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Brain, Gene, a60. Brain, Gene, and Quantum Inspired
Computational Intelligence

Nikola Kasabov

This chapter discusses opportunities and challenges
for the creation of methods of computational
intelligence (CI) and more specifically – ar-
tificial neural networks (ANN), inspired by
principles at different levels of information
processing in the brain: cognitive, neuronal,
genetic, and quantum, and mainly, the issues
related to the integration of these principles into
more powerful and accurate CI methods. It is
demonstrated how some of these methods can
be applied to model biological processes and to
improve our understanding in the subject area;
generic CI methods being applicable to challeng-
ing generic AI problems. The chapter first offers a
brief presentation of some principles of informa-
tion processing at different levels of the brain and
then presents brain inspired, gene inspired, and
quantum inspired CI. The main contribution of the
chapter, however, is the introduction of meth-
ods inspired by the integration of principles from
several levels of information processing, namely:

1. A computational neurogenetic model that in
one model combines gene information related
to spiking neuronal activities.

2. A general framework of a quantum spiking
neural network (SNN) model.

3. A general framework of a quantum computa-
tional neurogenetic model (CNGM).

Many open questions and challenges are
discussed, along with directions for further
research.
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60.1 Introduction

The TS
0

TS
1 brain is a dynamic information processing

system that evolves its structure and functionality in
time through information processing at different levels –
Fig. 60.1: quantum, molecular (genetic), single neuron,
ensemble of neurons, cognitive, evolutionary.

Principles from each of these levels have been al-
ready used as inspiration for CI methods, and more
specifically – for methods of ANN. The chapter focuses
on the interaction between these levels and mainly on
how this interaction can be modeled and how it can be
used in principle to improve existing CI methods and
for a better understanding of brain, gene, and quantum
processes.

At the quantum level, particles (atoms, ions, elec-
trons, etc.), which make every molecule in the material
world, move continuously, being in several states at the
same time, and are characterized by probability, phase,
frequency, and energy.

At a molecular level, RNA and protein molecules
evolve in a cell and interact in a continuous way, based
on the information stored in the DNA and on external
factors, and affect the functioning of a cell (neuron)
under certain conditions.

At the level of a neuron, the internal information
processes and the external stimuli cause the neuron to
produce a signal that carries information to be trans-
ferred to other neurons.

At the level of neuronal ensembles, all neurons op-
erate in a concert, defining the function of the ensemble,
for instance the perception of a spoken word.

6. Evolutionary (population/generation) processes

5. Brain cognitive processes

4. System information processing (e.g., neural ensemble)

3. Information processing in a cell (neuron)

2. Molecular information processing (genes, proteins)

1. Quantum information processing 

Fig. 60.1 Levels of information processing in the brain and the
interaction between the levels

At the level of the whole brain, cognitive pro-
cesses take place, such as language and reasoning, and
global information processes are manifested, such as
consciousness.

At the level of a population of individuals, species
evolve through evolution, changing the genetic DNA
code for a better adaptation.

The information processes at each level shown in
Fig. 60.1 are very complex and difficult to understand,
but much more difficult to understand is the interaction
between the different levels. It may be that understand-
ing the interaction through its modeling would be a key
to understanding each level of information processing in
the brain and perhaps the brain as a whole. Using prin-
ciples from different levels in one ANN CI model and
modeling their relationship can lead to a next genera-
tion of ANN as more powerful tools to understand the
brain and to solve complex problems.

Some examples of CI models that combine prin-
ciples from different levels shown in Fig. 60.1 are:
computational neurogenetic models [60.1–3], quantum
inspired CI and ANN [60.4, 5], and evolutionary mod-
els [60.6, 7]. Suggestions are made that modeling of
higher cognitive functions and consciousness in par-
ticular can be achieved if principles from quantum
information processing are considered [60.8, 9]. There
are many issues and open questions to be addressed
when creating CI methods that integrate principles from
different levels; some of these are presented in this
chapter.

In Sect. 60.2 models inspired by information pro-
cesses in the brain, which include local learning
evolving connectionist systems (ECOS) and SNN are
discussed briefly. Section 60.3 presents CI methods in-
spired by genetic information processes, mainly models
of gene regulatory networks (GRN). In Sect. 60.4, the
issue of combining neuronal with genetic information
processing is discussed and the principles of CNGM
are presented. Section 60.5 presents some ideas behind
quantum inspired CI. Section 60.6 presents a model
of a quantum inspired SNN and offers a theoretical
framework for the integration of principles from quan-
tum, -genetic, and neuronal information processing.
Section 60.7 concludes the chapter with more open
questions and challenges for the future.
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60.2 CI and ANN Models Inspired by Neuronal and Cognitive Processes
in the Brain

Many CI methods, in particular ANN, are brain inspired
(using some principles from the brain), or brain-like
(more biologically plausible models, usually developed
to model a brain function) [60.1, 10–15]. Examples are:
models of single neurons and neural network ensem-
bles [60.16–22], cognitive ANN models [60.14, 15, 23,
24], etc.

These models have been created with the goals
of:

• Modeling and understanding brain functions.• Creating powerful methods and systems of CI for
solving complex problems in all areas of science
and the humanity.

In this section we present only two groups of models,
namely ECOS and SNN ,as they will be used in other
sections to create models that incorporate principles
from other levels of information processing.

60.2.1 Local, Knowledge-Based Learning
Evolving Connectionist Systems –
Weakly Brain Inspired Models

ECOS are adaptive, incremental learning and knowl-
edge representation systems that evolve their structure
and functionality, where there is a connectionist archi-
tecture in the core of a system that consists of neurons
(information processing units) and connections between
them [60.25]. ECOS is a CI system based on neural
networks, but using other techniques of CI, that oper-
ates continuously in time and adapts its structure and
functionality through continuous interaction with the
environment and with other systems. The adaptation is
defined through:

1. A set of evolving rules.
2. A set of parameters (genes) that are subject to

change during the system operation.
3. An incoming continuous flow of information, possi-

bly with unknown distribution.
4. Goal (rationale) criteria (also subject to modifica-

tion) that are applied to optimize the performance
of the system over time.

ECOS learning algorithms are inspired by brain-like
information processing principles, e.g.,

1. They evolve in an open space, where the dimensions
of the space can change.

2. They learn via incremental learning, possibly in an
on-line mode.

3. They learn continuously in a lifelong learning mode.
4. They learn both as individual systems and as an

evolutionary population of such systems.
5. They use constructive learning and have evolving

structures.
6. They learn and partition the problem space locally,

thus allowing for a fast adaptation and tracing the
evolving processes over time.

7. They evolve different types of knowledge rep-
resentation from data, mostly a combination of
memory-based and symbolic knowledge.

Many ECOS have been suggested so far, where
the structure and the functionality of the models
evolve through incremental, continuous learning from
incoming data, sometimes in an on-line mode, and
through interaction with other models and the en-
vironment. Examples are: growing SOMs [60.17],
growing gas [60.26], RAN [60.27], growing RBF net-
works [60.28, 29], FuzzyARTMAP [60.14], EFuNN
[60.25, 30, 31], DENFIS [60.32], and many more.

A block diagram of EFuNN is given in Fig. 60.2. It
is used to model GRN in Sect. 60.5. At any time of the
EFuNN continuous incremental learning, rules can be
derived from the structure, which rules represent clus-
ters of data and local functions associated with these
clusters

IF < data is in cluster Nc j ,

defined by a cluster center N j ,

a cluster radius R j

and a number of examples

Njexamp in this cluster >

THEN < the output function is Fc > (60.1)

In the case of DENFIS, first-order local fuzzy rule
models are derived incrementally from data, for exam-
ple,

IF < the value of × 1 is in the area defined by

a Gaussian membership function with a center

at 0.1 and a standard deviation of 0.05 > TS
3 ,

AND < the value of × 2 is in the area defined

by a Gaussian function with parameters

(0.25, 0.1) respectively >
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x1, x2, ..., xn

Outputs

Fuzzy outputs

Fuzzy input
layer

Rule (case)
layer

inda1
(t)

Inputs

W0

W1

W4

W2A1
(t)

inda1
(t–1) W3

A1
(t–1)

Fig. 60.2 An EFuNN architecture
with a short term memory and feed-
back connections [60.33]. It is used
in Sect. 60.5 to model GRN with in-
puts being the expression of genes at
a time (t) and the outputs being the
expression of genes/proteins at time
(t + dt)

THEN < the output y is calculated by the formula

y = 0.01+0.7 × 1+0.12 × 2 > (60.2)

In the case of EFuNN, local simple fuzzy rule mod-
els are derived, for example,

IF × 1 is (Medium 0.8) and × 2 is (Low 0.6)

THEN y is (High 0.7), radius R = 0.24;
Nexamp = 6 , (60.3)

where: low, medium and high are fuzzy membership
functions defined for the range of each of the variables
×1, ×2, and y; the number and the type of the mem-
bership functions can either be deduced from the data
through learning algorithms, or can be predefined based
on human knowledge [60.34, 35]; R is the radius of the
cluster; and Nexamp is the number of examples in the
cluster.

A further development of the EFuNN and the DEN-
FIS local ECOS models is the transductive weighted
neuro-fuzzy inference engine (TWNFI) [60.30, 36]. In
this approach, for every new vector (sample/example S)
a personalized model is developed from existing near-
est samples, where each of the variables is normalized
in a different subrange of [0,1] so that they have a dif-
ferent influence on the Euclidean distance from (60.1),
therefore they are ranked in terms of their importance
to the output calculated for any new sample individu-
ally. Samples are also weighted in the model based on
their distance to the new sample, where in the Euclidean

distance formula variables are also weighted. Each per-
sonalized model can be represented as a rule (or a set
of rules) that represents the personalized profile for the
new input vector. The TWNFI model is evolving as new
data samples, added to a data set, can be used in any
further personalized model development. This includes
using different sets of variables and features [60.30,36].

ECOS have been applied to both model brain func-
tions and as general CI tools [60.30]. In one application,
an ECOS was trained to classify EEG data measured
from a single person’s brain, into four classes repre-
senting four perceptual states – hearing, seeing, both,
and nothing [60.30]. In another application, ECOS were
used to model emerging acoustic clusters, when multi-
ple spoken languages are learned [60.30].

ECOS have been applied to a wide range of CI
applications, such as adaptive classification of gene ex-
pression data, adaptive robot control, adaptive financial
data modeling, adaptive environmental, and social data
modeling [60.30].

ECOS are used in Sect. 60.3 for building GRN
models.

60.2.2 Spiking Neural Networks –
Strongly Brain Inspired Models

Spiking models of a neuron and of neural networks –
SNN, have been inspired and developed to mimic more
biologically the spiking activity of neurons in the brain
when processing information.
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Binary events

Refractory period
x1

x2

x3

x4

Integration
+ leakage

Spike

Fig. 60.3 A general representation of a spiking neuron
model (after [60.13])

One model – the spike response model (SRM) of
a neuron [60.31,37] is described below and extended in
Sect. 60.4 to a CNGM.

A neuron i receives input spikes from presynaptic
neurons j ∈ Γi , where Γi is a pool of all neurons presy-
naptic to neuron i. The state of the neuron i is described
by the state variable ui (t) that can be interpreted as
a total postsynaptic potential (PSP) at the membrane of
soma (Fig. 60.3). When ui (t) reaches a firing threshold
ϑi (t) TS

4 , neuron i fires, i. e., emits a spike. The value
of the state variable ui (t) is the sum of all postsynaptic
potentials, i. e.,

ui (t) =
∑

j∈Γi

∑

t j∈Fj

Jij

(
t − t j −Δax

ij

)
. (60.4)

The weight of the synaptic connection from neuron
j to neuron i is denoted by Jij . It takes positive (neg-
ative) values for excitatory (inhibitory) connections,
respectively. Depending on the sign of Jij , a presynap-
tic spike generated at time t j increases (or decreases)
ui (t) by an amount εij (t − t j −Δax

ij ). Δax
ij is an axonal

delay between neurons i and j which increases with
Euclidean distance between neurons.

The positive kernel εij (t − t j −Δax
ij ) = εij (s) ex-

presses an individual postsynaptic potential (PSP)
evoked by a presynaptic neuron j on neuron i. A double
exponential formula can be used

ε
synapse
ij (S)Asynapse

(
exp

(
s

τ
synapse
decay

)

− exp

(
− s

τ
synapse
rise

))
. (60.5)

The following notations are used above: τ
synapse
decay/rise

are time constants of the rise and fall of an indi-
vidual PS, A is the PSP’s amplitude, and synapse
represents the type of the activity of the synapse from
the neuron j to neuron i that can be measured and
modeled separately for fast excitation, fast inhibition,

slow excitation, and slow inhibition, all integrated in
formula [60.13]. These types of PSPs are based on
neurobiology [60.38] and will be the basis for the de-
velopment of the computational neurogenetic model in
Sect. 60.4, where the different synaptic activities are
represented as functions of different proteins (neuro-
transmitters and neuroreceptors).

External inputs from the input layer are added at
each time step, thus incorporating the background noise
and/or the background oscillations. Each external input
has its own weight Jext input

ik and amount of signal εk(t),
such that

uext input
i (t) = Jext input

ik εik(t). (60.6)

It is optional to add some degree of Gaussian noise
to the right-hand side of the equation above to obtain
a stochastic neuron model instead of a deterministic
one.

SNN models can be built with the use of the above
spiking neuron model. Spiking neurons within an SNN
can be either excitatory or inhibitory. Lateral connec-
tions between neurons in an SNN may have weights
that decrease in value with distance from neuron i for
instance, according to a Gaussian formula, while the
connections between neurons themselves can be estab-
lished at random.

SNN can be used to build biologically plausi-
ble models of brain functions. Examples are given
in [60.13, 31, 37, 38]. Figure 60.4 graphically shows an
application of an SNN to model brain functions that
connect signals from the thalamus to the temporal cor-
tex (from [60.13]).

Other applications of SNN include image recogni-
tion. In [60.39] an adaptive SNN model is developed
where new SNN submodules (maps) are created in-
crementally to accommodate new data samples over
time. For example, a new submodule of several spik-
ing neurons and connections evolves when a new class
of objects (e.g., a new face in the case of a face
recognition problem) is presented to the system for
learning at any time of this process. When there are
no active inputs presented to the system, the system
merges close spiking neuronal maps depending on their
similarity.

Developing new methods for learning in evolv-
ing SNN is a challenging direction for future research
with a potential for applications in both computational
neuroscience and pattern recognition, e.g., multimodal
information processing – speech, image, odor, gestures,
etc.

SNN are extended to CNGM in Sect. 60.4.
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Cortex Gaussian lateral
connections

One-to-many
feedforward
input connections

Spiking
neural
network

Input layer
Thalamus

Jij

σij

Fig. 60.4 An example of a SNN to
model a function of the cortex with
internal inputs from the thalamus and
external input stimuli. About 20% of
N = 120 neurons are inhibitory neu-
rons that are randomly positioned on
the grid (filled circles). External in-
put is random with a defined average
frequency (e.g., between 10–20 Hz)
(after [60.13])

60.2.3 Open Questions

Further development of brain-like or brain inspired
ANN requires some that some questions be addressed:

• How much should an ANN mimic the brain in order
to become an efficient CI model?

• How is a balance between structure definition and
learning achieved in ANN?• How can ANN evolve and optimize their parameters
and input features over time in an efficient way?• How can incremental learning in ANN be applied
without the presentation of an input signal (e.g.,
sleep learning)?

60.3 Gene Inspired Methods of Computational Intelligence

60.3.1 The Central Dogma in Molecular
Biology and GRN

The central dogma of molecular biology states that
DNA, which resides in the nucleus of a cell or a neuron,
transcribes into RNA and then translates into proteins,
which process is continuous, evolving, so that proteins,
called transcription factors, cause genes to transcribe,
etc. [60.40, 41] (Fig. 60.5).

The DNA is a long, double stranded sequence
(a double helix) of millions or billions of 4 base
molecules (nucleotides) denoted as A, C, T, and G,
which are chemically and physically connected to each
other through other molecules. In the double helix, they

RNADNA-
genes Proteins

Translation
mRNA into protein

productionTranscription
Genes copied as

mRNA

Protein-gene feedback loop through transcription factors

Output cell function

Fig. 60.5 The genes in the DNA transcribe into RNA and then
translate into proteins that define the function of a cell. (The central
dogma of molecular biology)

make pairs such that every A from one strand is con-
nected to a corresponding T on the opposite strand and
every C is connected to a G. A gene is a sequence of
hundreds and thousands of bases as part of the DNA that
is translated into protein. Only less than 5% of the DNA
of the human genome constitutes genes, the other part
is a noncoding region that contains useful information
as well.

The DNA of each organism is unique and resides in
the nucleus of each of its cells. But it is the proteins that
are expressed from the genes and define the function of
the cell that make a cell alive. The genes and proteins in
each cell are connected in a dynamic GRN consisting of
regulatory pathways.

Normally, only a few hundreds of genes are
expressed as proteins in a particular cell. At the tran-
scription phase, one gene is transcribed in many RNA
copies and their number defines the expression level
of this gene [60.40, 41]. Some genes may be over-
expressed, resulting in too much protein in the cell,
some genes may be under-expressed resulting in too lit-
tle protein; in both cases the cell may be functioning
in a wrong way, which may be causing a disease. Ab-
normal expression of a gene can be caused by a gene
mutation – a random change in the code of the gene,
where a base molecule is either inserted or deleted, or
altered into another base molecule. Drugs can be used
to stimulate or suppress the expression of certain genes
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and proteins, but how that will affect indirectly the other
genes related to the targeted one must be evaluated and
this is where computational modeling of GRN can help.

It is always difficult to establish the interaction
between genes and proteins. The question What will
happen with a cell or the whole organism if one gene is
under-expressed or missing? is now being attempted by
the use of a technology called knock-out gene technol-
ogy. This technology is based on the removal of a gene
sequence from the DNA and letting the cell/organism to
develop, where parameters are measured and compared
with the parameters when the gene was not missing.

60.3.2 GRN-ANN Models

Modeling GRN is the task of creating a dynamic
interaction network between genes that defines the
next time expression of genes based on their previous
time expression. A detailed discussion of the meth-
ods for GRN modeling can be found in [60.41, 43,
44]. Models of GRN, derived from gene expression
RNA data, have been developed with the use of differ-
ent mathematical and computational methods, such as:
statistical correlation techniques; evolutionary compu-
tation; ANN; differential equations, both ordinary and
partial; Boolean models; kinetic models; state-based
models; and others [60.41].

A model of GRN, trained on time-course data is
presented in [60.42] where the human response to fi-
broblast serum data is used (Fig. 60.6) and a GRN is
extracted from it (Fig. 60.7). The method uses a genetic
algorithm to select the initial cluster centers of the time
course clustered gene expression values and then applies
a Kalman filter to derive the gene connecting equations.

In [60.44] a GRN-ECOS is proposed and applied on
small-scale cell line gene expression data. An ECOS is
evolved with inputs being the expression level of a cer-
tain number of selected genes (e.g., 4) at a time moment
(t) and the outputs being the expression level of the
same or other genes/proteins at the next time moment
(t + dt). After an ECOS is trained on time course gene
expression data, rules are extracted from the ECOS and
linked between each other in terms of time-arrows CE

5

of their creation in the model, thus representing the
GRN. The rule nodes in an ECOS capture clusters of
input genes that are related to the output genes/proteins
at the next time moment. Figure 60.7 shows an example
of EFuNN used for modeling GRN [60.33, 44].

The rules extracted from an EFuNN model, for
example, represent the relationship between the gene
expression of a group of genes G(t) at a time moment t

0 5 10 15 20

Log10 (expression)

Time (h)

2

1.5

1

0.5

0

–0.5

–1

Fig. 60.6 Time-course gene expression data representing the re-
sponse of thousands of genes of fibroblast to serum (after [60.42])

and the expression of the genes at the next time moment
G(t + dt), e.g.,

IF g13(t) is High (0.87) and g23(t) is Low (0.9)

THEN g87(t + dt) is High (0.6) and

g103(t + dt) is Low. (60.7)

Through modifying a threshold for rule extraction
one can extract stronger or weaker patterns of a dynamic
relationship.

Adaptive training of an ECOS makes incremental
learning of a GRN possible, as well as adding new in-
puts/outputs (new genes) to the GRN CE

6 .

10

1

3

8 0.4

6

92 4

0.8

5

0.8

7
0.6

0.3

0.5

–0.4

–0.4

–0.4

–0.3

–0.4

–0.3–0.5

Fig. 60.7 A GRN obtained with the use of the method
from [60.42] on the data from Fig. 60.5 after the time
gene expression series are clustered into 10 clusters. The
nodes represent gene clusters while the arcs represent the
dynamic relation (interaction) between these gene groups
over consecutive time moments

CE
5 Please check terminology.

CE
6 Please check that this is the intended meaning.
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A set of DENFIS models can be trained, one for
each gene gi , so that an input vector is the expres-
sion vector G(t) and the output is a single variable
gi(t + dt). DENFIS allows for a dynamic partitioning
of the input space. Takagi–Sugeno fuzzy rules, which
represent the relationship between gene gi with the rest
of the genes, are extracted from each DENFIS model,
e.g.,

IF g1 is (0.63, 0.70, 0.76) and

g2 is (0.71, 0.77, 0.84) and

g3 is (0.71, 0.77, 0.84) and

g4 is (0.59, 0.66, 0.72)

THEN g5 = 1.84−1.26g1 −1.22g2

+ 0.58g3 −0.03g4. (60.8)

The ECOS structure from Fig. 60.2 can be used in
a multilevel, hierarchical way, where the transcription
process is represented in one ECOS and translation in
another ECOS, which inputs are connected to the out-
puts of the first one, using feedback connections to
represent transcription factors.

Despite the variety of different methods used so far
for modeling GRN and for systems biology in general,
there is no single method that will suit all requirements
to model a complex biological system, especially to
meet the requirements for adaptation, robustness, and
information integration.

In the next section GRN modeling is integrated with
SNN to model the interaction between genes/proteins in
relation to activity of a spiking neuron and an SNN as
a whole.

60.4 Computational Neurogenetic Models

60.4.1 General Notions

With the advancement of molecular and brain research
technologies more and more data and information are
being made available about the genetic basis of some
neuronal functions (see, for example, the brain-gene
map of a mouse [60.45] and the brain-gene ontology
BGO in [60.46]).

This information can be utilized to create biolog-
ically plausible ANN models of brain functions and
diseases that include models of gene interaction. This
area integrates knowledge from computer and informa-
tion science, brain science, and molecular genetics and
it is here called CNGM [60.2].

A CNGM integrates genetic, proteomic, and brain
activity data and performs data analysis, modeling,
prognosis, and knowledge extraction that reveals the
relationship between brain functions and genetic in-
formation. Let us look at this process as a process of
building mathematical function or a computational al-
gorithm as follows.

A future state of a molecule M′ or a group of
molecules (e.g., genes and proteins) depends on its cur-
rent state M and on an external signal Em

M′ = Fm(M, Em). (60.9)

A future state N ′ of a neuron or an ensemble of neu-
rons will depend on its current state N and on the state
of the molecules M (e.g., genes) and on external signals
En

N ′ = Fn(N, M, En). (60.10)

Finally, a future neuronal state C′ of the brain will
depend on its current state C and also on the neuronal N
and the molecular M state, and on the external stimuli
Ec

C′ = Fc(C, N, M, Ec). (60.11)

The above set of equations (or algorithms) is a gen-
eral one and in different cases it can be implemented
differently, e.g., one gene – one neuron/brain func-
tion; multiple genes – one neuron/brain function, no
interaction between genes; multiple genes – multi-
ple neuron/brain functions, where genes interact in
a GRN and neurons also interact in a neural net-
work architecture; multiple genes – complex brain/
cognitive function/s, where genes interact within GRN
and neurons interact in several hierarchical neural
networks.

Several CNGM models have been developed so far,
varying from modeling a single gene in a biologically
realistic ANN model [60.3] to modeling a set of genes
forming an interaction GRN [60.13,43]. In the next sec-
tion we give an example of a CNGM that combines
SNN and GRN into one model [60.13].

60.4.2 A Computational Neurogenetic
Model that Integrates GRN Within
an SNN Model

The main idea behind the model proposed in [60.2] is
that interaction of genes in neurons affect the dynam-
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(7.5–12.5 Hz)

(12.5–18 Hz)
(18–30 Hz)
(30–50 Hz)

10 000 20 000 30 000 40 000

OutputANNGRN

50 000 60 000
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Time (ms)

1

0.8

0.6

0.4

0.2

0GABRB

c-jun

AMPAF

IGF-1
FGF-2 GALR1
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Jerky 100bet

C1C

KC mGluR3

NaC GABRA

NMDAR

Fig. 60.8 A CNGM, where a GRN is used to represent the interaction of genes, and a SNN is employed to model a brain
function. The model output is compared against real brain data for validation of the model and for verifying the derived
gene interaction GRN after model optimization is applied [60.13]

ics of the whole ANN through neuronal parameters,
which are no longer constant but change as a function
of gene/protein expression. Through optimization of the
GRN, the initial gene/protein expression values, and the
ANN parameters, particular target states of the ANN
can be achieved, so that the ANN can be tuned to model
real brain data in particular.

This idea is illustrated in Fig. 60.8. The behavior of
the SNN is evaluated by means of the local field poten-
tial (LFP), thus making it possible to attempt modeling
the role of genes in different brain states, where EEG
data is available to test the model. A standard FFT signal
processing technique is used to evaluate the SNN output
and to compare it with real human EEG data. A broader
theoretical and biological background of CNGM con-
struction is given in [60.13].

In general, we consider two sets of genes – a set
Ggen that relates to general cell functions and a set Gspec
that defines specific neuronal information-processing
functions (receptors, ion channels, etc.). The two sets
together form a set G = {G1, G2, . . . , Gn}. We assume
that the expression level of each gene is a nonlin-
ear function of expression levels of all the genes
in G

g j (t +Δt′) = σ

(
n∑

k=1

w jkgk(t)

)
. (60.12)

In [60.13] it is assumed that:

1. One protein is coded by one gene.
2. The relationship between the protein level and the

gene expression level is nonlinear.
3. Protein levels lie between the minimal and maximal

values. Thus, the protein level is expressed by

p j (t +Δt) =
(

pmax
j − pmin

j

)

×σ

(
n∑

k=1

w jk gk(t)

)
+ pmin

j . (60.13)

The delay constant introduced in the formula corre-
sponds to the delay caused by the gene transcription,
mRNA translation into proteins and posttranslational
protein modifications, and also the delay caused by gene
transcription regulation by transcription factors.

Some proteins and genes are known to affect the
spiking activity of a neuron represented in an SNN
model by neuronal parameters, such as fast excitation,
fast inhibition, slow excitation, and slow inhibition
(Sect. 60.2). Some neuronal parameters and their cor-
respondence to particular proteins are summarized in
Table 60.1.

Besides the gene coding for the proteins mentioned
above and those directly affecting the spiking dynam-
ics of a neuron CE

7 , a GRN model can include other
genes relevant to a problem in hand, e.g., modeling
a brain function or a brain disease. In [60.13] these
genes/proteins are c-jun, mGLuR3, Jerky, BDNF, FGF-
2, IGF-I, GALR1, NOS, and S100beta [60.13].

The goal of the CNGM in Fig. 60.8 is to achieve
a desired SNN output through optimization of the
model parameters. The LFP of the SNN, defined as
LFP = (1/N)Σui (t), by means of FFT is evaluated in
order to compare the SNN output with the EEG signal
analyzed in the same way. It has been shown that brain
LFPs in principle have the same spectral characteristics
as EEG [60.47].

In order to find an optimal GRN within the SNN
model, so that the frequency characteristics of the
LFP of the SNN model are similar to the brain EEG

CE
7 Please check that this is the intended meaning.
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Table 60.1 Neuronal parameters and related proteins
(PSP; AMPAR: (amino-methylisoxazole-propionic acid)
ampa receptor; NMDAR: (N-methyl-D-aspartate acid)
NMDA receptor; GABRA: (gamma-aminobutyric acid)
GABAA receptor; GABRB: GABAB receptor; SCN:
sodium voltage-gated channel; KCN: kalium (potassium)
voltage-gated channel; CLC: chloride channel; PV: parval-
bumin)

Neuronal parameter amplitude and
time constants of

Protein

Fast excitation PSP AMPAR

Slow excitation PSP NMDAR

Fast inhibition PSP GABRA

Slow inhibition PSP GABRB

Firing threshold SCN, KCN, CLC

Late excitatory PSP through GABRA PV

characteristics, the following evolutionary computation
procedure is used:

1. Generate a population of CNGMs, each with
randomly, but constrained, generated values of co-
efficients for the GRN matrix W, initial gene
expression values g(0), initial values of SNN param-
eters P(0), and different connectivity.

2. Run each SNN model over a period of time T and
record the LFP.

3. Calculate the spectral characteristics of the LFP us-
ing FFT.

4. Compare the spectral characteristics of SNN LFP to
the characteristics of the target EEG signal. Evalu-
ate the closeness of the LFP signal for each SNN to
the target EEG signal characteristics. Proceed fur-
ther according to the standard GA algorithm to find
a SNN model that matches the EEG spectral char-
acteristics better than previous solutions.

5. Repeat steps 1 to 4 until the desired GRN and SNN
model behavior is obtained.

6. Analyze the GRN and the SNN parameters for sig-
nificant gene patterns that cause the SNN model to
manifest similar spectral characteristics as the real
data.

The proposed CNGM modeling framework can be
used to find patterns of gene regulation related to brain
functions. In [60.13] some preliminary results of anal-
ysis performed on real human interictal EEG data are
presented. The model performance and the real EEG
data are compared for the following relevant to the prob-
lem subbands: delta (0.5–3.5 Hz), theta (3.5–7.5 Hz),
alpha (7.5–12.5 Hz), beta 1 (12.5–18 Hz), beta 2

(18–30 Hz), and gamma (above 30 Hz). This particu-
lar SNN had an evolved GRN with only 5 genes out of
16 (s100beta, GABRB, GABRA, mGLuR3, c-jun), all
other genes having constant expression values. A GRN
is obtained that has a meaningful interpretation and can
be used to model what will happen if a gene/protein is
suppressed by administering a drug, for example.

In evolving CNGM new genes can be added to
the GRN model at a certain time, in addition to the
new spiking neurons and connections created incremen-
tally, as is the case in evolving SNN. Developing new
evolving CNGM to model brain functions and brain
diseases such as epilepsy, Alzheimer’s, Parkinson’s dis-
ease, schizophrenia, mental retardation, and others is
a challenging problem for future research [60.13, 43].

60.4.3 Open Questions

Some questions emerged from the first CNGM experi-
ments:

• How many different GRNs would lead to similar
LFPs and what do they have in common?• What neuronal parameters should be included in an
ANN model and how can they be linked to activities
of genes/proteins?• What genes/proteins should be included in the
model and can the gene interaction be represented
over time within each neuron?• How can the output activity of the ANN and the
genes be integrated in time, as it is known that neu-
rons spike in millisecond intervals and the process
of gene transcription and translation into proteins
takes minutes?• How can a CNGM be created and evaluated in a sit-
uation of insufficient data?• How can brain activity and the CNGM activity be
measured in order to validate the model?• What useful information (knowledge) can be de-
rived from a CNG model?• How can a CNGM model be adapted incremen-
tally in a situation of new incoming data about brain
functions and genes related to them?

Integrating principles from gene and neuronal infor-
mation processing in a single ANN model raises many
other, more general, questions that need to be addressed
in the future, for example:

• Is it possible to create a truly adequate CNGM of
the whole brain? Would gene-brain maps help in this
respect [60.3]?

Part
A

6
0
.4

nkasabov
Sticky Note
Neuro-genetic model of a spiking neuron.



U
nc

or
re

ct
ed

 P
ro

of

SP
IN

:
12

74
26

08
(S

pr
in

ge
r

H
an

db
oo

k
of

B
io

-/
N

eu
ro

in
fo

rm
at

ic
s)

M
S

ID
:

hb
23

-0
60

Pr
oo

f
1

C
re

at
ed

on
:

17
A

pr
il

20
13

10
:5

0
C

E
T

Brain, Gene, and Quantum Inspired Computational Intelligence 60.5 Quantum Inspired CI 11

In
de

x
en

tr
ie

s
on

th
is

pa
ge

• How can dynamic CNGM be used to trace over time
and predict the progression of a brain diseases, such
as epilepsy and Parkinson’s?• How can CNGM be used to model gene mutation
effects?

• How can CNGM be used to predict drug effects?• How can CNGM help us to understand brain func-
tions better, such as memory and learning?• What CI problems can be efficiently solved with the
use of a brain-gene inspired ANN?

60.5 Quantum Inspired CI

60.5.1 Quantum Level of Information
Processing

At the quantum level, particles (e.g., atoms, electrons,
ions, photons, etc.) are in a complex evolving state all
the time. The atoms are the material that everything is
made of. They can change their characteristics due to
the frequency of external signals. Quantum computa-
tion is based upon physical principles from the theory
of quantum mechanics [60.48].

One of the basic principles is the linear superpo-
sition of states. At a macroscopic or classical level
a system exists only in a single basis state as energy,
momentum, position, spin, and so on. However, at a
microscopic or quantum level a quantum particle (e.g.,
atom, electron, positron, ion) or a quantum system is
in a superposition of all possible basis states. At the
microscopic level any particle can assume different po-
sitions at the same time moment, can have different
values of energy, can have different spins, and so on.
This superposition principle is counterintuitive because
in classical physics one particle has only one position,
energy, spin, etc.

If a quantum system interacts in any way with its en-
vironment, the superposition is assumed to be destroyed
and the system collapses into one single real state as
in the classical physics (Heisenberg). This process is
governed by a probability amplitude. The square of the
intensity for the probability amplitude is the quantum
probability to observe the state.

Another quantum mechanics principle is entan-
glement – two or more particles, regardless of their
location, are in the same state with the same probability
function. The two particles can be viewed as correlated,
undistinguishable, synchronized, coherent. An example
is a laser beam consisting of millions of photons having
the same characteristics and states.

Quantum systems are described by a probability
density ψ that exists in a Hilbert space. The Hilbert
space has a set of states |ϕi〉 forming a basis. A sys-
tem can exist in a certain quantum state |ψ〉, which is

defined as

|ψ〉 =
∑

ci |ϕi〉,
∑

|ci | 2 = 1; , (60.14)

where the coefficients ci may be complex. |ψ〉 is said
to be in a superposition of the basis states |ϕi〉. For ex-
ample, the quantum inspired analog of a single bit in
classical computers can be represented as a qu-bit in
a quantum computer

|x〉 = a|0〉+b|1〉; , (60.15)

where |0〉 and |1〉 represent the states 0 and 1, and a and
b their probability amplitudes, respectively. The qu-bit
is not a single value entity, but is a function of parame-
ters whose values are complex numbers. After the loss
of coherence the qu-bit will collapse into one of the
states |0〉 or |1〉 with the probability a2 for the state |0〉
and probability b2 for the state |1〉.

The state of a quantum particle (represented, for ex-
ample, as a qu-bit) can be changed by an operator called
a quantum gate. A quantum gate is a reversible gate and
can be represented as a unitary operator U acting on
the qu-bit basis states. The defining property of a uni-
tary matrix is that its conjugate transpose is equal to its
inverse. Several quantum gates have been introduced,
such as the NOT gate, controlled NOT gate, rotation
gate, Hadamard gate, etc. [60.49–52].

60.5.2 Why Quantum Inspired CI?

Quantum mechanical computers and quantum algo-
rithms try to exploit the massive quantum parallelism
which is expressed in the principle of superposition.
The principle of superposition can be applied to many
existing methods of CI, where instead of a single state
(e.g., a parameter value, or a finite automaton state, or
a connection weight, etc.) a superposition of states will
be used, described by a wave probability function, so
that all these states will be computed in parallel, re-
sulting in an increased speed of computation by many
orders of magnitude [60.5, 8, 9, 49–57].

Part
A

6
0
.5

nkasabov
Sticky Note
Quantum-inspired computational  intelligence. 



U
nc

or
re

ct
ed

 P
ro

of

SP
IN

:
12

74
26

08
(S

pr
in

ge
r

H
an

db
oo

k
of

B
io

-/
N

eu
ro

in
fo

rm
at

ic
s)

M
S

ID
:

hb
23

-0
60

Pr
oo

f
1

C
re

at
ed

on
:

17
A

pr
il

20
13

10
:5

0
C

E
T

12 Part A Understanding Information Processes in Biological Systems

In
de

x
en

tr
ie

s
on

th
is

pa
ge

Quantum mechanical computers were proposed in
the early 1980s and a description was formalized in
the late 1980s. These computers, when implemented,
are expected to be superior to classical computers in
various specialized problems. Much effort has been
made to extend the principal ideas of quantum mechan-
ics to other fields of interest. There are well-known
quantum algorithms such as Shor’s quantum factoring
algorithm [60.58] and Grover’s database search algo-
rithm [60.50, 54].

The advantage of quantum computing is that while
a system is uncollapsed it can carry out more computing
than a collapsed system, because, in a sense, it is com-
puting in many universes at once. The above quantum
principles have inspired research in both computational
methods and brain study.

New theories (some of them speculative at this
stage) have already been formulated. For example,
Penrose [60.8, 9] argues that solving the quantum mea-
surement problem is prerequisite for understanding the
mind and that consciousness emerges as a macroscopic
quantum state due to a coherence of quantum-level
events within neurons.

60.5.3 Quantum Inspired Evolutionary
Computation and Connectionist
Models

Quantum inspired methods of evolutionary computa-
tion (QIEC) and other techniques were proposed and
discussed in [60.51,55]. They include genetic program-
ming [60.59], particle swarm optimizers [60.60], finite
automata and Turing machines, etc.

In QIEC, a population of n qu-bit individuals at
time t can be represented as

Q(t) = {
qt

1, qt
2, . . . qt

n

}
, (60.16)

where n is the size of the population.

Evolutionary computing with qu-bit representa-
tion has a better characteristic of population diversity
than other representations, since it can represent linear
superposition of states probabilistically. The qu-bit rep-
resentation leads to a quantum parallelism of the system
as it is possible to evaluate the fitness function on a su-
perposition of possible inputs. The output obtained is
also in the form of superposition, which needs to be
collapsed to obtain the actual solution.

Recent research activities have focussed on using
quantum principles for ANN [60.4, 5, 61–63]. Consid-
ering quantum ANN seems to be important for at least
two reasons. There is evidence for the role that quan-
tum processes play in the living brain. Penrose argued
that a new physics binding quantum phenomena with
general relativity can explain such mental abilities as
understanding, awareness, and consciousness [60.9].
The second motivation is the possibility that the field
of classical ANN could be generalized to the promising
new field of quantum computation [60.53]. Both con-
siderations suggest a new understanding of mind and
brain functions, as well as new unprecedented abilities
in information processing. Ezhov and Ventura consider
quantum neural networks as the next natural step in the
evolution of neurocomputing systems [60.4].

Several quantum inspired ANN models have been
proposed and illustrated on small examples. In [60.63]
QIEA is used to train a MLP ANN. Narayanan and
Meneer simulated classical and quantum inspired ANN
and compared their performances [60.5]. Their work
suggests that there are, indeed, certain types of prob-
lems for which quantum neural networks will prove
superior to classical ones.

Other relevant work includes quantum decision
making, quantum learning models [60.64], quantum
networks for signal recognition [60.62], and quantum
associative memory [60.61, 65]. There are also recent
approaches to quantum competitive learning where the
quantum system’s potential for excellent performance is
demonstrated on real-world data sets [60.66, 67].

60.6 Towards the Integration of Brain, Gene, and Quantum Information
Processing Principles: A Conceptual Framework for Future Research

60.6.1 Quantum Inspired SNN

In Sect. 60.4 we presented a CNGM that integrated prin-
ciples from neuronal information processing and gene
information processing in the form of integrating SNN
with GRN. Following some ideas from QI-ANN, we

can expect that QI-SNN and QI-CNGM would open
new possibilities for modeling gene–neuron interactions
related to brain functions and to new efficient AI appli-
cations.

The CNGM from Sect. 60.4 linked principles of in-
formation processing in gene/protein molecules with
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neuronal spiking activity, and then – to the infor-
mation processing of a neuronal ensemble, that is
measured as local field potentials (LFP). How the quan-
tum information processes in the atoms and particles
(ions, electrons, etc.), that make the large gene/protein
molecules, relate to the spiking activity of a neuron and
to the activity of a neuronal ensemble, is not known yet
and it is a challenging question for the future.

What is known at present, is that the spiking activity
of a neuron relates to the transmission of ions and neu-
rotransmitter molecules across the synaptic clefts and
to the emission of spikes. Spikes, as carriers of infor-
mation, are electrical signals made of particles that are
emitted in one neuron and transmitted along the nerves
to many other neurons. These particles are characterized
by their quantum properties. So, quantum properties
may influence, under certain conditions, the spiking ac-
tivity of neurons and of the whole brain, as brains obey
the laws of quantum mechanics (as everything else in
the material world does).

Similarly to a chemical effect of a drug to the protein
and gene expression levels in the brain, which may af-
fect the spiking activity and the functioning of the whole
brain (modeling of these effects is subject of the com-
putational neurogenetic modeling), external factors like
radiation, light, high frequency signals, etc., can influ-
ence the quantum properties of the particles in the brain
through gate operators. According to Penrose [60.9] mi-
crotubules in the neurons are associated with quantum
gates, even though what constitutes a quantum gate in
the brain is still a highly speculative topic.

So, the question is: Is it possible to create an SNN
model and a CNGM that incorporate some quantum
principles?

A QI-SNN can be developed as an extension of
the concept of evolving SNN [60.39] using the super-
position principle, where instead of many SNN maps,
each representing one object (e.g., a face), there will
be a single SNN, where both connections and neurons
are represented as particles, being in many states at the
same time defined as probability wave function. When
an input vector is presented to the QI-SNN, the net-
work collapses in a single SNN defining the class of the
recognized input vector.

60.6.2 A Conceptual Framework
of a QI-CNGM

Here we extend the concept of CNGM (60.9)–(60.11)
by introducing the level of quantum information pro-
cessing. This results in a conceptual and hypothetical

QI-CNGM, which we intend to investigate and develop
as future research CE

8 .
The following is a list of equations that include

quantum particle states and functions (hypothetical at
this stage) into (60.9)–(60.11) and (60.18)–(60.20),
starting with a new (60.17) that is concerned only with
the level of quantum particle states.

A future state Q′ of a particle or a group of particles
(e.g. ions, electrons, etc.) depends on the current state Q
and on the frequency spectrum Eq of an external signal,
according to the Max Planck constant

Q′ = Fq (Q, Eq)) . (60.17)

A future state of a molecule M′ or a group of
molecules (e.g., genes, proteins) depends on its current
state M, on the quantum state Q of the particles, and on
an external signal Em:

M′ = Fm (Q, M, Em) . (60.18)

A future state N ′ of a spiking neuron or an ensemble
of neurons will depend on its current state N , on the
state of the molecules M, on the state of the particles Q,
and on external signals En

N ′ = Fn (N, M, Q, En) . (60.19)

Finally, a future neuronal state C′ of the brain will
depend on its current state C and also on the neuronal
N , on the molecular M, and on the quantum Q states of
the brain:

C′ = Fc (C, N, M, Q, Ec) . (60.20)

The above hypothetical model of integrated function
representations is based on the following assumptions:

• A large number of atoms are characterized by the
same quantum properties, possibly related to the
same gene/protein expression profile of a large num-
ber of neurons characterized by spiking activity that
can be represented as a function.• A large neuronal ensemble can be represented by
a single LFP function.• A cognitive process can be represented, at an ab-
stract level, as a function Fc that depends on all
lower levels of neuronal, genetic, and quantum
activities.

60.6.3 Open Questions

Several reasons can be given in support of the research
on integrating principles from quantum, molecular, and
brain information processing into future CI models:

CE
8 Please check that this is the intended meaning.
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• This may lead to a better understanding of neuronal,
molecular, and quantum information processes.• This may lead to new computer devices – a million
times faster and more accurate than the current ones.

• At the nanolevel of microelectronic devices, quan-
tum processes would have a significant impact and
new methods of computation would be needed
anyway.

60.7 Conclusions and Directions for Further Research

This chapter presents some CI models inspired by prin-
ciples from different levels of information processing
in the brain – including neuronal level, gene/protein
level, and quantum level, and argues that CI models
that integrate principles from different levels of infor-
mation processing would be useful tools for a better
understanding of brain functions and for the creation of
more powerful methods and systems of computational
intelligence.

Many open questions need to be answered in the
future, some of these are:

• How do quantum processes affect the functioning of
a living system in general?• How do quantum processes affect cognitive and
mental functions?• Is it true that the brain is a quantum machine – work-
ing in a probabilistic space with many states (e.g.,
thoughts) being in a superposition all the time and
it is only when we formulate our thought through
speech or writing that the brain collapses in a single
state?• Is fast pattern recognition in the brain, involving
far away segments, a result of both parallel spike
transmissions and particle entanglement?• Is communication between people and between liv-
ing organisms in general a result of entanglement
processes?

• How does the energy in the atoms relate to the
energy of the proteins, the cells, and the whole
brain?• Would it be beneficial to develop different QI com-
putational intelligence techniques, such as QI-SVM,
QI-GA, QI-decision trees, QI-logistic regression,
QI-cellular automata, and QI-ALife?• How do we implement QI computational intelli-
gence algorithms in order to benefit from their high
speed and accuracy? Should we wait for the quan-
tum computers to be realized many years from now,
or we can implement them efficiently on specialized
computing devices based on classical principles of
physics?

Further directions in our research are:

• Building a brain–gene-quantum ontology system
that integrates facts, information, knowledge, and
CI models of different levels of information process-
ing in the brain and their interaction.• Building novel brain, gene, and quantum inspired CI
models, studying their characteristics, and interpret-
ing the results.• Applying the new methods to solving complex CI
problems in neuroinformatics and brain diseases,
bioinformatics and cancer genetics, multimodal in-
formation processing, and biometrics.
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