The HALT Study 0000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Nonparametric computation of survival functions in the presence of interval censoring

Stephen M. Taylor

MSc Candidate Supervisor: Dr Yong Wang Department of Statistics The University of Auckland stay020@aucklanduni.ac.nz

1 September 2008

The HALT Study 0000 ACNM Algorithm

Summing Up 00

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◆

Research Aims

- Create a robust algorithm for solving the NPMLE problem
- One that is fastest in all circumstances

Adaptive Constrained Newton Method (ACNM)

The HALT Study

ACNM Algorithm

Summing Up

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●○○

The HALT Study 0000 ACNM Algorithm

Summing Up

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへで

The HALT Study 0000 ACNM Algorithm

Summing Up

Survival Analysis

Time to event data

The HALT Study

ACNM Algorithm

Summing Up

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Survival Analysis

- Time to event data
- Want to model the distribution of times to 'failure'

The HALT Stud

ACNM Algorithm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Survival Analysis

- Time to event data
- Want to model the distribution of times to 'failure'
- Interested in the survival function, S(t) = P(T > t)

The HALT Stud

ACNM Algorithm

Summing Up

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○○○

Survival Analysis

- Time to event data
- Want to model the distribution of times to 'failure'
- Interested in the survival function, S(t) = P(T > t)
- Example: Time to healing

The HALT Study 0000 ACNM Algorithm

Summing Up 00

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Censoring

• Time of event may not be directly measurable

The HALT Study 0000 ACNM Algorithm

Summing Up 00

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 = つへで

- Time of event may not be directly measurable
- Check periodically to see if it has occurred

The HALT Study 0000 ACNM Algorithm

Summing Up

▲ロト ▲周ト ▲ヨト ▲ヨト 三三 - の久()

- Time of event may not be directly measurable
- Check periodically to see if it has occurred
- Example: healing occurred some time between doctor visits

The HALT Study 0000 ACNM Algorithm

Summing Up

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Time of event may not be directly measurable
- Check periodically to see if it has occurred
- Example: healing occurred some time between doctor visits
- The event may never occur for some subjects

The HALT Study

ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Time of event may not be directly measurable
- Check periodically to see if it has occurred
- Example: healing occurred some time between doctor visits
- The event may never occur for some subjects
- Example: end of study or "lost to followup"

The HALT Study

ACNM Algorithm

Summing Up 00

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Interval Censoring

• Event times are not known exactly, only within intervals

The HALT Study

ACNM Algorithm

Summing Up 00

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 = つへで

- Event times are not known exactly, only within intervals
- · Perhaps no event time is observed exactly

The HALT Study

ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Event times are not known exactly, only within intervals
- Perhaps no event time is observed exactly
- Interval censored: event occurred somewhere in $(t_L, t_R]$

The HALT Stud

ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Event times are not known exactly, only within intervals
- Perhaps no event time is observed exactly
- Interval censored: event occurred somewhere in $(t_L, t_R]$
- Right censored: (t_L,∞)

The HALT Study

ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Event times are not known exactly, only within intervals
- Perhaps no event time is observed exactly
- Interval censored: event occurred somewhere in $(t_L, t_R]$
- Right censored: (t_L,∞)
- Left censored: $(0, t_R]$

The HALT Study

ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Event times are not known exactly, only within intervals
- Perhaps no event time is observed exactly
- Interval censored: event occurred somewhere in $(t_L, t_R]$
- Right censored: (t_L,∞)
- Left censored: $(0, t_R]$
- Exact observation: event occurred at time t

The HALT Stud

ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Event times are not known exactly, only within intervals
- Perhaps no event time is observed exactly
- Interval censored: event occurred somewhere in $(t_L, t_R]$
- Right censored: (t_L,∞)
- Left censored: $(0, t_R]$
- Exact observation: event occurred at time t
- Call these intervals O_i for $i = 1, \ldots, n$

The HALT Study 0000 ACNM Algorithm

Summing Up 00

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Why Nonparametric?

• Let the data speak for itself

The HALT Study 0000 ACNM Algorithm

Summing Up 00

Why Nonparametric?

- Let the data speak for itself
- Don't make assumptions about the distribution

The HALT Study 0000 ACNM Algorithm

Summing Up 00

Why Nonparametric?

- Let the data speak for itself
- Don't make assumptions about the distribution
- Maximise the likelihood

The HALT Study

ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Why Nonparametric?

- Let the data speak for itself
- Don't make assumptions about the distribution
- Maximise the likelihood
- Explore the data before choosing a parametric model

The HALT Stud

ACNM Algorithm

Summing Up 00

The NPMLE Survival Function with Interval Censored Data

• Partition the positive real line

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

The HALT Stud

ACNM Algorithm

Summing Up

The NPMLE Survival Function with Interval Censored Data

- Partition the positive real line
- All unique values of t_L and t_R

The HALT Stud

ACNM Algorithm

Summing Up

The NPMLE Survival Function with Interval Censored Data

- Partition the positive real line
- All unique values of t_L and t_R
- Potential support intervals

The HALT Stud

ACNM Algorithm

Summing Up 00

The NPMLE Survival Function with Interval Censored Data

- Partition the positive real line
- All unique values of t_L and t_R
- Potential support intervals
- Only use maximal cliques

The HALT Stud

ACNM Algorithm

Summing Up

The NPMLE Survival Function with Interval Censored Data

- Partition the positive real line
- All unique values of t_L and t_R
- Potential support intervals
- Only use maximal cliques
- Support set: I_j for $j = 1, \ldots, m$

The HALT Stud

ACNM Algorithm

Summing Up

The NPMLE Survival Function with Interval Censored Data

- Partition the positive real line
- All unique values of t_L and t_R
- Potential support intervals
- Only use maximal cliques
- Support set: I_j for $j = 1, \ldots, m$
- The clique matrix A_{n×m} gives δ_{ij} membership of each O_i in each I_j

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○○○

The HALT Stud

ACNM Algorithm

Summing Up

The NPMLE Survival Function with Interval Censored Data

- Partition the positive real line
- All unique values of t_L and t_R
- Potential support intervals
- Only use maximal cliques
- Support set: I_j for $j = 1, \ldots, m$
- The clique matrix A_{n×m} gives δ_{ij} membership of each O_i in each I_j
- NPMLE assigns probability mass to each support interval

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○○○

The HALT Study

ACNM Algorithm

Summing Up 00

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Likelihood Function for the NPMLE

• Likelihood of an interval $(t_1, t_2]$ is $S(t_1) - S(t_2)$

The HALT Study

ACNM Algorithm

Summing Up

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◆

- Likelihood of an interval $(t_1, t_2]$ is $S(t_1) S(t_2)$
- Assign probability p_j to support interval I_j

The HALT Study 0000 ACNM Algorithm

Summing Up

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Likelihood of an interval $(t_1, t_2]$ is $S(t_1) S(t_2)$
- Assign probability p_j to support interval I_j
- Probability of observation O_i using A and **p**

The HALT Study

ACNM Algorithm

Summing Up

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Likelihood of an interval $(t_1, t_2]$ is $S(t_1) S(t_2)$
- Assign probability p_j to support interval I_j
- Probability of observation O_i using A and **p**
- Take logs and add them up

The HALT Study 0000 ACNM Algorithm

Summing Up 00

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Likelihood of an interval $(t_1, t_2]$ is $S(t_1) S(t_2)$
- Assign probability p_j to support interval I_j
- Probability of observation O_i using A and **p**
- Take logs and add them up
- Goal: find $\hat{\mathbf{p}} \in \mathbb{R}^m$ to maximise $\ell(\hat{\mathbf{p}})$
The HALT Study

ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Likelihood Function for the NPMLE

- Likelihood of an interval $(t_1, t_2]$ is $S(t_1) S(t_2)$
- Assign probability p_j to support interval I_j
- Probability of observation O_i using A and **p**
- Take logs and add them up
- Goal: find $\hat{\mathbf{p}} \in \mathbb{R}^m$ to maximise $\ell(\hat{\mathbf{p}})$
- Subject to: $\mathbf{\hat{p}} \ge \mathbf{0}$ and $\mathbf{\hat{p}}^{T}\mathbf{1} = 1$

The HALT Study •000 ACNM Algorithm

Summing Up 00

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Honey as Adjuvant Leg Ulcer Therapy (HALT)

• Randomised Clinical Trial, 368 participants

The HALT Study •000 ACNM Algorithm

Summing Up 00

▲ロト ▲周ト ▲ヨト ▲ヨト 三三 - の久()

- Randomised Clinical Trial, 368 participants
- Clinical Trials Research Unit in Auckland

The HALT Study •000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Randomised Clinical Trial, 368 participants
- Clinical Trials Research Unit in Auckland
- Effect of Manuka Honey dressings for treatment of leg ulcers

The HALT Study •000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Randomised Clinical Trial, 368 participants
- Clinical Trials Research Unit in Auckland
- Effect of Manuka Honey dressings for treatment of leg ulcers
- Participants assessed weekly and also at a 12-week follow-up

The HALT Study •000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Randomised Clinical Trial, 368 participants
- Clinical Trials Research Unit in Auckland
- Effect of Manuka Honey dressings for treatment of leg ulcers
- Participants assessed weekly and also at a 12-week follow-up
- Nurse changes dressing and assesses healing status

The HALT Study •000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Randomised Clinical Trial, 368 participants
- Clinical Trials Research Unit in Auckland
- Effect of Manuka Honey dressings for treatment of leg ulcers
- Participants assessed weekly and also at a 12-week follow-up
- Nurse changes dressing and assesses healing status
- Event times cannot be observed exactly

The HALT Study •000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Randomised Clinical Trial, 368 participants
- Clinical Trials Research Unit in Auckland
- Effect of Manuka Honey dressings for treatment of leg ulcers
- Participants assessed weekly and also at a 12-week follow-up
- Nurse changes dressing and assesses healing status
- Event times cannot be observed exactly
- Thanks to Andrew Jull and Varsha Parag of CTRU for providing the data

The HALT Study

ACNM Algorithm

Summing Up

Censor Intervals for each Participant

The HALT Study

ACNM Algorithm

Summing Up

◆□ > ◆□ > ◆目 > ◆目 > ◆目 > ○ < ④

The HALT Study

ACNM Algorithm

Summing Up

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへ()・

The HALT Study 0000 ACNM Algorithm

Summing Up 00

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Existing Algorithms for finding the NPMLE

• The Icens package in R provides five algorithms:

The HALT Study 0000 ACNM Algorithm

Summing Up 00

▲ロト ▲周ト ▲ヨト ▲ヨト 三三 - の久()

- The Icens package in R provides five algorithms:
 - EM, ISDM, EMICM, VEM and PGM

The HALT Study 0000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- The Icens package in R provides five algorithms:
 - EM, ISDM, EMICM, VEM and PGM
- Subspace-based Newton method (Dümbgen et al. 2006)

The HALT Study 0000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- The Icens package in R provides five algorithms:
 - EM, ISDM, EMICM, VEM and PGM
- Subspace-based Newton method (Dümbgen et al. 2006)
- Wang (2008) introduced:

The HALT Study 0000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- The Icens package in R provides five algorithms:
 - EM, ISDM, EMICM, VEM and PGM
- Subspace-based Newton method (Dümbgen et al. 2006)
- Wang (2008) introduced:
 - Constrained Newton Method

The HALT Study 0000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- The Icens package in R provides five algorithms:
 - EM, ISDM, EMICM, VEM and PGM
- Subspace-based Newton method (Dümbgen et al. 2006)
- Wang (2008) introduced:
 - Constrained Newton Method
 - Dimension-reduced approach to improve any algorithm

The HALT Study

ACNM Algorithm

Summing Up 00

Times to compute the NPMLE survival function for 100 Bootstrap samples of the HALT data using:

•	EMICM, PGM and VEM from the	
	Icens package	E
•	Methods SBN(DR) and	
	EMICM(DR) from Wang (2008)	

• The new ACNM algorithm (and CNM)

	Time (s)
EMICM	113.03
PGM	791.00
VEM	610.42
SBN(DR)	14.34
EMICM(DR)	26.93
ACNM	9.41

▲ロト ▲周ト ▲ヨト ▲ヨト 三三 - の久()

The HALT Study 0000 ACNM Algorithm

Summing Up 00

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Problems with Existing Algorithms

• Some are very slow and may fail to converge

The HALT Study 0000 ACNM Algorithm

Summing Up 00

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Problems with Existing Algorithms

- Some are very slow and may fail to converge
- No algorithm outperforms the others in all situations

The HALT Study 0000 ACNM Algorithm

Summing Up 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Problems with Existing Algorithms

- Some are very slow and may fail to converge
- No algorithm outperforms the others in all situations
- Inefficent use of Hessian matrix or gradient

The HALT Study 0000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Problems with Existing Algorithms

- Some are very slow and may fail to converge
- No algorithm outperforms the others in all situations
- Inefficent use of Hessian matrix or gradient
- Best choice depends on size of dataset and proportion of exact observations

The HALT Study 0000 ACNM Algorithm

Summing Up 00

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Constrained Newton Method

• Calculates gradient S of $\ell(\mathbf{p})$ at current estimate \mathbf{p}

The HALT Study 0000 ACNM Algorithm

Summing Up

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Calculates gradient S of $\ell(\mathbf{p})$ at current estimate \mathbf{p}
- Makes use of mixture structure of solution

The HALT Study 0000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Calculates gradient S of $\ell(\mathbf{p})$ at current estimate \mathbf{p}
- Makes use of mixture structure of solution
- Uses NNLS to find new estimate of **p**

The HALT Study 0000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Calculates gradient S of $\ell(\mathbf{p})$ at current estimate \mathbf{p}
- Makes use of mixture structure of solution
- Uses NNLS to find new estimate of **p**
- Computation time of NNLS is of order $O(nm^2)$

The HALT Study 0000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Calculates gradient S of $\ell(\mathbf{p})$ at current estimate \mathbf{p}
- Makes use of mixture structure of solution
- Uses NNLS to find new estimate of **p**
- Computation time of NNLS is of order $O(nm^2)$
- Very fast for fully censored datasets

The HALT Study 0000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Calculates gradient S of $\ell(\mathbf{p})$ at current estimate \mathbf{p}
- Makes use of mixture structure of solution
- Uses NNLS to find new estimate of **p**
- Computation time of NNLS is of order $O(nm^2)$
- Very fast for fully censored datasets
- · Can be slow in cases with many exact observations

The HALT Study 0000 ACNM Algorithm

Summing Up 00

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Adaptive CNM

• Uses a divide and conquer approach

The HALT Study

ACNM Algorithm

Summing Up 00

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 = つへで

- Uses a divide and conquer approach
- Breaks the support set up into blocks

The HALT Study

ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Uses a divide and conquer approach
- Breaks the support set up into blocks
- Adapts to the data to make efficient use of Hessian

The HALT Study 0000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Uses a divide and conquer approach
- Breaks the support set up into blocks
- Adapts to the data to make efficient use of Hessian
- Examines data to choose number/size of blocks

The HALT Study 0000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Uses a divide and conquer approach
- Breaks the support set up into blocks
- Adapts to the data to make efficient use of Hessian
- Examines data to choose number/size of blocks
- Solves each block using NNLS

The HALT Study 0000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Uses a divide and conquer approach
- Breaks the support set up into blocks
- Adapts to the data to make efficient use of Hessian
- Examines data to choose number/size of blocks
- Solves each block using NNLS
- Globally reallocates probability among blocks, calling itself recursively

The HALT Study 0000 ACNM Algorithm

Summing Up 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Uses a divide and conquer approach
- Breaks the support set up into blocks
- Adapts to the data to make efficient use of Hessian
- Examines data to choose number/size of blocks
- Solves each block using NNLS
- Globally reallocates probability among blocks, calling itself recursively
- Guaranteed convergence to the solution

The HALT Study

ACNM Algorithm

Summing Up 00

Heatmap of HALT Hessian

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○
Introduction 000000000 The HALT Study 0000 ACNM Algorithm

Summing Up

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●○○

Introduction 000000000 The HALT Study

ACNM Algorithm

Summing Up

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusions

- Where Interval Censoring is present in survival data, it can be allowed for in the analysis.
- The NPMLE Survival Function combined with Bootstrap methods can create an informative picture of survival progression in such cases.
- The ACNM algorithm provides a fast and robust solution to this problem.

Introduction 000000000 The HALT Study 0000 ACNM Algorithm

Summing Up ○●

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Thanks to:

- My supervisor, Dr Yong Wang
- Andrew Jull and Varsha Parag of CTRU for providing the HALT data