
UTILIZING SPATIAL LOCALITY

OF

COLOURFAST FEATURES

FOR

GPU-ACCELERATED OBJECT

RECOGNITION

A thesis submitted to Auckland University of Technology in

partial fulfillment of the requirements for the degree of

Master of Science

April, 2015

Supervisors

Dr Andrew Ensor

Dr Seth Hall

By

Eleanor Da Fonseca
School of Computing and Mathematical Sciences

Contents

Attestation of Authorship viii

Acknowledgments ix

Copyright x

1 Introduction 1

2 Literature Review 6

2.1 Mobile Platforms . 6

2.2 Computer Vision . 7

2.3 Image Segmentation and Feature Points 8

2.4 Feature Detection-Description Schemes 9

2.4.1 FAST . 10

2.4.2 BRIEF . 11

2.4.3 SIFT . 11

2.4.4 SURF . 12

2.5 Object Recognition . 16

2.5.1 Image-based Recognition 17

2.6 Machine Learning . 19

2.6.1 Types of Learning . 19

2.6.2 Boosting . 21

2.7 Graphics Processing Unit . 21

2.8 Overview of OpenGL . 22

2.9 Rendering Pipeline . 23

ii

2.9.1 Programmable Shaders 25

2.10 GPU Accelerated Computing 26

2.11 ColourFAST . 28

2.11.1 Half Bresenham and Feature Strengths 29

2.11.2 Feature Orientation 31

2.12 Example Application Domains 33

2.12.1 Medical Image Analysis 33

2.12.2 Augmented Reality . 36

2.12.3 Autonomous Vehicles 37

2.12.4 Object Recognition . 39

3 Design 41

3.1 Motivation . 41

3.2 Spatial Locality . 42

3.3 Scale and Rotation Estimator 44

4 Implementation 48

4.1 GPU-based ColourFAST . 48

4.2 Feature Discovery via Contour Tracking 50

4.3 Automated Feature Discovery 53

4.4 Spatial Locality . 55

4.4.1 Shader 1: Preliminary Matching 56

4.4.2 Shader 2: Rotation and Scale 57

4.4.3 Shader 3: Feature Point Matching 61

4.5 Testing . 63

4.5.1 Relative Weighting . 64

4.5.2 Scale and Rotation Estimation 65

4.5.3 Feature Matching . 65

5 Results and Analysis 70

5.1 Extending ColourFAST Descriptor 70

5.2 Feature Point Matching: Preliminary Test 72

5.3 Scale and Rotation Estimation 76

5.4 Feature Matching: Secondary Test 79

iii

5.4.1 Feature Matching: With Scale and Rotation 83

5.5 Discussion . 84

5.6 Anchor Point Selection . 89

5.7 Pipeline Performance Analysis 91

6 Conclusion 93

6.1 Future Work . 98

References 113

iv

List of Figures

1.1 What the computer sees . 2

2.1 Speed of corner detection and number of corners vary with

the corner threshold . 10

2.2 The descriptor entries of a sub-region represent the nature of

the underlying intensity pattern. Left: In case of a homoge-

neous region, all values are relatively low. Middle: In presence

of frequencies in x direction, the value of |dx| is high, but all
others remain low. If the intensity is gradually increasing in

the x direction, both values dx and |dx| are high. 14

2.3 Types of Machine Learning 20

2.4 CPU versus GPU cores . 26

2.5 How GPU Acceleration Works 27

2.6 Bresenham circle (left) used by FAST and half-Bresenham

circle (right) used by ColourFAST 30

2.7 Neighbourhood pixel contributions to ColourFAST 31

2.8 Feature orientation vector calculations 32

2.9 Outdoor scene with FAST (upper) versus ColourFAST (lower)

feature values evaluated at each pixel 34

2.10 Examples of skin lesions images used: (a) image of a benign

lesion, (b) image of a dysplastic lesion,(c) image of a malig-

nant lesion. (d) shows an example of an entire image, (e)

the same image hand-segmented, (f) the same image mask-

segmented . 36

v

2.11 Course navigated during the PROUD-Car Test 39

3.1 Two objects with same RGB colour changes but different di-

rection measures in two feature points 42

3.2 Two objects with same RGB colour changes and same direc-

tion measures . 43

3.3 The Starry Night, Vincent van Gogh (1889) 43

3.4 Two objects with the same RGB colour changes and same

direction measures with one slightly rotated 44

3.5 Two objects with the same RGB colour changes and same

direction measures with one scaled 44

3.6 Scale and rotation calculations 46

4.1 YUV colour space values in the NV21 format (default for

Android devices) . 49

4.2 GPU ColourFAST feature detection pipeline. Shaders are

shown in yellow and the input/output textures are in white.

The shader shown with the dotted border is optional for cases

when a direction vector in all 3 components is desired 51

4.3 Database of objects used for feature matching 52

4.4 Feature Point Discovery via Contour Tracking 52

4.5 Moses, Frida Kahlo (1945) . 54

4.6 Geometry for 1st render pass 57

4.7 Output texture for 1st render pass 59

4.8 Geometry for 2nd render pass 60

4.9 Output for 2nd render pass 60

4.10 Output for 3rd render pass 63

4.11 Entire GPU Pipeline for feature point matching using spatial

locality . 64

4.12 Same object at different scales 65

4.13 Same object at different degrees of rotation 66

4.14 Two objects from the same category in de facto ML database 68

vi

4.15 An example image from the reference set (left) and the test

set (right): Irises, Vincent van Gogh (1889) 69

5.1 Box and whisker plot of matching accuracy M for different

relative weight combinations (excluding results below −100) . 73

5.2 Boxplot of feature point matching accuracy for the extended

descriptor versus the original ColourFAST descriptor for logos 75

5.3 Same object at different scales 76

5.4 Actual rotation versus predicted rotation 77

5.5 Actual scale versus predicted scale 78

5.6 An example image from the reference set (left) and the test

set (right): SURF . 79

5.7 Database used for the second series of feature matching tests 80

5.8 Boxplot of feature point matching accuracy for the extended

descriptor versus the original ColourFAST descriptor for paint-

ings . 82

5.9 Boxplot of feature point matching accuracy for the extended

descriptor versus the original ColourFAST descriptor for paint-

ings with rotation . 85

5.10 Typical logo consisting of several feature points with the same

RGB values (only the θ component differing) 87

5.11 Target object used for feature point extraction with no rota-

tion or scaling for saving to database 88

5.12 Target object after being rotated; search grid now contains

parts of the border which negatively affects the feature discovery 88

5.13 Target object after zooming in to eliminate the border; major

portion of the image is lost 89

5.14 Painting used for anchor point selection analysis and mod-

elling: Nevermore, Paul Gauguin (1897) 91

vii

Attestation of Authorship

I hereby declare that this submission is my own work and that, to the best

of my knowledge and belief, it contains no material previously published or

written by another person (except where explicitly defined in the acknowl-

edgements), nor material which to a substantial extent has been submitted

for the award of any other degree or diploma of a university or other insti-

tution of higher learning.

viii

Acknowledgments

I would like to thank my primary supervisor, Dr Andrew Ensor, for his in-

valuable help and guidance. His knowledge and support during this thesis

has helped me tremendously. I very much appreciate his patience in reading

through my thesis several times and providing me with valuable feedback

and corrections. A huge thank you for the countless hours spent helping

me understand concepts, debugging code and testing as well as keeping me

optimistic when things did not go as planned.

I would also like to thank my secondary supervisor, Dr Seth Hall. The

work carried out in his PhD laid the foundation for this research. With-

out his knowledge and keen insight into the area of GPU-programming and

computer vision this thesis could not have been written. I sincerely thank

him for his friendship and willingness to help in any way he can.

Thank you very much to Boris Feron for taking the time to help proof-

read this thesis, for his moral support, advice and his supreme LATEXskills.

A big thank you to my parents for all the love, encouragement and assis-

tance throughout my degree.

I would like to thank AUT for the several Summer Research Assistantship

Awards that have helped fund my study and for the endless supply of coffee

beans that allowed me to work long into the night. Lastly, I would like

to thank everyone at the High Performance Computing Lab at AUT for

providing such a fun and enjoyable work environment.

ix

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any

process) either in full, or of extracts, may be made only in accordance

with instructions given by the Author and lodged in the library, Auckland

University of Technology. Details may be obtained from the Librarian. This

page must form part of any such copies made. Further copies (by any

process) of copies made in accordance with such instructions may not be

made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described

in this thesis is vested in the Auckland University of Technology, subject to

any prior agreement to the contrary, and may not be made available for use

by third parties without the written permission of the University, which will

prescribe the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and ex-

ploitation may take place is available from the Librarian.

x

Abstract

ColourFAST is an alternative technique to FAST developed by Ensor and

Hall used to extract feature point descriptors from an image based on colour

change values. The extracted descriptor is compact and, therefore, efficient

to compute and match. The purpose of this thesis is to extend the Colour-

FAST feature descriptor from a 4-dimensional vector to a 6-dimensional

vector to improve feature point matching accuracy. This is achieved by in-

corporating spatial locality to gain a sense of the shape of an object along-

side its colour change information. The main focus is designing, developing

and testing feature point matching algorithms specifically architected for

the GPU pipeline with an emphasis on accuracy while maintaining high

throughput.

Chapter 1

Introduction

Vision refers to the ability to perceive and interpret the surrounding envi-

ronment that is present in visible light through information processing by a

visual system. Since humans are visual beings, the task of vision might seem

trivial and deceptively easy. Humans are able to recognize objects and dis-

tinguish between over 30,000 categories of objects (like recognizing a person

we know), locate objects in a space, track objects while in motion and coor-

dinate our actions accordingly (for example, catching a ball during sports)

and so on. Our brain responds to visual stimulus in a matter of milliseconds

and is not hindered by changes in viewing conditions such as lighting and

view point. Thus, our intuition would lead us to believe that vision is a

simple task. However, there is a lot about visual systems that is yet to be

understood. It, therefore, goes without saying that a machine attempting to

“see and understand” visual data would be a much harder goal to accomplish

(Sonka, Hlavac, & Boyle, 2007). Human vision system relies on our eye sen-

sors receiving information, cognitive abilities processing and relaying feed-

back as well as several stages of processing to reach a decision that is made

based upon years of experience. Computer vision does not possess these

abilities; all it has to work off is a grid of numbers (see Figure 1.1), making

it a fairly naive system that attempts to model the way human vision works

although current systems are not nearly as sophisticated. Machine learning

attempts to simulate this process but current systems have not yet reached

1

Figure 1.1: What the computer sees
(Bradski & Kaehler, 2008)

the same level of sophistication. In addition, the data received by the system

often contain noise and are affected by distortions due to imperfect lenses,

mechanical imprecision, motion blur and issues in real world environments

such as weather, lighting and reflections. These issues give us an insight

into why computer vision is such a challenging field. There has been active

research in this field for the past few decades; this overlaps with research

in various other fields such as biological visual systems, machine learning,

image processing, artificial intelligence and linear algebra. Computer vision

lends itself to a wide range of potential applications and is, thus, a very in-

teresting field that faces numerous obstacles. A few subfields include image

processing, photogrammetry, 3D vision, optical flow and tracking. Exam-

ples of practical applications of computer vision systems include industrial

robots, navigation via an autonomous vehicle, home surveillance systems,

medical modelling and imagery, autonomous inspection and quality control

used by manufacturing processes (Huang, 1996).

Computer vision is defined as “the transformation of data from a still

or video camera into either a decision or a new representation” (Bradski &

Kaehler, 2008). It deals with acquiring and processing images which are

2

then analysed using statistical methods to extract data from them and ob-

tain simple inferences based on individual pixel data. This data could be

used in combination with other available information to help aid the sys-

tem. Broadly speaking, computer vision can be described as the study of

extraction of useful information from images by a vision system. The im-

ages could be a captured video sequence, views from multiple cameras or

a still image. This area of study poses several challenges because vision is

an inverse problem (Szeliski, 2010) where we attempt to retrieve meaning-

ful information given insufficient, incomplete or noisy data to a particular

problem. It often involves image analysis where the input is a 2D image

that gets converted into a mathematical representation of some sort. Most

computer vision tasks have very high computational demands and are very

often required to work in real-time. This imposes further demands on vision

algorithms as the data need to be processed on the fly.

Mobile devices are the modern day tangible embodiments of pervasive

computing. The mobile phone market has seen tremendous growth since

the 1990s with the trend continuing still (Want, 2010). In terms of research,

the smart phone category of the mobile device market is very interesting as

these devices are capable of providing functionality that desktop computers

cannot. Most smart phones are equipped with high-quality graphics process-

ing abilities, large memory, several high resolution cameras, high resolution

displays, GPS systems and multiple sensors such as gyroscopes, accelerome-

ters and proximity sensors. These features make mobile devices particularly

interesting for a wide spectrum of computer vision applications. Computer

vision can make intelligent use of the capabilities smart phones possess. A

few examples of such applications include the work being carried out at Xe-

rox PARC which aims to read vitals such as heart rate and respiration via a

mobile device camera pointed at a face (Computer vision and the future of

mobile devices, n.d.) and mobile-assisted driving that uses various sensors

on the phone to aid the driver (Garcia-garrido et al., 2012).

As this is an area of active research, this thesis in particular deals with de-

signing and implementing GPU-accelerated algorithms for real-time object

recognition on mobile devices. It extends the feature descriptor, Colour-

3

FAST, proposed by Ensor and Hall from a 4-dimensional vector to a 6-

dimensional vector by incorporating spatial locality information. It focuses

on devising a feature point matching scheme that makes use of the shape of

the object along with the ColourFAST colour change values. The algorithm

is implemented and tested on a mobile device with a focus on achieving

high accuracy in terms of matching while suffering a minimal performance

hit. There are several popular smart phone platforms such as Android, iOS,

BlackBerry and Windows Phone. For the purpose of testing the algorithms

investigated in this thesis we chose the Android platform. However, the

core algorithms are implemented using GLSL and are portable across mo-

bile platforms that support OpenGL ES. Android is an open-source software

stack developed by Google Inc. for smart phones and tablets. It includes a

mobile operating system, middleware and applications. The core operating

system is based on a modified version of the Linux kernel and is in written

in C and C++. The user interface is based on direct manipulation via touch

input and is, thus, primarily designed for touchscreen devices. Specialized

interfaces have been also developed for other devices running Android such

as Android TV, Android Auto and Android Wear. Applications are written

in the Java language using the Android SDK and are executed on the Dalvik

Virtual Machine.

The thesis is structured as follows. This chapter is intended to provide

a general introduction to the field of computer vision and the use of smart

phones for vision along with a brief summary of the work undertaken dur-

ing this thesis. The second chapter provides background reading regarding

mobile platforms, various vision tasks including popular techniques for fea-

ture description, detection and object recognition, graphics processing and

the rendering pipeline. The literature review concludes with an in-depth

discussion of ColourFAST feature points and its comparison to FAST fea-

ture points as the work in this thesis expands upon ColourFAST. The third

chapter discusses the motivation behind extending upon the feature match-

ing scheme used by ColourFAST by including spatial locality information

and explains the work undertaken to achieve this. The fourth chapter elab-

orates on the GPU implementation of the new matching scheme clearly

4

describing each render pass of the pipeline and its functionality. This chap-

ter ends with an overview of the experiments conducted to test each phase of

the algorithm. The next chapter reports and analyses the results obtained

from several series of tests and investigates the effectiveness of expanding

the ColourFAST feature point descriptor. The final chapter summarizes the

work of this thesis and draws overall conclusions based on the results. The

thesis concludes with appendices providing raw data used for modelling and

analysis and the shader code implemented for the feature point matching

scheme.

5

Chapter 2

Literature Review

This chapter covers related literature, background reading, used concepts

and introduces the work undertaken. The topics discussed lay the founda-

tion for this research and were the main areas of investigation during the

thesis. It first covers mobile platforms and computer vision which is the main

focus of this thesis. Computer vision applications and dominant techniques

for feature detection, extraction and object recognition are discussed to give

the reader a brief understanding of these study areas as these are later used

for comparisons against our implementation. Next, GPU and GPU-based

processing and computing are elaborated on as the algorithms implemented

make use of the GPU to achieve high frame rates for computationally ex-

pensive tasks. This is a common theme across the entire thesis and each

part of the algorithm is designed to specifically exploit the GPU pipeline

architecture. The development of a GPU-based computer vision algorithm

for object recognition is the backbone of our work. Contemporary computer

vision applications based on recognition are discussed to show the relevance

of the work conducted.

2.1 Mobile Platforms

During this thesis there were several competing smart phone platforms avail-

able for the development and deployment of application software such as the

6

widely used Android and iOS platforms and the less popular Windows and

Blackberry platforms. The Android platform is developed by the Open

Handset Alliance led by Google and is based on the Linux kernel. Applica-

tions are primarily written using a subset of Java SE along with Android-

specific API. Over the past few years the Android platform has become

increasingly popular and currently holds the greatest market share in terms

of mobile devices currently in circulation (Gartner Says Smartphone Sales

Accounted for 55 Percent of Overall Mobile Phone Sales in Third Quarter

of 2013 , n.d.). As Android is open source and not vendor specific it has

become a popular choice for many mobile hardware companies such as Sam-

sung, HTC, Motorola, LG, Huawei and others. Android applications are

developed using the Android Development Tools (ADT) plugin for Eclipse

or the more recent Android Studio which is a dedicated IDE for Android

development and deployment.

2.2 Computer Vision

Computer Vision deals with the acquisition, processing and analysis of im-

ages to satisfy some goal. It often involves image restoration, object recog-

nition, motion estimation and scene reconstruction. It transforms data re-

ceived from a still or video camera into either a decision or new representa-

tion to accomplish some task such as detection, segmentation, localization

etc. It can be considered a form of image analysis as it takes as input a

2D image and converts it into a mathematical description (Fung & Mann,

2004). It is considered to be the inverse problem of computer graphics as

graphics produces image data from three-dimensional information whereas

vision does the opposite. Thus, we see an overlap in technique between the

two fields.

The Open Computer Vision library (OpenCV) is a cross-platform API

originally developed by Intel and now an open-source project available for

development of computer vision applications. It is the de facto library for de-

veloping real-time image processing and vision application software. It has

an exhaustive collection of CPU-based implementations of popular vision

7

algorithms for performing basic image and video I/O, image conversion, im-

age processing, structural analysis, motion analysis, object tracking, pattern

recognition, camera calibration, 3D reconstruction, view morphing, statis-

tical classification, popular machine learning techniques and so on. The

language used for development is either C/C++ or Python.

2.3 Image Segmentation and Feature Points

Computer vision consists of several tasks such as Image Segmentation which

involves separating a digital image into multiple sets of pixels. This trans-

forms the image into smaller sets of data that are easier to represent and

analyse. It can be used during the first phase of locating objects or bound-

aries in an image. It can be thought of as describing each pixel using some

descriptor such that pixels with similar descriptors tend to share similar

appearance or characteristics.

Background Subtraction or foreground detection is a technique for iso-

lating the object of interest in an image. Most often, the object being de-

tected and identified such as cars, faces, signs etc. appear in the foreground

of the image. During this stage of processing, parts of the image such as the

background are eliminated so as to decrease the amount of processing done.

Feature Point Detection computes abstractions of image information

and identifies unique areas or pixels in the image that exhibit characteristics

such as pose invariance, distinctiveness, locality and repeatability. At each

pixel, we either retain or discard the pixel depending on whether or not it

shows those characteristics. This results in a subset of the image domain that

can be further used for image processing. There is no universal definition of

what a “good” feature is and is most often dependent on the problem domain

and type of application. This is usually the first step following any image

preprocessing for many computer vision algorithms (Wang, 2007). Harris

corner detection, proposed in 1988, is the most widely used feature point

detector. It is based on the calculation of eigenvalues of the second-moment

8

matrix (Harris & Stephens, 1988). Even though very frequently used, it is

not scale-invariant. Lindeberg first introduced an automatic scale-selection

method in (Lindeberg, 1998) based on the determinant of the Hessian matrix

as well as the Laplacian to detect blob-like parts of an image. The technique

was refined by Mikolajczyk and Schmid in (Mikolajczyk & Schmid, 2001)

to create a robust scale-invariant detector that was highly repeatable. This

method used the determinant of the Hessian matrix to select the location

of the point and the Laplacian to determine the scale. With a focus on

speed, Lowe approximated the Laplacian of Gaussian (LoG) by a Difference

of Gaussians (DoG) filter.

Feature Description or extraction is the task of representing the features

chosen from the previous step. It forms the core of many computer vision

algorithms such as object recognition, scene reconstruction and camera lo-

calization. A feature descriptor must be chosen based on the information

needed for the task at hand. Some vision tasks require a high level of detail

from the feature descriptor at the cost of increasing the volume of data to

process. Other tasks might not be able to handle large amounts of data as

performance might be important. In such cases, a compact descriptor might

be chosen. The demand for feature descriptors to be fast to compute and

match within the constraints of limited resources are increasing.

This thesis focuses on feature point detection and description and uses

these features to identify objects in an image. As this is the main concern

of the thesis, in the next section we shall discuss dominant feature point

detection and extraction methods.

2.4 Feature Detection-Description Schemes

A large number of feature descriptors have been proposed including Gaus-

sian derivates, complex features, moment invariants and steerable filters.

However, descriptors that use smaller-scale features within interest point

neighbourhoods as described in (Lowe, 1999) have shown to outperform the

others as they encapsulate a significant amount of information about the

9

Figure 2.1: Speed of corner detection and number of corners vary with the
corner threshold

(Rosten & Drummond, 2005)

spatial intensity patterns in an image providing a robust descriptor.

2.4.1 FAST

Corners are often used in vision systems as feature points as they are distinc-

tive parts of an image. Many feature detection algorithms such as Moravec,

Harris-Stephens, Wang-Brady and SUSAN all rely on corner detection. Fea-

tures from Accelerated Segment Test (FAST) is a popular corner detection

algorithm developed by Edward Rosten and Tom Drummond (Rosten &

Drummond, 2005). The key advantage of using FAST over other techniques

is its computational efficiency and speed that allows for on-line operation

of a tracking system. It works by taking 16 pixels in a Bresenham circle of

radius 3 around the centre pixel p where a corner is detected if at least N

(typically taken to be 12) contiguous pixels have intensity differing from p

above or below some threshold t as shown in Figure 2.1. Corners are then

categorised as either positive or negative depending on whether the pixels

are greater or smaller than p. Partitioning the corners in this manner is

useful as positive feature points do not need to be compared to negative

ones. Once corners have been detected, non-maximum suppression is used

around each of the corners to eliminate adjacent neighbours that were picked

as corners. The strongest (i.e. the one with the greatest intensity difference

between it and its neighbours) is typically retained and the rest discarded.

10

2.4.2 BRIEF

Binary Robust Independent Elementary Features uses binary strings as an

efficient feature point descriptor. It has been proven to be highly discrimina-

tive despite using relatively few bits and is computed from simple intensity

difference tests. It employs the Hamming distance calculation which is very

efficient to compute as opposed to the L2 norm that is more often used.

Thus, BRIEF descriptors are very fast to compute and perform matching

with. It is worth noting that BRIEF descriptors do not provide rotational

invariance and are thus not as useful as other methods such as SURF on

datasets that contain rotations. However, in certain situations it does tol-

erate a small amount of rotation as seen in the test results in (Calonder,

Lepetit, Strecha, & Fua, 2010).

2.4.3 SIFT

Scale-invariant Feature Transform is a feature detection and description al-

gorithm published in 1999 by Daniel Lowe (Lowe, 1999). It is the most

appealing descriptor for practical applications and is thus the most widely

used. SIFT is a combination of three steps namely: key point localiza-

tion, feature description and feature matching. First, SIFT applies Gaus-

sian filters and then calculates the scale-space minima and maxima in the

difference of gaussian (DoG) to locate the key points in an image. DoG

is a greyscale image enhancement algorithm which involves subtracting a

blurred version of the original image from another less blurred version. This

operation can be computationally expensive hence key points are estimated

separately from orientations and magnitudes of the points. Once these key

points have been identified and stored in a database, they are individually

compared to each key point identified in the new scene, and based on the

Euclidean distance calculation of their feature vectors a match estimate is

obtained. A subset of these key points that agree on the object detected in

the new image along with its scale, orientation and location are used to pick

good matches. Consistent clusters are found via an efficient implementation

of the generalized Hough transform using hash tables. This subset is then

11

further filtered for outliers and finally the probability of the presence of a

particular object is computed. Objects that successfully pass all the above

tests are correctly identified as a known object. It computes a histogram

of oriented gradients around key points of interest and stores the bins in

a 128-dimensional vector. To reduce dimensionality and increase speed of

computation, PCA-SIFT has been proposed (Ke & Sukthankar, 2004) which

produces a 36-dimensional descriptor. The increase in computational per-

formance for matching is gained at the cost of discriminative power as shown

by Mikolajczyk and Schmid. Another variant of SIFT, termed GLOH, has

been experimented with (Mikolajczyk & Schmid, 2005) yielding even more

distinctive feature points with the same number of dimensions but it proved

to be more computationally expensive.

In conclusion, SIFT has the advantages of being distinctive, robust and

relatively fast but its high dimensionality is a major drawback.

2.4.4 SURF

Speeded Up Robust Features coined SURF is a novel scale- and rotation-

invariant feature point detector and descriptor. From (Bay, Tuytelaars, &

Gool, 2006) we observe that with respect to repeatability, distinctiveness,

and robustness SURF approximates or even outperforms previously pro-

posed methods while being faster to compute and compare with. This is

done using integral images for image convolutions, using the key strengths

and insights gained from existing techniques and simplifying them. SURF

aimed to be fast to compute while not sacrificing performance and accuracy,

striking a balance between the descriptor’s dimensionality and complexity

versus being distinctive enough. The results show that on benchmark image

sets and on a real object recognition application, the detector and descriptor

are faster, more distinctive and equally repeatable (compared to (Lindeberg,

1998), (Lowe, 1999), (Ke & Sukthankar, 2004) and (Mikolajczyk & Schmid,

2002)). Another variant called upright SURF or U-SURF can be used if ro-

tational invariance is not required resulting in a scale-invariant only version

of the descriptor. This results in a performance boost as well as an increase

12

in discriminative power between features.

The detection phase of SURF is based on the Hessian matrix (and the

determinant of the Hessian matrix to identify location and scale) and uses a

basic approximation (similar to SIFT’s approach) while integral images are

used to reduce computation time. SURF’s descriptor uses a distribution of

Haar-wavelet responses within the interest point neighbourhood of integral

images for the sake of speed. Due to its size (64-dimensions) its computation

time and matching is faster than SIFT while increasing robustness. The

increase in overall robustness is achieved by using an indexing step based on

the sign of the Laplacian, a novel technique described in (Bay et al., 2006).

The descriptor extraction phase works by determining a reproducible

orientation from the information gathered from a circular region around

the point of interest. A square region is then constructed in alignment to

the orientation from step one from which the descriptor is extracted. The

upright version skips the first step to find the orientation and is therefore

faster to compute and well suited for applications where object rotation is

not needed as the camera remains more or less horizontal.

Orientation Assignment

To achieve rotational invariance, each point identifies a reproducible orien-

tation. This is done by calculating the Haar-wavelet responses in the x and

y direction in a circular neighbourhood of radius 6s around the pixel under

consideration (where s is the current scale at which the wavelet responses

are computed). Therefore, it is obvious that the wavelets are big at higher

scales and thus require using integral images for fast filtering. As only six

operations are required to compute the wavelet at any scale, this compu-

tation is very quick. After this, the wavelet responses are weighted with a

Gaussian centered at this point. The orientation is determined by calculat-

ing the sum of all the responses within a sliding orientation window covering

an angle of π
3 . The longest vector obtained from the sum of the horizontal

and vertical responses within the window gives the orientation of the point.

13

Figure 2.2: The descriptor entries of a sub-region represent the nature of the
underlying intensity pattern. Left: In case of a homogeneous region, all val-
ues are relatively low. Middle: In presence of frequencies in x direction, the
value of |dx| is high, but all others remain low. If the intensity is gradually
increasing in the x direction, both values dx and |dx| are high.

(Bay et al., 2006)

Feature Descriptor Components

In order to extract the feature point descriptor, the first step is to construct

a square centered around the feature point oriented in the direction obtained

from the previous step. U-SURF skips this step along with the orientation

assignment step making it computationally much less expensive. The size

of the window is chosen to be 20s. The square region is split up into 4 × 4

square subregions and the Haar wavelet response in the horizontal (dx) and

vertical direction (dy) are summed up over each subregion after weighting

them with a Gaussian centered at the point of interest. This sum forms

the first set of entries for the descriptor. To capture information about

the polarity of change in intensity, the sum of the absolute values of the

above responses is calculated. Each subregion now has a four-dimensional

descriptor vector v = (Σdx,Σdy,Σ|dx|,Σ|dx|). This gives a highly distinc-

tive 64-dimensional vector for the entire square. The descriptor achieves

invariance to contrast through normalization. Figure 2.2 shows how the de-

scriptor behaves for three very different image intensity patterns within a

subregion of an image. Such local intensity patterns combined with others

would produce highly distinctive descriptors.

14

Descriptor Recognition Rate

SURF-128 85.7%
U-SURF 83.8%
SURF 82.6%
GLOH 78.3%
SIFT 78.1%
PCA-SIFT 72.3%

Table 2.1: Feature point-based matching comparisons

SURF was tested based on feature point repeatability against four stan-

dard databases provided by Mikolajczyk (Robotics Research Group, n.d.)

comparing results with dominant techniques including GLOH, SIFT and

PCA-SIFT based on a similarity threshold and the nearest neighbour ra-

tio. SURF outperformed the other descriptors in both cases in a systematic

and significant way with a 10% improvement at times. Another test was

performed aimed at recognizing objects of art in a museum under various

conditions changes such as extreme lighting changes, objects behind reflect-

ing glass, viewpoint changes, scale and rotation changes and different camera

specifications. The matching was conducted using the nearest neighbour ra-

tio matching strategy. An interest point in the target image is compared to

an interest point in the database image by computing the Euclidean distance

between the descriptor vectors of the two points. If the distance is found to

be less than 0.7 times the distance of the second nearest match, it is said

to be that object. A similar approach to matching is followed in this the-

sis. An alternative version of SURF termed SURF-128 was also tested which

has double the number of descriptor values. It results in more discriminative

power while maintaining comparable computation time. However, matching

against the 128-dimensional vector is a lot slower. The results are given in

Table 2.2.

SURF proves to be a fast and well performing feature point detection and

description method that outperforms contemporary dominant techniques in

terms of speed and accuracy. It can be easily extended to accommodate

affine invariant regions and is therefore of particular interest in this thesis.

15

2.5 Object Recognition

Object recognition deals with some of the most important tasks of any vi-

sion system, namely detecting and recognizing objects. Humans can perform

complex vision tasks in a fraction of a millisecond. The performance and

accuracy achieved by computer vision systems still cannot compare to this.

However, research done in this area in the past few years has seen tremen-

dous progress. The obstacles faced by vision systems include heavy or partial

occlusion and change of appearance. The main task of any recognition sys-

tem is:

Given a database D of known objects and a test image I

1. Determine which (if any) of the objects in D appear in I

2. Determine the pose of the object

The choice of technique for an object recognition system depends on

several factors namely:

1. How general is the problem?

(a) Is it a 2D or 3D problem?

(b) What is the range of viewing conditions?

(c) Is there any contextual information about the data available?

2. What sort of data representation is best suited to the problem?

(a) Local 2D features (SIFT, SURF)

(b) 3D surfaces

(c) Images (template matching)

3. How large is the search space (number of objects in the database)?

(a) Small: possible brute force approach

(b) Large: sophisticated search methods (search trees)

16

2.5.1 Image-based Recognition

Image-based recognition works based on the principal that if we see the ob-

ject from every viewpoint and under all lighting conditions, then recognizing

the object consist of merely a table lookup in the space of 2D images. If we

consider an image I as a point in a space and all other such points generated

by “viewing” I in every possible situation as described above, then an object

is some surface in the space of all images. However, in practice the problem

is that images contain a lot of information and there is an infinite variety of

viewing conditions. In addition, objects in the image might be surrounded

or occluded by other objects. Therefore, the data requires compression to

filter out unnecessary information, the search space needs to be reduced and

objects that are not of interest need to be segmented out of the image.

A simple approach to object recognition is template matching where the

information assigned to certain pixels are used to compare the object to

the pixels in the image of a template. This returns a value at each pixel

depending on how close a match was obtained which is then used in various

statistical techniques to perform the matching process. Some of the methods

include:

Square difference matching where the sum of the squares of the differ-

ences between the template and the image intensities is calculated at each

pixel (x, y) in the image, given by:

w∑
m=0

h∑
n=0

(
f(x+m, y + n)− g(m,n)

)2
(2.1)

where a perfect match would give zero and larger values indicate worse

matches.

Correlation matching where the sum of the products of the template

and the image intensities is calculated at each pixel (x, y) in the image, given

17

by:
w∑

m=0

h∑
n=0

f(x+m, y + n) · g(m,n) (2.2)

so a perfect match would result in a large positive value and smaller values

represent worse matches.

Correlation coefficient matching is similar to correlation matching ex-

cept that the template intensity values and the image intensity values are

taken relative to their mean value so a perfect match would result in the

value 1 and smaller values indicate worse matches. These techniques nor-

mally involve normalization to eliminate the effect of lighting changes.

A more sophisticated approach to object recognition would be back pro-

jection which uses the distribution of pixel values in the template to perform

matching as opposed to matching each pixel in the template with the corre-

sponding pixels in the image as is done in template matching. This technique

uses the rectangular patches in the template against the target image by cal-

culating how well the pixel value fits with the distribution of values in the

histogram created from the colour channels of the image. The method is

particularly convenient for matching textures such as grass or human flesh

which do not necessarily have a uniform colour but do have a reasonably

consistent distribution of colours.

Many sophisticated object recognition techniques come under the field of

machine learning where the algorithm progressively refines the parameters

it utilizes in a classifier function as it evaluates training data. The algo-

rithm adapts its behaviour as it learns from data, resulting in increasingly

accurate results over time. The training data typically is a large collection

of images that have been labeled and had important features extracted such

as edges, contours or pixel colour distribution. The classifier then uses these

extracted features from the image to estimate some attribute for the image.

For example, a particular classifier could be used to determine the presence

of a face in the image. Machine learning makes use of various statistical

techniques depending on time and memory available to train the classifier

and how quickly the classifier is expected to process new images. Some

18

of these include the naive Bayes classifier, decision trees, boosting, neural

networks and the Haar classifier.

2.6 Machine Learning

Bradski and Kaehler defines the goal of machine learning (ML) as turning

data into information. After learning from a collection of data, we would like

the machine to answer questions about the data. For example, what other

data resembles this the most? Or is there a face in this image? Machine

learning is a scientific discipline that investigates the development and study

of algorithms that are able to learn from previous data by extracting rules or

patterns from that data and turn it into information. A learning algorithm

would typically work on data such as temperature values, DNA sequences,

colour intensities etc. Features are then extracted from the data set and

used to construct a model to learn from. To achieve the particular goals

for a task, machine learning algorithms analyse the extracted feature values

and adjust weights, thresholds and parameters to obtain the best results

possible for our original goal. The term learning refers to this process of

parameter and threshold adjustment to fulfill our goal.

2.6.1 Types of Learning

Learning is divided into two broad categories - supervised and unsupervised

learning (see Figure 2.3). If the feature vector data has a label associated

with it, it is referred to as supervised learning as the label may be used to

“teach” the algorithm about the data set. However, if we wish to observe

how the data forms groups on its own without any associated label, unsu-

pervised learning might be utilized. Supervised learning can be divided into

classification which deals with categorical labels sets such as learning to as-

sociate a name to a face and regression where the data labels are numeric

or ordered. Regression tries to fit a numeric output based on some numeric

or categorical input. In comparison, clustering algorithms are used when

the data available is not labelled and are interested in seeing what groups

19

Figure 2.3: Types of Machine Learning

the data naturally falls into. The aim is to group unlabelled feature vectors

that are determined to be close to each other by some chosen measure of

closeness.

Typically, developing a classification system follows the steps out lined

below:

1. Split the original data into a large training set and smaller validation

and test sets. The test set is not used during training. Thus, the

tests are conducted on data that has not been “seen” by the classifier

before.

2. Run the chosen classifier over the training set to learn the model given

the extracted data feature vectors.

3. While training the classifier, smaller tests are conducted against the

validation sets. This helps tweak weights and thresholds until the

performance is acceptable.

4. Next, the classifier is tested against the test set.

5. Its results against the test set are recorded and if it does poorly, more

feature data might be added or another classifier might be chosen.

The choice of classifier is largely dependent on a number of factors as

there is no universal “best” classifier. A classifier might perform well or

poorly based on considerations such as computational constraints, data and

memory available and time need to train the classifier. As such, we shall

discuss one such popular classifier that is widely used for a number of ap-

plications.

20

2.6.2 Boosting

Boosting falls under the category of discriminative classifiers and was intro-

duced by Freund and Schapire in 1997. The overall classification is done by

combining weighted classification decisions from a group of weak classifiers.

These weak classifiers tend to be very simple on their own. They usually

consist of single-variable decision trees called stumps or at most up to a few

levels of splits. They are each trained individually during the training phase

where the stump learns its decision from the feature data. Based on the

accuracy of their performance after the training, they each get assigned a

weighted vote for their contribution to the final decision-making. The data

used is a collection of labelled input feature vectors associated with a scalar

label. The algorithm starts out with a data point weighting which is used

to penalize the algorithm for misclassifying a point. The most characteristic

features of boosting is that as the algorithm advances, the penalty value

evolves so as to allow the following weak classifiers to focus on the points

that were misclassified while previous classifiers were being trained. This

continues until the total error count for the group of classifiers is below a

certain threshold. This is a particularly effective method when the amount

of training data available is large and the system has sufficient time to train.

2.7 Graphics Processing Unit

The graphics processing unit, or GPU, is a specialized processor designed

to offload 3D graphics rendering from the central processing unit. Modern

GPUs can carry out computer graphics processing very efficiently since they

are architected to accelerate single-precision floating-point arithmetic opera-

tions such as matrix multiplications on geometric data like vertex attributes

that are processed independently of each other and in parallel, thus achiev-

ing a very high number of floating point operations per second (flops). Most

devices such as embedded systems, personal computers, gaming consoles and

mobile phones have an integrated GPU. Thus, rather than relying on the

more general purpose central processing unit, certain tasks are offloaded to

21

the GPU. It is commonly used for creating lighting effects, texturing objects,

generating dynamic shadows and reflection effects, performing culling oper-

ations and producing animation effects each time a 3D scene is redrawn.

These tasks are highly computationally intensive and would put tremen-

dous strain on the CPU. The first GPU was developed by Nvidia Inc. in

1999 who marketed the GeForce 256 GPU which is a “single-chip processor

with integrated transform, lighting, triangle setup/clipping and rendering

engines that are capable of processing a minimum of 10 millions polygons

per second” (GPU: Changes Everything , n.d.).

2.8 Overview of OpenGL

Accessing the graphics hardware on devices requires an interface such as

OpenGL or Direct3D which provide an API for rendering graphics.

OpenGL is a cross-language, multi-platform software interface that can

be used to access the graphics hardware on a variety of devices. It was

first introduced in 1992 and has become the industry’s most widely used

and supported API for 2D and 3D vector graphics. It is supported on a

wide range of operating systems including Mac OS, Windows, Linux, Unix

and so on. It is a hardware-independent interface governed by the OpenGL

Architecture Review Board (ARB), based on the C programming language.

OpenGL ES is a subset of OpenGL for use on embedded systems. OpenGL

is callable from Ada, C, C++, Fortran, Python, Perl and Java and of-

fers complete independence from network protocols and topologies. It is

typically used to gain access to the GPU to achieve hardware-accelerated

graphics rendering. The process of transforming geometric objects provided

by a software application into a two-dimensional object to be drawn on the

screen is called rendering. There are two common software API for graphics

rendering namely OpenGL and Direct3D which is part of the proprietary

DirectX API developed by Microsoft for the Windows platform for 2D and

3D graphics rendering.

Android supports graphics development via OpenGL ES and is thus

22

used in this thesis for implementing and testing various computer vision

algorithms.

2.9 Rendering Pipeline

The rendering pipeline is the series of steps that OpenGL takes when render-

ing geometric objects to obtain a 2D raster representation of a 3D world on

the screen (Rendering Pipeline Overview , n.d.). It accepts vertex attributes

(vertex coordinates, normal vectors, RGBA colour, texture coordinates) as

input as well as read-only state configuration values (such as enabled or

disabled states, model-view and projection matrix) and produces as output

pixel-based data (such as pixel colour, depth or stencil values). The imple-

mentation and optimization of the graphics processing pipeline on a GPU

might vary between vendors but the effects of the pipeline are always equiv-

alent to the seven stages listed below. The application first sets up the input

to send to the pipeline (using OpenGL commands) which is an ordered list

of vertices and vertex attributes. This input is then processed as follows:

Per-vertex operations accepts as input the attributes for an individual

vertex. It uses the model-view matrix, projection matrix and texture matrix

to transform the vertex attributes into clip space coordinates and assigns

each vertex a primary and secondary colour. This stage performs light

shading calculations if enabled.

Primitive Assembly assembles the vertex data for each vertex until it

has sufficient vertices for a complete primitive. Points, lines, triangles, quads

or polygons can be rendered and the number of vertices required varies for

each primitive type.

Primitive Processing clips the primitive from the previous stage against

the view frustum either rejecting the primitive if it lies completely outside

the view frustum or allowing it to progress through the pipeline if it lies

completely inside, or else clipping away parts that are not visible. Once

23

the appropriate clipping and culling is performed, it converts the clip space

coordinates into window coordinates.

Rasterize takes the window coordinates and colour for each vertex in the

primitive and rasterizes the primitive. This results in a pixel representation

of the primitive as fragments which is a pixel-sized square inside the viewport

region with an associated colour, depth and other attributes such as texture

coordinates.

Fragment Processing performs texture mapping using the fragment colour

determined by the previous stage and the active texture for each texture

unit. Other effects such as fog, secondary colour etc. are also used to mod-

ify the colour at that stage.

Per-fragment Operations performs a series of simple tests to determine

whether the fragment should result in a pixel at window coordinates or

instead be rejected. It uses the pixel ownership test to check whether or not

the fragment would result in a pixel occluded by an overlapping window, the

alpha test to check whether the fragment colour’s alpha value satisfies the

alpha comparison and other similar tests to eventually output the pixel’s x

and y coordinates along with a colour value. After these tests have been

completed, the colour of the fragments that were not culled are blended with

the colour at the corresponding location in the frame buffer.

Frame Buffer Operations Last of all, the fragment data are written to

the framebuffer. These pixels might remain in the pipeline until the GPU

has collected a sufficient number of processed primitives sending a group of

pixels to the buffer.

The above stages describe the fixed functional rendering pipeline which

is very efficient for traditional graphics rendering, allowing a variety of ad-

vanced rendering effects to be achieved by the use of pipeline configura-

tions. However, controlling these configurations add to the complexity of

24

the pipeline and hinder throughput. Moreover, certain effects are not possi-

ble using the fixed function pipeline, e.g. refractions and soft shadows. This

has led the modern GPU pipeline away from a fully fixed function approach

to a pipeline which allows application generated code to replace some parts

of the pipeline rather than merely configure it. Thus, the application can

take control of how vertices, primitives and fragments are processed and

manipulated by the GPU.

2.9.1 Programmable Shaders

A shader is a piece of code that gets deployed to a specific stage of the

pipeline and replaces that stage. There are several shader languages that

have become dominant for programmable parts of the pipeline like Ren-

derman, OpenGL Shading Language, High-Level Shader Language and Cg.

Most GPUs allow three types of programmable shaders to be used which

get deployed to the specific part of the pipeline they are to replace.

Vertex Shader replaces the fixed functionality of the Per-vertex Opera-

tions stage of the pipeline, operating on each individual vertex received by

the pipeline and transforming it

Geometry Shader replaces the Primitive Processing stage of the pipeline

operating on each primitive, possibly changing its type, introducing or re-

moving vertices and outputting one or more primitives to progress through

the pipeline

Fragment Shader replaces the Fragment Processing stage of the pipeline

operating on each individual fragment it receives, possibly changing how a

texture is mapped onto the fragment or some other modification to the

colour of the fragment.

For this thesis, several vertex and fragment shaders were developed to

emulate the fixed functionality of the pipeline processing performing various

image processing tasks rather than its original functionality described above.

25

Figure 2.4: CPU versus GPU cores
(What is GPU Computing? , n.d.)

2.10 GPU Accelerated Computing

Computer vision algorithms can be very computationally intensive as each

pixel might need to be processed to extract information. These algorithms

also need to be able to run in real-time (Fung & Mann, 2005). This is quite

a strain for the CPU as it is not optimized for such algorithms. However,

the architecture of the GPU allows for this strain to be shared by its many

cores.

The trend has been for GPUs to progressively open up more and more of

the graphics rendering pipeline to allow programmable shaders to execute at

stages within the pipeline. As a result the potential for GPU computing be-

yond graphics rendering has increased tremendously. It has found a place in

diverse fields such as machine learning (Raina, Madhavan, & Ng, 2009), sci-

entific and medical image processing, linear algebra (Kruger & Westermann,

2003) and statistics (Liepe et al., 2010). This is termed as general-purpose

computing on graphics processing units (GPGPU) or GPU-accelerated com-

puting. It refers to using the GPU for performing computations besides

rendering which were traditionally handled by the CPU. “GPU-accelerated

computing is the use of a graphics processing unit (GPU) together with a

CPU to accelerate scientific, analytics, engineering, consumer, and enter-

prise applications” (What is GPU Computing? , n.d.) (see Figure 2.5). As

26

Figure 2.5: How GPU Acceleration Works
(What is GPU Computing? , n.d.)

GPU are architectured specifically for performing single-precision floating-

point arithmetic operations (such as matrix multipications) on streaming

data (such as vertex attributes) that are processed independently in parallel

they have been able to achieve a very high number of floating point opera-

tions per second (flops). For example, the ATI Radeon or an Nvidia Tesla

GPU can achieve up to approximately 4 teraflops (single-precision floating

point), whereas a six core Intel CPU achieves approximately 80 gigaflops.

Thus, the GPU has become increasingly attractive for computations that

are arithmetically intense where the data can be processed independently.

The processing nature of the GPU lends itself very well to certian types

of algorithms that can exploit the streaming data parallelism design. How-

ever, multicore CPUs have a much larger memory cache on the processor for

faster memory access and offer better handling on unpredictable branches

and looping. So the CPU stills tends to outperform the GPU with algo-

rithms that require task parallelism where multiple tasks execute in parallel

with little inter-process communication.

27

2.11 ColourFAST

This section discusses in detail ColourFAST feature points which are the

basis of this thesis. This feature point descriptor was proposed in (Ensor &

Hall, 2013) and is a real-time GPU-based feature detection and descriptor

algorithm. It extracts vector-based feature strength and direction measures

from the RGB colour channels of an image. As shown in the previous sec-

tions, certain computer vision tasks benefit greatly from GPU acceleration;

the algorithm has been architected with this in mind. This method has

shown great results for the purpose of object tracking and very basic ob-

ject recognition with an implementation on mobile devices. It has shown

several improvements over FAST which has also been tested on mobile de-

vices. From the analysis in (Ensor & Hall, 2011) we see clearly see that

mobile GPU-based algorithms tend to be advantageous to image process-

ing in terms of speed which is of utmost importance for applications that

rely on high framerate output. GPUs have become popular for many im-

age processing tasks due to their superior performance with highly parallel

floating-point calculations and the nature of such tasks as described previ-

ously (Kim, Park, Cui, Kim, & Gruver, 2009).

Mobile devices face numerous challenges when it comes to computer vi-

sion applications such as varying quality and resolution in camera capture,

differing processing capabilities leading to low frame rates, non-standard

formats for image and video capture on different devices and so on. Most

feature detection and description algorithms have been designed for CPU-

based applications and their performance on mobile devices is unacceptable

for an application that requires real-time performance. This led to com-

promises such as offloading most of the image processing to a networked

server, introducing markers into the scene (such as fiduciary markers or QR

codes) or using predetermined templates. The aim of ColourFAST was to

develop a robust feature detection and description algorithm that could be

used for real-time image processing tasks such as tracking and recognition

without the need for the above mentioned workarounds. It proposed a vari-

ant of FAST specifically designed for the GPU that is quick to compute

28

and can be described compactly. As the dimension of the feature point de-

scriptor has a direct impact on the time taken to compute and search for

the descriptor, it was of utmost important to ensure that ColourFAST was

compact. It attempted to resolve certain issues that FAST faced such as

feature points not being detected consistently between frames, some corners

not being detected due to thresholding of greyscale images and issues due to

the presence of noise. To eliminate these issues, colour channels were used

to provide valuable information about the interest points. Due to the single

instruction multiple data (SIMD) nature of GPUs, this added information

did not contribute to increased computation time. In addition, the change

in colour across the pixel gave an orientation for the feature so a direction

measure was added. The combination of Bresenham colour values and direc-

tion gave a unique and compact 4-dimensional feature vector. To counteract

the presence of noise the implementation performed a 3× 3 smoothing step.

ColourFAST follows the same approach as FAST which is an efficient

and simple corner detection algorithm for greyscale images. FAST takes 16

pixels in a Bresenham circle of radius 3 around the pixel being tested where

at least 12 of these pixels should have an intensity differing from the centre

pixel above some threshold for that pixel to pass the test and be considered

a corner. Due to the nature of computing on GPUs, the thresholds used

by FAST were no longer needed. Therefore, the minimum requirement of

12 pixels in the neighbourhood of the pixel being tested was removed to

allow any feature point to be considered (not just corners). The intensity

difference threshold was also removed which proved to be beneficial.

2.11.1 Half Bresenham and Feature Strengths

This technique follows a similar method to FAST where it calculates feature

point values at a pixel by subtracting it from the average of the neighbouring

pixels in a Bresenham circle to give the change in intensity at that pixel.

The difference between the two is that ColourFAST computes the intensity

change in each channel rather than on a greyscale image. It also eliminates

the thresholding which is common in FAST to get rid of points that are not

29

1 1 1

1

1

1

1

1

111

1

1

1

1

1

-16

1 1

1

1

11

1

1

-8

Figure 2.6: Bresenham circle (left) used by FAST and half-Bresenham circle
(right) used by ColourFAST

(Ensor & Hall, 2013)

corners. In order to boost performance, it reduces the number of texture

lookups performed by the GPU to half by using 8 neighbouring pixels rather

than 16 (as in FAST). Before the feature strength calculation is performed,

a smoothing step is used to blend each pixel with its 8 neighbouring pixels.

This allows only half the adjacent pixels to be used for the calculation and

makes this approach more robust to noise.

The calculation at each pixel is given by Equation 2.3

[H]

FR

FG

FB

 =

PR

PG

PB

− n=8∑
i=0

Ni,R

Ni,G

Ni,B

× 1

8
(2.3)

After computing the feature point strength values for a pixel, each colour

channel contribution to the final result can be adjusted to give an overall

strength value for the pixel as a scalar. The amount each channel contributes

to the overall strength value can be controlled via a weighting factor which is

chosen through experimentation. The value picked for the weighting depends

upon the channel that is of particular interest. The strength value for a pixel

is particularly useful for eliminating weaker pixels that are not of interest.

However, for extraction of the feature descriptor, a three dimensional vector

was found to provide richer information about the point of interest.

30

9 12 18 12 9

12 16 24 16 12

9 12 18 12 18 12 18 12 9

12 16 12 12 16 12

18 24 18 18 24 18

12 16 12 12 16 12

9 12 18 12 18 12 18 12 9

12 16 24 16 12

9 12 18 12 9

-72 -96 -72

-96-128-96

-72 -96 -72

Figure 2.7: Neighbourhood pixel contributions to ColourFAST
(Ensor & Hall, 2013)

2.11.2 Feature Orientation

This phase of the calculation computes a θ value for the pixel under consid-

eration. This value gives the direction of change of intensity for the given

pixel. It is given as the arc tangent of the x direction and y direction. The

orientation of a point is calculated by taking the vector sum of the eight

RGB colour changes from the previous step and subtracting values from the

pixels that lie below the centre pixel from the ones that lie above to give

the ∆Y . Subtracting the left pixel values from the right pixel values gives

∆X. Using the Pythagorean theorem and assuming a distance of 1 unit

from the centre, we obtained two constants in the X and Y directions to

multiply each RGB value in the corresponding directions. We then combine

the vector obtained for each colour component to give a single overall value

by taking the dot product with a unit vector formed from the feature point

strength value. This gives a heavier weighted orientation for colour com-

ponents with more drastic changes in intensity (see Figure 2.8). Both the

above phases combined gives us a four dimensional vector.

Xdir =

FR

FG

FB

 ·
∆XR

∆XG

∆XB


∣∣∣∣∣∣∣
FR

FG

FB


∣∣∣∣∣∣∣ (2.4)

31

1

0.949
0.316

Figure 2.8: Feature orientation vector calculations
(Ensor & Hall, 2013)

Ydir =

FR

FG

FB

 ·
∆YR

∆YG

∆YB


∣∣∣∣∣∣∣
FR

FG

FB


∣∣∣∣∣∣∣ (2.5)

θ = arctan
Ydir
Xdir

(2.6)

ColourFAST has been shown to have several advantages over many pop-

ular feature detection and description algorithms as it uses the three colour

channels rather than a greyscale image. This exposes features that show a

change in colour but not necessarily in overall intensity. The extracted de-

scription is a mere four dimensions compared to either 64 or 128 dimensions

as used by most techniques and is fast to compute and match with. Thresh-

olding is not performed as edges that are not corners can be strong feature

points and provide valuable information for object tracking or recognition.

All the calculations are performed with the GPU in mind and optimized for

vector SIMD calculations. Thus, little or no perfomance penalty is incurred

as seen in Chapter 5 of (Hall, 2014).

Testing was performed on the Samsung Galaxy S2 I9100 (ARM Mali-

400 MP4 GPU) and the Samsung Galaxy S4 GT-I9505 (Adreno 320 GPU).

These devices run Android v2.3 and 4.2 respectively and use the Open GL ES

2.0 pipeline with GLSL version 1.0. Through these tests, it was proven that

high frame rates can be obtained running the ColourFAST detection and

32

Device and Resolution FAST (OpenCV) FAST (GPU) ColourFAST (GPU)

Galaxy S2 (640x480) 25.1 30.5 39.8
Galaxy S2 (800x480) 20.6 25.5 32.4
Galaxy S4 (640x480) 21.3 53.7 51.4
Galaxy S4 (1920x1080) 8.3 23.3 21.3

Table 2.2: Feature point throughput comparisons (FPS)
(Hall, 2014)

description calculations every frame (for results, see Table 2.2). ColourFAST

was shown to extract richer information from features compared to FAST

while maintaining comparable performance.

2.12 Example Application Domains

2.12.1 Medical Image Analysis

The progress made in computer vision techniques over the past decades

has allowed extensively improved diagnosis, treatment and predication of

diseases via medical imaging (C. Chen, 2014). With the aid of texture, con-

tour, shape and contextual information from sequences of images computer

vision can provide rich 3D and 4D data to help medical professionals. Vision

techniques such as image segmentation, machine learning, pattern recogni-

tion and scene reconstruction provide powerful tools that greatly benefit

trained medical specialists. With the growing amount of annotated med-

ical data, large-scale, data-driven methods are apt to bridge the semantic

gap between images and medical diagnosis. The emphasis of this field is

on collating, organising and learning from large-scale medical imaging data

sets. Techniques that work well on previously unseen images and that can

be applied and scaled to large data sets are of particular interest. Such

methods must be robust to weak or noisy annotations in training data. For

example, these can be used for (MICCAI Workshop on Medical Computer

Vision: Algorithms for Big Data (bigMCV), n.d.):

1. Anatomical structure localization through object recognition and cat-

33

Figure 2.9: Outdoor scene with FAST (upper) versus ColourFAST (lower)
feature values evaluated at each pixel

(Ensor & Hall, 2013)

34

egorization

2. Developing 3D image descriptors and interest points for object local-

ization

3. Generative models of 3D image scenes relying on, or complementing,

population atlases of anatomy or function

4. Features and algorithms dealing with image acquisition variations,

such as CT scan plan or MR pulse sequence variations, with/with-

out contrast agents

Tommasi, Torre, and Caputo describe the success rates achieved with

extensive experiments using support vector machines and spin glass-Markov

random fields (both machine learning techniques) for skin lesion classifi-

cation. Malignant melanoma is a fast spreading, complex disease that is

incurable in its advanced stages. Therefore, early detection and treatment

are the key factors in reducing occurrences. Detection of skin lesions via

Epiluminescence Microscopy is the most widely-used diagnostic tool. How-

ever it is prone to misinterpretation and misidentification by dermatologists.

As a result, an autonomous system for melanoma detection and recognition

would be very valuable support for physicians. There have also been nu-

merous studies using segmentation and feature extraction and performing

classification with a nearest neighbour classifier such as (Ganster et al.,

2001). A mean recognition rate of 61% was achieved and these results con-

stitute the state of the art in the field (Tommasi et al., 2006). Grana, Pel-

lacani, Cucchiara, and Seidenari have also conducted work in this area and

proposed mathematical descriptors for the border of pigmented skin lesion

images and evaluated their efficacy for distinguishing them from other lesion

groups. Data mining techniques in conjunction with vision based methods

were explored in (Grzymala-Busse, Grzymala-Busse, & Hippe, 2001) with

great success. Lefevre, Colot, Vannoorenberghe, and de Brucq proposed a

theory based on data fusion, regression and classification (see Section 2.6.1)

called the Dempster-Shafer’s theory. They applied their classification pro-

cess on a training set of 81 lesions: 61 benign and 20 malignant melanoma

35

Figure 2.10: Examples of skin lesions images used: (a) image of a benign
lesion, (b) image of a dysplastic lesion,(c) image of a malignant lesion. (d)
shows an example of an entire image, (e) the same image hand-segmented,
(f) the same image mask-segmented

(Tommasi et al., 2006)

lesions.

2.12.2 Augmented Reality

The term augmented reality (AR) refers to augmenting the view of a real-

world environment by computer generated input such as image, sound, video

or GPS data. It combines the user’s environment (obtained via a camera

feed) with computer generated models to produce a powerful user interface

technology. Using AR technology along with computer vision techniques

such as object recognition, the surrounding environment of the user becomes

interactive and digitally manipulable. Compared to virtual reality which

replaces the user’s real-world, AR blends the physical and virtual world by

registering 3D or 2D graphical information to real-world locations rendered

to a display in real-time (Lee, Kitayama, Kwon, & Sumiya, 2009), (Reitmayr

& Schmalstieg, 2003). This has given rise to a number of new applications

such as AR games, task support, medical imagery and surgical guidance,

education, navigation and travel assistance and so on. With this, the tools

and SDKs for developing such applications have also grown. Following are

some of the popular tools for augmented reality applications.

36

Layar Browser is a free mobile application available for a variety of

mobile platforms developed by the Dutch company Layar. It allows user-

selected location-based layers to be displayed within the Layar browser using

points of interest. These points of interest could be images, 2D or 3D ob-

jects, animations or an associated action such as a URL, phone number or

email address.

Junaio is a free MAR browser and SDK for the development of third-party

MAR applications for Android and iOS developed by the German company

Metaio. It allows developers to create location-based channels to have text,

animations, or static 3D objects as points of interest. The developer also has

the option of using optical Glue channels for previously registered images to

be recognized and overlayed with animated or static models. As with Layar,

a point of interest can also hold audio, video, images or URL links.

2.12.3 Autonomous Vehicles

An autonomous vehicle (or driverless car) is an automated vehicle that fulfils

the main transport capabilities of a traditional car (Krogh & Thorpe, 1986).

It can sense its environment and navigate through it without any human in-

put with the help of radar, lidar (a remote sensing technology using a laser),

GPS and computer vision (Gehrig & Stein, 1999). So far, driverless cars ex-

ist as prototypes and research demonstrations with the first autonomous cars

were introduced by Carnegie Mellon University’s Navlab and ALV projects

in 1984 and Mercedes-Benz and Bundeswehr University Munich’s EUREKA

Prometheus Project in 1987. Since then, several other companies and re-

search groups have undertaken work in this area. Prominent among them

are Mercedes-Benz, General Motors, Bosch, Nissan, Toyota, Audi, Oxford

University, Google and Vislab from University of Parma. In July 2013, Vis-

lab introduced BRAiVE, a driverless vehicle that autonomously navigated

through a mixed traffic route that was open to public traffic in a highway

and urban setting (refer to Figure 2.11). The greatest challenge faced was

negotiating roundabouts of varied sizes and shapes, underpasses, pedestrian

37

crossings and traffic lights (Public ROad Urban Driverless-Car Test 2013 ,

n.d.). It made use of:

1. Two frontal cameras used to locate obstacles, obey traffic lights, iden-

tify road markings and reconstruct the terrain

2. Lateral cameras combined with lateral laser scanners to handle merg-

ing traffic and manoeuvring roundabouts

3. Frontal laser scanner along with the two lateral scanners to locate

lateral objects

4. Two back-facing cameras that were used to identify vehicles in adjacent

lanes

The vision system used by BRAiVE is based on the real-time processing of

two images obtained from two synchronized cameras and provides terrain

estimation in front of the vehicle while also locating and tracking frontal

obstacles. The image processing by the system is done at the rate of 12.5Hz

from each camera which are each 1 megapixel. This allows for scene recon-

struction of a 3D world in front of the vehicle every 80 milliseconds.

As of 2013, Florida, Nevada, California and Michigan have passed laws

allowing autonomous cars on the road. Several European cities such as

Belgium, France, Italy and the UK plan to run transport systems for au-

tonomous cars. Spain, Germany and the Netherlands currently allow driver-

less cars to be tested in traffic. The DARPA Grand Challenge and the

DARPA Urban Challenge are competitions for autonomous vehicles orga-

nized and funded by the Defense Advanced Research Projects Agency. The

vehicles are expected to obey the state driving laws, be entirely autonomous

using only information obtained via sensors and GPS. They must also be

able to operate in varying weather conditions such as rain and fog and must

avoid obstacles along the way. The challenge has attracted the attention of

numerous universities, businesses and research organisations (DARPA Ur-

ban Challenge, n.d.).

38

Figure 2.11: Course navigated during the PROUD-Car Test
(Public ROad Urban Driverless-Car Test 2013 , n.d.)

2.12.4 Object Recognition

Google Goggles

Google Goggles is an object recognition mobile application developed by

Google that allows the user to do a Google search by taking a picture with

their mobile phone (Search for pictures with Google Goggles, n.d.). Google

Goggles is specifically developed to run on the Android operating system.

This application works best on object categories such as books and DVDs,

famous landmarks, logos, contact information, artwork, businesses and prod-

ucts and text. However, the algorithms used are not publicly known. It can

be used for the following:

� Scan barcodes using Goggles to get product information

� Scan QR codes using Goggles to extract information

� Recognize famous landmarks

� Translate by taking a picture of foreign language text

39

� Add Contacts by scanning business cards or QR codes

� Scan text using Optical Character Recognition (OCR)

� Recognize paintings, books, DVDs, CDs, and just about any 2D image

� Solve Sudoku puzzles

� Find similar products

40

Chapter 3

Design

3.1 Motivation

The work undertaken in this thesis follows on from (Hall, 2014) and simi-

larly focuses on the efficient computation and matching of feature points for

the purpose of object recognition on mobile devices. ColourFAST feature

points have proven to be sufficiently unique for the purposes of tracking

as the feature vectors do not vary much between consecutive frames. For

the purpose of simplistic object recognition against a small database they

appeared to be adequately distinctive yielding promising results. However,

the matching accuracy drops when tested on more complex real-world ob-

jects. This is due to the fact that real-world objects tend to vary a lot in

terms of scale, rotation, skew, lighting conditions and so on. As the original

points rely solely on colour change, the descriptor contains no information

about the scale or rotation of the object. In addition, it cannot differentiate

between objects of similar colour variations. For example, it would struggle

to tell the difference between the two squares shown in Figure 3.1 as, of

the four feature points in each, two are identical and the other two only

differ in their direction component by a quarter turn. This work attempts

to enhance the descriptor by adding spatial locality information alongside

the feature strength and direction measures. The work undertaken benefits

greatly from the work carried out previously as the feature points are pro-

41

Figure 3.1: Two objects with same RGB colour changes but different direc-
tion measures in two feature points

cessed through the GPU pipeline very quickly and, thus, lends itself well to

real-time feature point extraction, description and matching.

Due to the use of direction measures calculated for each feature point,

it might be able to tell the squares apart in some situations. However, with

structures that have similar colours and similar direction measures it is com-

pletely arbitrary which one gets matched best (for example, see Figure 3.2).

In this figure each feature point has the same colour change values as well as

the same orientation and therefore the two objects cannot be differentiated.

By augmenting the feature descriptor with spatial locality information asso-

ciated with each feature point, we are able to gain an understanding of the

shape of the object. This gives us an idea of the relative position of each

feature point in the object. This work focuses on using this information in

conjunction with the RGBθ values to develop a scale and rotation estimator

that can be used to correct the position of the feature points and improve

upon the feature matching results.

3.2 Spatial Locality

As seen above, using colour change values in each of the RGB channels along

with an orientation measure may not have enough discriminative power

when it comes to feature matching between real-world categories of objects

that have tend to have similar colour changes. Thus, the feature vector is

extended by adding the x and y coordinates for each feature point chosen.

42

Figure 3.2: Two objects with same RGB colour changes and same direction
measures

Original Image Image with feature points

Figure 3.3: The Starry Night, Vincent van Gogh (1889)

This gives a 6-dimensional vector which is very compact, quick to calculate

and perform matching with. It is important to note that the feature descrip-

tor does not rely on dimensionality reduction techniques such as Principal

Component Analysis, Local Discriminant Embedding (H.-T. Chen, Chang,

& Liu, 2005) or quantization to encode the floating-points into integers using

fewer bits as most other description schemes do. This makes it particularly

efficient to compute and match. Since the colour change is being calcu-

lated for a given ColourFAST feature point, it does not incur a performance

penalty to also extract the coordinates for that point.

Another drawback that was noticed in (Hall, 2014) was the low repeata-

bility of feature points. Since the feature points were selected manually (by

touching the screen at the desired location) if the user selected a different

feature point while testing, the match accuracy tended to drop. Moreover,

the original feature vector would not be able to tell that the objects in Fig-

43

Figure 3.4: Two objects with the same RGB colour changes and same di-
rection measures with one slightly rotated

Figure 3.5: Two objects with the same RGB colour changes and same di-
rection measures with one scaled

ure 3.4 and 3.5 were in fact the same object but at a different rotation and

scale respectively. By introducing spatial locality to the descriptor, we aim

is to address some of these issues.

3.3 Scale and Rotation Estimator

Using the example above, it is clear that based on colour change there would

be no sense of rotation or scale and each of the objects in Figure 3.2 might

be considered the same object. Developing a scale and rotation estimator

provides richer information regarding the objects in a scene. The estimator

starts by picking the two best matching feature points (referred to as anchor

points) based on the Euclidean norm of their RBGθ values between the

target object and the reference object. The θ component is weighted to

contribute less than the RGB components so that the matches are based

mainly on colour change and are, therefore, less sensitive to rotations. Once

the anchor points have been selected, they are used to estimate the pose of

44

the object during the feature matching phase.

Let T = ⟨rT , gT , bT , θT , xT , yT ⟩ be a feature vector from the target image

andD = ⟨rD, gD, bD, θD, xD, yD⟩ be a feature vector from the database being

matched. We get the distance between the orientation components of two

points by using the formula:

dθ = 1− 2×
∣∣|θT − θD| − 0.5

∣∣ (3.1)

where θT and θD are encoded between 0 and 1 (rather than in degrees or

radians) to conveniently allow their values to be passed between the CPU

and GPU and between multiple render passes.

The Euclidean distance between the RGB components of two points is

given by:

dRGB(T,D) =
√

(rT − rD)2 + (gT − gD)2 + (bT − bD)2 (3.2)

We define a modified and weighted version of the Euclidean distance:

dRGBθ = dRGB(T,D) + dθ × 0.15 (3.3)

which gives an overall distance measure for two points. The closest matches

based on this distance d are used as anchor points as they are assumed to

be the same point on the target as in the database image (possibly scaled

and rotated). To pick two point as anchors, we match every feature point

vector on the target image to every feature point vector in the database of

objects and compare the match values obtained.

Once the two anchor points (x1T , y1T), (x2T , y2T) in the target image and

(x1D , y1D), (x2D , y2D) in the database image have been picked, we assume

that (x1T , y1T) is the same point as (x1D , y1D) and (x2T , y2T) is the same

point as (x1D , y1D), (x2D , y2D). The ratio of their Euclidean distances gives

the scale factor s for the target image.

s =
d
(
(x1D , y1D), (x2D , y2D)

)
d
(
(x1T , y1T), (x2T , y2T)

) =
dD
dT

(3.4)

45

(x1D , y1D)
φD

(x2D , y2D)

∆xD

∆yDdD

(x1T , y1T)
φT

(x2T , y2T)

∆xT

∆yTdT

Figure 3.6: Scale and rotation calculations

For the rotation estimate, we calculate φD, φT as follows:

φD = arctan
∆yD
∆xD

(3.5)

φT = arctan
∆yT
∆xT

(3.6)

φ = φD − φT (3.7)

The values s and φ are then used to scale, rotate and translate the

object in the target object to match the object in the database. In linear

algebra, linear transformations can be represented by matrices. If T is a

linear transformation mapping Rn to Rm and x⃗ is a column vector with n

entries, then

T (x⃗) = A× x⃗ (3.8)

for some m× n matrix A, called the transformation matrix of T .

For transforming the target object in two dimensions, the following trans-

formation matrix is used(
x′

y′

)
= s ·

(
cosφ − sinφ

sinφ cosφ

)(
x− x1T
y − y2T

)
+

(
x1D
y1D

)
(3.9)

46

The translation is performed with respect to the first anchor point (x1D , y1D)

in the database. This point corresponds to the best possible match be-

tween the feature points in the target image and those in each object in

the database and is, thus, used for the translation. As we iterate through

each feature point in the target image, its x, y values are “corrected” using

the above transformation matrix to obtain a predicted location (x′, y′) for

that point. As explained previously, this approach builds on the assumption

that the two anchor points in the target image and database respectively

are indeed the same point. To make this approach more robust, using an

additional number of anchor points might be considered.

47

Chapter 4

Implementation

4.1 GPU-based ColourFAST

This chapter discusses the implementation of the feature point description

scheme proposed in (Hall, 2014) including the extension by adding spatial

information. It also explains the method used for feature point matching

and describes the tests conducted. All of the algorithms implemented were

set up and run on devices running the Android platform. However, minor

changes in the set up would allow the program to run on any device that

supports OpenGL ES.

ColourFAST starts by processing a coloured image frame and converting

it from the Android default format (NV21) to the RGB colour space. The

NV21 format produces YUV values for the image frame where the Y and the

UV values are interleaved as shown in Figure 4.1. Therefore, the first task for

the program is to perform a GPU render pass to output either YUV or RGB

values in a single texture. The input for this render pass is a texture with Y

values and another for the UV values and the output is a single texture that

contains values in either of the chosen colour spaces. This is done so that the

remaining render passes require only a single lookup texture for pixel colour

values. The RGB colour space was chosen for this implementation as this

is the same colour space used by Hall for the entire ColourFAST pipeline.

However, in practice there was no significant advantage using either colour

48

Figure 4.1: YUV colour space values in the NV21 format (default for An-
droid devices)

(YUV pixel formats, n.d.)

space over the other.R

G

B

 =

 Y + V × 1.402− 0.701

Y − U × 0.344− V × 0.714 + 0.529

Y + U × 1.722− 0.886

 (4.1)

The next two render passes perform a smoothing step using a 3× 3 con-

volution kernel on each of the three colour channels. As the Gaussian kernel

is separable it is applied as two separate one-dimensional convolutions as

shown in Equation 4.2 in the X and Y direction. This requires an addi-

tional render pass but reduces the number of texture lookups as well as the

number of multiplications that need to be performed, thus providing a small

performance boost overall.0.09 0.12 0.09

0.12 0.16 0.12

0.09 0.12 0.09

 =

0.3

0.4

0.3

 · (0.3 0.4 0.3
)

(4.2)

The following render pass uses the same approach as FAST to calculate

the feature point values at each pixel. The value at each pixel is taken and

subtracted from the average of the neighbouring pixels surrounding it within

49

the Bresenham circle. This gives a measure for the change in intensity.

The difference from the FAST calculation is that ColourFAST is performed

in each colour channel as opposed to a greyscale image. The threshold

used for FAST to determine a corner is eliminated allowing all points to

be considered as feature points. The number of neighbouring pixels used

in the calculation is half of that used by FAST (i.e. 8 surrounding pixels).

Due to the smoothing step, using 8 surrounding pixels results in effectively

using 65 surrounding pixels as their values are blended with the values of the

pixels used. This results in a feature point value that is more robust to noise

than a FAST feature point. The formula used for this calculation is given by

Equation 2.3 on page 30. Thus, so far, we have obtained a three-dimensional

feature vector.

The next render pass uses the output texture from the smoothing step

to calculate the orientation for a given feature vector. This is obtained by

taking the vector sum of the RGB changes for the 8 surrounding pixels,

subtracting pixels below the centre pixel from the pixels above the centre

to give ∆Y and likewise subtracting horizontally to obtain ∆X. Using the

arctan ∆Y
∆X formula we obtain a θ value for the feature point in each channel,

which are then combined together using a weighted average. This produces

a four-dimensional feature vector giving the colour change in each channel

along with the feature orientation. This vector will be referred to as RGBθ

for the sake of convenience for the rest of this thesis. As textures passed

into the GPU pipeline can have at most four components at each texel, this

compact vector is particularly convenient since every feature point descriptor

can be held in one single texel in the texture that gets bound for each render

pass.

4.2 Feature Discovery via Contour Tracking

ColourFAST uses an algorithm based on contour tracking for discovering

new feature points on an object. It starts by using a feature point that

gets placed manually on some part of the contour of an object. From that

point on, the algorithm progressively follows the contour and discovers new

50

Figure 4.2: GPU ColourFAST feature detection pipeline. Shaders are shown
in yellow and the input/output textures are in white. The shader shown
with the dotted border is optional for cases when a direction vector in all 3
components is desired

(Hall, 2014)

points that are distinctive based on their feature point strength measure.

It utilizes Haar-like features (Viola & Jones, 2001) to track the ridges and

valleys formed around the outline of an object due to the colour change

in intensity. It continues to trace around the contour of the object until

the desired number of features have been extracted. This method was used

to discover feature points during the feature matching tests performed by

Hall. These tests were carried out on a database of objects consisting of 50

popular company logos similar to that shown in Figure 4.3.

It is implemented using a combination of the CPU and GPU. The CPU

keeps track of where on the contour of the object the algorithm has traced

up to and the GPU executes a shader to discover new feature points. The

input to this shader is the output texture from the ColourFAST feature

detection phase of the pipeline containing the feature point vectors. Using

the inner and outer ridges formed around an object, a Haar-like detector

with the mask (1, 2, 1,−1,−2,−1) is used to stay on the contour of the

object. This mask is applied five times during this render pass across ten

pixels while moving up to two pixels on either side of the ridges and valleys.

The maximum absolute value obtained is used to progress the discovery

51

Figure 4.3: Database of objects used for feature matching

point along the contour. Once the strongest feature point has been found

as described, the orientation can be determined which gives the direction in

which to move the mask along as the algorithm progresses.

Figure 4.4: Feature Point Discovery via Contour Tracking

This method works well for tracking purposes as evidenced by the clus-

tering and tracking results obtained. However, for feature matching and

recognizing objects this technique is rather slow and often chooses feature

points that are not on the contour of the object due to sudden movement

of the camera, blurry edges, low contrast between the object and the back-

ground resulting in poorly defined contours etc. To speed up the feature

extraction process and improve the contour tracking the CPU-side code and

52

the shader were modified. The number of iterations the shader performed

each frame was increased. Hence, rather than finding the strongest feature

and moving along once each frame, we find the strongest feature among

several iterations of the code from each frame. This produced a significant

boost in performance and greatly benefited the testing carried out on the

database of logos as the feature points used for matching no longer needed

to be manually selected.

4.3 Automated Feature Discovery

The first phase of testing involved feature point extraction from each logo

using the contour tracking algorithm from Section 4.2 and optimizing it

specifically for logos using the method described. Feature points are ex-

tracted by first clicking on one edge of the logo. From that point, the

algorithm follows the edge along the logo and finds feature points that are

the local maximum so as to find distinctive points on edges that are not

within some minimum distance from each other. This gives a wide spread

of distinctive points on each logo. However, the contour tracking for feature

discovery did not seem to work for real-world objects as the edges of the

object were not as clearly defined as those on computer-generated images

such as logos. In addition, real-world objects often contain intricate patterns

that the tracking algorithm struggled with. As a result, a fully automated

version of feature discovery was implemented which did not rely on con-

tours. It starts by drawing a grid around the object of interest and finding

all the points within that grid that are above a certain strength threshold.

We begin with a grid of size 1100 × 620 pixels which amounts to 682, 000

feature points. However, since we are only concerned with strong feature

points a threshold is used to eliminate feature points that do not meet our

strength criteria. This thresholding is performed by the CPU whereas the

feature point values are calculated on the GPU. After the threshold has

been applied, we obtain approximately between 10, 000 to 200, 000 feature

points depending on the image. These are sorted based on feature strength

and among the highest features we use a distance threshold to only pick the

53

Original Image Image with feature points

Figure 4.5: Moses, Frida Kahlo (1945)

features that are some distance away from each other so as to spread out

the selected feature points (see Figure 4.5).

We start by calculating ColourFAST values (RGBθ) for the entire grid

(the portion of the image shown in grey in Figure 4.5). Let P be a given

point within the grid on the target image. The feature points are sorted

based on feature point strength which is calculated as the follows:

FPstrength =

√
|127− PR|2 + |127− PG|2 + |127− PB|2 (4.3)

The first step is to decode the PR, PG, PB values (which are the RGB values

of a given point) to between -127 and 127 after which we obtain the feature

point strength.

We eliminate all feature points with strength less than a certain threshold

ts (initially set to 40 chosen through experimentation) which gives us a

subset of feature points S. The following algorithm is run against each of

these points and a greedy approach is used:

1. Put the strongest feature point into the result set T and remove it

from S

2. Take the next feature point in S and compare it to all the points in

T . If it has at least x distance from each of them, add it to T ; else

discard it.

54

3. Repeat the previous step until there are k number of feature points in

T .

4. If all the feature points in S have been exhausted and T does not

contain k feature points, we lower the value of ts and x and repeat the

steps.

This approach ensures that strong, distinctive feature points are selected

over weaker ones. It also ensures that feature points are selected in different

regions of the image rather than being clustered in one region of the image

that might happen to have a high degree of colour change. The initial

feature point strength thresholding is performed to reduce the amount of

data to be sorted and tested; this produces a tremendous speedup. The

entire automated feature discovery process could be offloaded to the GPU

via an additional render pass to achieve a performance gain.

4.4 Spatial Locality

A scale and rotation estimator is introduced to the matching of ColourFAST

feature points, making the process more robust and consistent. In order to

achieve this some significant changes are made to the set up of the shaders.

The first and second render pass match each point on the target object

to every point in each database object to find the best two matches for

that given target object point. These four points are used as our anchors

(two points on the target and two from the database) to find the difference

in rotation and scale between the points on the target object that in the

database. Once the rotation and scale have been calculated we adjust the

points on the target to the required rotation and scale and perform a match

again with these transformed spatial values. This theoretically allows the

points on the target to be at a different angle and scale than the points in

the database and still match with the same accuracy.

The feature matching uses three multi-render passes as described below.

Let f be a fragment within the geometry being passed in to the GPU and

fs and ft be the s and t coordinates for the given fragment. Let T =

55

⟨t0, t1, · · · , to−1⟩ be the target image and Dk = ⟨d0, d1, · · · , dn−1⟩ be an

object in the database D containing objects ⟨D0, D1, · · · , Dm−1⟩.

4.4.1 Shader 1: Preliminary Matching

This render pass takes two textures as input:

1. the RGBθ feature vector in T (see Table 4.1)

2. the RGBθ feature vector for each object in D (see Table 4.2)

t0 t1 · · · to−1

T 0.8000,0.8156,0.8000,0.078 0.2668,0.2313,0.2235,0.8705 · · · 0.2941,0.2823,0.2392,0.4315

Table 4.1: RGBθ texture for the target image T where each entry is one
feature point in T

d0 d1 · · · dn−1

D0 0.9568,0.9764,0.9764,0.1882 0.9411,0.9960,0.9607,0.3764 · · · 0.8470,0.8705,0.8705,0.0627

D1 0.8588,0.8509,0.8352,0.1372 0.8627,0.8549,0.8039,0.1411 · · · 0.8078,0.8235,0.7843,0.6823

D2 0.8274,0.8588,0.8352,0.9333 0.8078,0.8078,0.7686,0.0352 · · · 0.7176,0.7647,0.7568,0.0666

D3 0.7921,0.7882,0.7960,0.0901 0.7882,0.7921,0.7843,0.1137 · · · 0.7176,0.7058,0.6901,0.0431

D4 0.8235,0.8431,0.8235,0.6470 0.7607,0.7803,0.7450,0.1450 · · · 0.3529,0.3254,0.3411,0.0941

D5 0.9254,0.9411,0.9411,0.1686 0.8470,0.8705,0.8627,0.8117 · · · 0.7372,0.7333,0.6745,0.9803
...

...
... · · ·

...

Dm−1 0.8352,0.8392,0.8431,0.3490 0.8313,0.8352,0.8196,0.8666 · · · 0.7568,0.7647,0.7411,0.9411

Table 4.2: RGBθ texture for the database where each row has the feature
points for one database object

For executing the shader code the geometry passed in is a quad with

height equal to the number of objects in the database and width equal to

the number of feature points on the screen (as shown in Figure 4.6).

It is important to note that each texture coordinate in Figure 4.6 per-

forms the exact same procedure described above and each of these run in

parallel on a separate shader instance within the GPU. Thus, there is no

intercommunication between each of these cells and all the textures bound

as input are shared between all the shader instances.

56

o-1

m
-1

Figure 4.6: Geometry for 1st render pass

4.4.2 Shader 2: Rotation and Scale

The second shader takes the output from the previous render pass (Figure

4.7) as an input texture along with two other textures:

1. the x, y feature vector in T (see Table 4.3)

2. the x, y feature vector for each object in D (see Table 4.4)

t0 t1 t2 · · · tn

T 0.659,0.370 0.496,0.320 0.621,0.429 · · · 0.608,0.259

Table 4.3: x, y texture for the target image T where each entry corresponds
to one feature point in T

As each texel can hold only up to four components, the RGBθ and x, y

values must be placed in seperate textures. However, since the XY texture

only contains two components the remaining two components could also be

utilized without any modification to the way the shaders are currently set

up if the descriptor needed to be further extended.

The geometry passed in is a quad with height equal to the number of

objects in the database and width equal to 1 (as shown in Figure 4.8). This

render pass executes an instance for each row of the texture output from the

57

Min-Distance(i, j, n, TRGBθ, DRGBθ)

1 � Shader 1: Preliminary matching
2 � i, j are the row and column of the current fragment
3 b← 0 � distance between two points
4 bmin ← 10 � lowest distance
5 bD ← 0 � database point at which lowest distance was found
6 bT ← 0 � target point at which lowest distance was found
7 for k ← 0 to n− 1 do
8 � where n is the number of feature points in Dk

9 db← Look up dkRGBθ
at
(
k ·
(
1/(n− 1)

)
, j
)

10 target← Look up tiRGBθ
at (i, h/2)

11 � where h = 1 is the height of the TRGBθ

12 b = d(db, target)
13 if b < bmin then
14 bmin = b
15 bD ← k ·

(
1/(n− 1)

)
16 bT ← i
17 return bmin, bD, bT

first shader (Figure 4.7) and finds the best two matches (two lowest distance

values) in each row. These serve as the anchor points. Each object in the

database has two anchor points selected which best match two feature points

on the target image. This is utilized to obtain a scale factor and rotation

estimate for the target image against each object in the database.

If the situation arises that two distinct points on the screen happen to

best match the same point in an object in the database the shader assigns

default values (s = 1, φ = 0) since it cannot correctly determine the scale

and rotation for that object. In other words, if x1D , y1D = x2D , y2D (refer

to Figure 3.6) the scale and rotation estimates are not able to be calculated

and we assume no scale or rotation. If this is not the case, from Equation 3.4

and 3.7 we obtain scale and rotation estimates based on the anchor points.

Thus for m objects in the database, we obtain m scale and rotation values.

Again, m number of scale and rotation values are each computed in parallel

58

o-1

m
-1

bmin, bD, bT

Figure 4.7: Output texture for 1st render pass

d0 d1 d2 · · · dn−1

D0 0.585,0.084 0.533,0.213 0.812,0.331 · · · 0.506,0.777

D1 0.516,0.063 0.332,0.247 0.599,0.812 · · · 0.724,0.490

D2 0.857,0.733 0.814,0.836 0.869,0.265 · · · 0.690,0.547

D3 0.660,0.559 0.700,0.476 0.507,0.688 · · · 0.760,0.209

D4 0.62,0.572 0.278,0.630 0.4,0.604 · · · 0.420,0.625

D5 0.541,0.433 0.642,0.290 0.367,0.154 · · · 0.526,0.345
...

...
... · · ·

...
...

Dm 0.533,0.202 0.696,0.475 0.579,0.709 · · · 0.624,0.269

Table 4.4: x, y texture for the database where each row has the corresponds
to one database object

59

1

m
-1

Figure 4.8: Geometry for 2nd render pass

1

m
-1

Danchor, Tanchor, s, φ

Figure 4.9: Output for 2nd render pass

60

on separate shader instances.

4.4.3 Shader 3: Feature Point Matching

Using the scale and rotation factor for each of the objects in the database,

this render pass transforms each point in the target object with respect to

the first anchor point for that database object. It then calculates an overall

match value for each object in the database.

This render pass takes the following textures as input:

1. the RGBθ feature vector in T (see Table 4.1)

2. the RGBθ feature vector for each object in D (see Table 4.2)

3. the x, y feature vector in T (see Table 4.3)

4. the x, y feature vector for each object in D (see Table 4.4)

5. The output from the previous render pass (see Table 4.9)

The geometry passed in is the same as that passed into shader 2 (see

Figure 4.8).

For m objects we obtain m number of scale and rotation values. The

target object is transformed m times and matched against the corresponding

database object. This render pass starts by looking up the scale and rotation

factor for the given object in the database. The next step is to look up (in

the output from shader 2) the first anchor point for that object and the

corresponding point on the target image. This is used to transform each

point ti on the screen. Again, each of these m transformations and match

calculations are done in parallel.

The scale factor obtained is clamped between 1/16 and 16 as scales lower

and higher than those values are unlikely. The following formula is used:

x′i = x1D + s ·
((

cosφ · (xit − x1T)
)
−
(
sinφ · (yit − y1T)

))
(4.4)

y′i = y1D + s ·
((

sinφ · (yit − x1T)
)
+
(
cosφ · (yit − y1T)

))
(4.5)

61

where (x′, y′) are the transformed coordinates of the original point ti. (x1D , y1D)

is the first anchor point in the database and (x1T , y1T) is the first anchor

point in the target. The variables s and φ are the scale and rotation factor

looked up in the texture. This gives us a predicted location for each feature

point. This is used along with the RGBθ values to perform matching. The

distance between the RGBθ values of every point in the target image with

every point in the object summed with the distance between the x′, y′ values

and those in the object gives a match value Mi. These two distance values

are weighted before summing so that each measure affects the overall results

differently. The ideal weighting w was found to be 50% RGBθ and 50% x, y

values. This value was experimentally chosen and the method for arriving

at this value is described in the Results section.

Mixy = d
(
dixy , (x

′
i, y

′
i)
)

(4.6)

Mirgbθ = d(dirgbθ , tirgbθ) (4.7)

Mi = (1− w) ·Mixy + w ·Mirgbθ (4.8)

The next step is to create a bias towards matching objects in the database

that were found to have a scale factor near 1 (no scaling) and a rotation

near 0 degrees (not rotated) against the target as it is more likely to be

that object. During testing it was noticed that when using a low number

of feature points, there was a high possibility of obtaining false positive

matches due to random objects at various scale and rotation combinations

matching the target image by chance. In order to avoid this situation, a

bias is introduced. The formulae below give the bias values for the scale and

rotation that were chosen in this thesis:

bs =
| log2 s|
4.0

0 ≤ bs ≤ 1 (4.9)

bφ = 1.0− 2.0 · |φ− 0.5| 0 ≤ bφ ≤ 1 (4.10)

where the variables s and φ are the scale and rotation factor and bs and

bφ are the bias values that get added on to the match value. The lower

62

1

m

Overall match value M

Figure 4.10: Output for 3rd render pass

the match value, the better the match found. Therefore, a lower bias value

corresponds to the default scale and rotation of 1 and 0 respectively.

The overall match value computed is placed in a texture and the resulting

output texture is passed back to the CPU-side host application which then

iterates through the result texture for each object and finds the best five

matches.

Most algorithms try to avoid O(n2) operations where every feature point

on the target image must be matched against every feature point in every

object in the database. However, since this matching scheme is specifically

designed for the GPU which executes multiple instances in parallel this

becomes an O(n) operation in time.

4.5 Testing

Several tests were conducted to determine the relative weighting of RGBθ

versus x, y values, scale factor prediction, rotation prediction and feature

matching. Each of these tests is described in this section followed by the

results for the tests in the next chapter.

63

Figure 4.11: Entire GPU Pipeline for feature point matching using spatial
locality

4.5.1 Relative Weighting

The previous feature matching conducted in (Hall, 2014) uses purely colour

change to match a feature vector from the target set to a feature vector

in the database set. This work extends the feature descriptor to a six-

dimensional vector and uses spatial locality in conjunction with a scale and

rotation estimator to perform matching. This set of tests aims to select

the ideal relative weighting between colour change and spatial information

contributing to the final matching result. To accomplish this, a series of tests

were performed on a database of 50 common company logos (see Figure 4.3

on page 52). The feature matching results were recorded for each of the

50 logos and this test was repeated twice giving 100 results. During each

iteration of the test, the matching was performed with different relative

weights starting from 10% RGBθ versus 90% x, y up to 100% RGBθ versus

0% x, y with a 10% increment between each test. These results were recorded

and analysed for each weight combination and the combination selected that

gave optimum matching.

64

Figure 4.12: Same object at different scales

4.5.2 Scale and Rotation Estimation

The next test performed measured the estimation accuracy of the scale and

rotation values given a target object. Since the scale and rotation calcula-

tions were to be tested in isolation to obtain a measure of their accuracy,

the tests were performed on the objects in Figure 4.12 and Figure 4.13. The

results of these tests recorded the actual scale or rotation of the object ver-

sus the estimated scale or rotation of the object. This was performed at

scales ranging from 0.5 to 2. Due to limitations of the camera, very small

and very large scales could not be accurately tested although theoretically

this method should work for all scales between 1/16 and 16. The rotation

testing was performed starting at a 0 degree rotation up to a 350 degree

rotation with 10 degree increments.

4.5.3 Feature Matching

Since this is the main purpose of the feature descriptor, it is the most heavily

tested. A series of tests were performed as follows:

1. Against the logo database - with no scale, rotation or translation and

via manual feature discovery

2. Against a database of famous art work - with no scale, rotation or

translation via automated feature discovery

3. Against a database of famous art work - including translation via au-

tomated feature discovery

65

Figure 4.13: Same object at different degrees of rotation

4. Against a database of famous art work - including scale and rotation

changes via automated feature discovery

The first phase of testing involved feature point extraction from each

logo using the contour tracking algorithm. Feature points are extracted by

first clicking on one edge of the logo and finding further feature points along

the contour that are local maximum. The next phase of testing involved

recognizing each logo against the 50 logos in the database and recording the

results of the algorithm with and without the x, y spatial locality informa-

tion. There are two accuracy measures being investigated. The first was

whether or not the correct logo was identified by the algorithm and the sec-

ond is the difference between the logo identified by the algorithm as its first

and second prediction (as a measure of how distinctive the match was). Let

M be the measure being recorded. If M0,M1,M2,M3,M4 give the overall

match value for the closest five matches between the target image and the

objects in the database and O0, O1, O2, O3, O4 be the corresponding objects

66

picked as the first to fifth best match respectively:

M =


M1 −M0 if i = 0

M0 −Mi if 1 ≤ i ≤ 4

−127 if i ≥ 5

where i is the position at which the correct object is picked. This gives

us a conclusive measure of how accurately the feature matching algorithm

performed for a given test. This measure shall be used for all the feature

matching tests performed.

The second set of tests starts by drawing a grid around the object of

interest and finding all the points within that grid that are above a certain

strength threshold. We begin with a grid of size 1100× 620 which amounts

to 682,000 feature points. Using a threshold feature points that do not meet

our strength criteria are eliminated. This gives us approximately between

10,000 to 200,000 feature points depending on the image. After sorting

these points a distance threshold is used to select features that are a certain

distance away from each other.

To establish the merits of spatial locality being included in the object

recognition process we created and used a database of famous art works as

they exhibit a wide range of colour changes and are more realistic objects

than computer generated logos. Art work also makes good use of spatial in-

formation as the relative location of features points stay the same between

different images of the same painting. It is particularly difficult to find stan-

dard databases to perform object recognition tests that do not presume the

use of a high level machine learning algorithm. Moreover, the machine learn-

ing databases contain images whose resolution and quality are insufficient

for our tests. The objects within these databases contain significant varia-

tion within the same category which does not suit our low-level technique

of feature point matching where there is no training or learning involved

and all of the matching is performed on the device in real-time. For exam-

ple, the two objects in Figure 4.14 are obtained from the de facto machine

learning database (Fei-Fei, Fergus, & Perona, 2004). Both these objects

67

Figure 4.14: Two objects from the same category in de facto ML database
(Fei-Fei et al., 2004)

would be classified as the same even though they are vastly different colours

and shapes. This sort of categorisation does not work with our approach to

feature matching as this would require sophisticated machine learning tech-

niques to be applied. The aim is that the feature descriptor proposed here

be used within other high level machine learning classifier functions. As a

result, we built our own custom database consisting of art work and tested

the algorithm against images of such paintings obtained from the web.

The test set and reference set use different images of the same painting

(refer to Figure 4.15). The images have slight variation in colour, scale

and aspect ratio. These tests were conducted using 100 paintings in the

database tested against different images of the 100 paintings using different

scales, rotations and view points.

68

Figure 4.15: An example image from the reference set (left) and the test set
(right): Irises, Vincent van Gogh (1889)

69

Chapter 5

Results and Analysis

All the tests in this section were conducted on the Samsung Galaxy S4 GT-

I9505 with an Adreno 320 GPU running the Android operating system. The

resolution used is 1280 × 720 and each test uses the in-built device camera

against an image captured on a desktop screen. As a result, the tests are

intentionally prone to changes in viewing conditions such as skew, scale,

rotation, lighting changes and glare on the screen affecting the colour.

5.1 Extending ColourFAST Descriptor

The first test conducted aims at determining whether using spatial local-

ity along with the original four-dimensional ColourFAST feature descrip-

tor was beneficial to the matching process. This is done by performing

a series of 100 tests against a database of 50 logos. Each logo has its

feature points extracted one at a time and stored in a database. Typi-

cally, each logo contains 15 to 20 feature points. Every logo in the test

set is matched against the reference set and the difference measure M is

recorded. Let M0,M1,M2,M3,M4 give the overall match value for the best

five matches between the target image and the objects in the database and

O0, O1, O2, O3, O4 be the corresponding objects picked as the first to fifth

70

best match respectively,

M =


M1 −M0 if i = 0

M0 −Mi if 1 ≤ i ≤ 4

−127 if i ≥ 5

where i is the position at which the correct object is picked. The greater

the value of M is, the better the match since that indicates a more definite

match. The value of M is clamped to −127 as a larger negative value

than that is unlikely in practice. Therefore, M ∈ [−127, 255] where −127
is assigned to M when the correct object is not found within the best five

matches and 255 is assigned to M when the correct object is picked first

with an overall match value of 0 and the other top four matches have an

overall match value of 255. However, for an overall match of 0 every feature

point on the target image must exactly match some point within the object

in the database for all six RGBθ, xy components which would be highly

improbable in practice. For this set of tests the highest value obtained

is 79 and the lowest is −127 (results below −100 are not plotted as the

actual match value is unknown when the correct object is not picked within

the first five matches and as such is assigned the value −127 to penalize it).

Note that the values M0,M1,M2,M3,M4 are based on a modified Euclidean

distance calculation and therefore the positive values closer to zero are better

matches. Whereas the value of M is the difference between two of these

values and, therefore, the greater values indicate higher match accuracy.

The box and whisker plot (Figure 5.1) shows ten bars, one for each of

the combinations. Recall the Equation 4.8 on page 62:

Mi = (1− w) ·Mixy + w ·Mirgbθ (5.1)

The horizontal axis represents the chosen value of w which controls the

contribution of Mirgbθ versus Mixy to the overall match value. The plot

shows the median, lower quartile, upper quartile and outlier values for each

of the combinations. From the results it can be seen that w = 0.5 has the

71

highest median value, however, w = 0.6 and w = 0.7 both have higher upper

quartiles. Each of these w values yield the best match accuracy and their

results differ marginally. This is, therefore, the ideal combination of RGBθ

and x, y values to be used. As w is a parameter that is fed in to the GPU

pipeline by the CPU-side host application, it can be tweaked and modified

depending on the requirements of the test being conducted.

It is clear from this set of testing that the addition of spatial locality

benefits the feature matching process as the results where w > 0.7 (x, y

contribute less) yield progressively lower median and lower quartile values.

When w < 0.3 (RGBθ contribute less) the median and lower quartile values

are significantly worse. This indicates that the x, y and colour change values

perform worse when used in isolation for feature matching; on the other hand

they improve the accuracy of matches when used in conjunction.

For all further tests a combination of 50% RGBθ and x, y is chosen.

5.2 Feature Point Matching: Preliminary Test

Since the combined use of colour change values and spatial locality were

beneficial to the feature matching process, the next set of tests focuses on

comparing the accuracy of matches obtained via the extended descriptor

versus the original ColourFAST descriptor. The initial set of feature point

matching tests were conducted on a database of computer generated logos

(shown in Figure 4.3 on page 52). This data set was chosen due to the nature

of logos having sharp edges for contour tracking and feature discovery as well

as high contrast between the object of interest and the background yielding

distinctive RGBθ values. This was the database used by Hall for testing

purposes and, therefore, was the natural data set of choice for preliminary

testing. The feature points were extracted using the procedure described in

Section 4.2 and each logo is matched against the other 50 logos over a series

of 50 tests. The same metric, M , is recorded which gives the accuracy of

the match test performed. Figure 5.2 shows the results of this set of tests.

The median and lower quartile values are greater for the spatial locality

results. However, for both sets of data the upper extreme value and the

72

−100

−80

−60

−40

−20

0

20

40

60

80

100

M
at
ch

ac
cu
ra
cy

M

bbbbbbb

b

b

b

0.1

bbb

b

b

bb

0.2

bb

b

0.3

b

0.4

b

0.5 0.6 0.7 0.8

bbbb

0.9

bbbbbb

1.0
Relative Weight w

Figure 5.1: Box and whisker plot of matching accuracy M for different
relative weight combinations (excluding results below −100)

73

upper quartile value do not differ substantially. This led to further analysis

of the data to obtain a measure of accuracy improvement achieved by adding

x, y values.

As the variances of the two sets of data are unequal, a Welch’s t-test

was conducted on both versions of the descriptor (with and without spatial

information) to determine whether or not there was an improvement in

feature point matching by extending the descriptor. This test revealed that

there was not a statistically significant difference in terms of match accuracy

between the two versions for matching computer generated logos as can be

seen from Table 5.1. In reality a t-test is not the ideal method of comparing

the two sets of data, however, it does show that there is no substantial

difference in accuracy as both result sets show a close similarity.

Two-Sample Assuming Unequal Variances

Spatial Locality ColourFAST

Mean -0.18 -8.78
Variance 1548.232245 2122.379184
Observations 50 50
Hypothesized Mean Difference 0
df 96
t Stat 1.003723858
P (T <= t) one-tail 0.159017508
t Critical one-tail 1.66088144
P (T <= t) two-tail 0.318035015
t Critical two-tail 1.984984312

Table 5.1: Welch’s t-test using samples from Figure 5.2

The insignificant difference between results is due to the nature of the

test performed. Each logo being matched against the database was not

scaled or rotated and was placed in the same position as during the feature

extraction phase. In addition, the test set used was the same as the reference

set and, thus, did not produce much x, y movement. This resulted in the

scale and rotation descriptor not being utilized (s = 1 and φ = 0 by default)

and, hence, the x, y values are not greatly transformed. Since the target

image was not significantly transformed with respect to the database set,

74

−130

−110

−90

−70

−50

−30

−10

10

30

50

70

90

M
at
ch

ac
cu
ra
cy

M

bbbb

Spatial Locality

bbbbbb

b

ColourFAST

Figure 5.2: Boxplot of feature point matching accuracy for the extended
descriptor versus the original ColourFAST descriptor for logos

75

Figure 5.3: Same object at different scales

the x, y values did not improve the matching accuracy. Even though this

test uses ideal, simplified objects and, therefore, does not rigorously tests

the accuracy of the descriptor it has been used here as it is the same test

conducted in (Hall, 2014) and serves as a useful preliminary indicator of

whether the spatial locality information is beneficial before performing tests

on more complex objects.

5.3 Scale and Rotation Estimation

This set of tests conducted evaluate the accuracy of the scale and rotation

estimates. Each of these were tested in isolation; first rotating the object

between 0 and 350 degrees with a 10 degree increment and then scaling the

object between 0.5 and 2. Each of the predictions were recorded alongside

the actual scale and rotation of the object and the error margin for each test

is plotted. In order to purely test the scale and rotation, a simplistic object

with four feature points was picked as shown in Figure 5.3.

Figure 5.4 shows a scatter plot for the rotation estimate tests. The

horizontal axis shows the actual rotation of the target image and the vertical

axis shows the estimated rotation calculated. The results of four samples

each containing 36 tests ranging from a 0° rotation to a 350° rotation with

a 10° increment are plotted. Each set of tests has been plotted using a

different colour to indicate that the test has been repeated several times.

Using regression analysis on the data obtained the trendline is given by

y = 0.9983x− 2.0369 which gives the best-fit straight line for the data set.

76

P
re
d
ic
te
d
ro
ta
ti
o
n
(d
eg
re
es
)

Actual rotation (degrees)

b

b
b
b

b
b
b
b

b

b

b
b
b
b
b

b
b
b

b
b
b
b

b
b
b
b

b
b
b

b
b
b
b

b
b
b

b

b
b
b

b
b
b
b

b
b
b

b
b
b
b

b
b
b

b
b
b
b

b
b
b
b

b
b
b

b
b
b
b

b
b
b

b
b
b
b

b
b
b
b

b
b

b

b
b
b
b

b
b
b

b
b
b
b

b
b
b
b

b
b
b

b
b
b
b

b
b
b

b

b
b
b

b
b
b
b

b
b
b

b
b
b
b

b
b
b

b
b
b
b

b
b
b
b

b
b
b

b
b
b
b

b
b
b

Figure 5.4: Actual rotation versus predicted rotation

The R-squared value obtained for the data is 0.9967. This illustrates the

very high accuracy achieved by the rotation predictor.

Figure 5.5 shows a scatter plot for the scale estimate tests. The horizon-

tal axis shows the actual scale of the target image and the vertical axis shows

the estimated scale obtained. The results of nine samples each containing

16 tests ranging from a scale factor of 0.5 to 2.0 with an increment of 0.1 be-

tween tests are plotted. Using regression analysis on the data obtained the

trendline is given by y = 1.0085x − 0.0084 which gives the best-fit straight

line for the data set. The R-squared value obtained for the data is 0.9761

77

P
re
d
ic
te
d
sc
al
e

Actual scale

b

b

b

b
b

b

b

b

b

b b

b

b b

b b

b

b

b

b

b

b b

b b

b b

b

b

b b b

b

b

b

b

b

b

b

b

b

b

b b

b b

b b

b
b

b
b

b
b

b

b

b

b

b b

b b

b b

b

b

b

b

b

b

b

b

b

b

b b

b b

b b

b

b

b

b

b

b
b

b

b b

b

b b

b b

b

b

b

b

b

b

b

b

b

b b

b b

b b

b b

b

b b

b

b

b

b

b

b

b

b b

b b

b b

b

b

b

b

b

b
b

b

b b

b

b b

b b

b

Figure 5.5: Actual scale versus predicted scale

which again indicates the good accuracy achieved by the scale estimation

calculation.

The scale and rotation estimates are based on the formulae discussed in

Section 3.3 which uses two anchor points as the basis to obtain this estimate.

From the results above, it is evident that for simplistic objects with ideal

feature point vectors, as in the object used here, the scale and rotation values

determined are particularly accurate.

78

Figure 5.6: An example image from the reference set (left) and the test set
(right): SURF

(Bay et al., 2006)

5.4 Feature Matching: Secondary Test

This set of tests attempts to measure the feature point matching accuracy on

real-world objects (as opposed to the previous test which utilized computer

generated logos). SURF uses a database of 216 images of 22 objects of art

in a museum, on average using approximately nine images under different

conditions for each object. The test set consists of 116 images and are taken

in various conditions such as extreme lighting changes, objects reflecting in

glass cabinets, changes in viewpoint, zoom and differing camera qualities

(for example, refer to Figure 5.6). Due to the lack of standard databases

available for such tests conducted on a mobile phone, the database used had

to be created for this specific purpose (shown in Figure 5.7). We attempted

to model our database after the approach used by SURF. It consists of 100

images of famous paintings, one image for each painting, all taken via a

mobile phone camera facing a desktop screen containing a picture of the

painting. The test set is a subset of these paintings containing 50 images

obtained from different sources than the reference set. Thus, each of these

paintings differ slightly in terms of aspect ratio, colour and resolution (as

can be seen in Figure 4.15 on page 69).

The evaluation metric, M , used is the same as that used in the prelim-

inary tests carried out against the logo reference set. However, the feature

discovery and extraction phase is fully automated for these tests as described

79

Figure 5.7: Database used for the second series of feature matching tests

80

in Section 4.3 and, hence, allows for more realistic and rigorous testing. The

art work reference set provides a set of complex and intricate real-world

objects to test against. The box and whisker plot in Figure 5.8 shows the

accuracy of the matches between the descriptor using spatial locality and

the original ColourFAST descriptor. This series of 50 tests were performed

under minor scale, rotation, skew and view point changes to purely test the

matching capabilities of the feature points. Although, since the feature dis-

covery is automated it is not guaranteed to pick the same feature points as

is in the reference set for a given object. Similar to the first test, the greater

the value of M , the better the match accuracy obtained. M ∈ [−127, 255]
and the maximum value for the spatial locality data sample is 46 compared

to the maximum value for the original ColourFAST data sample which is 14.

The median values are 5 and 0.5 respectively and the lower and upper quar-

tile values are significantly greater for the extended descriptor. The sizeable

drop in match accuracy for ColourFAST can be attributed to the fact that

using the 4-dimensional vector alone is not distinctive enough on objects

such as paintings that do not have sharp, defined edges. Logos typically

have between two and five colours with sharp corners and edges against a

white background making the colour change values sufficiently unique. The

reference set containing paintings presents a much more challenging task

in terms of matching feature vectors. In addition, the automated feature

discovery leads to different features being picked from those extracted and

saved in the database. Thus, the benefit of using spatial locality in con-

junction with colour change values and correcting for changes in scale, view

point and rotation exhibits itself more clearly in this set of tests.

Once again, a Welch’s t-test was conducted on both data sets as the two

samples have unequal variance. This is used to determine whether there is a

statistically significant difference in accuracy between the data samples. In

this situation, there is a considerable difference between the values of M for

ColourFAST feature points versus the extended version that includes spatial

locality information as shown in the results from the t-test in Table 5.2.

81

−130

−110

−90

−70

−50

−30

−10

10

30

50

70

90

M
a
tc
h
in
g
ac
cu
ra
cy

M

bbbbbbbb

b

Spatial Locality ColourFAST

Figure 5.8: Boxplot of feature point matching accuracy for the extended
descriptor versus the original ColourFAST descriptor for paintings

82

Two-Sample Assuming Unequal Variances

Spatial Locality ColourFAST

Mean -10.38 -49.64
Variance 2353.873061 4081.7453
Observations 50 50
Hypothesized Mean Difference 0
df 91
t Stat -3.46051
P (T <= t) one-tail 0.0004114
t Critical one-tail 1.6617712
P (T <= t) two-tail 0.0008228
t Critical two-tail 1.9863772

Table 5.2: Welch’s t-test using samples from Figure 5.8

5.4.1 Feature Matching: With Scale and Rotation

Next, the same test set was used to test the match accuracy under different

rotations starting with a 10° rotation up to a 30° rotation with 5° incre-

ments. To eliminate the border entering the search grid upon rotation the

target image used is slightly zoomed in. The results are shown in Figure

5.9. The median values for the two samples are −3 and −1.5 respectively;

the upper quartile values are 5 and 2.75 with the spatial locality sample

marginally outperforming the other. However, the match accuracy is shown

to have dropped tremendously with the lower quartile values for both sam-

ples at −127. It is clear from the t-test results in Table 5.3 that with the

target object scaled and rotated the matching accuracy severely decreases

and the x, y values no longer significantly benefit the feature point match-

ing process. This unsuccessful result is expected since if the anchor points

(x1T , y1T), (x1D , y1D) and (x2T , y2T), (x2D , y2D) are not indeed the same

corresponding points as is assumed, the scale and rotation calculations ob-

tained are incorrect. This in turn affects the transformation of each point

on the target image causing the accuracy to decrease significantly. This has

been noted as a limitation of our approach of taking only two anchor points

to calculate the scale and rotation. This is also often caused due to the

83

method of testing because a major portion of the image is lost when the

target object is rotated. Consequently, a subset of feature points originally

extracted for the reference set are lost (illustrated in figures 5.11, 5.12 and

5.13). As a result, the chances of the anchor points being picked incorrectly

increase.

Two-Sample Assuming Unequal Variances

Spatial Locality ColourFAST
Mean -53.16 -54.52
Variance 4388.341224 4217.315918
Observations 50 50
Hypothesized Mean Difference 0
df 98
t Stat -0.10366494
P (T <= t) one-tail 0.458823551
t Critical one-tail 1.660551217
P (T <= t) two-tail 0.917647103
t Critical two-tail 1.984467455

Table 5.3: Welch’s t-test using samples from Figure 5.9

5.5 Discussion

Comparing the results of the tests performed against the two reference sets

(i.e. logos and paintings) it is clear that the spatial locality information

had a negligible effect when using the logos as test subjects. This is due

to several reasons. Firstly, the feature points were manually picked and

extracted on the logos before saving to the database. During the feature

matching process, each feature point was manually placed on the screen.

This ensured that roughly the same feature points were chosen during the

extraction and matching phase which resulted in minimal x, y movement

for the feature points. Moreover, the choice of feature points was possibly

unambiguous due to the RGB values being so similar.

Let (x1T , y1T), (x2T , y2T) and (x1D , y1D), (x2D , y2D) be the anchor points

picked on the target and reference object respectively. If (x1D , y1D) =

84

−130

−110

−90

−70

−50

−30

−10

10

30

50

70

90

M
at
ch
in
g
ac
cu
ra
cy

M

Spatial Locality

b

ColourFAST

Figure 5.9: Boxplot of feature point matching accuracy for the extended
descriptor versus the original ColourFAST descriptor for paintings with ro-
tation

85

(x2D , y2D) we cannot gain a sense of scale or rotation resulting in the default

values (s = 1, φ = 0) being used. This is typically the case with logos as they

tend to be two-toned images where several feature points within the image

have the same colour change values with only the θ component differing. As

an example, refer to Figure 5.10 of a common logo where every feature point

is identical in terms of colour change. As the θ component is weighted lower

in the anchor point picking phase, this results in the same feature point

within the reference object best matching several different feature points

within the target image. This is described in Section 4.4.2 on page 57.

When this situation arises, the transformation of each target feature point

is very small leading to the x, y values being essentially unused.

Another reason for the change in accuracy is the number of feature points

used. The logo tests used a relatively small number of points (between 15

and 20 feature points per logo). On the other hand, the tests conducted

using the paintings used 60 feature points for each object and due to the

paintings being more realistic it is very unlikely that two feature points in

the target image happen to best match the exact same point in the database.

These tests utilized automated feature discovery which allowed the two data

samples to differ significantly. Therefore, the second set of testing yielded

more promising results.

The next series of tests were undertaken with the target object rotated

and slightly scaled using the paintings as the reference set. The accuracy

suffered tremendously during this test with the object not being correctly

recognized on more than a quarter of the tests. This is because of the nature

of the tests performed. Using a hand-held camera introduces unwanted

image deformations such as skew. As the feature point matching is tested on

a real-time video feed, the images are not loaded directly into the pipeline for

processing but rather obtained via the camera. Figure 5.11 shows a target

object initially as its extracted feature points are saved in the database.

After rotating the image 20 degrees (Figure 5.12), we lose a major portion

of the image and now parts of the border of the image are included in the

search grid. This results in the feature discovery phase picking up parts

of the border as feature points. To avoid this, the target image must be

86

Figure 5.10: Typical logo consisting of several feature points with the same
RGB values (only the θ component differing)

87

Figure 5.11: Target object used for feature point extraction with no rotation
or scaling for saving to database

Figure 5.12: Target object after being rotated; search grid now contains
parts of the border which negatively affects the feature discovery

zoomed in to eliminate the border as shown in Figure 5.13. After both

of these transformations to the object, a large portion of the image is lost

and subsequently feature points from the original image are missing. This

leads to a significant drop in match accuracy as the target image has only

a small subset of the original feature points saved. Another issue that was

noticed was the lack of discriminative power of the descriptor that led to

incorrect anchor points being chosen which in turn gives an incorrect scale

and rotation factor. Transforming a point based on incorrect estimates gives

inaccurate “corrected” x, y values.

88

Figure 5.13: Target object after zooming in to eliminate the border; major
portion of the image is lost

5.6 Anchor Point Selection

The first test assessing the scale and rotation estimation capabilities of the

algorithm used a simple object with four anchor points each with a dis-

tinct colour against a white background. Following this, the same test was

carried out replacing the target object with a more complex real-world ob-

ject such as a painting. The estimates obtained were highly inaccurate as

opposed to the near perfect results achieved using the square with four fea-

ture points. This led to analysing the raw data obtained from the feature

discovery phase alongside the data in the database for a given reference ob-

ject. The painting used as the reference and target object for this analysis

is shown in Figure 5.14 and the data used are shown in Appendix A. The

data presented in Appendix A model the anchor point selection process per-

formed by the GPU during the first and second render passes of the pipeline.

Let T = ⟨t0, t1, · · · , t59⟩ be the feature points of the target image and D =

⟨d0, d1, · · · , d59⟩ be the feature points of the reference object in the database.

The table shows the values obtained by performing the modified Euclidean

distance calculation from Equation 3.3 on page 45 for every pair of points.

The numbers in bold are the minimum distance value obtained within each

instance of the shader code. The next shader then iterates through each of

these values and finds two sets of points that correspond to the two lowest

distance values to be used as anchor points. From the data it is evident that

two feature points from the target image might best match the same point

89

within the reference image. For instance, t2, t9 and t10 best match the same

point d11. Upon further analysis, several limitations of the feature matching

approach and method of testing were revealed. Firstly, when no scale and

rotation were applied to the target image it was observed that the anchor

points (x1T , y1T), (x1D , y1D) and (x2T , y2T), (x2D , y2D) were sometimes not

in fact the same point contrary to what is expected. This causes incorrect

scale and rotation estimates and subsequently incorrect transformations.

Secondly, having a two to one mapping between points on the target image

and that in the database voids the scale and rotation calculations. This indi-

cates that the anchor points might not always be sufficiently unique for the

purpose of recognizing and matching real-world objects. Another challenge

faced was successfully testing the rotation and scale invariance. As previ-

ously discussed, as the target object is rotated, progressively larger portions

of the image are lost. Thus, a testing method is required where rotating the

image does not lead to losing a large subset of feature points. A possible

solution could be blurring the border of the painting so that upon rotation,

the inclusion of the border in the search grid would not have an adverse

effect on the feature discovery.

The current approach to feature matching requires that each ti ∈ T

matches some dj ∈ D which is not practical as the target image can be

missing certain points due to changes in view point, rotations, skew etc.

Thus, it might be more pragmatic to pick a subset of feature points within

the target object that must match the reference object feature points. It

was hypothesized that stronger feature points lead to better match results.

To test this, using the modelling data the features in T and D were sorted

based on their feature strength and then matched. Surprisingly, this was

not the case in this particular example; with the closer matches found to be

towards to the end of the spectrum which correspond to the weaker feature

points. Based on the data collected, there seems to be no apparent way

to pick a subset of feature points for the target object that yields better

matches than using the same number of points in T and D.

90

Figure 5.14: Painting used for anchor point selection analysis and modelling:
Nevermore, Paul Gauguin (1897)

5.7 Pipeline Performance Analysis

A major focus of this work is designing and implementing a GPU-accelerated

feature matching algorithm. The throughput achieved during the feature

matching tests conducted in (Hall, 2014) look very promising for real-time

object recognition on the GPU. Therefore, it is important to investigate

whether the addition of spatial locality is worth the potential decrease in

throughput. The algorithms implemented in this thesis have been specif-

ically architected for the GPU pipeline and hence, the trade-off between

the match accuracy gained through spatial locality versus the throughput

achieved is particularly important to investigate. Hall performs a perfor-

mance analysis test using the original ColourFAST feature descriptor run-

ning the feature matching process each frame against 50 objects in the

database and with a varying number of randomized feature points on the

target image. We perform the exact same test to compare the frame rate

results of the entire ColourFAST feature matching pipeline using spatial

locality to the results reported by Hall. This is to ensure that the perfor-

mance penalty incurred by extending the descriptor does not outweigh the

benefits of spatial locality in the matching process. The tests are performed

using the same device and screen resolution (i.e. Samsung Galaxy S4 with a

resolution of 1280× 720). The entire feature point matching process is run

each frame and the frame rates recorded over a span of a few minutes and

then averaged. The accuracy of the matches is not under consideration for

91

this test and is, therefore, not recorded. Table 5.4 shows the performance

in terms of frames per second after introducing the spatial locality textures

into the GPU pipeline. The first row gives the results reported by Hall us-

ing the original descriptor. The next two rows give the frames per second

measures for the same test first with 50 objects in the database and next

with 100 objects in the database. It is clear that the addition of spatial

locality information for the matching does not cause a noticeable difference

in throughput. It is noteworthy to mention that the matching scheme using

spatial locality requires an additional render pass and performs a scale and

rotation estimate calculation before transforming the target image points.

Moreover, two additional textures holding the x, y values must be passed

into the pipeline per render pass. This explains the decrease in frame rates

between from the original matching process that uses a 4-dimensional vector.

Number of Feature Points

5 10 20 50 Set Size

ColourFAST 33.56 ± 1.0 29.52 ± 1.1 20.33 ± 0.8 10.67 ± 0.5 50
Spatial locality 22.1 ± 0.5 17.71 ± 0.4 12.04 ± 0.6 6.44 ± 0.6 50
Spatial locality 16.36 ± 0.5 15.12 ± 0.9 9.739 ± 1.27 4.78 ± 0.3 100

Table 5.4: Throughput results

The next set of results eliminates the tracking phase of the pipeline

originally used by the ColourFAST descriptor to recognize and track objects

using a live video feed from the camera. For purely testing the GPU pipeline

throughput for feature point matching, we use a frozen frame and match a

set of 60 feature points on the screen against a reference set of 100 objects.

The frames rates recorded were 16.37425 ± 2.0 on average over a period of

a few minutes. Thus, we can conclude that for feature point matching, the

addition of spatial locality is worth the minimal performance hit incurred.

92

Chapter 6

Conclusion

As the GPU pipeline has moved away from a fully fixed function pipeline,

various application domains have been able to harness the power of the

GPU and benefit from its architecture. The GPU is particularly advanta-

geous for tasks that rely heavily on data parallelism where computationally

expensive tasks are able to execute independently with little or no inter-

communication. As a result, image analysis algorithms can easily exploit

the nature of GPUs and can achieve real-time results for a number of tasks

such as feature detection, extraction and matching. Most current mobiles

support OpenGL ES 2.0 and programmable shaders via GLSL which can be

used to implement and test GPU-based algorithms. Combining that with

the camera capabilities on modern mobile devices, allow for a large vari-

ety of applications such as medical imagery, object recognition and mobile

augmented reality. There has been active research in this area in the past

decade involving image analysis and processing focusing on high frame rate

performance.

In image processing and computer vision a feature refers to some region

or point within an image that is considered distinctive in some way, such

as being on an edge, corner or blob. Features are widely used for motion

tracking, object recognition and scene reconstruction. The Features from

Accelerated Segment Test (FAST) algorithm is a very popular and partic-

ularly efficient algorithm for corner detection. Previous work in (Ensor &

93

Hall, 2011) demonstrated that modern smartphones can run computer vision

algorithms in real-time when the algorithms are implemented specifically for

execution on the embedded GPU. More recently, Ensor and Hall have de-

veloped a new alternative to the FAST corner detection algorithm, termed

ColourFAST, which is specifically designed for GPU pipelining and utilizes

colour information to extract features from an image frame. It extracts

feature description vectors for each point while maintaining performance at

least as good as FAST, which has opened the door for improved computer

vision on mobile devices. Their work focuses on using ColourFAST and its

feature descriptions for motion tracking. A technique has also been devel-

oped for the extraction of ColourFAST feature points which enables a cluster

of feature points to be found within an object in a scene. These extracted

points could be used for tasks such as tracking and recognition. This was

the finishing point of the previously undertaken work and the starting point

of this thesis.

The aim of this work was to investigate the use of these feature points to

develop a new technique for GPU-accelerated feature matching using spatial

locality. The idea is that ColourFAST, being a compact descriptor, could be

used within other existing high-level machine learning techniques to train

a particular classifier function for object recognition. This was achieved by

extending the original ColourFAST descriptor from a 4-dimensional vector

containing RGBθ values to a 6-dimensional vector including x, y values for

the feature point. Including this spatial information incurred minimal per-

formance penalty in terms of computing and matching as evidenced by the

speed tests conducted. However, it has significantly increased the discrimi-

native power of the feature points in some scenarios as shown in the results

section. It has also been able to provide richer information about the target

object such as scale and rotation estimates.

This extended descriptor has been implemented in a highly-efficient way

utilizing GPU programmable shaders and OpenGL ES 2.0 via GLSL on the

Android platform. The algorithm has been tested on the Samsung Galaxy

S4 GT-I9505 with an Adreno 320 GPU. It can, however, be ported to any

mobile device that supports OpenGL ES. Alternatively, desktop versions

94

could be conveniently implemented using OpenCL or CUDA.

The extension of the descriptor to include spatial locality included several

steps. The following were undertaken during this thesis:

1. Automating feature discovery

2. Extracting the feature point coordinates

3. Developing a scale and rotation estimator

4. Developing a feature matching scheme (which includes correcting the

scale and rotation of the target via a feature point transformation)

The automated feature discovery allowed testing against a much larger

reference set as the feature points no longer required manual selection. It

also led to a more rigorous feature point match test as the points selected

within the target object are not guaranteed to be the same as the points

in the reference object as was the case when using contour tracking. It

also facilitated the use of more realistic objects such as paintings rather

than logos. Computer generated images such as company logos typically

consist of two to five different colours against a white background. Each

of the colour combinations used by logos are fairly unique to the particular

logo in question and, hence, colour change values alone are able to easily

identify the object. When two logos have the same colour combinations,

spatial locality becomes a much more important factor. Based on RGBθ

values alone, it is arbitrary which object is identified correctly as seen in

Figure 3.2. Using the x, y values of the feature points, we are able to gain

an understanding of the object’s shape and distinguish objects that have

similar colours but distinct shapes. Using complex objects with a wide range

of colour combinations clearly showcases the benefit of using spatial locality.

In addition, the scale and rotation estimator provides valuable information

about the transformation of the target object with respect to the reference

object.

A series of experimental tests were designed for measuring accuracy and

performance of the original ColourFAST descriptor versus the extended ver-

sion. These tests were designed to test each of the above phases implemented

95

during this work in isolation and the results are reported in this thesis. The

first set of tests aimed to determine the ideal relative weight of RGBθ values

versus x, y values contributing to the overall feature match value M . The

match value obtained was recorded for 100 tests and the results were drawn

on a box and whisker plot. The results from these tests revealed that ap-

proximately 50% colour change values combined with 50% x, y values yield

promising results. Thus, using RGBθ values along with x, y values were

more beneficial to the matching process than using each set of values on

their own.

The next set of tests that were conducted used the chosen weighting

factor for each of the colour changes values and x, y values and evaluated

the match accuracy obtained. Logos were used as the first reference set and

each logo was matched against the database comparing how accurate the

match was using spatial locality versus the original ColourFAST descrip-

tor. The box plot of the results showed that the performance between the

two differed marginally with the spatial locality outperforming the original

ColourFAST descriptor. However, a t-test conducted on this data showed

that this difference in performance was statistically insignificant. This is

due to the nature of objects in the reference set. Each logo has reasonably

unique colours that set it apart from the rest of the logos. Thus, without

using the shape of the object the algorithm was able to identify the logo

correctly. The feature points were either selected manually or via contour

tracking which led to minimal movement and transformation of the points

on the target image. This resulted in the x, y values making a very small dif-

ference to the overall matching process. Thus, it was decided that the next

series of tests be conducted with a reference set of more realistic objects.

For this purpose 100 famous paintings were chosen similar to the reference

set utilized by SURF which made use of images of art in a museum. The

target set contained 50 of the paintings from the reference set. These were

obtained from difference sources than the images in the database and, thus,

contain slight variations in colour and aspect ratio. Paintings are a good

test subject as they exhibit a wide range of colours. This makes the colour

change values alone more ambiguous leading to the spatial locality values

96

contributing more to a successful match. The median values obtained from

these tests indicate a substantial increase in match accuracy using spatial

locality. A t-test showed that this improvement in accuracy was statistically

significant and, therefore, we can conclude that for this set of data spatial

locality values provide considerable benefit. This is expected as the paint-

ings used a much larger set of feature points selected via automated feature

discovery, introducing a larger amount of feature point movement than dur-

ing the logo test. Subsequently, the x, y values were of more importance.

The scale and rotation estimator were of great benefit as well since they help

transform each of the points on the screen and “correct” for any movement

or geometric deformations introduced to the target object.

The scale and rotation estimates were first tested on a simplistic ob-

ject with four feature points as shown in Figure 3.1. These test results

yielded very high accuracy for the rotation predictor (R2 = 0.9967) and

good accuracy for the scale predictor (R2 = 0.9761). Thus, on simple ob-

jects containing a small number of unambiguous feature points the scale and

rotation values obtained were remarkably accurate. Next, the same test was

conducted replacing the simple square object with the reference set of 100

paintings. This caused the accuracy to drop tremendously demonstrating

certain limitations of this approach.

The first limitation is the drop in feature point matching accuracy when

the two chosen anchor points are incorrect, leading to an incorrect scale and

rotation estimate which causes every point in the target image to be wrongly

transformed. This was a situation often encountered when testing the scale

and rotation estimates against paintings. Since the paintings provide a set of

ambiguous feature points, the two points on the target object and reference

object picked as anchors are not the same points as is assumed for the

calculation. Modelling performed using raw data indicated that in certain

situations, the two anchors points on the target object best match the same

point in the reference object causing the scale and rotation variables to be set

to their default values. Both these cases cause a sizeable decrease in match

accuracy. Thus, for real-world objects using only two points as anchors to

gain an estimate for the scale and rotation of an object might be flawed.

97

Increasing the number of anchor points used to obtain these estimates may

create a more robust estimation phase.

The second limitation is the lack of discriminative power due to the

compact nature of the descriptor (six dimensions for ColourFAST with spa-

tial locality compared to the 64-dimensional feature vector used by SURF).

The feature points were sufficiently unique for the purpose of tracking as

the search window used is small and the movements expected between each

frame are minimal. When used for feature point matching with a large

search window for objects such as paintings, the descriptor proves to be

less distinctive as several feature points have similar colour change values

within a given neighbourhood. Thus increase in the dimensionality might

minimize the ambiguity displayed by the feature points in real-world scenar-

ios. Another option would be using clusters of points while maintaining the

compact 6-dimension vector for ColourFAST. Using a cluster of points in

a region gives information about the pattern in the neighbourhood. These

clusters could collectively be used as anchor points to provide information

to perform the required translation of points on the target object.

The last set of tests conducted analyse the throughput achieved with

and without the spatial locality information being passed into the pipeline

and determine whether or not the performance penalty incurred is worth the

increase in match accuracy. For the test set containing 50 objects the perfor-

mance hit incurred by the addition of spatial information is approximately

0.0615 seconds on average which is minimal compared to the significant

boost in match accuracy (as evidenced by the tests conducted against the

paintings database).

6.1 Future Work

Due to the size of the ColourFAST feature descriptor, the feature vector

extracted may not be sufficiently unique for recognizing real-world objects.

As a result, the points picked as anchors during the scale and rotation es-

timation phase of the algorithm (described in Section 3.3) might be picked

incorrectly. If the two anchor points picked between the target image and

98

the database image happen to not be the same point, the scale and rotation

factors obtained will in turn be incorrect. This value is used for trans-

forming each point in the target object to match the database object and

consequently “correcting” for any geometric deformations (refer to Equation

3.9). To make the process of estimating the scale and rotation more robust

a more elaborate scheme could be used where clusters of points are used as

anchors instead. With the current approach, if one anchor point is incorrect,

the entire matching process suffers. Using a cluster of points would allow

for a certain proportion of points picked to be incorrect while still obtaining

a fairly true prediction for the scale and rotation. The other issue noted

was the low discriminative power of the feature vectors for the purpose of

feature matching. While adequate for certain tasks, it proved to be insuffi-

cient in some situations for feature matching. Further extending the feature

descriptor to include the colour values around the pixel under consideration

would give richer information about the pattern in the neighbourhood.

The x, y values are contained in a texture that gets passed into the

pipeline for processing. Since only two of the four components in this texture

are used currently, the descriptor could be easily extended to add two other

components with no modification to the current GPU pipeline or CPU-side

host application or set up. Additional values could also conveniently be

passed into the pipeline via new textures. The current descriptor is very

small compared to most alternative techniques (64 dimensions for SURF,

128 dimensions for SIFT) and still works relatively well for the purpose of

matching. Thus, expanding the dimension would make it more distinctive

while still remaining compact. Since the dimension of a descriptor has a

direct impact on the time taken to extract and match, its size is of particular

importance. Alternatively, the equivalent can be achieved by making use of

clusters of points. This has the benefit of still using a compact 6-dimensional

vector for efficient computing and matching.

Other future work might include porting the automated feature discovery

to the GPU via an additional render pass to accelerate the process. This can

be done relatively easily by passing in a texture with the feature descriptors

for the entire grid to another shader which could compare the descriptors

99

and pick the most distinctive ones based on the selection criteria. So far,

this work has tackled geometric transformations of primary importance such

as scale and rotation. Other factors such as skew, anisotropic scaling and

perspective changes that are of secondary importance would be useful to

investigate.

This work focuses on designing and implementing a GPU-based efficient

feature matching scheme devised for incorporating spatial locality informa-

tion into the ColourFAST feature vector. Overall, for real-world objects the

spatial locality information clearly benefits the matching process and allows

for efficient and accurate feature point matching against a large reference

set. For simplistic objects containing a few colours spatial locality does not

contribute as much to the matching process as the colour change values

alone are adequate to identify the object. However, the match accuracy is

in no way hindered by the x, y values. Moreover, the performance penalty

incurred by the additional render pass, two extra components added to the

descriptor, scale and rotation estimation and transforming the points is min-

imal compared to the benefit gained in terms of accuracy. The limitation

of the approach is using only two points as anchors, although, this can be

overcome by using clusters of points which are more distinctive. Therefore,

combining the use of spatial locality with colour change values shows po-

tential for feature point matching. This 6-dimensional descriptor could be

used within high level machine learning techniques to develop sophisticated

object recognition applications.

100

Appendix A

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19
d0 2.1858 0.28 2.2165 0.8962 0.5817 1.5805 0.5264 1.033 2.1497 2.0495 2.2467 0.9225 0.5582 0.7704 1.8681 1.7728 2.2364 0.5166 1.0065 0.754
d1 1.9872 0.9181 1.571 0.8996 0.9255 1.8556 1.0103 1.086 1.5787 1.5924 1.5912 0.9748 0.8963 0.8476 2.0244 1.8652 2.0794 0.25 0.9151 0.3
d2 2.1092 0.6484 2.1159 1.1074 0.3 1.7274 0.4505 0.751 2.1371 2.1391 2.141 0.8673 0.29 0.8902 1.8597 1.5921 2.2432 0.8613 0.8106 0.7955
d3 2.0022 0.9439 1.6682 0.7086 1.1418 1.9857 1.0415 1.1886 1.6557 1.5609 1.5966 1.0151 1.1044 0.7402 1.7909 1.9362 1.8002 0.2546 0.9077 0.3876
d4 2.0881 0.4893 2.0866 1.1001 0.419 1.5633 0.44 0.908 2.0875 2.042 2.1166 0.9195 0.3946 0.9192 1.8885 1.6156 2.297 0.765 0.9253 0.7419
d5 0.34 2.0919 0.85 1.6128 2.023 0.7961 2.1936 1.8611 0.945 0.5748 0.8065 1.5937 1.9429 1.4506 0.5249 0.46 0.539 1.7562 1.6075 1.5156
d6 2.2088 0.772 1.9684 1.1521 1.0495 1.7685 1.0594 1.4018 1.8623 1.8437 1.9764 1.2339 1.0245 1.0718 2.0877 1.959 2.2755 0.5084 1.2802 0.7551
d7 1.0766 1.8144 0.815 2.2069 1.9705 0.61 1.986 2.3167 0.7315 0.7756 0.8319 2.1996 1.9458 2.0862 1.0082 0.804 1.2254 1.5616 2.2088 1.6584
d8 2.2018 0.7273 2.4265 1.1354 0.601 1.8299 0.6843 1.0876 2.3449 2.2272 2.4073 1.0404 0.4611 0.9447 1.7699 1.6804 2.2231 0.9505 1.1355 1.0921
d9 1.2335 1.9118 1.222 2.2031 1.5774 0.9284 1.5532 1.8574 1.1318 1.3182 1.1688 2.086 1.4022 1.9966 0.6817 0.7044 1.0825 2.0618 1.8848 2.0681
d10 1.5906 1.1631 2.1403 0.7554 0.9894 1.9726 1.2109 0.6134 2.2396 1.8847 2.1056 0.3 0.8723 0.4455 1.6025 1.4977 1.697 0.9549 0.4499 0.7311
d11 0.9851 2.1479 0.48 1.9565 2.1092 1.0082 2.0702 2.0543 0.56 0.53 0.34 2.0613 2.087 1.9157 0.9887 0.9532 0.8723 1.5066 1.8103 1.3763
d12 0.5365 2.0389 0.9816 1.3863 2.0326 1.0106 2.1953 1.8537 1.079 0.6381 0.9151 1.5471 1.9561 1.3685 0.724 0.6887 0.5454 1.6328 1.5426 1.4097
d13 1.8919 0.5633 1.8833 1.1009 0.7678 1.3045 0.7987 1.1583 1.8677 1.724 1.9154 1.0335 0.7452 0.9339 1.7263 1.522 2.0589 0.6395 1.1164 0.7327
d14 1.487 1.1442 2.0653 0.63 1.1011 1.9622 1.3025 0.7921 2.1679 1.7504 2.0206 0.4585 1.0002 0.34 1.5288 1.5244 1.5096 0.8735 0.4691 0.7246
d15 0.9225 2.2458 1.4274 1.6853 2.1842 1.3464 2.1972 1.6814 1.397 1.1789 1.305 1.385 2.0602 1.4461 0.6635 0.8599 0.665 1.9896 1.4239 1.9025
d16 1.7804 1.0959 1.6277 0.7491 1.2689 1.8703 1.2046 1.2828 1.6143 1.3433 1.4938 1.0637 1.2212 0.7799 1.6283 1.7611 1.5904 0.4559 0.9624 0.4372
d17 0.8737 1.8978 1.0659 1.6854 1.8284 1.0051 1.7404 1.639 1.0166 1.0078 0.985 1.6944 1.7625 1.4953 0.34 0.5782 0.7026 1.7113 1.5013 1.7046
d18 1.748 0.9992 1.9673 1.0578 0.663 1.7289 0.8719 0.6585 2.0309 1.9135 1.9722 0.7436 0.5672 0.7848 1.5074 1.2447 1.9057 0.9973 0.7328 0.819
d19 0.7074 2.0859 1.1962 1.3753 2.1257 1.2241 2.2533 1.8633 1.2587 0.8414 1.1186 1.5131 2.0393 1.2856 0.7939 0.8601 0.45 1.6645 1.5023 1.5358
d20 1.7443 0.885 2.0351 0.8697 0.8509 1.6918 0.8763 0.9174 1.969 1.8306 1.9693 0.85 0.7676 0.6918 1.2557 1.2515 1.7036 0.8171 0.8468 0.8649
d21 1.8185 1.1031 2.0052 1.1756 0.7307 1.7995 0.9036 0.6344 2.0666 2.0027 2.0088 0.8041 0.6107 0.8805 1.5431 1.3361 1.9116 1.1412 0.7639 0.961
d22 1.9574 0.9255 1.7039 1.1971 1.1751 1.5944 1.2097 1.4736 1.6067 1.5854 1.7154 1.2933 1.1488 1.105 1.8622 1.7412 2.0216 0.5219 1.3402 0.7414
d23 1.8568 0.7363 1.8082 1.2147 0.6156 1.401 0.6694 0.9875 1.8234 1.8198 1.8362 1.0494 0.6069 1.0116 1.6667 1.4042 2.0084 0.8769 0.9878 0.8119
d24 1.6282 0.8407 1.6651 0.8992 0.9741 1.4972 1.0802 1.138 1.7211 1.4649 1.6866 0.9559 0.9306 0.7678 1.5029 1.416 1.7272 0.5236 1.0105 0.5595
d25 1.3359 1.1445 1.9062 0.6743 1.1183 1.8032 1.3148 0.8875 2.0079 1.5999 1.868 0.6086 1.0329 0.3919 1.3992 1.392 1.4505 0.8565 0.6427 0.7017
d26 0.8122 1.975 1.0348 1.3499 2.0864 1.1603 2.0999 1.9844 1.0309 0.6843 0.8951 1.6892 2.0216 1.4005 0.7956 0.924 0.6031 1.4383 1.6158 1.3178
d27 1.5739 1.3072 1.8111 0.8839 1.056 1.896 0.9935 0.7108 1.7815 1.8277 1.7134 0.7657 0.9799 0.6719 1.3182 1.4605 1.4873 1.0563 0.4852 0.8406
d28 1.5586 1.1975 2.011 1.0052 0.9534 1.7683 1.1907 0.61 2.0967 1.8168 1.9963 0.5811 0.8272 0.6857 1.4181 1.2667 1.7263 1.0918 0.7165 0.8659
d29 1.5907 1.1043 1.744 0.8225 1.1337 1.7462 1.0153 0.9852 1.7049 1.6495 1.6626 0.9578 1.0838 0.7115 1.2214 1.4387 1.4121 0.8012 0.7616 0.7871
d30 1.5263 1.183 1.4796 0.8761 1.148 1.6767 1.2694 1.1526 1.5908 1.2705 1.4303 0.9681 1.0961 0.8267 1.6365 1.5151 1.6019 0.6525 0.9112 0.3224
d31 1.631 1.5417 1.9223 0.8616 1.3312 2.1135 1.2552 0.8491 1.903 1.9033 1.7924 0.749 1.2463 0.683 1.4996 1.6809 1.3058 1.2014 0.4 0.9783
d32 1.7091 0.8696 1.9546 1.0093 0.8499 1.4998 0.9029 1.113 1.8869 1.7428 1.9094 1.0149 0.7865 0.8458 1.2786 1.2277 1.7139 0.8572 1.0552 0.9355
d33 2.0178 1.1003 2.1701 1.3144 0.8966 1.8013 0.8779 1.053 2.083 2.1133 2.1136 1.1823 0.7245 1.0995 1.4489 1.4987 1.8412 1.2285 1.1043 1.3086
d34 1.2912 1.5601 0.9931 2.0385 1.6291 0.7585 1.6253 1.991 0.9332 1.0447 1.0201 1.9961 1.6238 1.8979 1.1933 0.9746 1.4151 1.4455 1.911 1.4985
d35 0.9406 2.1711 1.0449 1.3949 2.0143 1.3852 1.9025 1.6845 1.0291 1.0079 0.8894 1.6324 1.9568 1.4567 0.9239 1.0808 0.5583 1.6792 1.2648 1.399
d36 1.1016 2.1863 1.39 1.7441 1.8617 1.4462 1.8741 1.2849 1.4133 1.4097 1.2846 1.2661 1.7496 1.4866 0.89 0.9532 0.9435 2.0021 1.1486 1.7227
d37 1.2715 1.6771 0.8886 1.7909 1.7565 0.9589 1.5382 1.8632 0.7599 1.0262 0.8451 1.9655 1.7442 1.7308 0.9079 1.0315 1.0609 1.3203 1.6587 1.4492
d38 1.5066 1.39 1.7587 0.7725 1.4901 1.9096 1.6146 1.3291 1.8571 1.4035 1.6527 0.9982 1.4205 0.7749 1.6178 1.6413 1.2728 0.874 0.9868 0.7261
d39 1.7152 0.9037 1.5608 1.2569 0.8662 1.302 0.8837 1.1213 1.572 1.5983 1.5899 1.1668 0.8544 1.0942 1.5689 1.3658 1.8292 0.8523 1.0561 0.8088
d40 1.6129 1.1017 1.5645 1.1743 0.9183 1.5073 0.9109 0.9188 1.6023 1.6466 1.5544 1.049 0.8795 0.9808 1.3286 1.2578 1.6371 0.9726 0.8401 0.8157
d41 1.9492 0.9292 1.5999 1.5186 1.0031 1.3393 0.8698 1.2853 1.5553 1.7616 1.6278 1.4354 0.9985 1.3559 1.7078 1.5743 1.9666 0.9841 1.2418 1.0105
d42 1.8856 0.9363 1.6617 1.2383 1.2226 1.4146 1 1.4491 1.5005 1.6318 1.6194 1.4131 1.1947 1.1731 1.4682 1.5904 1.7207 0.7415 1.2774 0.9894
d43 1.7428 1.0657 1.5911 1.1342 1.0339 1.5218 0.8706 1.1024 1.5098 1.6814 1.5378 1.2275 1.0091 1.0249 1.3089 1.4136 1.5742 0.8911 0.9446 0.9045
d44 1.8874 1.2498 1.9639 1.346 0.9028 1.7521 0.8857 0.9245 1.891 2.0399 1.9022 1.1572 0.7606 1.1289 1.3667 1.3685 1.7536 1.305 0.969 1.2424
d45 0.7336 1.9494 1.2643 1.3394 1.833 1.2339 2.0227 1.5482 1.3711 0.9934 1.2061 1.2231 1.7385 1.1339 0.9147 0.8339 0.7534 1.611 1.1927 1.3365
d46 1.8955 1.0454 1.602 1.2704 1.3332 1.488 1.121 1.5392 1.4134 1.5783 1.5538 1.4803 1.3067 1.2213 1.51 1.6434 1.7182 0.7069 1.3427 0.9869
d47 1.398 1.247 1.4351 0.9757 1.1102 1.5731 1.2137 1.0664 1.534 1.3591 1.4145 1.0019 1.0703 0.8693 1.4628 1.3461 1.4911 0.8505 0.8617 0.584
d48 1.4525 1.5281 1.3239 2.0628 1.282 0.9692 1.148 1.6828 1.2552 1.4429 1.2809 1.8907 1.257 1.8802 1.0545 0.9433 1.4321 1.7921 1.6787 1.7283
d49 0.9708 1.9057 1.0504 1.3479 1.8451 1.3181 1.717 1.605 1.0254 1.014 0.9308 1.613 1.7952 1.332 0.8035 1.0367 0.721 1.4703 1.2677 1.3023
d50 1.3743 1.276 1.9168 0.9599 1.1818 1.7046 1.4048 0.8422 2.0108 1.6266 1.8917 0.6317 1.068 0.6327 1.255 1.2181 1.4652 1.0991 0.7825 0.9658
d51 1.6619 1.225 1.2753 1.2316 1.1829 1.5137 1.0879 1.2045 1.2796 1.4044 1.2595 1.2805 1.1646 1.1571 1.5073 1.4889 1.5956 0.7633 1.0051 0.7161
d52 1.8204 1.1368 1.5315 1.2066 1.408 1.5429 1.2892 1.6289 1.3125 1.4306 1.4695 1.4604 1.3788 1.1881 1.5676 1.6417 1.6922 0.6001 1.3875 0.9028
d53 1.663 1.419 2.0847 1.1355 1.3046 1.8769 1.3162 0.8078 2.0448 1.9036 1.9949 0.861 1.1609 0.8759 1.2122 1.3712 1.4919 1.3036 0.8956 1.2714
d54 1.2314 2.2243 1.1141 1.5597 2.1032 1.5783 1.9987 1.8191 1.1031 1.0634 0.9112 1.7618 2.0581 1.6224 1.2333 1.3491 0.8229 1.6401 1.3934 1.3589
d55 1.5722 1.2955 1.1955 1.1913 1.2373 1.5441 1.2232 1.2286 1.2874 1.2639 1.2049 1.2481 1.2136 1.1152 1.5399 1.471 1.5474 0.749 1.0298 0.6174
d56 1.5281 1.5803 2.1028 1.1848 1.4046 1.9075 1.6439 0.9635 2.2027 1.8068 2.0637 0.6653 1.2671 0.8772 1.5076 1.4072 1.5577 1.4061 0.8898 1.205
d57 1.0141 1.6802 1.4625 1.6085 1.4652 1.1238 1.7056 1.2639 1.5383 1.2392 1.456 1.2169 1.3348 1.294 0.814 0.6188 1.2008 1.6314 1.3864 1.4695
d58 1.6971 1.0762 1.8687 1.2378 0.9774 1.4936 0.9564 1.1532 1.7898 1.7611 1.8126 1.1917 0.8911 1.0485 1.1341 1.178 1.5837 1.1171 1.1329 1.1909
d59 1.6462 1.6228 1.5502 1.0009 1.6952 1.9549 1.5462 1.4577 1.5227 1.397 1.3526 1.3469 1.6544 1.0678 1.5113 1.7481 1.1776 1.0069 1.0544 0.9204

Table 6.1: Anchor Point Analysis for painting: Nevermore, Paul Gauguin
(1897)

101

t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30 t31 t32 t33 t34 t35 t36 t37 t38 t39
d0 1.7178 2.075 0.7543 1.6917 1.4465 1.0868 0.4204 2.1348 0.6054 0.7629 0.7165 0.8892 1.7589 1.0084 1.407 1.747 0.4276 0.9854 0.7099 0.6668
d1 1.6016 1.7543 0.9356 1.5285 1.9109 0.8182 0.7215 1.6321 0.463 0.35 0.7869 0.8288 1.6548 0.6493 1.6005 1.2741 0.6709 0.7218 0.7276 0.5523
d2 2.0384 1.9902 0.3991 1.8024 1.5501 0.8309 0.1 1.9341 0.5193 0.604 0.3061 0.6407 1.8271 0.8584 1.5527 1.7774 0.6593 1.0573 0.6981 0.4158
d3 1.6123 1.6181 1.108 1.7533 1.7548 0.849 0.9355 1.701 0.4821 0.4853 0.9606 0.7637 1.5546 0.5624 1.5705 1.3261 0.5329 0.6398 0.5054 0.7241
d4 1.8753 2.0197 0.5726 1.6326 1.4851 0.9111 0.1598 1.9611 0.5081 0.6327 0.467 0.7354 1.7903 0.9148 1.4579 1.6782 0.599 0.9984 0.7661 0.4834
d5 0.831 0.4794 1.7738 0.7808 0.7992 1.499 1.7707 0.41 1.666 1.3928 1.6173 1.4878 0.15 1.4923 0.48 0.4173 1.8399 1.4488 1.4413 1.4602
d6 1.3207 2.0806 1.142 1.3324 1.782 1.1712 0.7716 2.0177 0.6883 0.7686 0.984 1.089 1.8096 1.0456 1.5665 1.575 0.5742 0.8902 0.8837 0.8267
d7 0.34 0.9836 2.0564 0.14 0.7024 2.0937 1.675 0.8911 1.6147 1.6766 1.8907 2.0135 0.753 1.9619 0.5074 0.4494 1.4859 1.8984 1.8318 1.621
d8 1.9807 2.1274 0.6969 1.9553 1.5508 1.1973 0.4625 2.2384 0.8424 0.9835 0.6247 0.8514 1.8118 1.1139 1.5503 1.9293 0.713 1.102 0.7551 0.7698
d9 1.116 0.8919 1.5266 1.0033 0.47 1.9454 1.4149 1.0499 1.639 1.8641 1.4727 1.5999 0.8774 1.8547 0.6632 0.9848 1.5488 2.1626 1.5528 1.5193
d10 2.1127 1.7547 0.6102 2.0035 1.9382 0.516 0.786 1.6539 0.8198 0.5924 0.4996 0.4046 1.4108 0.651 1.6295 1.601 1.0113 0.6227 0.5801 0.5712
d11 0.7531 0.5797 1.9417 0.6994 0.897 1.6251 1.7934 0.4247 1.4305 1.3515 1.7951 1.6886 0.6564 1.4589 0.7223 0.31 1.6282 1.55 1.5835 1.4857
d12 0.9476 0.5483 1.7834 0.9499 0.9687 1.3564 1.7755 0.4314 1.6283 1.3133 1.63 1.4866 0.2608 1.3028 0.5978 0.4591 1.773 1.2093 1.4031 1.465
d13 1.5145 1.8863 0.8673 1.3753 1.3596 1.0491 0.4752 1.8182 0.5816 0.6771 0.7085 0.8997 1.5513 0.9672 1.2048 1.4171 0.3765 0.8755 0.6857 0.5265
d14 1.968 1.6158 0.7638 1.9642 1.8543 0.4816 0.8731 1.5522 0.8425 0.5899 0.6352 0.4754 1.2433 0.625 1.522 1.5258 0.9699 0.4755 0.5291 0.6321
d15 1.3131 0.8357 1.7482 1.3865 0.9969 1.5103 1.9731 0.923 1.8343 1.7814 1.6849 1.3914 0.6235 1.5932 0.8594 0.9558 1.8612 1.6208 1.457 1.7224
d16 1.5426 1.412 1.1747 1.6755 1.6552 0.8508 1.0043 1.4905 0.5833 0.516 0.997 0.7756 1.3367 0.5625 1.4308 1.1654 0.617 0.5487 0.4966 0.7143
d17 1.0123 0.6061 1.5173 1.0551 0.5524 1.5292 1.5605 0.7549 1.3851 1.4823 1.3746 1.2108 0.494 1.4356 0.5295 0.7405 1.3928 1.6481 1.0591 1.2389
d18 1.9758 1.7178 0.3707 1.7711 1.6014 0.75 0.4406 1.6569 0.6657 0.594 0.2 0.5112 1.5005 0.7871 1.4342 1.5711 0.8212 0.9084 0.5808 0.3595
d19 1.07 0.6592 1.8283 1.1725 1.0773 1.2539 1.877 0.5951 1.7322 1.4454 1.6897 1.4687 0.3861 1.3392 0.7231 0.6742 1.805 1.1728 1.414 1.5752
d20 1.7622 1.6204 0.6933 1.7805 1.3728 0.8875 0.6201 1.775 0.6387 0.7409 0.5197 0.5542 1.3582 0.7863 1.249 1.546 0.604 0.8355 0.3885 0.4847
d21 2.0612 1.7444 0.28 1.8526 1.6091 0.7925 0.5217 1.6806 0.7506 0.7208 0.2208 0.5603 1.5795 0.8603 1.5185 1.6617 0.9012 1.0238 0.6687 0.4496
d22 1.1184 1.8322 1.2422 1.19 1.6114 1.2225 0.8995 1.7615 0.7606 0.779 1.0678 1.1603 1.5636 1.0581 1.3598 1.313 0.5702 0.9058 0.8478 0.769
d23 1.7021 1.7268 0.6769 1.4711 1.2594 0.9506 0.2973 1.668 0.5677 0.6273 0.5237 0.76 1.5576 0.899 1.2297 1.4548 0.5639 1.0194 0.6816 0.3822
d24 1.4525 1.5531 0.933 1.4352 1.4439 0.9205 0.7048 1.534 0.45 0.5094 0.7542 0.816 1.2291 0.8018 1.0826 1.1613 0.5371 0.6796 0.4991 0.45
d25 1.807 1.4816 0.8305 1.7986 1.7049 0.5933 0.8863 1.4322 0.8364 0.574 0.6828 0.534 1.0866 0.658 1.3655 1.3632 0.9396 0.5453 0.5094 0.5972
d26 0.9101 0.4787 1.8902 1.0365 0.9657 1.4637 1.8172 0.4861 1.5047 1.2821 1.7277 1.4792 0.4028 1.1925 0.6819 0.5273 1.5756 1.1175 1.29 1.509
d27 1.9814 1.3414 0.6744 1.8619 1.566 0.5251 0.7961 1.4041 0.5712 0.5948 0.553 0.23 1.3418 0.5 1.5286 1.5159 0.816 0.8399 0.3975 0.487
d28 1.9703 1.6813 0.5539 1.8036 1.7191 0.7637 0.7567 1.6027 0.8962 0.7324 0.4525 0.5469 1.3507 0.8594 1.4462 1.4934 1.044 0.8655 0.693 0.5748
d29 1.6875 1.2925 0.88 1.7426 1.3382 0.7452 0.8551 1.4479 0.5348 0.5993 0.7327 0.5002 1.1733 0.5852 1.2587 1.3777 0.5742 0.7768 0.19 0.4769
d30 1.5743 1.31 1.0196 1.4706 1.7147 0.7464 0.8777 1.2028 0.6271 0.3564 0.8449 0.7873 1.1991 0.5836 1.3492 0.9923 0.8742 0.5622 0.6783 0.5815
d31 2.1 1.3388 0.8927 2.0465 1.7465 0.42 1.0759 1.3876 0.8074 0.7518 0.7994 0.4186 1.398 0.5043 1.698 1.6282 1.0264 0.7954 0.5997 0.7529
d32 1.607 1.6103 0.8194 1.609 1.2182 1.0935 0.6135 1.7404 0.7436 0.8408 0.6549 0.7627 1.3132 0.9557 1.0978 1.446 0.6076 0.9793 0.5394 0.5411
d33 1.9491 1.783 0.7131 1.9352 1.3242 1.1797 0.7337 1.9364 0.9305 1.1338 0.6883 0.8281 1.6453 1.1075 1.4632 1.8205 0.7698 1.2884 0.7072 0.8043
d34 0.689 1.0929 1.714 0.4352 0.7927 1.8145 1.3189 1.0075 1.3232 1.4079 1.5524 1.7046 0.965 1.6993 0.6669 0.6903 1.1832 1.7578 1.5702 1.3012
d35 1.2857 0.4983 1.678 1.2344 1.0806 1.0894 1.7295 0.4631 1.3324 1.2255 1.5529 1.1913 0.6705 0.9069 1.0047 0.7692 1.5826 1.2093 1.2332 1.3582
d36 1.6125 0.9464 1.3518 1.4433 1.1392 1.2561 1.6345 0.9425 1.5286 1.4961 1.301 1.1154 0.9313 1.3654 1.1282 1.1007 1.7232 1.6477 1.3404 1.3577
d37 0.7896 0.7409 1.6846 0.7501 0.6432 1.601 1.4334 0.8709 1.0332 1.3309 1.5407 1.4024 0.8422 1.3786 0.6207 0.6808 1.0293 1.6407 1.2087 1.2315
d38 1.6862 1.3309 1.263 1.7739 1.815 0.7484 1.2275 1.1485 1.0188 0.6961 1.1068 0.934 1.1432 0.6186 1.4469 1.2518 1.1038 0.26 0.7928 0.9233
d39 1.4912 1.5199 0.8533 1.2811 1.2448 0.9841 0.5441 1.4556 0.5313 0.6397 0.689 0.8416 1.3991 0.9083 1.0562 1.2356 0.567 1.0217 0.7308 0.4558
d40 1.6906 1.3726 0.7455 1.4976 1.285 0.7947 0.6334 1.3551 0.5178 0.6122 0.5954 0.619 1.3178 0.7428 1.1651 1.2903 0.6729 1.005 0.5095 0.28
d41 1.4548 1.6492 1.044 1.1995 1.2409 1.1681 0.6902 1.5941 0.683 0.8781 0.9146 1.0253 1.6294 1.0659 1.2927 1.3969 0.5087 1.2748 0.8996 0.6718
d42 1.2504 1.536 1.2386 1.243 1.1597 1.2371 0.9302 1.6679 0.6589 0.965 1.0991 1.0088 1.4438 1.0125 1.1506 1.3344 0.35 1.1031 0.7075 0.8153
d43 1.5581 1.2888 0.9166 1.4921 1.142 0.9299 0.7277 1.4408 0.4591 0.7184 0.7703 0.6668 1.3321 0.7521 1.0662 1.3292 0.5221 1.0525 0.4894 0.4712
d44 1.9434 1.5678 0.591 1.82 1.3206 1.0477 0.7192 1.7002 0.8456 1.0204 0.5545 0.6935 1.5682 0.98 1.4373 1.6897 0.8525 1.3241 0.7214 0.6947
d45 1.2832 0.8493 1.5167 1.1961 1.2207 1.0676 1.5938 0.7186 1.5182 1.228 1.3813 1.2163 0.5554 1.2233 0.8761 0.7272 1.7061 1.1549 1.2973 1.2949
d46 1.133 1.5288 1.3459 1.1609 1.2407 1.2836 1.0433 1.6473 0.7179 0.9961 1.2024 1.0859 1.4481 1.0405 1.2035 1.2891 0.4696 1.1108 0.7762 0.8997
d47 1.5793 1.1824 0.9244 1.4426 1.511 0.7378 0.8167 1.1231 0.6133 0.3552 0.751 0.7057 1.0642 0.6291 1.2251 1.0369 0.8812 0.7462 0.5977 0.4982
d48 1.2755 1.1704 1.3752 1.0317 0.6503 1.6956 1.0367 1.1971 1.3168 1.5439 1.2882 1.4494 1.1608 1.6361 0.8513 1.0773 1.2476 1.9261 1.4014 1.2174
d49 1.1725 0.47 1.5532 1.1919 0.9252 1.1734 1.5544 0.6218 1.1623 1.0769 1.4174 1.0866 0.5334 0.9781 0.8455 0.7604 1.3286 1.2622 0.9817 1.1883
d50 1.7873 1.522 0.8125 1.7523 1.588 0.8256 0.9693 1.4722 1.037 0.8349 0.6934 0.6326 1.1163 0.9346 1.2875 1.3765 1.0915 0.8126 0.7003 0.7344
d51 1.4332 1.264 1.0601 1.2993 1.3447 0.8885 0.8684 1.2363 0.4557 0.6057 0.9114 0.8285 1.3283 0.7486 1.2245 1.0375 0.6693 0.9754 0.6907 0.5959
d52 1.0458 1.5008 1.4338 1.1985 1.3712 1.3015 1.1146 1.6012 0.7899 0.9379 1.2599 1.1503 1.3689 1.0451 1.2105 1.1641 0.6445 1.0036 0.847 0.9718
d53 1.9354 1.5535 0.8125 1.9636 1.4876 1.0034 1.12 1.6817 1.0875 1.1406 0.7903 0.7007 1.3441 1.0173 1.4323 1.6438 1.0571 1.1158 0.7272 0.9307
d54 1.3906 0.7311 1.8054 1.3478 1.3244 1.2001 1.8059 0.5817 1.3661 1.2587 1.6751 1.356 0.9597 1.0287 1.2388 0.871 1.6252 1.0776 1.362 1.4433
d55 1.4216 1.2143 1.0793 1.3123 1.4413 0.8847 0.9269 1.1152 0.5761 0.5395 0.9304 0.8742 1.2385 0.7363 1.2412 0.8964 0.8085 0.8801 0.7478 0.6184
d56 2.0389 1.7074 0.9644 1.9605 1.831 0.9311 1.2082 1.5912 1.304 1.0777 0.902 0.8897 1.3357 1.1141 1.5417 1.5626 1.4085 0.9981 1.0147 1.0068
d57 1.3485 1.1711 1.0673 1.2159 1.0619 1.4209 1.2691 1.099 1.4666 1.3437 0.9625 1.1914 0.7882 1.5001 0.8116 0.9272 1.5338 1.456 1.2448 1.1306
d58 1.6201 1.499 0.8757 1.6165 1.0807 1.1835 0.7736 1.6539 0.8797 1.0831 0.759 0.8414 1.3115 1.074 1.1164 1.4656 0.7343 1.2045 0.6605 0.7392
d59 1.6318 1.1099 1.4263 1.7768 1.5724 0.878 1.399 1.067 0.9296 0.8445 1.2885 0.9409 1.2427 0.6213 1.4925 1.2628 0.9976 0.621 0.7612 1.0343

Table 6.2: Anchor Point Analysis for painting: Nevermore, Paul Gauguin
(1897)

102

t40 t41 t42 t43 t44 t45 t46 t47 t48 t49 t50 t51 t52 t53 t54 t55 t56 t57 t58 t59
d0 1.1852 1.5774 0.7612 0.6503 0.72 0.7106 1.7134 2.1671 0.8021 0.7649 1.262 0.9403 1.2122 0.5917 0.7508 0.7345 1.8611 0.6003 1.3778 1.4102
d1 1.0073 1.484 0.412 0.301 0.9878 0.5823 1.8374 2.0186 0.3987 1.1371 1.1462 1.0043 0.9111 0.7122 0.8478 0.7567 1.5305 0.7779 1.4054 1.9144
d2 0.9403 1.6428 0.5932 0.7539 0.3684 0.5109 1.5144 1.8175 0.6902 0.6581 1.0201 0.8774 0.9143 0.878 0.3478 0.4251 2.0369 0.7654 1.3713 1.2555
d3 0.9236 1.4453 0.569 0.4896 1.1905 0.6565 1.8668 1.9973 0.5039 0.9244 1.0437 0.9257 0.9229 0.571 1.0357 0.916 1.3022 0.6301 1.5688 1.7413
d4 1.0338 1.5935 0.6 0.6104 0.4158 0.5279 1.5697 1.9399 0.6692 0.7351 1.1238 0.9131 0.9965 0.7596 0.4786 0.4982 1.9628 0.7142 1.2834 1.3608
d5 1.5615 0.7658 1.3881 1.5748 1.8169 1.4847 0.5666 0.7137 1.5234 1.6758 1.5287 1.3161 1.2849 1.7263 1.4858 1.4244 0.7302 1.5908 0.9859 1.1201
d6 1.3147 1.5624 0.7067 0.3601 0.9887 0.7815 1.9164 2.3183 0.6811 1.1001 1.4288 1.116 1.2458 0.5005 0.9837 0.9202 1.7458 0.7013 1.324 1.7611
d7 2.1705 0.5106 1.4975 1.1804 1.7704 1.5427 0.9384 1.2821 1.4028 1.9028 2.1294 1.8798 1.8936 1.2255 1.5861 1.5181 1.0117 1.363 0.4789 1.0577
d8 1.0779 1.7633 0.9081 0.8967 0.26 0.8042 1.5059 1.9701 1.0026 0.43 1.122 0.8225 1.1652 0.8235 0.6266 0.7329 1.9583 0.7827 1.6399 1.0066
d9 1.7945 0.6098 1.6924 1.8851 1.2578 1.4697 0.6636 0.8002 1.6268 1.2227 1.6682 1.6566 1.6744 1.5602 1.2054 1.2867 1.2446 1.3778 0.767 0.3324
d10 0.4165 1.8695 0.6101 0.8003 0.785 0.6444 1.2309 1.2601 0.7916 0.6611 0.4408 0.2 0.4251 1.066 0.6501 0.651 1.6034 0.9832 1.7654 1.715
d11 1.7404 0.4977 1.2392 1.3197 1.9508 1.3735 0.9907 0.9259 1.1739 1.9702 1.7281 1.779 1.466 1.4887 1.5531 1.4251 0.6365 1.4059 0.6613 1.1629
d12 1.4655 0.7949 1.3341 1.5055 1.8299 1.4713 0.6158 0.6984 1.465 1.6467 1.4538 1.2548 1.1934 1.6438 1.498 1.4324 0.5345 1.5205 0.9575 1.0994
d13 1.0916 1.3691 0.4879 0.3633 0.5931 0.4432 1.4736 1.9292 0.4898 0.6896 1.1061 0.7695 0.922 0.4165 0.5222 0.4844 1.6618 0.4007 1.0728 1.354
d14 0.4411 1.7672 0.5778 0.7647 0.8757 0.6448 1.2818 1.3576 0.7577 0.6703 0.443 0.2417 0.3247 0.963 0.6929 0.6713 1.4123 0.867 1.7426 1.6744
d15 1.238 0.9732 1.7645 1.9534 1.9158 1.684 0.5897 0.2681 1.7923 1.4148 1.0625 1.1037 1.2666 1.771 1.6391 1.6161 0.8333 1.6186 1.2194 0.9724
d16 0.849 1.3666 0.48 0.4959 1.1224 0.5914 1.6783 1.8045 0.4311 0.7911 0.891 0.7188 0.7371 0.5132 0.8837 0.7815 1.0807 0.546 1.5002 1.6278
d17 1.4144 0.5152 1.3632 1.6477 1.6367 1.2131 0.5166 0.5377 1.365 1.2562 1.3168 1.2518 1.2656 1.3746 1.2126 1.1404 0.7639 1.1564 0.7342 0.5808
d18 0.707 1.5743 0.4908 0.7322 0.4391 0.4159 1.1029 1.4197 0.5927 0.4239 0.6628 0.4709 0.5569 0.892 0.21 0.2692 1.7495 0.7226 1.4004 1.339
d19 1.3246 0.9147 1.4651 1.6357 1.9114 1.5925 0.7213 0.709 1.5973 1.6079 1.3039 1.1789 1.1556 1.6786 1.5864 1.5348 0.5228 1.5507 1.0951 1.1114
d20 0.7606 1.4249 0.6204 0.727 0.6442 0.4556 1.2088 1.5379 0.6438 0.2996 0.6905 0.4508 0.6561 0.5934 0.3851 0.3743 1.4867 0.4746 1.4454 1.1766
d21 0.7321 1.6064 0.5814 0.8647 0.4684 0.5044 1.0666 1.3604 0.6785 0.4006 0.637 0.5161 0.5589 0.9553 0.218 0.3185 1.8325 0.7613 1.4184 1.2866
d22 1.3112 1.3416 0.6401 0.29 1.0154 0.7128 1.6966 2.0806 0.5263 0.9859 1.3228 0.923 1.0684 0.3336 0.8283 0.7363 1.486 0.5383 1.1786 1.6079
d23 0.9647 1.3283 0.4598 0.5658 0.4578 0.3617 1.3756 1.6657 0.4673 0.6376 0.9213 0.735 0.7215 0.607 0.2396 0.2184 1.7327 0.4527 1.072 1.2101
d24 0.9822 1.2388 0.3465 0.4114 0.8167 0.3813 1.363 1.73 0.3529 0.6854 0.9648 0.5631 0.7357 0.4255 0.5405 0.4259 1.3309 0.3823 1.2351 1.4133
d25 0.6179 1.6083 0.5707 0.7658 0.9289 0.6435 1.1963 1.3649 0.7091 0.675 0.5876 0.2764 0.3726 0.8714 0.597 0.579 1.2983 0.7637 1.5818 1.5525
d26 1.4702 0.7265 1.3042 1.4311 1.8949 1.4516 0.8342 0.8673 1.3938 1.5683 1.44 1.3164 1.2975 1.4241 1.565 1.4823 0.28 1.3268 0.9256 0.9827
d27 0.4256 1.4008 0.5174 0.8648 0.8512 0.4204 1.2997 1.1511 0.5473 0.6318 0.3684 0.4785 0.262 0.8119 0.472 0.4081 1.4752 0.5927 1.3942 1.3973
d28 0.6811 1.6801 0.6774 0.8588 0.6939 0.655 0.9554 1.2144 0.7881 0.5255 0.5892 0.2427 0.5075 0.9804 0.4249 0.4564 1.5901 0.8431 1.5423 1.4534
d29 0.6707 1.2309 0.4917 0.7617 0.966 0.3944 1.3472 1.4047 0.4973 0.5725 0.6238 0.535 0.5043 0.5174 0.5497 0.4228 1.287 0.3529 1.3272 1.2329
d30 0.8517 1.3699 0.335 0.4764 0.977 0.5338 1.4535 1.5982 0.4098 0.9544 0.8591 0.6831 0.5764 0.7203 0.646 0.5518 1.1366 0.662 1.3222 1.6713
d31 0.22 1.5427 0.7217 1.0764 1.1144 0.6782 1.4536 1.0515 0.7543 0.8175 0.2 0.5099 0.18 0.9945 0.7264 0.6675 1.3994 0.769 1.6004 1.5724
d32 0.9755 1.322 0.7161 0.7777 0.6737 0.5691 1.169 1.566 0.7303 0.4063 0.9029 0.5646 0.8393 0.549 0.3694 0.3417 1.434 0.4414 1.3105 1.043
d33 1.0111 1.5083 0.9733 1.1148 0.5277 0.7539 1.2648 1.5356 0.9205 0.27 0.8888 0.735 0.9036 0.7612 0.4789 0.5683 1.7774 0.5851 1.437 0.8565
d34 1.8778 0.5421 1.2218 1.0727 1.4453 1.2299 0.9711 1.2126 1.1397 1.6601 1.8289 1.6713 1.6049 1.0236 1.2411 1.1822 0.9963 1.0804 0.19 0.7821
d35 1.1162 0.7793 1.2222 1.5438 1.8315 1.254 0.958 0.6402 1.237 1.6055 1.1175 1.373 0.9423 1.5074 1.4058 1.305 0.5114 1.3338 0.8408 0.9869
d36 1.0631 1.0454 1.4409 1.7921 1.6052 1.3356 0.6311 0.24 1.4596 1.3545 0.9229 1.0448 0.9935 1.7061 1.2566 1.2443 1.0264 1.4952 1.0227 0.9241
d37 1.5587 0.21 1.1125 1.1326 1.5946 1.038 1.0325 0.9969 0.9293 1.4647 1.4923 1.5623 1.3778 0.9301 1.2456 1.1268 0.786 0.8065 0.3442 0.6511
d38 0.8424 1.5834 0.7183 0.8296 1.2954 0.8962 1.4868 1.5794 0.8219 1.0548 0.8305 0.6572 0.6336 0.9502 0.9671 0.8897 0.8801 0.8442 1.6276 1.7353
d39 1.0278 1.0781 0.4374 0.5356 0.704 0.3782 1.3553 1.5715 0.4286 0.8623 0.9713 0.8581 0.7681 0.5656 0.4059 0.3313 1.5281 0.3273 0.8961 1.2413
d40 0.8174 1.1521 0.4512 0.7235 0.7605 0.27 1.2409 1.3336 0.4199 0.7162 0.7725 0.7179 0.5616 0.6563 0.3409 0.21 1.4915 0.4547 1.0199 1.1925
d41 1.215 1.1102 0.6644 0.6304 0.8186 0.558 1.5545 1.7141 0.5232 0.982 1.1697 1.1027 0.947 0.4487 0.5788 0.5059 1.6945 0.4286 0.6877 1.2132
d42 1.183 0.9729 0.7515 0.5713 1.0327 0.6332 1.5471 1.7583 0.5654 0.8129 1.1241 0.9789 1.0073 0.17 0.7875 0.6796 1.3758 0.22 0.892 1.155
d43 0.854 0.9657 0.5219 0.7408 0.8762 0.303 1.3989 1.4157 0.4488 0.7 0.7819 0.8154 0.6836 0.5008 0.4879 0.3591 1.3846 0.2779 1.0124 1.0982
d44 0.8765 1.3625 0.8762 1.1262 0.6111 0.6638 1.1528 1.2912 0.8353 0.3249 0.7553 0.759 0.7725 0.8594 0.3967 0.4758 1.7038 0.6552 1.2921 0.9432
d45 1.1103 1.0638 1.237 1.4212 1.6101 1.3324 0.6505 0.6503 1.3711 1.4522 1.0982 0.9926 0.8388 1.5935 1.2898 1.2482 0.6738 1.4577 0.993 1.0692
d46 1.2437 0.9882 0.7907 0.5193 1.1481 0.7155 1.6 1.7991 0.5856 0.9144 1.1931 1.0462 1.0612 0.2106 0.8916 0.781 1.323 0.3304 0.9492 1.2375
d47 0.8163 1.2139 0.32 0.646 0.9471 0.4715 1.2832 1.3595 0.4526 0.961 0.7949 0.7059 0.5367 0.8139 0.5595 0.47 1.2022 0.6328 1.1547 1.4493
d48 1.6546 0.7627 1.3468 1.4664 1.0452 1.1277 0.8692 1.0137 1.2473 1.219 1.5659 1.5506 1.4337 1.2518 0.9598 0.988 1.2893 1.0996 0.4847 0.32
d49 1.1494 0.6416 1.0588 1.4057 1.6689 1.0763 0.9377 0.7437 1.0861 1.3819 1.1016 1.2329 0.9654 1.2629 1.2441 1.1356 0.6073 1.0755 0.769 0.8458
d50 0.7509 1.5687 0.7972 0.977 0.9367 0.8078 0.9314 1.1317 0.9204 0.6631 0.6437 0.229 0.5675 1.0077 0.6413 0.6447 1.3413 0.8546 1.5071 1.3631
d51 0.962 0.9449 0.3992 0.5274 1.0274 0.4105 1.4657 1.4652 0.2 1.0146 0.9347 0.9737 0.6825 0.5665 0.6418 0.5148 1.2943 0.4306 0.9128 1.3379
d52 1.278 1.0614 0.7771 0.4207 1.2246 0.8082 1.595 1.8309 0.6238 1.0063 1.2313 1.04 1.0928 0.3981 0.983 0.8937 1.1707 0.4618 1.099 1.3706
d53 0.7783 1.5364 1.0591 1.2459 1.0083 0.9106 0.968 1.065 1.0643 0.4988 0.6304 0.4348 0.7279 0.9867 0.7583 0.7782 1.4662 0.8311 1.5723 1.1794
d54 1.2557 0.9603 1.2406 1.4794 1.9318 1.3101 1.2423 0.9231 1.2189 1.7587 1.2631 1.5265 1.072 1.5175 1.5057 1.393 0.4384 1.3804 0.9865 1.2697
d55 0.9783 1.0468 0.3764 0.5574 1.0806 0.5162 1.4353 1.4635 0.3313 1.1155 0.9599 0.951 0.6985 0.698 0.6818 0.5517 1.2007 0.5704 0.9983 1.4263
d56 0.7678 1.8221 1.0558 1.24 1.114 1.0776 1.0428 0.9157 1.185 0.875 0.6219 0.4465 0.7024 1.3246 0.8798 0.9055 1.497 1.1657 1.7128 1.5542
d57 1.3522 1.1026 1.2646 1.4084 1.193 1.2196 0.3 0.7468 1.3679 0.9923 1.2408 0.8776 1.1646 1.467 0.9421 0.9941 1.0436 1.311 0.9461 0.7801
d58 1.0473 1.222 0.9231 1.0211 0.7715 0.7016 1.0711 1.3802 0.8666 0.4313 0.9435 0.7345 0.9138 0.6789 0.4285 0.5105 1.4295 0.544 1.1904 0.8122
d59 0.8884 1.294 0.8228 1.0116 1.531 0.8956 1.6188 1.4583 0.7893 1.1671 0.8761 0.9817 0.7316 0.8865 1.1038 0.9842 0.7163 0.7581 1.43 1.5263

Table 6.3: Anchor Point Analysis for painting: Nevermore, Paul Gauguin
(1897)

103

104

Appendix B

/**

Shader 1: Minimum distance calculator

*/

precision highp float;

varying vec2 vTextureCoord;

uniform sampler2D tRGBA; //target RGBA texture

uniform sampler2D dRGBA; //database RGBA texture

uniform int maxNoFeatures;

void main() {

float step = 1.0/float(maxNoFeatures);

vec4 targetRGBA = texture2D(tRGBA, vec2(vTextureCoord.s, 0.5));

int i = 0;

vec2 dTexels = vTextureCoord;

vec3 db = vec3(1.0,1.0,1.0);

//min distance found

float bMin = 10.0;

float b = 0.0;

float angleDiff = 0.0;

vec3 target = targetRGBA.rgb * 2.0 - vec3(1.0,1.0,1.0);

float epsilon = 1.0/(2.0*float(maxNoFeatures));

//best matching feature point

float bD = 0.0;

while(i < maxNoFeatures) {

cont-

105

-cont

dTexels = vec2(step*float(i)+epsilon, vTextureCoord.t);

db = texture2D(dRGBA, dTexels).rgb * 2.0 - vec3(1.0,1.0,1.0);

angleDiff = abs(texture2D(dRGBA, dTexels).a - targetRGBA.a);

//distance calculation for each pair of points

b = b(db, target) + (1.0-2.0*abs(angleDiff-0.5))*0.15;

if(b<bMin) {

bMin = b;

//keeping tracking of which point matched best

bD = step*float(i);

}

i++;

}

//to encode between 0 and 1, divide by sqrt(12) + 0.15 = 3.614

//output min distance for each target object point

gl_FragColor = vec4(bMin/3.614, bD, 1.0, 1.0);

}

106

/**

Shader 2: Scale, rotation and anchor points calculator

*/

precision highp float;

varying vec2 vTextureCoord;

uniform sampler2D shader1output; //output from shader 1

uniform sampler2D tXY; //target XY texture

uniform sampler2D dXY; //database XY texture

uniform int maxNoFeatures;

uniform int screenWidth;

uniform int screenHeight;

void main() {

vec2 screenResf = vec2(float(screenWidth), float(screenHeight));

float step = 1.0/float(maxNoFeatures);

int i = 0;

vec2 readTexCoord;

//selecting anchor points

float secondLowestDistance = 10.0;

float lowestDistance = 10.0;

float firstTargetAnchor = 0.0;

float secondTargetAnchor = 0.0;

float firstDBAnchor = 0.0;

float secondDBAnchor = 0.0;

float currDistanceVal = 0.0;

float lowestDistanceFeatureNo = 0.0;

float epsilon = 1.0/(2.0*float(maxNoFeatures));

float featureStrength;

while(i < maxNoFeatures) {

readTexCoord = texture2D(shader1output, vec2((step*float(i))+

epsilon, vTextureCoord.t)).rg;

featureStrength = texture2D(dXY, vec2((step*float(i))+

epsilon, vTextureCoord.t)).b;

currDistanceVal = (readTexCoord.r * 3.614)/

pow(featureStrength, 2.0);

lowestDistanceFeatureNo = readTexCoord.g;

cont-

107

-cont

if(currDistanceVal < lowestDistance) {

secondLowestDistance = lowestDistance;

lowestDistance = currDistanceVal;

secondDBAnchor = firstDBAnchor;o

firstDBAnchor = lowestDistanceFeatureNo;

secondTargetAnchor = firstTargetAnchor;

firstTargetAnchor = float(i)*step;

}

else if(currDistanceVal < secondLowestDistance) {

secondLowestDistance = currDistanceVal;

secondDBAnchor = lowestDistanceFeatureNo;

secondTargetAnchor = float(i)*step;

}

i++;

}

//using firstTargetAnchor, firstDBAnchor, secondTargetAnchor,

//secondDBAnchor we look up

vec2 dbAnchor1 = texture2D(dXY, vec2(firstDBAnchor+epsilon,

vTextureCoord.t)).st * screenResf;

vec2 dbAnchor2 = texture2D(dXY, vec2(secondDBAnchor+epsilon,

vTextureCoord.t)).st * screenResf;

vec2 targetAnchor1 = texture2D(tXY, vec2(firstTargetAnchor +

epsilon, 0.5)).st * screenResf;

vec2 targetAnchor2 = texture2D(tXY, vec2(secondTargetAnchor +

epsilon, 0.5)).st * screenResf;

float d1 = distance(targetAnchor1.st, targetAnchor2.st);

float d2 = distance(dbAnchor1.st, dbAnchor2.st);

//determining scale

float scale = d2/d1;

float y2Minusy1Target = targetAnchor2.t - targetAnchor1.t;

float x2Minusx1Target = targetAnchor2.s - targetAnchor1.s;

float thetaTarget = atan(y2Minusy1Target, x2Minusx1Target);

float y2Minusy1DB = dbAnchor2.t - dbAnchor1.t;

cont-

108

-cont

float x2Minusx1DB = dbAnchor2.s - dbAnchor1.s;

float thetaDB = atan(y2Minusy1DB, x2Minusx1DB);

//determing rotation

float rotation = mod(thetaDB - thetaTarget + 6.283185, 6.283185);

//default values used if dbAnchor1 == dbAnchor2

if(d2==0.0) {

scale=1.0;

rotation=0.0;

}

//encode scale and rotation between 0 and 1: divide by 16 and 2pi

//output scale, rotation and anchor point

gl_FragColor = vec4(firstDBAnchor, firstTargetAnchor,

scale*0.0625, rotation*0.159);

}

109

/**

Shader 3: Overall match estimate calculator

*/

precision highp float;

varying vec2 vTextureCoord;

uniform int maxNoFeatures;

uniform sampler2D tRGBA; //target XY texture

uniform sampler2D dRGBA; //database XY texture

uniform sampler2D scaleAndRotation; //output from shader 2

uniform sampler2D tXY; //target XY texture

uniform sampler2D dXY; //database XY texture

uniform float clamp;

uniform vec2 biasWeight;

uniform int screenWidth;

uniform int screenHeight;

void main() {

vec2 screenResf = vec2(float(screenWidth), float(screenHeight));

float step = 1.0/float(maxNoFeatures);

int d = 0;

vec4 targetRGBA;

vec4 targetXY;

vec4 dRGBA;

vec2 dXY;

vec2 dTexels;

float epsilon = 1.0/(2.0*float(maxNoFeatures));

float epsilonWeight = 1.0/(2.0*10.0);

vec4 scaleAndRotationLookup = texture2D(scaleAndRotation,

vTextureCoord);

float dbAnchorCoord = scaleAndRotationLookup.r;

float targetAnchorCoord = scaleAndRotationLookup.g;

//looking up scale and rotation estimates

float scale = scaleAndRotationLookup.b*16.0;

scale = clamp(scale, 1.0/16.0, 16.0);

float rotation = scaleAndRotationLookup.a*6.283185;

vec2 dbAnchorXY = texture2D(dXY, vec2(dbAnchorCoord +

epsilon, vTextureCoord.t)).st * screenResf;

cont-

110

-cont

vec2 targetAnchorXY = texture2D(tXY, vec2(targetAnchorCoord +

epsilon, 0.5)).st * screenResf;

int t = 0;

float sum;

float scaledAndRotX;

float scaledAndRotY;

vec2 scaledAndRotatedScreenFP;

vec2 originalScreenFP;

float angleDiff = 0.0;

float rgbaMatch = 0.0;

float xyMatch = 0.0;

float sumMatch = 0.0;

float scaleBias = 0.0;

float rotationBias = 0.0;

float combinedMatch = 0.0;

float minCombinedMatch = 100.0;

float weight = vTextureCoord.s+epsilonWeight;

while(t < maxNoFeatures) {

minCombinedMatch = 100.0;

originalScreenFP = texture2D(tXY, vec2(float(t) * step

+ epsilon, 0.5)).st * screenResf;

//transforming target point

scaledAndRotX = dbAnchorXY.s + scale*((cos(rotation)*

(originalScreenFP.s - targetAnchorXY.s)) -

(sin(rotation)*(originalScreenFP.t -

targetAnchorXY.t)));

scaledAndRotY = dbAnchorXY.t + scale*((sin(rotation)*

(originalScreenFP.s - targetAnchorXY.s)) +

(cos(rotation)*(originalScreenFP.t -

targetAnchorXY.t)));

scaledAndRotatedScreenFP = vec2(scaledAndRotX, scaledAndRotY);

//decode both the lookups : rgb*2.0 - vec3(1.0,1.0,1.0)

cont-

111

-cont

//handle angles differently

targetRGBA = texture2D(tRGBA, vec2((float(t)*step)+epsilon,

0.5));

targetRGBA.rgb = targetRGBA.rgb*2.0 - vec3(1.0,1.0,1.0);

d = 0;

while(d < maxNoFeatures){

dTexels = vec2(step*float(d) + epsilon, vTextureCoord.t);

dXY = texture2D(dXY, dTexels).st * screenResf;

dRGBA = texture2D(dRGBA, dTexels);

dRGBA.rgb = dRGBA.rgb*2.0 - vec3(1.0,1.0,1.0);

angleDiff = abs(dRGBA.a - mod(targetRGBA.a +

scaleAndRotationLookup.a, 1.0));

//calculating RGBtheta match

rgbaMatch = distance(dRGBA.rgb, targetRGBA.rgb) +

(1.0 - 2.0 * abs(angleDiff-0.5))*0.25;

//calculating XY match

xyMatch = distance(scaledAndRotatedScreenFP, dXY.st)/

screenResf.s;

//max possible values: 1.41 and 3.71

//combining colour change and xy match values

combinedMatch = ((1.0-weight)*xyMatch) +

(weight*rgbaMatch);

combinedMatch = clamp(combinedMatch, 0.0, clamp);

minCombinedMatch = min(combinedMatch, minCombinedMatch);

d++;

}

//biasing towards no scale and no rotation

scaleBias = (abs(log2(scale))/4.0) * biasWeight.s;

rotationBias = (1.0-2.0*abs(scaleAndRotationLookup.a - 0.5))

* biasWeight.t;

//summing across all points in the target object

sumMatch = sumMatch + minCombinedMatch;

t++;

}

//encode scale and rotation between 0 and 1: divide by 16 and 2pi

//output overall match value

gl_FragColor = vec4(scale*0.0625, (sumMatch + scaleBias+

rotationBias) /float(maxNoFeatures), weight, rotation*0.159);

}

112

References

Bay, H., Tuytelaars, T., & Gool, L. V. (2006). Surf: Speeded up robust

features. In In eccv (pp. 404–417).

Bradski, G., & Kaehler, A. (2008). Learning opencv: Computer vi-

sion with the opencv library. O’Reilly Media. Retrieved from

http://books.google.co.nz/books?id=seAgiOfu2EIC

Calonder, M., Lepetit, V., Strecha, C., & Fua, P. (2010). Brief: Bi-

nary robust independent elementary features. In Proceedings of

the 11th european conference on computer vision: Part iv (pp.

778–792). Berlin, Heidelberg: Springer-Verlag. Retrieved from

http://dl.acm.org/citation.cfm?id=1888089.1888148

Chen, C. (2014). Computer vision in medi-

cal imaging. World Scientific. Retrieved from

https://books.google.co.nz/books?id=K-XqmQEACAAJ

Chen, H.-T., Chang, H.-W., & Liu, T.-L. (2005). Local discrim-

inant embedding and its variants. In Proceedings of the 2005

ieee computer society conference on computer vision and pat-

tern recognition (cvpr’05) - volume 2 - volume 02 (pp. 846–

853). Washington, DC, USA: IEEE Computer Society. Re-

trieved from http://dx.doi.org/10.1109/CVPR.2005.216 doi:

10.1109/CVPR.2005.216

Computer vision and the future of mobile devices. (n.d.).

Darpa urban challenge. (n.d.).

Ensor, A., & Hall, S. (2011). Gpu-based image analysis on

mobile devices. CoRR, abs/1112.3110 . Retrieved from

113

http://dblp.uni-trier.de/db/journals/corr/corr1112.html#abs-1

112-3110

Ensor, A., & Hall, S. (2013, Nov). Colourfast: Gpu-based feature point de-

tection and tracking on mobile devices. In Image and vision computing

new zealand (ivcnz), 2013 28th international conference of (p. 124-

129). doi: 10.1109/IVCNZ.2013.6727003

Fei-Fei, L., Fergus, R., & Perona, P. (2004, June). Learning generative

visual models from few training examples: An incremental bayesian

approach tested on 101 object categories. In Computer vision and

pattern recognition workshop, 2004. cvprw ’04. conference on (p. 178-

178). doi: 10.1109/CVPR.2004.109

Freund, Y., & Schapire, R. E. (1997, August). A decision-

theoretic generalization of on-line learning and an application

to boosting. J. Comput. Syst. Sci., 55 (1), 119–139. Re-

trieved from http://dx.doi.org/10.1006/jcss.1997.1504 doi:

10.1006/jcss.1997.1504

Fung, J., & Mann, S. (2004, May). Computer vision signal processing on

graphics processing units. In Acoustics, speech, and signal process-

ing, 2004. proceedings. (icassp ’04). ieee international conference on

(Vol. 5, p. V-93-6 vol.5). doi: 10.1109/ICASSP.2004.1327055

Fung, J., & Mann, S. (2005). Openvidia: Parallel gpu computer vi-

sion. In Proceedings of the 13th annual acm international confer-

ence on multimedia (pp. 849–852). New York, NY, USA: ACM. Re-

trieved from http://doi.acm.org/10.1145/1101149.1101334 doi:

10.1145/1101149.1101334

Ganster, H., Pinz, A., Rhrer, R., Wildling, E., Binder, M., & Kittler, H.

(2001). Automated melanoma recognition. IEEE Transactions on

Medical Imaging , 20 , 233–239.

Garcia-garrido, M. A., Ocaa, M., Llorca, D. F., Arroyo, E., Pozuelo, J.,

& Gavilan, M. (2012). Complete vision-based traffic sign recognition

supported by an i2v communication system.

Gartner says smartphone sales accounted for 55 percent of overall mobile

phone sales in third quarter of 2013. (n.d.).

114

Gehrig, S., & Stein, F. (1999). Dead reckoning and cartography using stereo

vision for an autonomous car. In Intelligent robots and systems, 1999.

iros ’99. proceedings. 1999 ieee/rsj international conference on (Vol. 3,

p. 1507-1512 vol.3). doi: 10.1109/IROS.1999.811692

Gpu: Changes everything. (n.d.).

Grana, C., Pellacani, G., Cucchiara, R., & Seidenari, S. (2003, Aug). A new

algorithm for border description of polarized light surface microscopic

images of pigmented skin lesions. Medical Imaging, IEEE Transactions

on, 22 (8), 959-964. doi: 10.1109/TMI.2003.815901

Grzymala-Busse, P., Grzymala-Busse, J., & Hippe, Z. (2001). Melanoma

prediction using data mining system lers. In Computer software and

applications conference, 2001. compsac 2001. 25th annual interna-

tional (p. 615-620). doi: 10.1109/CMPSAC.2001.960676

Hall, S. (2014). Gpu accelerated feature algorithms for mobile devices (Un-

published doctoral dissertation). Auckland University of Technology.

Harris, C., & Stephens, M. (1988). A combined corner and edge detector.

In In proc. of fourth alvey vision conference (pp. 147–151).

Huang, T. (1996). Computer vision: Evolution and promise.. Retrieved

from http://cds.cern.ch/record/400313/files/p21.pdf

Ke, Y., & Sukthankar, R. (2004, June). Pca-sift: a more distinctive

representation for local image descriptors. In Computer vision and

pattern recognition, 2004. cvpr 2004. proceedings of the 2004 ieee

computer society conference on (Vol. 2, p. II-506-II-513 Vol.2). doi:

10.1109/CVPR.2004.1315206

Kim, J., Park, E., Cui, X., Kim, H., & Gruver, W. (2009, Oct). A fast

feature extraction in object recognition using parallel processing on

cpu and gpu. In Systems, man and cybernetics, 2009. smc 2009.

ieee international conference on (p. 3842-3847). doi: 10.1109/IC-

SMC.2009.5346612

Krogh, B., & Thorpe, C. (1986, Apr). Integrated path planning and dynamic

steering control for autonomous vehicles. In Robotics and automation.

proceedings. 1986 ieee international conference on (Vol. 3, p. 1664-

1669). doi: 10.1109/ROBOT.1986.1087444

115

Kruger, J., & Westermann, R. (2003). Linear algebra operators for gpu im-

plementation of numerical algorithms. ACM Transactions on Graph-

ics, 22 , 908–916.

Lee, R., Kitayama, D., Kwon, Y.-J., & Sumiya, K. (2009). Interop-

erable augmented web browsing for exploring virtual media in real

space. In Proceedings of the 2nd international workshop on loca-

tion and the web (pp. 7:1–7:4). New York, NY, USA: ACM. Re-

trieved from http://doi.acm.org/10.1145/1507136.1507143 doi:

10.1145/1507136.1507143

Lefevre, E., Colot, O., Vannoorenberghe, P., & de Brucq, D. (2000). Knowl-

edge modeling methods in the framework of evidence theory: an ex-

perimental comparison for melanoma detection. In Systems, man, and

cybernetics, 2000 ieee international conference on (Vol. 4, p. 2806-2811

vol.4). doi: 10.1109/ICSMC.2000.884422

Liepe, J., Barnes, C. P., Cule, E., Erguler, K., Kirk, P. D. W.,

Toni, T., & Stumpf, M. P. H. (2010). Abc-sysbio - ap-

proximate bayesian computation in python with gpu sup-

port. Bioinformatics, 26 (14), 1797-1799. Retrieved from

http://dblp.uni-trier.de/db/journals/bioinformatics/bioinform

atics26.html#LiepeBCEKTS10

Lindeberg, T. (1998, November). Feature detection with automatic

scale selection. Int. J. Comput. Vision, 30 (2), 79–116. Re-

trieved from http://dx.doi.org/10.1023/A:1008045108935 doi:

10.1023/A:1008045108935

Lowe, D. (1999). Object recognition from local scale-invariant fea-

tures. In Computer vision, 1999. the proceedings of the seventh

ieee international conference on (Vol. 2, p. 1150-1157 vol.2). doi:

10.1109/ICCV.1999.790410

Miccai workshop on medical computer vision: Algorithms for big data

(bigmcv). (n.d.).

Mikolajczyk, K., & Schmid, C. (2001). Indexing based on scale invari-

ant interest points. In Computer vision, 2001. iccv 2001. proceedings.

eighth ieee international conference on (Vol. 1, p. 525-531 vol.1). doi:

116

10.1109/ICCV.2001.937561

Mikolajczyk, K., & Schmid, C. (2002). An affine invari-

ant interest point detector. In Proceedings of the 7th

european conference on computer vision-part i (pp. 128–

142). London, UK, UK: Springer-Verlag. Retrieved from

http://dl.acm.org/citation.cfm?id=645315.649184

Mikolajczyk, K., & Schmid, C. (2005, Oct). A performance evaluation of

local descriptors. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 27 (10), 1615-1630. doi: 10.1109/TPAMI.2005.188

Public road urban driverless-car test 2013. (n.d.).

Raina, R., Madhavan, A., & Ng, A. Y. (2009). Large-scale

deep unsupervised learning using graphics processors. In Pro-

ceedings of the 26th annual international conference on machine

learning (pp. 873–880). New York, NY, USA: ACM. Re-

trieved from http://doi.acm.org/10.1145/1553374.1553486 doi:

10.1145/1553374.1553486

Reitmayr, G., & Schmalstieg, D. (2003). Location based appli-

cations for mobile augmented reality. In Proceedings of the

fourth australasian user interface conference on user interfaces

2003 - volume 18 (pp. 65–73). Darlinghurst, Australia, Aus-

tralia: Australian Computer Society, Inc. Retrieved from

http://dl.acm.org/citation.cfm?id=820086.820103

Rendering pipeline overview. (n.d.).

Robotics research group. (n.d.).

Rosten, E., & Drummond, T. (2005). Fusing points and lines for high per-

formance tracking. In In international conference on computer vision

(pp. 1508–1515). Springer.

Search for pictures with google goggles. (n.d.).

Sonka, M., Hlavac, V., & Boyle, R. (2007). Image processing, analysis, and

machine vision. Thomson-Engineering.

Szeliski, R. (2010). Computer vision: Algorithms and applications (1st ed.).

New York, NY, USA: Springer-Verlag New York, Inc.

Tommasi, T., Torre, E. L., & Caputo, B. (2006). Melanoma recognition

117

using representative and discriminative kernel classifiers.

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted

cascade of simple features. In (pp. 511–518).

Wang, X. (2007, May). Laplacian operator-based edge detectors. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 29 (5), 886-

890. doi: 10.1109/TPAMI.2007.1027

Want, R. (2010, July). iphone: Smarter than the average phone. Pervasive

Computing, IEEE , 9 (3), 6-9. doi: 10.1109/MPRV.2010.62

What is gpu computing? (n.d.).

Yuv pixel formats. (n.d.).

118

