
Vol.:(0123456789)

Multimedia Tools and Applications
https://doi.org/10.1007/s11042-023-16915-4

1 3

CISO: Co‑iteration semi‑supervised learning for visual object 
detection

Jianchun Qi1   · Minh Nguyen1 · Wei Qi Yan1

Received: 25 April 2023 / Revised: 27 June 2023 / Accepted: 5 September 2023 
© The Author(s) 2023

Abstract
Semi-supervised learning offers a solution to the high cost and limited availability of 
manually labeled samples in supervised learning. In semi-supervised visual object detec-
tion, the use of unlabeled data can significantly enhance the performance of deep learning 
models. In this paper, we introduce an end-to-end framework, named CISO (Co-Iteration 
Semi-Supervised Learning for Object Detection), which integrates a knowledge distilla-
tion approach and a collaborative, iterative semi-supervised learning strategy. To maximize 
the utilization of pseudo-label data and address the scarcity of pseudo-label data due to 
high threshold settings, we propose a mean iteration approach where all unlabeled data is 
applied to each training iteration. Pseudo-label data with high confidence is extracted based 
on an ever-changing threshold (average intersection over union of all pseudo-labeled data). 
This strategy not only ensures the accuracy of the pseudo-label but also optimizes the use 
of unlabeled data. Subsequently, we apply a weak-strong data augmentation strategy to 
update the model. Lastly, we evaluate CISO using Swin Transformer model and conduct 
comprehensive experiments on MS-COCO. Our framework showcases impressive results, 
outperforms the state-of-the-art methods by 2.16 mAP and 1.54 mAP with 10% and 5% 
labeled data, respectively.

Keywords  Semi-supervised · Data augmentation · Transformer · CISO

1  Introduction

Deep learning [2, 20, 55, 58] has achieved remarkable progress in computer vision, 
natural language processing, and speech recognition [46, 57]. Visual object detec-
tion, a fundamental task in the field of computer vision, has seen the emergence of deep 

 *	 Jianchun Qi 
	 yhy5508@autuni.ac.nz

	 Minh Nguyen 
	 minh.nguyen@aut.ac.nz

	 Wei Qi Yan 
	 weiqi.yan@aut.ac.nz

1	 Auckland University of Technology, Auckland 1010, New Zealand

http://orcid.org/0000-0003-0391-2315
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-16915-4&domain=pdf


	 Multimedia Tools and Applications

1 3

neural network-based algorithms. To enhance algorithmic performance accuracy and pre-
vent overfitting in large models, training on a large-scale dataset is crucial. However, man-
ually annotating such data poses a significant challenge. Therefore, semi-supervised learn-
ing [4, 6, 31], which labels only a small fraction of large-scale data and effectively, utilizes 
a large amount of unlabeled data to improve model performance, which has received 
increasing attention.

Currently, popular semi-supervised learning strategies include consistent regularization 
[4, 21, 22, 27, 35, 36, 43, 49, 51, 53]. The basic idea of this approach is to separate differ-
ent data points in low-density regions, and ensure similar data points yield similar outputs. 
This consistency means the prediction remains the same as the original if the unlabeled 
input data is perturbed. Consistency regularization is compared with the model outputs in 
terms of their spatial distribution, independent on the labels, making it suitable for semi-
supervised learning. Additionally, advances in semi-supervised learning have been associ-
ated with effective data augmentation development [17, 39, 48]. Data augmentation not 
only increases the data amount for training, improving the model’s generalization but also 
adds noisy data to enhance the network’s robustness [19, 38]. Presently, a number of data 
augmentation strategies have been effectively employed to improve semi-supervised model 
with superior performance [4, 41, 49].

In recent years, most object detection research work has primarily focused on develop-
ing robust detectors [9, 26, 47]. Significant progress has also been made in semi-supervised 
object detection [3, 15, 22, 25, 40, 42, 52]. The recently proposed STAC [40] has paved 
a way for semi-supervised learning applications related to visual object detection. The 
instant-teaching method [60] further improves on STAC, achieved significant results in the 
field of SSOD and provided valuable insights for subsequent SSOD research. The instant-
teaching improvement has two aspects: One is the use of an instant pseudo-label generation 
model, the other is the proposed co-rectify scheme to address bias due to pseudo-label. 
However, pseudo-label ineffectiveness stems from two main issues: (1) An increase in 
incorrect pseudo-labels leads to excessive noise and misdirects model learning; (2) Over-
confident pseudo-labels are not updated and tend to cause model overfitting.

Therefore, in this paper, we propose a novel SSOD framework: CISO to address these 
problems. We maintain all the unlabeled data during each training iteration, that is, the 
pseudo-label data obtained from the first training is not discarded but reintroduced into the 
unlabeled data. This allows all the unlabeled data to be fully utilized in numberous itera-
tions to correct each other and reduce the number of incorrect pseudo-labels. Considering 
that such a setup may lead to the repeated acquisition of high confidence pseudo-labels 
and the need to alleviate overfitting, we propose Mean Iteration. This approach involves 
training the models using pseudo-labels with IoU values greater than the average value and 
labeled data.

Since the pseudo-label is generated differently each time, the average value of the IoU 
after each iteration also changes, which achieves the purpose of updating the pseudo-label. 
The advantage of CISO is that it maximizes pseudo-label usage and continuously improves 
the quality of the pseudo-label. Moreover, we inherit the end-to-end concept from instant-
teaching and the weak-strong data augmentation approach from STAC. However, we 
integrate knowledge distillation with semi-supervised learning to achieve an end-to-end 
framework. For weak-strong data augmentation, we also adopt cropping, rotating, flipping, 
translating, and the new cutmix.

We choose MS-COCO dataset [23] to test our CISO framework. The performance is 
evaluated by using the same experimental protocol as the STAC [40] and instant-teach-
ing methods [60], that is, we select 1%, 5%, and 10% of the amount of labeled data for 
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performance evaluation. It is worth noting that our proposed CISO framework outperforms 
most SSOD methods and achieves superior performance. The contributions of this paper 
are as follows:

(1)	 We propose CISO, a collaborative and iterative SSOD framework that extensively lev-
erages unlabeled data. Besides, knowledge distillation and weak-strong data augmenta-
tion are also applied to our framework for the purpose of improving model accuracy 
and efficiency.

(2)	 To reduce the number of incorrect pseudo-label and avoid the overfitting problem 
caused by using the inability to update pseudo-label, we propose Mean Iteration 
method, a scheme for pseudo-label selection based on the IoU average value.

(3)	 We test and validate CISO by using the MS-COCO dataset and conduct extensive 
experiments. The sresults show that our proposed method achieved advanced perfor-
mance. We also performed ablation experiments to conduct the analytics of our method.

In the rest of the paper, we present related work in Section 2. Our methodology is dis-
cussed in Section 3. Section 4 presents the analysis of the experimental results. Finally, our 
conclusions are drawn in Section 6.

2 � Related work

2.1 � Visual object detection

Visual object detection is a popular research direction in computer vision, which is widely 
employed in various industries that can reduce the consumption of labor costs and has 
important social significance [14, 16, 28, 37, 47]. At present, visual object detection algo-
rithms can be grouped into two categories: One is an end-to-end and one-stage network 
[24, 32, 44] which dominates in training efficiency, such as YOLO family [32, 45], the 
other is a two-stage network [9, 10, 33] which requires the use of region proposal CNN for 
feature extraction and classification, such as ResNet and R-CNN as well as Fast R-CNN 
and Faster R-CNN [33].

Until recently, Transformers with a self-attention mechanism have also been employed 
in various tasks, including visual object detection, image classification, image segmenta-
tion, and video detection. Transformer models have not only received increasing attention 
but also have achieved good results [26], such as DETR for visual object detection [5]. 
However, a majority of these methods require training based on large amounts of labeled 
data, which is very labor-intensive and time-consuming. Therefore improving the perfor-
mance of object detection models through semi-supervised learning has gradually been 
required and needs us to pay much attention on it. We adopt Swin Transformer [26] in this 
article to develop the framework.

2.2 � Semi‑supervised learning

Semi-supervised learning [59] aims to generate pseudo-label for unlabeled data samples by 
training a small number of labeled data samples, typically with much larger amount of unla-
beled data than labelled data. The methods [1, 2, 13] apply semi-supervised learning to visual 
object detection. The core idea of Semi-Supervised Object Detection (SSOD) is to make full 
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use of unlabeled data to improve the performance of the model. Currently, consistency-based 
learning and pseudo-label-based learning are the two main research directions of SSOD. The 
former can be referred to as a soft pseudo label, while the latter is a hard pseudo label. Early 
SSOD methods include CSD [15], which is based on consistent learning and proposes back-
ground elimination.

While STAC [40] proposes a SSOD method based on the hard pseudo label and also used 
consistency learning. After that, instant-teaching [60] improved on STAC by implementing 
instant pseudo-label training. The unbiased teacher [25] approach addressed the class imbal-
ance problem. Moreover, data augmentation is effective in improving SSOD [22, 25, 60], such 
as Mixup [60] and Cutout [22]. Based on these approaches, we focus on the efficient use of 
unlabeled data as a means to improve model performance.

2.3 � Knowledge distillation

Knowledge distillation, which is essentially model compression [12, 54], is proposed to be 
applied to classification tasks in a simple way. Unlike quantization and pruning methods, 
knowledge distillation proposes a teacher-student network, where the output of teacher net-
work is knowledge, and the student network is applied to transfer knowledge for distillation. 
The performance and accuracy of the teacher network are higher, and the network structure is 
more complex than that of student network. There are two methods of knowledge acquisition 
in knowledge distillation; one is to use one-stage features [29, 30, 34], the other is to trans-
fer knowledge through multi-stage information [11, 18, 51]. Knowledge distillation can lead 
to better model performance, reduce model latency, and compress network parameters [12]. 
Therefore, in this article, we take the consideration of adding a knowledge distillation method 
to our framework and improving the model performance.

3 � Our method

3.1 � The structure of our framework

Figure 1 illustrates our CISO framework. We split the whole training process into three stages. 
In the first stage, small batches of randomly selected labeled data are employed for training 
the student model, while pseudo-label is generated for the unlabeled data by using the teacher 
model, reliable data and unreliable data were selected according to the threshold � ≥ Mean 
(IoU). In the second stage, the labeled data and the reliable data are fed into the student learn-
ing model for training at the same time. At this point, the unreliable data generated in the 
first stage is released back into the unlabeled data, the pseudo-label is generated in the full 
unlabeled data. Finally, the selection process for reliable data is repeated. Note that our Mean 
Iteration iterates four times and performs weak-strong data augmentation based on the data in 
each iteration. In the third stage, all the reliable data, unreliable data, and labeled data are fed 
into the model for training, the final detection model is obtained.

3.2 � CISO: Co‑iteration SSL for object detection

Pseudo labeling  A plethora of experiments have demonstrated that the efficient use of 
pseudo-label data can improve the accuracy of algorithms [3, 22, 25], leading to consid-
erations of leveraging pseudo-label data and enhance model performance by proposing 
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co-iteration semi-supervised learning based on knowledge distillation. This differs from 
both classical STAC [40] and Instant-teaching [57]. STAC pioneered the application of 
SSL in visual object detection tasks by conducting self-training with pseudo-label and aug-
menting the data with consistent regularization. This method requires training the teacher 
model in advance and then training the student model. In contrast, our CISO achieves the 
end-to-end transfer of parameter data between models by using knowledge distillation to 
complete semi-supervised learning. Moreover, while instant-teaching is also an end-to-end 
way and our CISO inherits its self-training method, CISO retains all the unlabeled data 
instead of removing the unlabeled data (i.e., pseudo-label data with high confidence). Fur-
thermore, we propose Mean Iteration, in which the threshold τ is continuously updated 
with our proposed method to enhance pseudo-label utilization and model performance.

To describe CISO in detail, we initially train each iteration by simultaneously generating 
a pseudo-label for the unlabeled data, using both pseudo-label data and a small amount 
of labeled data. Specifically, in data batches, the labeled and unlabeled data are randomly 
sampled according to a set ratio, usually 1:10. Following that, we employ two models dur-
ing the training process, namely, the teacher model and the student model for knowledge 
distillation. The teacher model is responsible for generating a pseudo-label for the unla-
beled data, while the student model is responsible for conducting the training. Notably, the 
teacher model is based on the student model updated with the Exponential Moving Aver-
age (EMA). This end-to-end approach eliminates the need for complex multi-stage training 
schemes.

CISO also implements Mean Iteration, which facilitates mutual reinforcement between 
the pseudo-label and detection training process, rendering the training results increas-
ingly effective. The details of Mean Iteration will be described later. Finally, all data, both 
labeled and unlabeled, are combined in the network to train the model and obtain the final 
detection model. Furthermore, for comparison purposes with STAC and Instant-Teaching, 
we perform weak-strong data augmentation based on the unlabeled data. In this approach, 
the weakly augmented data are inferred in the initial model to obtain the corresponding 

Fig. 1   The proposed semi-supervised object detection framework CISO. We are use of the teacher model 
in knowledge distillation to generate pseudo-label for the unlabeled data and train iterations with the stu-
dent model. We only select pseudo-label with � greater than or equal to the mean of � . During the training 
period, the number of Mean Iteration was 4. We conducted weak-strong data augmentation based on the 
given data
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prediction scores. The pseudo-label of the corresponding data is obtained according to a 
threshold τ, while the strongly augmented data is then passed through the model to obtain 
the prediction scores and calculate the loss with the pseudo-label.

Overall, we train the model with the same loss function in STAC [40] and instant-
teaching [57], which are the consistency regularization loss and the cross-entropy loss. The 
supervised loss consists of a classification loss function Lce and a bounding box regression 
loss function L1, as shown in Eq. 1.

where s is the index of the labeled image, i is the index of the anchor in the image, n is 
the total number of generated bounding boxes, P(ci) is the predicted probability of anchor 
i becoming an object in image X, and G(ci) is the label of anchor i. Then, P

(
ri
)
 is the pre-

dicted generated bounding boxes coordinates, and G(ri) is the actual labeled coordinates.
Pertaining to the unsupervised loss part, the predicted probability distribution and frame 

coordinates of the model obtained by a small batch of weakly augmented unlabeled data 
are firstly calculated by using Eq. 2, and the pseudo-label is converted into hard labels as 
the finally obtained labels by Eq. 3.

Thus, the unsupervised loss function is written as Eq. 4, which is shown as

where u is the index of the unlabeled image, Ĝ(cu
i
) and G(ru

i
) are the pseudo-label generated 

by the model itself, M
(
cu
i

)
 denotes the maximum prediction value, and � is the confidence 

level.
Combined Eqs. 1 and 4, the final loss function can be written as Eq. 5, where �u is the 

unsupervised loss weight.

Mean iteration  CISO make use of a portion of the labeled data to train the student model, 
while the teacher model generates a pseudo-label for the unlabeled data. In this step, we cal-
culate the Intersection over Union (IoU) of all the pseudo-labeled data, and then determine the 
average of these IoU values to set the threshold for generating pseudo-labels. Furthermore, 
taken the mean value of IoU as the threshold τ, two types of pseudo-label data are gener-
ated, i.e., pseudo-labels with high confidence and pseudo-labels with low confidence. We con-
sider the pseudo-labels with τ greater than the mean τ to be reliable labels, and the remaining 
pseudo-labels to be unreliable labels. Afterwards, the student model is trained a second time 
using both the labeled data and the reliable label data. After model training, the teacher model 
is applied to predict the unlabeled data and generate both reliable and unreliable label data 

(1)LS =
∑

s

[
1

n

∑

i

Lce
(
P
(
ci
||�(Xs)),G(ci)

)
+

�

n

∑

i

G
(
ci
)
L1(P

(
ri|�(Xs)

)
,G(ri))

]

(2)G(cu
i
),G(ru

i
) = P

(
ci, ti

||�(Xu))

(3)Ĝ(cu
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again. It is worth noting that the pseudo-labeled data are generated randomly each time, so 
the reliable and unreliable labeled data are different with each iteration. To achieve iterative 
training, we retain all the unlabeled data in each training cycle of the Student model, without 
removing any of the classified unlabeled data from the pseudo-label data.

The proposed approach allows the threshold τ to be continuously updated from one 
iteration to the next. Since previous semi-supervised learning methods are prone to adopt-
ing pseudo-label data with a high threshold τ (e.g., τ = 0.9), this leads to data imbalance. 
Therefore, our CISO makes the best use of the pseudo-label data and ensures the accuracy 
of the pseudo-label data due to collaborative iterations. We conducted only four iterations 
of the experiment. Upon conducting a fifth iteration, there were no additional variations in 
what the model learned, which we will describe in detail in the ablation study. The results 
show that our method leads to improve model performance.

Weak‑strong data augmentation  The SSL method using consistent regularization is closely 
related to data augmentation, which enables the model to gain much information in pseudo-
label data playing a positive impact. Regarding soft augmentation, we conducted cropping, 
rotating, flipping, and translation to improve the quality of the labeled data in the pre-training 
if the quality of the pseudo-labeled data was low. While substantial augmentation, we har-
nessed cutmix [56] for consistent learning on unlabeled data. Cutmix was chosen because it 
can apply both hard and soft fusion to two images, allowing the information from the entire 
image to be utilized without the dataset changing after image mixing. Furthermore, Cutmix 
does not loose the region information as Cutout does, which affects the training efficiency, 
nor does it introduce some of the pseudo-pixel information as Mixup does. By utilizing both 
weak and strong data augmentation, we increase the amount of data and noises, improve the 
robustness and generalization ability of the model and avoid overfitting. Figure 2 illustrates 
the strategies for different classes of strong and weak data augmentation strategies.

Specifically, as shown in the cutmix image section in Fig. 2, two images were randomly 
selected for the combination to generate a new training sample; given unlabeled data Ui , two 
images U1 = (XU1

, YU1
) and U2 = (XU2

, YU2
) , the new sample is N = (Xn, Yn) . We completed 

a regional dropout from the U1 sample by combining the corresponding regions in the U2 sam-
ple where the U1 sample is dropped as:

where X is the image sample and Y is the image label, λ is employed as the ratio of the 
combined regions of image U1 and U2 , as with Cutmix, we set λ to be in the range (0, 1), 
where M is the binary mask indicating where images U1 and U2 were extracted. Besides, 1 
indicates that the value of the mask matrix element is set to 1. Finally, element-wise multi-
plication ⊙ is utilized in Eq. 7.

Afterwards, Eq.  8 shows how the extracted mask region is calculated. We are use 
of the same random method as cutmix and define the coordinates of the mask region 
C = (rX,rY , rW , rH ), where W is the width of the image Ui , H is the length of image Ui , rX and 
rY are selected from the ranges (0, W) and (0, H), respectively.

(6)X = M ⊙ X
U1 + (1 −M)⊙ X

U2

(7)Y = �YU1 + (1 − λ)YU2

(8)
rX ∼ Unif(0,W), rW = W

√
1 − λ,

rY ∼ Unif(0,H), rH = H
√
1 − λ
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4 � Experiments

4.1 � Datasets

We propose the semi-supervised visual object detection framework CISO and conduct per-
formance evaluation based on the large-scale dataset MS-COCO [23] and PASCAL VOC 
[8]. MS-COCO is a dataset for visual object detection, segmentation, and other scenar-
ios. It has a total of 330 K images, of which over 200 K images were labeled, and it also 
has 80 object classes and 91 stuff categories. We adopt the same experimental protocol as 
STAC [40] and instant-teaching [60], that is, we randomly selected 1%, 5%, and 10% of the 
labeled data for testing, and the rest of image samples are employed as unlabeled data. Our 

Fig. 2   Visualization of weak data augmentation and strong data augmentation strategies together. The first 
two are the original image and the strong data augmentation cutmix. The remaining ones are the weak data 
augmentation, from top to bottom: Flipping, rotating, translating/shifting, and cropping
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mAP is presented based on 80 object classes. Then, we selected VOC07 and VOC12 from 
the PASCAL VOC dataset as labeled and unlabeled sets, respectively.

4.2 � Implementation details

We applied the CISO framework to Swin Transformer. In this article, we are use of � , �u , 
and � . The three hyperparameters �u and � are set to 1.0 and 1.0 respectively, while � is 
dynamic, i.e., τ ≥ Mean (IoU). The initialization of our network weights is all performed by 
the ImageNet pre-training model. We selected 1%, 5%, and 10% MS-COCO protocols, the 
experiments were performed by using a quick learning schedule. Furthermore, our training 
parameters were kept consistent with STAC and instant-teaching, as detailed in Table 1.

Although we adopted Swin Transformer as the feature extractor, we took use of Faster 
R-CNN as the detector to make a fair comparison with the experimental results of other 
models. Besides, we also conducted an experiment using the same backbone network 
ResNet-50 as the other model to verify the validity of our model.

4.3 � Results

In the last two years, semi-supervised visual object detection methods have gradually 
gained attention. We compare our method with other state-of-the-art semi-supervised 
object detection methods and report the mAP and AP values for each protocol, the results 
of the comparison are shown in Tables 2 and 3. Based on the experimental protocols, we 
find out that our proposed CISO outperformed all other SSOD methods to achieve the 
state-of-the-art outcome, which is evident that collaborative iteration and mean thresh-
olding strategy significantly improved the performance of semi-supervised visual object 
detection.

Specifically, in Table 2, under the 1% protocol, our CISO’s mAP value reached 22.00, 
an improvement up to 1.54 mAP; under the 5% protocol, our CISO increased the mAP 
value from Soft Teacher [50] method from 30.74 to 30.90, resulting in an improvement 
of 0.16 mAP values; under 10% protocol, our CISO improved the mAP value from Soft 
Teacher’s result from 34.04 to 36.20, which improves the mAP value by 2.16. Finally, 
compared with the new semi-supervised learning baseline, LabelMatch [7], our mAPs 
is 0.71 higher under 10% of the protocol. Even for our experiments using ResNet-50 as 
the backbone network, CISO still outperforms other models, with mAPs of 21.04, 29.50, 
and 34.20 for 1%, 5%, and 10% protocols, respectively. The adoption of Swin Transformer 
indicates that our method is also applicable to the Transformer model with a self-attention 
mechanism. As depicted in Table 3, when we used VOC07 and VOC12 dataset as labeled 
and unlabeled data respectively, our CISO* increased the AP50:95 from 50.00 to 51.77 

Table 1   Training parameters of 
our framework

Classes Parameters

Initial learning rate 0.01
Momentum 0.90
Weight decay 1e-4
Training step 180 K
Learning rate decays (120 K, 165 K) 10
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compared to the Instant Teaching. Afterwards, we added 20 categories of MS-COCO data-
set to the unlabeled data. When there is more unlabeled data, we also found that the AP50:95 
of CISO* is 3.03 higher than that of the instant teaching. In addition, for the application of 
Swin Transformer, our method’s AP50:95 is also higher than other methods, verifying the 
effectiveness of our model.

We observed that the improvement in mAP value became more prominent as the 
amount of labeled data increased, from an improvement 1.54 mAP in the 1% protocol to an 
improvement 2.16 mAP in the 10% protocol. We find that this problem is related to the fact 
that we released the pseudo-labeled data back into the unlabeled data. This might be due 
to the release of the pseudo-labeled data, which leads to a higher probability of extracting 
duplicate pseudo-labeled data again in the next iteration. We leave this consideration for 
later investigation. Moreover, Fig. 3 shows the prediction results.

Table 2   Comparisons of mAP results of different semi-supervised object detection methods using MS-COCO 
dataset. Ours (CISO*) indicate that we are use of ResNet-50 as the backbone network for the implementation, 
Ours (CISO) shows Swin Transformer was selected as the backbone network for the implementation

Method 1% 5% 10%

Anchor based Supervised 9.05 ± 0.16 18.47 ± 0.22 23.86 ± 0.81
CSD [15] 10.20 ± 0.15 18.90 ± 0.10 24.50 ± 0.15
STAC [40] 13.97 ± 0.35 24.38 ± 0.12 28.64 ± 0.21
DETReg [5] 14.58 ± 0.30 24.80 ± 0.20 29.12 ± 0.20
Instant Teaching [60] 18.05 ± 0.15 26.75 ± 0.05 30.40 ± 0.05
ISMT [51] 18.88 ± 0.38 26.37 ± 0.24 30.53 ± 0.52
Unbiased Teacher [25] 20.75 ± 0.12 28.27 ± 0.11 31.50 ± 0.10
Soft Teacher [50] 20.46 ± 0.39 30.74 ± 0.08 34.04 ± 0.14
LabelMatch [7] 25.81 ± 0.28 32.70 ± 0.18 35.49 ± 0.17

Anchor free HT [43] 16.96 ± 0.36 27.70 ± 0.15 31.61 ± 0.28
Ours (CISO*) 21.04 ± 0.18 29.50 ± 0.21 34.20 ± 0.12
Ours (CISO) 22.00 ± 0.17 30.90 ± 0.15 36.20 ± 0.26

Table 3   Comparisons of 
AP results of different semi-
supervised object detection 
methods using PASCAL VOC 
dataset

labeled Unlabeled Methods AP50 AP50:95

VOC07 None Supervised 72.75 42.04
VOC07 VOC12 CSD [15] 74.70 -

STAC [40] 77.45 44.64
Instant Teaching [60] 79.20 50.00
Ours (CISO)* 80.39 51.77
Ours (CISO) 81.44 52.98

VOC07 VOC12 + COCO 
(20 classes)

CSD [15] 75.10 -
STAC [40] 79.08 46.01
Instant Teaching [60] 79.90 50.80
Ours (CISO*) 83.03 53.83
Ours (CISO) 84.48 55.30
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5 � Ablation study

5.1 � Implementation details analysis of the number of mean iterations

In Fig. 1, we detailed that the mean iteration part in the green dashed box is required to iterate 
for a number of 4 iterations, so we analyze the impact of the number of Mean Iteration in this 
section. We tested the model under the protocol of 10% MS-COCO, with the remaining 90% 
being unlabeled data. The experimental results are shown in Table 4, where we see that six 
experiments were conducted with the number of iterations set to 1, 2, 3, 4, 5, and 6, respectively. 
As the number of iterations varies from 1 to 6, we conclude that the performance of our model 
is getting progressively better. However, starting from iteration number 5, the performance of 
the model tends to level off. By 6-th iteration, the mAP has been improved only 0.06. Therefore, 
the performance and efficiency of the model will remain optimal if the number of iterations is 4.

5.2 � Strong data augmentation

Since data augmentation strategies affect model performance in semi-supervised visual 
object detection models, we are use of weak-strong data augmentation strategies in CISO. 
However, the impact of solid data augmentation on model performance is much signifi-
cant. For a fair comparison, we took advantage of the cutmix strategy while retaining the 
Color + Cutout strategy.

Fig. 3   The prediction results of our proposed framework

Table 4   Comparisons of mAP 
with different mean iterations

The number of mean iterations mAP

1 27.40
2 29.80
3 33.60
4 36.20
5 36.40
6 36.46
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In Table 5, we summarize the mAP values using the different robust data augmentation 
strategies. If we take use of only Color + Cutout and Geometric strategies, the mAP value 
of our method does not improve much, only 1.26. Furthermore, the model performance 
is improved by using the Cutmix strategy, with an mAP value improvement of 0.50 com-
pared to using Mixup and Mosaic. This validates our conjecture that the Cutmix strategy 
improves pseudo-label quality by not adding pseudo-pixel information to the data. CISO 
obtained the highest mAP value of 29.70 using the Cutmix data augmentation method. The 
analysis suggests that we are able to improve the performance of SSOD using cutmix. The 
tests in this section are based on a 5% MS-COCO protocol.

5.3 � Analysis

The confidence threshold � is a significant coefficient in semi-supervised target detection, 
and its setting directly affects the performance of the model. As other SSOD methods have 
taken a constant � , we set � to be dynamically changing, and obtain pseudo-label accord-
ing to the criterion that � is greater than or equal to the mean value. Since the reliable data 
and unreliable data have been generated after each iteration is different, the average value � 
taken each time is dynamic � (by using 10% MS-COCO protocol).

We see from Table 6 that the highest model performance is achieved if � is averaged, 
with a mAP 36.20. Moreover, the mAP of the model continues decreasing as τ decreases. 
This confirms our hypothesis that the quality of the pseudo-label improves if � is dynamic. 
Finally, whether there is a more suitable dynamic τ other than the mean value that can be 
applied to SSOD is the subject of our future research work.

Our study investigates the impact of the balance coefficient �u on the model’s perfor-
mance by incorporating it into the loss function. In this section, we conduct testing using 
the 10% MS-COCO protocol. We set the values of τ to the dynamic mean and test the 
model with different values of �u , specifically 0.25, 0.50, 1.00, 2.00, 3.00, and 4.00. Our 

Table 5   Comparisons of mAP values of CISO with different strong data augmentation. For a fair compari-
son, we keep the Color + Cutout strategy

Methods Strong data augmentations mAP

Color + Cutout Geometric Mixup Mosaic Cutmix

STAC​
√ √

23.14
Instant Teaching

√ √ √
25.60

CISO
√ √

24.40
√ √ √

29.20
√ √

29.70

Table 6   Comparisons of mAP 
values with various values of 
confidence threshold �

� mAP

0.30 29.40
0.50 31.60
0.70 33.60
0.90 34.80
Mean (IoU) 36.20
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results, presented in Table  7, demonstrate that the model performs the best if �u is set 
to 1.0. However, if �u=2.0, though the performance of the model decreases, the mAP is 
35.80, which is only 0.40 lower than 36.20. Furthermore, though the model performance 
decreases with the change of other values of �u , the mAP value decreases most at �u=0.25 
by 5. We observe that our proposed framework is relatively robust to �u.

Table 7   Comparison of mAP 
values with various vlues of 
balance coefficient �

u

�
u

mAP

0.25 30.20
0.50 32.50
1.00 36.20
2.00 35.60
3.00 32.90
4.00 31.40

Table 8   Comparison of mAP 
values with various vlues of 
balance coefficient �

u

Mean Iteration mAP

33.10
√

36.20

Fig. 4   The predicted pseudo-label. The top two images and the bottom two images were obtained from the 
non-Mean Iteration training and Mean Iteration training, respectively
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In addition to the mean � , we also propose mean iterations to improve the quality of the 
pseudo-label by using the unlabeled data as much as possible. This is performed based on 
the dynamic mean � and focuses on releasing the pseudo-label extracted in each iteration 
into the unlabeled data. As shown in Table 8, the mAP value without Mean Iteration is 
33.10, which is lower than the value 3.10. Furthermore, Fig. 4 shows the visualization of 
pseudo-labels of the unlabeled data. This result is generated based on whether or not the 
Mean Iteration strategy is used. We see that using the Mean Iteration strategy is effective in 
generating more accurate pseudo-label, which in turn improves model performance. In this 
section, we still test it with the 10% MS-COCO protocol.

Finally, analysis of the size of unlabeled data is also an essential necessary. There-
fore, we evaluated the 5% and 10% protocols of MS-COCO dataset. The dimensions of 
unlabeled data were set according to 1, 2, 4, and 8 times of the labeled data. Table 9 
shows the comparison results of mAP values with variable scales of unlabeled data. 
We see that our method outperforms STAC and instant teaching, which indicates that 
CISO can efficiently utilize pseudo label data.

6 � Conclusion

Our research presents a novel semi-supervised object detection (SSOD) learning strategy, 
CISO, which employs knowledge distillation and weak-strong data augmentation tech-
niques on unlabeled data. In addition, it makes full use of unlabeled data for iterative train-
ing. To tackle the problem of model overfitting, caused by the inability to update pseudo-
labels, we introduce a Mean Iteration scheme. Our work effectively leverages unlabeled 
data to enhance model performance. While we evaluate CISO on the Swin Transformer 
with a self-attentive mechanism, our approach can be applied to other detectors as well. 
We conduct extensive experiments on the MS-COCO and PASCAL VOC datasets, and our 
proposed method demonstrates impressive performance, surpassing other state-of-the-art 
methods with higher mAP values. Currently, our research work does not address the selec-
tion of training samples and merely selects training data randomly from the dataset. How-
ever, in practical applications, labeled and unlabeled data may not adhere to the assumption 
of independent and identically distributed data since unlabeled data may originate from 
scenarios different from those of the labeled data. Therefore, our future work will focus on 
improving the performance of the SSOD model by exploring methods for selecting training 
samples that take into account of the distribution differences.

Table 9   Comparison of mAP values with various scales of unlabeled data

Methods Labeled size Unlabeled size

1 × 2 × 4 × 8 × Full

STAC [40] 5% COCO 19.81 20.79 22.09 23.14 24.38
Instant Teaching [60] 23.60 24.30 25.30 25.60 25.60
Ours (CISO*) 26.71 27.63 28.28 28.60 28.65
STAC [40] 10% COCO 25.38 26.52 27.33 27.95 28.64
Instant Teaching [60] 28.80 29.00 29.20 29.50 29.53
Ours (CISO*) 32.10 32.42 32.67 32.87 32.91
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