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Abstract This paper describes a novel refinement to a Tabu search algorithm that has been 
implemented in an attempt to improve the robustness of the search when applied to 
particularly complex problems. In this approach, two Tabu searches are carried out in 
parallel. Each search thread is characterised by it's own short term memory which forces that 
point out of local optima. However, the two search threads share an intermediate term 
memory so allowing a degree of information to be passed between them. Results are 
presented for both unconstrained and constrained numerical functions as well as a problem 
in the field of hydraulic circuit optimization. Simulation of hydraulic circuit performance is 
achieved by linking the optimization algorithm to the commercial simulation package 
Bathfp. 

 

Introduction 

Tabu search (Glover, 1989, 1990) is a metaheuristic procedure which is intended to guide 
optimization methods to avoid local optima during complex or multi-modal numerical 
optimization problems. Tabu search has previously been applied to a variety of classical and 
practical problems which include the quadratic assignment problem (Skorin-Kapov, 1989), 
electronic circuit design (Bland and Dawson, 1991), the balancing of hydraulic turbines 
(Sinclair, 1993), design of structural components (Hu, 1992; Bland, 1994) and radar 
polyphase code design (Cangalovic et al, 1996). A complete coverage of the method and a 
survey of applications can be found in the literature (Glover and Laguna, 1997). 

The Tabu search method utilises a number of flexible memory cycles, each with different 
associated time scales, to allow search information to be exploited more thoroughly than by 
rigid memory or memory-less systems. 

Previous work (Connor and Tilley, 1997, 1998a, 1998b)  in the field of hydraulic circuit 
optimization has shown that the aggressive nature of Tabu search has many advantages over 
other novel optimization techniques. The main advantage has been the reduction in the 
number of circuit simulations required to find a feasible solution. However, this work 
suffers from one of the drawbacks of earlier work (Donne, 1993) in this area which utilised 
a parallel Genetic Algorithm in that both methods lack robustness and subsequent attempts 
at the same problem often lead to different feasible solutions. 

This is caused by a number of factors which are related to the complexity of the problem 
which cause a degree of lack of definition in the objective function. The optimization of 
hydraulic circuits involves complex multi-criteria objective functions and often large 
numbers of penalty function terms to make sure that the solution obtained matches the 
specified design requirements. Work to improve upon objective function definition is 



currently being undertaken, but the following method has been developed to achieve greater 
robustness and consistency. 

A brief description of the standard Tabu search algorithm will be given before later sections 
describe the multi-thread approach. 

 

Tabu Search Algorithms 

The power of the Tabu search algorithm is derived from the use of flexible memory cycles 
of differing time spans. These memory cycles are used to control, intensify and diversify the 
search in order to find a suitable solution. 
 
Short Term Memory 

The most simple implementation of a Tabu search is based around the use of a hill climbing 
algorithm. Once the method has located a locally optimal solution, the short term memory is 
used to force the search out from this optima in a different direction. 

The short term memory constitutes a form of aggressive search that seeks to always make 
the best allowable move from any given position. To achieve an appropriate balance 
between effort expended to identify a best move (where "best" can be defined by multiple 
and varying criteria), candidate list strategies are characteristically used to reduce the 
number of moves to be considered at each iteration. 

Short term memory is implemented in the form of tabu restrictions which prevent the search 
from cycling around a given optimal or sub-optimal position, and to impart vigour to the 
search. Essentially, these restrictions apply to a limited set of previously visited positions, 
and the restrictions are continuously updated as the search progresses. In one form of 
implementation, attributes associated with each new trial solution are placed in the memory 
list when the solution is generated and corresponding attributes of the oldest solution in the 
list are removed so that the size of the list remains constant. Other implementations use 
dynamic lists whose size vary in different phases of the search. 

The short term memory cycle has been implemented in the described work as a list of tabu 
restrictions. The tabu list contains the parameter values of the last n accepted solutions. 
During the search, before the objective function of a proposed point is evaluated, its 
parameter set is compared to those contained in the tabu list. If a match is found, disclosing 
that a solution embodying these same parameters has been recently visited, then the 
objective function is not evaluated and the search classes the move as Tabu. 

In many Tabu search implementations the tabu restrictions are allowed to be rescinded if 
appropriate aspiration criteria are satisfied. For example, a criterion called "aspiration by 
objective" allows an otherwise tabu solution to be visited if its objective function value is 
better than that of any solution previously obtained (or any previously obtained that shares 
selected features in common with the current solution). Aspiration criteria have not been 
included in this work, though they could be incorporated in the algorithm. 
 
Search Intensification 

Intensification of the search is based around the concept of the intermediate memory cycle. 
In this case, the intermediate memory is very similar to the short term memory in that it is a 
list of solution attributes. However, the solutions contained in the intermediate memory list 
are the previous m best solutions. As a new best solution is found, this is placed into the list 



and the worst solution removed. This is termed intermediate memory as the time scale of 
replacement is much longer than for short term memory. 

The intermediate memory list contains information about the best solutions located so far 
and so allows similarities between good solutions to be extracted and used to generate new 
solutions with good characteristics. 
 
Search Diversification 

In many Tabu search applications, search diversification is achieved by the use of long term 
memory cycles or by refreshing the current base point, either randomly or strategically, 
when certain conditions apply. However, in previous work relating to hydraulic circuit 
optimization certain parallels have been drawn to the notion of schema processing within 
Genetic Algorithms to propose a novel diversification strategy that is intended to force the 
search towards new areas of the search domain which may also have good objective function 
values. The search is refreshed by randomly selecting a value for each search parameter 
from the solutions located in the intermediate memory list. This selection is not limited to 
selecting values from the same parameter of the solutions, so in effect any value of any 
parameter can be selected for the newly proposed solution.  

This diversification strategy allows values that are good for one parameter to be tried for a 
different parameter and is particularly effective when all of the design parameters have 
similar ranges or are normalised in some way. This concept is reinforced by the Tabu search 
principle of creating new attributes that represent usefully exploitable problem features. In 
this case, the new attributes may be conceived of as "parameter classes" where all members 
of a class may be treated in similar way. 
 
Hill Climbing Algorithm 

The underlying search algorithm used in this work is a two stage hill climbing search 
(Hooke and Jeeves, 1961). The first stage carries out an initial exploration around a given 
base point by increasing and decreasing each design variable by a given amount known as 
the step size. Once this exploration has been carried out and a new point found, the search is 
extended along the same vector by a factor k. This is known as a pattern move. If the pattern 
move locates a solution with a better objective value than the exploration point, then this 
point is used as a new base point and the search is repeated. Otherwise, the search is 
repeated using the exploration point as a new base point. 

In the standard Hooke and Jeeves implementation, this process is repeated until no further 
improvement is found. When this occurs, the step size is reduced and the search continued. 
This is repeated until the step size falls below a given value. In the Tabu search, this strategy 
is somewhat modified. Firstly, the selection of the new base point is adjusted so that the 
search always selects the best available move. When no improvement can be found, the best 
available move is defined as that where the increase in objective function value is the 
smallest. Because of this, a new control algorithm has been developed which reduces the 
step size as the search progresses and eventually terminates the search. This algorithm is 
shown in flow chart form in Figure 1. 

 



Figure 1. Search Algorithm 
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Mutli-Thread Tabu Search 

The multi-thread implementation is an attempt to improve the robustness of the Tabu search 
concept by introducing a degree of parallelism into the search. The current implementation 
utilises two search threads which are initialised at different start points. 

Each search thread has it's own short term memory (tabu list) which is used to force each 
point out of local optima. However, the two search threads share a common intermediate 
memory so that information can be exchanged between the two points during intensification 
and diversification of the search. The approach of sharing access to elite solutions in a 
parallel Tabu search implementation has also been utilised in a number of other studies 
(Toulouse, Crainic and Gendreau, 1996; Crainic, Toulouse and Gendrau, 1997). 

The implementation in this work uses the same controlling algorithm as the single thread 
approach, but differs slightly in that only one thread undergoes either intensification or 
diversification at any one stage in the search. This considerably reduces the chance of the 
two threads ever representing the same trial solution. If this occurs, then the two threads will 
then follow the same trajectory through the search space. Future implementations could 
eliminate this possibility by comparing the individual short term memory lists at various 
stage throughout the search. Should the tabu restrictions be identical, then the two threads 
could be forced apart by some means. 

 
Numerical Test Functions 

Two numerical functions have been used to assess the performance of the multi-thread 
search, with respect to the performance of a single thread Tabu search algorithm. These are 
the Schwefel function and the Bump function. 
 
Schwefel Function 

The Scwhefel function is a very complex ten parameter function with a unique minimum 
and very large numbers of local minima in the search region. Previous work (Donne, 1993) 
has suggested that methods capable of optimising the Schwefel function are likely to be 
suitable for optimising hydraulic circuits. The objective function is calculated using 
Equation 1. 

 ( )( )∑
=

=
10

1

sin
i

ii xabsxobfn  
 

(1) 

The search variables are limited to the region enclosed by the bounds -500≤ xi ≤500 and 
minimum step size for each variable is 0.0001. The function does not encompass any 
constraints other than the upper and lower boundaries. The unique minimum of the function 
is located at xi = 420.9687 and has a value of -4189.83. 

Table I shows the results from five runs of both the standard and multi-thread Tabu search 
methods. 

 

 

 

 



Table I. Results for the Schwefel Function 

RUN SINGLE POINT 

OBFN VALUE 

SINGLE POINT 

NO. EVALS 

MUTLI-THREAD 

OBFN VALUE 

MULTI-THREAD 

NO. EVALS 

1 -4189.83 12032 -4189.83 28806 

2 -4189.83 11732 -4189.83 25551 

3 -4189.83 9194 -4189.83 23337 

4 -4189.83 10783 -4189.83 18009 

5 -4189.83 10310 -4189.83 23198 

 

As can be seen, in all cases the methods have located the optimum value. However, the 
multi-thread method has required a greater number of evaluations. This is because the same 
termination criteria have been applied, but the method uses two search points. The multi-
thread method has no advantages over the standard method for this function. 
 
Bump Function 

The Bump function (Keane, 1994) is a considerably more complex function to optimise than 
the Schwefel function. It produces a very complex function surface for any number of 
variables. This study attempts two variations on this function, where the number of variables 
are set to 20 and 50. The objective function value is calculated using equation 2. 
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The function is further complicated in that it is a constrained by two inequality constraints 
and that optimum solutions generally lie very near the constraint boundary. The inequality 
constraints are given in equation 3 and equation 4. 
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The search variables are limited to the region enclosed by the bounds 0≤ xi ≤10. Again, the 
minimum step size for each parameter has been set to 0.0001. The maximum of the function 
is not known, but appears to be around 0.82 for the n=50 problem (Keane, 1994). 

In the Bump function it is recommended that the search be initialised from the starting point 
where xi=5. In this work, results are presented for the single thread implementation for this 
case and also when the start point is selected at random. For the multi-thread method, one of 
the search threads is started from the recommended point whilst the other is randomly 
generated. 

Table II shows the results from five runs of the single thread Tabu search for when n=20. 
Results are shown for both the seeded and the random start.  

 



Table II. Results for Single Thread Method on Bump Function (n=20) 

RUN SINGLE POINT 

OBFN VALUE 

(SEEDED) 

SINGLE POINT 

NO. EVALS 

(SEEDED) 

SINGLE POINT 

OBFN VALUE 

(RANDOM) 

SINGLE POINT 

NO. EVALS 

(RANDOM) 

1 0.65495 7493 0.579423 10689 

2 0.65495 7485 0.549577 14842 

3 0.65495 7491 0.653184 8985 

4 0.65495 7456 0.584064 6547 

5 0.65495 7481 0.722475 13921 

 

Table III shows the results obtained using the multi-thread method where one search thread 
is started from the recommended values and the other is started from a randomly generated 
point. 
 

Table III. Results for Mutli-Thread Method on Bump Function (n=20) 

RUN MUTLI-THREAD 

OBFN VALUE 

MUTLI-THREAD 

NO. EVALS 

1 0.781727 13214 

2 0.729619 14183 

3 0.606138 11862 

4 0.759619 12494 

5 0.781727 13941 

Table IV shows the results from five runs of the single thread Tabu search methods for when 
n=50. Results are shown for both the seeded and the random start.  
 

Table IV. Results for Single Thread Method on Bump Function (n=50) 

RUN SINGLE POINT 

OBFN VALUE 

(SEEDED) 

SINGLE POINT 

NO. EVALS 

(SEEDED) 

SINGLE POINT 

OBFN VALUE 

(RANDOM) 

SINGLE POINT 

NO. EVALS 

(RANDOM) 

1 0.664774 24428 0.617665 30314 

2 0.664774 24454 0.525611 38879 

3 0.662558 22909 0.385927 30283 

4 0.664774 24435 0.620488 30334 

5 0.664774 24454 0.588570 33651 

 

 



Table V shows the results obtained using the multi-thread method where one search thread 
is started from the recommended values and the other is started from a randomly generated 
point. 

Table V. Results for Mutli-Thread Method on Bump Function (n=50) 

RUN MUTLI-THREAD 

OBFN VALUE 

MUTLI-THREAD 

NO. EVALS 

1 0.808646 49146 

2 0.778217 55111 

3 0.758960 48287 

4 0.758845 49074 

5 0.758845 49168 

 

For both of the Bump functions the single thread implementation, when initialised from a 
fixed point, is very consistent which suggest that the current degree of probability in the 
diversification strategy does not effect the final converged value to any great extent. 
However, when started from a random start point, the final values obtained do not exhibit 
such consistency.  

For both of the Bump functions the multi-thread Tabu search is locating solutions with 
better objective function values than the single thread approach. This indicates that the 
search is inherently more diverse due to the parallelisation that has been introduced. This 
increases the possibility of locating the true global optimum as the search is exploring more 
than one area of the search space at a given time. 

 

Fluid Power Circuit Optimization 

A number of numerical optimisation approaches have previously been used to automatically 
size and select components in fluid power circuits by linking the algorithm to the fluid 
power simulation environment Bathfp (Tomlinson & Tilley, 1993). The algorithms used 
include Genetic Algorithms (Donne, 1993) and Tabu search (Connor and Tilley, 1998). 
Bathfp utilises a complex type insensitive numerical integrator (Richards et al, 1990) based 
upon the Lsoda algorithm (Petzold, 1983) which changes the time step and integration 
method depending on the stiffness of the differential equations that describe the system 
being simulated. 

Whilst the Lsoda algorithm provides an accurate method of simulating the performance of 
fluid power circuits, including those which have discontinuous properties, the actual 
simulation of complex circuits can take considerable lengths of time. It is not uncommon to 
take several hours to simulate a few minutes of real time. Due to this, previous attempts 
using a parallel Genetic Algorithm have been considered unsuccessful as typically they 
involved around 50-60,000 evaluations to find a suitable solution to even the most simple of 
circuit problems. This number of evaluations would typically take several days running on a 
Sun SPARC 20 workstation. This has sparked an interest in the use of Tabu search which 
has been claimed in the literature (Sinclair, 1993; Borup and Parkinson, 1992) to be 
considerably more efficient than other optimisation methods. 



The two Tabu search algorithms described in this paper have been tested on a number of 
problems in the field of hydraulic circuit optimization. Previous work (Donne, 1993; Donne 
et al, 1994; Connor and Tilley, 1998a) has shown that the following circuit is particularly 
difficult to optimise. In this circuit the design objectives are to have two motors operating at 
two different speeds, but driven from the same pump. This is achieved by the use of pressure 
compensated flow valves (PCFV) and the required circuit is shown in Figure 2. 

 

 
 

Fig 2. Test Hydraulic Circuit 

In this example, the design variables selected for optimization are the displacements of the 
pump and both motors, along with the nominal flow rates of the two control valves. The 
pump and motor displacements are constrained between 1cc/rev and 1000 cc/rev. The 
nominal flow rate settings of the PCFVs are constrained between 10 and 100 L/min. The 
desired speeds for the two motors are 120 rpm and 60 rpm. The objective function is given 
in equation 5. 
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In this equation, the values used to calculate the objective function value are the value of the 
state variables at the end of the simulated run period. The error in each of the motor speeds, 
e(ω1) and e(ω2), is squared to penalise high speed errors. The sum of the errors is then 
further penalised by multiplying by a normalised value that expresses the percentage of the 
flow that is produced by the pump, QP, that is returning to the tank through the relief valve, 
QRV. Table VI shows the results for the single thread Tabu search on this problem and Table 
VII shows the results for the multi-thread method. 

 

 

 

 



Table VI. Results for Single Thread Method 
RUN PUMP 

SIZE 

(CC/REV) 

MOTOR 1 

SIZE 

(CC/REV) 

MOTOR 2 

SIZE 

(CC/REV) 

PCFV 1 

FLOWRATE 

(L/MIN) 

PCFV 2 

FLOWRATE 

(L/MIN) 

NO. 

EVALS 

OBFN 

VALUE 

1 35 129 609 31 31 1848 0.0442421 

2 63 369 830 100 48 1423 0.126669 

3 41 139 738 16 38 1405 0.28996 

4 70 74 195 91 11 1442 0.0917881 

5 65 363 880 48 51 1091 1.93982 

6 9 90 39 9 2 1337 0.989931 

7 33 304 211 66 12 1592 0.0304883 

8 50 153 936 100 51 1470 0.170034 

9 65 579 460 70 27 1494 0.065249 

10 61 405 708 100 41 1583 0.0540956 

      Average 0.380228 

 

Table VII. Results for Mutli-Thread Method 

RUN PUMP 

SIZE 

(CC/REV) 

MOTOR 1 

SIZE 

(CC/REV) 

MOTOR 2 

SIZE 

(CC/REV) 

PCFV 1 

FLOWRATE 

(L/MIN) 

PCFV 2 

FLOWRATE 

(L/MIN) 

NO. 

EVALS 

OBFN 

VALUE 

1 44 221 650 76 36 2872 0.0847743 

2 74 511 820 64 48 2570 0.0627989 

3 69 418 831 49 47 2410 0.0530253 

4 48 297 601 100 34 2968 0.357169 

5 50 449 334 65 20 2948 0.205888 

6 20 203 137 21 4 2106 0.134311 

7 44 400 294 58 17 2304 0.0536162 

8 72 599 596 82 35 2500 0.0900985 

9 61 544 424 100 25 2406 0.898487 

10 51 170 927 59 51 3928 0.00566847 

      Average 0.19458367 

 

As the absolute minimum objective function value is not known, these results can be 
analysed by considering the actual parameters obtained as well as the objective function 
value. The first point to notice is that for both methods, there is a significant spread of 
parameter values. This indicates the interactive nature of hydraulic circuits in which 
different parameter size combinations can produce the same performance. These different 
parameter sets often have similar objective function values. However, it can be seen that the 



multi-thread Tabu search is locating solutions which have, on average, lower objective 
function values than those located by the single point method. 

Table VIII shows the values of the desired state variables at the end of the simulated time 
period for the best solutions located by the two methods. 
 

Table VIII. Motor Speeds and Relief Valve Flows 

 SINGLE MULTI 

ω1 (RPM) 119.97 119.998 

ω2 (RPM) 59.9992 59.9965 

QRV (L/MIN) 0 0 

OBFN VALUE 0.03049 0.00567 

 

The speed error in both cases is insignificant which indicates that further work is required to 
highlight design objectives with in hydraulic circuit optimization which would allow for 
better objective function definition. However, as the complexity of the objective function is 
increased it becomes increasingly difficult to produce an acceptable compounded objective 
function and it is possible to advocate a move to a true multi-objective optimisation 
approach. 

 

Conclusions 

This paper has described how the a Tabu search algorithm can be adapted to deal with 
multiple search threads which exchange information concerning the solutions space through 
a common intermediate memory cycle.  

This multi-thread Tabu search appears to be more robust than the single thread 
implementation on well defined numerical problems. This is not so apparent on real 
problems in hydraulic circuit optimization due to the poor objective function definition and 
interactive nature of hydraulic circuits. This interaction allows solutions with different 
parameter sets to have similar objective function values. Despite this, the multi-thread 
search is locating solutions which have, on average, lower objective function values than the 
solutions located by a single search thread. 

More work is obviously required in encapsulated knowledge concerning the design 
objectives into the objective function, but the results presented in this paper indicate that the 
multi-thread Tabu search shows considerable promise as an optimization strategy. The 
method is both reasonably consistent and is locating solutions with a relatively low number 
of objective function evaluations. 
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