
INTELLIGENT DYNAMIC ROUTE

OPTIMIZATION AND ROAD

PRE-EMPTION SYSTEM FOR

ON-ROAD EMERGENCY SERVICES
A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY

IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Supervisor

Assoc.Prof. Roopak Sinha

Prof. Edmund Lai

Dr. Prakash Ranjitkar

30-01-2021

By

Subash Humagain

School of Engineering, Computer and Mathematical Sciences



Abstract

Increased response time of emergency vehicles (EVs) can cause an irreparable loss of

life and property. Reducing emergency services’ response times requires identifying

the most effective optimization and pre-emption techniques and factors for reducing

EVs travel times. Research in this domain has adopted one or both of optimization

and pre-emption techniques for routing EVs. None of the existing studies provides any

comparative evidence that a particular optimization technique and pre-emption system

is better suited to reducing the EV’s travelling time.

An appropriate solution to improve existing techniques requires dynamic optimiza-

tion and efficient and precise pre-emption to cause minimal disruption to other vehicles.

The success of such dynamic optimization and pre-emption systems depends on the

availability of real-time dynamic traffic data. This means that sensors deployed at vari-

ous road network infrastructures must communicate in real-time and support real-time

decision-making. In general, traffic infrastructure requires a deeper integration with

software systems to ensure high availability of accurate real-time data. This thesis’s

main focus is to develop precise pre-emption and dynamic optimization techniques that

can aid in reducing the response time of EVs. The main contributions of this thesis are:

• a conceptual model to analogically map traffic scheduling with scheduling al-

gorithms in real-time systems.
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• an adaptive fair scheduling algorithm (FSA) that ascertains higher travel time reli-

ability developed by analogically mapping traffic domain with real-time systems.

• an emergency vehicle pre-emption (EVP) technique with different levels of

priorities that ascertains a certain level of performance assurance to different

criticality levels in emergency services.

• a decentralized self coordinating traffic system to prioritize emergency vehicle

movement through an isolated traffic intersection using Virtual traffic lights plus

for emergency vehicles (VTL+EV) algorithm.

• an ensemble-based model that learns from multiple pre-engineered features re-

lated to topology, directions, the shape of the trajectory, path, speed limits, map

distance traversed, real-time traffic conditions and precisely estimate the travel

time.

We conducted exhaustive experimentation, and empirically proved that the FSA is more

reliable and fairer in scheduling in terms of travel reliability compared to existing state-

of-art algorithms in terms of buffer index and Jain’s fairness index. Our experimental

results confirm that the EVP algorithm can significantly reduce the average waiting time

of regular traffic and ensure all EVs meet their target response time. Comprehensive

experiments and results showed that VTL+EV has the evident advantage of reduced

waiting time for regular traffic and emergency vehicles in both congested and non-

congested traffic conditions. We also concluded that for wisely extracted manual

features, ensemble-based gradient boost regression approach could outperform existing

state-of-art baseline models that employ deep neural networks in travel time estimation.
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Chapter 1

Introduction

1.1 Background

An emergency vehicle (EV) response time is the time interval from receiving an emer-

gency call to the arrival of an EV to the emergency location. The response time depends

primarily on time it takes for an EV to travel to an emergency location. The travel

time of an EV depends on several static parameters such as distance and number of

intersections on the route (signalized/unsignalised) and dynamic parameters like flow,

average speed, and the number of stops. The presence of numerous such parameters

makes reducing EV travel times complex and challenging (Fitch, 2005a).

Increased response time of EVs can cause an irreparable loss of life and property.

In medical emergencies such as cardiac arrest, every one-minute delay in response time

causes mortality rate to increase by 1% and imposes additional USD 1542 in hospital

costs, leading to 7 billion dollars increase in healthcare expenditure per year only in

USA (RapidSOS, 2015). Other emergencies like building fires typically grow by 20%

per minute, causing an average USD 4000 of additional damages (RapidSOS, 2015).

These factors have led to extensive research on reducing EV travel time (Fitch, 2005b).

It is intuitively understood that EVs must receive priority over other vehicles when

14
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travelling from the source to the response scene. EVs get priority using special ap-

pearance, sirens and strobe lights, a dedicated green light on approaching traffic signal,

special lanes, etc. They travel to service an emergency in an optimized route (Eltayeb,

Almubarak & Attia, 2013). To measure the used technique’s effectiveness, govern-

ments impose target response times for Emergency Management Services (EMS). For

instance, 90% of critical emergency calls must be responded to within 9 minutes in

the USA (Pons & Markovchick, 2002a), while in the UK 75% of such cases must be

responded to within 8 minutes (Ambulance Quality Indicators Data 2019-20, 2019).

For Australia and New Zealand, the target is to respond to 50% of emergency calls

within 8 and 10 minutes, respectively (Annual report 2019, 2019; NSW state emergency

service annual report 2015, 2015). Due to barriers present in modern complex traffic

networks like congested road network, synchronized traffic lights operation, continuous

construction over lanes, and increased pedestrian population over cities, it has become

an increasingly difficult challenge for EMS to meet contractual timings.

Road congestion is a growing problem. Presently we have about 1.2 billion vehicles

globally, and the number is expected to touch 2 billion marks by 2035 (Voelcker, 2020).

Every new vehicle is adding congestion on road networks. Globally, there has been an

increase of 23% in congestion levels from 2008 to 2016 with an increase of 9.6% from

2015 to 2016 which means we are spending 11 minutes 18 sec more on travelling than

2015 daily (Traffic, 2020). It also has an adverse effect on the economy. Congestion cost

UK $30 billion, Germany $48 billion, USA $124 billion and for a mid-sized city like

Auckland 2 billion USD per year resulted from time and fuel wasted in traffic (INRIX,

2017).

Several studies have explored this problem of reducing response time of EVs,

proposing several solutions, which can be broadly classified into route optimization and

pre-emption (Zhu, Chen & Bing, 2014). Optimization is the process of attaining the

highest achievable performance under a given set of constraints by maximizing desired
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factors and minimizing undesired ones. Route optimization treats traffic networks as

graphs. Different cost functions like distances over available travel paths, travel times

along sections of the network, and fuel efficiency are assigned as weights to the graph’s

edges. Optimization algorithms then maximize or minimize the cost function (Winter,

2002). According to (Eksioglu, Vural & Reisman, 2009), route optimisation is mainly

distance (path)-dependent or travel (time)-dependent. Route pre-emption, sometimes

referred to as "traffic signal prioritization" or "transit signal priority", changes or alters

traffic control to grant priority to special vehicles like EVs. The most commonly

used tactic is manipulating traffic signals in the route of an EV, halting lower-priority

traffic and providing right-of-way to the EV (Gedawy, Dias & Harras, 2008; Paniati &

Amoni, 2006). Current pre-emption techniques carry out three major categories of tasks:

defining when to activate pre-emption, determining the position of an EV using sensing

techniques to trigger pre-emption, and using communication techniques between an EV

and the infrastructure/other vehicles to execute pre-emption.

1.2 Research Gaps

Our systematic literature review on route optimization and pre-emption methods for

emergency vehicles (Humagain, Sinha, Lai & Ranjitkar, 2020) has identified that the

research in this domain has adopted the use of one or both of optimization and pre-

emption for routing EVs. None of the studies provides any comparative evidence that a

particular optimization technique and pre-emption system is better suited to reducing

the EV’s travelling time. We can also conclude that although much research has been

conducted for reducing the response time of EVs, there has not been a considerable

decrease in response time. This indicates a potential "dead-end" in the way research has

approached reducing EV travel times and signals a need to explore newer methods to

approach this problem. Detailed analysis of these current research gaps can help solve
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the dead-end that research has produced in reducing EV travel times. Future research

should focus on the following directions listed below:

• Real-Time dynamic traffic Data: Research should focus on integrating real-

time on road traffic data to calculate more dynamic, reliable and accurate routes

to EVs (Elmandili, Toulni & Nsiri, 2013; Fleischman, Lundquist, Jui, Newgard &

Warden, 2013; W. Huang, Yang & Ma, 2011; Kai, Yao-ting & Yue-peng, 2014;

Musolino, Polimeni, Rindone & Vitetta, 2013a).

• Time as a critical parameter: Finding the shortest path is not enough to improve

emergency response system in a complex road network as minimum travel time

is a major parameter to consider (Bachelder, 2011; Choosumrong, Raghavan &

Bozon, 2012; Mali, Rao & Mantha, 2012).

• Advanced algorithms: Basic graph theory method and mathematical program-

ming method cannot meet the calculation requirement of real-time traffic (Brady

& Park, 2016; Chakraborty, Tiwari & Sinha, 2015; Elalouf, 2012; Sun, Yue &

Yao, 2014).

• Use of VANETs: With the advancement of the wireless communication tech-

nologies like Cooperative Vehicle-Infrastructure System (CVIS), there is an

opportunity to provide appropriate traffic signal pre-emption for an emergency

vehicle based on real-time emergency vehicle data, traffic volume data, and traffic

signal timings (Agarwal & Paruchuri, 2016; Anand & Flora, 2014; Djahel, Smith,

Wang & Murphy, 2015; Jayaraj & Hemanath, 2015; Shekar et al., 2012; Y. Wang,

Wu, Yang & Huang, 2013).

• Concerns with multiple EVs: Future studies can include considerations of more

severe scenarios, such as disasters where a large number of EVs are required (C.-

Y. Chen, Chen & Chen, 2013; Moroi & Takami, 2015).



Chapter 1. Introduction 18

• Safety of EV travel: It is a challenge to ensure the safe passage of an emergency

vehicle (EV) or multiple EVs and at the same time to maintain safe and smooth

traffic flow in the road network (Qin & Khan, 2012; Yoo, Kim & Park, 2010).

• Intelligent pre-emption : Limited research has been done on the use of intelli-

gent pre-emption control, which has the ability to use real-time traffic information

to minimize emergency vehicle delays. Simultaneously, reducing the adverse

impacts of emergency vehicles on normal traffic, so that they can cause the least

disturbance to network traffic flow is a challenge (Kang et al., 2014; Kamalanath-

sharma & Hancock, 2012; Nellore & Hancke, 2016).

A critical analysis of optimization and pre-emption suggests a difference between

actual travel time and theoretically calculated travel time. This difference arises as

dynamic parameters like increased congestion, halt on a road, pedestrian flow, queued

vehicles, real and adaptive speed are not being addressed within the theoretical models.

Similarly, pre-emption is also not effective. The timing of activation in implemented

systems is not precise, and pre-emption techniques often do not consider the effect of

pre-emption over other vehicles (Humagain et al., 2020).

An appropriate solution to improve existing techniques will require dynamic op-

timization and efficient and precise pre-emption to cause minimal disruption to other

vehicles. The success of such combined and dynamic optimization and pre-emption

systems depends on the availability of real-time dynamic traffic data. This means

that sensors deployed at various road network infrastructures must communicate in

real-time and support real-time decision-making. In general, traffic infrastructure re-

quires a deeper integration with software systems to ensure high availability of accurate

real-time data.
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1.3 Research Focus

This section elaborates our research focus guided from wisely designed research ques-

tions. Our research’s aim is to develop precise pre-emption and dynamic optimization

technique that can aid in reducing the response time of EVs. To achieve the research

aim, we define the following objectives:

• Conduct a systematic literature review on optimization and pre-emption tech-

niques employed in EV routing.

• Design real-time adaptive traffic control system to improve performance of current

signalised traffic intersections.

• Develop emergency vehicle pre-emption algorithm to prioritize EVs.

• Develop infrastructure free traffic lights that assigns priority to EVs.

• Implement a machine learning model to predict travel time accurately.

We follow thesis by publication format to answers the following research questions in

order to achieve our objectives.

RQ1 What optimization and pre-emption techniques are employed in EV routing?

Route optimization and pre-emption are powerful techniques used to reduce EV

travel time. It is crucial to investigate the existing solutions and identify their

advantages and limitations. The thesis conducts a systematic literature review of

route optimization and pre-emption methods for emergency vehicles (Chapter:

Literature Review, manuscript 1). It provides a detailed classification of existing

techniques, presented along with critical analysis and discussion. It identifies

multiple research gaps that researchers can consider to improve existing route

optimization and pre-emption systems.
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RQ2 How to design a real-time adaptive traffic control system to improve the per-

formance of signalised traffic intersections?

Efficient routing of vehicles is highly dependent on the performance of signalized

traffic intersection, which can be measured using several performance parameters:

throughput (total vehicles passing through an intersection within the time of

observation), approach delay (delay a vehicle experience before passing an inter-

section), and speed of vehicles in each approach (Balke, Charara & Parker, 2005).

Adaptive traffic control (ATC) systems manage traffic signals’ timing following

actual traffic demand changes (Maslekar, Boussedjra, Mouzna & Labiod, 2011).

Vehicular ad hoc networks (VANETs) can provide more abundant data to aid

ATC systems. We initially design a conceptual model to map real-time system

task scheduling with traffic system scheduling which is visualized in manuscript

6. Further, We explore the possibility of implementing an adaptive real-time

traffic scheduling algorithm in VANET environment that can improve traffic

intersection performance by optimizing travel time index (TTI) which is defined

as the probability of vehicle reaching its destination within a given time (Chapter:

Adaptive Traffic Signal Control Using Travel Time Reliability for Vehicular Ad

hoc Networks, manuscript 2).

RQ3 How to assign different level of priorities to emergency vehicles in arterial

road network to meet their respective target response time?

Assigning absolute priority to an individual EV serving any emergency level

increases the overall waiting times for normal traffic. This problem can be solved

if multiple EVs serving within a particular time are assigned with different priority

levels, and Emergency Vehicle Pre-emption (EVP) is performed accordingly.

We explore the opportunity to implement the EVP algorithm in a connected

environment that can reduce the undesirable waiting time to normal traffic, but
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still ascertain EVs meet target response time (Chapter: Routing Emergency

Vehicles in Arterial Road Networks using Real-time Mixed-Criticality Systems,

manuscript 3).

RQ4 How to implement infrastructure-free traffic lights for Cooperative vehicular

technology to further enhance the limitation posed by current physical traffic

signals studied in RQ3?

Current traffic control infrastructure still works with the principle of optimized

cycle time. With the advancement of wireless communication technology, more

and more vehicles are being equipped with communication devices. This brings

an opportunity for implementation of an infrastructure-free self-organizing traffic

control system that eliminates unnecessary waiting at dead periods and makes the

entire system adaptive. We investigate a futuristic system for autonomous vehicles

that optimizes the timing in traffic phases and minimizes human-related loss like

higher headway times and inconsistent inter-vehicle spacing when following each

other. The system can expedite EVs movement through intersections and impose

minimal waiting time for ordinary vehicles (Chapter: Dynamic Prioritization of

Emergency Vehicles For Self-Organizing Traffic using VTL+EV, manuscript 4).

RQ5 How to implement a model that learns to estimate travel time accurately from

an origin to the destination?

Precise estimation of vehicle travel time is crucial in route planning and navig-

ation (Y. Li, Deng, Demiryurek, Shahabi & Ravada, 2015), congestion detect-

ing (Y.-y. Chen, Lv, Li & Wang, 2016), ride sharing (Asghari, Deng, Shahabi,

Demiryurek & Li, 2016) and logistics (N. J. Yuan, Zheng, Zhang & Xie, 2012).

In the case of EVs, travel time becomes the primary factor in assigning the

priority level so that any case of emergency is responded within the allowable

time frame. Estimation of travel time is a complex problem and is dependent
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on multiple parameters. Mathematically created models based on the expertise

and understanding of the problem can be error-prone. We explore the possibility

of a machine learning model that can accurately estimate the travel time for a

queried path that includes the origin and destination location (Chapter: Travel

Time Estimation with Decision-Tree-Based Ensemble Networks and Enhanced

Feature Extraction, manuscript 5).

1.4 Methodology

The thesis deals with research questions listed in section 1.3 by developing five methods:

• adaptive traffic control system

• assigning different levels of priority to EVs for adaptive traffic control system

• self-organizing traffic through virtual traffic lights

• Ensemble-based learning algorithm for travel time estimation

• analogical mapping of traffic scheduling with real-time system analogy

1.4.1 Traffic scheduling using real-time system analogy

The concept of resource allocation and meeting the timing constraint make EV routing

analogous to task scheduling in the real-time system (RTS). Also, emergencies with

several criticality levels with different service times make the EV routing problem very

close to scheduling in a mixed-criticality real-time system (MCRTS). MCRTSs have

tasks with two or more criticality levels, for example, non-critical, safety-critical and

mission-critical. In MCRTS timing parameters like worst-case execution time (WCET)

for processes rely mainly on criticality levels. For detailed conceptual model, refer
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to chapter: Routing Autonomous Emergency Vehicles in Smart Cities Using Real-

Time Systems Analogy: A Conceptual Model, manuscript 6. The concept has been

implemented in manuscript 2, 3 and 4 that are presented in chapters Adaptive Traffic

Signal Control Using Trave Time Reliability for Vehicular Ad hoc Networks, Routing

Emergency Vehicles in Arterial Road Networks using Real-time Mixed-Criticality

Systems and Dynamic Prioritization of Emergency Vehicles For Self-Organizing Traffic

using VTL+EV respectively.

1.4.2 Adaptive traffic control system

The methodology of designing adaptive traffic control system tries to minimize travel

time by optimizing objective expressed in terms of Buffer Index (BI), a typical travel

time reliability measure, as the primary performance parameter in a connected environ-

ment. A detailed illustration is provided in chapter: Adaptive Traffic Signal Control

Using Travel Time Reliability for Vehicular Ad hoc Networks, manuscript 2.

1.4.3 Assigning different levels of priority to EVs for adaptive traffic

control system

We introduce mixed-criticality real-time system scheduling concept where a different

level of emergencies is mapped with different criticality levels and assign certain success

assurance level to respective criticality. We implemented the EVP algorithm for an

arterial traffic network and leveraged valuable information transmitted via VANET

to make critical decisions. Detailed implementation with empirical results can be

visualized in chapter: Routing Emergency Vehicles in Arterial Road Networks using

Real-time Mixed-Criticality Systems, manuscript 3.
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1.4.4 Self-organizing traffic through virtual traffic lights

We design and implement self coordinating traffic system in a simulation environment

to measure EV prioritization effectiveness. The model highlights on virtual traffic

lights where vehicles communicate with themselves to pass through intersections. They

organize within themselves manoeuvring different actions to prioritize any EVs within

the vicinity of the intersection. Detailed implementation is visualized in chapter: Dy-

namic Prioritization of Emergency Vehicles For Self-Organizing Traffic using VTL+EV,

manuscript 4.

1.4.5 Ensemble-based learning algorithm for travel time estima-

tion

We design the ensemble-based machine learning model to estimate travel time for user

queried origin to destination. We employ different feature engineering techniques to

extract valuable features from raw GPS trajectory data and implement gradient boost

regression tree to learn to estimate travel time. Detailed process can be referred in

chapter: Travel Time Estimation with Decision-Tree-Based Ensemble Networks and

Enhanced Feature Extraction, manuscript 5.

1.5 Contributions

Each manuscript included in this thesis have multiple contributions and can be outlined

from the manuscripts. The overall contribution of each manuscript towards the research

questions outlined in section 1.3 is illustrated below:

RQ1: What optimization and pre-emption techniques are employed in EV rout-

ing?

Our manuscript, “A systematic review of route optimization and pre-emption methods
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for emergency vehicles” observes the limitations of existing routing systems and lack of

real-world applications of the proposed pre-emption systems, leading to several interest-

ing and important knowledge and implementation gaps that require further investigation.

These gaps include optimizations using real-time dynamic traffic data, considering time

to travel as a critical parameter within dynamic route planning algorithms, considering

advanced algorithms, assessing and minimizing the effects of EV routing on other

traffic, and addressing safety concerns in traffic networks containing multiple EVs at

the same time (Humagain et al., 2020).

RQ2: How to design a real-time adaptive traffic control system to improve the

performance of signalized traffic intersections?

We design and implement Fair Scheduling Algorithm (FSA), an adaptive traffic control

algorithm to minimize average stretch in manuscript 2 named “Adaptive Traffic Signal

Control Using Travel Time Reliability for Vehicular Ad hoc Networks”. In this paper, we

propose an adaptive Fair Scheduling Algorithm for VANETs that ascertains higher travel

time reliability by minimizing TTI for an isolated intersection. We consider Buffer Index

(BI), a typical travel time reliability measure, as the primary performance parameter to

minimize. We achieve this through a novel approach of analogically mapping traffic

control problems into real-time systems precisely mapping TTI with stretch (the factor

by which a job is slowed down comparing with time it takes to process on a free system).

We first prove that stretch produced by FSA is less than or equal to twice the stretch

produced by an optimal offline algorithm implying FSA is 2-competitive. Then we

empirically prove that FSA online algorithm is more reliable and fairer in scheduling in

terms of travel time compared to existing state-of-art approaches.

RQ3: How to assign different level of priorities to emergency vehicles in the ar-

terial road network to meet their respective target response time?

We develop an emergency vehicle pre-emption technique with different levels of pri-

orities. We leverage VANET to transmit critical information like current position,
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speed, time EV takes to pass the intersection, and the route the EV follows in decid-

ing when to trigger the EVP. Important decision parameters like speed, position, and

vehicle route are accessed using VANET, which is impossible from the traditionally

used inductive loop. It provides a way to arbitrate multiple EVs in an arterial road

network. Performance parameters like waiting times and throughput achieved from

such implementations are realistic and are helpful for emergency management services

(EMS) to evaluate their actual performance. It also helps traffic engineers and transport

planners anticipate the widespread effect of EVP over general traffic flows rather than

limiting such explorations to a single intersection. Moreover, adding multiple EVs into

the EVP model can solve unsolved problems faced by EMS in prioritizing EVs when

two or more of them have conflicts passing an intersection. Manuscript 3, titled "Rout-

ing Emergency Vehicles in Arterial Road Networks using Real-time Mixed-Criticality

Systems" enumerates several other significant contributions this approach can have over

traffic planners and researchers.

RQ4: How to implement infrastructure-free traffic lights for Cooperative vehicu-

lar technology to enhance further the limitation posed by current physical traffic

signals studied in RQ3?

Manuscript 4 titled "Dynamic Prioritization of Emergency Vehicles For Self-Organizing

Traffic using VTL+EV" focus on the implementation of self-organizing traffic system.

We implemented a decentralized self coordinating traffic system to prioritize emergency

vehicle movement through an isolated traffic intersection. The proposed Virtual traffic

lights plus for emergency vehicles (VTL+EV) algorithm for intersection control elimin-

ates the loss generated from dead periods in a traffic light cycle time and human-related

factors like increased headway time and inconsistent inter-vehicle spacing.

RQ5: How to implement a model that learns to estimate travel time accurately

from an origin to the destination?
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Manuscript 5 titled “Travel Time Estimation with Decision-Tree-Based Ensemble Net-

works and Enhanced Feature Extraction” uses gradient boosting that learns from mul-

tiple pre-engineered features related to topology, directions, the shape of the trajectory,

path, speed limits, map distance traversed, real-time traffic conditions and compare it

with existing deep neural network-based learning process using raw GPS trajectories. IT

employs ensemble-based gradient boost regression tree method in origin-to-destination

(O2D) travel time estimation using sole origin and destination GPS trace, making it

pure O2D approach. For structured data, our approach learns better than existing deep

neural approaches.
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Literature Review (Manuscript 1)

We conducted a systematic literature review (SLR) of route optimization and pre-

emption methods for emergency vehicles. The primary research question in this study

was “What optimization and pre-emption techniques from academic literature and

industry can be used for effective EV routing?”.

Different keywords related to route optimization, transit signal priority and road

pre-emption for EVs were used for searching existing works. We experimented with

several search strings, and the following is the trial search string used in this survey:

(((“route optimization”) OR ((“Preemption” OR “pre-emption”) OR (“priority”)) AND

“Emergency Vehicles”)).

The number of results found was recorded, and screening was undertaken on sections

of search results checking relevance at the title, abstract and full-text levels. To make

the literature search as inclusive as possible, we used relevant bibliographic databases

like ITS Network and Transportation Research Board, web-based search engines like

Google Scholar, Scopus, IEEE, Science Direct, ACM Digital Library and ISI Web of

Science, as well as bibliographies of related reviews and directed calls for evidence

using professional social networks like research gate and LinkedIn (Kitchenham, 2004).

A detailed classification of existing techniques is presented along with critical

28
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analysis and discussion. The study observes the limitations of existing routing systems

and lack of real-world applications of the proposed pre-emption systems, leading to

several interesting and important knowledge and implementation gaps that require

further investigation. These gaps include optimizations using real-time dynamic traffic

data, considering time to travel as a critical parameter within dynamic route planning

algorithms, considering advanced algorithms, assessing and minimizing the effects of

EV routing on other traffic, and addressing safety concerns in traffic networks containing

multiple EVs at the same time. Manuscript 1 is attached with this section.
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2.1 Introduction

The response time of an emergency vehicle (EV) is the time interval from receiving

an emergency call to the arrival of an EV to the emergency location. The response

time depends primarily on the time it takes for an EV to travel to the location of an

emergency. This travel time of an EV depends on several static parameters such as

distance and number of intersections on the route (signalized/unsignalized), as well as

dynamic parameters like flow, average speed, and number of stops. The presence of

numerous such parameters makes reducing EV travel times complex and challenging.

Increased response time of EVs can have an irreparable loss of life and property. In

medical emergencies such as cardiac arrest, every one-minute delay in response time

causes mortality rate to increase by 1% and imposes additional USD 1542 in hospital

costs, leading to 7 billion dollars increase in healthcare expenditure per year only in

USA (RapidSOS, 2015). Other emergencies like building fires typically grow by 20%

per minute causing an average USD 4000 of additional damages (RapidSOS, 2015).

These factors have led to extensive research on reducing EV travel time (Fitch, 2005b).

Several studies have explored this problem, proposing several solutions, which
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can be broadly classified into route optimization and pre-emption (Zhu et al., 2014).

Optimization is the process of attaining the highest achievable performance under a

given set of constraints by maximizing desired factors and minimizing undesired ones.

Route optimization tries to choose the best route to achieve the minimum EV travel

times. Route pre-emption, sometimes referred to as “traffic signal prioritization” or

“transit signal priority”, changes or alters traffic control in order to grant priority to

special vehicles like EVs. The most commonly used tactic is manipulating traffic signals

in the route of an EV, halting lower-priority traffic and providing right-of-way to the

EV (Gedawy et al., 2008; Paniati & Amoni, 2006).

Reducing the response times of emergency services requires identifying the most

effective optimization and pre-emption techniques, and factors for reducing EV travel

times. This article presents a Systematic Literature Review (SLR) (Kitchenham, 2004)

of the existing techniques proposed for route optimization and pre-emption for EVs as

explained in Sections 2.3 and 2.4. We have reviewed 72 research articles out of which

85% are from 2006 - 2018, ensuring the relevance of this study to current research. For

each study, we extract sufficient contextual and methodological details for individual

analysis and comparison with others. This study can significantly help researchers

pursuing research to improve EV travel times to understand the current state-of-the-art,

and industry and government stakeholders looking to adopt better techniques for routing

EVs. After describing the SLR method in Section 2.2, we survey route optimization and

pre-emption techniques in Sections 2.3 and 2.4. Section 2.5 reviews methods employing

both optimization and pre-emption. Section 2.6 provides knowledge gaps and Section

2.7 provides concluding remarks.
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2.2 Systematic Literature Review Method

A systematic literature review (SLR) allows answering a clearly formulated question by

appraising related research (Kitchenham, 2004). The primary research question in this

study was “What optimization and pre-emption techniques from academic literature

and industry can be used for effective EV routing?”

Different keywords related to route optimization, transit signal priority and road

pre-emption for EVs were used for searching existing works. We experimented with

several search strings and the following is the trial search string used in this survey:

((("route optimization") OR (("Preemption" OR "pre-emption”) OR ("priority")) AND

"Emergency Vehicles")).

The number of results found was recorded, and screening was undertaken on sections

of search results checking relevance at the title, abstract and full-text levels. To make

the literature search as inclusive as possible, we used relevant bibliographic databases

like ITS Network and Transportation Research Board, web-based search engines like

Google Scholar, Scopus, IEEE, Science Direct, ACM Digital Library and ISI Web of

Science, as well as bibliographies of related reviews and directed calls for evidence

using professional social networks like research gate & LinkedIn (Kitchenham, 2004).

We excluded studies concentrating on optimization models in emergency logistics

and optimization for multiple service stations during emergencies as this paper is

primarily concentrated on reducing the response time of EVs focusing on travel time.

We also excluded short papers (less than 4 pages), articles published in non-recognised

journals, and those not written in English.

Our initial search retrieved 1069 studies, which were pruned to exclude papers

meeting any of the exclusion criteria or those that were duplicated. In the end, 72

papers were chosen for a detailed review. Out of these, 25 articles propose route

optimization, 34 report pre-emption based techniques, and the remaining 13 propose
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systems employing both. Sections 3, 4 and 5 explore optimization, pre-emption and both

techniques that aid in reducing the response time of EVs identified from the literature

search.

2.3 Route Optimization Methods

A majority of Emergency Management Systems use dedicated software to locate,

dispatch and route EVs. EVs contain installed software like Sygic and Infoware to

guide the driver towards the emergency location using customized traffic information.

Such software employ route optimization to ensure that EVs reach their destination in

time (Togneri & Deriaz, 2013).

Route optimization treats traffic networks as graphs. Different cost functions like

distances over available travel paths, travel times along sections of the network, and fuel

efficiency are assigned as weights to the edges of the graph. Optimization algorithms

then maximize or minimize the cost function (Winter, 2002). According to Eksioglu

et al. (2009) route optimization is mainly distance (path)-dependent or travel time-

dependent. Knowing the position of an EV is critical in suggesting optimized routes.

A majority of studies employ global positioning system (GPS) technology. We use

the vehicle routing problem (VRP) taxonomy defined by (Eksioglu et al., 2009) for

computing transportation cost and to categorize the reviewed studies into path-based

optimization and time-based optimization, and then critically analyze these studies.

2.3.1 Path-based Optimization

Intuitively, taking the shortest path between an EV’s source and the intended destination

can minimize travel time. In computer science, Dijkstra’s shortest path algorithm is

well-known for such optimization and several of the surveyed works extend this al-

gorithm in some way. Kula, Tozanli and Tarakcio (2012) developed a stochastic shortest
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path strategy by adding path-specific information such as hourly traffic behaviour and

pedestrian involvement to a K-shortest path model which produce multiple paths with

different travel times. Nordin, Zaharudin, Maasar and Nordin (2012) developed a determ-

inistic shortest path calculator using an informed search algorithm called A* algorithm

to find the shortest path among multiple points. Kai et al. (2014) and Winn (2014) used

the geographical information system (GIS) network to determine the starting position of

EVs and found the shortest path to the destination by calculating shortest distance from

a starting node to every following node afterwards using Dijkstra’s algorithm. Brady

& Park (2016) also described a similar shortest path algorithm for routing EVs with

additional road features like lane count, intersection control devices, and construction

works.

Panahi and Delavar (2009) use Dijkstra’s algorithm but their approach can intel-

ligently update the proposed path during driving by integrating data from GIS and

real-time traffic conditions. Shekar et al. (2012) and Elmandili et al. (2013) described

Vehicular Ad Hoc Network (VANET) based navigation, which also used Dijkstra’s

algorithm for routing. Real-time traffic congestion was determined by GPS evaluating

a larger cluster of slow moving nodes and suggesting a new route if needed. Nicoara

and Haidu (2014), Winn (2014) and Sun et al. (2014) used GIS-based networks to find

the shortest route access for EVs using real-time traffic data. Similarly, Fleischman

et al. (2013) used GIS to estimate transport times for ambulances creating a linear

regression model that increases the accuracy of these road network estimates using

patient characteristics, use of lights and sirens, daylight, and rush-hour intervals.

The speed of calculation of the shortest path in Dijkstra’s algorithm is dependent

on the number of nodes available. Bu and Fang (2010) used improved Dijkstra’s

algorithm for solving the shortest path problem by focusing dynamically in a smaller

area including the accident location and current EV location. As the EV approaches the

accident location, the number of nodes involved in the calculation of the shortest path
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gradually decreases, subsequently reducing the computation time.

2.3.2 Time-based Optimization

For EV routing, the actual time taken to reach the emergency location is more important

than distance, cost, fuel consumption, etc. Cooke and Halsey (1966) were the first to

provide theoretical insights on shortest path algorithms that can have variable travel

times between vertices depending upon physical parameters. Hadas and Ceder (1996)

implemented the shortest path algorithm to produce multiple time-based paths for EVs.

Zhu et al. (2014) developed an optimization model, which was based on both the

shortest rescue time and the lowest rescue cost using a simulated annealing algorithm

to find the global optimum of the objective functions to minimize rescue time and

cost. X. Wang and Liu (2011) proposed an Internet of Things application using RFID

tags in ambulances and wireless sensor nodes on the roads to collect real-time traffic

data and forecasted path to provide the fastest route. Choosumrong et al. (2012) used

the routing algorithm to calculate minimum travel time from the accident point to

the nearest hospital using parameters like availability of beds and the patient’s state.

Apart from the above, Elalouf (2012) used exact pseudo-polynomial algorithm to find

the optimal time-dependent route using real-time data for uncertain traffic conditions.

The algorithm uses dynamic programming to simplify a complicated problem into

simple sub-problems by breaking them. Finally, they improved the solution using an

e-approximation algorithm by limiting results within allowable lower and higher bound

of cost function.

Derekenaris et al. (2001) developed a solution to deploy an ambulance requiring the

least time to reach the site of an incident. Like most other approaches, they used GPS

to locate available ambulances and then employed Dijkstra’s algorithm to calculate the

shortest travel time between available ambulances and incident site. Vlad, Morel, Morel
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and Vlad (2008) described a model that finds the fastest path for an EV to reach the

site of an emergency by controlling traffic signals. It used a learning routing algorithm

which reaches a decision with the help of a neural network that calculates expected time

of arrival of every feasible route that EV may follow. Real-time traffic data collected

from GPS equipment installed on EVs was used to train the neural network.

2.3.3 Other Optimization Methods

Some studies propose alternative approaches for routing EVs. Bura and Boryczka (2010)

presented an ant-colony based vehicle navigation system that supports dynamic traffic

conditions like traffic load and temporarily closed roads. Musolino et al. (2013a) dynam-

ically designed routes taking into account travel time variations within a day for the same

network. Barrachina et al. (2014) compared emergency services arrival time between

density-based and non-density-based road networks. Similarly, Y.-z. Chen, Shen, Chen

and Yang (2014) determined the optimized route using the Dijkstra’s algorithm for

different traffic conditions like morning peak, evening peak, and daytime. Afdhal and

Elizar (2015) used Vehicle to Infrastructure (V2I) based communication that assisted

in reducing EV travel times by increasing the average speed achieved from avoiding

congested areas. Road side units sent congestion information to network simulator that

instructs EVs to follow the route.

2.3.4 Discussion

Optimization techniques provide either the shortest or the fastest path for an EV to travel.

Some of these studies are theoretical, some use simulation to validate an underlying

theory, whilst a few are practically implemented. Table 2.1 provides a comparison of

optimization techniques used in reducing travelling time of EVs. Column 1 lists the
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Table 2.1: Analysis of EV route optimization method

References Models Type Other Parameters / Techniques TRL

Hadas & Ceder, 1996;

Kula et al., 2012
K-Shortest Path S Accident place TRL5

Nordin et al., 2012 A* Algorithm D Uses C # programing TRL6

Kai et al., 2014; Winn, 2014 Dijkstra’s Algorithm D Arc GIS network TRL6

Brady & Park, 2016
Dijkstra’s Algorithm

(using GIS for position)
D

lane count, intersection

control devices and median count
TRL5

Panahi & Delavar, 2009
Dijkstra’s Algorithm

(using GIS)
S Dynamic, real-time traffic TRL7

Elmandili et al., 2013;

Smitha et al., 2012
Dijkstra’s Algorithm S

VANAT for real-time traffic,

GPS for calculating position

and congestion

TRL5

Bu & Fang, 2010 Improved Dijkstra’s S Dynamic in terms of searching TRL5

Nicoara & Haidu, 2014;

Sun et al., 2014
Path Selection D

Shortest route,

real-time traffic data
TRL6

Fleischman et al., 2010 Linear regression D Transport time TRL7

Zhu et al., 2014 Annealing Algorithms D Cost, Road resistance, distance TRL4

Y. Wang et al., 2013 Internet of Things S
RFID & Road side units

collect real-time data
TRL6

Choosumrong et al., 2012 PgRouting Algorithm D Beds available, patient status TRL5

Elalouf, 2012
Exact Pseudo-polynomial

Algorithm
S Dynamic/real-time data TRL5

Derekenaris et al., 2001 Dijkstra’s Algorithm D
Locating ambulance location/

calculating travel time
TRL6

Vlad et al., 2008 Learning routing algorithm D Determine real-time traffic volume TRL5

Bura & Boryczka, 2010
Ant colony static and

dynamic optimization
S

Comparison of 3 version of

Ant-based navigation
TRL6

Musolino et al., 2013
Taking 3 different level

of congestion
S Different route model TRL6

Barrachina et al., 2014 Evolution Strategy D
Comparison of density and

non-density based network
TRL6

Chen et al., 2014 Dijkstra’s D
Optimal Route taking morning

and evening peak
TRL5

Azmi & Mustafa, 2016 Network layer model D
V2I based communication for

avoiding congestion
TRL7

Note: *D represents deterministic and S represents stochastic.
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studies and column 2 states the types of optimization model they have used. In terms

of algorithms, Dijkstra’s algorithm is the most popular choice but different algorithms

like ant colony, linear regression, annealing, pseudo-polynomial etc. have also been

implemented. Column 3 describes if a technique is deterministic (D) such that it

provides the same output for the same inputs every time, or if the technique is stochastic

(S) and involves some level of randomness or unpredictability. Optimization techniques

from this aspect seem almost equally divided into deterministic and stochastic category.

Column 4 provides details of other parameters and techniques used to achieve specific

optimization. Studies listed in this section suggest the use of multiple optimization

techniques with different level of implementation maturity. In conditions where studies

suggest diverse approaches and solutions, it is difficult to reach a conclusion in finding

the best optimization technique. Another problem with these studies is that they usually

report simulation results obtained for a certain geographical location. Each location has

distinct traffic parameters. These parameters play a vital role in the performance of past

studies. Hence, a direct comparison in performance is not possible. So, in addition to

the qualitative comparison based on columns 2-4, we have also further compared these

works using the Technology Readiness Level (TRL) in column 5 that describes the

progression of technologies (Mankins, 1995). It classifies technology maturation into

nine different levels. Lower levels like TRL1 relate to new but untested technologies

where only basic principles have been observed. Each subsequent level indicates a more

mature technology, with TRL9 indicating a commercially produced technology.

The annealing algorithm by Zhu et al. (2014) for finding shortest rescue time and

rescue cost for EVs was implemented using MATLAB. No traffic domain simulation

and verification for these technologies have been performed. As these techniques have

undergone only low-fidelity simulation testing, they are categorized as TRL4 (validated

in a laboratory environment).

Most studies used well-known mathematical algorithmic implementations. More



Chapter 2. Literature Review (Manuscript 1) 39

comprehensive verification and validation were performed on these using simulation

models, resulting in a slightly higher level of credibility. When such validation is

done in relevant simulation environment, they belong to TRL5. Hence, works like

K-shortest path by (Kula et al., 2012), pseudo-polynomial algorithm by Elalouf (2012),

and Dijkstra’s algorithm by Brady and Park (2016) etc. are classified as TRL5.

Works that involved prototype development, analysis using real-world test data and

comprehensive system validation are categorized as TRL6 because they use well-known

calibrated traffic simulation models. For example, path selection model by Nicoara and

Haidu (2014), an optimization model using internet of things by Y. Wang et al. (2013),

Dijkstra’s algorithm by Derekenaris et al. (2001) etc. are included in this category.

When developed system prototypes are demonstrated in real environment, they be-

long to TRL7. Very few works involve system prototypes tested in the real world. These

handful of works were deployed in real cities and were validated through verifiable res-

ults showing that optimization enhanced with carefully chosen recent techniques could

significantly reduce travel time. Hence, works like linear regression by Fleischman et al.

(2013), Dijkstra’s algorithm by (Elmandili et al., 2013) etc. are classified under TRL7.

2.4 Pre-emption Techniques

Pre-emption involves allowing EVs to take priority at intersections. The most traditional

and commonly used pre-emption system is the humble siren accompanied with flashing

lights which are manually operated. Manual prioritizations such as police officers

controlling intersections and use of sirens, sound, and flashing lights have drawbacks in

determining the presence and direction of EV (Eltayeb et al., 2013). However, techno-

logy has evolved to provide automated and more effective pre-emption to allow EVs

to travel even faster. Current pre-emption techniques carry out three major categories

of tasks: defining when to activate pre-emption, determining the position of an EV
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using sensing techniques to trigger pre-emption, and using communication techniques

between an EV and the infrastructure/other vehicles to execute pre-emption. We have

categorized pre-emption works based on these tasks.

2.4.1 Activation

Defining when to activate pre-emption is needed for the efficient execution of pre-

emption. It usually depends on either pre-emption is carried out for a particular traffic

signal or for an entire route. Jones, Judge, Beck and Keegan (1999) , Jordan and

Cetin (2015), Kodire, Bhaskaran and Vishwas (2016), Barthwal and Menghani (2017),

and A. Goel, Ray and Chandra (2012) decompose road network into zones. The

presence of an EV in a particular zone was identified via installed GPS and then pre-

emption was done making related traffic signal go green. Similarly Y.-S. Huang, Shiue

and Luo (2015), Kotani, Yamazaki and Jinno (2011) and Y. Wang et al. (2013) also

used GPS to locate EV but pre-emption was activated when the EV was approaching a

traffic signal.

A few studies like Hegde, Sali and Indira (2013), Iyyappan and Nandagopal

(2013), Nellore and Hancke (2016), Noori, Fu and Shiravi (2016), Unibaso, Del Ser,

Gil-Lopez and Molinete (2010), Van Gulik and Vlacic (2002), Weng, Huang, Su and Yu

(2011), and Xie et al. (2017) set a fixed distance between a traffic signal and an EV to

trigger pre-emption. The distance was measured using technologies like GPS, Infrared,

VANET and RFID.

Another approach of activating pre-emption is to create a green wave for the entire

route of EV. Initially, direction, lane, and route of EV responding to emergencies are

defined and all the traffic lights located in that route are allowed to go green. Agarwal

and Paruchuri (2016), Bachelder (2011), Chowdhury (2016), (Idris, Sivalingam,

Tamil, Razak & Noor, 2013), Kamalanathsharma and Hancock (2012), Kang et al.
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(2014), Moroi and Takami (2015), and Yoo et al. (2010) generate a green wave for the

entire lane on which EV is travelling.

Unlike above mentioned approaches, Bhavani, Vishwasri and Chandrakala (2016)

and Jayaraj and Hemanath (2015) focused on implemented pre-emption techniques

for a single intersection. They used RFID to count the vehicle queue approaching

an intersection to estimate the time to activate pre-emption. Similarly, Qin and Khan

(2012) developed control strategies for a traffic light when an EV is passing through an

intersection.

2.4.2 Sensing

Once pre-emption approach is fixed, it is fundamental to identify the location of EV.

Multiple sensors, both vehicle-mounted or spread over the traffic network, support in

identifying the exact position of EV. An analysis of studies reveals the use of GPS as

technology of choice in determining position of EV to activate pre-emption. Barthwal

and Menghani (2017), Idris et al. (2013), Iyyappan and Nandagopal (2013), Jones

et al. (1999), Jordan and Cetin (2015), Kodire et al. (2016), Unibaso et al. (2010),

and Y. Wang et al. (2013) all use GPS for sensing EV locations. In addition to employing

GPS, Hegde et al. (2013) and Van Gulik and Vlacic (2002) used RFID tags for the

determination of emergency case.

Vehicular ad hoc networks (VANETs) are the connected environments which sup-

port vehicle-to-X (V2X: vehicle, road, human, infrastructure, internet) communic-

ation through multiple communication protocols. In a connected environment, it

is easier to locate the position of an EV as they are sharing location information

among themselves too often. Agarwal and Paruchuri (2016), Jayaraj and Hemanath

(2015), Kamalanathsharma and Hancock (2012) and Noori et al. (2016) use VANETs

to determine the position of EV which considers EVs and roadside units as nodes of a
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vehicular network. Nellore and Hancke (2016) used a visual sensing technique using

cameras to determine the position of EV in VANET.

Some studies like Bhavani et al. (2016) and A. Goel et al. (2012) employed ZigBee

technology to ascertain the progression direction of EV. As they created a green wave

for the entire corridor knowing direction was sufficient to activate pre-emption.

2.4.3 Communication Approach

Pre-emption may be actuated through vehicle-mounted devices or remotely via emer-

gency control centers (Kamalanathsharma & Hancock, 2012). In remote actuation,

emergency dispatchers determine factors like the level of emergency and monitor the

EVs location to activate pre-emption over the upcoming intersection. Vehicle mounted

pre-emption devices are usually integrated with the vehicle’s warning lights and can be

switched on and off when needed. Current technologies use acoustic sensors, localized

radio sensors, GPS or line-of-sight sensors to activate pre-emption. An additional light

near the traffic lights known as a confirmation beacon notifies other traffic that the

traffic light is under the influence of pre-emption and warns other drivers about the EV’s

approach (Y.-S. Huang et al., 2015). In some countries, a flashing confirmation beacon

indicates to a vehicle that an EV is approaching from an opposing direction (front or

side) while solid light indicates that the EV is behind the vehicle (Y.-S. Huang et al.,

2015).

OPTICOM, EMTRAC, and Transmax are EV pre-emption products that are cur-

rently used in different cities of USA, UK, Canada and Australia (Global Traffic

Technologies, 2016). All these commercial systems use infrared and GPS technology.

Once approaching to traffic signals, EVs automatically send requests for pre-emption.

The traffic signals wirelessly receive and authenticate the requests to provide green
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lights to the EVs (Viriyasitavat & Tonguz, 2012). Japan uses the FAST vehicle pre-

emption system (Kotani et al., 2011). It consists of a device mounted on EVs and

overhead infrared beacons installed along roads. When EVs travel past these beacons,

the traffic control system activates pre-emption at upcoming intersection. When EVs

are located near to upcoming traffic lights the green time is extended whereas red time

is reduced when EVs are far.

VANETs treat moving vehicles and roadside units as nodes of a mobile network,

within a range of 300 meters (Pighin & Fierens, 2015). This technology has been

prominently used for communication between different entities involved in route pre-

emption. Agarwal and Paruchuri (2016), Jayaraj and Hemanath (2015), Jordan and

Cetin (2015) , Moroi and Takami (2015), Nellore and Hancke (2016), Noori et al.

(2016), Pighin and Fierens (2015), and Unibaso et al. (2010) all implemented VANET as

communication tool to execute pre-emption effectively. Y. Wang et al. (2013) and Xie et

al. (2017) used dedicated short-range communication broadcast to activate pre-emption.

Vehicle mounted transceivers send and receive signals to communicate with entities

responsible to execute pre-emption. Jones et al. (1999) and Van Gulik and Vlacic

(2002) used radio antenna to communicate with traffic control system. Hegde et al.

(2013), Kodire et al. (2016) and A. Goel et al. (2012) used ZigBee transceivers to

communicate and accomplish pre-emption. Iyyappan and Nandagopal (2013), Kotani et

al. (2011) and Weng et al. (2011) all used some form of transceivers to communicate

with traffic signals to actuate pre-emption.

In the case where emergency control center activates pre-emption EVs send mes-

sages using GSM cellular technology to activate pre-emption. Bachelder (2011), Barthwal

and Menghani (2017), and Bhavani et al. (2016) used GSM technology for sending

messages to control center and request pre-emption.

Apart from above mentioned studies, few other algorithms can help EVs to get

priority at intersections. Asaduzzaman and Vidyasankar (2017) proposed an algorithm
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to control traffic signal that can adjust time space of traffic phases to assist high priority

vehicles. Qin and Khan (2012) developed control strategies for traffic signals to expedite

the movement of EVs and avoid accidents. Viriyasitavat and Tonguz (2012)developed

virtual traffic lights that can prioritize the movement of EVs.

2.4.4 Discussion

Table 2.2 presents a comparison of pre-emption techniques. Column 2 describes types

of pre-emption as active (A) or passive (P). In active pre-emption, a pre-emption signal

is adjusted as EV approaches an intersection. An active system can be a combination of

real or fixed-time control strategies, and scheduled or headway-based strategies (Chada

& Newland, 2002). For each work, it provides details on the pre-emption technique,

how pre-emption is initiated, and how pre-emption works. Column 3 describes each

work on basis of the control strategy (C.S.) used, like fixed time (FT), real-time (RT),

schedule-based (SB) and headway-based (HB). Column 4 describes the concept and

equipment used for sensing the presence of EVs. Column 5 “Initiating Pre-emption”

notes process of initiating pre-emption and column 6 “Methods” lists how pre-emption

is implemented.

Most pre-emption techniques are real-time control models that rely on constantly

updated information regarding route and traffic network to make decisions. A real-time

control model is flexible to changing conditions. Some studies also apply a signal control

plan for a fixed time based on the conditions of a particular area like its congestion and

vehicular flow. Fixed time control does not receive constantly updated road information

and the best control scheme is applied regardless of actual traffic conditions.

A few studies use pre-emption control based on the schedule of an EV’s arrival.

In such cases, the proper location of the EV is not known and most of the time this

requires less communication equipment making this a more cost-effective (Bachelder,
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2011; Idris et al., 2013; Iyyappan & Nandagopal, 2013; Kamalanathsharma & Hancock,

2012; Kang et al., 2014). In a headway-based control scheme used by one of the studies

we reviewed, pre-emption is activated so that EVs can lead other vehicles heading in the

same direction as it is effective in reducing waiting times (Pighin & Fierens, 2015). In

such techniques, sometimes there is a possibility of EVs colliding with other vehicles.
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Table 2.2: Analysis of EV pre-emption technique

References P C.S Concept / Equipment
Initiating

Pre-emption
Method

Jones et al., 1999 A FT GPS for position
EV in defined

area

Green

Light

Idris et al., 2013 A SB GPS for Position
All networks

within route

Green

Light

Kodire et al., 2017 A RT GPS for position
Sends signal

using ZigBee

Green

Light

Hegde et al., 2013;

Van Gulik & Vlacic, 2002;

Yoo et al., 2010

A RT
GPS for position

and RFID congestion
Congestion level

Green

Light

Unibaso et al., 2010 A RT GPS &VANET CAM message
Green

Light

Bycraft, 2000 A FT Finalizing route first
Communicative

Sensors

Green

Light

Kamalanathsharma &

Hancock, 2012
A SB Real-time traffic Offset value

Green

Light

Kotani & Yamazaki, 2011;

Weng et al., 2011
A RT Infrared Crossing of IR

Green

Light

Iyyappan &

Nandagopal, 2013
A SB

Sensors and GPS

for accident location

All networks

within route

Green

Light

Siddiqa & Shakeel, 2014 A FT ZigBee &GPS
Must reach a

defined area

Green

Light

Bhavani et al., 2016 A FT GPS
Detects EV using

RFID tag

Green

Light

Wang et al., 2013 A RT VANET Congestion level
Green

Light

Jordan & Cetin, 2015;

Moroi & Takami, 2015
P - VANET

Alerting another

vehicle

lane

allocation

Pighin & Fierens, 2016 A HB VANET EV Arrival
Green

Light
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References P C.S Concept / Equipment
Initiating

Pre-emption
Method

Noori, 2013;

Noori et al., 2016
A RT VANET Queue length

Green

Light

Jordan & Cetin, 2014 A RT VANET Congestion level
Change

lane

Jayaraj & Hemanth, 2015 A FT VANET Lane reservation
Green

Light

Agarwal & Paruchuri, 2016 P - VANET Fixed lane
lane

allocation

Barthwal & Menghani, 2017 A FT
M2M

communication

Traffic flow

controlling

Informs

other

Bachelder, 2011 A SB GSM
Inter network

communication

Green

Light

Huang et al., 2015 A RT Traffic Control Time Petri nets
Green

Light

Kang et al., 2014 A SB Traffic Signal Control Green wave for EV
Green

Light

Nellore & Hancke,

2016; Qin & Khan,

2012; Viriyasitavat &

Tonguz, 2012;

Xie et al., 2017

A RT
Distance between

EV and network

Sensing, distance

and presence of EV

Green

Light

Chowdhury, 2016;

Wang et al., 2013
A FT IOT Type of incident

Green

Light

Asaduzzaman &

Vidyasankar, 2018
A FT

Algorithmic control

for traffic signal
Request from EV

Green

Light

Some other studies invoke pre-emption for an EV’s entire route passively. Our

literature search indicates that passive priority systems that use fixed-time control

strategies are rarely used though they have the benefit of being lower in cost.
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2.5 Techniques employing both optimization and pre-

emption

Studies combining both optimization and pre-emption first find an optimal route calcu-

lated using distance or time as the critical parameter and then use pre-emption on the

selected route. W. Huang et al. (2011) and Eltayeb et al. (2013) suggest the shortest path

and clear the path in advance from other vehicles and pedestrians by identifying the

position of the EV using GPS. Chakraborty et al. (2015) assign a green signal when an

EV is present near an intersection, measuring the queue length of traffic from a network.

Similarly, Kwon and Kim (2003) and Djahel et al. (2015) propose an optimized route

based on congestion level, then assign priority operations such as change in traffic signal,

change in speed limit, lane clearance, using the reverse lane, re-routing to another route

etc. Mirchandani and Lucas (2004) use existing transponders in EVs to pre-empt signals

towards a destination. Shirani, Hendessi, Montazeri and Zefreh (2008) use packet signal

with velocity information sent by one vehicle to another in VANET for finding the

shortest path and pre-empt the particular path.

Gedawy et al. (2008) take real-time updates of congestion and other delays in travel

time to plan optimal paths using GPS and then proposed a traffic signal pre-emption

whereas C.-Y. Chen et al. (2013) use lane reservation strategy after suggesting an

optimized route suggested from historical data. Polineni, Ravi Kumar and Ravi Kumar

(2015) and Salehinejad, Pouladi and Talebi (2011) suggest shortest path algorithms

and activate pre-emption. They use GPS for locating vehicle and a control center to

activate green lights. Anand and Flora (2014) use tilt and vibration sensors to detect

accidents and the GPS system gives the location. The server sends stored shortest route

to ambulances. The traffic signal is controlled to give way to the ambulances using

zombie protocol.
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2.5.1 Discussion

Use of both optimization and pre-emption is a more practical approach in reducing

EV travel times. Table 2.3 compares works in this category. Column 2 uses TRL to

compare and classify the optimization technique implemented by these studies. Column

3 provides details of other parameters to achieve these optimizations and column 4

characterize if optimization technique is deterministic (D) or stochastic (S). As an

intuitive concept, EV routing is more inclined towards prioritization and most of the

studies we have reviewed in this section focus more on pre-emption than optimization.

Column 5 categorizes pre-emption as active (A) or passive (P). Column 6 describes

each work in terms of control strategy as discussed in section 4.4. Similarly, Column 7

explains the concept and equipment used for sensing the presence of EV. Column 8 lists

how pre-emption is initiated and column 9 lists how pre-emption is implemented.

An ideal approach for achieving better optimization and pre-emption could be

combining the best of techniques, from each category, as discussed in Section 3 and

Section 4. Implementing both techniques requires a lot of resources. In general thought,

techniques using both optimization and pre-emption employ more mature models in

terms of implementation than techniques discussed earlier.

W. Huang et al. (2011) and Djahel et al. (2015) have developed a mathematical optim-

ization model. Here verification and validation were simulation based so these studies

are categorized as TRL5. Optimization techniques used by Eltayeb et al. (2013), Gedawy

et al. (2008) , and Mirchandani and Lucas (2004) are summarized under TRL6 as they

are able to adopt a few mature models developed by other researchers to implement the

system. These models are simulation models with relevant environment verification.

Some other works like Anand and Flora (2014), Chakraborty et al. (2015), C.-Y. Chen

et al. (2013), Kwon and Kim (2003), Moraali (2011), Polineni et al. (2015), Salehinejad

et al. (2011), and Shirani et al. (2008) develop or borrow optimization models that are
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used in real traffic conditions, so we have grouped them under TRL7.

W. Huang et al. (2011) use pre-emption for the entire route and this is classified

as a passive technique, as it allows traffic signals to go green for a fixed time. All

remaining studies actively adjust the pre-emption signal once the EV approaches

specific intersections. Most studies use real-time updated traffic information to decide

the duration of the pre-emption signal. In contrast, Anand and Flora (2014) activate

pre-emption signal as EV arrives at the traffic network but operates the signal for a fixed

duration. Only C.-Y. Chen et al. (2013) employ active lane reservation for prioritizing

the EVs.
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Table 2.3: Analysis of technique employing both optimization and pre-emption

References
Optimization Pre-emption

TRL

Other

Parameters/

Technique

Type P C.S
Concept/

Equipment

Initiating

Pre-emption
Method

(Eltayeb et al.,

2013)
TRL6 GPS D A RT GPS GSM

Distance from

Network
Green light

(Gedawy,

2010)
TRL6 GPS S A RT Heuristic speed

Expected

Travel time
Green Light

( Huang et al.,

2011)
TRL5 Historic Data S P FT

Preset Route

control
Entire Path Green Light

(Chakraborty et al.,

2015)
TRL7 Real traffic S A RT Queue length

Distance from

Network
Green Light

(Kwon & Kim, 2003) TRL7 Dijkstra’s D A RT GPS Location of EV Green light

( Djahel et al., 2015) TRL5 Historic Data D A RT
choosing

response Plan

Emergency,

Congestion Level

Light change,

lane clearence,

use reserve lane

(Mirchandani &

Lucas, 2010)
TRL6 Map D A RT

Adaptive signal

control

Real-time

traffic flow
Green Light

(Shirani et al., 2008) TRL7 GPS D - RT VANET Speed -

( Chen et al., 2013) TRL7 GPS D A _ VANET,GPS Road Condition
lane

reservation

(Moraali, 2011;

olineni et al., 2015)
TRL7 A*algorithm D A RT GPS, GSM Distance Threshold Green Light

( Salehinejad et al.,

2011)
TRL7 Ant Colony S A RT GPS, Fuzzy value Pheromone level Green light

(Anand & Flora,

2014)
TRL7 GPS D A FT GPS GS

Distance to

network
Green Light
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2.6 Gaps

This section describes the gaps in existing optimization and pre-emption techniques.

We have categorized these gaps into implementation gaps and knowledge gaps. Imple-

mentation gaps focus on the practical difficulties in implementing advanced routing

and pre-emption techniques and knowledge gaps include the analysis of research gaps

present in these state-of-the-art technologies.

2.6.1 Implementation Gaps

As most of the studies are research based, the feasibility of implementing them in the

real-world situation seems unclear. There are practical difficulties in the implementation

of advanced routing and pre-emption techniques. A few of these gaps are discussed

below:

1. Adoption of academic research: Researches develop efficient route optimiz-

ation and pre-emption algorithms that can produce exceptional solutions but

commercial EV routing software does not use these state-of-the-art technologies,

commercial systems rather rely on simpler heuristics. This is because not all

academic results can be engineered into effective systems. For industries, it is

more efficient to develop simple optimization systems that fit a variety of prob-

lems like courier, logistic and trucking and give comparable results rather than to

develop a complex solution for a specific EV routing problem. So, it is practical

to assume that the implementation of advanced optimization and pre-emption

will be gradual in nature (Pillac, 2012).

2. Limited computation resources: Most of the literature suggest on real-time

optimization that demand computationally expensive resources and large com-

putational time. In the case of EV routing, industry is not too much interested
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in investing more on computing resources as it is a niche market with very

few users (Winter, 2002). This eventually restrict number of real-time dynamic

parameters to be considered during optimization.

3. Handling multiple vehicle: Current pre-emption systems are activated either

by vehicle-mounted devices or traffic control system. There exists a problem in

assigning priority when two vehicles request for pre-emption at the same time.

As real-time dynamic optimization and pre-emption system will be completely

automatic, there will be ambiguity in providing preference to EVs for pre-emption.

4. Lack of real-time validation:For the implementation of real-time dynamic op-

timization most of the required stochastic and real-time information will be

available from different connected sensors and IOT networking which do not

exist now. Though the relevance of dynamic real-time optimization for EVs has

been documented well, there are always issues in comparing results from these

approaches. Since these studies use artificial data created by researchers them-

selves, based on real world applications, most of the results are predictive (Pillac,

2012).

2.6.2 Knowledge Gaps

Our survey shows research in this domain has adopted the use of one or both of optim-

ization and pre-emption for routing EVs. None of the studies provide any comparative

evidence that a particular optimization technique and pre-emption system is better

suited to solve the problem of reducing the travelling time of the EV. We can also

conclude that although much research has been conducted for reducing the response

time of EVs, there has not been a considerable decrease in response time (Moemi,

Isong & Jonathan, 2017). This indicates a potential “dead-end” in the way research has

approached the issue of reducing EV travel times and signals a need to explore newer
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methods to approach this problem. Out of the 72 papers we reviewed, 35 have provided

future research directions. Detailed analysis of these current research gaps can guide us

towards solving the dead-end that research has produced in reducing EV travel times.

Future research should focus on the following directions listed below:

1. Real-Time dynamic traffic Data: Research should focus on integrating real-

time on-road traffic data to calculate more dynamic, reliable and accurate routes

to EVs (Bhavani et al., 2016; Elmandili et al., 2013; Fleischman et al., 2013;

W. Huang et al., 2011; Kai et al., 2014; Musolino et al., 2013a; Nicoara & Haidu,

2014; Winn, 2014).

2. Time as a critical parameter:Finding the shortest path is not enough to improve

emergency response system in a complex road network as minimum travel time

is a major parameter to consider (Barrachina et al., 2014; Choosumrong et al.,

2012; Mali et al., 2012).

3. Advanced algorithms: Basic graph theory method and mathematical program-

ming method cannot meet the calculation requirement of real-time traffic (Brady

& Park, 2016; Chakraborty et al., 2015; Elalouf, 2012; Sun et al., 2014).

4. Use of VANET: With the advancement of the wireless communication technolo-

gies like Cooperative Vehicle-Infrastructure System (CVIS), there is an oppor-

tunity to provide appropriate traffic signal pre-emption for emergency vehicle

based on real-time emergency vehicle data, traffic volume data, and traffic signal

timings (Agarwal & Paruchuri, 2016; Anand & Flora, 2014; Djahel et al., 2015;

Jayaraj & Hemanath, 2015; Y. Wang et al., 2013).

5. Concerns with multiple EVs: Future studies can include considerations of more

severe scenarios, such as disasters where a large number of EVs are required (C.-

Y. Chen et al., 2013; Chowdhury, 2016; Moroi & Takami, 2015; Pighin & Fierens,
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2015).

6. Safety of EV travel: It is a challenge to ensure safe passage of an emergency

vehicle (EV) or multiple EVs and at the same time to maintain safe and smooth

traffic flow in the road network (Qin & Khan, 2012; Yoo et al., 2010).

7. Intelligent pre-emption: Limited research has been done on the use of intelligent

pre-emption control, which has the ability to use real-time traffic information

to minimize emergency vehicle delays. At the same time, reducing the adverse

impacts of emergency vehicles on normal traffic, so that they can cause the

least disturbance to network traffic flow is a challenge (Djahel et al., 2015;

Kamalanathsharma & Hancock, 2012; Kang et al., 2014; Nellore & Hancke,

2016; A. Goel et al., 2012; Unibaso et al., 2010; X. Wang & Liu, 2011; Y. Wang

et al., 2013).

A critical analysis of optimization and pre-emption suggests that there is difference

between actual travel time and theoretically calculated travel time. This difference arises

as dynamic parameters like increased congestion, halt on a road, pedestrian flow, queued

vehicles, real and adaptive speed are not being addressed within the theoretical models.

Similarly, pre-emption is also not effective, as oftentimes the timing of activation in

implemented systems is not precise and pre-emption techniques often do not consider

the effect of pre-emption over other vehicles.

An appropriate solution to improve existing techniques will require dynamic optim-

ization and efficient and precise pre-emption so as to cause minimal disruption to other

vehicles. The success of such combined and dynamic optimization and pre-emption

systems depends on the availability of real-time dynamic traffic data. This means

that sensors deployed at various infrastructures of road network must communicate in

real-time and support real-time decision-making. In general, traffic infrastructure re-

quires a deeper integration with software systems to ensure high availability of accurate
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real-time data.

2.7 Concluding Remarks

This review has described and compared techniques used in reducing response time of

EVs. The optimization and pre-emption can provide a solution for reducing response

time however they need many further improvements. It has been suggested in this

paper that researchers on emergency management services must focus on making

optimization more dynamic by using real-time dynamic traffic data and taking time

as a critical optimization parameter. They also need to work on making pre-emption

intelligent and use advanced technologies like VANET. Such pre-emptive solutions

need to ensure it creates the minimal effect on other traffic. Further research should

bring most advanced optimization and pre-emption together. This, in turn, will solve

the challenging job of reducing response time.
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Adaptive Traffic Signal Control Using

Travel Time Reliability for Vehicular

Ad hoc Networks (Manuscript 2 )

The paper “Adaptive Traffic Signal Control Using Travel Time Reliability for Vehicular

Ad hoc Networks.” proposes adaptive traffic control (ATC) algorithm for isolated traffic

intersections implemented in Vehicular Ad Hoc Networks (VANETs). Current ATC

algorithms optimize the objective derived in terms of throughput, waiting time, queue

length, overall travel time, fuel consumption and gas emission. Though some of these

objectives indirectly try to optimize average travel time, travel time reliability from the

user’s perspective is not explicitly considered. The probability of vehicle reaching its

destination from the point of origin within a given time is termed as travel time index

(TTI) measured in terms of reliability. Travel time reliability indicates the variability in

delays due to stochastic demand in traffic, stochastic traffic at intersections, mid-link

disturbances like stopping of vehicles, pedestrian crossing, asynchronous traffic signal

control with traffic demand and weather conditions.
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We propose an adaptive Fair Scheduling Algorithm (FSA) for VANETs that ascer-

tains higher travel time reliability by minimizing TTI for an isolated intersection. We

consider Buffer Index (BI), a typical travel time reliability measure, as the primary

performance parameter to minimize. We achieve this through a novel approach of

analogically mapping traffic control problems into real-time systems precisely mapping

TTI with stretch (the factor by which a job is slowed down comparing with time it

takes to process on a free system). We first prove that stretch produced by FSA is less

than or equal to twice the stretch produced by an optimal offline algorithm implying

FSA is 2-competitive. Then we empirically prove that FSA online algorithm is more

reliable and fairer in scheduling in terms travel time compared to existing state-of-art

approaches. We have herewith attached manuscript 2 below.
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3.1 Introduction

Adaptive Traffic Control (ATC) systems manage traffic signals’ timing following

changes in actual traffic demand (Maslekar et al., 2011). ATC has been widely re-

searched and commercially deployed (Mannion, Duggan & Howley, 2016). Most

current ATC systems like SCATS, SCOOT, OPAC, UTOPIA, RHODES, Balance, In-

Sync, and MOTION implement inductive loop detectors as road sensors to monitor the

traffic (Zhao & Tian, 2012). A loop detector can only identify the presence of vehicles

with varying precision. Current ATC systems use this information to allocate the proper

amount of green time to phases of a traffic light (Younes & Boukerche, 2018).

Vehicular ad hoc networks (VANETs) can provide abundant data to aid ATC systems.

VANETs are the integration of wireless networks to vehicles and enable communication

between mobile vehicles and roadside units. Technologies used for VANET-based

vehicle-to-X (V2X: vehicle, infrastructure, road, human, internet) communications

include the IEEE 802.11 standard for Dedicated Short-range Communication (Grilo

& Nunes, 2002). VANETs are being increasingly studied by traffic engineers and

researchers for improving traffic efficiency (ur Rehman, Khan, Zia & Zheng, 2013;
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Gradinescu, Gorgorin, Diaconescu, Cristea & Iftode, 2007). VANET-based data like

location and speed of individual vehicles, evidently richer than inductive loop-based

data, can enable more precise ATC and traffic flow predictions (Maslekar et al., 2011).

The primary objective of ATC systems is to improve the efficiency of a traffic-light

controlled intersection, which can be measured using several performance parameters:

throughput, waiting time, queue length, overall travel time, fuel consumption and

gas emission (Balke et al., 2005). Optimization of ATC system minimizes objective

function derived in terms of above-listed performance metrics. Since users (drivers)

are an integral part of a traffic control system, metrics that measure traffic system’s

performance from the user’s perspective are of prime importance (Zheng, van Zuylen,

Liu & Le Vine, 2016).

The probability of vehicle reaching its destination from the point of origin within

a given time is termed as travel time index (TTI) measured in terms of reliability.

TTI (also termed as travel time reliability) indicates the variability in delays due to

stochastic demand in traffic, stochastic traffic at intersections, mid-link disturbances

like stopping of vehicles, pedestrian crossing, asynchronous traffic signal control with

traffic demand and weather conditions (Clark & Watling, 2005). TTI is defined as the

ratio of actual travel time measured during congestion to the required time during free

flow state (Zheng et al., 2016). Depending on the objective, TTI can be measured for a

segment of road, a path comprising multiple segments and the entire network within

origin to the destination.

TTI is an essential but mostly unexplored performance parameter for ATC-controlled

intersections. ATC system implemented in VANETs make traffic control system equi-

valent to a real-time system. TTI in traffic domain is analogous to stretch in real-time

systems. Stretch is defined as the factor by which a job is slowed down as compared

with the time it takes to process on a free system (Harchol-Balter, Bansal & Schroeder,

2000). Stretch measures the quality of service offered to a job for its demand for
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resources. In a system with fluctuating job sizes, stretch also emulates the psycholo-

gical belief of users that they are ready for longer response times for larger requests.

Therefore stretch measures the fairness of the service the job experiences within the

system (Muthukrishnan, Rajaraman, Shaheen & Gehrke, 1999). The measure of stretch

(the average stretch of the system) has been extensively used for experimental study of

the performance of different applications like operating systems, databases, and parallel

systems (Muthukrishnan et al., 1999).

In this paper, we propose an ATC algorithm that optimizes TTI for an isolated

intersection achieved by analogically mapping TTI with stretch. We leverage the

availability of real-time data like vehicle speed, position, and time it takes to pass the

intersection from connected VANET environment. This data can be used to monitor and

optimize TTI. Our algorithm, called Fair Scheduling Algorithm (FSA), identifies and

schedules platoons (vehicles grouped together) at each approach of an intersection to

minimize the objective function of TTI for the vehicles. Instead of minimizing overall

TTI for a segment of road, a path comprising multiple segments and the entire network,

FSA is the first algorithm in traffic engineering, which minimizes the average TTI

of vehicles passing through an intersection. This motivation is based on the fact that

previous studies suggest that TTI optimization not only optimizes average TTI but can

simultaneously optimize response times (queue delays) and throughput up to certain

constant factors (Zheng et al., 2016).

The FSA algorithm is developed through a novel approach of mapping traffic control

problems into real-time systems problems analogically. We translate the scheduling

problem in traffic domains into the problem of scheduling conflicting jobs in real-

time systems. Once the nature of the real-time scheduling problem is characterized,

an appropriate scheduling algorithm is identified and then adapted for use in traffic

control. The conflict among competing vehicles from different approaches that cannot

be scheduled simultaneously is visualized by reducing a traffic intersection (in any
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possible configurations) into a conflict graph (Irani & Leung, 2003). This graph is used

by the FSA algorithm to generate an optimal schedule for vehicles in traffic intersections.

In traffic networks, vehicles can arrive at any time, and very little is known about future

vehicle arrivals. Hence, we adopt a dynamic FSA algorithm to make decisions on the fly,

based on the concept of online scheduling (Albers, 2003). Consequently, the proposed

online FSA algorithm for ATC schedules platoons on conflicting approaches. FSA

is shown to be 2-competitive compared to an optimal offline algorithm. This means

that FSA is highly efficient when compared to similar online algorithms that minimize

average TTI and the worst-case average TTI produced by FSA is bounded by twice the

stretch produced by an optimal offline FSA algorithm with perfect knowledge of future

vehicle arrivals.

FSA also includes a novel algorithm as one of its components for dynamically

identifying and scheduling platoons. FSA minimizes the TTI for each job. Considering

each vehicle as a job can incur massive context-switching and in the worst-case scenario,

the ATC may act just like a stop sign. Therefore we propose an algorithm to group

approaching vehicles into variable-sized platoons using VANETs. This is analogous to

jobs with different processing times in real-time systems. The number of vehicles in

a platoon is determined from the spatial distance between two vehicles, the direction

they are travelling, the distance of vehicles from stop line and their status of being

at rest or motion. Variable-sized platoons reflect the differences in resources (green-

time) required by each platoon. Platooning allows us to monitor the fairness offered to

vehicles in terms of waiting times by the FSA algorithm. Variable-sized platoons are

realistic abstractions of traffic. For instance, two trucks can form a longer platoon than

six cars. Since the length of different vehicles is measured in terms of passenger car

unit, the overall processing time of platoons are in-line with the principle of headway

time in traffic engineering (Roess, Prassas & McShane, 2004).

Evaluation of FSA shows promising results. We performed extensive experiments



Chapter 3. Adaptive Traffic Signal Control Using Travel Time Reliability for
Vehicular Ad hoc Networks (Manuscript 2 ) 63

using the simulation engine “Simulation of Urban Mobility” (SUMO) (Krajzewicz,

Erdmann, Behrisch & Bieker, 2012) and INET/OMNET++ (Varga & Hornig, 2008). We

empirically prove that FSA online algorithm is more reliable and fairer in scheduling in

terms travel time with Buffer Index (BI) as optimization parameter compared to existing

state-of-art approaches. Additionally, FSA achieves equivalent performance with delay

minimizing and throughput maximizing baseline algorithms. We performed the fairness

test of FSA using Jain’s fairness index and compared it with existing state-of-the-art

ATC algorithms.

The remainder of this paper is structured as follows: Section 3.2 describes and ana-

lyzes the previous VANET enabled ATC algorithms that optimizes multiple objectives

and Section 3.3 describes in detail of the FSA algorithm. We elaborate on the use of

VANET for FSA scheduling in Section 3.4 and describe the implementation of FSA in

Section 3.5. We conducted experiments and compared the performance of FSA with

other state-of-art algorithms in Section 3.6 and the final Section 3.7 concludes the paper.

3.2 Related Work

Adaptive traffic control (ATC) algorithms for isolated traffic intersections to optimize

traffic performance in terms of queue delay and throughput (Zhao & Tian, 2012)

using inductive loop data have been widely studied. The information extracted from

loop detectors can only feature the presence or absence of a vehicle (Feng, Head,

Khoshmagham & Zamanipour, 2015). Newer data sources are needed to improve ATC

for next-generation traffic networks drastically.

With the availability of information like speed and position through VANETs, ATC

algorithms can become more precise and real-time (Pandit, Ghosal, Zhang & Chuah,

2013). Several studies have used VANETs to report dynamic traffic parameters like

traffic density and vehicle speed to the closest traffic signal (Maslekar et al., 2011;
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Gradinescu et al., 2007; Priemer & Friedrich, 2009; Chang & Park, 2013). Roadside

units (RSUs) installed at every intersection collect real-time data from travelling vehicles

and optimize traffic flow by changing different traffic phases dynamically (Nafi & Khan,

2012).

VANET-based ATC can incorporate newer technologies, like agent-based reasoning

and machine learning. Agent-based solution models vehicles and intersection man-

agement as agents, which dynamically exchange information to effect optimal signal

timing (Kari, Wu & Barth, 2014). An alternative method (Chou, Deng, Li & Kuo, 2012)

collects information like fuel consumption, pollutant emission and passenger loading

information using different sensors. Sensor data and messages are transmitted via

VANET to an RSU, implemented as a traffic signal control agent. The ATC algorithm

computes the expected arrival time of each vehicle and allocates green time based on

such computations. An online machine learning algorithm estimates travel time and ap-

ply adaptive traffic control in a V2I environment (Cai, Wang & Geers, 2013). The traffic

controller learns progressively from its performance and the remaining travelling time of

a vehicle when it approaches an intersection, using approximate dynamic programming.

Likewise, dynamic programming based ATC is proposed in (Feng et al., 2015). This

algorithm predicts signal phase sequences and values and then uses forward recursion

to calculate optimal phase duration and backward recursion to calculate optimal signal

policy.

VANETs provide an environment where vehicles can use real-time information to

make decisions to arbitrate their movements in conflicting approaches even without

using traffic lights. Vehicles in the same lane can be divided into different groups using

the information received from a VANET. These groups use wireless communication to

schedule themselves in an intersection without using traffic lights (Cheng, Wu, Cao &

Li, 2016).

The use of real-time scheduling algorithms in ATC is promising, mainly when
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vehicles are grouped into platoons. The oldest arrival first (OAF) was the first real-time

online scheduling algorithm used for VANET-enabled ATC (Pandit et al., 2013). This

study implemented VANET for obtaining speed and position information of vehicles

approaching an intersection. The objective of a real-time algorithm is to schedule

tasks, which are traditionally slices of software programs, onto available hardware

resources. In ATC, vehicles can be seen as tasks, which need to use an available resource,

namely the intersection. However, if each vehicle near the intersection is treated as a

task, a scheduling algorithm might require an excessive amount of switching between

approaches, reducing the performance of the intersection. Hence, most approaches

combine vehicles into platoons. In (Pandit et al., 2013), platoons are formed so that they

all have the same processing time, and the algorithm always schedules the oldest platoon

first, which helps achieve the objective of minimizing the average delay experienced

by vehicles at the intersection. Intelligent traffic light controlling (ITLC) implements

a VANET based ATC for individual and multiple intersections (Younes & Boukerche,

2015). This approach also follows a platooning approach, and approaches with higher

densities of platoons were scheduled first. This algorithm was optimal in terms of

throughput maximization and also outperformed the oldest arrival first approach (Pandit

et al., 2013). A delay-based, throughput optimal ATC was introduced in (J. Wu,

Ghosal, Zhang & Chuah, 2017). It uses back pressure control to prevent platoons

from experiencing an excessive delay because of their smaller queue length and tries to

achieve fairness.

Almost all ATC systems try to optimize the system’s metrics like waiting time,

throughput, queue length, delay, fuel consumption and gas emission. But it is also

equally important to address ATC system’s response to the user. TTI is the ratio of

actual travel time measured during the congestion to the required time during free flow

state (Zheng et al., 2016). TTI indicates the variability in delays due to stochastic

demand in traffic, stochastic traffic at intersections, mid-link disturbances like stopping
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of the vehicle, pedestrian crossing, asynchronous traffic signal control with traffic

demand and weather conditions (Clark & Watling, 2005). Though TTI measured in

terms of reliability is not new in traffic domain, very few studies have incorporated TTI

in optimizing traffic control systems. An adaptive traffic control system implemented

using SCATS that considered TTI in terms of reliability measures was introduced

in (S. K. Wu, 2009). A robust model to produced optimized signal timing to minimize

reliability index (TTI) considering variations in demand over a single day and between

multiple days was implemented by (Yin, 2008) and was further applied it over arterial

road network by (L. Zhang, Yin & Lou, 2010). Recently, Zheng et.al. proposed a

framework to optimize signal control strategies for reliability and expected values of

travel time using genetic algorithm for urban arterial road networks (Zheng et al., 2016).

Similarly, a traffic network signal optimization model using heuristic particle swarm

optimization to optimize travel time reliability was proposed by (Z. Ma, Huang, Li &

Guo, 2020).

Most of the studies try to achieve an optimized cycle timing for an isolated inter-

section or an arterial road network considering TTI as the optimization metrics. None

of the studies has implemented ATC algorithm to minimize TTI in the connected en-

vironment for isolated traffic intersection. In this paper, we propose an ATC algorithm

that optimizes TTI for an isolated intersection achieved by analogically mapping TTI

with stretch. We leverage the availability of real-time data like vehicle speed, position,

and time it takes to pass the intersection from connected VANET environment. This

data can be used to monitor and optimize TTI. Our algorithm, called Fair Scheduling

Algorithm (FSA), identifies and schedules platoons (vehicles grouped together) at each

approach of an intersection to minimize the objective function of TTI for the vehicles.

Instead of minimizing overall TTI for a segment of road, a path comprising multiple

segments and the entire network, FSA is the first algorithm in traffic engineering, which

minimizes the average TTI of vehicles passing through an intersection.
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Existing VANET-based ATC has limitations. Most of the earlier studies that im-

plemented real-time scheduling algorithms in the traffic domain used the same sized

platoons to ascertain that all the tasks have the same processing time. In cases where

platoons have very few vehicles within it (especially in intersections where they have

an uneven distribution of traffic), the algorithms need to assign entire green time for

the duration of the platoon. This prevents algorithms from being completely adaptive

and green time calculated using such algorithms is not the optimized green time in the

longer run. We have addressed this limitation by using variable-sized platoons. Platoon

size determined from the exact number of vehicles present at that particular lane reflects

the real-world traffic scenario and makes the algorithm more adaptive.

In addition, FSA is a novel algorithm to be used in traffic domain. Almost all

existing ATC systems focus on optimizing either queue delay or throughput. Delay

minimizing algorithms prioritize lanes experiencing maximum delays and throughput

maximizing algorithms schedule lanes with higher traffic density. In cases where there

is an uneven distribution of traffic densities, lanes with a minimal queue or very less

density have to wait unnecessarily. This implies that existing scheduling algorithms

used in the traffic domain are not fair to all the tasks. From the users’ perspective, the

system is less reliable as their expected and actual travel time vary largely. Furthermore,

implementation of VANET can improve ATC system performance up to a certain

level of traffic penetration. ATC system algorithms have opportunities to improve

the performance only if the traffic flow is not in synchronization with the control

algorithm in case of medium or lightly loaded intersections. Designing any advanced

traffic control algorithm cannot further minimize waiting time or maximize throughput

of highly loaded intersections. In such a scenario, recently, researchers have started

considering an alternative measure of performance called TTI analogous to stretch in

operating systems, parallel systems, web servers, and database systems (Muthukrishnan

et al., 1999). So, we have implemented FSA, an algorithm that minimizes average TTI
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experienced by each vehicle, which is fairer in scheduling than existing state-of-art ATC

algorithms but still maintains the identical overall performance of minimizing queue

delay or maximizing throughput.

3.3 Online Task Scheduling Implementation for Traffic

Light

3.3.1 Traffic Intersection

Intersections arbitrate conflicts between vehicular movements. The most commonly

encountered four-legged intersection with eight different movements is depicted in

Fig. 3.1. Other types of intersections are rarer and often ignored when designing

intersection control algorithms (Irani & Leung, 2003). However, our approach is general

enough to be used for other intersections. Traffic lights installed at the intersection

change their phases to control vehicular movements. The total time for completing all

phases is called cycle time. The distance or time between two vehicles on the same

approach is measured as headway. From Fig. 3.1, vehicles on approach 3 cannot be

Figure 3.1: Four legged intersections with a movement for left hand drive
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allowed to pass the intersection when any of the conflicting approaches 1, 2, 5, 6, or 8

are allowed. However, approach 3 can be enabled at the same time as non-conflicting

approaches 4 and 7. We can enumerate all conflicting and non-conflicting approaches

for each approach i as set Ci and NCi.

3.3.2 Conflict Graph

A conflict graph sometimes referred to as precedence graph, is widely used in obtaining

correct results for concurrent operations in real-time systems, and can also be used

in traffic intersections. A traffic control algorithm operating on an intersection must

allow vehicles to pass without conflicts. This problem is analogically equivalent to a

job scheduling problem in a real-time system. Conflict graphs are extensively used in

job scheduling where simultaneously occurring jobs compete within a system to utilize

limited resources. For each approach i, we can construct a conflict graph G = (V,E)

with vertices V and edges E ⊆ (V × V ) for traffic intersection in Fig. 3.1. The vertices

are represented by the set of approaches (1, . . . ,8) and the edges are represented as

E =⋃
i

{(i, j)∣j ∈ Ci}

Intuitively, each approach is a node in the conflict graph and has an edge connecting

it with every conflicting approach. Approaches connected directly within the conflict

graph cannot be enabled at the same time. Fig. 3.2 shows the conflict graph for the

intersection shown in Fig. 3.1.

3.3.3 Behavior of Jobs

Vehicles either stop, slow down or speedup depending on the state of a traffic signal

when they approach an intersection as shown in Fig. 3.3. Vehicles in the speed region

are unaffected by the traffic signal and continue with their original speed. In the
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Figure 3.2: Conflict graph G(V,E) of jobs in four-legged intersection

slowdown region, vehicles either decelerate to stop at the red light or accelerate to pass

the intersection because of a green or orange light.

Different movement pattern of a vehicle crossing an intersection is captured by

headway. The first headway, which is the time between the light going green and the

first vehicle crossing the intersection, is usually longer than second and subsequent

headways because it includes the acceleration time of the vehicle and the reaction time

of the driver. Subsequent headways are generally shorter because reaction times of all

drivers can overlap. After a certain number of vehicles the headway achieves a constant

value and is termed as saturation headway h. The error ei for few initial vehicles are

added as start up time lost and compensated while designing green time. Therefore,

green time required to clear N lined vehicles is given by,

T =
n

∑
i=1
ei + h ∗N (3.1)

Grouping vehicles into platoons allow us to use real-time scheduling algorithms

for traffic control. We group vehicles at each approach of an intersection into one or

more variable sized platoons or jobs. Platooning aids to eliminate the inconsistencies
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Figure 3.3: Traffic signal control architecture using VANET

created by human in maintaining a safe distance and nonzero reaction time (Bergenhem,

Hedin & Skarin, 2012). The traffic control problem can then be posed as a problem of

scheduling jobs with conflicts (Irani & Leung, 2003). Scheduling jobs with conflict for

a given conflict graph to minimize average stretch is an NP-hard problem even if we

consider that all jobs arrive at the same time (Karp, 1972).

The random pattern of vehicular arrival to an intersection and its unpredictable

nature of future makes scheduling an online problem and needs to be dynamic. A

scheduler can, therefore, only make scheduling decisions based only on the current set

of jobs. This is an example of online scheduling. When a scheduler knows in advance

the arrival time of all jobs, it can make calculated decisions based on past, current,

and future information, which is classified as an offline scheduling strategy. An offline

algorithm, having complete knowledge, generally produces better results than an online

algorithm having partial knowledge. The performance of an online scheduling algorithm

is therefore compared with an optimum offline algorithm in terms of its competitive

ratio. An online algorithm is r-competitive if the total cost for its scheduling is r times

the cost incurred by an optimal offline algorithm. For request sequence γ, let CA(γ)

represents the cost incurred by an online algorithm A and C∗
A(γ) represents the cost

incurred by an optimal offline algorithm then A is called r-competitive if there is a

constant c such that:

CA(γ) ≤ r ⋅C
∗
A(γ) + c (3.2)
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3.3.4 Analogical mapping of TTI in traffic domain with stretch in

real-time systems

The probability of vehicle reaching its destination from the point of origin within a

given time is termed as travel time index (TTI) measured in terms of reliability. TTI

is defined as the ratio of actual travel time measured during congestion to the required

time during free-flow state, Mathematically,

TTI =
TTMean

TTFreeflow
(3.3)

Where TTMean is the mean actual travel time and TTFreeflow is the mean free-flow

travel time. In this study we consider Buffer Index (BI), a typical travel time reliability

measure, which represents the extra buffer time traveller must add to their average travel

time before planning their trips which are incurred due to stochastic demand in traffic,

stochastic traffic at intersections, mid-link disturbances like stopping of the vehicle,

pedestrian crossing, asynchronous traffic signal control with traffic demand and weather

conditions (Clark & Watling, 2005). We have used a 90th percentile value of travel

time for the representation of near worst-case travel time. Therefore,

BI =
TT90% − TTMean

TTMean

(3.4)

Similarly, stretch is defined as the amount by which a job has been slowed down by

the loaded system compared to a free system. Stretch is the ratio of response time and

processing time of a job (Harchol-Balter et al., 2000). Response time is the difference

between the completion and arrival time of a job, which reflects the amount by which a

job has been slowed down expressed by the following equation:

s =
cj − aj
pj

(3.5)
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Where cj , aj , and pj are the completion time, the arrival time and processing time of

job j respectively. From Equation. 3.4 and Equation. 3.5 we can deduce that buffer

index in traffic domain is equivalent to stretch in real-time systems. Therefore, if we

implement a real-time system scheduling algorithm to optimize stretch in traffic domain

it eventually optimizes the BI. The objective function for average buffer time index of

an approach i can be expressed as:

y =
1

n

n

∑
i=1
BIi (3.6)

Where, n is the total number of approaches in the traffic intersection and BIi is the

average buffer index of the vehicles travelling through that approach and y optimization

objective function. For a signalised traffic intersection, effective green time Gi ≥ 0;

optimum cycle time C0 ≥ 0; and phase offset φ ≥ 0 Therefore, our optimization

algorithm FSA should achieve a minimum value of the objective function satisfying

above constraints for Gi, C0, and φ.

min{y} =min(
1

n

n

∑
i=1
BIi)

In this study, we have considered variable-sized platoons as jobs and implementing

FSA as a real-time task scheduling algorithm, minimizing average stretch eventually

achieves a minimum of the above objective function.

3.3.5 Competitive analysis of FSA online algorithm

The slowdown combines efficiency and fairness and is generated from the idea that

larger jobs can tolerate a longer waiting time. Minimizing average stretch satisfies that

the schedule so produced reduces overall slowdown and is fair to all the jobs in terms of

waiting time. In the following sub-section, we present the Fair Scheduling Algorithm
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(FSA) algorithm to minimize the average stretch.

FSA is an extension of an existing Shortest remaining time first (SRTF) algorithm

for the traffic domain. This algorithm processes the job with the smallest amount of

time remaining to execute or minimum value of stretch. Since the job being processed

is the one with minimum remaining processing time and the processing time always

reduces as execution continues, the jobs being executed always get a chance to complete

unless a new job with a smaller amount of processing time arrives. FSA algorithm

uses VANET to implement SRTF. We design an algorithm to divide approaching

vehicles into variable-sized platoons using VANETs. In a real-time system, this is

analogous to scheduling jobs with conflicts having different processing times. The

traffic controller then processes conflict-free platoons using SRTF algorithm. The

two-phase approach, where approaching traffic is divided into variable sized platoons

using a platooning algorithm and scheduling them using SRTF algorithm to generate a

conflict-free schedule, generate our FSA algorithm.

The input to FSA scheduling algorithm is set J with n number of jobs with pro-

cessing time pj and its equivalent conflict graph G(Vi,E) where Vi represents the jobs

and edge E represents pair of conflicting jobs that are not schedulable at the same

instant. The schedule is nothing but an allocation of processor’s time slots (effective

green time in traffic domain) satisfying the following conditions:

• An individual job j ∈ J can be assigned a time slot of pj on the processor.

• Time slots allocated for two conflicting jobs can not overlap.

In case of a traffic intersection, all platoons (considered as jobs) generated from

each lane demand effective green time. There is a conflict between a subset of jobs if

their total demand for green time exceeds supply. Such problems of resource sharing

can be modelled using a conflict graph (Even, Halldórsson, Kaplan & Ron, 2009).
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Algorithm 1 FSA Algorithm

Input: vertices Vi(1,2, ....,8), conflict graph G(Vi,E)

Output: schedule non-conflicting vertices with minimum stretch
1: Let S be the set of average stretch on all vertices of G;
2: while vertices Vi have jobs waiting do
3: Let Sj be the minimum value of stretch among S;
4: for each vertex without having edge with Vj , do
5: Schedule the job with minimum value of stretch Sj;

Let aj = arrival time and pj = processing time of j.

The performance of an algorithm is measured by the total stretch achieved by the

schedule. Ideally, in a relaxed system, jobs get processed immediately after they arrive,

resulting in the value of stretch to 1. In a heavily loaded system, the value of stretch

is greater than 1. The performance of the scheduling algorithm is measured relatively

based on the stretch metric given below. The total stretch of a schedule for time unit of

consideration is the sum, taken over all jobs j during that unit of time, of the stretch of

j under the schedule, where the stretch of a job is the ratio of the response time of the

job to the processing time of the job.

sj =
n

∑
j=1

cj − aj
pj

Where, response time is the difference between completion time cj and arrival time aj .

Job j can be scheduled at any time after the job has arrived, i.e., t ≥ aj . Schedule

assigned at time t by Algorithm. 1 stated earlier is only dependent on the jobs that have

already arrived before t or exactly at t. Here the scheduler has to make decisions on the

go. In this context, we are focused on assigning the processor’s time slot in such a way

that it minimizes the average stretch.

Adjacent approaches like 1 and 2 in traffic intersection shown in Fig. 3.1 can be

merged into one node resulting K2,2 conflict graph. We represent nodes of K2,2 on the

right side as ra and rb and on the left side as la and lb. Every time FSA processes the
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job from the side of the conflict graph with minimum stretch. Afterwards, the scheduler

chooses the node from this side with remaining jobs and processes the job with minimum

stretch. We prove that any job in the schedule produced by FSA experiences latency

of at most two times the latency experienced by the jobs scheduled by offline optimal

algorithm FSA* implying FSA algorithm is 2-competitive. To prove this, we require

the following Lemma.

Lemma 1. Let the upper bound for maximum latency created by the schedule of optimal

offline algorithm FSA* be S. In such condition, for all times t, the online FSA will

always maintain invariant listed below:

1. If FSA* offline optimal algorithm has an edge of weight w at any time instant t, then

the number of jobs on the edge of optimal schedule produced by it is always at worst

w − S jobs.

2. If FSA* offline optimal algorithm has a node with weight w at time instant t, then

the number of jobs on the node the optimal schedule produced by it is always at worst

w − S jobs.

Proof. Let us Consider that FSA (online algorithm) has maintained both of the above

invariants for time t − 1. We will prove that the same is maintained after time t. The

conditions stated by the invariant are still maintained by all the jobs arriving at the end

of time t − 1 and beginning of t. When both FSA and FSA* start scheduling the jobs

from the set of independent nodes of K2,2 conflict graph, we need to prove that these

conditions are still maintained at the end of t. At the beginning of t, without-loss-of-

generality, let us assume that node la contains the job with minimum stretch.

If at the beginning of t, FSA has any jobs on lb, then it schedules individual jobs

from each edge of conflict graph. So at the end of t condition 1 of the invariant is
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preserved. We consider that for a unit time, the number of jobs processed by an optimal

offline algorithm from each edge is only one.

If at the beginning of t, FSA has no jobs on lb, then condition 1 of the invariant will

only be maintained as long as condition 2 of the invariant will be maintained. But if

FSA has a node on the right-hand side with at least S + 1 jobs, we cannot ascertain the

condition 2 of the invariant. Consider node ra is having at least S + 1 jobs. (Same holds

true for rb). At the beginning of t, let us assume node la has m jobs and node ra has n

jobs. This imply that, the optimal schedule on (ra, rb) has at least m + n − S jobs out of

which n − S must be on ra. We must ascertain that the optimal schedule will maintain

at least n − S jobs till the end of t to satisfy condition 2 of invariant. Let us address the

following two cases:

Case I. At the beginning of t, Online FSA has a job on la with the latency of at least

S. For this condition, if the optimal schedule also has the latency of at least S job on la,

it has to schedule that job. This makes n−S jobs still waiting to process on ra when time

unit t ends. If in case, the schedule generated by optimal offline algorithm does not have

a latency of at least S job on la. We initially inspect that for time units of S−1, jobs arriv-

ing on la is no more than m − 1. This is due to the reason that the FSA online algorithm

can have a maximum of m − 1 jobs that are recent after the latency of at least S job and

the algorithm would not have scheduled any recent jobs within the latency of at least S

job. Therefore, optimal schedule can only have at mostm−1 jobs on la meaning it has at

least n−S+1 jobs on ra at the beginning of t. Thus resulting n−S jobs remaining after t.

Case II. At the beginning of t, Online FSA does not have a job on la with the latency

of at least S. Since la has the job with minimum stretch, the FSA online algorithm does

not have a job on ra with the latency of at least S. This implies n jobs have shown up

on ra during the last S − 1 units of time. At the beginning of t, the maximum number of
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jobs that any algorithm (including optimal) can schedule is S − 1. Therefore, before

time t, schedule generated by optimal algorithm has at least n − S + 1 number of jobs

on ra and n − S jobs when t ends. ∎

Theorem 1. Online greedy FSA is 2-competitive.

Proof. If FSA* (an optimal offline algorithm) can schedule jobs with any arrival

sequence with the maximum latency of S, then worse case latency for the online

algorithm cannot be more than 2S. It provides an upper bound (2S + 1)/(S + 1) for the

algorithm on a competitive ratio with maximum response time as cost function.

If invariants are maintained at all times, we can never achieve an edge weight of

2S + 2 or more. Because in such case, the optimal schedule will have edge weight of

S + 2 which eventually imply some jobs might have a latency of at least S + 1, which

is impossible. As algorithm can never have more than 2S + 1 jobs on any edge, let us

assume for node la there is the arrival of any job, say j, then there can never be more

than 2S jobs on any of the incident edges to la. Let us assume m be the number of

existing jobs la during the arrival of j and we know 0 ≤ m ≤ 2S. Therefore either of

right-hand side nodes can have a maximum of 2S −m jobs.

Once the left-hand side is chosen m number of time, j will be the job with minimum

processing time left on la and this job will be scheduled when the left-hand side is

chosen next time. So, by proving the right-hand side is not chosen 2S −m time before j

is scheduled, we can state that the maximum amount of time j has to wait before it gets

scheduled is at most 2S. Once the right-hand side has been chosen 2S −m times and

until now, if j is not picked yet, then it results in the left-hand side having a job with

maximum processing time or stretch. ∎

The above discussion concludes that a proper reduction of stretch, minimizing real-

time online task scheduling can be implemented in traffic intersections that maintain

2-competitive performance bonds.
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Optimality of FSA

In this subsection, we prove that the FSA algorithm presented previously achieved the

optimal competitive ratio. We follow the method of the adversary to prove all the lower

bonds. The adversary generates the sequence of arrival of jobs imitating the online

algorithm’s nature. The adversary can choose any of the nodes of conflict graph for

the arrival of jobs at the start of each time unit. Once the sequence of the job has been

finalized, the adversary determines the schedule of the job in an offline manner. Then

we compare the cost incurred by the online algorithm to the cost of the offline algorithm

decided by the adversary.

Lemma 2. Let us consider Alg. as an arbitrary algorithm. Let us consider an edge

(lx, ry) at the end of any time t where the adversary does not have any jobs to process

and Alg. has i jobs. In such a case, the adversary can compel to generate the sequence

where Alg. has an edge weight of i + 1 and the adversary has scheduled all the jobs

and left with no jobs left at any of the nodes and edges. Moreover, the adversary can

never have any job with a latency greater than i + 1.

Proof. The adversary forces the arrival of jobs on both nodes lx and ly until algorithm

has i + 1 jobs on any one of the nodes. This happens at the start of the time t ≤ t + i + 1.

Without loss of generality, let us consider node lx has i + 1 jobs then, in that condition,

the jobs scheduled by the adversary can achieve maximum latency of i + 1 resulting lx

to be empty after t. This keeps the adversary following the strategy of emptying out its

own graph while forcing algorithm to maintain i + 1 jobs at the edge. Let us consider

a node rz, which is not ry on the right-hand side of the conflict graph. The adversary

has jobs arriving at rz for every time unit of i + 1. The adversary schedules the job with

the highest processing time on ry and with the lowest processing time, i.e., the newest

job on rz. Again after i + 1 unit of time, the graph of the adversary is empty. But the

algorithm still has i+1 jobs on (lx, rz) because a job was requested on rz for every time
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unit. ∎

Theorem 2. For a conflict graph of format K2,2, the FSA algorithm has a maximum

competitive ratio of 2.

Proof. For any positive integer S, there exist an adversary that forces the algorithm

for maintaining a job with a latency of at least 2S; meanwhile, the latency created by

adversary itself is at most L. This allows the lower bond of (2S + 1)/(S + 1) for any

deterministic algorithm to determine its competitive ratio. The theorem follows since S

can be arbitrarily large.

When j increases from 0 and reach S − 1, the algorithm has to start every single

state with j jobs on the edge. Let us now invoke Lemma. 2 in order to achieve j +1 jobs

on an edge. Once all the process ends, the graph of the adversary is empty, while the

algorithm still has S jobs at an edge (lx, ry). For the next S units of time, the adversary

will have a job arrive on lx and ly. Thus, scheduling the job with the lowest processing

time first, the adversary never can have a latency of greater than S and the algorithm

must incur latency of at least 2S to have 2S + 1 jobs on edge (lx, ly). ∎

3.4 Vanet Based Scheduling

In this section, we elaborate on how a platooning algorithm has been implemented to

generate platoons of variable size and further implemented to adaptive traffic signal

control in the VANET environment for minimizing the average stretch using FSA

algorithm.

3.4.1 System Model

VANETs facilitate the free circulation of data among objects within a traffic intersection.

Here, we explain the system model for VANET based adaptive traffic signal controller.
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In this study, we considered that all the vehicles are equipped with the communication

hardware for V2X communication and GPS to gather speed and position data. We have

also assumed that the decision about the lane and route to follow is an independent

driver’s decision and is accessible to the platooning algorithm. We can implement

this in SUMO by randomly assigning lane and route to the individual vehicle using

an inbuilt function called DUAROUTER. RSU installed at the traffic controller can

receive the information broadcasted by the vehicles. Communication is carried out

using standards defined in the IEEE 802.11 protocol to support wireless access in the

vehicular environment which uses overall bandwidth of 75MHz divided into seven

10MHz channels(composed of single Control Channel and six service channels) in

the 5.9GHz spectrum band for Dedicated Short Range Communications (DSRC). To

increase switching efficiency among seven DSRC channels, it uses the IEEE 1609.4

protocol, which is just an extension over Medium access control layer operation of IEEE

802.11. The architecture of this system is shown in Fig. 3.3. The information beacon

sends data packets that consist of the speed, lane position, and destination lane of the

vehicles. Speed and position data in the real-world are gathered from vehicle installed

speedometer and GPS. During the implementation phase, we have access over these

data from different parameters used in microscopic traffic simulator SUMO. These data

are further encapsulated in a packet and broadcasted wireless.

The platooning and FSA algorithms use these data to make meaningful decisions.

Once the data are circulated, we collect and process them. The platooning algorithm

and FSA algorithm process these data and instruct the traffic controller to change the

phases of the traffic signal. A detailed description of how these data are processed

and implemented in the traffic controller to design an adaptive traffic control system is

explained in Section. 3.5.
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3.4.2 Platooning Algorithm

The performance of the FSA online algorithm enhances with the use of information

transmitted over VANET. In the preceding section, we theoretically calculated the

lower and upper bond of an online algorithm and proved that it is 2-competitive for

minimizing average stretch where the algorithm had no further knowledge of input jobs.

The performance bond of the FSA online algorithm holds with the condition that future

information of jobs related to their arrival and processing times is unknown. Utilizing

information related to speed, position, lane, etc. transmitted to the controller prior to the

arrival of vehicles could improve 2-competitiveness of FSA online algorithm. But due

to the presence of physical obstacles like buildings, trees, and attenuation from other

vehicles, the radio range of DSRC communication is limited to a few hundred meters,

which provides a short-sighted view of future jobs and eventually the performance of

the FSA algorithm will come down to 2-competitive. In this paper, we instead tried

a different approach to use information gathered using VANET. One major limitation

that causes the performance of the algorithm to deplete is the variable length of Jobs,

which is unknown to the scheduler. In this case, it is the variable length of the platoons

which require different processing times. If the length of the platoons is known to the

scheduler in advance before it makes any decision, the performance of the FSA online

algorithm can be enhanced from the theoretical computed value of 2-competitive. This

can be achieved by calculating the length of the platoons using the spatial headways of

the vehicles joining the platoon, speed of the platoon, the position of the lead vehicle

in the platoon, and the last vehicle that has joined the platoon. We have implemented

this concept to calculate the reserved time for each platoon that is required to cross the

intersection, and this information is encapsulated in the packet broadcasted to RSU

using VANET.
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Assurance of performance enhancement of FSA can only be achieved if the platoon-

ing algorithm follows some conditions. Platoon is the group of vehicles following a lead

vehicle. Controlling a platoon is a lot easier than to control the individual vehicle as it is

controlled from the lead vehicle. Platooning is implemented to mitigate the inconsisten-

cies generated by human behaviour in maintaining a safe distance and nonzero reaction

time to increase the overall capacity of the highway (Bergenhem et al., 2012). FSA

processes the job with the minimum stretch and is considered that the job processed

completes at the end of the scheduled slot. In case of a traffic intersection, we may have

situations where some lane might have a fewer number of vehicles generating at an

equal interval of time. This forces scheduler to process these smaller sized platoons

preempting the larger sized platoons created from the congested lane which results in

unnecessary starvation for larger platoons. This kind of situation restricts the scheduler

in producing an optimal schedule. To solve this problem, we propose an optimized

solution to calculate the platoon size.

• Allow vehicles to join the platoon being processed if they are within an allowable

distance apart and increase execution time (green time) until this platoon is

processed. This will minimize unnecessary context switching because of vehicle

spacing.

• Limit the maximum number of vehicles joining a platoon to maximum 12 vehicles

as platoon length of up to 35 meters does not reduce the performance (Fernandes

& Nunes, 2012a) and allow the scheduler to preempt only after the execution of

this platoon. This minimizes the starvation for the jobs with higher execution

time.

The reserved time required for a platoon to cross the intersection (green time) is

estimated in the following ways:
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• When the platoon is stopped over the stop line, green time is the sum of start-up

time and reserved time of the platoon for passing the intersection.

• For a moving platoon, green time is the sum of reserved time of the platoon and

time required by this platoon to cover the distance between the stop line and the

present position of the lead vehicle.

Random behaviour of vehicle arrival at the intersection generates variable-sized

platoons and demand unequal green time. The platooning algorithm calculates the exact

green time needed for each platoon in a controlled lane to pass the intersection. All

vehicles generated are initially assigned as an individual platoon. Individual platoons in

the same lane and having the same destination lane are eligible for merging thus they

merge together to form a larger platoon. The very first vehicle of the merged platoon

is assigned as the lead vehicle. All other vehicles follow the lead vehicle’s speed and

route. Whenever two platoons merge, both the merging platoons are disbanded, and a

new platoon with a new length is created. Since the vehicles are randomly assigned to

the lane, the size of platoons so created in each lane is different. We now calculate the

reserved time for platoons at different lanes. For this calculated reserved time we further

calculate the stretch of each platoon from all the approach and they are scheduled by

FSA algorithm shown in Algorithm. 1. Once they cross the intersection platoons update

to maintain themselves, that means if the original condition of merging as platoon

satisfies, they continue to move as platoons else, they will disband. The platooning

algorithm is shown in Algorithm. 2.

3.4.3 Adaptive Traffic Signal Control

In this section, we elaborate on the implementation of VANET on the adaptive traffic

control system. We make use of the inbuilt feature of traffic light signal (TLS) logic in

SUMO. Total cycle time should be chosen in such a way that it can serve the purpose of
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Algorithm 2 Platooning Algorithm for FSA scheduling
1: for each controlled lane l do
2: addVehicle Veh_l.i;
3: create platoon Veh_l;
4: if ( Veh_l.i CanMergeWith Veh_l ) then
5: Veh_l.psize = Veh_l.psize + 1;
6: else
7: Veh_l.psize = Veh_l.psize;
8: for each platoon Veh_l do
9: Reserve time = calculateNewReservetime(Veh_l);

optimization of the objective function defined in Equation 3.6. Randomly chosen cycle

time and green time slower the convergence towards optimal cycle time and green time

to minimize the objective function. Too short cycle times result in frequent switching

among the phases within a defined time resulting in a considerable amount of time lost

due to multiple switching and will be eventually higher than effective green time. On

the other hand, too long cycle time increases overall delays (waiting time) experienced

by stopped vehicles. So it is important to determine a reasonable value of cycle time,

which can solve both of these problems. in this study we start the implementation of

FSA setting optimized cycle time and green time given by Webster’s method, which is

a well-established method in traffic engineering, determines optimum cycle time as a

function of critical flow ratio (throughput) and lost times. Webster’s equation is shown

below.

Co = (1.5L + 5)/1 − Y (3.7)

Where C0 is Webster’s optimum cycle time in seconds, L is loss time determined as

the sum of inter-green phases in seconds i.e. L = (nTsl +R) from n number of phases,

Tsl as start-up lost time and R as time during which all signal goes red. Y is the total

critical flow rate in vehicles measured in seconds and given as Y = ∑
n
n=1 Yi where Yi is

the critical flow rate for i-th phase determined as Yi = Vi/Si for saturation flow S of the

particular lane and observed volume V. Thus calculated cycle time is distributed into
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effective green time for different phases using the following equation.

Gi =
yi

∑
n
n=1 Yi

(Co −L) (3.8)

Once the optimal cycle time and individual phase’s green time is calculated de-

pending upon the critical traffic volumes of the individual lane, adaptive traffic light

logic is initialized with variables like duration, the minimum duration (minDur), and

maximum duration (maxDur). The ATC controller is set to the initial phase, and at this

moment, an extension that is provided to the green phase is set to 0. We now calculate

the reserved time required to platoons from each lane. We do this using function

calculateNewReservedTime(). If the platoon is at the stop line we calculate

length of the platoon using function pv.getLength() otherwise we calculate the

position at which the platoon is located using getLanePosition() and add this

value with the value retrieved from pv.getLength(). This gives us the length

of the last vehicle that has joined the platoon. Now we divide this value with speed

adhered by the platoon to calculate the reserved time required for this platoon to pass

the intersection. Speed of the platoon is calculated using getspeed() function. All

the variables like positions of vehicle, intervehicle headway, speed required to execute

these functions are encapsulated in a packet and transmitted using VANET. The traffic

controller now calculates the stretch of each approach and applies FSA algorithm to

provide a green signal to the lane with the smallest value of stretch. The green time is

the corresponding value of reserved time for platoon with minimum stretch. To remove

multiple switching between phases which increases loss time, two platoons from the

same lane with a gap less than threshold gap are provided with the extension in the

current green phase. This extension EXT≤ GOPT where GOPT is optimal green time

set from Webster’s method. EXT is calculated using the same process, as discussed

earlier. Once EXT is equal to or greater than GOPT the current phase goes RED and
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controller process next lane.

3.5 Implementation

Figure 3.4: System diagram showing the connection between OMNET++ and SUMO

We have implemented FSA and other ATC algorithms using SUMO, OMNET++

and VEINS, as shown in Fig. 3.4. SUMO is a highly portable realistic open-source

microscopic traffic simulation tool that is designed to handle large and small road

networks. OMNET++ is a component-based, standard, and highly extensible framework

used to design and build different network simulators. Specifically, we used VEINS,

an OMNET++ extension for implementing IEEE 802.11p and IEEE 1609.4 VANET

protocols. To access and control traffic network parameters in a SUMO simulation,

we used TRACI, a client-server architecture that provides a programmatic interface to

SUMO. SUMO/TRACI and OMNET++/VEINS are connected via a TCP/IP network

protocol.

This integration of SUMO and OMNET++ achieves high fidelity between the

traffic and network simulations in real-time. Each vehicle in SUMO is treated as a

mobile node in OMNET++. The vehicular trajectory in SUMO is reflected as mobile

node movement in OMNET++. A new node with a unique MAC ID is generated
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in OMNET++ whenever a vehicle is created in SUMO, and it disappears when the

corresponding vehicle reaches its destination. TRACI executes SUMO in discrete time

steps, and the SUMO mobility manager module samples traffic information to send to

OMNET++. OMNET++ mobility management then ensures that all mobile nodes are

updated to their current positions.

3.5.1 Simulation Attributes

Multiple road network variables are used during the simulation. We have used the most

common four-legged traffic intersection with four approaches and sixteen lanes. This res-

ults in eight different vehicular movements. Every approach has four uniquely identified

lanes, such as east_left_0, east_left_1, east_right_0, east_right_1,

etc. The saturation flow is set to 1800 pcu/hr/ln. Vehicular arrival is random and follows

the Poisson distribution with an average vehicle flow rate λ. To assign a certain number

of vehicles to a particular route, we assign probability values to the arrival rate.

We have divided our experiments into two basic categories. For consistent traffic

distribution, the same value of λ is used for all four directions of the traffic intersection.

Low (λ = 350 pcu/hr/ln), medium (λ = 750 pcu/hr/ln) and high (λ = 1800 pcu/hr/ln

) values model off-peak, medium and peak hour distribution, respectively. For incon-

sistent distribution, different λ values are assigned to the North-South and East-West

approaches such as (low, medium), (low, high), and (medium, high). We used different

vehicle types to simulate real-world road networks.

Mobile nodes in VEINS contain information like Vehicle_ID, Lane_ID, current pos-

ition, speed and time. IEEE 1609.4 short-range was modelled with default parameters:

data rate of 6 Mbps with a carrier frequency of 5.9 GHz, five channels (1 CCH and 4

SCH), and beacon interval of 1s. The beacon length(B) was 400 Bytes, Service Packet

Length (P) was 1000 Bytes, and transmission power was 100 mW.
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3.6 Performance evaluation

3.6.1 Performance evaluation of FSA in terms of BI

The objective of FSA is to minimize average stretch experienced by the jobs being

processed. Here, we calculate the average BI expressed in Equation. 3.4. which is

analogous to stretch and compare it with OAF, ITLC and Webster’s method for both

consistent and inconsistent traffic distribution.

Firstly, we considered consistent traffic flow from all four directions towards the

intersection, and we slowly change the traffic volumes over simulation time from low

to medium, medium to high, and finally back to low (every 25 minutes). The effective

green time for through traffic was considered as the 60s, 40s, and 30s for heavy, medium,

and light traffic conditions, respectively. The right-turning traffic was allocated 50% of

the effective green time. Since FSA is designed to optimize BI, it outperforms all the

existing baseline algorithms. This signifies that the reliability of user towards FSA is

higher than all other existing algorithms. Table. 3.1 depicts the calculated BI values for

different traffic conditions. From the Table. 3.1 we can visualize that, user need to add

additional 20% buffer time on their travel plan if the system is implemented with FSA

whereas need to add 47%, 51% and 93% of extra time respectively for ITLC, OAF and

Webster’s method in case of consistent traffic flow of 350 pcu/ln/hr. Other results can

be interpreted similarly.



Chapter 3. Adaptive Traffic Signal Control Using Travel Time Reliability for
Vehicular Ad hoc Networks (Manuscript 2 ) 90

Table 3.1: Performance of FSA in terms of Buffer Index

Algorithms Buffer Index

Consistent traffic 350 pcu/ln/hr 750 pcu/ln/hr 1600 pcu/ln/hr

FSA 1.2106 1.4159 2.4793

ITLC 1.4738 1.8207 2.5791

OAF 1.5127 1.8492 2.6853

Webster’s 1.9369 2.1230 2.7529

Inconsistent traffic

when N-S is 100 pcu/ln/hr

and E-W varying

upto 350 pcu/ln/hr upto 750 pcu/ln/hr upto 1600 pcu/ln/hr

FSA 1.1358 1.1759 1.5923

ITLC 1.1924 1.3812 1.8625

OAF 1.2493 1.4216 1.9147

Webster’s 1.4534 1.7686 2.2943

Inconsistent traffic

when N-S is 750 pcu/ln/hr

and E-W varying

upto 350 pcu/ln/hr upto 750 pcu/ln/hr upto 1600 pcu/ln/hr

FSA 1.2981 1.3629 1.9134

ITLC 1.6032 1.7416 2.2436

OAF 1.6981 1.8121 2.2912

Webster’s 1.9753 2.0649 2.4782

We also calculated the standard deviation of the calculated BI for each vehicle to

visualize the deviation of BI from the average. A lower value of standard deviation

signifies that BI is grouped closer towards the average. From Table. 3.2 we deduce that

for all traffic conditions FSA has a lesser value of standard deviation signifying that

delay experienced by each vehicle is evenly distributed than other algorithms.
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Table 3.2: Standard deviation of total Buffer Index

Algorithms Standard Deviation

Consistent traffic flow 350 pcu/ln/hr 750 pcu/ln/hr 1600 pcu/ln/hr

FSA 0.3676 0.4836 1.2290

ITLC 1.8345 2.3946 4.1791

OAF 2.1579 2.3842 4.5934

Webster’s 2.9623 3.8929 7.9626

Inconsistent traffic

when N-S is 100 pcu/ln/hr

and E-W varying

upto 350 pcu/ln/hr upto 750 pcu/ln/hr upto 1600 pcu/ln/hr

FSA 0.4136 0.5297 1.3823

ITLC 1.9786 2.9142 5.6152

OAF 2.7685 3.1562 6.1287

Webster’s 3.1249 4.1672 9.1563

Inconsistent traffic

when N-S is 750 pcu/ln/hr

and E-W varying

upto 350 pcu/ln/hr upto 750 pcu/ln/hr upto 1600 pcu/ln/hr

FSA 1.8126 2.3615 3.1481

ITLC 3.7645 4.9372 8.1176

OAF 4.1932 5.9126 9.3438

Webster’s 7.1582 9.4378 12.1176

3.6.2 Performance Evaluation of FSA in terms of Waiting time and

Throughput

The sole aim of designing FSA for a traffic intersection is to avoid the unfair nature

of existing algorithms that minimizes delay (OAF) and maximizes throughput (ITLC),

as discussed earlier. The results tabulated above justifies FSA is a more reliable and

fair algorithm with BI as an optimization parameter. Contrary to this, it is equally

important to visualize the performance of FSA with other objective functions. We

first compare the total queue delay and throughput of FSA with OAF and ITLC. OAF
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claims it is an optimal algorithm to minimize queue delay and ITLC claims maximum

throughput. Both techniques claim superiority over all other ATC algorithms to date.

To ascertain that FSA performs well as compared to OAF and ITLC, we crafted a

simple Kolmogorov–Smirnov (KS) test. The Kolmogorov–Smirnov (KS) test quan-

tifies the difference between the empirical distribution function of two samples, to

check the basic difference between two samples of single-dimensional probability

distribution (Massey Jr, 1951).

Dn,m = supx∣F1,n(x) − F2,m(x)∣ (3.9)

F1,n and F2,m are the empirical distribution functions of two samples and sup is the

supremum function.

To establish if FSA is fair to all jobs, we require a fairness index calculated as a

finite and continuous value, independent of population size and measurement metric.

We chose Jain’s fairness index (Jain, Chiu & Hawe, 1984), a popular fairness metric.

f(X) =
[∑

n
n=1 xi]2

n∑
n
n=1 xi2

(3.10)

While measuring the fairness index with respect to waiting time, x is the normalized

waiting time of ith job and n is the number of jobs and 0 ≤ f(X) ≤ 1. A higher value of

f(X) implies fairer resource allocation.

Evaluation of FSA during consistent traffic conditions

The performance of FSA in comparison with OAF and ITLC is shown in Fig. 3.5. The

performance parameter we compared was the average delay experienced by each vehicle

in a 5 minutes interval. The labels low, medium, and high represent traffic volumes

during different simulation times.
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Figure 3.5: Performance of FSA, OAF, and ITLC in terms of total delay.

During initial and final low traffic volumes, the performance of FSA in terms of

average delay experienced by each vehicle lies between OAF and ITLC. When traffic

volume starts building to medium and then finally to high, FSA maintains the smallest

delay. The rate of change of delay time with traffic volume for FSA is less when

congestion is building and more while discharging the congestion. This signifies that

FSA performs better in resisting and discharging congestion.

We also evaluated the performance of FSA in terms of throughput. Fig. 3.6 repres-

ents the total number of vehicles processed by each of these algorithms within a second.

Figure 3.6: Performance of FSA, OAF, and ITLC in terms of throughput
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Evaluation of FSA during inconsistent traffic conditions

This is where we wanted to see the performance of FSA. Uneven distribution of traffic

flow generates variable size platoons, and the application of FSA fits right. In this

experiment as shown in Fig. 3.7 and Fig. 3.8 we setup constant traffic flow from north-

to-south at 100 pcu/hr/ln and 750 pcu/hr/ln and vary the traffic flow of east-to-west from

low (350 pcu/hr/ln), medium (750 pcu/hr/ln) and high (1800 pcu/hr/ln ). The average

Figure 3.7: Performance of FSA compared to OAF and ITLC when traffic from north-
to-south is 100 pcu/hr/ln and traffic from east-to-west is changing

Figure 3.8: Performance of FSA compared to OAF and ITLC when traffic from north-
to-south is 750 pcu/hr/ln and traffic from east-to-west is changing
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delay per vehicle was the same comparison parameter. We can notice that the total

delay of all the algorithms reduces and FSA builds up congestion slower than OAF

and ITLC and recovers from the congestion faster than both of these algorithms. This

is because FSA takes advantage of gaps between the vehicles (that may trigger phase

change occurring additional delay) by converting it into variable-sized platoons from

different approaches. This delay then gets distributed equally among all the vehicles

within that platoon. Besides, FSA processes a platoon with certain processing time

until its completion before it switches to another task. This property makes FSA more

efficient in resisting and discharging congestion.

From Fig. 3.5, 3.7, and 3.8, we can observe the FSA outperforms both OAF and

ITLC while resisting and flushing congestion but at high traffic volume (plateau in the

figures) it looked FSA is slightly lagging. To examine this issue, we plotted a cumulative

difference plot, as suggested in the KS test for plateaued values. The difference curve

presented in Figure. 3.9 confirms that there is no statistically significant difference

between total delay time among all three algorithms at high traffic penetration rates.
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Figure 3.9: Visualization of the Kolmogorov–Smirnov (KS) test showing the difference
in total delay

3.6.3 Evaluation of FSA in terms of Jain’s fairness index

Table. 3.3 shows the calculated Jain’s fairness index of FSA, OAF and ITLC, for both

consistent and inconsistent traffic flows for the experiments discussed earlier. Though

the overall fairness index for all the algorithms looks comparable for consistent and

inconsistent traffic situations, FSA has a significantly higher value of fairness index

for approaches with lower traffic volumes than OAF and ITLC. These results provide

convincing evidence that tasks from approaches with lower traffic density are treated

fairer by FSA than OAF and ITLC. So if we implement FSA at intersections with

uneven traffic distribution, it eliminates vehicles from waiting unnecessarily.
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Table 3.3: Jain’s fairness index for different traffic flows

Different Algorithms Jain’s Index

Consistent traffic flow

FSA f(X) 0.9986

OAF f(X) 0.9951

ITLC f(X) 0.9964

Inconsistent traffic when N-S is 100 pcu/ln/hr and E-W varying

FSA f(X) 0.6311

OAF f(X) 0.5255

ITLC f(X) 0.5327

Inconsistent traffic when N-S is 750 pcu/ln/hr and E-W varying

FSA f(X) 0.9947

OAF f(X) 0.9478

ITLC f(X) 0.9240

3.7 Conclusion

In this paper, we proposed an adaptive Fair Scheduling Algorithm (FSA) for VANETs

that ascertains higher travel time reliability by minimizing the Travel Time Index (TTI)

for an isolated intersection. We considered Buffer Index (BI), a typical travel time

reliability measure, as the primary performance parameter to minimize. We achieved

this through a novel approach of analogically mapping traffic control problems into

real-time systems precisely mapping TTI with stretch (the factor by which a job is

slowed down comparing with time it takes to process on a free system). We first proved

that stretch produced by FSA is less than or equal to twice the stretch produced by

an optimal offline algorithm implying FSA is 2-competitive. Then we empirically
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prove that FSA online algorithm is more reliable and fairer in scheduling in terms of

travel time with Buffer Index (BI) as an optimization parameter compared to existing

state-of-art approaches. Additionally, FSA achieves equivalent performance with delay

minimizing and throughput maximizing baseline algorithms.

In future, we would like to implement FSA in a real-world trip data-sets so that other

dynamic parameters that affect travel time reliability like time of day, week, driving

behaviour and weather conditions are already considered. This allows us to visualize

the sole effect of adaptive FSA on travel time reliability.
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Routing Emergency Vehicles in

Arterial Road Networks using

Real-time Mixed-Criticality Systems
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The manuscript titled "Routing Emergency Vehicles in Arterial Road Networks using

Real-time Mixed-Criticality Systems" try to solve ever-existing two problems caused by

the pre-emption of emergency vehicles (EVs). Although pre-emption techniques have

been studied extensively, emergency management service providers always struggle to

meet target response time. Second, a substantial cost of pre-emption that normal traffic

has to handle in terms of waiting. We postulated a novel emergency vehicle pre-emption

algorithm implemented in the Vehicular ad-hoc network to solve these issues. We

introduced different criticality levels for different levels of emergencies and assigned a

certain level of success assurance in terms of target travel time for these criticalities.

Unlike other studies, instead of implementing the EVP algorithm in a single intersection,

we implemented it in an arterial traffic network. We ran exhaustive simulations. The

99
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results indicate that EVP algorithm can significantly reduce the average waiting time of

normal traffic but still assures all EVs meet their target response time. The manuscript

3 is attached within this section.
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4.1 Introduction

Reducing the response time of Emergency Vehicles (EVs) has an enormous impact on

saving life and property. According to a study conducted by RapidSOS in the USA,

every single minute of delay in response time increases mortality by 1% and incurs 7

billion dollars of extra healthcare expenses (RapidSOS, 2015). To mitigate this issue,

governments impose target response times for Emergency Management Services (EMS).

For instance, 90% of critical emergency calls must be responded to within 9 minutes in

the USA (Pons & Markovchick, 2002a), while in the UK 75% of such cases must be

responded to within 8 minutes (Ambulance Quality Indicators Data 2019-20, 2019). For

Australia and New Zealand, the target is to respond to 50% of emergency calls within 8

and 10 minutes, respectively (Annual report 2019, 2019; NSW state emergency service

annual report 2015, 2015). Due to increasing pedestrian population and congested road

networks it has become an increasingly difficult challenge for EMS to meet contractual

timings.

Researchers and industry practitioners have examined the problem of reducing
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response time for EVs extensively and have proposed or implemented different solu-

tions. Current solutions offer either used route optimization, signal pre-emption or

both techniques to reduce the response time of EVs (Humagain et al., 2020). Route

optimization selects the fastest route for EVs within the available circumstances. Traffic

pre-emption modifies traffic flow to prioritize selected vehicles like EVs. The most

widely used pre-emption technique is altering traffic signals to halt normal traffic flow

and provide passage to EVs (Gedawy et al., 2008). Present pre-emption techniques use

GPS, localized radio, acoustic or line of sight sensors to activate pre-emption. Emer-

gency Vehicle Pre-emption (EVP) has aided in reducing the response time of EV and

served in saving the life from fatalities. Kamalanathsharma and Hancock in their study

have shown that EVP can achieve savings of up to 31% in travel times compared to the

system without EVP (Kamalanathsharma & Hancock, 2012). Though the performance

of EVP in reducing EV response time is compelling, its consequences over general

traffic (unnecessary waiting time) cannot be overlooked.

A Vehicular Ad-hoc Network (VANET) can aid in optimizing the time of triggering

and ceasing of EVP. VANET is the wireless ad-hoc network created by moving vehicles

where vehicle communicate with other vehicles or infrastructure using dedicated short-

range communication standards outlined by IEEE 802.11p (F. Li & Wang, 2007). In

VANET roadside infrastructures like traffic controllers and vehicles can share valuable

information like speed, position, lane, route, and time of arrival, which are fundamental

in optimizing green time available for EVs. This, in turn, can reduce the negative

effects EVP may have over general traffic. Several studies have implemented VANET

in sharing the current position of EV to determine the right time to trigger and cease

EVP (Agarwal & Paruchuri, 2016; Jayaraj & Hemanath, 2015; Kamalanathsharma

& Hancock, 2012). Unibaso et al. used standard Cooperative Awareness Message

(CAM) defined by the European intelligent transportation system in their traffic control

algorithm to provide a green light to EVs(Unibaso et al., 2010). Similarly, Walz and
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Behrisch also used CAM to provide a green wave to EV travelling through multiple

intersections (Bieker-Walz & Behrisch, 2019). Jordan and Cetin implemented VANET

for efficient passage of EVs in closely spaced traffic intersections by preempting traffic

signals in a definite order so that existing traffic within these intersections can be

discharged prior to the arrival of EV (Jordan & Cetin, 2015). In (Younes & Boukerche,

2018), a dynamic traffic scheduling algorithm was designed that can fine-tune the green

time allocated for emergency vehicles so that there is a lesser impact on normal traffic.

Pre-emption techniques have been studied widely for EV routing, but EMS compan-

ies are always struggling to achieve the target response times. This is because almost all

cutting edge research and implementations of pre-emption techniques focus on reducing

the travel time of an individual EV in an optimized route providing that EV with the

highest priority. But in real-life city traffic and in case of natural calamities, there

can be multiple EVs servicing different levels of emergencies at the same time. The

approach of prioritizing a single EV can reduce the travelling time of that particular

EV, but does not assist the EMS in meeting the target response times for all EVs on

the ground. Moroi and Takami have also pointed towards the limitations of prioritizing

single EVs in case of emergencies where we may require to route multiple EVs at the

same time (Moroi & Takami, 2015). In such cases, other EVs following a recently

prioritized EV experience more congestion. Furthermore, providing absolute priority to

an individual EV serving any level of emergency increases the overall waiting times for

normal traffic. This problem can be solved if multiple EVs serving within a particular

time are assigned with different levels of priority and EVP is performed accordingly.

In this study, we propose an EVP technique for multiple EVs with different levels

of priority. We leverage the use of VANET for transmitting critical information like

current position, speed, the time EV takes to pass the intersection, and the route the EV

follows in deciding when to trigger the EVP. Important decision parameters like speed,

position and route of vehicles are easier to access using VANET which is impossible
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from traditionally used inductive loops (Maslekar et al., 2011). There can be conflict

in prioritizing EVs when they share the same route or some common intersections

within that route. This issue is solved by assigning different levels of priorities to EVs.

Assigning a different level of priorities to EVs is a common practice in EMS industry,

for example, St. John’s in New Zealand classify serious life-threatening incidents as

purple, red and, and less serious emergencies as orange. Without affecting the generality

of our work, we use the New Zealand system for illustration of concepts presented in

this paper.

The EVP technique proposed is novel as it provides a way to arbitrate multiple EVs

in an arterial road network. An arterial road network is the backbone of any urban road

that is usually used to transport traffic from small collector roads to expressways or

motorways. Rather than implementing EVP in a single intersection, modelling and

implementing EVP for an arterial road network allows for real-world visualization and

more efficient EV routing. Performance parameters like waiting times and throughput

achieved from such implementations are realistic and will be helpful for EMS to evaluate

their actual performance. In addition, it also helps traffic engineers and transport

planners to anticipate the widespread effect of EVP over general traffic flows rather

than limiting such explorations to a single intersection. Moreover, adding multiple EVs

into the EVP model can solve unsolved problems faced by EMS in prioritizing EVs

when two or more of them have conflicts passing an intersection.

The proposed traffic control algorithm designed for EVP of multiple vehicles is

constructed using a novel approach of mapping traffic control domain into Real-Time

Mixed-Criticality Systems (RTMCS) task scheduling. In real-time systems, the accuracy

of jobs being processed does not rely solely on correct functionality but also on the

timely completion of tasks and computations. In RTMCS, jobs with multiple levels

of criticality like mission-critical, non-critical and safety-critical are designated with

different timing constraints. The system is considered a failure if it cannot meet these
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timing values (Ernst & Di Natale, 2016). We map EV priority levels (purple, red

and orange) with different levels of criticality in RTMCS and impose EVP system to

ascertain a certain level of success assurance against a different level of criticality.

The arbitration of conflicts that arise from scheduling equal priority EVs through the

same intersection is equivalent to the well-known problem of scheduling with conflicts

in real-time systems and can be resolved using conflicts graphs. Whenever two or more

EVs must pass via a single traffic intersection, they cannot be scheduled simultaneously

if they are travelling in conflicting directions. This problem of resource sharing in

real-time systems is dealt through modelling a conflict graph (Irani & Leung, 1996).

We model and utilize conflict graphs to create an optimal schedule for EVs in traffic

intersections. As EV arrival at an intersection is a random event, this paper proposes an

online scheduling algorithm.

The implementation of the proposed EVP in an arterial traffic network for multiple

EVs with different levels of priorities shows promising results. We conducted multiple

experiments using the microscopic traffic simulator Simulation of Urban Mobility

(SUMO) (Krajzewicz, Hertkorn, Rössel & Wagner, 2002). Simulation results show

that the waiting times and overall travel times are significantly reduced when EVP

is enabled, as compared to traditional static traffic light control. Moreover, the EVP

algorithm seems to also reduce waiting times for non-EV traffic when compared to

absolute pre-emption.

4.2 System Model

A four-legged isolated traffic intersection with adaptive traffic control system imple-

mented in a VANET environment can be embedded into an arterial road network with

multiple intersections. Let us consider a four-legged traffic intersection designed for

left-hand driving as illustrated in the left side of Fig. 4.1. It consists of four road
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segments from North, South, East, and West directions. Each road segment is divided

into two approaches so that this intersection has a total of eight approaches. Every

single approach has conflict in movement with five other approaches and has only two

non-conflicting approaches. For example, traffic from approach 2 cannot be scheduled

with traffic form approaches 3, 4, 5, 7 and 8, but it can still be scheduled with traffic

from approaches 1 and 6.

Figure 4.1: Four-way traffic intersection and its equivalent conflict graph

A conflict graph is used to model concurrency in simultaneous operations in real-

time systems and can be used in traffic intersections. A traffic signal must always

schedule non-conflicting approaches together. This can be analogically mapped to task

scheduling in a real-time system which can be implemented through conflict graphs.

A conflict graph with nodes N and edge E is represented as G = (N,E) where each

approach from traffic intersection is a node (in N ) and an edge (in E ⊆ N ×N ) is a

connection between two conflicting approaches as depicted in the right side of Fig. 4.1.

This approach can be generalized to any number or types of approaches. Our traffic

scheduling algorithm schedules traffic by picking a set of non-conflicting approaches at

every instance and allowing it appropriate green time.

VANET provides precious data to activate efficient EVP. VANET is a subset of

Mobile Ad-hoc Network (MANET) designed especially for vehicular communication.

The network topology of MANET changes rapidly as nodes are permitted to move in
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any direction. Routing protocols for MANET are unable to provide optimum throughput

for complex trails created by rapid change in relative positions of moving nodes due to

the high speeds of vehicles in a predefined road. Therefore, VANET has become the

technology of choice in such circumstances (Ranjan & Ahirwar, 2011). In this study,

we assume that all EVs are equipped with Dedicated Short-Range Communication

(DSRC) devices for the vehicle to infrastructure communication and GPS to collect

speed and position information. Information about the route EVs follow from origin

to the destination is initially set by the routing application installed within the vehicle.

The communication between EVs and the road-side traffic controller is carried out in

5.9 GHz spectrum bandwidth for DSRC as standardized by IEEE 1609.4 protocol. The

traffic controller receives beacons transmitted from EVs, which contain information

like speed, position and route of an EV. Knowing the route before the activation of EVP

allows the controller to decide which approach must be allowed to provide EVs right of

way. Speed and position data allows determining exactly when to switch the current

traffic signal phase to green or by what time the current green phase should be extended.

The current speed of EV replicates dynamic traffic behaviour of that particular lane, and

for example, a congested lane needs the controller to reserve a longer green time than a

free lane.

A single intersection EVP approach is insufficient. Calculation of exact green

time required for an EV to pass through an intersection is very crucial as allowing

unnecessarily extended green time negatively affects the flow of general traffic waiting

to pass through the intersection. In order to ensure that such issues are minimized, we

calculate the exact time the traffic controller needs to reserve for the EV in real time so

that it can pass the intersection within this time using information like current speed

and position transmitted by the EV. Allowing a well-timed green signal for a particular

intersection still cannot guarantee that the EV can meet the contractual time to reach

a destination. So we have designed our system to work on an arterial road network
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where an EV has a source and a destination. The fastest route is initially assigned to an

EV. This route contains multiple intersections and a distance to cover. The contractual

target time can only be ascertained if the EV maintains the maximum allowed speed

throughout the journey. The main aim of the EV traffic control algorithm installed in

each traffic controller is to allow the EV to maintain this speed, as much as possible.

We take advantage of the information beacon transmitted by EVs to maximize this

possibility. Additionally, to replicate the real-world situations, we introduce multiple

EVs in an arterial network at the same time and study their routing.

Assigning a different level of criticality to EVs and implementing EVP accordingly

is less disruptive to normal traffic. When EVs are serving emergencies, they travel with

sirens and lights on. Current EVP systems provide a green signal to EVs when they

identify an EV’s presence through GPS, localized radio, acoustic or line of sight sensors.

Once the presence of EVs is confirmed, they get absolute priority throughout the route.

This is more disruptive to normal traffic, especially at intersections. In most cases, all

EVs are not serving to the same levels of emergency. So instead of providing absolute

priority at all intersections we can use a mixed model of EVP. In our experiment, we

have assigned three levels of criticality to EVs. Our algorithm now schedules EVs with

different levels of criticality and ascertains the times they reach the destination and if

this time can be within a set response time. In doing so, the algorithm identifies the

intersections it needs to preempt and leaves other intersection unaffected. This approach

massively reduces the effect of EVP on normal traffic.

Scheduling EVs with different levels of criticality is analogous to RTMCS. In RT-

MCS the calculation of Worst-Case Execution Time (WCET) depends on the criticality

of the task. For example, safety-critical tasks have lowest WCET than mission-critical

tasks, and a non-critical task has the highest WCET (Burns & Davis, 2013). This aligns

exactly with our case of multiple EVs with different levels of criticality. Standard

response times of 8, 12 and 16 minutes for high, medium and low critical cases of
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emergencies imply medium and low criticality cases are respectively assigned response

times that are 1.5 and 2 times higher than high criticality cases. We consider these

factors as assurance levels Li = {l1, l2, l3, .., ln} be a set of assurance levels, which is

defined for each EV . In this study, we define target travel time at any instant i as Tti

for an EV as follows.

Tti = (Di/Vmax) ∗Li (4.1)

Where Di is the distance between the current EV location and the target location and

Vmax is the speed limit of the particular lane. We also define current travel time for any

instant i as Tci and calculated as

Tci = (Di/VEV ) (4.2)

Where VEV is the current speed of EV. Also, the relative difference in time ∆T is

calculated as

∆T = Tci − Tti (4.3)

From equation. 4.3 if the ∆T ≤ 0 then the EV can reach its destination within its

target travel time without triggering EVP. When ∆T > 0, it implies the route of EV is

congested and EV cannot reach the destination within its target travel time and hence

we may need to trigger EVP immediately.

The overall working of the system is depicted in Fig. 4.2. Consider the situation

where we have three EVs, EV1, EV2 and EV3, serving at the same time with three

different levels of criticality. This algorithm can perform equally well for more than

three EVs and more than three levels of criticality. Initially, all the EVs are assigned

with routes. Whenever an EV approaches an intersection, it sends information about its

route (origin and destination), current position, criticality level and speed to the traffic
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controller. The traffic controller first checks if there is any other EV approaching the

same intersection. If there is more than one EV approaching the same intersection

controller checks the level of criticality of EV and processes the request of EV with

higher priority else it processes the current request. When multiple EVs approaching

the same intersection have the same level of criticality, EV with a higher value of ∆T

is prioritised. And in a case where two vehicles have the same level of criticality and

equal value of ∆T the priority is given to EV approaching from the right. It then

calculates the value of ∆T and determines the requirement of EVP. When pre-emption

is required, the controller calculates the reserve green time required for each EV to

pass the intersection from the position data. If the current state of the traffic light is

green, it extends current green time with reserve green time else it alters the current

phase and provides green phase to EV. The EVP algorithm is shown in Algorithm 3.

Parameters like EVi.position, EVi.speed, EVi.criticality, and EVi.destination can

be set as vehicle parameters in SUMO and are accessible during the simulation.

Figure 4.2: System Model with multiple intersections and EVs
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Algorithm 3 Emergency Vehicle pre-emption
Input: Emergency vehicles EVi(1,2, ...., n)
Output: Alter traffic signal
1: for each EVi do
2: find EVmin with minimum EVmin.criticality;
3: ∆T = calculate ∆T (EVmin) ;
4: if ( ∆T ≤ 0) then
5: Reserve time = calculateReservetime(EVmin);
6: action = alterTrafficLight(Reserve time);
7: else
8: No action;

4.3 Implementation

This section illustrates the implementation of the proposed EVP algorithm using SUMO,

OMNET++ and VEINS. SUMO is a widely-used and open-source realistic microscopic

traffic simulator. OMNET++ is a simulation library designed to implement different

network simulations. We use VEINS as a platform to couple SUMO and OMNET++ to

simulate vehicular communication using IEEE 802.11p. Full-Duplex communication is

established between SUMO and OMNET++ by VEINS using Transmission Control

Protocol (TCP), which helps in examining how VANET implementations affect road

networks (Arellano & Mahgoub, 2013).

Simulation parameters in SUMO can be altered using TRACI when the simulation

is live. SUMO gathers prior information from its different components and runs the

simulation continuously until it produces the result. The parameters of the simula-

tion cannot be altered during the course of the simulation. To access the simulation

parameters and alter its course, we use an extension tool developed in Python called

TRACI. Different applications can communicate and control SUMO during simulation

via client-server architecture using TRACI. All the communicating applications are set

as client and SUMO acts as a server. They use TCP sockets to communicate with each

other using TCP/IP protocol. Client applications send TCP packets to SUMO requesting

to alter or change parameters like altering traffic light logic, changing vehicle route,
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lane, destination etc. In response to the client’s request, SUMO alters these parameters

and replies back to the client application. TRACI also helps to establish communication

between traffic simulator SUMO and the network simulator OMNET++.

SUMO and OMNET++ run concurrently. Each vehicle in SUMO is treated as a

moving node in OMNET++. A mobile node gets created once a vehicle appears in the

road network and disappears when the vehicle reaches its destination. Every new node

created in OMNET++ has a unique MAC ID as a vehicle in SUMO has vehicle_ID.

We can use information transmitted over the network and make preemptive decisions

and implement it by changing the traffic light signal phases.

4.3.1 Simulation parameters

Realistic traffic parameters are utilized for simulation-based validation of the proposed

solution. We conduct our experiment over a section of Auckland city’s arterial road

network and calibrate the network with vehicular data. All intersections are initially

modelled with static Traffic Light Control (TLC) logic. Traffic saturation is set to 1800

pcu/hr for every lane. Vehicles arrive randomly following the Poisson distribution. To

achieve variable vehicular flows in a particular lane, we assign probability values for

arrival rates. The car-following model is set to Krauss and parameter sigma is set to

0.5. For EVs vehicle class (vClass) is set to "emergency". We use New Zealand-based

emergency codes purple, red and orange for assigning high, medium and low levels of

criticality to EVs, respectively. EVP algorithm checks the presence of EVs within 200m

range of the traffic intersection and refreshes all variables every 15 seconds. Once EVP

is activated TRACI controls the simulation and alters traffic light phases to provide

green waves for EVs as required.

The primary aim of our algorithm is to ascertain that EVs with different levels of

criticality reach their destinations within desired times. EVs are created randomly with
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randomly assigned criticality. We change the traffic volumes in the route of EV from

low (450 pcu/hr/ln), medium (850 pcu/hr/ln) and high (1800 pcu/hr/ln) and for each

setting, we perform simulations multiple times. In all cases, the EVs are generated

randomly, assigned with random routes and criticality. According to an annual report

published by St. John New Zealand, out of 546,000 emergency calls 63.6% cases were

highly critical, 23.2% cases were medium and the remaining 13.3% of the cases were

low critical (Annual report 2019, 2019). In our experiments as well, we have maintained

the same proportions of the levels of criticality. We have considered 1% of total vehicles

generated as EVs for a simulation time of 10,000 seconds and with longer duration of

simulation time a lesser percentage of EVs can be considered. We measure the number

of times EVs met the target travel time of 8, 12, and 20 minutes for purple, red and

orange level of criticality respectively in terms of the success rate of EVP. We also

measure the average waiting time of both non-EVs and EVs, queue length, and overall

throughput in a system implemented with our algorithm and compare it with systems

without pre-emption and absolute pre-emption (EV receives green phase once detected

near intersection until it leaves).

4.4 Performance Evaluation

Our EVP implementation shows promising results when compared to traditional systems

containing either no pre-emption or absolute pre-emption. As claimed in earlier sections,

the impact of pre-emption is huge in normal vehicles. The claim made by other pre-

emption technique that has been implemented in a single intersection cannot justify a

real-world situation where multiple EVs move from source to the destination covering

multiple intersections. The cost incurred by increased waiting times of normal vehicles

when pre-emption is calculated in terms of CO2 emissions and the corresponding

price of fuel used, which are high for the traditional settings and relatively lower in
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the proposed EVP implementation. Our experiments study five important metrics:

the percentage of EVs meeting their target travel time successfully, average waiting

times for both EVs and non-EVs, average queue lengths at intersections and overall

throughput of the network.

Fig. 4.3 shows the percentage of success EVs achieve with the proposed EVP al-

gorithm in low, medium and high traffic densities. Whenever an EV is lagging behind

to meet its target travel time, pre-emption is activated, which means that success per-

centage is expected to be 100%. However, after taking into account traffic uncertainties

as modelled in SUMO, the overall success percentage is lower, especially in peak

traffic. All simulations reported here ran for 36000 seconds, and in some cases, a

longer duration of simulation gives almost perfect results. Our result depicts that at

higher traffic densities few EVs struggle to meet target response time but still maintain

promising 96% success. Some EVs with a high level of criticality, miss target response

time, as their number is very high as compared to EVs with other criticality levels but

still maintain exuberant 95% success.

Figure 4.3: Success percentage of EVs meeting target travel time
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Pre-emption affects normal traffic by increasing their average waiting times. Abso-

lute pre-emption incurs a very high waiting time for non-EVs resulting in huge financial

losses. A system without pre-emption becomes an obstacle to EVs. We implemented

a practical approach where EVs are assigned with different level of criticality and

imposed different target travel times. The EVP algorithm ascertains that EVs meet these

target travel times. At different traffic penetration rates, the average waiting time of

non-Evs is reduced drastically, almost comparable to the system without pre-emption.

This ensures that the implementation of EVP algorithm can have huge perennial savings

in terms of fuel cost and CO2 emission. The results are depicted in Fig. 4.4.

Figure 4.4: Average waiting time of non-EVs

Since we used a mixed model in making decisions to activate pre-emption, EVs

routed using EVP algorithms experienced slightly increased waiting time as compared

to a system with absolute pre-emption but performed exceptionally well than the system

with no pre-emption as shown in Fig 4.5.
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Figure 4.5: Average waiting time of EVs

Queue length for an intersection measures the efficiency of any traffic control

algorithm. It is measured as the average number of vehicles waiting at an intersection.

The EVP algorithm’s impact on this metric is shown in Fig. 4.6. The experimental

results show that average queue length is reduced up to 36% using EVP algorithm

as compared to absolute pre-emption and still is comparable to the system with no

pre-emption.

Figure 4.6: Queue length comparisons
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The total traffic volume an intersection can flush through is measured in terms of

throughput. This well-known productivity indicator is used to compare EVP, absolute

pre-emption and no pre-emption in Fig. 4.7. The results illustrate that the throughput of

EVP implemented system is high and is comparable to the system without pre-emption.

The system with absolute pre-emption has the lowest throughput.

Figure 4.7: Throughput comparison

4.5 Conclusion and Future Work

In this study, we try to solve ever-existing two problems caused by the pre-emption

of emergency vehicles (EVs). First, though pre-emption techniques have been studied

extensively, emergency management service providers always struggle to meet target

response time. Second, a substantial cost of pre-emption that normal traffic has to

handle in terms of waiting. We postulated a novel emergency vehicle pre-emption

(EVP) algorithm implemented in Vehicular ad-hoc network that aid to solve these

issues. We introduced different levels of criticality for different levels of emergencies

and assigned a certain level of success assurance in terms of target travel time for

these criticality. Unlike other studies, instead of implementing EVP algorithm in a
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single intersection, we implemented it in an arterial traffic network. We ran exhaustive

simulations, and the results indicate that EVP algorithm can significantly reduce the

average waiting time of normal traffic but still assures all EVs meet their target response

time. In future, we aim to implement EVP algorithm in a larger city map with real-world

calibrated traffic data-set. Also, we intend to see the VANET parameters like message

delay range, beacon rate and throughput optimization.
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using VTL+EV (Manuscript 4)

Organizing Traffic using VTL+EV" implements a decentralized self coordinating traffic

system to prioritize emergency vehicle movement through an isolated traffic intersec-

tion. The Virtual traffic lights plus for emergency vehicles (VTL+EV) algorithm for

intersection control eliminates the loss generated from dead periods in a traffic light

cycle time and human-related factors like increased headway time and inconsistent

inter-vehicle spacing. We conducted comprehensive experiments and results showed

that VTL+EV has the evident advantage of reduced waiting time for regular traffic as

well as emergency vehicles. (EVs). The overall throughput of VTL+EV implemented

traffic intersection are higher and experiences fewer queue lengths. The manuscript 4 is

attached within this section.
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5.1 Introduction

Cooperative vehicle technology has helped advanced applications to evolve in recent

times. Advancements in wireless communication techniques that use dedicated short-

range communications (DSRC) for vehicular ad-hoc networks (VANET) have already

found application in the real-world. Multiple applications like electronic brake lights

(allowing drivers or autonomous vehicles react to obstructions by enforcing braking),

platooning (following a leader vehicle within inches utilizing real-time exchange of

acceleration and speeding information), emergency response services (allowing emer-

gency vehicles to respond on time) and add-on services (advertising for restaurants,

petrol stations, etc., to the driver) are already being used in the automotive industry

using the IEEE 802.11p communication protocol (Sommer & Dressler, 2014). These

applications eventually increase road safety and elevate overall traffic management.

Traffic management and road safety are the principal problems traffic engineers

and planners struggle to solve. According to the World Health Organization’s Global

status report in 2018, 2.34 million road users lost their lives in 2016. It also states that

road injury has emerged as the eighth major cause of death for people of all ages and
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the number 1 cause of death among children and adults aged between 5-29 years(Tran

et al., 2018). Studies show that more than 90% of road accidents are due to human

errors(Administration, 2008). Intersections are more prone to accidents because of lack

of surveillance (44.1%), the wrong assumption of others’ movement (8.4%), movement

in obstructed view (7.8%), not following the priority rules (6.8%), distractions within

the vehicle (5.7%) and misinterpretation of inter-vehicle gaps (5.5%) (Choi, 2010).

Existing technology and measures to reduce incidents at intersections seem insufficient.

In case of accidents and emergencies, the traffic control system must aid EVs to expedite

movement. In current practice, it is achieved by prioritizing EVs movement, which is

termed as Emergency Vehicle Preemption.

Contemporary preemption techniques are inefficient and infrastructure depend-

ent. Different preemption systems like Tramsmax, OPTICOM, GERTRUDE, and

FAST are currently being used in multiple cities of UK, USA, Australia, Canada and

Japan(Technologies, 2016). These solutions provide empirical evidence of reducing

the overall response time of EVs, but all of these solutions can be realized only with

the installation of additional devices. The presence of EV is detected from different

sensors like localized radio, line of sight or acoustic sensors and GPS installed within

vehicles or near the intersections. The traffic is usually controlled from centralized

traffic control centres using information sent by these sensors and priority is assigned

to EV by altering the traffic signals. Unlike the centralized approach, some systems

like EMTRAC (EMTRAC Signal-Priority System: Transit Signal Priority (TSP) and

Emergency Vehicle Preemption (EVP), n.d.) use traffic intersections to decide locally on

preemption. Decentralized systems can be operated without any centralized backbone

network connecting all the traffic intersections. However, this kind of system has two

obvious disadvantages:

• Individual intersections have higher operation, maintenance and installation costs.
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• No coordination among the intersections results in sub-optimal preemption.

Innovative state-of-art technologies like cooperative vehicular technologies and

autonomous driving can mitigate limitations of current preemption techniques elevating

efficiency and road safety. Implementations of VANET help in realizing infrastructure-

free self coordinating traffic control. An ad-hoc wireless network generated form

vehicular movement communicating with each other or infrastructure is termed as

VANET. Vehicles and infrastructure use IEEE 802.11p communication protocol to

communicate with each other using DSRC devices (F. Li & Wang, 2007). Vehicles

can use information beacons with speed, position and direction data transmitted within

VANET to coordinate their movement in a traffic intersection. Decisions regarding

stopping, acceleration, and turning are adopted by vehicles if they are autonomous or

informed to the drivers using inbuilt display devices installed within vehicles. Such

self-coordinating traffic control system does not rely on costly infrastructures like traffic

lights and any backbone network infrastructures and is termed as virtual Traffic Lights

(VTL). Contemporary VTL systems propose a traffic intersection control system that

improves the overall efficiency in terms of waiting time and throughput.

The VTL concept has been realized in real-world traffic conditions. The concept

of self-organized traffic control termed as VTL was first introduced in (M. Ferreira,

Fernandes, Conceição, Viriyasitavat & Tonguz, 2010) where a leader vehicle was elected

which acts as a temporary traffic controller and generates traffic light signals using the

information available via VANET and sends traffic light information to the drivers or

in-vehicle display units. An extension to provide priority to EVs once detected near

intersection using VTL was implemented in (Viriyasitavat & Tonguz, 2012). Through

simulation results they claimed that the travel time of EVs was reduced significantly

and impact over general traffic was marginal. A VTL system, software and apparatus

required for coordinating traffic approaching a conflicting zone was designed and



Chapter 5. Dynamic Prioritization of Emergency Vehicles For Self-Organizing
Traffic using VTL+EV (Manuscript 4) 123

patented. The system developed a dynamic traffic plan and sent to the in-vehicle display

unit, which controls the vehicle to follow the plan (M. C. P. Ferreira, Tonguz, Fernandes,

DaConceicao & Viriyasitavat, 2015). The system described in (M. C. P. Ferreira et

al., 2015) was implemented for the real-world trials in the street of Pittsburgh and was

proved that the developed system was capable of coordinating traffic at intersections

and reduce the commute time (R. Zhang et al., 2018).

VTL is gaining popularity among researchers and innovators. Shi et al. introduced

a concept where vehicle express their will of moving forward, and the leader provides

the way according to the score of will that depends on the dynamic traffic condition

of the intersection (Shi et al., 2015). Instead of using VANET, the conceptual model

of implementing VTL using mobile communication and cloud server was introduced

in (Münst et al., 2015). A distributed algorithm that uses both broadcast signals and

unicast messages for assigning priority to vehicles that struggle to resolve movement

conflicts while approaching an intersection were proposed in (Bazzi, Zanella, Masini

& Pasolini, 2014) and (Bazzi, Zanella & Masini, 2016). A VTL framework that can

work for both DSRC enabled modern vehicles and normal cyclist and pedestrians was

proposed in (Martins et al., 2019). The traffic control information to these users like

cyclist and pedestrian was transmitted to their smartphones using Bluetooth devices. In

addition, (Olaverri-Monreal, Gomes, Silvéria & Ferreira, 2012) developed a graphical

user interface that projects VTL sequences on the windscreen of the vehicle using head-

up displays and (Avin, Borokhovich, Haddad & Lotker, 2012) identified the optimal

area within the vehicle to place the VTL. Eventually, Sinha et al. identified two issues

for the adoption of the VTL in industry, mainly functional safety analysis and migration

from non-equipped vehicles to VTL. The solution for the first issue was proposed using

a model-driven engineering approach. The solution to the second problem was proposed

as implementing VTL+ that uses additional vehicle-to-infrastructure communication

from existing infrastructure (Sinha, Roop & Ranjitkar, 2013).
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Very less has been studied about prioritizing EVs using VTL. Most of current VTL

system elects a leader within an intersection that process the speed and distance inform-

ation available from multiple vehicles and sends the scheduling instructions to others.

In case of accidents, VTLs should aid on prioritizing EVs movement by instructing

other vehicles around the accident scene. So far to our knowledge, (Viriyasitavat &

Tonguz, 2012) is the only study that has implemented a self-organized traffic control

system that manages the priority of EVs. They implemented a conventional static traffic

control system with traffic lights to a VTL decentralized to a single leader vehicle

stopped at an intersection waiting for the green phase. They utilized the dead periods

(unwanted green signal to complete the phase time even if there are no vehicle from

that approach) to show a significant increase in traffic throughput. In their approach, an

EV approaching an intersection broadcasts priority request message, the leader replies

with acknowledgement message, halts regular signal operation and assigns priority by

granting green phase to EV. Once EV passes the intersection, it sends a clear message,

and regular traffic signal operation is resumed.

In this study, we propose a novel self organizing traffic control system. We consider

the vehicles can manoeuvre autonomous driving. Unlike current VTL (replication of

traditional traffic lights controlled by a lead vehicle at an intersection), the Virtual traffic

light plus for EV (VTL+EV) algorithm we propose completely eliminates the everlast-

ing traffic signalling concept of optimized cycle time and phase duration. Vehicles

approaching an intersection calculate the exact speed and duration to pass the inter-

section and adapt accordingly. Vehicles from any direction should not wait until they

get a green phase to pass. This eliminates unnecessary waiting at dead periods and

makes the entire system adaptive. Since vehicles are autonomous, they can maintain a

minimal distance when they follow other vehicles and the time allowed for a human

driver to respond to the change in traffic phase (headway time) can be neglected. The

closely following group of vehicles are divided into platoons and each platoon gets a
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reserved time to pass the intersection. Since there is no phase change, any platoon from

any direction can pass the intersection minimizing all the delays experienced in the

traditional traffic control system. The speed maintained by each platoon is dependent

on the platoon crossing the intersection. If there is any platoon of vehicles crossing

the intersection, the next platoon to cross maintains such a speed so that it does not

collide with the platoon crossing the intersection. This ascertains that the intersection is

thoroughly utilized and does not allow unnecessary waiting for vehicles when it is free

due to inappropriate phase cycles.

VTL+EV dynamically prioritizes EVs approaching an intersection. Whenever an

EV approaches the intersection, it transmits information beacon that contains its current

position, speed and ID (code to identify it as EV). This halts the current operation

of the traffic controller and calculates reserve time for EV to cross the intersection

from the current location and allows traffic from this direction only. Once EV crosses

the intersection, it resumes its regular operation. In this approach of prioritizing EVs

(self-organized traffic control) vehicles from any direction Zip while crossing the

intersection. This minimizes all the delays that exist in contemporary systems. The

effect of preemption on other vehicles is negligible.

The proposed system shows promising results. We considered well known four-

legged traffic intersection to perform multiple experiments using microscopic traffic

simulation engine called SUMO (Krajzewicz et al., 2002). We compared average

waiting time of EVs and normal vehicles in VTL+EV system with self-organized

Traffic control system called as VTL-PIC to manage the priority of EVs (Viriyasitavat

& Tonguz, 2012) and enhanced traffic light scheduling algorithm (ETLSA) that assigns

adaptive green phase to traffic according to the number of traffic flow (Younes &

Boukerche, 2018). We also compared the overall throughput and queue-length of

intersection implementing each of above-mentioned EV’s preemption system. VTL+EV

algorithm outperformed both VTL-PIC and ETLSA preemption systems. The average
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waiting time was considerably less, throughput was significantly high, and average

queue-length was minimal.

5.2 System Model

A four-legged intersection is the most commonly used model in traffic engineering for

studying the performance as it can be scaled to simpler or more complex intersections.

Whenever any vehicle (both autonomous and manual driven) approaches an intersection,

it examines the traffic phases. If the traffic phase is green, it crosses the intersection else

manoeuvres deceleration or stops altogether. In case of manual vehicles, the driver uses

senses to identify the traffic phases whereas autonomous vehicles combine signals from

multiple sensors like lidar, sonar, radar, odometer, GPS and inertial measurement units

to identify appropriate driving actions(Taeihagh & Lim, 2019). In our approach, we

consider that every intersection comprises of an Intersection Traffic Controller (ITC)

that communicates with incoming platoons of autonomous vehicles sending instructions

regarding stopping, acceleration and turning. The same system can be deployed for

manual vehicles enabled with DSRC devices. However, it will result in less efficiency

because of involved human factors like increased headway time and inconsistent platoon

size.

In this study, we assume that all the vehicles are equipped with DSRC communic-

ation devices to communicate position, speed, and vehicle type data collected from

inbuilt vehicle sensors like GPS. Every ITC has a defined range of area. A roadside

unit (RSU) collects traffic information and supplies it to the ITC. The communication

between vehicles and RSU is carried out in the 5.9GHz spectrum dedicated for DSRC

using IEEE 802.11p. These data are used by platooning algorithm and traffic control

algorithm to generate traffic instructions, which are transmitted back to vehicles to

adhere to. Fig. 5.1 reflects the basic system operation. Whenever an EV shows up
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Figure 5.1: Intersection Traffic Control System

within the range of the ITC, it notifies the RSU. The RSU distinguishes EVs from other

vehicles using its vehicle type parameter which is set to Emergency. Once detected,

the traffic control algorithm calculates the reserved time required for this particular EV

to cross the intersection. Updated speed, acceleration and stopping instructions are

sent to the EV and all other vehicles. Once the EV crosses the intersection, it sends an

acknowledgement message to the ITC to resume normal operation.

5.2.1 Platooning

Platooning increases road capacity by eliminating constant stop and go of individual

vehicles. Modern traffic management systems have leveraged a lot from inter-vehicle

communication technologies. The advent of autonomous vehicles is one of the prom-

ising examples to cite. Inter vehicle communication has become very reliable; that is

why autonomous vehicles can follow each other within a distance of inches forming

platoons. Autonomous vehicles abolish time loss due to human factors like slow reac-

tion time, diverse driving behaviour and possibilities of attention lapses. Platooning,

in addition, increases traffic efficiency (Fernandes & Nunes, 2012b). To leverage the
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Algorithm 4 Platooning Algorithm
Input: startingVehicles, active, color, currentSpeed, disbandReason, eligibleForMerging, lane, lanePosi-

tion, controlledLanes, and targetSpeed
Output: Platoons
1: for each ControlledLanes l do
2: addVehicle (vehicle);
3: mergePlatoon(Pi):
4: if (l.Pi.V ehPathsConverge(l.Pi.getAllV ehicles())

&& l.Pi.getLane() == l.Pi.getLane() ) then
5: l.Pi.disband();
6: l.Pi.disbandReason =Merged;
7: for vehicle in l.Pi.getAllV ehicles() do
8: l.Pi.addV ehicle(vehicle);
9: else

10: l.Pi.eligibleForMerging = False
11: setTargetSpeed(speed);
12: setGap(gap);
13: updateSpeed(speed, inclLeadingVeh=True);

advantages mentioned above, instead of implementing self coordinating traffic for

individual vehicles, we have divided vehicles approaching an intersection into platoons.

The algorithm to construct platoons is depicted in Algorithm. 4. The area within the

range of ITC is divided into different controlled lanes. Controlled lanes are gradually

added with vehicles one at each time step. The first vehicle, so added, converts into a

single sized platoon. If two platoons in a controlled lane are within a certain distance

and share the same route, they are eligible for merging. In that case, two existing

platoons are disbanded, and a new platoon of size two is created. This condition is

checked until the size of platoon increases to a maximum allowable size. Literature

suggests that platoon length of a maximum of 35 meters does not diminish overall

performance (Fernandes & Nunes, 2012b). Therefore, considering a single-vehicle size

of 3 meters, we have defined platoon size to 12 vehicles. Every platoon has a leader.

Other vehicles within the platoon follow leader’s behaviour within the set gap in terms

of speed and acceleration. Once a platoon gets outside the ITC zone, vehicles continue

being within the same platoon if they still satisfy the above-mentioned condition else

they disband themselves.
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5.2.2 Proposed VTL+EV Algorithm

ITC sets instructions regarding speed required for each platoon to adhere while crossing

an intersection using the VTL+EV algorithm. An area is defined for the intersection

controller. We add platoons from all lanes and calculate the reserved time required for

the platoon to cross the intersection. If this platoon is the first one to post the reservation,

we calculate distance from the stop line to the platoon’s current position and add it with

the platoon’s length which is done as shown in Fig. 5.2.

Figure 5.2: Calculation of reserved time

If this platoon contains EV we allow this platoon to pass else we process platoons in

ascending order of its distance from the stop line. The VTL+EV algorithm is illustrated

in Algorithm 5. Every platoon within the influence of VTL+EV algorithm is allocated

with the time calculated from reserved time to pass the intersection.

5.3 Implementation

We compare the performance of VTL+EV algorithm with self-organized Traffic control

system called as VTL-PIC and enhanced traffic light scheduling algorithm (ETLSA)

using well known microscopic traffic simulator SUMO. The key performance parameter

we compared was the average waiting time measured in seconds for both EVs and
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Algorithm 5 VTL+EV Algorithm
1: for this Controller c do
2: addPlatoon (Pi);
3: calculatePlatoonReservedTime (Pi);
4: removeUncontrolledPlatoons ( );
5: addAllControlledPlatoons ( );
6: setZipOrderForController (Pi ):
7: if ((c.Pi.getV ehicletype()) == Emergency) then process Pi;
8: else distSort(elem):
9: return elem.getLanePositionFromFront()

10: createZipPlatoons ( );
11: getlaneposition (Pi);
12: setNewSpeed (Pi, reservedtime);
13: removePlatoon (Pi);
14: update ( );

general traffic. The efficiency of the intersection controller was measured in terms of

throughput expressed in passenger car unit per lane per hour (pcu/ln/sec).

SUMO is an open-source continuous microscopic traffic simulator. SUMO gathers

information on aspects like networks, routes, trips, and additional sensor devices from

its components in advance and runs a simulation until completion. We cannot alter any

parameters when the simulation is on. We used an additional tool implemented using

Python called Traffic Control Interface (TRACI). TRACI gives access to the live road

traffic simulation, allows to capture the required values of simulation and changes their

behaviour while the simulation is live. TRACI and SUMO communicate during the

simulation using virtual ports (TCP sockets) following the TCP/IP protocol. SUMO

behaves as a server that provides services to the client TRACI whenever it sends any

service request. As in client-server, architecture SUMO can handle multiple TRACI

request at the same time. TRACI also helps to connect different network simulators like

NS-3 and OMNET++ with SUMO.

Inter-vehicle communication is essential for the implementation of VTL+EV. A

wireless network VANET created because of vehicle communicating with other vehicles

and infrastructure is the backbone of the VTL+EV algorithm. This can be realized using

an open-source framework Veins that connects OMNET++ and SUMO using TRACI.
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Using TRACI inbuilt functions, we can directly access traffic network information like

lanes, vehicle lane position, speed, acceleration, vehicle ID and vehicle type. We can

use this information to execute both platooning and VTL+EV algorithms. In this study,

we study if VTL+EV enhances the identified traffic parameters while assuming robust

and dependable VANET communications. Since we are not interested in the analysis of

wireless communication performance, we do not implement traffic simulation through

Veins (an open source framework based on SUMO and OMNET++ for implementation

of different models of inter-vehicle communication) and instead use TRACI to access

this information. Fig. 5.3 visualizes the simulation of VTL+EV algorithm using SUMO

and TRACI.

Figure 5.3: Implementation of VTL+EV algorithm in SUMO

We choose traffic parameters during our simulations to replicate real-world traffic

scenarios. During the entire course of simulation we first kept on increasing the traffic

volume from low (400 pcu/ln/hr), to medium (800 pcu/ln/hr), and then high (1600

pcu/ln/hr) and subsequently decreased it back to medium and then low. Vehicles

are generated randomly using inbuilt python command randomTrips.py and the

result follows Binomial distribution approximating to Poisson distribution for small
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probabilities as expressed in Fig. 5.4. We have considered 1% of total vehicles generated

as EVs.

Figure 5.4: Traffic volume in Poisson distribution

5.4 Performance Evaluation

VTL being a substitute for physical traffic lights has the advantage of being more eco-

nomical, but to compare its performance with a simplistic system would be implausible

as there are already more advanced adaptive traffic control systems. Therefore to justify

that the results produced by VTL+EV are promising we compare its performance with

the following state-of-art technologies implemented earlier:

• VTL-PIC: Basic VTL implementation with the use of DSRC technology to

detect the presence and absence of EVs at an intersection and assign priority to

EVs(Viriyasitavat & Tonguz, 2012).

• ETLSA: An adaptive traffic scheduling algorithm that dynamically adjusts green

phases of traffic signals based on real-time traffic distribution and allows EVs to

pass smoothly by coordinating traffic signals using VANET(Younes & Boukerche,

2018).
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We conduct multiple experiments with different traffic penetration rates to evaluate

below-listed performance parameters for a four-legged traffic intersection:

• Average Waiting Time of all Non-EVs.

• Average Waiting Time of all EVs.

• Average Queue length of intersection under study.

• Overall Throughput of intersection under study.

Fig. 5.5 dissipates the overall waiting time of non-EVs for VTL-PIC, ETLSA,

and VTL+EV algorithms. Since VTL-PIC is a virtual representation of a traditional

preemption system, such a system incurs a very high waiting time for non-EVs. ETLSA,

being the most recent adaptive traffic control system that prioritizes EVs, claimed to

outperform existing VANET enabled traffic control system. The increased waiting time

resulting from static preemption has been considerably reduced in ETLSA. However,

VTL+EV outperforms both of these algorithms in terms of waiting time as VTL+EV is

more adaptive and eliminates the loss that arises from multiple traffic phase change and

human-related factors. For low and medium traffic volumes, waiting time of VTL+EV

is almost zero as autonomous vehicles prefer maintaining the required speed to cross

the intersection than to stop. We also compared the average waiting time of EVs in

all of these systems. VTL-PIC still used the traditional approach of continuous cycle

time. The average waiting time for EVs in this system is highest because the controller

must complete the current traffic phase before changing it to green for providing EVs

uninterrupted passage. VTL+EV still outperforms both VTL-PIC and ETLSA in terms

of average waiting time for EVs, as illustrated in Fig. 5.6.

Queue lengths and throughput represent elementary performance parameter for

quantifying the capacity of any traffic controller. Queue length is measured as the

difference in the number of vehicles approaching and leaving an intersection. We
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Figure 5.5: Average waiting time of normal traffic

Figure 5.6: Average waiting time of EVs

compared the average queue length of VTL+EV with VTL-PIC and ETLSA. The

simulation results show that the queue length for VTL+EV under all traffic penetration

rates is considerably less than VTL-PIC and ETLSA as displayed in Fig. 5.7. Similarly,

throughput computes the traffic volume that an intersection can process within a specific

time. Our experimental results show that VTL+EV has the highest throughput compared

to the remaining two algorithms under comparison, as pictured in Fig. 5.8.
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Figure 5.7: Average queue length

Figure 5.8: Average throughput

5.5 Conclusion and Future Work

We implemented a decentralized self coordinating traffic system to prioritize emergency

vehicle movement through an isolated traffic intersection. The proposed Virtual traffic

lights plus for emergency vehicles (VTL+EV) algorithm for intersection control elimin-

ates the loss generated from dead periods in a traffic light cycle time and human-related

factors like increased headway time and inconsistent inter-vehicle spacing. We con-

ducted comprehensive experiments and results showed that VTL+EV has the evident

advantage of reduced waiting time for regular traffic as well as emergency vehicles
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(EVs). The overall throughput of VTL+EV implemented traffic intersection are higher

and experiences fewer queue lengths. In future, we aim to realize VTL+EV algorithm

by implementing it in larger calibrated city maps.
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This paper “"Travel Time Estimation with Decision-Tree-Based Ensemble Networks

and Enhanced Feature Extraction"” a novel solution for Origin-to-Destination (O2D)

travel time estimation utilizing, enhanced feature engineering and ranked sub-features.

Enabling decision-tree-based ensemble networks to learn from multiple pre-engineered

features enhances the extraction of non-redundant sub-features. These features mainly

relate to geographical topology, navigational bearing (directions), spatial patterns within

the traversed path/trajectory, travel distance and dynamic constraints such as speed-

limits and traffic conditions. All of the aforementioned sub-features are extracted from

only Origin-to-Destination (O2D) GPS co-ordinate information without the need for

intermediate GPS traces, making our network models pure-O2D requiring significantly

less computational resources to train.
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Deep neural network-based solutions using raw GPS trajectories perform sub-

optimally with an additional drawback of perceived incomprehension, often referred to

as a black-box. Decision-tree-based ensemble networks perform adequately but, suffer

from gradient clipping, necessitating the need for extreme boosting. Our proposed

solution employs gradient boosted decision-tree-based ensemble networks and 02D

GPS co-ordinates, hence named, Gradient Boosted, Origin-to-Destination (GB02D).

We rank and visualize individual features’ contributions in the entire learning process,

eliminating the perpetual issue of interpretation and visualization. Furthermore, our

proposed GB02D outperforms existing state-of-the-art deep neural network baseline

models. The manuscript 5 is attached within this section.
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6.1 Introduction

Precise estimation of vehicle travel time is crucial in route planning and navigation (Y. Li

et al., 2015), congestion detecting (Y.-y. Chen et al., 2016), ride sharing (Asghari et al.,

2016) and logistics (N. J. Yuan et al., 2012). Accurate estimation of travel time for user

queried paths is critical in providing superior services to cater for such services. Com-

pared to two traditional techniques (regression & statistical approaches and historical

averages & smoothing), machine learning approaches have shown outstanding perform-

ances (Hunter, Herring, Abbeel & Bayen, 2009). Undoubtedly, the problem has been

extensively explored in the last decade (Y. Li et al., 2018; D. Wang, Zhang, Cao, Li &

Zheng, 2018; Z. Wang, Fu & Ye, 2018). However, the accuracy of travel time estimation

using machine learning approaches still poses a challenge. Whenever users query for

such services, they only provide the origin and destination of the trip; and travel time

estimation can be carried out either by point-to-point (P2P) or origin-to-destination

(O2D) approaches.

P2P approaches (Hunter et al., 2009; Pan, Demiryurek & Shahabi, 2012; Rahmani,

Jenelius & Koutsopoulos, 2013; Y. Wang, Zheng & Xue, 2014; Tang et al., 2016) divide
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the entire route into multiple road segments, estimate the travel time of each segment

and finally add estimated travel time of each segment to provide an overall estimation.

Although P2P approaches can provide accurate travel time estimation of an individual

road segment, learning to estimate travel time in this approach incurs a very high

computational cost, which is highly undesirable in online prediction services (Y. Li et

al., 2018). Also, collecting data of intermediate points within a trajectory demands very

high technological, time and capital investment. This kind of approach cannot model

multiple traffic factors that directly affect travel time like traffic lights, intersections,

and driver preferences. Besides, if the overall route consists of many road segments,

the local error of each road segment adds together, resulting in unrealistic travel time

predictions (D. Wang et al., 2018). Researchers and industry practitioners have tried

to solve the underlying issues of P2P approach by implementing O2D travel time

estimation (Jindal, Chen, Nokleby & Ye, 2017; D. Wang et al., 2018; Y. Li et al.,

2018; H. Wang, Tang, Kuo, Kifer & Li, 2019; Xu, Zhang, Chao & Xing, 2019) using

capabilities of deep learning. This approach intends to provide accurate travel time

predictions without any details of the actual route. Deep learning approaches have the

potential of learning underlying features from data which are not apparent and can solve

complex dynamic problems (Yao et al., 2018). This feature of deep learning enables

O2D approach to capture complex spatio-temporal traffic conditions within an entire

trip indirectly like traffic lights, intersections, driver preferences and direction change.

The O2D approach using deep learning still have the following limitations:

• For longer paths, the statistical confidence of predicting the travel time is very

less as there are very few trajectories passing the entire route. In most of the

cases, no trajectories are passing the entire route (Y. Li et al., 2018; D. Wang et

al., 2018).

• Minimal input features like origin, destination and time of departure carry minimal
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information, making prediction difficult (Y. Li et al., 2018; H. Yuan, Li, Bao &

Feng, 2020).

• It is tough to learn features like similarity of the road network and total distance

covered just from available latitudes and longitudes (Y. Li et al., 2018; H. Yuan et

al., 2020).

• There is very less control over what NNs learn and identify which variables are

dominant in the learning process (T. Chen & Guestrin, 2016).

• Though most studies claim to use only O2D pair; detail exploration reveals that

they use intermediate GPS points for extracting features in their estimation which

is still computationally expensive.

A detailed literature survey provided in Section 3.2 suggests almost all existing studies

directly make use of limited input features for developing learning models neglecting

that multiple features can be learned using the map data from transportation road net-

work which are valuable for accurate travel time prediction in O2D approach. Thus, to

overcome the aforementioned limitations of input features in O2D travel time estima-

tion, recent state-of-art technologies have taken advantage of immense spatio-temporal

information embedded within map data underlying a road network (Y. Li et al., 2018;

H. Yuan et al., 2020). Deep learning’s beauty lies in its characteristic of learning fea-

tures from huge data where manual feature engineering is impossible. It has achieved

exceptional success over unstructured data like natural languages, videos and images,

but its performance over structured data is comparatively less effective (Q. Zhang, Yang,

Chen & Li, 2018). The main reason behind this is sparse feature selection characteristic

of deep learning as these approaches assume continuous features, i.e. transition between

possible values in a data-set is not abrupt, which rarely holds in case of structured data.

Additionally, all of these approaches employ feature engineering before employing deep
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learning (D. Wang et al., 2018; Y. Li et al., 2018; H. Wang et al., 2019). They still use

intermediate GPS trajectory traces to find the overall route to employ map embedding,

making it a pseudo O2D approach.

Recently, ensemble-based algorithms achieved overwhelming celebrity status from

machine learning practitioners in solving classification and prediction problems. Ensemble-

based algorithms’ application in diverse fields with superior accuracy has added more

values (Zhou, 2012). Winning of $1 Million rewards from Netflix competition using

an ensemble-based algorithm to predict user rating for movies with highest accur-

acy (Koren, 2009) lured machine learning experts adopt this approach to deep learning.

Among ensemble-based learning method in practice, gradient tree boosting (also known

as gradient boosted regression tree (GBRT) or gradient boosting machine (GBM)) is

the most popular technique implemented in many applications (Friedman, 2001).

This paper proposes a novel solution for O2D travel time estimation using gradient

boosted origin-to-destination (GBO2D) regression tree. GBRT based scalable machine

learning system for tree boosting called XGBoost(T. Chen & Guestrin, 2016) has

achieved unrealistic success in recent days. According to the Kaggle blog 2015, a

machine learning competition website, 17 out of 29 winning solutions used XGBoost to

train the model (Kaggle, 2015). Similarly, XGBoost was used by every top 10 winning

teams in KDD Cup 2016 (KDD Cup, 2015). We also employ ensemble-based gradient

boost regression tree method in O2D travel time estimation using sole origin and destin-

ation GPS trace making it pure O2D approach. We extract multiple valuable features

from raw GPS data before we train the model as the success of unsupervised machine

learning problems can be improved exceptionally when re-framed as a supervised

problem (LeCun, 2018). We utilize Open Source Routing Machine (OSRM) (Haklay

& Weber, 2008) to extract features like route, total distance travelled and total time

to cover this distance using the open street map for the underlying road network. The

proposed solution learns better from extracted meaningful features compared to raw
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GPS trajectory data. We employ Principle component analysis (PCA) (Abdi & Williams,

2010), an unsupervised learning model, to learn feature representation from large raw

GPS trace data and reduce its dimensions. We also extract spatial features dividing the

overall range of location into multiple clusters, identifying locations of importance like

airports and classifying trips originated or ended in such locations. We also extracted

temporal features like a week, days of the week and hourly distribution of trips. Un-

predictable daily events like accidents were also acknowledged to extract additional

features. Finally, after extracting multiple spatial and temporal features, we employ

extreme gradient boosting (XGboost) (T. Chen & Guestrin, 2016) machine learning

approach to estimate travel time which enhances the existing learning performances.

The major contributions of this paper can be summarised as follows:

• We propose a novel solution for pure O2D travel time estimation.

• We utilize the information from the road network to extract additional features to

overcome the limitation of information present in raw GPS trajectory data.

• We extract spatial features dividing the overall range of location into multiple

clusters, identifying locations of importance like airports and classifying trips

originated or ended in such locations which help the model learn the pattern of

trips improving prediction.

• We extract multiple temporal features like a week, days of the week and hourly

frequency of trips to ease model to learn the temporal pattern.

• We utilize unpredictable daily events like accidents in a different location to learn

the difference in speed profile around events’ location.

• We perform multiple experiments on two available real-world GPS trajectory

data sets collected by taxis in New York and DIDI ride-sharing app in Chengdu



Chapter 6. Travel Time Estimation with Decision-Tree-Based Ensemble Networks
and Enhanced Feature Extraction (Manuscript 5) 144

China. The experimental results show that our approach significantly improves

the existing state-of-the-art approach of O2D travel time estimation using deep

learning.

• We also rank and visualize the contribution of extracted features in learning to

estimate O2D travel time which is not possible in deep NNs.

The remaining of the paper is structured as follows. Section 6.2 discusses related

works in travel time estimation followed by a detailed model of gradient boost model.

Section 6.4 explains data used in this study and all extracted features from available

data with its visualizations. Section 6.5 analyzes the result of our model and compares

with other state-of-art methods. Lastly, the conclusion is outlined in 6.6.

6.2 Related Work

Travel time estimation problems can be broadly classified into two categories: P2P

and O2D approaches. P2P approaches require information of all the routes passing the

queried trajectory and their associated sub-trajectories. O2D approaches can estimate

travel time without the knowledge of actual route traversed. A P2P approach divides

the entire route into multiple road segments, estimates the travel time of each segment

separately and finally adds estimated travel time of each segment to provide an overall

estimation of the entire route. The travel time of each segment is calculated using loop

detectors (Tang et al., 2016) or from floating car data collected from GPS sensors (Hunter

et al., 2009; Pan et al., 2012; Rahmani et al., 2013; Y. Wang et al., 2014). This kind of

approach cannot model multiple traffic factors that directly affect travel time like traffic

lights, intersections, and right or left turn. These factors need to be considered separately.

In cases where multiple trajectories share the same sub-path, the estimated travel time

of an individual sub-path can be calculated based on the effect of all the trajectories that
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pass through this particular sub-path. This limitation of P2P approaches was improved

by concatenating the estimation of individual sub-path with other sub-paths that sum-up

to form entire trajectory which avoids the need of considering above mentioned complex

traffic factors like traffic lights, intersections, and right or left turn (Rahmani et al.,

2013). However, the number of trajectories passing the entire path becomes sparse for

the longer routes, which eventually decreases the statistical confidence of the accurate

prediction. Further, Wang et al. (Y. Wang et al., 2014), and Song et al. (Song, Sun,

Zheng & Zheng, 2014) used historical trajectories data to mine frequent trajectories

for a sub-path and implemented the optimal way of sub-path concatenations for sparse

trajectories. Although P2P approaches can provide accurate travel time estimation of

an individual road segment, they incur a very high computation cost, which is highly

undesirable in online prediction services (Y. Li et al., 2018). Also, in real practice, the

overall route consists of a large number of road segments, the local error of each road

segment add together, resulting in unrealistic travel time predictions (D. Wang et al.,

2018).

Recently, researchers and industry practitioners started working on O2D approaches

for travel time estimation to solve the underlying limitations of P2P approach. This

approach can estimate the travel time without any information of actual trajectory a

vehicle has traversed. With GPS sensors being readily available viz user’s mobile

devices or vehicles inbuilt GPS devices, large trip data were publicly available for

researchers. This availability of data lured researchers working on O2D approaches to

incline towards learning different patterns from the available data and predicting travel

time using Neural Networks (NNs) (H. Zhang, Wu, Sun & Zheng, 2018). Since deep

NNs can learn features on their own (unless implemented supervised learning), deliver

high-quality results, and eliminate data labelling requirements, travel time estimation

performed using deep NNs has produced most accurate results (D. Wang et al., 2018;

Y. Li et al., 2018; Xu et al., 2019).
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Siripanpornchana et al. proposed Deep Belief Network (DBM) that automatic-

ally learn generic traffic features in an unsupervised way using Restricted Boltzmann

Machines and predicted travel time (Siripanpornchana, Panichpapiboon & Chaovalit,

2016). Any GPS trajectory data contains both spatial and temporal information. More

accurate prediction of travel time can be made if the spatial-temporal nature of trajectory

data is acknowledged. Temporal property of travel data was incorporated by using

Recurrent Neural Networks (RNN) implemented through Long Short-Term Memory

(LSTM) networks for the first time in travel time predictions (Duan, Yisheng & Wang,

2016). DEEPTRAVEL, ST-NN and STDR made use of temporal labels of trajectory

data and predicted travel time using inherit feature extraction property of deep neural

networks (H. Zhang et al., 2018; Jindal et al., 2017; Xu et al., 2019). Based on us-

able feature extracted from a large set of trajectory data, authors in (Z. Wang et al.,

2018) formulated travel time estimation as a spatial-temporal regression problem and

deployed a wide deep recurrent network to predict the travel time accurately. Wang et al.

introduced DeepTTE to make more accurate travel time predictions. Apart from using

spatial-temporal attributes of GPS trajectory data, they also embedded additional factors

like starting time, day of the week, weather conditions and corresponding driver in the

learning process. The geo-based convolutional layer was implemented to transform

raw GPS samples into feature maps, and LSTM was implemented to learn temporal de-

pendencies obtained from the feature maps and embedding of external factors (D. Wang

et al., 2018). Instead of learning from single source trajectory data, authors in (Lin,

Wang, Xiao, Li & Bhowmick, 2019), incorporated hybrid trajectories data obtained

from different types of vehicles to generalize and improve the travel time estimation

process. Though the implementation of deep learning in O2D approach improved travel

time estimation considerably, just using raw GPS trajectories in the prediction process

still has limitations which are listed below:
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• Minimal input features like origin, destination and time of departure carry very

less information, making feature extraction and prediction difficult.

• It is tough to learn features like similarity of the road network and total distance

covered just from available latitudes and longitudes.

• For longer paths, the statistical confidence of predicting the travel time is very

less as there are very few trajectories passing the entire route. In most of the cases,

no trajectories are passing the entire route. Prediction from sparse trajectory data

is a real challenging problem.

As a recent advancement in O2D travel time estimation, some researchers used

additional spatio-temporal information embedded within map data underlying road

networks (Y. Li et al., 2018; Das et al., 2019; H. Yuan et al., 2020). This approach

outperformed existing approaches with limited input features for developing learning

models which neglected the possibility of learning multiple features from the map data

for road networks. Embedding map information proved valuable for accurate travel

time prediction in O2D approach. Li et al. proposed a multi-task representation learning

(MURAT) that utilizes underlying road networks structures in learning process (Y. Li

et al., 2018). DeepWalk (Perozzi, Al-Rfou & Skiena, 2014) was implemented to

improve the learning process to extract enhanced representational features using an

unsupervised graph embedding approach based on the underlying map and raw trip

data. A multi-task learning framework was proposed by (Y. Li et al., 2018) incorporated

spatial and temporal domain data. Representations of these corresponding domains

were implemented using individual grids.

Deep learning’s beauty lies in its characteristic of learning features by itself from

very large data where manual feature engineering is impossible. It has achieved excep-

tional success over unstructured data like natural languages, videos and images, but

its performance over structured data is comparatively less effective. The main reason
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behind this is sparse feature selection characteristic of deep learning as these approaches

assume continuous features, i.e. transition between possible values in a data-set is not

abrupt, which rarely holds in case of structured data. Rather, in case of these data:

• The majority of correlations among the labels is contributed from a small number

of features.

• The categorical features can overflow according to the data.

Fortunately, current ensemble-based algorithms can address the above-mentioned issues.

Recently, ensemble-based algorithms achieved overwhelming celebrity status among

machine learning practitioners for solving classification and prediction problems. Their

applications in diverse fields with superior accuracy has added more values (Zhou,

2012). Among ensemble-based learning methods in practice, gradient tree boosting

(also known as gradient boosted regression tree (GBRT) or gradient boosting machine

(GBM)) is the most popular technique implemented in many applications (Friedman,

2001). Unlike, other machine learning approaches that tend to find a single best-fitting

model, tree-based gradient boosting algorithms strategically combine small tree model

to optimize the prediction. Shallow trees within themselves are often considered as

weak predictive models. But, when boosted to form a strong committee and tuned

appropriately, they can outperform other learning algorithms. Boosting addresses the

bias-variance trade-off. Initially, it starts with a weak model (i.e. a tree with fewer

splits) and sequentially boosts a weak tree’s performance by generating new trees that

learn from an earlier tree’s error. Sharing insight from both machine learning and

statistics this model can achieve very strong and accurate prediction and also identify

interactions of relevant variables (Elith, Leathwick & Hastie, 2008). Properties like

handling different type of feature variables, the requirement of little data prepossessing,

and ability to fit complex nonlinear problem make GBRT a superior candidate to be

used in O2D travel time estimation than deep neural networks (Y. Zhang & Haghani,
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2015).

Though GBRT has obvious features to be used in O2D travel time estimation, there

are minimal studies that have used the ensemble-based gradient boost regression tree

in travel time estimation. Zhang and Haghani implemented GBRT to predict travel

time on a freeway using historical travel time data. The study was limited to a small

section of the city with limited data-set. The same model was used to visualize the

importance of different variables in predicting travel time in freeways (Cheng, Li &

Chen, 2018). Similarly, GBRT was used to predict the incident clearance time and

rank the influential factors that contribute to incident clearance time (X. Ma, Ding,

Luan, Wang & Wang, 2017). Nevertheless, the possibility of implementing GBRT in

O2D travel time estimation for the entire city with a large number of trajectory data (

millions) was never explored.

In this paper, we introduce GBO2D, a novel approach of using ensemble-based

GBRT method in O2D travel time estimation that learns from multiple pre-engineered

features related to topology, directions, the shape of the trajectory, path, speed limits,

map distance traversed, real-time traffic conditions and compare it with existing deep

neural network-based learning process using raw GPS trajectories. We propose to

employ a better and simplified technique to predict travel time, generating superior

results than employing deep NNs. We do not consider intermediate GPS trace making

our model pure O2D travel time model and less computationally expensive. We rank

and visualize individual features’ contributions in the entire learning process, which

eliminates the perpetual issue of interpretation and visualization in deep learning and

perceiving it as a black box.
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6.3 Methodology

6.3.1 Gradient Boosting

Gradient Boosting Machines (GBMs) are currently highly acknowledged machine

learning algorithms that work in the principle of building ensembles. GBMs construct

ensembles of shallow trees in a sequence where new trees are constructed by learning

and improving from earlier trees. Shallow trees within themselves are often considered

as weak predictive models. But, when boosted to form a strong committee and tuned

appropriately, they can outperform other learning algorithms. Boosting addresses the

bias-variance trade-off. Initially, boosting starts with a weak model (i.e. a tree with

fewer splits) and sequentially boosts weak trees’ performance by generating new trees

that learn from the error of earlier tree as shown in Figure. 6.1. Each new model

generated in sequence slightly improves the earlier model’s performance by focusing

on rows of training data where the previous model had the largest errors.

Figure 6.1: Sequential boosting approach

6.3.2 Learning with regularization

In this study we use scalable tree boosting system called XGBoost which is developed

over the principle of optimized gradient boost tree (T. Chen & Guestrin, 2016) to predict

the O2D travel time. It follows the same principle over the gradient boosting postulated

by Friedman et al. (Friedman, 2001) with minor modifications for improving regularised
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objective function. For a given data set D with n samples (usually number of rows) and

m features (usually number of columns) D = {(Xi, yi)} (∣D∣ = n, Xi ∈ IRm, yi ∈ IR), a

tree ensemble model predicts the output by using K additive functions and is given by:

ŷi =
K

∑
k=1
fk (Xi), fk ∈ F (6.1)

Where F = {f(x) = ωq(x)}(q ∶ IRm
→ T,ω ∈ IRT) represents the space of regression

tree, q represents the structure of each tree with corresponding leaf index and T is the

number of leaves in the respective tree. The function fk represents an independent tree

structure q with leaf weights ω. Regression tree model assigns continuous score for

each leaf and ωi represents the score of ith leaf. Further, using the decision rules to

classify leaves in the tree defined by q, we calculate the final prediction by summing

up the score of corresponding leaves represented by ω. For making the prediction we

learn from the set of functions used in the model by minimizing the following objective

function:

Obj(φ) =
n

∑
i=1
l (yi , ŷi) +

K

∑
k=1

Ω (fk) (6.2)

This is a regularized model and measures the complexity of the tree. Mathematically,

it means that our objective function has two components: training loss, which measures

how well the model fits training data and regularization component, which measures

the complexity of trees. The Loss Function used here is a squared loss, and it is the

sum of the squared difference between the predicted value and the actual value which is

given as:

L(Θ) =∑
i

l (ŷi , yi)
2

The objective function will optimize the trade-off between the training loss and the

regularization loss. When we optimize the training loss, it encourages the predictive
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models for higher accuracy on training data. However, if we optimize the regularization

function, it creates a generalized simpler model for better prediction accuracy. The

regularization component in equation 6.2 defines the complexity of the tree and is

given as:

Ω(f) = γ T +
1

2
λ

T

∑
j=1
ω2
j

Where γ T represents the number of leaves and 1
2 λ∑

T
j=1 ω2

j represents the L2 norm

of leaf scores respectively. Other parameters λ and γ in the above equation are hyper-

parameters.

6.3.3 Gradient Tree Boosting

Tree ensemble model represented by equation 6.2 uses functions as parameters so cannot

be optimized using traditional method of optimization in Euclidean space. Therefore,

in gradient tree boosting, the training loss is represented as additive model as we are

in the boosting space where trees are sequentially added with each other to finally

aggregate an ensemble model. Using the same principle we can see that the prediction

function ŷi from equation 6.2 can be written as follows:

ŷ
(t)
i =

t

∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi)

Where final model ŷ(t)i is composed of previous model ŷ(t−1)i and a new learning

model ft(xi). Rewriting our objective function in 6.2 using above terms as an additive

model yields:

Obj(t) =
n

∑
i=1
l ( yi , ŷ

(t−1)
i + ft(xi)) +Ω (ft) (6.3)

Applying Taylor second-order approximation for differentiable function expressed in
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equation 6.3 we get:

Obj(t) ≃
n

∑
i=1

[l ( yi , ŷ
(t−1)
i ) + gi ft(xi) +

1

2
hi f

2
t (xi)]

+Ω (ft)

(6.4)

Where gi and hi are first and second order differentiation which represents gradient

statistics over loss function respectively, and given as:

gi = δŷ(t−1) l(yi, ŷ
(t−1))

hi = δ
2
ŷ(t−1) l(yi, ŷ

(t−1))

Removing the constant terms from equation 6.4 and replacing the values of gi and hi

we deduce,

Obj∼(t) =
n

∑
i=1

[gi ft(xi) +
1

2
hi f

2
t (xi)] + Ω (ft) (6.5)

Let us define Ij = {i∣q(xi) = j} as instance set of leaf j and substitute the value of

Ω(ft) in equation 6.5 we can simplify to:

Obj∼(t) =
T

∑
j=1

[Gj ωj +
1

2
(Hj + λ)ω

2
j ] + γ T (6.6)

where

Gj =∑
i∈Ij

gi and Hj =∑
i∈Ij

hi

Eventually, g and h represent the values of each leaf in the trees and G and H represent

entire tree structure for the above objective function. The above objective function is

the sum of T quadratic functions. Now for each quadratic functions:

Gjωj +
1

2
(Hj + λ)ω

2
j
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we can now be able to derive an optimal weight

ω∗j = −
Gj

Hj + λ

Substituting the value of optimal ω∗j in original objective function expressed in equation

6.6, we get a new minimal objective function which is the most simplified form of

quadratic approximation of the original objective function :

minObj = −
1

2

T

∑
j=1

G2
j

Hj + λ
+ γT (6.7)

Above equation 6.7 is used as scoring function in XGBoost to measure the quality of

tree structure q. This score is similar to impurity score in other decision tree except that

it can serve for the wider range of objective function.

6.3.4 Ranking of Candidate Split points

Finding the candidate split points is one of the major step in approximate algorithm. To

ascertain that candidates distribute evenly on the data, as a general rule, percentile of

the features are used. Rank function of training data can be defined as:

rk(β) =
1

∑(x,h)∈Dk
h

∑
(x,h)∈Dk,x<β

h (6.8)

where, rk ∶ IR→ [0,+∞) represents the instances with feature value k smaller than β.

Dk is a set consisting kth feature values and second order gradient statistics of each train-

ing instances and is represented as: DK = {(x1k, h1), (x2k, h2), (x3k, h3), ......, (xnk, hn)}.

The aim of above equation 6.8 is to find candidate splits points {spk1, spk2, spk3, ..., spkl}

which satisfies:

∣rk(spk,j) − rk(spk,j+1)∣ < ε (6.9)
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where spk1 =minXik, spkl =maxXik and ε is approximation factor which intuitively

represent that there are approximately 1
ε candidate split points. In this calculation each

data point is weighted by hi. To prove this, let us rearrange the 6.5 as follows:

n

∑
i=1

1

2
hi(ft(Xi) −

gi
hi

)2 +Ω(ft) +C (6.10)

which exactly represents weighted squared loss with labels gi/hi and weights hi. In a

large data set it is very significant to find the candidate split that satisfies above criteria.

An existing algorithm called quantile sketch (Greenwald & Khanna, 2001) can solve the

problem of finding the candidate split only if every instance of training data has equal

weights. For data set with different weights distributed weighted quantile algorithm is

implemented in XGBoost. This algorithm proposes a data structure that can support

merge and prune operations and each operation ascertains a certain level of accuracy.

6.4 Data Description and Feature Extraction

6.4.1 Data Description

In this study, we use the following data sets:

• Yellow and green taxi trip data available via the NYC Taxi and Limousine Com-

mission (TLC) website which was collected by different technology providers

authorized under the Taxicab and Livery Passenger Enhancement Programs

(TPEP/LPEP) from January 1 to July 30, 2016 (Kaggle, 2015).

• Taxi trajectory data collected by DIDI ride sharing company for Chengdu and

Xi’an city of China from january 1 to November 30, 2016 (Chuxing, 2019).

The trajectory data consists of GPS traces of pick-up and drop-off location recorded

in terms of longitude and latitude. It also consist of timestamp when these GPS traces



Chapter 6. Travel Time Estimation with Decision-Tree-Based Ensemble Networks
and Enhanced Feature Extraction (Manuscript 5) 156

were recorded and the total duration of the trip. We have around 2.1M trajectory data

for New York and 7.07M for Chengdu. The data is split into training, validation and

test data sets. Both the data-set were in different formats and had multiple columns that

were not useful in our study. We converted both the data-set into similar format and

used seven training data columns and six test columns. A sample data set used in this

study is depicted in Table 6.1. We check for any missing values in the data and if there

is any missing value , the entire row entries is removed.

Table 6.1: Processed data-set used in experiment

New York Data-set

id pickup datetime pickup longitude pickup latitude dropoff longitude dropoff latitude trip duration

id2875421 2016-03-14 17:24:55 -73.982155 40.767937 -73.964630 40.765602 455

id2377934 2016-06-12 00:43:35 -73.980415 40.738564 -73.999481 40.731152 663

Chengdu Data-set

eb9dd4095 2016-11-01 01:46:37 104.094640 30.703971 104.089270 30.650850 1710

387a742fa5a3 2016-11-01 07:33:05 104.076509 30.767430 104.063700 30.589510 2090

We make sure that the training and test data are aligned together to prevent model

performance mismatch, model over-fitting and under-represent data samples. The

alignment of test and train data is depicted in Figure. 6.2 and Figure. 6.3.

Figure 6.2: Training and test data alignment in pick-up date and time
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Figure 6.3: Training and test data alignment in GPS locations

6.4.2 Data processing and Feature Extraction

Training data set T can be represented as matrix T = [Ar c]. Each row in T represents

a single observation of the data, and all columns that a row comprised of represent

features to describe that observation. We can directly feed raw data to the training

model, but learning from these features will be very difficult, resulting in poor prediction

accuracy. To increase the learning algorithm’s predictive power, engineered features

that capture additional information that is not easily visible are extracted using feature

extraction techniques. Feature extraction reduces complexity by simply representing

each variable in feature space as a linear combination of original input variable (Khalid,

Khalil & Nasreen, 2014). In this study, we have extracted multiple features from the

raw trajectory data using well-established feature engineering techniques to improve

O2D travel time estimation accuracy. Techniques that are implemented in this study are

explained below.

Open Source Routing Machine Route Features

Open Source Routing Machine (OSRM) is a high-performance routine machine that

usages the open street map network data to provide services like finding the fastest route
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between provided coordinates, compute the duration for the fastest route, snapping

given GPS points on the road network and finding the optimized path using greedy

heuristic (Luxen & Vetter, 2011). Existing studies (D. Wang et al., 2018; H. Yuan et al.,

2020; Y. Li et al., 2018) used multiple GPS traces in between the origin and destination

points to calculate the actual trip, distance and time which is computationally expensive,

we only provided the origin and destination GPS points to the OSRM to find the total

distance and total travel time. It also returned total steps which consist of manoeuvres

such as turning or merging. The total travel time and distance calculated by OSRM

represents the road network distance and time. We created an additional feature by

calculating the difference between total trip duration and travel time calculated from

OSRM. This difference between real and OSRM calculated travel time results from

different dynamic traffic parameters like traffic lights, intersections, driving preferences,

weather conditions and congestion. Acknowledgement of this feature in the learning

can represent above-listed parameters that directly affect overall travel time.

Logarithm Transformation

Log transformation is the most widely used mathematical transformations in feature

extraction. Log transformation handles skewed data and approximates it to more normal

by normalizing the magnitude difference. It helps the model to be more robust by

decreasing the effect of outliers. We conducted log transformation on total trip duration

to extract log duration as a new feature.

Outlier detection and removal

We conducted a manual as well as statistical (employing standard deviation) to identify

the outliers. Trip durations too long (greater than 6600 seconds) and too short (less

than 60 seconds) were removed to make data more evenly distributed. The distribution

of training data after outlier detection and removal operation can be visualized in
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Figure. 6.4.

Figure 6.4: Visualization of training data in terms of log duration

Principal Component Analysis Transformation

In a feature space data usually lie near low dimensional manifold or subspace. Principal

Component Analysis (PCA) is a dimensionality reduction technique that identifies

pattern and correlation among multiple features by identifying the principal component.

The lower dimension transformed feature still preserves most of the valuable information

that multiple features before transformation had. It is the primarily non-parametric

statistical technique and employs unsupervised learning to reduce dimensions of data.

PCA rotates the axes so that maximum variability present in data can be visualized easily.

PCA constructs axes for the principal component to represent the data and then rank

each principal component for the amount of variance captured by each component (Abdi

& Williams, 2010). We used PCA transformation to latitude and longitude coordinates

for both pick-up and drop-off locations. The low dimension PCA transformed location

coordinates still preserved the spatial information present in the original data and is

illustrated in Figure. 6.5.
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Figure 6.5: Pick-up latitude and longitude with PCA transformed coordinates

Distance features

The easiest information that can be mined from spatial geo-locations coordinates is

distance between two GPS points. We calculated Haversine distance to calculates

the great circle distance between two latitude and longitude coordinates which is

mathematically given as:

2 r arcsin(

√

sin2( lat2−lat12 ) + cos(lat1) cos(lat2) sin2(
long2−long1

2 ))

Where lat and long represent latitude and longitude in radians, respectively, r is the

average earth radius in KM, and other mathematical expressions have usual meanings.

Assuming taxi cannot move freely in Euclidean plane, we implemented taxicab

geometry to calculate Manhattan distance between pick-up and drop-off locations.

Manhattan distance between pick-up and drop-off location is the sum of absolute

difference of their Cartesian coordinates. We also conducted PCA transformation on

calculated Manhattan distance for pick-up and drop-off coordinates.

The direction between pick-up and drop-off location carries significant information

for training model. Whenever we follow a great circle path, initial heading and the final

heading changes and is dependent on the distance and latitude. In navigation, we use

bearing (also referred to as forward azimuth) to calculate the direction between two
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GPS coordinates. We have calculated bearing angle θ using the following mathematical

formula:

θ = atan2(x, y)

where x = sin(long2 − long1) ∗ cos(lat2) and

y = cos(lat1)sin(lat2) − sin(lat1)cos(lat2)cos(long2 − long1))

Temporal feature extraction

Extraction of temporal features from the pickup date-time data enhances the learning.

Travel time between two locations does not only depend on the distance but also a lot

of other factors. Time-dependent vehicle routing problem has been widely studied. The

travel time depends on the time of the day, day of the week and the particular week

of the year. We extracted multiple temporal features to aid model learning. From the

Haversine and Manhattan distance, we try to profile the average speed of each trip

with respect to the temporal features. The rush-hour average speed is depicted in the

Figure. 6.6.

Figure 6.6: Average speed profile in m/s

Similarly to link the speed profile with the spatial data we divided the entire city into
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different regions by binning the latitude and longitude values. We use scatter plot for

diverging map to plot the speed profile for each region which is shown in the Figure. 6.7.

Figure 6.7: Average speed profile in m/s for locations clusters

Pick-up and drop-off clustering

We used k-means clustering method to divide pick-up and drop-off locations into

clusters. We rank different clusters according to the number of trips originated and

terminated from one cluster to the other. Clusters with larger numbers of trips get a

darker color. For each cluster, we calculate the frequency of trips within one hour.

Additionally, we also identified that there are two international airports for New York

data-set within our GPS coordinate range: John F. Kennedy International airport and

LaGuardia airport. For Chengdu data-set there is Chengdu Shuangliu International

Airport. We extracted pick-up and drop-off coordinates that originated or were a

destination to these locations as features. The overall visualization of New York and

Chengdu clusters is pictured in Figure. 6.8. We also used daily accident data within our

GPS range to profile the cluster’s average speed where accidents have occurred.
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Figure 6.8: Average speed profile in m/s for locations clusters

6.5 Experiments and Results

6.5.1 Evaluation Metrics

In this study, for the evaluation of O2D travel time estimation of our model, we employ

three widely used matrices: Mean Absolute Error (MAE), Mean Absolute Percentage

Error (MAPE) and Root Mean Square Log Error (RMSLE). RMSLE is the default

evaluation metric in XGBoost for linear regression. MAE and MAPE were additionally

computed to compare the performance of our model with existing baseline models. As

mentioned earlier in Section. 6.3, let model predicted value is y′i for the actual value of

yi (which is the ground truth) then:

MAE(y′i, yi) =
1

N

N

∑
i=1

∣y′i − yi∣

MAPE(y′i, yi) =
1

N

N

∑
i=1

∣
y′i − yi
yi

∣

RMSLE(y′i, yi) =

¿
Á
ÁÀ 1

N

N

∑
i=1

(log(y′i + 1) − log(yi + 1))2
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6.5.2 Settings of regularization parameters

We used 60% of the data for training, 20% for validation, and the remaining 20%

for the testing, which helped overcome the model over-fitting. XGBoost model was

implemented using Python, and its performance was tested using different combinations

of regularization parameters. Following regularization parameters were used while

developing the model:

• eta : Defines the learning rate of the model, eta helps in shrinking the feature

weights to prevent overfitting and makes the system more conservative. Range:

[0, 1]; default value: 0.3; values implemented in the model [0.01, 0.02, 0.05, 0.1].

• min_child_weight (MCW ) : Minimum sum of instance weight required for

tree to continue partition. Further partitioning stops when tree partition results

in leaf node with sum of instance less than min_child_weight. Range: [0,∞];

default value: 1; values implemented in the model [3, 5, 6, 10, 20].

• max_depth (MD): Defines the depth of the tree. Higher value results in complex

model and may result in overfitting. Range: [0,∞]; default value: 6; values

implemented in the model [6, 8, 10, 12, 15].

• sub_sample (SS): Defines sub-sample ratio of particular training instance.

Range: (0, 1]; default value: 1; values implemented in the model [0.5, 0.6,

0.7, 0.8, 0.9].

• colsample_by∗ (CS): Consist of multiple parameters to sub-sample columns

which include colsample_bytree, colsample_bylevel and colsample_bynode.

All parameters have range: [0, 1]; default value: 1; values implemented in the

model [0.3, 0.4, 0.5], and

• lambda (λ): Which is L2 regularization terms on weights, setting this value
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greater than 0 results in an elastic regularization. Range: [0,∞]; default value: 1;

values implemented in the model [0.5, 1.0, 1.5, 2.0, 3.0]

6.5.3 Performance of GBO2D model

We train our model using different combinations of above regularization parameters.

Initially, we start training the model with one set of parameters. We set early stopping

point at 50 rounds if the system’s performance improves we continue with these para-

meters else we stop and choose different combinations. The snapshot of RMSLE values

for different regularization parameters are pictured in Fig. 6.9. Finally, We extracted the

best score for MAE, MAPE, and RMSLE from all the combinations which are tabulated

in Table. 6.2.

Figure 6.9: RMSLE with different regularization parameters

Table 6.2: Performance of GBO2D

Evaluation Metric
Data-set

New York Chengdu

RMSLE 0.3042 0.1818

MAE 126.36 91.2628

MAPE 25.455 18.252
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6.5.4 Ranking of features in GBO2D learning

We implemented different feature extraction techniques over both New York and

Chengdu data sets and were able to extract 76 and 72 features. To explore the in-

fluence of different extracted features in GBO2D travel time estimation process, relative

contributions of extracted features were calculated and extracted. From Table. 6.3 we

can visualize the top 15 features that contribute to O2D travel time estimation. For

New York data-set, the trip’s direction contributes most in the prediction of O2D travel

time estimation. Similarly, JFK_drop , pickup_dt, total_travel_time and total_distance

are the respective top five contributors. Whereas, pickup_minute, pickup_latitude,

pickup_longitude, pickup_pca0 and distance_manhattan are top five contributors re-

spectively.
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Table 6.3: Top Extracted Features with their corresponding ranks

Rank Features New York data-set Features Chengdu data-set

1 direction pickup_minute

2 JFK_drop pickup_latitude

3 pickup_dt pickup_longitude

4 total_travel_time pickup_pca0

5 total_distance distance_manhattan

6 pickup_longitude center_latitude

7 JFK_pick center_longitude

8 distance-haversine dropoff_longitude

9 dropoff_latitude distance_haversine

10 dropoff_longitude pca_manhattan

11 distance_manhattan direction

12 pca_manhattan pickup_pca1

13 LGA_pick pickup_dt

14 pick_latitude CSIA_drop

15 LGA_drop dropoff_latitude

6.5.5 Comparison with baseline methods

We compare the GBO2D model with two of the most recent baseline methods for

estimating O2D travel time implemented using deep NNs. They claim to outperform all

the existing models to date:

• MUlti-task Representational Learning (MURAT): Extract representational fea-

tures using unsupervised graph embedding approach based on underlying map

data. Incorporated spatial and temporal embeddings using grids and used deep
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NNs to predict O2D travel time (Y. Li et al., 2018)

• DeepOD: Moreover like MURAT, matches OD pair with respective trajectories

in road network embeddings. Uses timestamp associated with the trajectories for

time slots embeddings. Encodes the spatial and temporal features of trajectory and

external features and finally combine using deep NNs to estimate O2D travel time

estimation. Claims to outperform most of the existing baseline methods (H. Yuan

et al., 2020).

Environment Settings: Since both MURAT and DeepOD models are implemented

using deep NNs we follow the instructions mentioned in their respective documentation

to replicate the experiments and use MAE and MAPE as evaluation metrics. Both

MURAT and DeepOD use intermediate GPS trace in their experiment, whereas we

have not used any intermediate GPS trace to estimate that travel time estimation is

pure O2D. Therefore, we replicate MURAT and DeepOD first using intermediate GPS

trace exactly as in their experiments and next by only using origin and destination GPS

trace. The experiments were implemented with TensorFlow 2.3.0 and Python 3.7.3.

and trained with two Nvidia TITAN RTX GPU. The XGBoost model was implemented

with Python 3.7.3, pandas 0.24.2, XGBoost 1.21 using Jupyter notebook under similar

settings. All the platform ran on windows OS. The performance of GBO2D compared

to existing baseline models is tabulated in Table. 6.4 below.
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Table 6.4: Performance Comparison of GBO2D

Dataset New York / Chengdu

Metrics MAE MAPE

MURAT (Original) 144.12 / 131.74 27.451 / 29.26

DeepOD (Original) 128.26 / 97.61 26.78 / 20.83

MURAT (Only OD GPS trace) 207.67 / 153.25 35.82 / 33.26

DeepOD (Only OD GPS trace) 137.26 / 118.38 29.412 / 21.18

GBO2D 126.36 / 91.2628 18.33 / 18.252

From the table above we can summarize:

• GBO2D achieves best performance for both data-sets in terms of MAE and

MAPE as shown in Table. 6.4.

• Performance of MURAT and DeepOD is worse when we consider origin and

destination GPS trace only. This is because deep NNs cannot learn valuable

information only from the raw GPS data.

• Similarly, the performance of both MURAT and DeepOD improves considerably

with the increase in the size of data-set (a basic feature of deep NN).

• GBO2D uses ensemble-based gradient boosted regression tree and can outperform

deep NNs when valuable features are manually extracted from the provided raw

structured data-sets. Domain knowledge is fundamental in such cases.

• Since in GBO2D, we can visualize each feature’s contribution to travel time es-

timation. The performance can always be improved by replacing less contributing

features with other features having significant contributions.
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6.6 Conclusion and Future work

In this paper, we proposed a novel solution for Origin-to-destination (O2D) travel time

estimation named GBO2D using gradient boost regression that learns from multiple

pre-engineered features related to topology, directions, the shape of the trajectory, path,

speed limits, map distance traversed, real-time traffic conditions and compare it with

existing deep neural network-based learning process using raw GPS trajectories. We

employed a better and simplified technique to predict travel time, generating superior

results than deep neural networks. We did not consider intermediate GPS trace making

our model pure O2D travel time model and less computationally expensive. We ranked

and visualized individual features’ contributions in the entire learning process which

eliminated the perpetual issue of interpretation and visualization in deep learning and

perceiving it as a black box. We concluded that for wisely extracted manual features,

ensemble-based gradient boost regression approach could outperform existing state-of-

art baseline models that employ deep neural networks.

In future, we would like to compare the performance of GBO2D with huge data-set

(larger than 50 million). We would also like to explore the opportunities of implement-

ing GBO2D with limited feature engineering but still maintaining similar prediction

accuracy.



Chapter 7

Routing Autonomous Emergency

Vehicles in Smart Cities Using

Real-Time Systems Analogy: A

Conceptual Model (Manuscript 6)

This paper "Routing Autonomous Emergency Vehicles in Smart Cities Using Real-Time

Systems Analogy: A Conceptual Model" proposes a conceptual model of routing EVs

in smart cities. Routing EVs and task scheduling in Mixed criticality real-time system

(MCRTS) are considered analogous. We use design-by-analogy approach (Verhaegen,

D’hondt, Vandevenne, Dewulf & Duflou, 2011) to convert traffic network parameters

into MCRTS parameters using different task functions. This allows us to use sophistic-

ated task scheduling algorithms developed for complex MCRTS like aircraft systems

for EV routing. Also, we have designed this model to route autonomous vehicles (AVs)

to serve emergencies. We explore the idea of using AVs in normal mode and emergency

mode. Details of the paper can be viewed from the attached manuscript 6
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7.1 Introduction

The evolution of present cities into smart cities of the future has provided assurance

of easing the way we live. Smart city is mainly focused on urban environment which

offers advanced and innovative services to inhabitants to improve the quality of life

using information communication technology (ICT)(Piro, Cianci, Grieco, Boggia &

Camarda, 2014).These advanced and innovative services will help us in solving several

current problems easily like traffic congestion, digital security, mobility etc. that are

hard to solve using existing technologies. Having impacts on different dimensions,

road congestion is one of the major challenges urban planners, traffic authorities and

communities are struggling to address. Among different impacts of road congestion,

increased response time of emergency vehicles (EVs) like ambulance, fire, police

etc. is most severe as it can have an irreparable loss in terms of life and property.

According to(RAPIDSOS, 2015),one minute in response time increases mortality by

1% which leads to a 7 billion dollars increase in healthcare expenses yearly. To solve

the underlying traffic management problem and overcome losses caused by increased

congestion, we need advanced ICT-based solutions. Smart cities especially smart
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transportation provide an ideal environment to implement such solutions.

It is intuitively understood that EVs must get preference over other vehicles when

they are traveling to the response scene. EVs get priorities by using special color,

sirens and strobe lights, dedicated green light on approaching traffic signals, special

lanes etc. and they travel to service an emergency in an optimized route. To measure

the effectiveness of optimization and pre-emption techniques, emergency management

services companies are set with a target time to respond to different level of emergencies.

For example, St. John’s of New Zealand categorizes life-threatening alerts as purple

and red, and less threatening events as orange. The contractual target of the purple and

red incident is to respond to 50% of cases within 8 minutes and 95% within 20 minutes

(St.John’s, 2016). In the UK and Canada the target is 75% of purple and red cases

within 8 minutes (England, 2015), 90% of similar cases within 8 minutes 59 seconds in

the USA (Pons & Markovchick, 2002b), 50% of cases within 10 minutes in Australia

(Service, 2016), and 92% of cases within 12 minutes in Hong Kong (Fitch, 2005a).

Over the years, there has been no significant decrease in EV response time (Gedawy,

2009) because contemporary traffic networks constitute multiple hurdles to the timely

movement of EVs. For instance, synchronized operation of traffic lights, increased

pedestrian population over cities, continuous construction over lanes and prominently

congested road networks have regularly obstructed smooth movement of EVs. In

addition, 90% of EVs accidents are caused by human errors. The safety and effectiveness

of EVs’ movement can be improved if we have access to dynamic road parameters like

road congestion, pedestrian flow, travelling time, men at work, halt at road and queued

vehicles in real-time and they can be processed to make intelligent driving decisions.

There has been a massive investment in smart cities both from public and private

sectors. large ICT business leaders like IBM, Intel, Siemens, CISCO and SAP are

putting huge effort in developing revolutionary concepts for smart cities. Not only

these companies but also governments, philanthropic organizations, and academics are
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advocating for smart cities. The global smart city market is expected to be valued at

US$1.565 trillion in 2020(Glasmeier & Christopherson, 2015) and number of smart

cities to be 88 by 2025 (Technology, 2014). As current technology seems insufficient

and growth of smart cities is inevitable there is an immediate need to develop ICT

driven EV route optimization and pre-emption technique to meet overwhelming interest

and investment.

Smart cities are built on the idea of deep connectivity. Vehicles have access to

vehicle-to-X (V2X: vehicle, road, human, infrastructure, internet) communication

through several protocols (Yaqoob et al., 2017). This connectivity can help in optimizing

EV routing. Connectivity gives access to information on dynamic road parameters in

real-time. Connectivity also enhances information sharing among smart objects. Present

EV routing systems have not blended in real-time traffic data to generate accurate,

dynamic and reliable routes for EVs (Musolino, Polimeni, Rindone & Vitetta, 2013b).

In the connected environment of a smart city, we can react to dynamic parameters

in real-time so that EVs can respond to all levels of emergencies within a certain

time. The concept of resource allocation and meeting the timing constraint make

EV routing analogous to task scheduling in the real-time system (RTS). In addition,

emergencies having several levels of criticality with different service times, which

makes the EV routing problem very close to scheduling in a mixed-criticality real-

time system (MCRTS). MCRTSs have tasks with two or more levels of criticality,

for example, non-critical, safety-critical and mission-critical components. In MCRTS

timing parameters like worst-case execution time (WCET) for processes rely mainly on

criticality levels(Burns & Davis, 2013).

In this paper, we propose a conceptual model of routing EVs in smart cities. Routing

EVs and task scheduling in MCRTS are considered analogous. We use design-by-

analogy approach(Verhaegen et al., 2011) to convert traffic network parameters into

MCRTS parameters using different task functions. This allows us to use sophisticated
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task scheduling algorithms developed for complex MCRTS like in aircraft systems for

EV routing. In addition, we have designed this model to route autonomous vehicles

(AVs) to serve emergencies. This kind of AVs are termed as autonomous emergency

vehicles (AEVs)(Newby, 2015). So the model is based on a novel idea of routing EVs

using task scheduling in MCRTS for autonomous emergency vehicles (AEVs) that can

meet the critical response time and drive through a complex road network in smart cities

efficiently and safely.

The approach discussed in the preceding paragraph has multiple contributions for

researchers and industry partners. This approach:

1. explores the idea of using AVs in normal mode and emergency mode. The use of

AEVs increases traffic safety and connectivity, and the are described in Sec. 7.2.

2. provides an insight that routing of EVs/AEVs can be done using modern schedul-

ing algorithms developed for MCRTS. For this, it presents an analogical mapping

framework in Sec. 7.3 .

3. suggests using dynamic optimization method to find routes for AEVs in smart-

cities leveraging access to real-time traffic data in Sec. 7.4.

4. focuses on multiple levels of emergencies having a different response time. Using

MCRTS helps emergency management services to meet or exceed the minimal

contractual standards of response time.

5. provides a detailed view of how users, AEVs and real-time traffic management

systems communicate with each other.
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7.2 Autonomous Emergency Vehicles (AEVs)

Autonomous vehicles can sense their surroundings and can move with no or very

little human interference (Krasniqi & Hajrizi, 2016). A central computer within AV

analyze and processes the information received from sensors like GPS, LIDAR, video

cameras, radar, ultrasonic sensors and then controls steering, brakes, and accelerator in

accordance with the formal and informal rules of the road. With the DSRC system it

can communicate with its surrounding.

Figure 7.1: MCRTS design diagram.

AVs that are used to serve emergencies are termed as Autonomous emergency

vehicles (AEVs). There can be two categories of AEVs. First normal AVs which

can also serve for emergencies of lower criticality and second custom-designed AVs

e.g. autonomous ambulances. These kinds of AEVs have facilities built within to

serve a particular purpose like autonomous ambulance have paramedic facilities. The

distinguished property of EVs is that they get priority when they move. AEVs can also

get priority by requesting for lane reservation, continuous green light, change of speed

limit etc. For this, they are equipped with different communication transmitters and

receivers like DSRC, 5G networks etc.

Using of AEVs in place of the traditional emergency service vehicles have the

following benefits:
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• Use of AEVs will reduce response time and meet or exceed the minimal contrac-

tual standards.

• According to National Highway Traffic-Safety Administration only in the USA

there is an average of 4500 accidents involving ambulances each year, 3160

accidents involving fire vehicles and 300 fatalities during police pursuit(NHTSA,

April 2014). Use of AEVs improves safety on roads. Fewer crashes as they are

without driver error (McAllister et al., 2017).

• Processing of traffic network data allows AEVs to avoid congestion which in turn

contribute to less carbon emission due to fuel burning(Greenblatt & Shaheen,

2015).

• Provide better mobility to elderly, young and child(Alessandrini, Campagna,

Delle Site, Filippi & Persia, 2015).

• AEVs are able to generate and request pre-emptive request like creating a green

wave, lane reservation, informing other vehicles, changing speed limit, use of

reverse lane with minimal or no disturbance to other traffic using V2X commu-

nication technology (Kokuti, Hussein, Marín-Plaza, de la Escalera & García,

2017).

• Locating, instructing and tracking is easier as they are always connected(Kokuti

et al., 2017).

• Use of AEVs reduces massive expenses in infrastructures like traffic lights, lanes,

instructions etc. as these things will be stored in the memory of the vehicle and

can be utilized virtually (Malikopoulos, Cassandras & Zhang, 2018).

Due to higher level of connectivity among the infrastructures, physical infrastruc-

tures presently treated as barriers in solving traffic problems can be used like functions
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which can return values whenever we require. In such condition, the major aim of

emergency traffic management system is to align all infrastructures in such a way that

emergency vehicles moving within these connected traffic network can respond to

emergencies within a predefined time. This means in smart cities with AEVs routing

of emergency vehicles present complex infrastructure problems converts into mere

timing problems. This provides us with an opportunity of solving routing of emergency

vehicles as MCRTS task scheduling problem because success or failure of MCRTS is

completely dependent on solving a task within a stipulated time. The following section

explains the relevance of AEV routing in smart cities using MCRTS analogy.

7.3 Mixed Criticality Real Time System Concept

In emergency response systems used presently, EVs are located at a certain location.

Once there is any emergency call, the level of emergency is determined, and response

time is set. The number of available EVs with their location is identified. From the

present location of the EV to destination there may exist multiple routes. The optimiza-

tion system must provide the fastest route to serve within a definite period considering

different factors associated with the particular route that may create hindrances in the

movement of EV. Next, the system schedules the EV to serve the emergency. If it

becomes difficult to respond within stipulated period due to changing road parameters,

the system must be able to provide an alternate route or activate pre-emption to provide

priority to EVs so that they can respond to the emergency on or before the set time.

Producing a physical result within a certain time is the basic property of real-time

systems (RTS). Inputs from sensors are taken at a periodic interval and real-time

computer must send responses to actuators within chosen time. The ability of system to

produce the results within this chosen time is completely dependent on the system’s

ability to process necessary computations within dedicated time. In case of concurrent



Chapter 7. Routing Autonomous Emergency Vehicles in Smart Cities Using
Real-Time Systems Analogy: A Conceptual Model (Manuscript 6) 179

events the system must schedule the computations to completed within time. Every

task in RTS bears a timing property within which it needs to be processed. While

scheduling any task this timing property must be considered by RTS. Therefore, in

RTS the accuracy does not only depend on logical results from computation but also

on the time when these results are produced. System failure occurs when the system

cannot meet this timing property. Therefore, it is indispensable to guarantee the timing

property of the system. To guarantee timing behavior, the system must be predictable

which means once a task is activated, we must be able to determine its completion

time with full confidence (Ramamritham, Stankovic & Shiah, 1990). A real-world RTS

is usually composed of multiple tasks with multiple criticality levels. If the system

fails to meet the timing constraints, we must designate some level of assurance against

failure depending upon the criticality of the task. This kind of RTS are termed as

mixed-criticality real-time systems (MCRTS) (Ernst & Di Natale, 2016).

From the above discussion, we can conclude that there exists certain similarities

between routing of EVs and task scheduling in mixed-criticality RTS. There is only

one difference between these two approaches. In contemporary emergency response

systems, EVs and surrounding cannot communicate with the environment except the

use of light strobes and sirens but in smart cities, all the components relate to each other

and they can communicate. Smart city provides a connection platform where all the

homogeneous smart object communicate using prescribed communication standards.

Utilization of interacting traffic resources to process the task of responding to different

level of emergencies within precalculated time is like task scheduling in MCRTS.

Modeling AEVs routing using MCRTS task scheduling meets the following goals:

• Meeting timing constraints of different emergency responses with different level

of criticality.

• Emergency vehicles meet the target response time utilizing available resources
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but ascertain that other vehicles also make the optimum use of the same resource.

• Though pre-emption is activated it causes the nominal effect to other vehicles.

• Reducing the communication cost between the components of the traffic network

system.

• Considers all level of emergencies in terms of critical tasks.

• Scheduling of EVs in real-time system whose behavior is intelligent, dynamically

adaptive, reflexive and reconfigurable.

Parameters of MCRTS are dependent on the level of criticality of each task. Estim-

ates of worst-case execution time (WCET) for any task is also dependent on level of

criticality. For example, the same task can have a lower WCET target if it is assigned

as safety-critical task rather than mission-critical or non-critical tasks(Burns & Davis,

2013). This attribute of MCRTS align completely with our AEVs routing problem

where we have different level of emergencies with corresponding response time. In

the following subsection we have discussed analogical mapping between MCRTS and

traffic network parameters.

7.3.1 MCRTS and Traffic Network Analogy

Generation of creative ideas for design and problem solving can be sometimes inter-

preted from similarity of products, shared functionality or shared relation between

items of different domains. This kind of design methodology is termed as design-by-

analogy(Verhaegen et al., 2011). AEV routing and task scheduling in MCRTS have

certain similarity. A MCRTS is a system which provides a certain level of assurance

against system failure for some critical tasks. This kind of system exactly matches

with the design of the system where AEVs can be used to respond to different level of
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emergencies. A certain time is allocated for AEVs to respond to a certain emergency

case. If it can be responded within that time a task success is noted. In any other case

system provides some flexibility to the timing constant so that more resources can be

assigned to complete the task within WCET. Usually, a MCRTS system comprises of

multiple inputs and outputs. Some of them have been listed in Table 7.1.

Table 7.1: Inputs and outputs in MCRTS

Inputs Outputs
Number of periodic, aperiodic or sporadic tasks Assigning task to processor

Number of Pre-emptive and non-pre-emptive tasks Assign new deadline
Number of Fixed or dynamic priority tasks Queue task
Number of Independent or dependent tasks Alter priority

Number of processors Assign pre-emption etc.
Number of reserved processor
Release time, completion time

deadlines, priority, precedence, constraints

MCRTS generates outputs like assigning task to processor or assign new deadline

considering input parameters like number of available processor or completion time of

present task. There are algorithms to achieve this. With analogical mapping we convert

real world traffic network parameters into equivalent MCRTS parameters. This can

be achieved by using tasks functions as shown in Figure 7.1. We use compositional

analogy for mapping of traffic network variables with variables of MCRTS. It first does

mapping at level of structure, and that mapping at a level of structure transfers some

information. That in turn allows to transfer information at the behavioural level. Once

information at behavioural level is transferred, it climbs up this abstraction hierarchy,

and transfers information at a functional level(A. K. Goel & Bhatta, 2004).

For example, real-world traffic network have inputs like EV location, destination,

possible routes, congestion level of road network, previously selected route, halt on road,

speed limit of the road, no of lanes, likely speed, travel time from previous user, time of

day, slope on road, no of traffic nodes, roundabout, traffic lights, pedestrian flow, queued
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vehicles, recovery time of traffic pre-emption, traffic phase timing etc. Task functions

use analogical mapping to maps these traffic domain input parameters to MCRTS inputs.

Now this allows us to use properties of MCRTS. The outputs of MCRTS is now passed

through inverse task functions which finally convert MCRTS output into equivalent

traffic parameters. For example assign processor can be equivalent to assign route.

In the following section, we have elaborated the concept of modelling AEVs routing

using MCRTS task scheduling discussed in section 1, section 2 and section 3 using

mathematical notations and different diagrams.

7.4 A Conceptual Model of the system

In this section, we are introducing a novel model of route optimization and pre-emption

for different types of AVs. We assume that the service function S(e, c, r, v, p) is the set

of all the attributes required to route an AV in AEV mode from a source to destination.

A simplified diagram to visualize the process of how AVs service is represented in

Figure 7.2. Here, e stands for level of emergency, c stands for the level of criticality,

r represents the number of available routes, v represents the number of available

autonomous vehicles and p stands for the type of pre-emption to be activated. The

process is defined below:

• Mode (Ei) represents the service mode of AVs. It can take two values Eo and

E1. Eo represents AVs are serving in normal mode and E1 represents AVs are

operating on AEV mode. These values are updated by the user who requests the

AV service.

• Criticality (Ci) is level of criticality of emergency that AVs are going to serve.

From normal practice in different countries, we can have total of four values of

criticality Co....., C3. Co represents no critical emergency case so AVs can operate
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in normal mode. C3 and C2 are life-threatening alert that are symbolised as purple

and red by emergency management service companies and C1 are orange cases

which are less life-threatening. These values are updated by the user by answering

certain questions that appear in their application.

• Route (Ri) is the number of available routes from source to the destination of the

service. It can take any values from Ro......,Rn depending upon the number of

traffic nodes available in that particular geographical location. The optimization

function calculates the fastest path considering all the road parameters and supply

the value to the system.

• Vehicle (Vi) represents a number of available AVs to serve. Vo......,Vn are the

possible types of AVs. AVs are normal autonomous car that can also serve in

cases of less critical emergencies like user needs to visit hospital and doesn’t

require any paramedic support during travel. Other AVs can be autonomous

ambulance, fire, police car etc. GPS system installed inside AVs and their service

notification status give the value of (Vi).

• Pre-emption (Pi) represents the instruction to the AVs weather to activate pre-

emption or not. It also instructs which type of pre-emption to activate like creating

a green wave, lane reservation, informing other vehicles, changing the speed limit,

use of reverse lane with minimal or no disturbance to other traffic etc. It can take

values from Po......,Pn. Po symbolizes no use of pre-emption and all other values

are the type of pre-emption the system suggests to activate.

The suggestion of pre-emption is guided from the calculation of estimated arrival

time (ETA). As we are suggesting MCRTS approach, we can compare this ETA with

WCET for AVs to serve. Once all the values of service function S(e, c, r, v, p) is

calculated the user and AVs are advised with the service time. During the service, if
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there is any change in the dynamic traffic parameters like pedestrian flow, congestion,

traveling time, men at work, halt at road, queued vehicles etc. a new updated ETA are

advised to user and AVs with proper pre-emption instruction.

Figure 7.2: Execution of service for AEVs

The core of our conceptual model is visualization of AVs as AEVs. User using

a simple mobile app can initiate this service and most of AVs can serve in different

types of emergencies as AEVs. The system is dynamic and keeps on updating in real

time with the help of data received from the array of sensors installed inside AVs and

environment. The entire system has five components mobile application for users, AV

sensory system, AV control system, dedicated short-range communication (DSRC)

system and real-time traffic control system. All these systems and their interactions are

shown in Figure 7.3.
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Figure 7.3: System interface diagram

The solution provided has five major components:

• Mobile Application for user: This component is focused on user side application

where different users request AV’s service. They can request for any kind of

emergency service. Their request sets the AVs to operate in AEV mode. Their

response to certain questions can also set the criticality level of the emergency,

source, and destination of the service and also the type of EV to be scheduled to

serve the emergency.

• AV sensory system: This comprises of different sensors that AV is installed with

like LIDAR, radar, ultrasonic sensors, GPS, video camera etc. These all sensor

help AV to visualize the environment.

• AV control system: AV’s central computer processes all the sensor data and

instructions received from real-time traffic management system, processes it and

generates driving instructions for motor, steering, and braking.

• Dedicated Short-Range Communication (DSRC) system: This system permits AV

to establish V2X communication using different transmitters and receivers.
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• Real-time traffic control system: The core idea of our conceptual framework lies

within real-time traffic control system. The system gets service mode information

(Ei) and level of criticality (Ci) and type of vehicle (Vi) to deploy to serve from

the user using mobile application. Once these parameters are known the system

initiates the optimization function and returns the route with its associated ETA.

This ETA is now set as WCET of the MCRTS. All the available resources are

now assigned to execute the task of responding to the service (emergency or

non-emergency) within WCET.

7.5 Conclusion

In this paper we introduce a conceptual model of routing autonomous emergency

vehicles to respond to emergencies using a mixed-criticality real-time systems (MCRTS)

approach in smart cities. To use the highly refined scheduling algorithms of complex

MCRTS we have suggested the use of analogical mapping between traffic network

parameters and MCRTS. The preliminary goal of this paper is to use autonomous

vehicles as part of emergency response system in smart cities termed as autonomous

emergency vehicles. Through an analogical mapping between MCRTS and the AEV

routing problem, we propose a framework to route AEVs using dynamic traffic para-

meters. The proposed framework can cater to different levels of criticality for AEVs,

and can be extended for controlling traffic networks in general.



Chapter 8

Conclusions and Future Work

8.1 Summary

Reducing emergency services’ response times requires identifying the most effective

optimization and pre-emption techniques and factors for reducing emergency vehicle

(EV) travel times. Expedited movement of EVs is dependent on the following factors:

• Finding the fastest route from origin to destination for EVs.

• Identification of EVs when they approach an intersection.

• Determining whether prioritization is required or not.

• If pre-emption is required, determining right time and duration of pre-emption.

This thesis develops and implements novel effective pre-emption and dynamic route

optimization techniques leveraging recent advancement in communication technology

and the availability of huge trajectory data-sets that aid in advancing above listed

dependent factors. We proposed different pre-emption techniques and travel time

estimation models. We empirically proved that our models could better reduce EVs’

response time than current state-of-art technologies.

187
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8.2 Conclusions

This thesis implemented an incremental approach in designing effective pre-emption

and dynamic route optimization. We divided the problem of route optimization and

pre-emption system for EVs into three different sub-problems:

• Traffic Signal Optimization

• Traffic Signal pre-emption/ Priority

• Route Optimization

Each manuscript from 2-6 contributes towards solving one or more sub-problems iden-

tified above by answering research questions (RQs) associated with it. Problem identi-

fication from the existing knowledge gap was carried out by conducting a systematic

literature review to answer RQ1 and is outlined in manuscript 1. Figure. 8.1 illustrates

a mapping among six manuscripts, five research questions and three sub-problems that

we tried to solve in this thesis.

Figure 8.1: Illustration of mapping among manuscripts, RQs and sub-problems

Initially, we proposed an adaptive Fair Scheduling Algorithm (FSA) for VANETs

that ascertains higher travel time reliability by minimizing travel time index (TTI) for
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an isolated intersection in manuscript 2. We consider Buffer Index (BI), a typical

travel time reliability measure, as the primary performance parameter to minimize. We

achieve this through a novel approach of analogically mapping traffic control problems

into real-time systems precisely mapping TTI with stretch (the factor by which a job

is slowed down comparing with time it takes to process on a free system). This was

initially conceptualized in manuscript 6 and further elaborated in manuscript 2. We first

prove that stretch produced by FSA is less than or equal to twice the stretch produced by

an optimal offline algorithm implying FSA is 2-competitive. Then we empirically prove

that FSA online traffic control signal algorithm is more reliable and fairer in scheduling

in terms of travel time compared to existing state-of-art approaches. This solution

answers RQ2 and contributes towards solving traffic signal optimization sub-problem.

The thesis also presented emergency vehicle pre-emption (EVP) technique with

different priorities in the arterial road network illustrated in manuscript 3. We leverage

VANET to transmit critical information like current position, speed, the time EV takes to

pass the intersection, and the route the EV follows in deciding when to trigger the EVP.

We introduced different criticality levels for different levels of emergencies and assigned

a certain level of success assurance in terms of target travel time for these criticalities.

Unlike other studies, instead of implementing the EVP algorithm in a single intersection,

we implemented it in an arterial traffic network. We ran exhaustive simulations. The

results indicate that EVP algorithm can significantly reduce the average waiting time of

normal traffic but still assures all EVs meet their target response time. This approach

responds to RQ3 and aims to solve traffic pre-emption sub-problem.

We extended the above idea to implement a decentralized self coordinating traffic

system to prioritize emergency vehicle movement through an isolated traffic intersection

as Virtual traffic lights plus emergency vehicles (VTL+EV) algorithm explained in

manuscript 4. The algorithm eliminates the loss generated from dead periods in a traffic

light cycle time and human-related factors like increased headway time and inconsistent
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inter-vehicle spacing. We conducted comprehensive experiments and results showed

that VTL+EV has the evident advantage of reduced waiting time for regular traffic as

well as emergency vehicles (EVs). The approach of implementation of virtual traffic

light addresses traffic pre-emption and traffic signal optimization sub-problems and

respond to RQ4.

In parallel, we leverage the availability of huge GPS trajectory data-sets in proposing

an origin-to-destination (O2D) travel time estimation model through manuscript 5.

The ensemble-based model learns valuable information from manually engineered

features extracted from raw GPS data and accurately estimates the O2D travel time. We

concluded that for wisely extracted manual features, ensemble-based gradient boost

regression approach can outperform existing state-of-art baseline models that employ

deep neural networks. This approach of improving the accuracy of travel time estimation

solves route optimization sub-problem by answering RQ5

Finally, we can conclude that all our research questions, RQ1-RQ5, were answered

by six papers that we have developed.

8.3 Limitations

Traffic signal optimization realised through Fair Scheduling Algorithm in manuscript 2

focuses on achieving higher travel time reliability. The choice of optimization parameter

largely depends on the nature of traffic each intersection experiences. Since we have

limited our study to a single signalised intersection, the generalization of the algorithm to

achieve the global optimum in terms of travel time reliability for all traffic intersections

with varied nature of traffic distribution is harder. In such a case, each traffic intersection

demand algorithm with appropriate objective function which is not a straightforward

task as it demands different hardware resources, modelling variables and a different set

of constraints. We assume the connectivity among the vehicles for sharing information
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like current speed, position and time to pass the intersection. But, current adaptive

traffic infrastructure is dependent on inductive loops. We can implement our models

in existing systems that only use inductive loop detectors but need to compromise

performance. We implemented the algorithm in a simulation environment with different

levels of traffic flow. The results obtained from this model will vary slightly when

implemented in real-world or a properly calibrated model.

Traffic signal pre-emption, achieved in manuscript 3 largely depends on the level of

criticality assigned to EVs by emergency centre’s operators. This study is limited to a

sample arterial road network randomly chosen. The performance of such systems can

vary when the system is implemented in a real-world traffic condition where achieving

overall connectivity among the vehicles and roadside units are not feasible. In addition,

virtual traffic lights proposed in manuscript 4 is implemented in an environment where

all vehicles are connected with each other and can manoeuvre autonomous driving

capability. The results obtained in such case are really promising but can deplete when

implemented in a partially connected environment.

In O2D travel time estimation explained in manuscript 5, we have used New York

taxi trip data-set (2.1 million trajectories) and Chengdu data-set collected by ride-

sharing company DIDI (7.2 million trajectories). Though we have the availability of

other larger data-sets, lack of computational resources limited our experiment to these

two data-sets only. Even though we have extracted more than 72 features, there is still

the possibility of extracting more features if data related to different traffic conditions

are publicly available. Also, accuracy in calculating travel time difference from open

street mapping engine largely vary with difference calculated from real-time mapping

engines like google map. We were limited to use open street mapping engine as services

from google map would be very expensive for the amount of data-set we have used.
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8.4 Implications and Future Work

Dynamic route optimization and pre-emption system for on-road emergency services is

a complex problem to solve. Choosing the best of both optimization and pre-emption

cannot be the most efficient solution. In this thesis, we were able to design efficient

traffic signal optimization that adepts with real-time traffic, effective pre-emption

system that incurs less effect on normal traffic, and a reliable travel time estimation

which can be used to find the fastest path with a higher level of assurance. Though

manuscripts 2-6 make individual contributions towards traffic signal optimization,

signal pre-emption and route optimization, a combination of all manuscripts as a whole

contribute towards intelligent dynamic route optimization and road pre-emption system

for on-road emergency services.

Several future research directions have been identified. The proposed FSA optimizes

TTI as a performance parameter. FSA outperforms current state-of-art models in terms

of travel time reliability. FSA is also better at resisting and flushing congestion for

consistent and inconsistent traffic conditions. The algorithm can be further improved

to perform better in all traffic conditions by introducing a multi-objective optimization

algorithm that optimizes all three performance parameters (waiting time, throughput

and reliability) of a traffic network. Also, we can develop a system that can learn to

optimize multiple objective functions with different constraints to achieve a global

optimum for an entire city.

In the case of EVP and VTL+EV algorithms, we consider that vehicles are connected.

A further direction of research is to develop a model that can efficiently work for a

mix of connected and non-connected vehicles. This can bring a futuristic model into

a realistic one. Instead of picking a section of the road network, we can use map

matching tools that automatically connect origin and destination of EVs with a section

of the road including all the traffic lights which can be controlled for assigning priority.
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Additionally, studying the computational efficiency of all proposed algorithms against

baseline algorithms and the study of traffic recovery after the implementation of pre-

emption explores new future research directions.

Another direction for future research is to incorporate multiple sensors data like

floating car data, floating people data, data collected from loop detectors, automatic

number plate recognition systems, automatic vehicle identification system and Bluetooth

sensors for accurate calculation of travel time. Can these data improve the prediction

accuracy of machine learning models? In future, the penetration of multiple connected

sensors in the road network can be used to improve existing pre-emption and optimiza-

tion models. It creates new opportunities to model the entire road network as a digital

twin for visualizing every pulse of the road network in real-time. Also, we can use

historical and current trajectory data to more precisely predict future travel times within

a certain prediction horizon.
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