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Structural optimisation 
for controlled deflections 
of additively manufactured single 
material beams
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Closely controlling the mechanical behaviour and characterization of the deflection of a beam 
structure is a well-known and widely studied engineering problem. The progress in additive 
manufacturing methods and the possibilities to closely control the material property variations 
with the controlled placement of materials further widen the opportunities to achieve given beam 
deflection criteria. The multi-material additive manufacturing solutions suffer from the lack of real 
engineering material options, and the quality and performance of the printed parts are usually 
unsuitable for producing functional parts. A novel cellular structured solution is proposed here, which 
utilises optimisation of geometries of individual cells of a single material structured beam to obtain 
deflection profiles closely matched with preset conditions under different loading conditions. The 
cellular geometry of the structured beam is continually altered for searching and converging on the 
optimal structure of the cells by the covariance matrix adaptation evolution strategy algorithm in 
an iterative manner. The optimised beam structures could also be physically produced with single 
material additive manufacturing methods and the experimental and numerical beam deflection 
responses correlated closely.

Compliant mechanisms have become to play significant roles in systems such as soft robots1–3, leaf springs4,5, 
and flexible hinges6–8, considering reduced friction, wear and tear, and the lack of the need for lubrication and 
assembly, compared to the rigid-body solutions6. First proposed by Her and Midha in the 1980s9, theoretically, 
these are mechanical devices gaining their mobility through the elastic deformation of flexible parts10. Deflections 
of mechanical elements such as beams are used to transfer force and motion without the need for movable parts, 
joints, and other driving mechanisms and find applications in robotic leg mechanisms1–3,11 and grippers12–14. Leaf 
springs that use elastic deflection to absorb and store the energy of impacts and flexible hinges are also widely 
used as compliant mechanisms that gain mobility while eliminating the sliding friction of contact surfaces7. In 
any case, precisely controlling the elastic deflection in the compliant system becomes an essential design factor 
for accurate grip and gait simulations and other responses.

The effective application of the compliant mechanisms, therefore, relies on the closely controlled mechanical 
behaviour of beam structures. The prediction and characterisation of the beam deflection mechanics is a well-
known and widely studied engineering problem as the evaluation of the deflection curves of simply supported or 
cantilever beams under different loading conditions traces back to Galileo since 163815. Numerous solutions have 
evolved ever since, such as double integration, moment area, and finite element methods6,16 to evaluate the beam 
deflections closely. Altering the beam structural form to comply with preset deflection or other response patterns 
needs more advanced analysis tools, though, where multi-objective optimisation and numerical simulation of 
continuum mechanics often come together.

For example, the solid isotropic material with the penalisation (SIMP) method17 uses material density 
optimization to identify whether each element is solid or void in a fixed domain of finite elements to achieve 
topology optimisation18. SIMP has been applied to beam structural optimisation problems to achieve outcomes 
such as optimal stiffness-to-weight ratios19–21. The truss-based ground structure method can control the 
mechanical properties of the structure by optimising the elements, the number of nodes, and the truss locations22. 
Ground structure methods have been applied to optimal design for minimum compliance-and-weight23 and 
weight minimisation with stress and displacement limitations24. The Particle Swarm Optimization (PSO) 
algorithm has also been proposed to achieve desired beam deflection curves by altering the widths of the beam 
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segments25. The bi-directional evolutionary structural optimisation (BESO) method is also well studied for 
improving the mechanical properties of beams, allowing the object to evolve to the optimal structure by gradually 
removing the redundant material and adding material to locations of high sensitivity26. BESO has been used for 
optimising various target outcomes such as stiffness-to-weight ratio27–29, beam geometry under multiple load 
cases30, shell-infill designs for optimal stiffness and robust performance31, and multi-objective stiffness and 
fundamental natural frequencies32. The evolutionary non-dominated sorting genetic algorithm II (NSGA-II) 
was used for optimising the beam geometry for desired deformation behaviour33. Other methods, such as the 
level-set method and compositional pattern-producing network (CPPN) also been adapted to optimise the lattice 
mesostructures for superior stiffness-to-weight performance34,35.

While optimisation of structural forms based on single materials has seen considerable advances in both 
mathematical and computational evaluations, topology optimisation of multi-material domains would offer a 
plethora of new opportunities. The limitations of traditional manufacturing methods restrict structural forms to 
be of single material domains, but the advances in multi-material additive manufacturing have opened up new 
avenues to consider several multi-material based topology optimisation schemes targeting optimal mechanical 
property responses of beams. Gradual BESO, an enhanced version of BESO, capable of handling multiple-
material and geometry cases, was proposed for stiffness-to-weight ratio optimisation36. Genetic algorithms (GA) 
were also adopted to optimise the distribution topology of soft and stiff materials within the beam domains for 
desired deformation curves and other responses34,37. However, multi-material approaches usually suffer from 
the lack of real engineering material options. Current multi-material additive manufacturing systems can only 
offer digitally mixed acrylic polymer options consolidated with UV curing, with limited potential in real world 
engineering applications38. The properties are not comparable to real engineering polymers such as polyethene, 
polypropylene, Polystyrene, ABS, Nylon, etc., commonly used for engineering applications and processed by 
injection moulding traditionally or by FDM and SLS in the additive manner.

A novel alternative is proposed in this paper which brings the benefits of both additive material consolidation 
and multi-objective optimisation schemes together to achieve topology optimisation of single material beam 
structures to match with the preset deflection responses under multiple loading conditions. The problem domain 
is first discretised into a number of volume elements or voxels. Instead of using solid voxels, hollow brick-like 
elements are used, where, by controlling certain critical dimensions, the effective mechanical properties and mass 
of each element can be controlled. Based on these structured voxels, the mechanical properties of the structural 
domain is governed by the properties of the single material and the overall geometry, as well as the internal 
cellular structure of each voxel, while preserving the original overall geometry. Such macro changes in the 
structures of voxels are possible to achieve in real engineering materials by additive manufacturing technologies, 
such as fused deposition modelling and selective laser sintering and melting, that have become common in recent 
years. For searching the generative design spaces, several algorithms were considered, such as Covariance Matrix 
Adaptation Evolution Strategy (CMA-ES), GA, SIMP and PSO. A detailed comparison of the relative merits of 
different search algorithms is summarised in Table 1. However, compared to the other solid-or-void optimisation 
methods, CMA-ES is a natural choice which can continuously vary the parameter with adjustable step sizes. 
Therefore, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) method was used in this work to 
optimise the beam structure to match with the preset deflection responses by varying the voxel geometries.

The resulting overall optimised structure geometry can be fabricated with a single material using either 
selective laser sintering or melting, depending on whether polymeric or metallic materials are opted for. CMA-ES 
was originally designed and developed for handling optimisation problems involving continuous variation of 
the critical parameters39. It has been widely used in various studies in computer science and engineering, such as 
parameter tuning for neural networks and ranking support for vector machines40–43. Truss layout optimisation 
for minimising the weight44, topology optimization for cloaking polarized light45, and optimising metallic 
shapes and dielectric properties for desired electromagnetic scattering and radiation characteristics46 are other 
examples of applications. However, there was no evidence that the generative design method CMA-ES was 
adopted for controlling beam deflection behaviour by structural optimisation. The proposed approach fills this 
gap, demonstrating the ability to control the beam deflection behaviour under multiple loading conditions 
by cellular structural optimisation using CMA-ES. The research focus is not the comparative evaluation of 
different optimisation algorithms. The key research question is whether single material lattice structures can 
be optimised by using one of the generative design schemes to produce beam structures that can be additively 
manufactured readily with a single material and at the same time confining to pre-defined deflection patterns. 
Analytical and numerical modelling outputs, experimental results and validation are elaborated in “Results and 

Table 1.   A summary of the comparison between the proposed method and other possible optimisation 
methods.

Structural 
optimization 
algorithms SIMP PSO ESO BESO GA CPPN

Lack of capabilities Solid-or-void method Adjustable step size. But 
computationally costly Solid-or-void method Solid-or-void method

The solid-or-void 
method with a 
fixed step size and 
computationally costly

Pattern-based solid-
or-void method. Less 
flexibility for numerical 
optimisation

Proposed method
Adjustable step size 
with more degrees of 
freedom

Less computational cost
Adjustable step size 
with more degrees of 
freedom

Adjustable step size 
with more degrees of 
freedom

Adjustable step size 
with more degrees of 
freedom

Flexible for numerical 
value optimisation
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discussion” section, and the key conclusions drawn based on the inferences from the research results are briefed 
in “Conclusion” section.

Methodology
Generative design and experimental validation.  Generative design represents the design discipline 
that applies the natural inspiration of variation and reproduction of all life. The "survival of the fittest" mechanism 
enforces the reproduction of each generation to move towards targets specified by the objective function in an 
iterative manner. Then the "survivors" can be selected from the final generation47. The proposed approach is 
to vary the distribution of effective stiffnesses and density by altering the structure of the voxels while the base 
material and the overall geometry remain the same. With the advent of increased computational power and 
improved algorithms, generative design methods have been applied to finding solutions in numerous computer 
science and engineering applications48,49. For the current problem, the method is to locally alter the internal 
structure of the voxels to achieve the variation of the material property while keeping the overall geometry the 
same. The problem domain is divided into multiple brick-like hexahedral elements or voxels with the same length 
and width. The structural parameter of the voxels, such as the sizes, numbers and the location of the internal 
hollow structures, are represented as numerical parameter inputs for the optimization algorithm. A standard 
three-point bending test is selected to experimentally verify and compare the actual deflection behaviour of 
the optimised structures. The generative design algorithm and methodology are discussed in “Methodology” 
section. The beam problem case, cellular geometries, boundary limits, material properties, and preset deflection 
conditions are presented in “The beam deflection case study” section.

Optimisation algorithm and functional evaluation.  The covariance matrix adaptation evolution 
strategy (CMA-ES) algorithm is designed for handling continuous optimisation problems39. Studies claim 
that CMA-ES gives superior performance amongst more than a hundred classical and modern optimisation 
algorithms with different black-box functions50. In this work, the CMA-ES algorithm originally proposed by 
Hansen and Ostermeier39 is adopted to optimise the geometries of cellular structures, targeting the convergence 
of the beam deflection to a pre-defined form. CMA-ES is an iterative algorithm. Firstly, the initial population is 
created by randomly varying the void size within the geometric boundaries as defined by the accuracy limitations 
of the 3D printing system. Then, in each iteration, the offspring or a number of candidate solutions for the 
next generation are sampled from a normal distribution of multiple variables with a step size of the current 
generation. The fitness of these solutions is evaluated, and the sampling distribution of the next generation is 
adjusted according to the fitness of each solution in the current generation39. Then, the covariance matrix for 
the next iteration is updated based on the gradient of the improvement of the previous iteration. Finally, the 
step sizes for the next iteration are calculated based on the current covariance matrix of the fitness value. The 
iterative analysis will be terminated when the desired deflection values set as target sets are reached. The major 
steps of the structural optimization scheme for searching the optimal geometry with preset deflection profiles 
are summarized in the flowchart, as shown in Fig. 1.

Numerical modelling methods have been widely used for predicting and improving the AM processes. 
Different modelling approaches have been developed for handling various AM processes and their key processing 
parameters for improving the printing quality and design flow51–53. For example, for a better understanding 
of the residual stresses and distortions during the AM processes, the thermal history of the manufacturing 
procedure can be modelled for the part quality control54, as well as, the relation between thermal stress and 
scanning strategies55.

For the modelling part of this research, the commercial finite element analysis software package COMSOL 
Multiphysics (Version 5.6, release date November 11, 2020, COMSOL Inc., Stockholm, Sweden) is used 
for evaluating the deflection behaviour. The standard quadratic solid elements are used for finite element 
discretisation and analysis. The objective function of the fitness value is defined as the weighted (w) mean square 
errors of the actual and the target deflection of each selected point (i) in the structure. The reason for the use of 
weighted mean squares is that depending on the load and geometry settings, large differences in deflection values 
may result, which need to be considered with proper weighting. The overall optimisation scheme is implemented 
in MATLAB (R2017B, release date September 14, 2017, MathWorks, Natick, Massachusetts, USA)

where deflectiont arg eti  and deflectionresulti  are the target and the deflection computed by the finite element analysis; 
n and i indicate the total number of the sampling point and the index of the deflection of the current sampling 
point. The weight value is calculated by the length of the beam l  and the distance between the points of load and 
the closest supporting points d.

The beam deflection case study
Voxelization and cellular geometry settings.  Two setups of voxelisation are tested, which divided the 
beam structure into 20 and 40 voxels, respectively. The overall dimensions (L × B × H) for the beam structure 
remain the same at 200  mm × 30  mm × 10  mm for all voxelisation and cellular structure settings. The CAD 
models of the beam structures with different voxelisation subdivisions are shown in Fig.  2. The CMA-ES 

(1)fitness =

n
∑

i=1

wi

(

deflection
t arg et
i − deflectionresulti

)2

(2)wi = l2/di
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Figure 1.   The flowchart of the overall optimisation scheme based on the implementation of the CMA-ES 
algorithm with MATLAB and Comsol Multiphysics solution for the beam deflection problem.

Figure 2.   The cellular beam structures with lengths of voxels 10 mm and 5 mm, respectively, for (a) 20 voxel 
and (b) 40 voxel models (Images are created by the authors using Solidworks Educational Version 30.3.1.2 2022-
23). 
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optimisation algorithm will alter the height of the void, which changes the moment of inertia of each voxel 
and controls the overall deflection behaviour to match with the desired deflection profile. Further, three voxel 
geometry settings are designed to comprehensively validate the performance of the proposed optimisation 
method, namely, symmetric and asymmetric single void and double void voxel geometry settings. The difference 
between symmetric and asymmetric geometries is that the voids are centrally placed in the former while they 
are asymmetric to the central line in the later. CAD models of the three voxel geometry settings are depicted in 
Fig. 3.

In order to maintain the overall dimensions of the beam structure the same, the height of the hollow 
structure of each voxel ( Hv ) is used as the optimisation parameter for both symmetric single void and double 
void geometries. An additional optimisation parameter Tm is used to control the location of the void within the 
voxel. The detailed voxel geometry settings are depicted in Fig. 4

Boundary settings for the cell geometry.  The limits of the optimisation parameters are related to 
practical considerations such as the accuracy and the maximum build dimensions of the AM equipment readily 
available at the Additive Manufacturing Research Centre of the Auckland University of Technology. Considering 
the fabrication quality and maintaining the overall dimensions, the height of the beam ( Hb ) is fixed at 10 mm, 
and the minimum thickness is limited to 1 mm. As a result, the minimum top and bottom flange thickness Tb 
and the side flange thickness Ts  of each voxel are set to be equal to 1 mm. For the double void voxel geometry, 
the minimum thickness of the middle flange  Tm is also limited to 1 mm. With these as the limiting boundary 
values, the single void voxel structure (for both symmetric and asymmetric settings) can vary anywhere from a 
solid cell to a voxel with a hollow structure of 8 mm height Hv.

With the same overall dimensions, the low bound voxel provides the highest stiffness and the lowest 
deflection, and for all voxelization settings, the bean can be considered as the same solid structure as depicted 
in Fig. 5a. Similarly, the high bound provides the lowest stiffness and the highest deflection. Therefore, the beam 
structure with the largest hollow geometry for the cells is considered as the high bound. The high bound for the 
symmetric and asymmetric single void 20 voxel model is shown in Fig. 5b, and the high bound for the double 

Figure 3.   CAD models of the 20 voxel structures with the three different voxel cellular geometry settings; 
(a) single symmetric void, (b) single asymmetric void and (c) double void settings. (Images are created by the 
authors using Solidworks Educational Version 30.3.1.2 2022-23). 
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Figure 4.   The beam domain example for 20 voxels model with single symmetric or asymmetric void setting 
(a) and double void setting (c). The details of voxel geometry settings are shown in (b,d), respectively. In these 
particular examples, the voxel height Hb is 10 mm for both single and double void settings (b,d). The hollow 
structure’s height Hv is 8 mm for single void model in (b) and Hv is 4 mm for double void model in (d). (Images 
are created by the authors using Solidworks Educational Version 30.3.1.2 2022-23). 

Figure 5.   The low bound and high bound structural settings for the voxels for optimising the deflection 
behaviour of the beam. (a) the low bound structure for all voxelisation settings; (b) high bound structure for 
20 voxels model with single symmetric or asymmetric voids; (c) high bound structure for 20 voxels model with 
double voids; (d) high bound structure for 40 voxels model with single symmetric or asymmetric voids; (e) high 
bound structure for the 40 voxels model with double voids. (Images are created by the authors using Solidworks 
Educational Version 30.3.1.2 2022-23). 
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void 20 voxel model is shown in Fig. 5c. Due to the increased voxel numbers, the side layer structures of each 
voxel provide more internal support, which leads to higher stiffness and smaller deflection. The high bound for 
40 voxels settings are shown in Fig. 5d,e.

Material properties.  The standard fused deposition modelling material option based on polylactic acid 
(PLA) is selected as the test material. The material property values are set to: Young’s modulus = 3600  MPa, 
Poisson’s ratio = 0.35, and density = 1240 kg/m3 56. This choice is based on the fact that it is easy to demonstrate 
the physical printing of the structures and experimental validation of the analytical and numerical predictions.

Experimental conditions and initial and target sets.  As illustrated in Fig.  6, the beam bending 
behaviour is evaluated in a standard three-point bending test scenario. Three sampling points are considered 
located at the 1/4, 1/2, and 3/4 distances from either ends along the length of the beam structure to test the 
efficiency of the proposed structural optimisation method to control the deflection behaviour of the entire 
beam. The beam deflection response is controlled during the structural optimisation to provide the exact desired 
deflections at three selected points with the applied load at three different locations, as shown in Fig. 6 for the 
three-point bending cases simulated in COMSOL Multiphysics. The load of 100 N distributed over an area is 
applied to the beam through a roller with a diameter of 6 mm. As shown in Fig. 6, this load is applied at the 
1/4th (load case 1 as shown in Fig. 6a), 1/2 (load case 2 as shown in Fig. 6b), and 3/4th (load case 3 as shown in 
Fig. 6c) distances along the length of the beam simply supported on rollers at both ends. The beam bottom plate 
is slightly extended, providing extra flanges at the ends for additional support, which has been implemented in 
both the numerical simulations and experimental tests involving laser sintered polymer prototypes. Three load 
locations are used and deflections at three points are used with the loading case to compare the experimental 
and numerical responses. This results in a total of 9 dflection responses compared between preset, numerical, 
and experimental values. Consequently, the deflections at three specific points under three loading conditions 
result in a challenging multi-dimensional and multi-objective optimisation problem. Notably, the multiple load 
cases are designed to test the capability of the proposed structural optimisation method to converge on a single 
structured beam responding with the desired deflection behaviour under multiple loading conditions.

Figure 6.   The 20 voxel beam shows the three load and deflection sampling points at the 1/4th, 1/2, and 3/4th 
distances along the length of the beam structure.
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The CMA-ES evolutionary process starts from an initial configuration, where the height of the hollow 
structure of each voxel ( Hh ) in the initial population is randomly generated, ranging from a full solid voxel to the 
one with a hollow structure within the boundary limits explained previously. In accordance with these limits, the 
parametric values of the voxel geometries are constrained to the values listed in Table 2 during the evolutionary 
search. The voxelised beam structures corresponding to these high and low bound limits are illustrated in Fig. 5. 
The resulting ranges of deflection in multiple load cases and voxel geometry settings, as calculated by the finite 
element analysis, are listed in Table 3. The target sets (TS) tested for the 20 voxel single void structure model are 
listed in Table 4. The initial target sets for the desired beam deflection values are selected as the midpoints (TS1) 
between the low and high bound limit results and then varied around the midpoint. In TS2 and TS3, The desired 
beam deflection target sets are varied at + 0.2 mm and − 0.2 mm from the midpoint, respectively. In TS4 and TS5, 
The desired beam deflection target sets are varied at + 0.4 mm and − 0.4 mm from the midpoint, respectively. 
For the 40 voxel and double void structured models, the high bound limit is different. Therefore, different target 
sets are used to verify and compare the performance, and the final target sets used for 40 voxel models are listed 
in Table 5. Similar to the single void structured model, TS6 is the midpoint between the results of the low and 
high bound limits. The target set for desired beam deflection is varied at + 0.2 mm in TS7, which is the largest 
possible variation for the double void model.

Results and discussion
Tuning the algorithm.  The standard CMA-ES algorithm is used in this work. The step size control and 
covariance update parameters are set as default values and will update in each iteration based on the fitness value 
obtained. The optimization performance is highly dependent on the population size and iteration number, which 
govern the range of the search domain. The voxel number is also a vital parameter, which is proportional to the 

Table 2.   The limits of the voxel geometric parameters for the beam models. The guidance on the meaning of 
the parameters refers to Fig. 4.

Geometric parameter (mm)

20 voxel 40 voxel

High bound (single 
symmetric and asymmetric 
void) High bound (double void) Low bound

High bound (single 
symmetric and asymmetric 
void) High bound (double void) Low bound

Void length Lv 10 10 10 5 5 5

Voxel width Wb 30 30 30 30 30 30

Voxel Height Hb 10 10 10 10 10 10

Flange thickness Tb 1 1 N/A 1 1 N/A

Side thickness Ts 1 1 N/A 1 1 N/A

Voxel height Hv 8 3.5 N/A 8 3.5 N/A

Middle layer thickness Tm N/A 1 N/A N/A 1 N/A

Table 3.   The limiting ranges of beam deflections at the sampling points resulting from the voxel geometrical 
parameters calculated via FEM simulation by COMSOL Multiphysics as listed in Table 2.

Unit: mm

20 voxels 20voxels 40 voxels 40 voxels

Low bound (All 
setup)

Single void settings Double void settings Single void settings Double void settings

High bound High bound High bound High bound

Loading 1 Sampling 
point 1 (L1S1) − 2.474 − 1.807 − 1.437 − 1.151 − 0.469

Loading 1 Sampling 
point 2 (L1S2) − 2.241 − 1.714 − 1.515 − 1.241 − 0.514

Loading 1 Sampling 
point 3 (L1S3) − 1.172 − 0.875 − 0.809 − 0.634 − 0.242

Loading 2 Sampling 
point 1 (L2S1) − 2.235 − 1.708 − 1.509 − 1.235 − 0.511

Loading 2 Sampling 
point 2 (L2S2) − 3.812 − 2.888 − 2.421 − 1.987 − 0.831

Loading 2 Sampling 
point 3 (L2S3) − 2.235 − 1.708 − 1.509 − 1.235 − 0.511

Loading 3 Sampling 
point 1 (L3S1) − 1.172 − 0.875 − 0.809 − 0.634 − 0.242

Loading 3 Sampling 
point 2 (L3S2) − 2.241 − 1.714 − 1.515 − 1.241 − 0.514

Loading 3 Sampling 
point 3 (L3S3) − 2.474 − 1.807 − 1.437 − 1.151 − 0.469
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number of degrees of freedom. However, large population size, iteration number, and voxel number can lead 
to excessive computational times. It may be noted that the abbreviations TS1 to TS7 are used in the following 
discussions for brevity and they refer to the respective deflection sets identified and listed in Tables 3 and 4.

A small number of initial numerical experiments were conducted to identify the influences of each of the 
optimisation scheme parameters. The 20 voxel model with a single symmetric voxel setting and the target set TS4 
are used in the initial tests for identifying the most efficient population size for the optimisation. TS4 contains 
the highest variance between each sampling point, which is the most challenging target set for the optimisation 
scheme. The results of five independent trials are summarized in Fig. 7, where the lower the fitness value, the 
better the results. It is clearly evident that when the population size is doubled to 50, the optimisation method 
can provide a closer match and at an approximately 50% lower fitness value compared with the trials with a 
population size of 25. With a further increase in the population size to 100, both the variance and fitness value 
further decreased by approximately around 10%. However, with increasing population size, the computational 
time also increases proportionately, leading to heavy computational constraints. Based on these observations, the 
population size is fixed at 50 in all the rest of the tests presented next in order to avoid excessive computational 
times and associated time constraints.

In terms of the voxel numbers, both the 20 voxel and 40 voxel models are tested. The midpoint (TS1 and TS6) 
and the target set with the highest achievable variance from the midpoint (TS4 and TS7) are selected, respectively, 
for the 20 and 40 voxel models. The results of five independent trials are illustrated in Fig. 8. Once again, 
based on the premise that the lower the fitness value, the better, it is clear that the 40 voxel model can provide 
a superior result compared to the 20 voxel model in both variance and fitness values. However, as depicted in 
Fig. 9, the mean of the difference between the actual deflection and the corresponding target deflection at the 

Table 4.   The target deflection sets for 20 voxel single void structured beam.

Unit (mm) L1S1 L1S2 L1S3 L2S1 L2S2 L2S3 L3S1 L3S2 L3S3

Low bound − 0.469 − 0.514 − 0.242 − 0.511 − 0.831 − 0.511 − 0.242 − 0.514 − 0.469

High bound − 2.474 − 2.241 − 1.172 − 2.235 − 3.812 − 2.235 − 1.172 − 2.241 − 2.474

Midpoint (TS1) − 1.471 − 1.377 − 0.707 − 1.373 − 2.321 − 1.373 − 0.707 − 1.377 − 1.471

Midpoint + 0.2(TS2) − 1.271 − 1.177 − 0.507 − 1.173 − 2.121 − 1.173 − 0.507 − 1.177 − 1.271

Midpoint − 0.2(TS3) − 1.671 − 1.577 − 0.907 − 1.573 − 2.521 − 1.573 − 0.907 − 1.577 − 1.671

Midpoint + 0.4(TS4) − 1.071 − 0.977 − 0.307 − 0.973 − 1.921 − 0.973 − 0.307 − 0.977 − 1.072

Midpoint − 0.4(TS5) − 1.871 − 1.777 − 1.107 − 1.773 − 2.721 − 1.773 − 1.107 − 1.777 − 1.871

Table 5.   The target deflection sets for 40 voxel beam.

Unit (mm) L1S1 L1S2 L1S3 L2S1 L2S2 L2S3 L3S1 L3S2 L3S3

Low bound − 0.469 − 0.514 − 0.242 − 0.511 − 0.831 − 0.511 − 0.2420 − 0.514 − 0.469

High bound − 1.437 − 1.515 − 0.809 − 1.509 − 2.421 − 1.509 − 0.809 − 1.515 − 1.437

Midpoint(TS6) − 0.953 − 1.015 − 0.526 − 1.01 − 1.626 − 1.01 − 0.526 − 1.015 − 0.953

Midpoint + 0.2 (TS7) − 0.753 − 0.815 − 0.326 − 0.81 − 1.426 − 0.81 − 0.326 − 0.815 − 0.753

Figure 7.   The effect of population size on the fitness value for TS4 using the 20 voxel single symmetric model. 
The solid lines in the middle indicate the median fitness value, and the boxes represent the 25th and 75th 
percentiles.
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nine sampling points is less than 0.1 mm in most cases. It indicates that both 20 voxel and 40 voxel models 
can provide satisfactory results in matching the target deflection sets. Computationally, the 40 voxel model is 
significantly more expensive compared to the 20 voxel model in terms of both time and other constraints. The 
computation time of the fitness function for a single evaluation is increased from 9 to 33 s on a standard Intel i7 
9700 k processor when moving from 20 to 40 voxel cases. As a balance between the computational costs and the 
performance of the optimisation scheme, the 20 voxel model is used with a population size of 50 as the standard 
setting in the CMA-ES optimisation in all the numerical experiments following.

Beam with standard single symmetric void voxels.  The deflection target sets TS1 to TS5 are used for 
the numerical optimisation based on the standard single symmetric void beam model. The structural form of 
the optimised beam for TS1 is illustrated in Fig. 10a and the deflection patterns with the three loading cases in 
Fig. 10b–d. The fitness values obtained with the different target sets as compiled in Fig. 11 indicate that the result 
for TS1 attained the lowest fitness value. The target sets TS4 and TS5 ended up with the highest fitness values, 
indicating the highest error levels. Referring back to the listings of the deflection ranges in Table 4, TS4 and TS5 
have the largest variation from the midpoint between the low and high bound limits and the deflection targets 
with sampling points L1S3 and L3S1 for TS4 and TS5 are close to the low and high bound limits respectively, 
while the deflections at the other sampling points still remain relatively close to the midpoint. For example, to 
match with the target deflections corresponding to the settings of L1S3 and L3S1 cases in TS4, the optimisation 
scheme needs to create the largest void dimensions for obtaining the lowest overall stiffness of the structure 
while the stiffness matrix of the beam structure also has to maintain higher stiffness for matching the target 
deflection at other sampling points. This conflict between the demanding conditions at the opposite ends at 
different sampling points is the main reason for the higher error in the trials TS4 and TS5. It is pertinent to point 
out that the sampling points L1S3 and L3S1 in TS4 and TS5 are the major sources of error in Fig. 12a, adding 
strength to the above arguments. The optimised beam provided the deflections to closely match the preset 
conditions, with an error of less than 10% in all other sampling points and a much lower error in many cases.

Figure 8.   The effects of voxel number on the fitness value. The solid lines in the middle indicate the median 
fitness value, and the boxes represent the 25th and 75th percentiles.

Figure 9.   The mean of the absolute difference between the deflection from numerical results and the 
corresponding target deflection in the nine sampling points.
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TS4 and TS5 both have the same variation (0.4 mm) from the midpoint between the low and high bound. 
However, as shown in Fig. 12a, it can be seen that the proposed optimisation scheme obtained better performance 
in TS5. The main reason is that TS4 has a smaller deflection value compared with TS5, which represents a higher 
error in percentage. From Fig. 12b, it can be seen that the optimised beam obtained a similar error for matching 
the conditions of TS4 and TS5. Overall, as shown in Fig. 12b, the proposed optimisation scheme provided 
satisfactory accuracy levels in matching the deflection profiles with any case of the target sets within a maximum 
deviation of 0.1 mm.

Figure 10.   The optimised beam structure for TS1. (a) the geometry of the optimised beam model and (b–d) 
deflection patterns under loading conditions 1–3.

Figure 11.   Comparison of fitness values with the 20 voxel single symmetric void model for target deflection 
sets TS 1 to TS5. Each box plot represents the results of 5 trials for each target set. The lower the fitness value, the 
closer the obtained deflection sets to the target deflection sets. The solid lines in the middle indicate the median 
fitness values, the top and bottom of the boxes represent the 25th and 75th percentiles.
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Beam with double and asymmetric void voxels.  For the double void model, the thickness of the 
middle layer  Tm  serves as an extra parameter in the optimisation scheme, which provides an additional degree 
of freedom and better control of the design domain while also adding more complexity and a further dimension 
in the search space of the proposed optimisation scheme. As a result of the extra middle layer in the cellular 
structure, the high bound limit of the achievable deflection is different. As listed in Table  6, different target 
sets, TS8 and TS9, are used. TS8 corresponds to the midpoint between the low and high bound limits of the 
achievable deflections, while TS9 is the target set with + 0.2  mm variation from the midpoint, which is the 
highest achievable variation for the double void voxel model. An example of the optimised 20 voxel double void 
beam structure is depicted in Fig. 13. The resulting beam structure is made up of double void voxels with varying 
internal dimensions for the voids that are symmetric about the central web.

Figure 12.   The mean of the difference between the deflection in nine sampling points and the corresponding 
target deflections for TS1 to TS5 in 20 voxel symmetric single void models is expressed as (a) percentage and (b) 
actual difference in deflections. Each data point corresponds to the mean value of 5 independent trials.

Table 6.   The target deflection sets for double void 20 voxel beam.

Unit (mm) L1S1 L1S2 L1S3 L2S1 L2S2 L2S3 L3S1 L3S2 L3S3

Low bound − 0.469 − 0.514 − 0.242 − 0.511 − 0.831 − 0.511 − 0.2420 − 0.514 − 0.469

High bound − 1.807 − 1.714 − 0.875 − 1.708 − 2.888 − 1.708 − 0.875 − 1.714 − 1.807

Midpoint (TS8) − 1.138 − 1.114 − 0.559 − 1.109 − 1.859 − 1.109 − 0.559 − 1.114 − 1.138

Midpoint + 0.2 (TS9) − 1.338 − 1.314 − 0.759 − 1.309 − 2.059 − 1.3095 − 0.7585 − 1.314 − 1.338
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As shown in Fig. 14, the fitness values for target sets TS8 and TS9 are approximately 1 and 4, respectively. 
Compared with the single symmetric void model, the double void voxel model obtained better performance with 
the same number of voxels. Evidently, with the additional manipulation of the thickness of the middle layer in the 
double void cellular structure, the optimisation scheme had better control over the overall stiffness matrix, which 
in turn governs the deflection profile of the beam. The percentage and actual deviations between the target and 
achieved values resulting from the FE simulations of the optimised beam structures are presented in Fig. 15a,b, 
respectively. The results in Fig. 15a,b clearly indicate the better performance of the CMA-ES optimisation scheme 

Figure 13.   An example of the optimised 20 voxel double void beam model for the target set TS8. (a) The 
geometry of the optimised beam model and (b–d) are deflection plots under loading conditions 1 to 3, 
respectively.

Figure 14.   Comparison of fitness values for 20 voxel double void model for target deflection sets TS8 and 
TS9. Each box plot represents the results of 5 trials for each target set. The lower the fitness value, the closer the 
obtained deflection sets were to the target deflection set. The solid lines in the middle indicate the median fitness 
values, the top and bottom of the boxes represent the 25th and 75th percentiles.
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in converging on the optimum structural geometry of the cellular beam, effectively utilising the added degree 
of freedom from the double void geometry. The optimised cellular beam structures achieved deflection patterns 
close to the values of the desired deflection target sets TS8 and TS9. At all the sampling points, the percentage 
and actual deviations between the predicted and desired deflection levels (errors) are less than 6% and 0.06 mm, 
respectively.

For the asymmetric single void model, referring back to Fig. 4 again, the thickness of the bottom web, Tb can 
be used as an additional parameter to control the location of the void within the voxel, which will double the 
geometric parameters for optimisation compared to the single void symmetric cellular structure. This additional 
parameter Tb is again expected to allow the optimisation scheme to gain better control over the deflection 
behaviour of the beam model while also increasing the complexity and the dimensions of the searching problem. 
The asymmetric single void model shares the same low and high bound limits for the deflections as the symmetric 
single void voxel model. Therefore, the same target deflection sets TS1 and TS4 as employed in “Experimental 
conditions and initial and target sets” section are used. An example of the optimised cellular geometry of the 
beam with the asymmetric single void structure is depicted in Fig. 16a and the deflection profiles in Fig. 16b–d as 
obtained with the three loading cases. The variation of the geometry of the cells based on asymmetric positioning 
of the voids as obtained by the optimisation scheme is clearly reflected in Fig. 16a.

Figure 15.   The mean of the difference between the deflection in nine sampling points and the corresponding 
target deflections for TS8 and TS9 in 20 voxel double void models is expressed as (a) percentage and (b) actual 
deflection difference. Each data point corresponds to the mean value of 5 independent trials.
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Figure 16.   An example of the optimised 20 voxels asymmetric single void beam model for target set TS1. (a) 
The geometry of the optimised beam model, and (b–d) is the deflection under loading conditions 1–3.

Figure 17.   Comparison of fitness values for 20 voxel asymmetric single void beam model for target deflection 
sets TS1 and TS4. Each box plot represents the results of 5 trials for each target set. The lower the fitness value, 
the closer the obtained deflection sets were to the target deflection set. The solid lines in the middle indicate the 
median fitness values, the top and bottom of the boxes represent the 25th and 75th percentiles.
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As illustrated in Figs. 17 and 18, the optimisation with the asymmetric single void model obtained similar 
trends in results as the standard symmetric single void model. The maximum deviation between predicted and 
target results is less than 10% or 0.08 mm in most of the cases. Though the optimisation scheme was effective 
in handling the additional degrees of freedom, there is no specific improvement in the convergent results based 
on the asymmetric model compared to the symmetric single void model. The main reason for this is the fact 
that there is no substantial variation in the property ranges that can actually be obtained by shifting from the 
symmetric to the asymmetric variations in the single void cellular geometries.

The results for sampling points L1S3 and L3S1 still suffered from larger errors. Similar to the results based 
on the standard symmetric single void model, the targets for sampling points L1S3 and L3S1 are close to the 
high bound deflection limits, while the targets for the other sampling points still remain relatively close to the 
midpoint between the low and high bound limits. To match with the target values of the sampling points L1S3 and 
L3S1, the optimisation scheme is required to use more void structures that provide higher deflection, while fewer 
void structures for lower deflection are required in nearby voxels to match the targets in other sampling points. 
Evidently, even with the additional control over the beam structure, the conflicts between the target deflection 
profiles of different sampling points play significant roles in the performance of the optimisation scheme.

Figure 18.   The mean of the differences between the deflection at nine sampling points and the corresponding 
target deflections for TS1 and TS4 in 20 voxel asymmetric single void beam model is expressed as (a) percentage 
and (b) actual difference in the deflection. Each data point corresponds to the mean value of 5 independent 
trials.
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Additive manufacturing and experimental validation.  Considering the time and cost constraints, 
the physical reproduction of the cellular beam structures by additive manufacturing and the experimental 
validation of deflection profiles based on three-point bending tests are confined to the standard symmetric 
single void beam prototypes of 20 voxels. All the beam test pieces are printed with a build orientation in which 
no external support structures are needed, using the commercial PLA filaments based on a CreatBot 3D printer 
(Model F430) with the critical process parameter settings identified as the best options after a few initial trials 
and listed in Table 7. The true material properties of the PLA polymer used for the experimental trials are first 
established by printing a few standard test pieces and conducting the tensile tests. The average Young’s modulus 
thus obtained is widely different from the mechanical properties stated in “Material properties” section earlier 
and used in all the numerical results discussed in the preceding sections.

Considering the wide variation in the modulus of elasticity, and also the fact that the varying geometry of the 
beam has an influence on the effective Young’s modulus of the material, a series of tests have to be undertaken. 
Six beam specimens with solid, 20%, 40%, 60%, and 80% voids, and the incremental void case geometries as 
depicted in Fig. 19a–f are printed and subjected to three-point bending loads applied at the three experimental 
points. The deflections at the three locations are recorded for each geometry and load case. Numerical simulations 
are done with the same six geometries and the three load cases in each, and the best correlation between the 
experimental and the numerical predictions was obtained by varying the effective Young’s modulus value in 
each case. Eventually, the average Young’s modulus at 1600 MPa was found to give the best matching between 
the experimental and numerical results in all six cases and is adopted as the critical property for the final 
experimental validation of the beam deflection profiles.

Further, the 20 voxel beam case is reevaluated numerically using the newly established material property 
and the limiting deflection values are reestimated. Based on these newly established low and high bound values, 
different target deflection values are estimated, as listed in Table 8, for validation through the three-point bending 
experiments. The target sets at the mid, mid + 0.2 mm and mid-0.2 mm points are referred to as TSE1, TSE2, 
and TSE3, respectively, to differentiate them from the target sets TS1 to TS3 used earlier. The optimised 20 voxel 
single symmetric void beams for TSE1 to TSE3 cases based on numerical simulations using these properties 
and target deflections are physically printed as shown in Fig. 19g–i. The beam loading setups for the three-point 
bending under loads at different locations are shown in Fig. 20 where each experimental case is repeated three 
times and the average values are used in the experimental validation that follows.

The differences between the experimental and target deflections at different locations of the cases TSE1 to 
TSE3 are presented in Fig. 21 both as (a) percentages and (b) absolute values. The maximum deviation between 
the experimental and target deflections is below 25% or 0.60 mm. Incidentally, the largest percentage error 
obtained in L1S3 and L3S1 actually have the least absolute deviation at around 0.2 to 0.3 mm, but the percentage 
error became high as the target deflection values are quite low, less than 2 mm. Apart from these two points, the 
rest of the results indicate an average of 15% maximum deviations between the experimental and target responses 

Table 7.   Optimised printing parameters used for the physical prototyping of the 20 voxel beam structures.

Nozzle 
temperature (°C) Bed temperature (°C)

Printing speed 
(mm/s) Layer Height (mm)

Nozzle diameter 
(mm) Infill density (%)

210 60 55 0.2 mm 0.4 100

Figure 19.   3D printed samples (a) low bound 20 voxels single void beam; (b–e) 20 voxels single void beam 
with 20% 40% 60% and 80% void respectively; (f) 20 voxels single void beam with incremental void sizes; (g–j) 
optimised 20 voxels single symmetric void beam for TSE1- TSE3. (Image is based on the photograph taken by the 
authors). 
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in the deflection profiles of the beam. The FDM print quality is quite variable due to the inherent nature of the 
deposition of fused polymer could play some role in the loss of convergence. Comparatively, selective laser 
sintering and melting are likely to offer better control over the meso and microstructures and the consequent 
deflection responses of the printed beam specimens. Considering all these aspects together with the results 
presented in Fig. 21, it is pertinent to conclude that the proposed optimisation scheme can effectively alter the 
deflection profiles of the beams to match with the selected target deflection sets. The outcomes would pave the 
ways for far better materials and design solutions for compliant mechanisms in future soft robotics and other 
applications.

Conclusion
Functionally graded material property responses were achieved by means of computationally altered geometrical 
forms of voxelised cellular structural forms. The optimisation of geometries of individual cells and the overall 
responses of the structural continuum were evaluated considering the controlled deflection responses of a simply 

Table 8.   The target deflection values for symmetric single void 20 voxel beam reestimated using the true 
material properties for experimental validation purposes.

Unit (mm) L1S1 L1S2 L1S3 L2S1 L2S2 L2S3 L3S1 L3S2 L3S3

Low bound − 1.06 − 1.16 − 0.54 − 1.15 − 1.869 − 1.15 − 0.54 − 1.16 − 1.06

High bound − 5.57 − 5.04 − 2.64 − 5.03 − 8.58 − 5.03 − 2.64 − 5.04 − 5.57

Midpoint (TSE1) − 3.31 − 3.09 − 1.59 3.08 − 5.22 − 3.09 − 1.59 − 3.09 − 3.31

Midpoint + 0.2 mm (TSE2) − 3.11 − 2.89 − 1.39 − 2.88 − 5.02 − 2.89 − 1.39 − 2.89 − 3.11

Midpoint− 0.2 mm (TSE3) − 3.51 − 3.29 − 1.79 − 3.28 − 5.42 − 3.29 − 1.79 − 3.29 − 3.51

Figure 20.   Experimental three-point bending tests; (a–c) indicate loading points 1 to 3 (Image is based on the 
photograph taken by the authors). 
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supported beam with a point load. Three load cases at three specific locations of importance each were considered 
for deflection responses in combinations to evaluate the effectiveness of the generative search algorithm in 
converging on the optimised cellular structure of the beam. The classical CMA-ES algorithm is used for the multi-
objective optimisation together with the Comsol Multiphysics based finite element evaluations for exploring 
the generative design space.

Different sets of numerical experiments were conducted to evaluate the performance of the proposed cellular 
optimisation scheme to match the beam deflection responses with the designated target deflection sets at critical 
points. The scheme of controlled property variation achieved by varying the cellular geometries based on the 
optimisation using the CMA-ES algorithm together with the finite element evaluation worked well in achieving 
the overall objectives of controlling the deflection profiles of simply supported beams with single point loads. 
Out of the three cellular geometries investigated, the double void geometry was by far the best possible option 
to achieve an optimised beam structure with less than 5% maximum deviations between the predicted and 
target deflections at critical points. Experimental validations based on the optimised structures printed by FDM 
indicate close correlations with numerical predictions, with the average deviations at around a maximum of 15%, 
in most critical cases. Increased voxel number and degrees of freedom could be the solution for tackling the 
higher errors in the trails TS4 and TS5. The trends also indicate better results with 40 or more voxels though at 
higher computational time and cost. However, more advanced technologies such as the computer unified device 
architecture (CUDA) parallel computing are pathways for better practical utilisation of the outcomes of this 
research57. The proposed optimisation method can be adapted to the laser powder bed fusion (L-PBF) processes 
with metal materials to further validate the performance of the beams for controlled deflection responses.

Figure 21.   The percentage error (a) and the actual error (b) between the target set TSE1-TSE3 and the three-
point bending test result of the printed specimen.
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Data availability
The authors have not used any data outside of the scope of the experimental data already reported in the 
manuscript. Coding has been generated to integrate the CMA-ES and the Finite Element solutions together, 
which will be provided later if any user is specifically interested. The datasets used and/or analysed during the 
current study are available from the corresponding author on reasonable request.
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