Patterson, D, Plishker, W, Shalf, J,
Williams, S. and Yelick, K. (2006) The
Landscape of Parallel Computing
Research: A View from Berkeley, EECS
Department, University of California,
Berkeley, available
from www.eecs.berkeley.edu/Pubs/Tech
Rpts/2006/EECS-2006-183.html.

[4] Jonathan Currie and David I. Wilson,
2012. Opti: Lowering the Barrier
Between Open Source Optimizers and
the Industrial MATLAB User. In Nick
Sahinidis and Jose Pinto, editors,
Foundations of Computer-Aided Process
Operations, Savannah, Georgia, USA,
8–11 January 2012

[5] Frank M. White. (2011) Fluid Mechanics.
McGraw–Hill

[6] Jonathan Currie and David I. Wilson.
(2011) Microwave Pyrolysis Study:
Cavity design and numerical
simulations. Technical report, Industrial
Information and Control Centre, AUT.,
Prepared for SpectioNZ Technologies,
PO Box 13-578, Johnsonville,
Wellington 6440, New Zealand.

[7] David I. Wilson. (2012). Optimising
Ferry Routes. In Tariq Samad and Dawn
Tilbury, editors, American Control
Conference, pages 3992–3997, Montreal,

http://www.i2c2.aut.ac.nz/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

Wilson, D.I.

© School of Engineering, AUT University, Auckland, New Zealand

 Quebec, Canada, 27–29 June 2012. ISBN
978-1-4673-2102-0.

[8] J. Currie, D. I. Wilson, N. Depree, B.R.
Young, S. Azmanai, L. Karim (2011)
Steam utility systems are not business as
usual for chemical plant simulators. In
American Institute of Chemical
Engineers (AIChE) Spring Meeting,
Chicago, USA, 13--17 March, 2011.

[9] Jonathan Currie and David I. Wilson.
(2012) The Efficient Modelling of Steam
Utility Systems. In Australian and New
Zealand Annual Chemical Engineering
Conference, Chemeca, Wellington, New
Zealand, 23–26 September 2012.
Engineers Australia. ISBN 978-1-
922107-59-6.

	1 Introduction
	2 Optimising the optimisation process
	2.1 Where is the optimisation taught?
	2.2 The “industrial optimisation problem”
	2.3 The “industrial user”

	3 Some examples of industrial optimisation
	3.1 Robust solving of algebraic equations: friction factors in pipe flow
	3.1 Large-scale least-squares regression
	3.2 Computationally expensive problems used to optimise mechanical design
	3.3 Dynamic optimisation: Trajectory planning of a car ferry
	3.4 Optimisation problems with integer constraints

	4 A general optimisation environment
	5 Conclusions
	Acknowledgments
	References

