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Abstract 

Metabolomics is the latest addition to the ‘Omics’ approaches, which includes 

genomics, transcriptomics, proteomics, and metabolomics among others. These 

approaches promise to provide a greater insight into biological systems than 

has been possible with traditional hypothesis-driven methods. Metabolomics 

can be used to examine and analyse the organism’s intermediary biochemical 

products or metabolites that are indicative of all life functioning. Successful 

application of metabolomics approaches have been shown in fields such as 

drug discovery, disease diagnostics, environmental sciences, forensics, 

agriculture and aquaculture. In the past decade, metabolomics has been 

expanding rapidly due to improved analytical platforms, statistical analyses, and 

enhanced computational capabilities. Capitalizing on these advancements, 

researchers have unravelled a wealth of knowledge. However, analysis of 

metabolomics data is still complex and challenging for new researchers trying to 

apply this approach to other fields, such as environmental science and 

aquaculture. Indeed, metabolomics data analysis relies heavily on 

computational tools to interpret the large multivariate and multidimensional 

datasets generated by high throughput platforms, such as mass spectroscopy 

and nuclear magnetic resonance. The inherently large size and complexity of 

these data sets often require advance bioinformatics and computational 

analyses that are not usually at the reach of researchers in applied biological 

fields. Thus, the aim of this thesis was to identify the bioinformatics and 

statistical analysis needs of metabolomics research, evaluate various 

bioinformatics tools already available, identify the most effective and applicable 

methods for metabolomics data analysis, and develop an easy-to-use 

computational platform to conduct statistical analyses and graphic 
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representation of biological data.  A comprehensive review of the literature, 

software and databases available for metabolomics bioinformatics was 

performed, and each major data analysis package or platform was evaluated for 

its effectiveness, efficiency, user-friendly capability, and functionality.  From this 

initial investigation, MetaCore™, Metaboanalyst, InCroMAP, 3Omics and 

Specmine were identified as the having the greatest application for 

metabolomics research: data pre-processing, statistical analysis and biological 

interpretation. From these, MetaboAnalyst 3.0 was found to be the most 

comprehensive.  Specifically, this software tool has advantages in its 

functionality, user friendly interface and accessibility. However, it was 

determined that several features were missing in this tool that could enhance 

applicability for metabolomics researchers. Thus, the software package 

MetaboAnalyst 3.0 was used as a base to construct a stand-alone statistical 

analysis application with enhanced compatibility, functionality and visualization. 

The new stand-alone statistical analysis application has the ability to perform all 

the original MetaboAnalyst 3.0 statistical analysis with additional analysis, 

distributed online or offline with easy installation and initialisation. 
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Chapter 1 

Introduction/Literature Review 

1.1. ‘Omics’ Technologies  

The discovery of Deoxyribonucleic Acid (DNA) in the 1944 propelled biological 

sciences into a whole new realm of scientific interrogation and investigation. 

The knowledge gained from these endeavours in the last decade has provided 

more comprehensive understanding of biological systems (from genotype to 

phenotype) at an exponential rate. This is achieved by utilizing high throughput 

sequencing analytical platforms, such as mass spectrometry and nuclear 

magnetic resonance, coupled with bioinformatics data analysis. This 

revolutionary approach to study biology is referred to as ‘Omics’ approaches, 

consisting of genomics, transcriptomics, proteomics, and metabolomics, among 

others. Specifically, genomics studies the structure, function and expression of 

all the genes (genome) in an organism, while transcriptomics studies the mRNA 

(transcriptome) within a cell or organism. Proteomics studies the proteins 

(proteome), including their structure and function, within a cell/system/organism, 

and metabolomics studies the molecules that are intermediary or end products 

of metabolic reactions known as metabolites (metabolome) (Horgan & Kenny, 

2011). Collectively these research fields are referred to as integrative systems 

biology, which is based on the idea that proteins, via mRNA, and then 

metabolites are synthesized in a hierarchical manner when genes are activated 

(Alfaro & Young, 2016) (Figure 1). 

 

Traditional biology adopts a more targeted hypothesis driven scientific approach, 

wherein a clearly articulated scientific question/hypothesis is proposed.  



2 
 

 

 

 

 

Figure 1  

Diagram of the ‘Omics’ cascade defining genomics, transcriptomics, proteomics 

and metabolomics, and depicting their position along the genotype to phenotype 

continuum. 

 

Subsequently experiments are carried out to obtain data in order to test the 

study hypothesis (Ozdemir et al., 2009).  However, ‘Omics’ approaches allows 

for untargeted scientific studies. This is enabled by the rapid emergence of 

advanced analytical platforms, statistical methods, and computational tools. An 

untargeted scientific approach allows for a global analysis of an organism’s 

genome, transcriptome, proteome and metabolome with the ultimate aim of 

providing us with a more comprehensive picture of the biological context. The 

exploratory nature of untargeted approaches has the potential to generate novel 

hypotheses instead of simply validating a pre-identified hypothesis. At the same 

time, ‘Omics’ provides the opportunity for unexpected information to be revealed, 

leading to high innovation and discovery in a very efficient manner (Young & 

Alfaro, 2016a).  

Recently, the application of multiple ‘Omics’ strategies, applied simultaneously, 

has been adopted more frequently with great success (Horgan & Kenny, 2011).  
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Indeed, integrative ‘Omics’ have been used in many major research fields, such 

as pharmaceutical drug discovery (Yan et al., 2015), microbiology (Zhang, Li, & 

Nie, 2010), medical science (Vlaanderen et al., 2010), and environmental (Ge et 

al., 2013).  For example, genomics and metabolomics have been used to reveal 

phenotype of silent mutations (Raamsdonk et al., 2001). Integration of 

metabolomics and proteomics has been applied in plant physiology (Weckwerth, 

2008), and together transcriptomics and metabolomics have been employed to 

aid biomarker discovery in type 2 diabetes (Connor, Hansen, Corner, Smith, & 

Ryan, 2010). There are also many large scale comprehensive studies that 

integrate multiple ‘Omics’ approaches. For example, a study conducted by the 

medical field by Romero et al. (2006) attempted to understand the preterm 

parturition syndrome by using integrative ‘Omics’. The study provided insightful 

findings in predisposing factors for preterm birth using genomics; changes in 

mRNA in reproductive tissues associated with preterm labour and preterm 

prelabour rupture of membranes using transcriptomics; identify differently 

expressed proteins in amniotic fluid of women with pretermlabour using 

proteomics; and indentify the metabolic footprints of women with preterm labour 

likely to deliver preterm and those who will deliver at term using metabolomics. 

The biggest challenges with ‘Omics’ technologies come from data analysis. 

Progress in high throughput analytical platforms coupled with an expanding 

diversity of experimental techniques has consequently allowed for an 

exponential growth in biological data acquisition (Berger, Peng, & Singh, 2013). 

These datasets are often very large, complex, and multivariate, therefore 

requiring advanced statistical and computational analyses. In addition, 

integration of large heterogeneous datasets collected from multiple ‘Omics’ 

studies is a major challenge and fast becoming the main developmental point of 
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integrative systems biology in the immediate future (Gomez-Cabrero et al., 

2014). Therefore, as the ‘Omics’ fields grow in scope and complexity, so does 

the need for development of more sophisticated data analyses and 

bioinformatics methods/tools (Boccard & Rudaz, 2014). Metabolomics is the 

latest addition to the ‘Omics’ group that can significantly benefit from these 

developments.  
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1.2. Metabolomics 

Despite metabolomics being the newest member to the ‘Omics’ family, the 

study of metabolites dates back to ancient China (1500B.C-2000B.C) and 

ancient Egypt where urine sweetness was selected as an indicator to test for a 

disease known now days as diabetes. However, it was not until late 1960s, 

through the invention of powerful analytical platforms, such as nuclear magnetic 

resonance spectroscopy (NMR) and Mass spectroscopy (MS) that biologist truly 

began scientific studies on metabolites (Greef, Wietmarschen, Ommen, & 

Verheij, 2013).  

Metabolites are small molecules (< 1500 Da) that are intermediary or end 

products of metabolic reactions (Wishart et al., 2007), and the comprehensive 

study of metabolites is known as metabolomics. This relatively new field has 

received considerable attention in the past decade and is considered as one of 

the most powerful ‘Omics’. Metabolites, such as peptides, organic acids, lipids, 

sugars, and amino acids are involved in an organism’s metabolism. They are 

responsible for many cell functions, such as energy transfer, signalling and 

regulation. Therefore, by profiling metabolites, we can capture a physiological 

snapshot of the metabolic state of an organism at a given time. This allows us 

to identify and understand the physiological differences between cells, tissues, 

organs or organisms that have been exposed to different conditions, such as 

environmental stress (e.g. poor water quality and pathogenic infections). In 

addition, we can also identify metabolite features that act as biomarkers from 

exposure to these stress conditions, and understand the role they play in a 

particular metabolic pathway (Alfaro & Young, 2016). 

From a practical perspective, a metabolomics experiment is significantly easier 
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to conduct compared to genomics, transcriptomics and proteomics. To begin 

with, less time is involved in sample collection, preparation and analytical 

analysis, which makes metabolomics to be very cost effective. Secondly, 

traditional ‘Omics’ studies are considered to be invasive. Experiments are 

performed directly on a biological sample’s tissues and vital body fluids, which 

often require killing the organism. The advantage of metabolomics is that it can 

be performed using non-invasive biofluids, such as plasma (Sato et al., 2012), 

urine (Sumner, Burgess, Snyder, Popp, & Fennell, 2010) or faeces (Ponnusamy, 

Choi, Kim, Lee, & Lee, 2011). Therefore, sample destruction is minimized and 

multiple analyses can be conducted on the same live organism, if required. This 

is extremely advantageous for designing a study with limited biological materials 

and/or performing multiple ‘Omics’ approaches with the aim of data integration 

(Alfaro & Young, 2016). Finally, a smaller number/type/class of endogenous 

metabolites relative to genes, mRNA and proteins (20000 to 25000 genes, 

250000 to 1 million proteins, 1027 identified metabolites) allows metabolomics 

sampling to be applied on large sample sets at the same time, thus generating 

less complex data and less intensive data processing.  

From a biological perspective, measuring the metabolome provides a dynamic 

and sensitive indicator of phenotypic changes in the organism, and the 

interaction between the genes, proteins, and metabolites. Being able to observe 

a coherent phenotypic and environmental relationship through metabolites 

provides information of a direct response to environmental factors without prior 

genome knowledge, and consequently opens up more opportunities to study 

species we have less knowledge about (non-model organisms). Therefore, 

metabolomics has significant potential applicability in primary industries, such 

as aquaculture. Another distinction of the metabolome is that the majority of 
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metabolite structures are conserved across species as opposed to genes. This 

feature provides metabolomics researchers with a natural way of standardizing 

their metabolite samples across species, hence enabling them to reapply tools 

and methods from multiple experiments without having to account for sample 

differentiation. 

Currently, applications of metabolomics have assisted clinical research through 

drug discovery (Robertson & Frevert, 2013), toxicology (Robertson, Watkins, & 

Reily, 2011), and development of diagnostic tools (Nagana Gowda et al., 2008). 

Metabolomics has also been applied to research on diseases, such as cancer 

(Cambiaghi, Ferrario, & Masseroli, 2017), diabetes (Zhang, Qiu, Xu, Sun, & 

Wang, 2014), and cardiovascular diseases (Friedrich, 2012). Agriculture is 

another area that has benefited from the application of metabolomics (Yang et 

al., 2014). Applications of metabolomics to examine various environmental 

stressors on organisms have also gained significant popularity (Lankadurai, 

Nagato, & Simpson, 2013). Finally, food science and nutritional research utilize 

metabolomics to examine food components (Jacobs, Gaudier, Duynhoven, & 

Vaughan, 2009), food quality (Castro-Puyana & Herrero, 2013) and identify 

biomarkers for dietary intake (O’Gorman, Gibbons, & Brennan, 2013). It is 

evident that the applications of metabolomics are vast, and as our knowledge 

and experiences in metabolomics increase, we will be able to find more novel 

and innovative ways to apply it. For example, recently, metabolomics has been 

applied in aquaculture to investigate hatchery production (Young & Alfaro, 

2014). 
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1.2.1. Metabolomics strategies 

There are generally six steps involved in a metabolomics study: (i) experimental 

design, (ii) sample collection and preparation, (iii) analytical measurement and 

data acquisition, (iv) primary bioinformatics (data integrity checking and 

metabolite identifications), secondary bioinformatics involving (v) statistical 

analyses and (vi) biological interpretation and/or biomarker validation (Alfaro & 

Young, 2016) (Figure 2).  

 

 

1.2.1.1. Experimental design  

The fundamental experimental idea of metabolomics is measuring the effect of 

a treatment or treatments, such as exposure to different altered conditions (e.g., 

temperature, pH, oxygen, and pathogen levels) on a group of biological 

samples. Despite the simplicity in the question asked, noise and bias factors 

can cause variation in the metabolite profile. Therefore, it is crucial to follow 

good standard experimental design practices in order to efficiently and 

accurately extract the information that is most relevant to answer the question of 

the study, (Hendriks et al., 2011).  
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Figure 2. General Metabolomics workflow. Biological animals are treated with 

various conditions in the experimental design step. Samples are collected and 

analysed using high through-put platforms. The resulting raw spectral data are 

then processed using a set of primary data pre-processing software tools to 

generate a data matrix. The data matrix can then be used for subsequent 

secondary bioinformatics involving statistical analysis and biological 

interpretation.  
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Targeted Versus Untargeted Metabolomics Experimental Design 

The first thing to consider when designing a metabolomics experiment is to 

determine the goals and hypotheses for the experiment. Depending on this, 

researchers may choose to adopt one of the two approaches of metabolomics: 

targeted or untargeted (or both for a more comprehensive analysis of the 

metabolome). Generally speaking, targeted metabolomics is applied when the 

aim of a study is to accurately determine the relative abundances and 

concentrations (in nM, or mg/mL) of a specific set of known metabolites 

(Roberts, Souza, Gerszten, & Clish, 2012). This approach allows us to directly 

address the hypothesis of a particular biological question. However the targeted 

metabolite’s structure must be known and to be available in purified form 

(Griffiths et al., 2010; Shulaev, 2006). Hence, this method cannot be used for 

novel metabolite discovery where large quantities of unidentified metabolites 

are present in one sample. In this case, an untargeted approach is much more 

ideal.  

 

Untargeted metabolomics involves the global quantification of metabolites, it 

captures a snapshot of the metabolism for the cells or tissues in question, 

providing greater insight on its biological context (Vinayavekhin & Saghatelian, 

2001). With no prior knowledge or insight into what we want to find, untargeted 

metabolomics studies usually references/search metabolite data bases to 

indentify significances, patterns and key distinctions in the data. It is important 

to note that, despite the existence of many metabolomics spectra databases, 

such as SMPDB (Frolkis et al., 2009; Jewison et al., 2014), KEGG (Ogata et al., 

1999), MetaCyc (Caspi et al., 2010) and HumanCyc (Trupp et al., 2010), 

untargeted metabolomics faces a major challenge in metabolite identification. 
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This challenge is mostly due to instrument limitations, such as dependencies on 

the analytical coverage, and possible bias towards detection of the most 

abundant molecules. In addition, the same molecule can have different 

fragmentation patterns depending on specific instruments, which provide 

complications for metabolite data (e.g., spectral data) matching.  

 

 

Sample Collection 

Sample collection and preparation are outside the scope of this study. However, 

Álvarez-Sánchez, Priego-Capote, & Luque de Castro, (2010) provides 

information regarding metabolomics sample selection and reviews some 

practical aspects, which require consideration prior to sample preparation. For a 

more comprehensive information on platform specific sample preparation 

techniques for general biofluids and animal tissues, see Beckonert et al. (2007), 

Nováková & Vlčková (2009), Liebeke & Bundy (2012), Römisch-Margl et al. 

(2012), Vuckovic (2012) and Mushtaq, Choi, Verpoorte, & Wilson (2014). 

 

1.2.1.2. Analytical Measurements 

Once the experimental design is sound, the next step in the metabolomics 

workflow is selecting the correct analytical platforms to collect raw spectral data. 

Each platform has a distinct set of protocols applied to varying categories of 

samples that yield different types of spectral outputs. For example, to obtain 

broad metabolite coverage, including low abundance compounds, some 

procedures may require a tissue sample of only 2 mg wet weight, whereas 

others may require >100 mg (Young & Alfaro, 2016b). Types of analytical 

platforms currently used for metabolomics include, but not limited to, mass 
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spectroscopy (MS), Nuclear magnetic resonance spectroscopy (NMR) and 

Infra-red (IR). MS can be further enhanced by coupling with gas 

chromatography and/or liquid chromatography, called gas chromatography 

mass spectroscopy (GC-MS) and liquid chromatography mass spectroscopy 

(LC-MS) respectively. 

 

NMR and MS are among the most emergent platforms in metabolomics, 

enabling the shortest route towards metabolite identifications and quantification. 

Despite each platform being very sophisticated in its own right, they do have 

limitations. For example, NMR is previously considered as the gold standard 

metabolomics largely owning to its non-destructive and non-invasive 

characteristics, low costs and high reproducibility. However, it suffers from low 

sensitivity and hinders structural identification (Emwas, 2015). MS on the other 

hand offers high selectivity and sensitivity, but is limited by time consuming 

complex sample preparation that can potentially result in metabolite loss if not 

carefully carried out (Lei, Huhman, & Sumner, 2011; Zhang, Sun, Wang, Han, & 

Wang, 2012). Therefore, it is recommended to employ a combination of 

different analytical platforms to gain a more informative and refined 

understanding of the metabolome in question. However, realistically, the choice 

of platform most often comes down to the analytical platforms availability in 

academic and commercial facilities and technical expertise (Young & Alfaro, 

2016b). 

 

Both NMR and MS produce spectral data. However, there are distinct 

differences between the two outputs. NMR exploits the spin properties of the 

atomic nucleus to measures the resonance emitted from the said nuclei. This 
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resonant frequency value is referred to as chemical shift (ppm). Displayed on 

the spectral graphs as peaks, the chemical shift can help determine the physical 

and chemical properties of atoms and/or molecules in which they are contained. 

Common standard data formats for NMR include International Union of Pure 

and Applied Chemistry (IUPAC) and American Standard Code for Information 

Interchange (ASCII).  

 

MS capitalises on the mass to charge ratio value (m/z) of individual molecules 

in order to record their properties. In the case of GC-MS and LC-MS the 

retention time is instead measured (time taken for a solute to pass through a 

chromatography column of a MS instrument). The high selectivity and sensitivity 

properties of MS generate large amounts of data that require medium to high 

end computers for data storage and processing. Over the years, different 

manufacturers of mass spectrometers have developed various proprietary data 

formats for handling such data. However, this makes it difficult for academic 

scientists to directly manipulate the data for analysis. Many standard open 

formats based on the eXtensible Markup Language (XML) have been 

developed for MS data to address this problem. The formats include mzXML 

(Pedrioli et al., 2004) and mzML (Martens et al., 2011). A range of converters 

also exist to convert the instrument format to the standard format, and they 

include, but are not limited to: Hermes 

(http://www.openmath.org/meetings/bremen2003/hermes.htm), msConvert 

(Holman, Tabb, & Mallick, 2014) and ReAdw 

(http://tools.proteomecenter.org/wiki/index.php?title=Software:ReAdW#Current_

Version).  
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1.3. Bioinformatics: From Biological Data to Answers 

Obtaining the raw data is only the first step in the metabolomics workflow. Once 

the data are gathered, the following analyses require extensive informatics. 

Indeed, to extract meaningful biological information from the thousands of 

metabolites quantified by modern analytic platforms presents a challenge to 

researchers new to metabolomics or primarily from a biological background. 

Like other types of ‘Omics’ studies, metabolomics deals with large amounts of 

data that are multivariate in nature, and often necessitate advanced data pre-

processing, data preparation, statistical analysis, functional interpretation and in 

some cases integration.  Additionally, with more and more data being shared, 

efficient ways of data retrieval, storage and matching from online data bases is 

also an area that demands specialized technicians and researchers. Therefore, 

successful modern biological studies now integrate biological knowledge, 

computer science, and statistical science, mathematics, and information 

technologies in order to enable a better understanding of the biological system. 

The integration of these different disciplines is achieved through bioinformatics. 

 

 

1.3.1. What is Bioinformatics?  

Bioinformatics is the application of computer science and information 

technologies to the processing and analysis of biological data. It assists 

biologists in three ways: data organisation, data analysis and data interpretation 

(Luscombe, Greenbaum, & Gerstein, 2001). Data organisation or data 

management aims to gather data from different sources into a databank that 

allows researchers to access data as well as adding new data. Additionally, 

standardized data formats are available to facilitate efficient computer 

recognition and analysis (e.g. XML [Bray, Paoli, Sperberg-McQueen, Maler, & 
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Yergeau, 1998]). Many biological data banks are available and they enable fast 

data searches, retrieval and submission. For example, EMBL (Kanz et al., 

2005), Uniprot (Magrane & Consortium, 2011), and KEGG Pathway Database 

(Ogata et al., 1999). 

 

Data analysis is perhaps the most challenging aspect of bioinformatics, since 

tools and resources need to be developed tailored towards explaining various 

unique forms of data. An in-depth understanding of biological science, computer 

science and statistical science is required to create data analysis pipelines, 

develop algorithms, and apply statistical methods. Numerous developed data 

analysis softwares have become well establish in the past ten years. To list a 

few: BioPerl is a comprehensive library of Perl modules available for managing 

and manipulating life science information (Stajich et al., 2002); Bioconductor is 

a collaborative creation of extensible software for computational biology and 

bioinformatics (Gentleman et al., 2004); BioJava is an open-source project that 

provides a framework for processing of biological data (Holland et al., 2008); 

and Galaxy is a comprehensive approach for supporting accessible, 

reproducible, and transparent computational research in life sciences (Goecks, 

Nekrutenko, Taylor, & Team, 2010).  

 

Generating and analyzing data is only the beginning of bioinformatics and 

understanding and interpreting the data is the final, and perhaps the most 

important step. Regarding this area of bioinformatics, rapid developments have 

enabled global analyses of all available biological data with the aim of 

uncovering common principles that apply across many systems and highlight 

novel 
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features (Luscombe et al., 2001). Examples of biological data interpretation 

tools include KEGG (Kanehisa, Goto, Sato, Furumichi, & Tanabe, 2012), 

g:Profiler (Reimand et al., 2016), MESA (Xia & Wishart, 2010), and EMBL-EBI 

(Goujon et al., 2010). 

 

1.3.2. Bioinformatics in Metabolomics  

From the above it is evident that bioinformatics are essential in data analysis 

and database functionalities.  Bioinformatics has also become one of the most 

important areas of research in metabolomics by providing tools that enables 

researchers to uncover information in data that was not previously achievable. 

These tools include a combination/workflow of computational and statistical 

procedures, such as identification, feature redundancy reduction, candidate 

biomarker selection, automation, speeding up, and pipelining workflow, 

deconvoluting features, and pathway mapping (Johnson, Ivanisevic, Benton, & 

Siuzdak, 2015). In general, these methods can be split into two major 

categories, primary bioinformatics and secondary bioinformatics. Primary 

bioinformatics processing involves analysis of raw data generated from the 

analytical platform and transformation. The resulting data can then be analysed 

through secondary bioinformatics, which involves a combination of statistical 

procedures and biological interpretations (Young & Alfaro, 2016b). The 

following section of this review explains the entire bioinformatics workflow 

involved in metabolomics and highlights specific techniques and challenges. 

 

1.3.2.1. Primary Bioinformatics 

Primary bioinformatics, also known as spectral processing, is concerned with 

processing of metabolomics raw data. This involves applying a wide range of 
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efficient, searching, matching and sorting algorithms in combination with heavy 

computational and mathematical calculations to process the raw spectral data. 

This can be extremely taxing on modern computers (even high end machines) if 

the dataset is extremely large (e.g., genetic data). As a result, many studies 

have attempted to produce faster, more accurate and potent computational 

methods of analysing raw spectral data. Despite many strides being made, 

there is still an urgent need of bioinformaticians in this area of research 

(Hendriks et al., 2011; Shulaev, 2006). Specifically,  data generated from the 

NMR or MS platforms require intensive computational analyses, including 

baseline corrections, smoothing, and denoising  to reduce baseline distortions 

and differences between samples generated by experimental and instrumental 

variation (Xi & Rocke, 2008; Zhang, Chen, & Liang, 2010). In addition, 

identification and quantification of features also known as feature identification 

is applied to the processed spectral data. This step involves two types of 

strategies that attempt to detect peaks in the spectral graphs: peak-based 

method and binning-based approach. Alonso, Marsal, and Julià (2015) 

reviewed, in great details, the feature identification techniques and strategies, 

their advantages and disadvantages and their applications for various outputs 

from analytical platforms. 

 

Many challenges and bottlenecks still need to be overcome in spectral 

processing, such as overlapping of non-equivalent signals in the spectrum. This 

problem is present in both NMR and MS spectral data. In the case of NMR 

spectra, overlapping occurs when non equivalent protons aligns the same way 

against or with the applied magnetic field (from the analytical instrument) 

despite being chemically non-equivalent. Consequently, this results in line  
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broadening of the NMR spectrum (Ernst, Richard, Bodenhausen, & Wokaun, 

1987; szántay, 2007). Overlapping in MS, spectra are present due to the 

polarity of specific molecules that enables them to pass through the column of 

the analytical machine at similar times despite having different masses. This 

causes a large number of the compounds to coelute and not completely resolve 

chromatographically, hence resulting in overlapping of the spectral graph (Lu, 

Liang, Dunn, Shen, & Kell, 2008). Overlapping makes it extremely difficult for 

computation algorithms to successfully identify and differentiate the structures 

of chemical compounds. To deal with overlapping, many softwares incorporate 

a mathematical technique called deconvolution (e.g., AMDIS [Vey & Voigt, 

2007] , or instrument-specific software such as LECO ChromaTOF 

[http://www.leco.com/products/separation-science/software-

accessories/chromatof-software]). These softwares implement many simulation 

based decovolution methods using algorithms based on Bayesian and Monte 

Carlo, or novel algorithms aimed at predicting overlapping (Hao et al., 2014; 

Hefke, Schmucki, & Güntert, 2013). 

In some metabolomics experiments, multiple spectra are generated from a 

certain sampling techniques. Therefore, it is important to match the peaks 

representing the same analytes for comparative analysis. However, in NMR-

based studies the positions of the peaks can be affected by various chemical 

environmental factors, causing shifts in the spectral along the pm axis (Weljie, 

Newton, Mercier, Carlson, & Slupsky, 2006; Wishart, 2008). In MS-based 

studies, changes in stationary phase of the chromatographic column can create 

shifts in the spectra along the retention time axis (Burton et al., 2008; Koek, 

Jellema, van der Greef, Tas, & Hankemeier, 2011).  These unwanted variations 

caused by peak shifts misrepresent and influence the quality of a study. 
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Therefore, spectral alignment algorithms are applied to correct this problem.  

They are classified into two categories: (i) spectral alignment methods where 

the spectral data is aligned before peak detection and (ii) peak-based alignment 

methods, where spectral peaks are aligned across samples once they have 

been detected using their coordinates (ppm in NMR, and m/z and retention time 

in LC/GC-MS) (Alonso et al., 2015). The specifics of these algorithms are 

outside the scope of this study and will not be reviewed further, but they include 

a range of algorithms and alignment strategies (Kazmi, Ghosh, Shin, Hill, & 

Grant, 2006, Nordstrom, O’Maille, Qin, & Siuzdak, 2006, Pluskal, Castillo, Villar-

Briones, & Oresic, (2010) and Staab, J. M.; OʾConnell, T. M.; Gomez, 2010). In 

addition, see He & Wang, (2010) and Vu & Laukens, (2013) for comparisons 

between examples of pre-existing and new alignment algorithms.  

 

Once the processing of raw metabolomics data is complete, the data are 

converted into a data matrix, also known as a feature quantification matrix 

(FQM), which can be processed by secondary bioinformatics. This matrix is 

usually two dimensional and compares samples against the identified 

metabolite features (usually measured as concentrations).  Continuous 

developments of software tools have helped researchers tremendously in 

pipelining and semi to fully-automate workflows, with the ultimate aim of 

simplifying the primary bioinformatics process. Many of these tools are 

integrated within the analytical platform itself, which will automatically perform a 

set of basic data pre-processing functions. Many others are free comprehensive 

online software, such as XCMS (Gowda et al., 2014; Smith, Want, Maille, 

Abagyan, & Siuzdak, 2006; Tautenhahn, Patti, Rinehart, & Siuzdak, 2012), 

Metaboanalyst 3.0 (Xia, Sinelnikov, Han, & Wishart, 2015b), CAMERA (Kuhl, 
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Tautenhahn, Böttcher, Larson, & Neumann, 2012), MetAlign (Lommen & Kools, 

2012), and MZmine2 (Pluskal et al., 2010).  

 

1.3.2.2. Secondary Bioinformatics 

Metabolomics data provide countless opportunities to interpret metabolic 

mechanisms by analyzing hundreds to thousands of quantified metabolites. 

This is accomplished by statistical analysis methods and biological 

interpretation tools. Combined, the processes can be considered as secondary 

bioinformatics. These steps are less computational compared to primary 

bioinformatics and focus more on utilizing a combination of statistical and 

biological knowledge to identify potential biomarkers and their statistical 

significance, understand their presence and role in the biological system, and to 

extrapolate. 

 

1.3.2.2.1. Statistical Analysis 

Data qualities and the multivariate nature of metabolomics data must be 

addressed through statistical analysis in order to draw the correct conclusions 

(Worley & Powers, 2015).  This is achieved through three goals aimed at data 

exploration, classification, and prediction. Each of these steps includes a set of 

univariate and multivariate methods. Data explorations attempts to identify 

trends in the data using methods, such as principle component (PCA) and 

cluster analysis. Classification methods, such as analysis of variance (ANOVA), 

partial least square discriminant analysis (PLS-DA), Orthogonal partial least 

square discriminant analysis (OPLS-DA), random forest, and support vector 

machine (SVM) aim to find differences and similarities among various groups in 
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the study. Finally, the relationship and predictability of the variables of interest 

can be determined through correlation analysis and partial least square 

regression (PLSR).  Statistical softwares, such as R, MATLAB (matrix 

laboratory) and SAS (Statistical Analysis System) are comprehensive analytical 

environments that are very suitable to analyze metabolomics data, compared to 

more common statistical analysis software, such as SPSS and Excel. The 

former not only holds more dynamic functionalities, but also provides a coding 

environment that enables developments of fast, innovative, and powerful 

algorithms and functions through programming to significantly increase data 

analysis capabilities. 

 

1.3.2.2.1. Univariate Analysis 

Univariate methods involve statistical analyses of one particular feature from the 

data independently at a given time. These methods are relatively simple to 

understand and easy to interpret. To begin with, T-test and Analysis of variance 

(ANOVA) are among the most common univariate methods used in 

metabolomics studies. 

 

The T-test, also known as Student’s t-test, aims to determine whether two 

population means are different.  In metabolomics studies, this test shows the 

difference in mean of an identified feature between two groups (e.g., controls vs. 

samples). ANOVA is similar to the t-test except in that ANOVA is applied when 

there are more than two groups. These tests are also split between parametric 

and nonparametric variants depending on the underlying statistical assumptions 

and consequently different types of analytical approach. When the assumed 

underlying distribution of the data is normal, then the normal parametric t-tests 
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and ANOVA is adopted. However, when dealing with unequal variances and/or 

non-normally distributed data, non-parametric methods, such as spearman 

Mann-Whitney test, Kruskal-Wallis test, Wilcoxon test and Friedman's test are 

preferred (Whitley & Ball, 2002). For visualization of results from t-test and 

ANOVA, scatter-plots are often used to display the p-value of all metabolites. 

This provides a convenient way to identify all the metabolites that are 

significantly different between samples or groups. Volcano plots are another 

type of scatter-plot commonly used in metabolomics studies (Garcia, García-

Villalba, Garrido, Gil, & Tomás-Barberán, 2016; Perl et al., 2015; Young, Alfaro, 

& Villas-Bôas, 2015). Adopted from visualizing gene and protein expression 

data (Li, 2012), volcano plots display metabolite fold changes against the p-

value, enabling quick visual identification of those data-points (e.g., metabolites) 

that display large magnitude changes which are also statistically significant.  

 

Despite simplicity in its application and understanding, univariate analysis in 

metabolomic fails to account for potential confounding factors in the multivariate 

data (e.g., gender, diet, or body size). These confounding factors can introduce 

undesired variations that can only be exposed through multivariate statistics. 

Failing to accurately assess the effect of the underlying trend caused by these 

variations can potentially increase the possibility of obtaining false positive or 

negative results. In addition, there are also intricate variations between the 

metabolites that cannot be detected through univariate analysis. These 

variations can be highly important on a systems level due to the orchestrated 

flux of metabolites within common biochemical networks (Young & Alfaro, 

2016b). To examine the presence and effects of these variations, multivariate 

analysis is preferred. 
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1.3.2.2.1.2 Multivariate Analysis 

Compared to univariate methods, multivariate analysis is performed on all the 

metabolite features to identify relationships and patterns among them.  

Multivariate analyses can be divided into two sub-categories: supervised and 

unsupervised methods. The general idea behind supervised methods is to 

unravel inherent relationships in the data (e.g., distinct metabolite profiles that 

are strongly associated with a specific predefined response structure (Bartel, 

Krumsiek, & Theis, 2013). This pre-existing relationships or associations can be 

modelled through constructing regression (prediction) and classification models.  

In unsupervised analysis methods, we attempt to analyse the dataset with little 

or no idea as to what the result would be. In other words, there are no inherent 

relationships in the data. Hence, the aim here is to model the underlying 

structure or distribution in the data to discover patterns and variations that can 

help us explain certain phenotypic observations. 

 

Unsupervised methods 

 

Principle component analysis (PCA) is the most widely applied unsupervised 

method in metabolomics studies. It is an excellent tool for detecting the largest 

variance between the samples and patterns between the variables.  It is based 

on the fundamental concept of transformation where a set of possibly correlated 

metabolic features are transformed (i.e., orthogonal transformation) into a 

model consisting of a set of linearly uncorrelated variables called principle 

components. This model attempts to account for the maximum variance in the 

data by the first component, while the subsequent components explain 

progressively lesser amounts of variance. This allows us to identify the most 

significant variations in the data. The components are also independent of each 

other, therefore minimizing the covariance between them.  The result of PCA 
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consists of a set of loading vectors and score vectors. The loading vectors can 

be plotted to summarize the variables as a mean to interpret patterns in the 

data. The score vectors describe the projection of each sample onto the new 

subspace. By plotting a 2D scatterplot of the score vectors of the first two 

components (since they have maximum variance) one can visually identify the 

global relationship among the observations (samples) (Figure.3). In some cases, 

3 principle components are used to plot a 3D scatterplot in order to better 

visualize the separation between the samples in three dimensional spaces 

(Figure 3). Now days it is almost mandatory for a metabolomics statistical 

analysis tool to able to perform PCA and implement methods for 2D or 3D PCA 

visualization. In addition to statistical analysis, PCA can also be used for data 

quality assessment, such as outlier identifications, and biases (Alonso-herranz, 

Barbas, & Grace, 2015). 

 

 

 

 

 

 

 

 

Figure 3.  An example 2D PCA score plot (left) and 3D PCA plot (right). 
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Additional unsupervised methods used in metabolomics include hierarchical 

clustering analysis (HCA) and self-organizing maps (SOMs). These methods 

are very useful in indentifying non-linear trends in the data that are not usually 

exposed by PCA. Partial clustering SOMs, and specialized versions of it, allow 

us to visualize patterns and cluster significant features in the metabolomics 

profile data, as well as prioritize correlated features (Goodwin et al., 2014; He, 

Johnston, Zeitlinger, City, & City, 2015; Jae et al., 2007; Lloyd, Wongravee, 

Silwood, Grootveld, & Brereton, 2009). HCA is another powerful clustering and 

visualization tool that uses predefined distance measures to cluster samples 

based on the intrinsic similarities/dissimilarities in their measurements, 

irrespective of sample groupings. The results of HCA can usually be displayed 

by a dendrogram and heatmap (Figure 4). 

 

 

 

 

 

 

 

 

Figure 4. An example dendrogram (left) and heatmap (right) 

 

Supervised Methods 

Supervised methods aim to recognize variations/metabolic patterns that 

correlate with a defined classification of data points or a phenotypic variable of 

interest. These methods are often used to construct useful scientific 
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classification and prediction models. For example, we can model the variables 

that contribute the most the difference between samples from a control and 

diseased group (Jones, 2014). The most commonly applied supervised 

methods in metabolomics is partial least square (PLS; Abdi, 2007).There are 

two variants of PLS: Partial least square regression (PLSR) and partial least 

square discrimination analysis (PLS-DA). PLSR utilizes regression modelling to 

identify the relationship between a set of predicted variables and a set of 

observable variables (quantitative variables). PLS-DA extends PLSR to 

categorical variables (binary variable of interest), hence, they act as classifiers 

of the variables (Alonso et al., 2015).  

Instead of accounting for the maximum variance in the dataset like PCA, PLS 

components attempt to explain the covariance between the features of interest 

of the metabolomics data. Consequently, this may result in metabolic features 

that are uncorrelated with the variable of interest, thus influencing results. To 

compensate for this problem, Trygg & Wold, (2002) published a method called 

orthogonal project to latent squares (OPLS). OPLS models separate the data 

variance into two components that are orthogonal to each other: the first 

component is correlated with the variable of interest and a second uncorrelated 

component. Similarity, classification models involving categorical/discrete data 

utilize the discriminant analysis variant OPLS-DA. Compared to PLSR, OPLS 

improves diagnostics, as well as producing more easily interpreted 

visualizations. However, compared to PLS models, OPLS only improve the 

interpretability, not the predictability (Trygg & Wold, 2002). In terms of 

interpretability, supervised methods PLS and OPLS are both better than the 

unsupervised PCA with regard separation power. However, PLS and OPLS can 

aggressively over-fit the model to the data, therefore model validations are often 
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a necessity (Worley & Powers, 2015). Therefore the predictability of PLS and 

OPLS models have shown no distinct advantage over each another despite 

many publications comparing the two (Tapp & Kemsley, 2009).  

An area of great development in supervised metabolomics statistical analysis is 

creating more methods that utilize effective machine learning algorithms to build 

regression and classification models such as PLS. Support vector machines 

(SVMs) is an example of such methods commonly applied in metabolomics 

(Guan et al., 2009; Heinemann, Mazurie, Tokmina-Lukaszewska, Beilman, & 

Bothner, 2014; Lin et al., 2012) and has been argued to outperformed PLS-DA 

(Mahadevan, Shah, Marrie, & Slupsky, 2008). Typically, SVM performs 

classification tasks by constructing hyperplanes in a multidimensional space 

that separates two categories or classes. The construction of an SVM prediction 

model relies on the algorithm to “train” the model by initially assigning examples 

to one category or the other. The model is then able to represent the examples 

as points in space, mapped so that the examples of the separate categories are 

divided by a clear gap that is as wide as possible. New examples can then be 

mapped into that same space and predicted to belong to a category based on 

which side of the gap they fall on. The separation can be linear, but also non-

linear.  

While there are many discussed supervised and unsupervised multivariate 

techniques to analyse metabolomics data, it is important to note that there are 

other procedures available which may be better suited for the analysis of 

specific data sets in different situations. These include: multivariate analysis of 

variance, linear discriminant analysis, k-nearest neighbour, k-means, random 

forests, and soft independent modelling of class analogies, among others. For 
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further information on these alternative data analysis approaches, see Steuer, 

Morgenthal, Weckwerth, & Selbig ( 2007), Liland (2011), Bartel, Krumsiek, & 

Theis, (2013) and Xi, Gu, Baniasadi, & Raftery (2014). Finally, research in 

multivariate analysis procedures will always be of crucial importance in 

metabolomics statistics. As mentioned previously, the complexity, sheer volume 

and multivariate nature of the data will only increase as metabolomics is 

continuously being applied in new areas in the future. This will no doubt 

introduce even more complicated variable relationships, underlying variances 

and confounding effects into the data. Therefore, bioinformatics stands as a key 

tool in the development of better computational and statistical tools to improve 

data analysis and visualization. 

 

1.3.2.2.2. Biomarker Discovery 

Statistical techniques are also necessary in metabolite biomarker discovery. 

Candidate biomarkers can be discovered by fitting supervised analysis methods, 

which in turn can be applied as an early clinical diagnostics tool (Patel & Ahmed, 

2015; Wang, Zhang, & Sun, 2013), or employed to understand the mechanisms 

in disease, such as diabetes (Zhang, Sun, & Wang, 2013) and pathogenesis 

(Jung et al., 2013). However, the validity of the fitted classification and 

prediction model must be verified through a set of analytical steps involving 

model performance assessment and model validation before it can be applied in 

a practical setting.  

A model’s performance is assessed through several measurements reviewed 

by Alonso et al. (2015): predictive accuracy (percentage of correctly classified 

subjects), sensitivity (percentage of true positives that are correctly classified), 

and specificity (percentages of true negatives that are correctly classified). 
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However, these measurements are dependent on a couple of factors, such as 

population size and balance, the outcome prevalence and predetermined 

optimal decision boundary (critical biomarker concentration/score) (Xia, 

Broadhurst, Wilson, & Wishart, 2013). Receiver operating curve (ROC) is a type 

statistical graphical analysis for model performance assessment that eliminates 

some of the biases introduced as a result from the above mentioned 

dependencies/limitations. This is currently the most used method not just in 

metabolomics, but also in other ‘Omics’ approaches.  A ROC curve is plotted 

from the true positive rate (sensitivity) against the false positive rate (specificity) 

at different threshold. The area under the curve (AU-ROC) and shape of the 

curve measures the performance of the classification model’s performance. Xia 

et al. (2013) and  Zhang et al. (2013) provided detailed information regarding 

the functionality and applications of ROC in metabolomics. 

The results from fitted classification models on metabolomics datasets are not 

always accurate. Therefore, there are model validation methods to identify 

possible over fitting and/or instabilities (sensitive to chance/correlations) in the 

model (Rubingh et al., 2006). Since metabolomics deals with multivariate data, 

statistic resampling procedures like cross-validation, permutation, and jack-

knifing are necessary. The specifics for each of these methods, such as their 

functionalities, performance and applications are reviewed by Rubingh et al., 

(2006) and Xia et al., (2013).   
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1.3.2.2.3. Pathway and Network Analysis of Metabolomics Data 

The final component of secondary bioinformatics is to understand and interpret 

the results of the statistical analyses and infer the underlying biological 

(metabolic) mechanisms of the organism in question under given conditions. 

Pathway and network analyses are the two primary approaches applied in 

metabolomics in this regard.  

In the past decade, our understanding of metabolic pathways and metabolite 

relationships have enabled constructions of large and comprehensive 

metabolite databases, such as KEGG (Okuda et al., 2008), WikiPathways 

(Kelder et al., 2012), MetaCyc (Caspi et al., 2008), METLIN (Smith et al., 2005). 

Pathway-based analysis utilizes prior information gathered in these databases 

through computational procedures to discover and isolate predefined metabolic 

pathways or biological networks that are altered in a coordinated manner in a 

metabolomics experiment.  

There are many potent pathway analysis bioinformatics tools currently available 

that implement modern algorithms. PAPi is an algorithm developed and 

implemented in R that compares metabolic pathway activities from metabolite 

profiles (Aggio, Ruggiero, & Villas-bôas, 2010). Another analysis method 

developed by Xia & Wishart, (2010) is the metabolite set enrichment analysis 

(MSEA), which help researchers identifies classes of specific metabolites that 

are over-represented in a large set metabolites, and may have an association 

with various phenotypes. In addition, a web based tool: MetPA developed by 

Xia, Wishart, & Valencia, (2011), combines the results of MSEA analysis with 

pathway topological measurements to increase interpretability of the results. 

The results are displayed by a Google-map style network visualization system 
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that supports various interactive data exploration functions, as well as many 

additional statistical functions.  Other programs, such as Paintomics (García-

alcalde et al., 2011), Vanted (Lukas, Unker, & Chreiber, 2006), and Cytopscape 

(Smoot, Ono, Ruscheinski, Wang, & Ideker, 2011), offer alternative pathway 

visualization tools to MetPA. In addition, Impala (Kamburov, Cavill, Ebbels, 

Herwig, & Keun, 2011) and MetScape2 (Karnovsky et al., 2012) also implement 

different specific MSEA methods. Finally, Metaboanalyst 3.0 (Xia, Sinelnikov, 

Han, & Wishart, 2015a) is a powerful program that includes a highly 

comprehensive pathways analysis package, and incorporates a wide range of 

MESA methods, as well as topological visualization tools. 

Indifferent to pathway analysis, correlation-based network analysis uses the 

correlation pattern identified in the metabolomics data to construct metabolite 

pathway networks. Within the metabolomics data, correlations may exist 

between metabolites within a common pathway. These correlations may be 

caused by global perturbations, specific perturbations, or the intrinsic variability 

of metabolomics data (Alonso et al., 2015). As a result, metabolites that do not 

show significant differences among observed phenotypes or between the 

control and treatment may still be correlated with other metabolites. These 

correlation patterns are very useful in providing information regarding the 

underlying metabolic networks associated with a specific biological process. 

Currently the best way to display the results of network analysis is by 

constructing a correlation-based network tree (Figure 5).  The nodes of the tree 

represent individual metabolites while the lines that connect a pair or multiple 

nodes describe the degree of mathematical relationship between them (e.g., 

solid line for positive correlation, dotted lines for negative correlation and line 

width to describe quantitative relationship). There are a number of software 
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packages available that performs correlation network analyses, such as DPClus 

(Tsuji, Kurokawa, & Asahi, 2006), COVAIN (Sun & Weckwerth, 2013), 3Omics 

(Kuo et al., 2013) and MetaMapR (Grapov, Wanichthanarak, & Fiehn, 2015). 

These software packages implements various correlation identification 

techniques (e.g., partial correlation) and enhanced network visualization 

algorithms to construct more accurate networks and pathway trees and better 

define clusters of metabolite module. 

 

 

 

 

 

 

 

Figure 5. An example metabolite correlation network represented using a 

network tree (Reimers, 2015). 
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1.4. Metabolomics Data Analysis Software 

From the previous sections it is evident that metabolomics and ‘Omics’ in 

general is no longer a subject based purely on biological knowledge. Specific 

knowledge and understanding is required in the informatics area involving 

statistics, computer science, and mathematics. The combination of 

interdisciplinary subjects can be overwhelming for biological researchers new to 

the ‘Omics’ fields. However, in the past decade, this gap of knowledge has been 

bridged to some extent by softwares and tools developed by bioinformaticians. 

Despite this fact, researchers may find it difficult to select the appropriate 

package for the data analysis of their experiment, and in some cases, multiple 

packages may be required. In addition, understanding the functions in each of 

the tools and their usage can be time consuming to learn and grasp. Therefore, 

it is essential to develop powerful metabolomics software tools that incorporate 

most of the functions/procedures described in the previous sections: (i) raw 

spectral data processing; (ii) statistical analysis to indentify significant 

metabolite biomarkers; (iii) searching the metabolite databases for metabolite 

identification; and (iv) analysis and visualization of molecular interaction 

networks. In addition, these tools need to be simple, easy to use and 

understand. Currently, metabolomics data analysis tools range from commercial 

software to free to use online applications. Some also come as plugins to 

powerful statistical platforms, such as R and SAS. Table 1 summarises five 

existing and new metabolomics tools: MetaCore™ (Ekins, Nikolsky, Bugrim, 

Kirillov, & Nikolskaya, 2006); InCroMAP (Wrzodek, Eichner, Büchel, & Zell, 

2013); MetaboAnalyst ; 3Omics (Kuo et al., 2013); and Specmine (Costa, 

Maraschin, & Rocha, 2015). In addition, their functionalities are compared to the 

basis of some of the procedures required in metabolomics data analysis. From 
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Table 1, we can see that each tool has distinct advantages and areas where 

they are lacking functionality. From the five compared programs, MetaCore™ 

has better integrated databases of molecular information compared to the 

others. MetaCore™ holds 1.3 million molecular interactions, and is being 

continuously updated to ensure reliability and comprehensiveness. In addition, it 

also implements network algorithms that analyse high-throughput data and 

provide interactive and informative network maps. This makes MetaCore™ the 

ideal tool for drug discovery, biomarker identification and clinical applications 

(Hohman et al., 2009; Oh et al., 2011; Ummanni et al., 2011). However, the lack 

of data pre-processing and statistical analysis components can complicate the 

data analysis procedure by forcing researchers to find other tools or implement 

their own methods. In addition, MetaCore™ requires a purchased license which 

can present a problem for researchers with limited funding.  

The easy-to-use InCroMAP complements multiple analytical disciplines, 

therefore making it very suitable to the evaluation of systems biology (detailed 

experiences in bioinformatics are not necessary to use this program). IncroMAP 

is based on the Java programming language and  provides enrichment analysis 

plus pathway-based visualizations for genomic, transcriptomics, proteomics, 

and metabolomics data (Eichner et al., 2014). Even so, InCroMAP lacks data 

pre-processing and statistical analysis components and presents the same 

problems in MetaCore™. 3Omics is similar to InCroMAP in terms of 

functionality, and it is a very useful tool for researchers interested in integrated 

visualization and one-click comparative analysis of multiple ‘Omics’ data in a 

simple and rapid way (Cambiaghi et al., 2017). Once, again like InCroMAP, 

3Omics does not support data prep-processing and only incorporates a small 

number of statistical methods, and only supports human data evaluation.  
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Specmine is a newly developed package that focuses on data pre-processing 

and statistical analysis of metabolomics data. This package has been recently 

published in R and it implements a wide range of data structure manipulation 

functions (e.g., sub-setting and merging), spectral processing algorithms (e.g., 

Savitzky-Golay, baseline correction and shift corrections etc.), and statistical 

functions (e.g., PCA, PLSR, PLSDA). This package is initialised in R, by 

importing the package into the R environment and executed in a function by 

function manner. Despite the comprehensive statistical and data pre-processing 

functionalities it brings, it lacks the network and pathway analysis that 

MetaCore™, InCroMAP and 3Omics possess. In addition, Specmine provides 

neither tutorials nor pipelines to follow. Therefore, to use the package one must 

have a clear understanding of each of the function’s specifics and application. In 

addition, knowledge in R language is required to use Specmine without running 

into difficulties. This, once again, can be a challenge for researcher with minimal 

background in these computational areas. 

The last tool on the market is MetaboAnalyst, which is the most comprehensive 

tool compared to the rest.  MetaboAnalyst was developed by Xia, Psychogios, 

Young, & Wishart, (2009), and the package has undergone two iterations from 

MetaboAnalyst 2.0 (Xia, Mandal, Sinelnikov, Broadhurst, & Wishart, 2012), to 

the current version MetaboAnalyst 3.0 (Xia et al., 2015a). It is an integrated 

multifunctional free web-based tool, offering a wide range of methods that 

combine data pre-processing, statistical analysis, and biological interpretation. 

At the same time, it also provides excellent visualization and interpretation tools. 

MetaboAnalyst 3.0 is continuously being updated to incorporate new data 

analysis techniques for metabolomics (e.g. recent addition of OPLS-DA and 

sPLS-DA analysis). Currently, it offers eight modules: (i) statistical analysis; (ii) 
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Enrichment analysis; (iii) Pathway analysis; (iv) time-series/two factor design; (v) 

power analysis; (vi) biomarker analysis; (vii) integrated pathway analysis; and (v) 

other utilities. In addition, MetaboAnalyst also provide numerous tutorials and 

protocol papers on their website. Due to its comprehensiveness, MetaboAnalyst 

has experienced a 50 times growth in user traffic since its first launch in 2009, 

with more than 50000 jobs processed each month in MetaboAnalyst 3.0 (Xia et 

al., 2015a). However, no program is perfect, and the same can be seen from 

MetaboAnalyst. From a new metabolomics researcher’s perspective, it is 

extremely well polished and easy to use, but it is rather static and forces users 

to reside with using predefined options and visualizations. Therefore, perhaps 

more user friendly visualization options and dynamic functionality plus more 

statistical analyses can further enhance MetaboAnalyst 3.0 in its current state. 

This is very achievable as MetaboAnalyst 3.0 is open source, and thus, 

presents a great opportunity for new bioinformaticians to further improve this 

tool, build upon the developers’ foundations and further facilitates collaborative 

research and future development. 
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Table 1. Main features of the selected tools for metabolomics data analysis modified from Cambiaghi et al., (2016) 

Tool MetaCore™ Metaboanalyst InCroMAP 3Omics Specmine 

Year 2004 2009 2011 2013 2015 

Institution GeneGo University of Alberta, McGill 

University, Montreal 

Center For Bioinformatics 

of the University of 

Tubingen 

Molecular Design & 

Metabolomics 

Laboratory, University 

of Taiwan 

Plant Morphogenesis & 

Biochemistry Laboratory, Federal 

University of Santa Catarina 

Implementation License Web-Based + stand-alone 

Commercial 

Web-based                                    

GPL (GNU General Public License) 

Stand-alone                                            

LGPL (GNU lesser 

General Public License) 

Web-based R-based                                                

GPL (GNU General Public 

License) 

Type of knowledge Proprietary Public Public Public Public 

Input data Gene, protein or metabolite 

lists imported as tab-de-limited 

text (TXT), comma-separated 

values (CSV) or Excel files; 

gene lists from microarray 

analysis software (Affymetrix, 

Agilent) 

Tab-delimited text (TXT) or comma-

separated values (CSV) for 

concentrations, spectral bins or peak 

intensity data, zipped files (ZIP) of 

NMR or MS peak lists or of MS 

spectra (in NetCDF, mzXML or 

mzDATA format). 

Tab-delimited text (TXT) 

or comma-separated 

values (CSV) of 

heterogeneous types of 

processed 'omics' data. 

Comma-separated 

values (CSV) of 

processed 

transcriptomic, 

proteomic or 

metabolomic data. 

Tab-delimited text (TXT) or 

comma-separated values (CSV); 

JCAMP Chemical Spectroscopic 

Data Exchange (JDX) spectra 

files; MS spectra (in NetCDF, 

mzXML or mzDATA format). 

Data preparation      

  Data integrity checking     

  Data normalization     

  Compound name identification     

Statistical analysis      

  Univariate analysis     

  Multivariate analysis     

  Clustering     

  Classification     

Data interpretation and integration      

  Functional interpretation      

    Metabolite set enrichment analysis      

    Metabolic pathway analysis      

    Metabolite mapping      

    Hyperlinks to external database      

  Data Integration      

Output data Networks can be exported in 

two formats: Netshot and 

Network; images as PNG files. 

PDF reports containing plots, graphs 

and tables with all the results. Images 

are available as TIF or PNG files. 

Tabular format (e.g. 

CSV) for enrichment 

analysis results and JPG 

files for pathway-based 

visualization 

PNG, SVG or SIF 

formats for images. 

Tabular formats (e.g. CSV) for 

most file output formats and R 

output formats for images (e.g. 

PNG, JPG, TIFF, BMP etc.) 



38 
 

1.5. Conclusions  

Bioinformatics is a new discipline that arose in the past two decade to address 

the need to manage and interpret data generated by genomics research. This 

discipline represents the convergence of genomics, biotechnology and 

information technology, and encompasses analysis and interpretation of data, 

modelling of biological phenomena, and development of algorithms and 

statistics. As researches in transcriptomics and proteomics began to increase, 

bioinformatics became undeniably essential for the successful excursion of all 

‘Omics’ approaches, especially with rapid increase in data generated by newer 

high-throughput technologies, innovative experimental designs, and additional 

fields of study to the ‘Omic’s banner. In spite of the large number of readily 

accessible tools, a big bioinformatics challenge still lies ahead in integrating 

multiple ‘Omics’ analysis to thoroughly and comprehensively evaluate 

experimental data in order to gain a deeper understanding of biological 

processes. Bioinformaticians are also consistently developing new innovative 

tools and methods to unravel hidden information in biological data. Indeed, 

intricate variations, relationships, associations, patterns and confounding effects 

exist within biological data that have long been overlooked. These information 

can potentially be very critical in answering complex biological questions, ergo 

applications and developments of bioinformatics is vital future biological studies.  

Metabolomics is the newest member of the ‘Omics’ family that requires 

significant bioinformatics. Metabolomics data necessitates complex and multi-

stepped data analysis procedures to reveal the inherent information within. 

Many innovative methods in these procedures are still being researched, such 

as more intelligent machine learning algorithms for analysing time series data, 
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feature detection and identification and data interpretation. The continuous 

bioinformatics advancements in metabolomics can significantly increase its 

potential to be innovatively applied as a mainstream industry tool. However, 

identification of unknowns, development of standardized data repositories that 

can be queried like the genomics resource GenBank, and integration of 

metabolomics with other systems-wide data are areas of metabolomics that still 

face many challenges and can only be solved through the collective efforts of 

the bioinformatics community. 

Applications of bioinformatic tools currently bottleneck the biological community 

in metabolomics research. Indeed, this is not an easy task, considering that 

bioinformatics was not popularized as a disciplinary field until the last decade. 

Therefore, applications of bioinformatics tools can be challenging for new and 

traditional biologist alike. Development of easy-to-use tools and pipelines that 

can be accessed by researchers without in-depth knowledge in mathematics, 

computer science and statistics can significantly benefit the biological 

community. Although, many powerful tools like MetaboAnalyst have indeed 

eased the bioinformatics knowledge required for researchers, there are still 

limitations in these tools.  The ideal tool for metabolomics data analysis needs 

to be (i) comprehensive of all components of data analysis; (ii) user friendly with 

minimal computational jargon, flexible and diverse options; and (iii) well 

pipelined with a workflow complemented by tutorials and protocol. Towards this 

goal, further developments and improvements of computational, visualization, 

and statistical techniques in metabolomics bioinformatics tools are essential and 

will be the focus of many bioinformaticians worldwide. 
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Chapter 2 
Development of Metabolomics Statistical Analysis Application 

2. 1 Aim and objectives 
 

2.1.1 Aim 

This thesis aims to develop a user friendly metabolomics statistical analysis 

package that incorporates a wide range of modern data analysis methods and 

visualization options for inexperienced and new researchers studying in the field 

of metabolomics. Due to the complex nature of metabolomics data, the current 

selection of software and packages are either too intricate to use (require 

extensive knowledge in statistical and computer sciences) or limited in the 

number of functions. The application developed in this thesis will provide a more 

effective way to integrate numerous metabolomics statistical analysis methods 

and personalized visualization options within a highly dynamic environment that 

affords great flexibility for metabolomics researchers. 

 

2.1.2 Research objectives 

 

1. To examine one of the most popular free to use metabolomics data 

analysis tools (MetaboAnalyst 3.0). The source code provided by the 

developer was taken apart to understand the program’s coding structure 

and functionality. 

2. To identify current features and functions that are either lacking or could 

be potentially improved in MetaboAnalyst 3.0. 
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3. To implement new features, functions and improved visualizations of 

plots, graphs and tables using R as the primary coding language. 

4. To construct a standalone dynamic GUI metabolomics statistical analysis 

tool that not only retains all the original statistical functions in 

MetaboAnalyst 3.0, but also implements the additional features 

mentioned in objective 3. 
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2.2 Methodology 
  

2.2.1 MetaboAnalyst 3.0 

MetaboAnalyst 3.0 (Xia et al., 2015) was used as the foundation of this study. 

Metaboanalyst is a free to use web-based metabolomics data analysis tool (see 

section 1.4). Version 1.0 was developed in 2009. Since then, MetaboAnalyst 

has gone through 2 iterations to the current version of 3.0. Indeed, the first 

released version of Metaboanalyst (1.0) included just two functions in data 

processing and statistical analysis. The second version released in 2012 (2.0) 

implemented two additional functions in metabolomics functional analysis and 

data interpretation.  

 

Continuous updates to functions, additional new features, upgrading underlying 

design and framework and server hardware eventually saw a drastic rise in the 

tool’s popularity among metabolomics researchers.  The number of data 

analysis jobs submitted to the server has grown from ∼ 800/month (in 2010) to 

∼3200/month (in 2013) to ∼40 000/month (in 2014) (Xia et al., 2015). Due to its 

accessibility and comprehensiveness, the developers eventually released a 3.0 

version with further enhancements to the 2.0 version in 2015. Some of these 

latest enhancements include:  (1) re-implemented web framework; (2) 

consolidated interface with substantially improved graphical outputs; (3) 

updates to MetaboAnalyst’s compound library and metabolic pathways library 

based on the latest versions of HMDB, SMPDB  and KEGG; (4) new biomarker 

analysis module; (5) A new module to support sample size estimation and 

power analysis; and finally (6) a module for integrated pathway analysis for 

combining results from transcriptomic and metabolomics studies. The current 
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version of MetaboAnalyst (3.0) is relatively easy to use and covers a good 

number of steps required in a typical metabolomics data analysis pipeline. 

 

Coded in R and Java, Metaboanalyst offers a wide range of data process, 

statistical and interpretation functions. A flow chart describing the overall design, 

structure and functional modules for MetaboAnalyst 3.0 is given in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 
 

 

 

Fiqure 6.  A MetaboAnalyst 3.0 Flowchart taken from Xia et al., (2015). This 

figure illustrates the general logic and data processing pipeline behind 

MetaboAnalyst. Different functions will be applied to process different types of 

data into matrices. The red boxes with dashed boundaries indicate functions 

that are only triggered in certain data analysis scenarios. After data integrity 

checks and normalization steps have been completed, downstream statistical 

analyses (purple box), functional analyses (green box) or advanced analyses 

for translational studies (orange box) can be applied. Note that different inputs 

are required for integrated pathway analysis and for invoking some of the 

general utility functions 
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2.2.2 MetaboAnalyst 3.0 coding structure and functionality 

Metaboanalyst is constructed from two programming languages: Java and R. 

Java codes are implemented to handle the web interface design and 

communications between the server and user. However, all the actual 

functionalities working behind the screen of the user are performed through 

scripts written in R and executed by the R engine from within the MetaboAnalyst 

server. These R scripts consist of codes written by the developers and pre-

existing R codes from various R packages developed through the collective 

efforts of R community. 

 

Data uploaded to MetaboAnalyst must meet numerous format requirements for 

R to recognise and process. These requirements include but not limited to: 

numbers of replicates per sample, character formats for sample and feature 

labels, and data value specifics etc. (refer to 

http://www.metaboanalyst.ca/faces/home.xhtml for a complete list of the 

requirements in data formats). The data uploaded by the user will then be 

received by the MetaboAnalyst 3.0 server, prompting R to execute various 

scripts and the functions.  

 

The coding structure and functionalities of the MetaboAnalyst 3.0 statistical 

module was closely examined in this thesis. The statistical package initialises 

the R engine and executes the R functions when the user uploads a dataset. 

The first function executed is “InitDataObjects()” (or “Read.PeakList()” 

and “Read.MSspec()” depending on the types of data uploaded). This function 

constructs an empty R data matrix object. In addition, a number of empty 
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variables are assigned to this data matrix such as: data type, data formats, data 

values, sample names, and sample numbers etc.  

InitDataObjects <- function(dataType, analType, paired=F){ 

    dataSet <<- list(); 

    dataSet$type <<- dataType; 

    dataSet$design.type <<- "regular";  

    dataSet$cls.type <<- "disc";  

    dataSet$format <<- "rowu"; 

    dataSet$paired <<- paired; 

    analSet <<- list(); 

    analSet$type <<- analType; 

    imgSet <<- list(); 

           ... 

} 

 

After the data empty matrix data object has been successfully been initialised, 

the user data can then be taken apart based on its properties and assigned to 

the empty data matrix so that the empty variables previously created will now be 

occupied and describes every property of the users data. This data matrix now 

acts as the foundation upon which other functions (data analysis) are able to 

calculate and manipulate it. 

 

Before data analysis can begin, a number of processing steps are applied. 

These steps involve functions that deal with the data’s integrity, such as missing 

values. For example: “ReplaceMin()” replaces zero/missing values by half of 

the minimum positive values; “RemoveMissingPercent()” remove variable 

with over certain percentage values that are missing;  various functions that 

checks the data integrity for peak lists and mass spectras. Lastly, the 

“SanityCheckData()” function polishes up the data matrix, checks to see if 

the data matrix meets all the requirements and confirms the user of all the 

properties of their data. The data matrix can now proceed to the statistical 

analysis step. 
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Data analyses (statistical) that are applied on the data matrix simply consist of 

various metabolomics mathematical, statistical calculations and manipulations 

on the various properties of the data matrix. For example, a typical step in 

metabolomics data analysis is data normalization. In MetaboAnalyst’s server 

side this is performed by the R function “Normalization()”.  

 

Normalization<-function(rowNorm, transNorm, scaleNorm, 

ref=NULL, ratio=FALSE, ratioNum=20) 

 

This function consists of six parameters (rowNorm, transNorm, scaleNorm, ref, 

ratio, and rationNum) that will prompt the function itself to perform specific 

normalization methods on the original data values of the data matrix. These 

parameters are decided by selecting various options through the web interface 

from the user side. Once the function completes the statistical calculation, the 

graphical function “PlotNormSum()” will be executed to generate  a side by 

side plot showing the distribution of the original data versus post normalization 

(Figure 7). 
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Figure 7. A plot comparing the distribution of the uploaded user data before and 

after normalization. The plot was constructed from the R function 

“PlotNormSum()” that is executed on the server side. 
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2.2.3 Improvements to MetaboAnalyst 3.0  

After closer examinations of MetaboAnalyst’s functionality and coding structure, 

it was apparent that MetaboAnalyst lacks certain features and functions that 

would be useful to metabolomics researchers. Therefore, numerous functions 

were created to complement the disadvantages of Metaboanalyst 3.0. The 

scripts for these additional functions were written in R studio using R Version 

3.2.5 and are provided in a USB complemented with the thesis.   

 

2.2.3.1 Interval Plot 

The original MetaboAnalyst contains a function that compares the statistics of 

an individual compound between the different groups. The result of this 

comparison is displayed using a box and whiskers plot (Figure 8).  However, 

this does not meet publication standards in some cases as box plot is not a 

good way to represent results when there are less than 5 groups of samples 

within the data. In the case of a data set having less than 5 samples groups an 

interval plot is preferred.  
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Figure 8. A box plot from MetaboAnalyst constructed using an example dataset 

provided by MetaboAnalyst 3.0 (cow_diet.csv).  The plot displays the 

normalised values of Alanine between 4 separate groups (0, 14, 30, and 40).  

A new function, “IntervalPlot()” was implemented in R that utilises the 

“ggplot2” package to create interval plots. The plot will display the mean, upper 

confidence interval (Mean + the standard error) and the lower confidence 

interval (mean – the standard error) (Figure 9). The option to switch the 

statistics to standard deviation can also be selected. In addition, an option to 

change the colours of the plot was also implemented. The algorithm used to 

create this plot is as follows 

plot=ggplot(dfp, aes(x=dfp$groups, y=dfp$means, 

group=dfp$groups, color=dfp$groups))+  

        theme_bw()+ 

        theme(panel.grid.major = element_blank(), 

panel.grid.minor=element_blank(),panel.background=element_b

lank(), 

              axis.line = element_line(size = 0.3,colour = 

"black"), 
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axis.text=element_text(size=12,colour="black"),axis.title=e

lement_text(size=14,face="bold"))+ 

        geom_errorbar(aes(ymin=SE.dn, ymax=SE.up), width=.2) 

+  

        geom_point(size=3.5) + scale_colour_manual(name = 

"Groups",values=colors) + 

        xlab(" ") + ylab(" ") + ggtitle(cmpName) + list() 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 9. Interval plot created from the “ggplot2” package in R displaying 

normalised values of Alanine between 4 separate groups (0, 14, 30, and 40). 

The dataset used is the cow_diet.csv. 

 

 

 

 



52 
 

2.2.3.2 Interactive 3D score plot for PCA and PLS-DA 

MetaboAnalyst 3.0 has a function that outputs an interactive 3D score plot for 

PCA and PLSDA analysis as seen in Figure 10. This is accomplished through 

the R function “PlotPCA3DScore()” which creates an .json file that in turn is 

used to construct the interactive plot. JSON (JavaScript Object Notation) is a 

minimal, readable format for structuring data. It is used primarily to transmit data 

between a server and web application, as an alternative to XML. The JSON 

format is used in MetaboAnlayst because R cannot directly produce a web-

based interactive plot through its engine. Therefore, JSON acts as an 

intermediary format of conveying information between user and server to 

construct the plot. Although the 3D interactive score plot from MetaboAnalyst 

3.0 displays the scores and colour codes the different groups, it is relatively 

static and limited in its features. There are no further ways to customize the plot 

to alter colour, point size, nor adding 95% confidence ellipses, etc.  

 

 

 

 

 

 

Figure 10. An interactive 3D PCA score plot (left) and an interactive 3D PLSDA 

score plot (right) constructed in MetaboAanalyst 3.0 (dataset used is 

cow_diet.csv). 
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A new and improved 3D score plot was implemented in R to mend the 

disadvantages in the original plot from MetaboAnalyst 3.0. The new functions 

“Graphs3DPCA()” and “Graphs3DPLSDA()” utilises the R packages “plot3d” 

and  “R Shiny” to create interactive 3D scatter plots that enables the user to 

select multiple graphics options for enhanced plot visualization. These options 

are: point size, ellipses, ellipses transparency, title input, colours, and an option 

to add background grid (Figure 11). In addition, an alternate 3D scatter plot 

option was also implemented using the package “pca3d”.This package comes 

with even further options for viewing the scores of PCA and PLSDA analysis in 

an interactive 3D environment. These options include: data scaling, data 

centering, show scale, show labels, show pane, show shadow, add ellipses, 

and show group labels (Figure 11). Finally, both versions of the 3D plots also 

have an option that enables user to capture a snapshot of the graph. 
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a)                                                                         b) 

 

 

 

 

 

 

 

 

 

c)                                                                          d) 

 

 

                                                                          

                                                                                                                                    

 

 

 

Figure 11. a) The new interactive 3D PCA score plot constructed using “plot3d” 

package. b) The new interactive 3D PLSDA score plot constructed using “pca3d” 

package. c) The new interactive 3D PCA score plot constructed using “plot3d” 

package. d) The new interactive 3D PLSDA score plot constructed using “pca3d” 

package. All of the plots used the same dataset (cow_diet.csv). 
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2.2.3.3 PCA and PLS-DA means plot 

PCA and PLS-DA score plots are great ways of showing and accounting for the 

highly multivariate, noisy, collinear and possibly incomplete data in 

metabolomics. However, in some cases, a trajectory analysis of PCA and PLS-

DA can further highlight and reflect the differences between the model‘s groups. 

Plotting the trajectory analysis can be very beneficial for visualizing data 

pattern/trend taken over different time intervals or other qualitative factors. The 

function to create a trajectory plots is currently nonexistent in MetaboAnalyst 3.0.  

An R function was implemented to provide a way of visualising the trajectory of 

PCA and PLS-DA analysis. This function essentially plots the means of the 

different groups from a 2D PCA and PLS-DA score plot.  The means are 

calculated by selecting two significant components from the results of a PCA or 

PLSDA analysis. The newly implemented R function “PlotTraPCA()” and 

“PlotTraPLSDA()” computes the standard error (positive and negative) of the 

means for each of the two significant component then plots the results as a 2D 

graph (Figure 12). Both the PCA and PLS-DA means plot utilised the R 

package “ggplot2” and “R Shiny”. The plot allows the user to select specific 

significant components for x-axis and y-axis for plotting. It also allows the user 

to customize the title, point size, range of the scales, colours, width of the error 

bars, and the size (width and height) of the plot itself. Lines connecting the data 

points of the means can then be manually drawn on the resulting PCA and PLS-

DA means plot to visualise the trajectory. 
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Figure 12. A dataset was obtained to demonstrate the PCA and PLS-DA 

means plot. This dataset measured the concentrations of various blood 

metabolites of salmon fish after injecting them with different concentrations of 

anaesthetics. A PCA means plot of the PCA analysis on the dataset (left), and a 

PLSDA means plot of the PLSDA analysis on the same dataset (right) are 

shown above. From the above means plots, we can clearly see a linearly 

trend/pattern in the PLS-DA means plot of as concentration of anaesthetics 

increases from 0 to 40.  
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2.2.3.4 Heatmap Colour Contrasts 

MetaboAnalyst comes with 4 different colour contrasts for plotting HeatMaps. 3 

more colour contrasts options were added to increase visualization and appeal 

(red/white/blue, red/white/green/, white/navy/blue) (Figure 13). 

  

Figure 13.  New implemented colour contrasts for Heatmaps. From left to right: 

red/white/blue, red/white/green and white/navy/blue. 
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2.2.3.5 Partial Least Square Regression (PLSR) Analysis 

MetaboAnalyst 3.0 can perform partial least square regression (PLSR) analysis. 

This is accomplished by the function “PLSR.Anal()” which utilises the R 

package “plsr” to perform the partial least square calculations with the 

“oscorespls” method. However, MetaboAnalyst only offers PLSR visualization 

tools that are compatible with categorical data. In other words, MetaboAnalyst 

can only perform the partial least square discrimination analysis (PLS-DA) 

variant of the PLSR to discriminate the difference between the groups and 

visualize their separation (refer to section 1.3.2.2.1) . In many cases, studies 

produce continuous data that relies on the normal form of PLSR analysis and its 

associated visualization options to construct a regression model that can in turn 

be used for prediction and validation.  

Three new functions were implemented to unlock the original limitations present 

from the MetaboAnalyst’s PLSR function to allow continuous data 

compatibilities: 

1) 

 PlsRegPlot(comp.num) 
 

This function allows the original “PLSR.Anal()” function in MetaboAnalyst to fit 

a PLSR model on a set of continuous data and displays the results through a 

prediction plot (Figure 8) 

 

2) 

plsRegPlotCV(comp.num)  

 

This function performs a cross validation model check using the “leave one out 

cross validation” method (LOOCV) and displays the results through a prediction 

plot (Figure 8).  
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3) 

predOvrlyPlt(comp.num) 

 

The difference between a normal PLSR prediction plot and a LOOCV prediction 

plot is that each point on the LOOCV prediction plot is estimated based on the 

results of PLSR analysis. Therefore, the better the results of PLSR analysis are 

the closer the LOOCV prediction plot will resemble the original PLSR prediction 

plot. The “predOvrlyPlt(comp.num)”function was implemented to enable a way 

of visualising and assessing how well the PLSR regression model fitted the data 

and whether there is any potential overfitting. The predOvrlyPlt(comp.num) 

achieves this by overlaying the original prediction plot on top of the prediction 

plot constructed by LOOCV (Figure 14).  

 

 

 

 

 



60 
 

 

 

 

Figure 14. A continuous metabolite profile dataset obtained from a study that 

applied metabolomics to examine developmental stages of zebra fish embryos 

(Hayashi, Akiyama, Tamaru, Takeda, & Fujiwara, 2009). This dataset was used 

as an example to demonstrate the implemented PLSR analysis. Top left: A 

prediction plot constructed from a PLSR analysis on the dataset after fitting 4 

components. Top right: A prediction plot showing displaying the results of the 

LOOCV validation of the original fitted PLSR model. Bottom: The comparison 

plot that combines both the original and validation prediction plots. This plot 

showed that the original prediction model matched very well with the validation 

model. The accuracy, R2, and Q2 were also provided in the data table shown in 

this figure. 
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2.2.4 Construction of an R shiny Application for the statistical analysis 

module of MetaboAnalyst 3.0 

In order to further enhance MetaboAnalyst 3.0, additional options need to be 

implemented to grant the user more ways to customize the output of their 

graphs and plot. In addition, the program needs to be more dynamic in terms of 

reacting to user inputs.  Currently MetaboAnalyst 3.0 offers very limited options 

of directly changing properties of a specific plot such as: plot size (height and 

width), titles, labels and legends etc. In fact, MetaboAnalyst 3.0 only includes 3 

user options for each individual plot: format, resolution and size (default, half 

page, and full page). Despite having an image option function implemented 

under the processing step that allows the user to change colour for the different 

groups from the data and shapes the points used for plots, these options cannot 

be uniquely applied to individual plots. In other words, once it is set at the starts 

of the statistical analysis pipeline all following plots generated will apply the 

chosen setting. The user would have to navigate back and forth between mid 

analysis and start of the analysis in order to customize the colour and point 

shape for each individual plot. 

To accomplish the above stated improvements the statistical analysis module of 

the MetaboAnalyst 3.0 was selected and re-implemented using the R Shiny 

package. The new standalone package can potentially be distributed online and 

offline. It integrated the original list of statistical analysis functions from 

MetaboAnalysis 3.0 with the additional and extra features implemented 

previously (Section 2.2.3). Most importantly, the new package is significantly 

more dynamic and includes many changeable options for visualising, 

customising and personalising outputs. 
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2.2.5 R Shiny 
 

2.2.5.1 Selection of R Shiny 

MetabAnalyst 3.0 utilises the R package Rserve (Urbanek, 2003). This package 

is a TCP/IP server which allows other programs to use facilities of R from 

various languages without the need to initialize R or link against R library. Every 

connection has a separate workspace and working directory. User interface 

side implementations are available for popular languages such as C/C++, PHP 

and Java. Rserve supports remote connection, authentication and file transfer 

as seen in MetaboAnalyst 3.0.   

R Shiny is a simpler, efficient and more convenient way for R users to turn their 

analyses into an interactive web applications or an offline R application that 

anyone can use. These applications let the user specify input parameters using 

friendly controls like sliders, drop-downs, and text fields; and they can easily 

incorporate any number of outputs like plots, tables, and summaries. The 

biggest advantage of using R Shiny is that neither HTML nor JavaScript 

knowledge are required to code working applications. There are also many 

ways of sharing the created R shiny application. Its source code can be 

uploaded online as a GitHub gist, R package, or zip file and ran locally from the 

user given that they have R installed. A working R Shiny can also be upload to 

a server such as the application sharing service provided by R Shiny itself. 

There is also potential to turn an R Shiny application to windows executable. 

More information regarding R Shiny can be found at http://shiny.rstudio.com/. 
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2.2.5.2 R Shiny Application System Architecture 

A working R Shiny application is constructed from two separate parts; an 

interface component and a server component. The user interface handles the 

user inputs and output displays. A set of pre defined R Shiny functions assist in 

setting up the interface elements that the user can interact with (Figure 15). In R 

Shiny these elements are referred to as controllers and widgets. The server 

component is where the actual computation takes place. The interactivities of 

both of these components are controlled by reaction expressions: codes defined 

within the server component of the application. The building block of Shiny 

package is based on this form reactive programming. Since the major task of a 

statistical application is to acquire inputs and produce outputs, the whole R 

Shiny programming language is designed so that a change in any input whether 

it is input data or method parameters from the user interface will change the end 

result.  This process is done by immediately alerting the R server component of 

any input changes made in the user interface by the user. This in turn activates 

the reactive expressions on the server side which then signal various methods 

to compute, or recalculate. The results are then reflected into the form of texts, 

tables or figures and then updated in the interface (Figure 16).  This is the 

biggest advantage of R shiny application’s architecture; it relies on reacting to 

user inputs and enables the R Shiny procedure to provide different outputs 

without the need to refresh the web page or user interface. 
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Figure 15.  Basic pre-built R Shiny widgets. 

 

 

Figure 16. An R Shiny application’s system architecture. 

 

For online usage of R Shiny applications, the communication between the user 

and server is done with the fast websockets package. Websockets is a 

computer communications protocol, providing full-duplex communication 

channels over a single TCP (Transmission Control Protocol) connection. 

Websockets are important in situations where there are constant back and forth 

dialogue or data exchange between the user interface component and the 
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server component. This protocol operates separately and only handshake 

between the client and server is done over the HTTP (Hypertext Transfer 

Protocol). The duplex connection is open all the time and therefore the 

authentication is not needed when exchange is done. The websocket is 

currently supported by many modern browsers.  

 

If the R Shiny application is operated offline, an R Shiny function will be 

executed by the R engine to create an object that combine both the server and 

interface component. In this case the object created will be the application and 

will run on a local server created by the local computer. Offline R Shiny 

applications will have a much faster performance compared to an online version 

as it is not affected by the speed of the internet provider. 
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2.2.6 Coding Structure of the New R Shiny Application 

2.2.6.1 Original Scripts used from MetaboAnalyst 3.0 

The original source code of MetaboAnalyst 3.0 was downloaded from 

http://www.metaboanalyst.ca/faces/home.xhtml. The R scripts: chemometrics.R, 

classification.R, clustering.R, correlations.R, datautils.R, misceutils.R, 

normalization.R, processing.R, sigfeatures.R, and univartes.R were extracted to 

be integrated with the new R Shiny application as they directly contribute to the 

statistical analysis module of Metaboanalyst 3.0. The functions from these 

scripts were placed in the server component of the R shiny Application. 

 

2.2.6.2 User Interface Coding Structure 

Codes used to construct the user interface component of the application 

consists of a list of R Shiny functions that defines and sets up the format and 

position of widgets, controllers, buttons, graphs and tables. A list of the interface 

components are described in greater detail in the following section (The full 

codes for the user interface component are provided in the USB complemented 

with the thesis).  

 

It is important to note that the interface functions simply create elements in the 

user interface. The actual functionalities of the widgets, buttons and control 

when the user interacts with them must be defined through functions in the 

server component. In the case of the graphs, plots and tables, interface 

functions produce an empty space for them with defined size and position. The 

actual results needed for and construction of these graphs, plots and tables are 

also obtained through functions in the server component.  
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2.2.6.2.1 User Interface Functions  

1) 

navbarPage(title, ..., id = NULL, selected = NULL, 

position = c("static-top", "fixed-top", "fixed-bottom"), 

header = NULL, footer = NULL, inverse = FALSE, 

collapsible = FALSE, collapsable, fluid = TRUE, 

responsive = NULL, theme = NULL, windowTitle = title) 

 

navbarMenu(title, ..., id = NULL, selected = NULL, 

position = c("static-top", "fixed-top", "fixed-bottom"), 

header = NULL, footer = NULL, inverse = FALSE, 

collapsible = FALSE, collapsable, fluid = TRUE, 

responsive = NULL, theme = NULL, windowTitle = title) 

 

sidebarPanel(..., width = 4) 

The “navbarPage()” functions were implemented to create a page with a top 

level navigation bar that can be used to toggle a set of tabPanel elements. The 

“navbarMenu()” functions were also implemented to create an embedded 

menu within the navbar that in turns includes additional tabPanels. In additional 

numerous “sidebarPanel()” functions were included to create panels that 

group a list of options together. Parameters for these two functions define the 

tiles, position and customised theme for the navbar page and menu. 

2) 

tabPanel(title, ..., value = title, icon = NULL) 

 

This function was implemented multiple times to create tab elements. Tab 

elements are useful in this application for dividing the interface into multiple 

independently viewable sections. The “title” parameter variable displays the 

title for the tab.  

 

3) 

radioButtons(inputId, label, choices, selected = NULL, inline = FALSE, 

width = NULL) 
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This function was implemented multiple times to create a set of radio buttons in 

the application interface that allowed the user to select options from a list. The 

parameter “label”, “choices”, “selected” helps set the title, selection 

choices, and the default selection respectively. 

 

4) 

selectInput(inputId, label, choices, selected = NULL, 

multiple = FALSE, selectize = TRUE, width = NULL, 

size = NULL) 

 

This function was implemented multiple times to create selection lists that can 

be used to select a single or multiple items from a list of values. The parameter 

variables define the same properties as in the “radioButtons” function. 

 

5) 

fileInput(inputId, label, multiple = FALSE, accept = NULL, 

width = NULL) 

This function was responsible for creating file upload control in the R Shiny 

application. This control allows the user to upload one or more files. Whenever 

a file upload completes, an input variable is set to a dataframe. This dataframe 

contains one row for each selected file, and the following columns:  

name 

The filename provided by the web browser. This is not the path to read to 

get at the actual data that was uploaded. 

size 

The size of the uploaded data, in bytes. 

type 
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The MIME type reported by the browser (for example, text/plain), or 

empty string if the browser didn't know. 

datapath 

The path to a temp file that contains the data that was uploaded. This file 

may be deleted if the user performs another upload operation. 

 

6) 

helpText(...) 

textOutput(outputId, container = if (inline) span else div, 

inline = FALSE) 

 

These functions were implemented multiple times to create help texts or areas 

where texts are to be display in the application interface. These texts were 

useful in providing additional explanations or contexts for various analyses. 

 

7) 

checkboxInput(inputId, label, value = FALSE, width = NULL) 

 

This function was implemented multiple times create checkboxes that can be 

used to specify logical values. The “value” variable represents whether the 

checkbox has been clicked (TRUE) or left empty (FALSE). 

 

8) 

numericInput(inputId, label, value, min = NA, max = NA, step = NA, 

width = NULL) 
 

This function was implemented multiple times to create an input controls for 

entry of numeric values. The “value” parameter defines the initial value. The 

“min” and “max” parameter defines the minimum and maximum allowed value. 

The “step” parameter sets the intervals to use when stepping between min and 

max. 

9) 

actionButton(inputId, label, icon = NULL, width = NULL, ...) 
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This function was implemented multiple times to create clickable buttons in the 

user interface that performs certain functions when interacted with by the user. 

10) 

plotOutput(outputId, width = "100%", height = "400px", 

click = NULL, dblclick = NULL, hover = NULL, 

hoverDelay = NULL, hoverDelayType = NULL, brush = NULL, 

clickId = NULL, hoverId = NULL, inline = FALSE) 

 

This function was implemented multiple times to handle plot rendering within the 

user interface page. The “width” and “height” variables defined by a valid CSS 

unit (for example “100%”, “400p”) will set the size of the plot. For some plots the 

variable “click” was assigned by an object created through the function 

“clickOpts”. This will prompt the plot to send the mouse coordinates to the 

server whenever it is clicked, and the value will be accessible via the code 

“input$plot_click”. The value will be a named list with x and y elements 

indicating the mouse position. Other variables: “dblclick”, “hover”, 

“hoverDelay”, “hoverDelayType”, “brush”, “clickId”, “hoverId” and 

“inline” are not applied in this application. 

 

11) 

tableOutput(outputId) 

dataTableOutput(outputId) 

 

These two functions were implemented multiple times to define table elements 

or data table elements within the user interface.  

 

 

12) 

uiOutput(...) 

renderUI({...}) 

 

These are dynamic UI functions that were implemented many times in the 

application. The previous list of functions creates a set of controls that affect a 
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fixed set of outputs. However, R Shiny also has the ability to generate dynamic 

UIs. This is done by creating an empty dynamic object with the “uiOutput()” 

function  in the user interface component. The “renderUI({...})”  is then 

called in the server component to render certain widgets, controllers, graphs or 

tables only when conditions defined within the “renderUI({...})”  function 

are met.  
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2.2.6.3 Server Component Coding Structure 

Codes written in the server component of the application consist of a 

combination of render functions and reactive expressions. The render functions 

are involved with construction and display of the plots, graphs, and tables that 

were declared through codes written in the user interface component (see 

previous section). The reactive expression functions constantly monitors and 

picks up changes in conditions, such as data properties and user inputs made 

through the user interface and relay the information to the render functions.  In 

order to obtain the results required for certain plots and tables, the render 

functions will also call various original MetaboAnalyst 3.0 statistical functions 

integrated in the server component in a cascading fashion. A list of the server 

components functions used in the creation of this application is described in the 

following section. The full code of the sever component is included in the USB 

complemented with the thesis. 

 

2.2.6.3.1 Server component Functions 

1) 

reactive(x, env = parent.frame(), quoted = FALSE, 

label = NULL, 

domain = getDefaultReactiveDomain(), ..stacktraceon = TRUE) 

 

This is a reactive expression that was implemented many times in this 

application. These functions are expressions that can read reactive values and 

call other reactive expressions. Whenever a reactive value change, any reactive 

expressions that depended on it are marked as "invalidated" and will 

automatically re-execute if necessary. If a reactive expression is marked as 

invalidated, any other reactive expressions that recently called it are also 

marked as invalidated. In this way, invalidations ripple through the expressions 

that depend on each other. 
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2) 

observeEvent(eventExpr, handlerExpr, 

event.env = parent.frame(), event.quoted = FALSE, 

handler.env = parent.frame(), handler.quoted = FALSE, 

label = NULL, suspended = FALSE, priority = 0, 

domain = getDefaultReactiveDomain(), autoDestroy = TRUE, 

ignoreNULL = TRUE) 

 

eventReactive(eventExpr, valueExpr, 

event.env = parent.frame(), event.quoted = FALSE, 

value.env = parent.frame(), value.quoted = FALSE, 

label = NULL, domain = getDefaultReactiveDomain(), 

ignoreNULL = TRUE) 

Shiny's reactive programming framework is primarily designed for calculated 

values and side-effect-causing actions that respond to any of their inputs 

changing. In other words any changes in the user interface input will 

immediately alert the “reactive()” function to re-execute certain methods. 

That is often what is desired in Shiny apps. However, for many scenarios in this 

application it is preferred to wait for one specific action to be taken from the user, 

like clicking an actionButton, before calculating an expression or taking another 

action. This allows the user to input/change multiple inputs before one action 

takes place. A reactive value or expression that is used to trigger other 

calculations in this way is called an event. 

These situations demanded a more imperative, "event handling" style of 

programming that is possible--but not particularly intuitive--using the reactive 

programming primitives observe and isolate. The “observeEvent()” and 

“eventReactive()” functions provided straightforward APIs for event 

handling that wrap observe and isolate. 

“observeEvent()” was applied  for situations that required performing an 

action in response to an event. The parameter variable “eventExpr” defines an 
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event for the application to respond to, and the second parameter variable 

“handlerExpr” defines a function that was called whenever the event occurs. 

The “eventReactive()”  function creates a calculated value that only 

updates in response to an event. This is just like a normal reactive expression 

(“reactive()”) except it ignores all the usual invalidations that come from its 

reactive dependencies; it only invalidates in response to the given event. 

3) 

renderText(expr, env = parent.frame(), quoted = FALSE, 

outputArgs = list()) 

 

This function was implemented to complement the “helpText(...)” functions 

declared in the interface components. They renders text by generating an 

HTLM element that contains the text. 

 

4) 

renderPlot(expr, width = "auto", height = "auto", 

res = 72, ..., env = parent.frame(), quoted = FALSE, 

execOnResize = FALSE, outputArgs = list()) 

 

The render plot functions were implemented to render a reactive plot that is 

suitable for assigning to an output slot created by the “plotOutput()” 

declared in the interface component. In most cases the metabolomics statistical 

analysis functions extracted from MetaboAnalyst 3.0 will be called from within 

the “renderPlot” function. 

 

5) 

renderTable(expr, striped = FALSE, hover = FALSE, 

bordered = FALSE, spacing = c("s", "xs", "m", "l"), 

width = "auto", align = NULL, rownames = FALSE, 

colnames = TRUE, digits = NULL, na = "NA", ..., 

env = parent.frame(), quoted = FALSE, outputArgs = list()) 
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renderDataTable(expr, options = NULL, searchDelay = 500, 

callback = "function(oTable) {}", escape = TRUE, 

env = parent.frame(), quoted = FALSE, outputArgs = list()) 

 

These two functions were implemented to create reactive tables that were 

suitable for assigning to an output element declared in the user interface 

component. “renderTable()” uses a standard HTML table, while 

“renderDataTable()” uses the DataTables Javascript library to create an 

interactive table with more features such as sorting, searching, and paging. 

 

6) 

nearPoints(df, coordinfo, xvar = NULL, yvar = NULL, 

panelvar1 = NULL, panelvar2 = NULL, threshold = 5, 

maxpoints = NULL, addDist = FALSE, allRows = FALSE) 

 

This function enabled graphs and plots constructed by “renderPlot()” to be 

interactive. In the original MetaboAnalyst the points plotted in many graphs can 

be clicked, which brings up a boxplot of the clicked point. This feature is 

significantly enchanted using the R shiny function “nearPoints()”. 

 

This function performs by creating an invisible rectangle around every point on 

an output graph. Any mouse click mouse event (click, hover, or double-click) 

within the rectangle near a specific point will return the exact coordinate of that 

point. This in turn will enable more functions such as plotting additional 

information regarding that specific point.   
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Chapter 3 
3. 1 Application Description/Results 

 

3.1.1 Installation and Initialisation  

A testing version of the developed R Shiny application tilted “Metabolomics 

Statistical Analysis R Shiny App 0.1” is available for Windows (R version 3.2.5). 

The application depends on numerous R packages and packages from 

Bioconductor (https://www.bioconductor.org/).  These packages must be 

installed when using the application for the first time. Subsequent usages of the 

application require loading the packages each time. 

 

Installation  

The user needs to have a working version of R installed on their computer 

preferably version 3.2.5. 

The application comes in the forms of 2 R scripts: “packagesUtils.R” and 

“Metabolomics Statistics Analysis App 0.1”.  

 

To install the application: 

1) Open the “packagesUtils.R” script in R. 

 

2) Highlight all the codes before the “library(shiny)” line in the 

“packagesUtils.R” script then right-click and choose “run line or selected”. 

 

3) A window will appear prompting the user to select a CRAN mirror. Select 

the appropriate mirror and click OK.  
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4) The required packages and their dependencies will now be downloaded 

and installed onto the user’s computer. If R prompts the user to a 

personal library to place the installed packages, choose yes. 

 

5) After installation, a message will appear in the R console: 

 

Old packages: 'rgl', 'mgcv', 'nlme' 

Update all/some/none? [a/s/n]: n 

 

Type “a” in the R console and press enter. 

 

6) The application has now finished installing all the required packages onto 

computer 

 

Initialisation 

 

To use the application: 

1) Open the “packagesUtils” in R. Scroll down to the bottom of the script, 

highlight the lines “library(shiny)” and click “run line or selected”. 

This will initialise R Shiny. 

 

2) The next step involves starting the application itself. The function 

“runApp(“  ”)”  in the “PackageUtil.R” will look for where the script 

“Metabolomics Statistics Analysis App 0.1” is located and initialise the 

application. Find the directory path of the “Metabolomics Statistics 

Analysis App 0.1.R” script on your computer and enter it between the 
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“ “ of the “runApp(“ “) function. Then Replace every “\” (back dash) 

with “/” (forward dash).  

 

For example: 

 runApp("C:/Users/Desktop/Metabolomics Statistics 

Analysis App 0.1.R") 

 

3) Highlight the “runApp (“...”)” line, right-click and select “run line or 

selected”. The Application will now start. 

 

The above 3 steps are required to use the start the application every time. 
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3.2 Description 

A metabolomics dataset was selected to perform a series of statistical analysis 

using the developed R Shiny application: Metabolomics Statistics Analysis App 

0.1 (testing version). The experiment that yielded this data involved treating 9 

samples of juvenile (20-30mm in maximum shell length) New Zealand abalone 

(Haliotis iris) with a multi-strain conglomerate of 2- and 3- probiotic bacterial 

strains that were supplemented into a commercial abalone feed over a 4 

months trial period to compare its growth rate against 9 control samples. The 2-

probiotic conglomerate consisted of Exiguobacterium JHEb1 and Vibrio JH1, 

and the 3-probiotic conglomerate consisted of Exiguobacterium JHEb1, Vibrio 

JH1 and Enterococcus JHLDc (Hadi, Gutierrez, Alfaro, & Roberts, 2014). The 

raw data was generated following the same metabolic profiling (analytical 

platform procedures) and data pre processing procedures (primary 

bioinformatics) as in  Young, Alfaro, & Villas- Bôas, (2016). The final post 

processed data is a CSV formatted data file titled “Ablone_GC-MS 

Result(PeakHeight)_QC.csv”.  A selected list of statistical analysis will be 

performed on this dataset using Metabolomics Statistics Analysis App 0.1 to 

demonstrate its improved functionalities and new features. 
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Load Packages 

 

Highlighting and run the lines “library(shiny)” and  “runApp("...")” from 

“PackageUtil.R” script in R will initialise the application (section 3.1.1). After 

initialisation an interface window will appear. 

In this window the user must load all packages required by the application by 

clicking “Load All Packages”.  The process is completed when the following are 

displayed in window. 

 

The package loading process can be viewed by opening up the R console. Any 

potential error messages will also be displayed there. 
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Data Upload 

The data can then be uploaded from the “Upload Data” tab in the navigation 

menu located at the top of the application interface window. The user must 

select the data format and data types before clicking “browse” (refer to 

http://www.metaboanalyst.ca/faces/ModuleView.xhtml) for data types and 

format requirements). The format of the dataset “Ablone_GC-MS Result 

(PeakHeight)_QC.csv” has the following properties: 

1) Samples are in columns and features in rows 

2) The uploaded file is in comma separated values (.csv) format 

3) The uploaded data file contains 18 (samples) by 67 (compounds) data 

matrix. 2 groups were detected in samples 

4) Samples are not paired 

5) A total of 0 (0%) missing values were detected 
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Normalisation  

Since a total of 0 (0%) missing values were detected the Data Processing step 

can be skipped. The next step is data normalisation. This step must be 

completed in order to proceed with statistical analysis. If the user does not want 

to normalise their data this step must still be completed by selecting the option 

“none” for all the normalisation methods then clicking the “update” button to 

proceed.   
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If results from the normalization do not satisfy the user, simply reselect the 

methods then click the “update” button to re-normalise the data. 
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T-Test 

The user can now begin statistical analysis. T-test can be selected from the tab 

navigation bar. (ANOVA cannot be applied on this data set since there are only 

two groups). The t-test analysis comes with 5 user input perimeters, two of 

which dynamically adjust the colour setting for the T-test plot. 

 

Currently, Metabolomics Statistics Analysis App 0.1 supports 17 unique colours 

(black, blue, brown, cyan, darkblue, darkred, green, grey,  gray, lightblue,  

limegreen, magenta, orange, pink, purple, violet, yellow). To change the colour, 

the user must enter the name of the colour from the colour list into the text input 

field then click the update/plot button. The T-test will generate the following 

scatter plot. 
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Each point on the T-test scatter plot represents a compound. The points are 

clickable and will display the interval plot (see section 2.2.3.1) alongside the 

original MetaboAnalyst boxplot for that compound. In addition, the option to 

change the colours for these two plots is also provided. To change the colours 

of the interval and boxplots, input the colours in a sequence format into the text 

input field. The number of colours the users input must match the number of 

groups in the data. The colour change will happen automatically and the 

updated graph will be displayed as soon as the user finishes the input. Below is 

a screen shot of an Interval and boxplot produced for the compound Aspartic 

acid. 
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A data table containing all the significant features (its t-stat, p-value, -log10(p) 

and FDR) will be displayed at the bottom of the T-test tab. This data table has 

sorting and searching capabilities when the dataset are large. 
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PCA and PLSDA 

Many plots from the PCA and PLS-DA analysis come with dynamic sliders to 

adjust size (height and width) of the plot, for example:  

 

The 3D scatter plot of the PCA and PLS-DA also contains many options that the 

user can change. (See section 2.2.3.2 and below).  When the user changes a 

setting, they must click on the plot button and a new 3D plot with the altered 

settings will be plotted. If the user chooses to capture a snapshot, the image will 

be saved in the same folder the Metabolomics Statistics Analysis App 0.1.R 

script is located in. 
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The 3D scatter plots below displays the results of the PCA analysis using the 

Ablone_GC-MS Result(PeakHeight)_QC.csv data 
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The user can also choose to plot a PCA means plot (See section 2.2.3.3). 

Dynamically adjustable options for the PCA trajectory plot include changeable 

title, colour options error bar width, point size and graph scale range. 
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3.3 Results 

The PLSR function cannot be demonstrated using the “Ablone_GC-MS 

Result(PeakHeight)_QC.csv” dataset as this dataset is discrete. However 

section 3.2 have explained the construction of this function and provided an 

example dataset to demonstrate the result. 

The application has been installed on several windows computers with two 

different versions of R, R 3.2.5 portable and R 3.3.2. The installation (and all the 

required packages) time ranged from 10 minutes to 30 minutes depending on 

the CPU of the computer itself. The application also ran very smoothly and did 

not encounter any errors resulting in wrong results or crashes.  

Errors however did occur after publishing this application on the R Shiny server. 

The package “ggplot” would not be loaded by the R Shiny server. In addition, 

errors are encountered in regards to the 3D interactive plots, potentially due 

incompatibility between 3D objects directly constructed from R and HTTP.  

Various dynamic functions such as reading and generating input selections 

depending on the dataset were all working as intended.  

The Metabolomics Statistical App 0.1 is supplied in a supplementary USB 

complemented with this thesis. It included an R portable version 3.2.5 with all 

the necessary packages installed. In addition, all datasets used in this thesis 

were also provided in the USB 
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Chapter 4 
Discussion and Conclusions 
 

4.1 Discussion  

This thesis reviewed a few popular and new metabolomics data analysis 

softwares, tools, packages and highlighted their advantages and disadvantages 

in the context of its comprehensiveness and user friendliness. Because 

metabolomic is a relatively new and unique addition to “Omics” technologies, its 

complex data analysis procedures involves large multivariate datasets which 

pose a problem to new researchers or researchers from a biological 

background looking to apply metabolomics. We believed that the ideal 

metabolomics tool needs to be comprehensive yet simple in its design. Such a 

feat is not easy to achieve in data analysis softwares. Indeed, increase in data 

analysis complexity would naturally entail increase in the intricacy of a using a 

software to perform those data analyses.  

Amongst the popular metabolomics bioinformatic softwares and packages 

reviewed, MetaboAnalyst 3.0 is the most comprehensive. It is a free-to-use and 

easy-to-use web based application that implements multiple modules for 

metabolomics data analysis.  MetaboAnalyst 3.0 is open sourced and the 

developers encourages downloading their codes to further develop R 

metabolomics data analysis tools. After closer examination of the functionality 

and coding architecture of MetaboAnalyst 3.0, we identified many of its original 

features can be enhanced, and potential new functions can be added. 

Therefore, we proposed to not only implement the new features and functions, 

but to also attempt to create an application using MetaboAnalyst as a 
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foundation that can be both comprehensive in its functionality and dynamic in its 

user interactivity. 

 

This project introduced Metabolomics Statistics Analysis App 0.1. A GUI based 

application that can be directly executed from the R console or potentially 

published online. This application utilised the R Shiny package which enabled 

the implementation of the application itself without knowledge in JAVA and 

HTML. Employment of the R Shiny package basically enabled a user friendly 

way to directly alter and manipulate various R functions and its input 

parameters through a graphic user interface without the user having knowledge 

in the R language and programming. In other words, Metabolomics Statistics 

Analysis App 0.1 can integrate complex R packages and dynamically control 

many if not all of the function parameters from the said packages to significantly 

increase the application’s analytical and visualization capabilities.  As a result, 

Metabolomics Statistics Analysis App 0.1 substantially enhanced graphical 

visualisation of the original MetaboAnalyst 3.0 3D interactive plots and provided 

more visualization options for user outputs through the implementation of 

numerous dynamically adjustable inputs parameters. Furthermore, we 

implemented numerous new statistical functions that are currently not available 

in MetaboAnalayst 3.0 such as PLSR.  

 

Although current Metabolomics Statistics Analysis App 0.1 have increased 

functionalities and enhanced visualization options, this application faces some 

bottleneck in its distribution as was discovered after publishing the application 

on the R Shiny server. Ideally, the current Metabolomics Statistics Analysis App 

0.1 should be distributed online as a web based application or as a 
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downloadable executable. However, due to the large number of R packages 

this application integrated, deploying the application on the R Shiny server can 

potentially result in various packages not being able to load.  A way around this 

bottleneck is to transform the R application into a windows executable that can 

be downloaded and installed on any windows computer and ran locally. Another 

method is to construct a server specifically for this application. The latter option 

however will require cost and maintenance fees. In addition to distribution 

bottlenecks, the R Shiny package has various limitations in its coding structure 

that limit certain interactions such as dynamically generating certain number of 

options depending on the dataset uploaded. Therefore, future upgrade of these 

applications can potentially find ways around this issue through efficient coding 

or coding additional scripts to improve the R Shiny package’s capabilities itself.   
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4.2 Conclusion  

Metabolomics Statistics Analysis App 0.1 is an R GUI application developed 

using the R Shiny Package. This application was constructed using the 

statistical functions from MetaboAnalyst 3.0 as a foundation to provide a tool 

that not only include a comprehensive list of statistical analysis, and 

visualization  options but also easy to use and interact with. 

 

From a new metabolomics researcher’s perspective we believe that this 

application provided the balance between software complexity and friendliness 

the user seeks.  Although the application is still in its early versions, the 

significance of being able to use R Shiny to create a GUI R application for  

something as complex metabolomics data analysis cannot be ignored.  This 

application unlocked much potential in R as a functional programming language 

in creating various standalone statistical tools. 

 

The final frontier of “Omics” bioinformatics is data integration. To accomplish the 

integration of multiple “Omics” techniques, complex programs must be created 

to incorporate novel ways of integrating heterogeneous and large “Omics” 

datasets. These datasets will also require novel methods to analyse, interpret 

and visualise. This conceptual challenge and also practical hurdle can perhaps 

be overcome with more research into R and R Shiny. The R statistical platform 

is already world renowned, offering more than 4000 add-on packages, a 

comprehensive and extensive functional programming environment and support 

from countless R programmers globally.  Couple this with continuous research 

into R Shiny will no doubt unlock the potential to create innovative softwares 

with powerful analysis, interpretation and visualization capabilities. 
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