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ON THE CORE AND WALRASIAN EXPECTATIONS
EQUILIBRIUM IN INFINITE DIMENSIONAL

COMMODITY SPACES

ANUJ BHOWMIK AND JILING CAO

Abstract. In this paper, we establish two different characterizations of Wal-
rasian expectations allocations by the veto power of the grand coalition in an
asymmetric information economy having finitely many agents and states of
nature and whose commodity space is a Banach lattice. The first one deals
with Aubin non-dominated allocations, and the other claims that an alloca-
tion is a Walrasian expectations allocation if and only if it is not privately
dominated by the grand coalition, by considering perturbations of the original
initial endowments in precise directions.

1. Introduction

The classical deterministic Arrow-Debreu-McKenzie model on an economic sys-
tem consists of finitely many consumers, producers and commodities, refer to [3]
and [17]. In late of 1950’s, Arrow and Debreu introduced uncertainty into this
deterministic model by adding contingent claims, [6, Chapter 7]. In this improved
model, agents make contracts contingent on the realized state of nature known to
all the agents. However, such a model does not capture the idea of contracts un-
der asymmetric information as all agents face the same uncertainty. To overcome
this shortcoming, Radner [21] introduced economies with asymmetric information.
In Radner’s model, an economy consists of finitely many agents, each of whom is
characterized by a state dependent utility function, a random initial endowment,
a private information set and his prior belief; and agents arrange contingent con-
tracts for trading commodities before they obtain any information about the real-
ized state of nature. Analogous to the concept of a Walrasian equilibrium in the
Arrow-Debreu-McKenzie model, Radner also introduced the notion of a Walrasian
expectations equilibrium for an asymmetric information economy so that the infor-
mation of an agent places a restriction on his feasible trades: better information
allows for more contingent trades, and each agent maximizes his ex ante expected
utility subject to his budget constraint with respect to his private information. This
individualistic behavior leads to a feasible redistribution of the initial endowments
for each state of nature.

In this paper, we continue the study on asymmetric information economies. In
particular, we are interested in asymmetric information economies whose commod-
ity spaces are infinite dimensional spaces. In Section 2, we give a general description
on a discrete model of an asymmetric information economy having finitely many
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2 A. BHOWMIK AND J. CAO

agents and states of nature, and whose commodity space is a Banach lattice. We
also associate a continuum model with this discrete model. The continuum model
has the equal treatment property. It is worth to mention that Tourky and Yannelis
[24] and Podczeck [19] constructed counterexamples of economies to show that the
classical core-Walras equivalence in [5] fails whenever the commodity space is a
non-separable ordered Banach space. In both of these two papers, the authors used
the Continuum Hypothesis in set theory to construct an economy with uncount-
ably many utility functions. Since the commodity spaces of economies in our paper
are Banach lattices which are not necessarily separable, our theorems give some
positive results for asymmetric information economies whose commodity spaces are
non-separable.

The concept of the private core of an asymmetric information economy was in-
troduced in [27]. Einy et al. [8] showed that under appropriate assumptions, the
private core coincides with the set of Walrasian expectations allocations for an
atomless economy whose commodity space is Euclidean space. Hervés-Beloso et al.
[15] established a similar result for an equal treatment economy whose commodity
space is `∞. By considering an atomless economy with asymmetric information,
Evren and Hüsseinov [9] extended these results to an economy whose commod-
ity space is an ordered separable Banach space which has an interior point in its
positive cone. In Section 3, we establish a similar equivalence result for an equal
treatment economy whose commodity space is a Banach lattice. In an atomless
economy with a complete information and a finite dimensional commodity space,
improving a result of [5], Schmeidler [23] and Grodal [12] showed that (i) if some
coalition blocks an allocation, then there is also a blocking subcoalition with ar-
bitrarily small measure; and (ii) the small coalition can be the union of at most
` +1 coalitions, each of which has measure and diameter less than an arbitrary
small number ε > 0, where ` is the number of commodities. In the same issue of
Econometrica, Vind [26] extended (i) to show that if some coalition blocks then
there is a blocking coalition with any measure less than the measure of the grand
coalition. The first extension of the Schmeidler and Grodal’s results to an infinite
dimensional setting (the space `∞) were obtained in [13], where it was also showed
that the Vind’s result fails in the space `∞ under the standard assumptions. Hervés-
Beloso et al. [14, 15] first extended Vind’s theorem to an asymmetric information
economy with a continuum of agents having the equal treatment property, and
whose commodity space is Euclidean space and `∞. These extensions are estab-
lished by using finite-dimensional Lyapunov’s convexity theorem. Using an infinite
dimensional extension of Lyapunov’s convexity theorem, Evren and Hüsseinov [9]
further extended Vind’s theorem to an atomless economy whose commodity space
is an ordered Banach space having an interior point in its positive cone, with some
additional assumption. Our second main result in Section 3 is an extension of
Vind’s theorem to an asymmetric information economy with the equal treatment
property, and whose commodity space is a Banach lattice.

Addressing complete information economies with finitely many agents and com-
modities, Aubin [4] introduced the ponder veto concept and showed that the core
obtained by this veto mechanism coincides with the Walrasian equilibria. Aubin’s
approach was employed by Gabriella Graziano, Meo and Hervés-Beloso et al. to
characterize Walrasian expectations equilibria in asymmetric information economies.
Gabriella Graziano and Meo [10] showed that the Aubin private core provides a
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complete characterization of Walrasian expectations allocations in an asymmetric
information economy with a complete measure space of agents. They also showed
that Walrasian expectations allocations in an asymmetric information economy
with a complete measure space of agents and an ordered separable Banach space
whose positive cone has an interior point as the commodity space can be char-
acterized by privately non-dominated allocations in suitable associated economies.
Hervés-Beloso et al. [14, 15] established similar results for asymmetric information
economies with finitely many agents and states of nature, and R` or `∞ as the com-
modity space. The proof of Hervés-Beloso et al. was built on associated continuum
economies and thus requires the validity of Vind’s theorem, which is not the case in
the proof of Gabriella Graziano and Meo [10]. In Section 4, we adopt the approach
in [14, 15] to characterize Walrasian expectations equilibria in terms of the private
blocking power of the grand coalition. Since our economic model has finitely many
agents and a Banach lattice as the commodity space, our results can be considered
as extensions of those in [14, 15].

In the Appendix, an asymmetric information economy whose commodity space
is a Banach lattice and which has infinitely many states of nature is discussed.
Mathematical preliminaries and discussions on some assumptions are also provided
in the Appendix. Of course, all of these mathematical preliminaries can be found
in [1].

2. Description of the model

In this section, we describe our model of an exchange economy with asymmetric
information.

2.1. The discrete model. Our first model of an exchange economy is a discrete
model E with (fixed) n agents denoted by the set N = {1, ..., n}, like those ones
considered in [21, 22]. A measurable space (Ω,F) is used to describe the exogenous
uncertainty of E , where Ω is a finite set denoting the set of all possible states of
nature and the σ-algebra F denotes the set of all events. The commodity space
of E is a Banach lattice Y with a partial order ≤. The economy E extends over
two time periods τ = 0, 1, and consumption takes place at τ = 1. At τ = 0, there
is uncertainty over the states of nature and agents make contracts that may be
contingent on the realized state of nature at τ = 1. More precisely, E is expressed
by E = {((Ω,F), Y+,Fi, Ui, ai, qi) : i ∈ N}, where the positive cone Y+ of Y is
the consumption set in each state of nature ω ∈ Ω for every agent i ∈ N ; Fi is a
partition of Ω representing the private information of agent i; Ui : Ω× Y+ → R is
the random utility function of agent i; ai : Ω → Y+ is the random initial endowment
of agent i, assumed to be constant on elements of Fi; and qi is a probability measure
on Ω giving the prior of agent i, assumed to be positive on all elements of Ω. For
any random consumption bundle x : Ω → Y+, the ex ante expected utility of agent
i is given by Vi(x) =

∑
ω∈Ω Ui(ω, x(ω))qi(ω).

An assignment in E is a function x = (x1, ..., xn) which associates to every agent i
a random consumption bundle xi : Ω → Y+, equivalently written as xi ∈ (Y+)Ω. We
call a function with domain Ω, constant on elements of Fi, Fi-measurable, although
measurability is meant with respect to the σ-algebra generated by the partition.
Put Li = {xi ∈ (Y+)Ω : xi is Fi-measurable}. An assignment x = (x1, ..., xn) in E
is called an allocation if xi ∈ Li for all i ∈ N. An allocation x is said to be feasible
if

∑n
i=1 xi(ω) ≤ ∑n

i=1 ai(ω) for all ω ∈ Ω. Further, an allocation x of E is privately
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non-dominated if there does not exist any feasible allocation y = (y1, ..., yn) such
that Vi(yi) > Vi(xi) for all i ∈ N . A feasible allocation x of E is called privately
Pareto optimal if it is privately non-dominated. A price system is an F-measurable,
non-zero function π : Ω → Y ∗

+, where Y ∗
+ is the positive cone of the norm-dual space

Y ∗ of Y . The budget set Bi(π) of agent i under π is defined as

Bi(π) =

{
xi ∈ Li :

∑

ω∈Ω

〈π(ω), xi(ω)〉 ≤
∑

ω∈Ω

〈π(ω), ai(ω)〉
}

.

Given a feasible allocation x and a price system π in E , the pair (x, π) is called a
Walrasian expectations quasi-equilibrium of E in the sense of Radner if

(2.1) for all i ∈ N , xi ∈ Bi(π) and the consumption bundle xi maximizes Vi on
Bi(π) whenever

∑
ω∈Ω〈π(ω), ai(ω)〉 6= 0;

(2.2)
∑

ω∈Ω

〈
π(ω),

∑
i∈N xi(ω)

〉
=

∑
ω∈Ω

〈
π(ω),

∑
i∈N ai(ω)

〉
.

If
∑

ω∈Ω〈π(ω), ai(ω)〉 6= 0 for some i ∈ N , then (x, π) is called non-trivial. Further,
if
(2.1′) for all i ∈ N , xi ∈ Bi(π) and xi maximizes Vi on Bi(π),

and (2.2) hold, (x, π) is called a Walrasian expectations equilibrium of E in the
sense of Radner, and x is called a Walrasian expectations allocation. Note that if
(x, π) is a Walrasian expectations quasi-equilibrium, then feasibility of x and (2.2)
together imply

(2.3)
〈
π(ω),

∑
i∈N xi(ω)

〉
=

〈
π(ω),

∑
i∈N ai(ω)

〉
for each ω ∈ Ω.

Throughout this paper, we put the following assumptions on our discrete model
E . These assumptions or some of their combinations are used in different places of
the paper.

(A1) Continuity. For each i ∈ N and ω ∈ Ω, Ui(ω, ·) is norm-continuous.
(A2) Monotonicity. For each i ∈ N and ω ∈ Ω, Ui(ω, ·) is monotone in the sense

that if x, y ∈ Y+ with y > 0, then Ui(ω, x + y) > Ui(ω, x).
(A3) Concavity. For each i ∈ N and ω ∈ Ω, Ui(ω, ·) is concave.
(A4) Quasi-interiority. For each ω ∈ Ω,

∑
i∈N ai(ω) À 0.

(A′4) Positivity. For each ω ∈ Ω,
∑

i∈N ai(ω) > 0.
(A5) Strong positivity. For each i ∈ N , inf{ai(ω) : ω ∈ Ω} > 0.
(A6) Stability. There exists an element â ∈ Y+ such that L

(∑
i∈N ai(ω)

)
= L(â)

for each ω ∈ Ω.
(A7) Irreducibility. For each feasible allocation x of E and any two non-empty

disjoint subsets N1, N2 of N with N1 ∪ N2 = N , there is a y = (yi)i∈N2

such that yi ∈ Li and Vi(yi) > Vi(xi) for all i ∈ N2, and
∑

i∈N1
ai(ω) +∑

i∈N2
xi(ω) ≥ ∑

i∈N2
yi(ω) for each ω ∈ Ω.

Remark 2.1. Under (A1), Vi is continuous with respect to the product topology
induced by the norm. Under (A2), Vi is monotone in the sense that if x, y ∈ (Y+)Ω

with y(ω) > 0 for some ω ∈ Ω, then Vi(x + y) > Vi(x). Under (A3), Vi is concave.
(A6) implies that the aggregate endowments do not vary too much across states.
(A7) is similar to (A.3) in [8]. When Y = `∞, assumptions (A2)-(A4) are similar to
(A.2)-(A.4) in [15]. Further, assumptions (A1)-(A4) are similar to (A.2) and (A.3)
in [10], and (A.A3)-(A.A5) in [9] (except for the concavity). ¤

The following proposition, which is a modification of Proposition 3.2 in [8], shall
be used in the sequel.
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Proposition 2.2. If E satisfies (A7), then every non-trivial Walrasian expectations
quasi-equilibrium of E is a Walrasian expectations equilibrium.

Proof. Let (x, π) be a non-trivial Walrasian expectations quasi-equilibrium of E .
Then N2 = {i ∈ N :

∑
ω∈Ω〈π(ω), ai(ω)〉 6= 0} 6= ∅. Let N1 = N − N2. If

N2 = N , there is nothing to verify. Otherwise, N1 6= ∅. By (A7), there is a
y = (yi)i∈N2 such that yi ∈ Li and Vi(yi) > Vi(xi) for all i ∈ N2, and

∑
i∈N1

ai(ω)+∑
i∈N2

xi(ω) ≥ ∑
i∈N2

yi(ω) for all ω ∈ Ω. Then
∑

i∈N2

∑
ω∈Ω〈π(ω), xi(ω)〉 ≥∑

i∈N2

∑
ω∈Ω〈π(ω), yi(ω)〉, and

∑
ω∈Ω〈π(ω), xi(ω)〉 <

∑
ω∈Ω〈π(ω), yi(ω)〉 for each

i ∈ N2, which is a contradiction. ¤

2.2. A continuum interpretation. Now, we associate a continuum economy Ec with
the discrete model E , just like that in [11] and [14, 15]. The set of agents of Ec

is the unit interval I = [0, 1] endowed with the Lebesgue measure µ. We write
I =

⋃n
i=1 Ii, where Ii =

[
i−1
n , i

n

)
for i = 1, ..., n− 1, and In =

[
n−1

n , 1
]
. Each agent

t ∈ Ii is characterized by the private information set Ft = Fi; the consumption set
Y+ in each state ω ∈ Ω; the random initial endowment a(t, ·) = ai; the random
utility function Ut = Ui; and the prior qt = qi. The ex ante expected utility
function of every agent t ∈ Ii is Vt = Vi. Thus, Ec can be expressed as Ec =
{((Ω,F), Y+, I,Fi, ai, Vi, qi) : i ∈ N}. We call Ii the set of type i agents, and Ec

an economy with the equal treatment property. An assignment in Ec is a function
f : I × Ω → Y+ such that f(·, ω) ∈ L1(µ, Y+) for all ω ∈ Ω, where L1(µ, Y+) is the
set of all Bochner integrable functions from I into Y+. Put Lt = Li for each t ∈ Ii

and i ∈ N . An assignment f in Ec is called an allocation if f(t, ·) ∈ Lt for almost
all t ∈ I. An allocation f in Ec is feasible if

∫
I
f(t, ω)dµ(t) ≤ ∫

I
a(t, ω)dµ(t) for all

ω ∈ Ω. A coalition in Ec is a Borel measurable subset S ⊆ I with µ(S) > 0. A
coalition S privately blocks an allocation f in Ec if there is a function g : S×Ω → Y+

such that g(t, ·) ∈ Lt and Vt(g(t, ·)) > Vt(f(t, ·)) for all t ∈ S, and
∫

S
g(t, ω)dµ(t) ≤∫

S
a(t, ω)dµ(t) for all ω ∈ Ω. The private core of Ec is the set of all feasible

allocations which are not privately blocked by any coalition.
Given a feasible allocation f and a price system π in Ec, the budget set of an

agent t ∈ I is Bt(π) = Bi(π) if t ∈ Ii and i ∈ N . The pair (f, π) is called a
Walrasian expectations quasi-equilibrium of Ec in the sense of Radner if

(2.4) for all t ∈ I, f(t, ·) ∈ Bt(π) and f(t, ·) maximizes Vt on Bt(π) whenever∑
ω∈Ω〈π(ω), a(t, ω)〉 6= 0;

(2.5)
∑

ω∈Ω

〈
π(ω),

∫
I
f(t, ω)dµ(t)

〉
=

∑
ω∈Ω

〈
π(ω),

∫
I
a(t, ω)dµ(t)

〉
.

If
∑

ω∈Ω〈π(ω), a(t, ω)〉 6= 0 for all t in some coalition S ⊆ I, then (f, π) is called
non-trivial. Further, if

(2.4′) for all t ∈ I, f(t, ·) ∈ Bt(π) and f(t, ·) maximizes Vt on Bt(π)

and (2.5) hold, then (f, π) is called a Walrasian expectations equilibrium of Ec in the
sense of Radner, and f is called a Walrasian expectations allocation. An allocation
f in Ec can be interpreted as an allocation x in E , where xi = n

∫
Ii

f(t, ·)dµ(t) for
all i ∈ N . Conversely, an allocation x in E can be interpreted as an allocation f in
Ec, where f is the simple function given by f(t, ·) = xi for all t ∈ Ii and i ∈ N .

Analogous to Theorem 1 in [11] and Theorem 3.1 in [14, 15], our next result
shows that the discrete and continuum approaches can be considered equivalent
with respect to Walrasian expectations (quasi-)equilibria.
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Proposition 2.3. Assume that E satisfies (A3). If (x, π) is a non-trivial Walrasian
expectations quasi-equilibrium of E, then (f, π) is a non-trivial Walrasian expecta-
tions quasi-equilibrium of Ec, where f(t, ·) = xi if t ∈ Ii. Conversely, if (f, π) is
a non-trivial Walrasian expectations quasi-equilibrium of Ec, then (x, π) is a non-
trivial Walrasian expectations quasi-equilibrium of E, where xi = n

∫
Ii

f(t, ·)dµ(t).

Since the proof of Proposition 2.3 is straightforward, we omit it.

Remark 2.4. A similar conclusion holds if “non-trivial Walrasian expectations
quasi-equilibrium” is replaced with “Walrasian expectations equilibrium”. ¤

3. Characterizations of the private core in equal treatment setting

In this section, we establish a relation between the private core and the set
of Walrasian expectations allocations in the setting of equal treatment, and give
an extension of Vind’s theorem. These two results allow us to obtain our main
theorems in Section 4.4.

3.1. Equivalence results. Evren and Hüsseinov [9] provided an equivalence theorem
between the private core and the set of Walrasian expectations allocations in an
economy whose commodity space is an ordered separable Banach space having an
interior point in its positive cone. Next, we give a similar result for the case that
the commodity space is a Banach lattice.

Theorem 3.1. Assume that the commodity space of E has an interior point in its
positive cone. Let f be a feasible allocation in Ec such that f(t, ·) = xi for all t ∈ Ii

and i ∈ N . Under (A1), (A2) and (A4), if f is in the private core of Ec, then (f, π)
is a non-trivial Walrasian expectations quasi-equilibrium of Ec for some non-zero
π : Ω → Y ∗

+.

Proof. Consider a correspondence G : I ⇒ (Y+)Ω defined by G(t) = {g(t, ·) ∈
Lt : Vt(g(t, ·)) > Vt(f(t, ·))}. By (A2), G(t) 6= ∅ for all t ∈ I. Applying the
infinite dimensional extension of Lyapunov convexity theorem [25] to the proof of
Proposition 5 in [16, p. 62], one can show that

H = ‖ · ‖Ω-cl
(⋃ {∫

A

G(t, ·)dµ(t)−
∫

A

a(t, ·)dµ(t) : A ∈ A, µ(A) > 0
})

is a convex subset of Y Ω, where A denotes the set of Lebesgue measurable subsets
of I. Since H ∩ int(−Y+)Ω = ∅, by the separation theorem, there is a non-zero
positive element π ∈ (Y ∗)Ω such that for any coalition A,

∑

ω∈Ω

〈π(ω), y(ω)〉 ≥
∑

ω∈Ω

〈
π(ω),

∫

A

a(t, ω)dµ(t)
〉

for all y ∈ ∫
A

G(t, ·)dµ(t). Let N1 = {i ∈ N :
∑

ω∈Ω〈π(ω), ai(ω)〉 6= 0}. Suppose
Vi(yi) > Vi(xi) for some i ∈ N1 and yi ∈ Li. If yi ∈ Bi(π), by (A1), one can
construct some zi ∈ Bi(π) such that Vi(zi) > Vi(xi) and

∑

ω∈Ω

〈
π(ω),

∫

Ii

zi(ω)dµ(t)
〉

<
∑

ω∈Ω

〈
π(ω),

∫

Ii

ai(ω)dµ(t)
〉

,

which is a contradiction. Thus,
∑

ω∈Ω〈π(ω), yi(ω)〉 >
∑

ω∈Ω〈π(ω), ai(ω)〉. By (A2),∑
ω∈Ω〈π(ω), xi(ω)〉 ≥ ∑

ω∈Ω〈π(ω), ai(ω)〉 for all i ∈ N1. Using the feasibility of f ,
one can show that xi ∈ Bi(π) for all i ∈ N1. Thus, (x, π) is a non-trivial Walrasian



7

expectations quasi-equilibrium in E . By Proposition 2.3, (f, π) is a non-trivial
Walrasian expectations quasi-equilibrium in Ec. ¤
Corollary 3.2. Assume that the commodity space of E has an interior point in its
positive cone. Let f be a feasible allocation such that f(t, ·) = xi for all t ∈ Ii and
i ∈ N . Under (A1), (A2), (A4) and (A7), f is a Walrasian expectations allocation
if and only if f is in the private core of Ec.

Next, we extend Theorem 3.1 to an asymmetric information economy with the
equal treatment property whose commodity space is a Banach lattice containing
a quasi-interior point in its positive cone. For each i ∈ N and each xi ∈ Li, let
Pi(xi) := {yi ∈ Li : Vi(yi) > Vi(xi)} be the set of all Fi-measurable consumption
bundles preferred to xi by agent i. Then Pi : Li ⇒ Li is called the preference
relation of agent i. Note that under (A1) and (A3), Pi(xi) is convex and relatively
‖ · ‖Ω-open in Li for all i ∈ N . The following definition of ATY-properness is taken
from [20].

Definition 3.3. The relation Pi : Li ⇒ Li is called ATY-proper at xi ∈ Li if
there exists a convex subset P̃i(xi) of Y Ω with non-empty ‖ · ‖Ω-interior such that
P̃i(xi) ∩ Li = Pi(xi) and (‖ · ‖Ω-intP̃i(xi))∩Li 6= ∅.

(A8) Properness. If (x1, ..., xn) is a privately Pareto optimal allocation in E , then
for each i ∈ N , Pi is ATY-proper at xi.

Lemma 3.4. Let Y be a real vector space endowed with a Hausdorff, locally convex
topology τ and let U, V be convex subsets of Y such that U is open and U ∩ V 6= ∅.
Let y ∈ V ∩ clU , where clU denotes the closure of U . Suppose that π is a linear
functional (not necessarily continuous) on Y with 〈π, y〉 ≤ 〈π, y′〉 for all y′ ∈ U ∩V .
Then, there exist linear functionals π1 and π2 on Y such that π1 is continuous,
〈π1, y〉 ≤ 〈π1, u〉 for all u ∈ U , 〈π2, y〉 ≤ 〈π2, v〉 for all v ∈ V and π = π1 + π2.

Lemma 3.5. Let Y be a Riesz space endowed with a Hausdorff, locally convex
topology τ . If L(z) is τ -dense in Y , then L(z)+ is τ -dense in Y+.

Lemma 3.6. Let Y be a Riesz space and let Z be an ideal in Y . Let y1, ..., ym be
elements of Y and z1, ..., zm be elements of Z such that

∑m
i=1 zi ≤

∑m
i=1 yi. Suppose

that there exists an element z ∈ Z such that z ≤ yi for each i = 1, ..., m. Then,
there are elements ẑ1, ..., ẑm of Z such that

∑m
i=1 ẑi =

∑m
i=1 zi and ẑi ≤ yi for each

i = 1, ..., m.

For proofs of Lemmas 3.4, 3.5 and 3.6, see Lemmas 2 and 3 in [18] and Lemma
7 in [20], respectively. In the proof of the next theorem, the argument to get
continuity of the equilibrium price is similar to that in Theorem 2 of [20]. Our
proof needs some additional construction because of the free disposal assumption.

Theorem 3.7. Assume that E satisfies (A1)-(A4), (A6) and (A8). Let f be a
feasible allocation in Ec such that f(t, ·) = xi for all t ∈ Ii and i ∈ N . If f is
in the private core of Ec, then (f, π) is a non-trivial Walrasian expectations quasi-
equilibrium of Ec for some non-zero π : Ω → Y ∗

+.

Proof. Let f be in the private core of Ec. Let Z = L(â), where â is selected
according to (A6). Then, (Z, ‖ · ‖â) is an AM -space with â as an order unit. Note
that â ∈ ‖ · ‖â-intZ+, Z+ is ‖ · ‖â-closed in Z, and the ‖ · ‖â-closed unit ball of Z

coincides with the order interval [−â, â]. Define a new economy Ê which is identical
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with E except for the commodity space being Z equipped with the ‖ · ‖â-topology,
each agent’s consumption set being Z+ in each state of nature ω ∈ Ω, and agent
i’s ex ante expected utility being Vi|ZΩ . If (y1, ..., yn) is a feasible allocation of E ,
then yi(ω) ∈ Z+ for each i ∈ N and ω ∈ Ω. Thus, xi(ω) ∈ Z+ for each i ∈ N and
ω ∈ Ω. Since

∑
i∈N ai(ω) is an order unit of Z,

∑
i∈N ai(ω) ∈ ‖ · ‖â-intZ+ for each

ω ∈ Ω. Since (Z, ‖ · ‖â) is a Banach lattice, the ‖ · ‖-topology is weaker than the
‖ · ‖â-topology on Z. It follows that Ui(ω, ·)|Z is ‖ · ‖â-continuous. Thus, we have
verified that Ê satisfies (A1), (A2) and (A4), and f is in the private core of Êc. By
Theorem 3.1, there is a non-zero positive element π̂ ∈ ((Z, ‖·‖â)∗)Ω such that (f, π̂)
is a non-trivial Walrasian expectations quasi-equilibrium in Êc. We need to show
that there is a non-zero positive π ∈ ((Z, ‖ · ‖)∗)Ω such that (f, π) is a non-trivial
Walrasian expectations quasi-equilibrium in Ec|Z , where Ec|Z is identical with Êc

except for the commodity space being Z with the norm ‖ · ‖.
Since (f, π̂) is a non-trivial Walrasian expectations quasi-equilibrium in Êc, by

Proposition 2.3, (x1, ..., xn, π̂) is a non-trivial Walrasian expectations quasi-equilibrium
in Ê . Thus, (x1, ..., xn) is a privately Pareto optimal allocation in Ê , and also in
E . Let i ∈ N . By (A8) and Definition 3.3, there is a convex and ‖ · ‖Ω-open sub-
set Wi of Y Ω such that ∅ 6= Wi ∩ Li ⊆ Pi(xi) and ‖ · ‖Ω-clPi(xi) ⊆ ‖ · ‖Ω-clWi.
Since

∑
i∈N ai(ω) is a quasi-interior point of Y+ for each ω ∈ Ω, Z is ‖ · ‖-dense

in Y . By Lemma 3.5, Z+ is ‖ · ‖-dense in Y+. By definition, Li ∩ ZΩ
+ is ‖ · ‖Ω-

dense in Li. Thus Wi ∩ Li ∩ ZΩ
+ 6= ∅. Let Qi = Wi ∩ ZΩ and L̂i = Li ∩ ZΩ.

Then, Qi is convex and relatively ‖ · ‖Ω-open in ZΩ. Further, ∅ 6= Qi ∩ L̂i ⊆
P̂i(xi) and ‖ · ‖ΩZ-clP̂i(xi) ⊆ ‖ · ‖ΩZ-clQi, where P̂i(xi) = Pi(xi) ∩ ZΩ. By (A2),
xi ∈ ‖ · ‖ΩZ-clP̂i(xi), and so xi ∈ ‖ · ‖ΩZ-clQi. For any yi ∈ Qi ∩ L̂i, since Vi(yi) >
Vi(xi) and (x1, ..., xn, π̂) is non-trivial Walrasian expectations quasi-equilibrium,∑

ω∈Ω〈π̂(ω), yi(ω)〉 ≥ ∑
ω∈Ω〈π̂(ω), xi(ω)〉. Since Ω is finite, π̂ ∈ ((Z, ‖ · ‖â)Ω)∗.

By Lemma 3.4, there exist a πi
1 ∈ ((Z, ‖ · ‖)Ω)∗ and a linear functional πi

2 on
(Z, ‖ · ‖)Ω such that

∑
ω∈Ω〈πi

1(ω), xi(ω)〉 ≤ ∑
ω∈Ω〈πi

1(ω), yi(ω)〉 for all yi ∈ Qi,∑
ω∈Ω〈πi

2(ω), xi(ω)〉 ≤ ∑
ω∈Ω〈πi

2(ω), yi(ω)〉 for all yi ∈ L̂i, and π̂ = πi
1 + πi

2. Since
L̂i is a cone,

∑
ω∈Ω〈πi

2(ω), xi(ω)〉 = 0. It follows that
∑

ω∈Ω〈πi
2(ω), yi(ω)〉 ≥ 0 for

all yi ∈ L̂i. Hence, we have

(3.1)
∑

ω∈Ω〈π̂(ω), xi(ω)〉 =
∑

ω∈Ω〈πi
1(ω), xi(ω)〉,

(3.2)
∑

ω∈Ω〈π̂(ω), yi(ω)〉 ≥ ∑
ω∈Ω〈πi

1(ω), yi(ω)〉 for all yi ∈ L̂i.

Since (Z, ‖ · ‖â) is a Banach lattice, (Z, ‖ · ‖â)∗ agrees with the order dual of Z.
In what follows, let (Z, ‖ · ‖â)∗ be endowed with the dual ordering relative to the
ordering of Z. Since each yi ∈ L̂i can be written as yi =

∑
S∈Fi

yS
i 1S , where

yS
i ∈ Z+ and S ∈ Fi, from (3.1) and (3.2), it can be verified that the following hold

for all S ∈ Fi:

(3.3)
∑

ω∈S πi
1(ω) ≤ ∑

ω∈S π̂(ω),
(3.4)

∑
ω∈S〈π̂(ω), xi(ω)〉 =

∑
ω∈S〈πi

1(ω), xi(ω)〉.
Since (Z, ‖ · ‖) is a locally solid Riesz space, (Z, ‖ · ‖)∗ is an ideal in (Z, ‖ · ‖â)∗.

Pick an arbitrary element S ∈ Fi. Since π̂(ω) ≥ 0 for all ω ∈ S, by (3.3) and Lemma
3.6, there is an element π̃i ∈ ((Z, ‖ ·‖)∗)S such that π̃i ≤ π̂ on S and

∑
ω∈S π̃i(ω) =∑

ω∈S πi
1(ω). We claim that for each ω ∈ S, 〈π̃i(ω), xi(ω)〉 = 〈π̂(ω), xi(ω)〉. To
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show this, let xi =
∑

R∈Fi
xR

i 1R, where xR
i ∈ Z+. By (3.4),

∑

ω∈S

〈π̃i(ω), xi(ω)〉 =

〈∑

ω∈S

πi
1(ω), xS

i

〉
=

∑

ω∈S

〈π̂(ω), xi(ω)〉.

Moreover, 〈π̃i(ω), xi(ω)〉 ≤ 〈π̂(ω), xi(ω)〉 for each ω ∈ S. So, we must have
〈π̃i(ω), xi(ω)〉 = 〈π̂(ω), xi(ω)〉 for each ω ∈ S, and the claim is verified. Since
Fi is a partition of Ω, there is an element π̃i ∈ ((Z, ‖ · ‖)∗)Ω such that π̃i ≤ π̂
on Ω and 〈π̃i(ω), xi(ω)〉 = 〈π̂(ω), xi(ω)〉 for each ω ∈ Ω. Let N0 = N ∪ {0},
π̃0(ω) = 0 and a0(ω) = 0 for each ω ∈ Ω. Since (Z, ‖ · ‖)∗ is an ideal, for each
ω ∈ Ω, we can choose an element π̈(ω) ∈ (Z, ‖ · ‖)∗ such that π̈(ω) = sup{π̃i(ω) :
i ∈ N0}. Then π̈ ∈ ((Z, ‖ · ‖)∗)Ω, and π̈ ≤ π̂. Define x0 ∈ ZΩ

+ such that
x0(ω) =

∑
i∈N ai(ω) − ∑

i∈N xi(ω) for each ω ∈ Ω. By the Riesz-Kantorovich
formulas, we obtain

〈
π̈(ω),

∑

i∈N

ai(ω)

〉
= sup

{ ∑

i∈N0

〈π̃i(ω), yi〉 : yi ∈ Z+,
∑

i∈N0

yi =
∑

i∈N

ai(ω)

}

≥
∑

i∈N0

〈π̃i(ω), xi(ω)〉 =
∑

i∈N

〈π̃i(ω), xi(ω)〉

=

〈
π̂(ω),

∑

i∈N

xi(ω)

〉
=

〈
π̂(ω),

∑

i∈N

ai(ω)

〉
.

Applying π̈ ≤ π̂, we have 〈π̈(ω),
∑

i∈N ai(ω)〉 = 〈π̂(ω),
∑

i∈N ai(ω)〉 for each ω ∈ Ω.
Note that Z = L(

∑
i∈N ai(ω)) for each ω ∈ Ω. Let z ∈ Z+ be fixed. Choose

δ > 0 be such that z ≤ δ
∑

i∈N ai(ω) for each ω ∈ Ω. Then, 〈π̈(ω), (δ
∑

i∈N ai(ω)−
z)〉 ≤ 〈π̂(ω), (δ

∑
i∈N ai(ω) − z)〉, and so 〈π̈(ω), z〉 ≥ 〈π̂(ω), z〉 for each ω ∈ Ω.

Consequently, π̈ ≥ π̂ and therefore, π̈ = π̂. Thus, π̂ ∈ ((Z, ‖ · ‖)∗)Ω and (f, π̂)
is a non-trivial Walrasian expectations quasi-equilibrium in Ec|Z . By the Hahn-
Banach theorem, we can choose a positive element π ∈ ((Y, ‖ · ‖)∗)Ω such that π is
an extension of π̂. Since Lt ∩ ZΩ

+ is ‖ · ‖Ω-dense in Lt and Vt is ‖ · ‖Ω-continuous
for each t ∈ I, we deduce that

∑
ω∈Ω〈π(ω), y(ω)〉 ≥ ∑

ω∈Ω〈π(ω), a(t, ω)〉 for all
y ∈ Lt satisfying Vt(y) > Vt(f(t, ·)). Further, if

∑
ω∈Ω〈π(ω), a(t, ω)〉 > 0, then

‖ · ‖Ω-continuity of Vt implies that (f, π) is a non-trivial Walrasian expectations
quasi-equilibrium of Ec. This completes the proof. ¤

Corollary 3.8. Let f be a feasible allocation such that f(t, ·) = xi for all t ∈ Ii and
i ∈ N . Under (A1)-(A4) and (A6)-(A8), f is a Walrasian expectations allocation if
and only if f is in the private core of Ec.

Now, we extend Theorem 3.7 to an asymmetric information economy with the
equal treatment property whose commodity space is a Banach lattice having no
quasi-interior point in its positive cone. The following definition of strong ATY-
properness and the argument to get continuity of the equilibrium price in the next
theorem are similar to those in (A8′) and Theorem 3 of [20].

Definition 3.9. The relation Pi : Li ⇒ Li is called strongly ATY-proper at xi ∈ Li

if there is a convex subset P̂i(xi) of Y Ω with non-empty ‖ · ‖Ω-interior such that
P̂i(xi) ∩ Li = Pi(xi) and (‖ · ‖Ω-intP̂i(xi)) ∩Li ∩ L(

∑
i∈N ai) 6= ∅.



10 A. BHOWMIK AND J. CAO

(A9) Strong properness. If (x1, ..., xn) is a privately Pareto optimal allocation in
E , then Pi is strongly ATY-proper at xi for each i ∈ N .

Theorem 3.10. Assume that E satisfies (A1)-(A3), (A′4), (A6) and (A9). Let f
be a feasible allocation in Ec such that f(t, ·) = xi for all t ∈ Ii and i ∈ N . If
f is in the private core of Ec, then (f, π) is a non-trivial Walrasian expectations
quasi-equilibrium of Ec for some non-zero π : Ω → Y ∗

+.

Proof. Let f be in the private core of Ec. Let Z = L(â), where â is selected
according to (A6). Then, (X, ‖ · ‖) equipped with the ordering of (Y, ‖ · ‖) is a
Banach lattice, where X denotes the ‖ · ‖-closure of Z in Y . Note that for any
feasible allocation (y1, ..., yn) of E , yi(ω) belongs to Z+ for each i ∈ N and ω ∈ Ω.
In particular, xi(ω) ∈ Z+ for each i ∈ N and ω ∈ Ω. Clearly, for each i ∈ N
and ω ∈ Ω, Ui(ω, ·)|X satisfies (A1)-(A3). Suppose that (y1, ..., yn) is a privately
Pareto optimal allocation in the economy E|X , which is identical with E except
for the commodity space being X, each agent’s consumption set being X+ in each
state of nature ω ∈ Ω, and agent i’s ex ante expected utility being Vi|XΩ . Then
(y1, ..., yn) is privately Pareto optimal in E . Take P̃i(xi) = P̂i(xi) ∩ XΩ for each
i ∈ N , where P̂i(xi) is chosen according to (A9) and Definition . So, for each i ∈ N ,
P̃i(xi) is convex with non-empty relative ‖ · ‖Ω-interior in XΩ. Let L̂i = Li ∩XΩ

for each i ∈ N . By (A9) and Definition , for each i ∈ N , P̃i(xi) ∩ L̂i = Pi(xi)|XΩ ,
where Pi(xi)|XΩ is the restriction of Pi(xi) to XΩ and (intP̃i(xi)) ∩ L̂i 6= ∅. Thus,
(A1)-(A4), (A6) and (A8) are satisfied for the economy E|X . Note that f is in
the private core of Ec|X . By Theorem 3.7, there exists a non-zero positive element
π ∈ (X∗)Ω such that (f, π) is a non-trivial Walrasian expectations quasi-equilibrium
in Ec|X . Therefore, by Proposition 2.3, (x1, ..., xn, π) is a non-trivial Walrasian
expectations quasi-equilibrium in E|X . By the Hahn-Banach theorem, there is a
non-zero positive element π̂ ∈ (Y ∗)Ω which is an extension of π. Then (x1, ..., xn, π̂)
satisfies all conditions of non-trivial Walrasian expectations quasi-equilibrium of E
except for the fact that if

∑
ω∈Ω〈π̂(ω), ai(ω)〉 6= 0, then

∑
ω∈Ω〈π̂(ω), yi(ω)〉 >∑

ω∈Ω〈π̂(ω), ai(ω)〉 for all yi ∈∈ Li \ L̂i satisfying Vi(yi) > Vi(xi).
Since (x1, ..., xn, π) is a non-trivial Walrasian expectations quasi-equilibrium in

E|X , (x1, ..., xn) is privately Pareto optimal in E|X and hence, in E . Pick an
i ∈ N . By (A9), there is a convex and ‖ · ‖Ω-open subset Qi of Y Ω such that
∅ 6= Qi ∩ L̂i ⊆ Pi(xi)|XΩ and ‖ · ‖Ω-clPi(xi) ⊆ ‖ · ‖Ω-clQi. By (A2), xi ∈ ‖ · ‖Ω-
clPi(xi) and hence, xi ∈ ‖ · ‖Ω-clQi. For any yi ∈ Qi ∩ L̂i, since Vi(yi) > Vi(xi)
and (x1, ..., xn, π̂) is a non-trivial Walrasian expectations quasi-equilibrium in E|X ,∑

ω∈Ω〈π̂(ω), yi(ω)〉 ≥ ∑
ω∈Ω〈π̂(ω), xi(ω)〉. Note that L̂i is convex, xi ∈ L̂i and π̂ ∈

(Y Ω)∗. By an argument similar to that in Theorem 3.7, we can find an element πi
1 ∈

(Y Ω)∗ such that
∑

ω∈Ω〈πi
1(ω), xi(ω)〉 =

∑
ω∈Ω〈π̂(ω), xi(ω)〉, ∑

ω∈Ω〈πi
1(ω), xi(ω)〉 ≤∑

ω∈Ω〈πi
1(ω), yi(ω)〉 for all yi ∈ Qi, and

∑
ω∈Ω〈πi

1(ω), yi(ω)〉 ≤ ∑
ω∈Ω〈π̂(ω), yi(ω)〉

for all yi ∈ L̂i. Since πi
1 is ‖ · ‖Ω-continuous and ‖ · ‖Ω-clPi(xi) ⊆ ‖ · ‖Ω-clQi,∑

ω∈Ω〈πi
1(ω), xi(ω)〉 ≤ ∑

ω∈Ω〈πi
1(ω), yi(ω)〉 for all yi ∈ Pi(xi). Now, consider el-

ements πi
?, π

? ∈ (Y Ω)∗+ defined by 〈πi
?, yi〉 =

∑
ω∈Ω〈πi

1(ω), yS
i (ω)〉 and 〈π?, yi〉 =∑

ω∈Ω〈π̂(ω), yS
i (ω)〉, where yS

i = 1
|S|

∑
ω∈S yi(ω) for S ∈ Fi. Then π̃i = πi

? + π̂ −
π? ∈ (Y Ω)∗, and it can be verified that

(3.5)
∑

ω∈Ω〈π̃i(ω), xi(ω)〉 =
∑

ω∈Ω〈π̂(ω), xi(ω)〉,
(3.6)

∑
ω∈Ω〈π̃i(ω), xi(ω)〉 ≤ ∑

ω∈Ω〈π̃i(ω), yi(ω)〉 for all yi ∈ Pi(xi), and
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(3.7)
∑

ω∈Ω〈π̃i(ω), z(ω)〉 ≤ ∑
ω∈Ω〈π̂(ω), z(ω)〉 for all z ∈ XΩ

+ .
Since Y is a locally solid Riesz space, Y ∗ is an ideal in the order dual of Y .
Let N0 = N ∪ {0}, π̃0(ω) = 0 and a0(ω) = 0 for each ω ∈ Ω. Define π̈ ∈
(Y ∗)Ω such that π̈(ω) = sup{π̃i(ω) : i ∈ N0} for each ω ∈ Ω, and x0 ∈ ZΩ

+

such that x0(ω) =
∑

i∈N ai(ω) − ∑
i∈N xi(ω) for each ω ∈ Ω. By the Riesz-

Kantorovich formulas and techniques similar to those in Theorem 3.7, we have〈
π̈(ω),

∑
i∈N ai(ω)

〉 ≥ ∑
i∈N

〈
π̃i(ω), xi(ω)

〉
for each ω ∈ Ω. Using (3.5), we can ob-

tain
∑

ω∈Ω

〈
π̈(ω),

∑
i∈N ai(ω)

〉 ≥ ∑
ω∈Ω

〈
π̂(ω),

∑
i∈N ai(ω)

〉
. Moreover, the Riesz-

Kantorovich formulas and (3.7) imply
∑

ω∈Ω〈π̈(ω), z(ω)〉 ≤ ∑
ω∈Ω〈π̂(ω), z(ω)〉 for

all z ∈ XΩ
+ . Since ZΩ = L(

∑
i∈N ai), π̈ ≡ π̂ on ZΩ, which can be combined

with (3.5) and (3.6) to derive
∑

ω∈Ω〈π̈(ω), xi(ω)〉 ≤ ∑
ω∈Ω〈π̈(ω), yi(ω)〉 for all yi ∈

Pi(xi). It follows from (A2) and the fact that (x1, ..., xn, π̈) is a non-trivial Walrasian
expectations equilibrium in E|X ,

∑
ω∈Ω〈π̈(ω), xi(ω)〉 =

∑
ω∈Ω〈π̈(ω), ai(ω)〉. In case

that
∑

ω∈Ω〈π(ω), ai(ω)〉 6= 0, by (A1),
∑

ω∈Ω〈π̈(ω), ai(ω)〉 <
∑

ω∈Ω〈π̈(ω), yi(ω)〉
for all yi ∈ Pi(xi). Thus, (x1, ..., xn, π̈) is a non-trivial Walrasian expectations
quasi-equilibrium in E . Hence, by Proposition 2.3, (f, π̈) is a non-trivial Walrasian
expectations quasi-equilibrium in Ec. ¤

Corollary 3.11. Let f be a feasible allocation such that f(t, ·) = xi for all t ∈
Ii and i ∈ N . Under (A1)-(A3), (A′4), (A6)-(A7) and (A9), f is a Walrasian
expectations allocation if and only if f is in the private core of Ec.

3.2. Blocking non-private core allocations. In this subsection, we give an exten-
sion of Vind’s theorem to an asymmetric information economy with a continuum
of agents having the equal treatment property and whose commodity space is a
Banach lattice, using the following lemma instead of any convexity theorem on the
commodity space.

Lemma 3.12. Assume that E satisfies (A1), (A3) and (A5). Let f be an allocation
such that f(t, ·) = fi for all t ∈ Ii and i ∈ N . If f is privately blocked in Ec, then
it is privately blocked by a coalition A via a function g such that g(t, ·) = gi ∈ Li if
t ∈ A∩ Ii and i ∈ N , and

∫
A
(a(t, ω)− g(t, ω))dµ(t) ≥ z for all ω ∈ Ω, where z > 0.

Proof. Since f is privately blocked in Ec, there are a coalition Â ⊆ I and an
ĥ : Â×Ω → Y+ such that ĥ(t, ·) ∈ Lt and Vt(ĥ(t, ·)) > Vt(f(t, ·)) for all t ∈ Â, and∫

Â
ĥ(t, ω)dµ(t) ≤ ∫

Â
a(t, ω)dµ(t) for all ω ∈ Ω. Let Âi = Â ∩ Ii for each i ∈ N ,

N̂ = {i ∈ N : µ(Âi) 6= 0}, and A =
⋃

i∈N̂ Âi. For each i ∈ N̂ and ω ∈ Ω, put
hi(ω) = 1

µ(Âi)

∫
Âi

ĥ(t, ω)dµ(t). Then hi ∈ Li for all i ∈ N̂ . Define h : A×Ω → Y+ by

h(t, ω) = hi(ω) if t ∈ Âi. Clearly, for each ω ∈ Ω,
∫

A
h(t, ω)dµ(t) ≤ ∫

A
a(t, ω)dµ(t),

equivalently,
∑

i∈N̂ hi(ω)µ(Âi) ≤
∑

i∈N̂ ai(ω)µ(Âi). Moreover, concavity of Vi im-
plies that Vi(h(t, ·)) > Vi(f(t, ·)) for all t ∈ Âi and all i ∈ N̂ .

Choose a sequence {cm} ⊆ (0, 1) with cm → 0. For each i ∈ N̂ and each
integer m ≥ 1, define a function gm

i : Ω → Y+ by gm
i (ω) = (1 − cm)hi(ω). Then

gm
i ∈ Li for all i ∈ N̂ . For each i ∈ N̂ , since hi ∈ Pi(fi) and Pi(fi) is ‖ · ‖Ω-open,

then gm
i ∈ Pi(fi) whenever m is sufficiently large. If we choose such an m, then∑

i∈N̂ gm
i (ω)µ(Âi) ≤ (1− cm)

∑
i∈N̂ ai(ω)µ(Âi), and

∑

i∈N̂

ai(ω)µ(Âi)−
∑

i∈N̂

gm
i (ω)µ(Âi) ≥ cm

∑

i∈N̂

ai(ω)µ(Âi).
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Let z = inf
{

cm

∑
i∈N̂

ai(ω)µ(Âi) : ω ∈ Ω
}

. By (A5), we have z > 0. If we define

g : A × Ω → Y+ such that g(t, ω) = gm
i (ω) for all t ∈ Âi, then

∫
A
(a(t, ω) −

g(t, ω))dµ(t) ≥ z for all ω ∈ Ω and g(t, ·) ∈ Lt for all t ∈ A, which is required by
the lemma. ¤ ¤

Theorem 3.13. Assume that E satisfies (A1)-(A3) and (A5). Let f be a feasible
allocation in Ec such that f(t, ·) = fi for all t ∈ Ii and i ∈ N . If f is not in the
private core of Ec, then for any 0 < ε < 1, there is a coalition S with µ(S) = ε
privately blocking f .

Proof. Since f is not in the private core of Ec, by Lemma 3.12, there is a coalition
A ⊆ I that privately blocks f via a function g : A × Ω → Y+ such that g(t, ·) =
gi ∈ Li, if t ∈ Âi and

∫
A
(a(t, ·)− g(t, ·))dµ(t) ≥ z, where Âi = A ∩ Ii for all i ∈ N .

Choose a δ ∈ (0, 1). Since µ is atomless, there is Ei ⊆ Âi such that µ(Ei) = δµ(Âi).
Moreover, for any t ∈ Âi, a(t, ·)− g(t, ·) = ai − gi. Hence,∫

Ei

(a(t, ·)− g(t, ·))dµ(t) = (ai − gi)δµ(Âi) = δ

∫

Âi

(a(t, ·)− g(t, ·))dµ(t).

Take E =
⋃

i∈N̂ Ei. Then,
∫

E
(a(t, ·)− g(t, ·))dµ(t) = δ

∫
A
(a(t, ·)− g(t, ·))dµ(t), and

µ(E) = δµ(A). Since δ
∫

A
(a(t, ·) − g(t, ·))dµ(t) > 0 for any 0 < δ < 1, there is a

coalition E ⊆ A with µ(E) = δµ(A) privately blocking f via g. This proves the
theorem for ε ≤ µ(A).

If µ(A) = 1, the proof has been completed. Otherwise, µ(I \ A) > 0, and for
any given 0 < ε < 1, we define a function gε : A × Ω → Y+ such that gε(t, ω) =
εg(t, ε) + (1 − ε)f(t, ω). Then, gε(t, ·) ∈ Lt for all t ∈ A. By concavity of Vt,
we have Vt(gε(t, ·)) > Vt(f(t, ·)) for all t ∈ A. Let Ĉ = I \ A, Ci = Ĉ ∩ Ii,
N̂1 = {i ∈ N : µ(Ci) > 0} and C =

⋃
i∈N̂1

Ci. Then µ(Ĉ) = µ(C). If i ∈ N̂1,
since µ is atomless, there is Bi ⊆ Ci such that µ(Bi) = (1 − ε)µ(Ci). Moreover,
a(t, ·)− f(t, ·) = ai − fi for any t ∈ Ci. Hence∫

Bi

(a(t, ·)− f(t, ·))dµ(t) = (1− ε)
∫

Ci

(a(t, ·)− f(t, ·))dµ(t).

Let B =
⋃

i∈N̂1
Bi. Then µ(B) = (1− ε)µ(I \A) and

∫

B

(a(t, ·)− f(t, ·))dµ(t) = (1− ε)
∫

I\A
(a(t, ·)− f(t, ·))dµ(t).

Define a consumption bundle hε : B×Ω → Y+ by hε(t, ω) = f(t, ω)+ εµ(A)
µ(B) z. Since

f(t, ·) ∈ Lt and z is constant, hε(t, ·) ∈ Lt for all t ∈ B. By monotonicity of Vt,
Vt(hε(t, ·)) > Vt(f(t, ·)) for all t ∈ B.

Let S = A ∪ B. Then, µ(S) = µ(A) + (1 − ε)µ(I \ A). Now we show that
S privately blocks f . Define a consumption bundle yε : S × Ω → Y+ such that
yε(t, ω) = gε(t, ω) if (t, ω) ∈ A × Ω, and yε(t, ω) = hε(t, ω), if (t, ω) ∈ B × Ω.
Clearly, yε(t, ·) ∈ Lt and Vt(yε(t, ·)) > Vt(f(t, ·)) for all t ∈ S. It remains to verify
that yε is feasible for S. Since

∫
A
(a(t, ·)− g(t, ·))dµ(t) ≥ z, we have

∫

S

(a(t, ·)− yε(t, ·))dµ(t) ≥ εz + (1− ε)
∫

A

(a(t, ·)− f(t, ·))dµ(t)

+
∫

B

(a(t, ·)− f(t, ·))dµ(t)− εµ(A)z.
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On the other hand, εz − εµ(A)z = εµ(I \A)z > 0, and∫

B

(a(t, ·)− f(t, ·))dµ(t) = (1− ε)
∫

I\A
(a(t, ·)− f(t, ·))dµ(t).

Combining the previous few inequalities and equalities, we obtain∫

S

(a(t, ·)− yε(t, ·))dµ(t) > (1− ε)
∫

I

(a(t, ·)− f(t, ·))dµ(t) ≥ 0,

which verifies that S privately blocks f via yε. ¤

4. Characterizations of Walrasian expectations equilibrium

In this section, we provide characterizations of Walrasian expectations equilib-
rium in terms of the private blocking power of the grand coalition. The following
concepts for asymmetric information economies in [15] will be needed.

Definition 4.1. A coalition S ⊆ N privately blocks an allocation x of E in the sense
of Aubin via y = (yi)i∈S if for all i ∈ S, there is αi ∈ (0, 1] such that Vi(yi) > Vi(xi)
and

∑
i∈S αiyi ≤

∑
i∈S αiai. The Aubin private core of E is the set of all feasible

allocations which cannot be blocked by any coalition in the sense of Aubin, and an
allocation x in E is called an Aubin non-dominated allocation if x is not privately
blocked by the grand coalition in the sense of Aubin.

The proof of our first theorem in this section is similar to that in Theorem 4.2
of [15].

Theorem 4.2. Assume that E satisfies (A1)-(A2), (A4)-(A5) and (A7), and its
commodity space has an interior point in its positive cone. Then, a feasible al-
location x in E is a Walrasian expectations allocation if and only if x is Aubin
non-dominated.

Remark 4.3 ([15]). The participation of an agent i in the grand coalition of E
is said to be close to complete if α̃i > 1 − δ for sufficiently small δ > 0. Indeed,
Theorem 4.2 shows that the participation of each agent can be chosen to be close
to complete. To see this, for any given 0 < δ < 1, by Theorem 3.13, we can choose
a privately blocking coalition S such that µ(S) > 1− δ

n . Hence, it follows from the
proof that α̃i = nµ(Si) > 1− δ for all i ∈ N , where Si = S ∩ Ii. ¤
Remark 4.4. Conclusions of Theorem 4.2 and Remark 4.3 are also true under
(A1)-(A8), or (A1)-(A3), (A5)-(A7) and (A9), respectively. ¤

The proof of our next theorem is similar to that of Theorem 4.1 in [14, 15]. For
an allocation x = (x1, ..., xn) in E and a vector r = (r1, ..., rn) ∈ [0, 1]n, consider an
asymmetric information economy E(r, x) which is identical with E except for the
random initial endowment of each agent i being ai(ri, xi) = riai + (1− ri)xi.

Theorem 4.5. Assume that E satisfies (A1)-(A2), (A4)-(A5) and (A7), and its
commodity space has an interior point in its positive cone. Then, a feasible allo-
cation x in E is a Walrasian expectations allocation if and only if x is privately
non-dominated in E(r, x) for any r ∈ [0, 1]n.

Remark 4.6 ([15]). Note that for each agent i ∈ N , r̃i can be selected arbitrarily
close to 1. To see this, for any given 0 < δ < 1, by Theorem 3.13, we can choose a
privately blocking coalition S such that µ(S) > 1− δ

n . Hence, r̃i = nµ(Si) > 1− δ
for all i ∈ N . ¤
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Remark 4.7. Conclusion of Theorem 4.5 is also true under (A1)-(A8), or (A1)-
(A3), (A5)-(A7) and (A9), respectively. The same is true for Remark 4.6. ¤

Remark 4.8 ([15]). Theorem 4.5 and the first part of the Remark 4.7 not only pro-
vide characterizations of Walrasian expectations allocation in terms of veto power
of the grand coalition but also implies two welfare theorems as particular cases. If
x is a Walrasian expectations allocation in E , then x is a privately Pareto optimal
allocation in E and any E(r, x) with r ∈ [0, 1]n. Thus, the first welfare theorem is
an immediate consequence of Theorem 4.5 and the first part of Remark 4.7.

Observe that if x is privately Pareto optimal in E , then x is also privately Pareto
optimal in E(0, x). If we choose x = a, then all economies E(r, x) are equal to E(0, x)
and x is not privately blocked by the grand coalition. If inf{xi(ω) : ω ∈ Ω} > 0 for
all i ∈ N , Theorem 4.5 and the first part of Remark 4.7 implies that x is a Walrasian
expectations allocation, which is exactly the second welfare theorem. ¤

We conclude this section with some basic examples of Banach lattices and a
chart containing a summary where these Banach lattices are applied: (i) Rn: the
Euclidean space; (ii) `∞: the space of real bounded sequence with the supremum
norm; (iii) L∞(Ω, Σ, µ): the space of essentially bounded, measurable functions
on a measure space (Ω, Σ, µ) with the essential supremum norm; (iv) C(K): the
space of real valued continuous functions on a compact Hausdorff space K with
the supremum norm; (v) `p: the space of real sequences x = {xn} with the norm

‖x‖p = (
∑∞

n=1 |xn|p)
1
p < ∞ , where 1 ≤ p < ∞; (vi) Lp(Ω, Σ, µ): the space

of measurable functions f on the measure space (Ω,Σ, µ) with the norm ‖f‖p =(∫
Ω
|f(ω)|pdµ(ω)

) 1
p < ∞, where 1 ≤ p < ∞; (vii) M(K): the space of regular Borel

measures on a compact Hausdorff space K with the total variation norm.

Y
Y+ having Y+ having Applicationsinterior points quasi-interior points

Rn + + Theorems
1, 4, 5, 6

`∞ + + Theorems
1, 4, 5, 6

L∞(Ω, Σ, µ) + + Theorems
1, 4, 5, 6

C(K) + + Theorems
1, 4, 5, 6

`p - + Theorems 2, 4
(1 ≤ p < ∞) Remarks 4, 6
Lp(Ω, Σ, µ) - + Theorems 2, 4
(1 ≤ p < ∞) Remarks 4, 6

M(K) - - Theorems 3, 4
(K uncountable) Remarks 4, 6

Appendix

(A.1) Results on economies with arbitrary probability spaces of states
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In this subsection, we apply results established in previous sections, particularly
Theorem 3.13, to characterize the ex-post core and the private core of an economy
with an arbitrary probability space of states of nature.

Let Ẽ be a discrete economy identical with E except for the space of states
of nature being a probability measure space (Ω,Σ, ν), where Ω is an (infinite)
arbitrary set of states of nature, the σ-algebra Σ denotes the set of events and the
probability measure ν denotes the common prior of each agent i ∈ N . For any
Σ-measurable function x : Ω → Y+, the ex ante expected utility of agent i is given
by Vi(x) =

∫
Ω

Ui(ω, x(ω))ν(dω), where Ui(·, x) is Σ-measurable. The concepts of an
assignment and an allocation in Ẽ are defined in the same way as that in E except for
the Σ-measurability of assignments. Further, an allocation (assignment) x is said to
be feasible if

∑n
i=1 xi(ω) ≤ ∑n

i=1 ai(ω) for almost all ω ∈ Ω. A feasible assignment
x of E is called fine non-dominated (resp. weak fine non-dominated) if for all i ∈ N ,
xi is Fi-measurable (resp.

∨
i∈N Fi-measurable) and there is no feasible assignment

y = (y1, ..., yn) such that yi is
∨

i∈N Fi-measurable and Vi(yi) > Vi(xi) for all i ∈ N .
A coalition is a non-empty subset S of N . A coalition S ⊆ N privately blocks an
allocation x in Ẽ if there exists y = (yi)i∈S such that yi ∈ Li and Vi(yi) > Vi(xi) for
all i ∈ S, and

∑
i∈S yi(ω) ≤ ∑

i∈S ai(ω) for almost all ω ∈ Ω. The private core of
the economy Ẽ is the set of all feasible allocations which are not privately blocked
by any coalition. An allocation x of Ẽ is ex-postly blocked by a coalition S ⊆ N
(Einy et al. (2000)) if there exist y = (yi)i∈S , and Ω0 ∈ Σ such that ν(Ω0) > 0,∑

i∈S yi(ω) ≤ ∑
i∈S ai(ω) for almost all ω ∈ Ω0, and Ui(ω, yi(ω)) > Ui(ω, xi(ω))

for all i ∈ S and for almost all ω ∈ Ω0. The ex-post core of Ẽ is the set of all feasible
allocations that cannot be ex-postly blocked by any coalition.

Assume that Ẽc is a continuum economy associated with Ẽ . Since Ft = Fi for
each agent t ∈ Ii, infinitely many states can be taken in Ẽc even agents share
their information. An assignment in Ẽc is a function f : I × Ω → Y+ such that
f(·, ω) ∈ L1(µ, Y+) for almost all ω ∈ Ω and f(t, ·) is Σ-measurable for all t ∈ I.
Let Lt = Li for all t ∈ Ii and i ∈ N . An assignment f in Ẽc is called an allocation if
f(t, ·) ∈ Lt for almost all t ∈ I. An allocation f in Ẽc is feasible if

∫
I
f(t, ω)dµ(t) ≤∫

I
a(t, ω)dµ(t) for almost all ω ∈ Ω. A coalition S privately blocks an allocation f in

Ẽc if there is g : S×Ω → Y+ such that g(t, ·) ∈ Lt and Vt(g(t, ·)) > Vt(f(t, ·)) for all
t ∈ S, and

∫
S

g(t, ω)dµ(t) ≤ ∫
S

a(t, ω)dµ(t) for almost all ω ∈ Ω. The private core
of Ẽc is the set of feasible allocations not privately blocked by any coalition. An
allocation f of Ẽc is ex-postly blocked by a coalition S ⊆ I if there exist a function
g : S × Ω → Y+, and Ω0 ∈ Σ satisfying ν(Ω0) > 0,

∫
S

g(t, ω)dµ(t) ≤ ∫
S

a(t, ω)dµ(t)
for almost all ω ∈ Ω0, Ut(ω, g(t, ω)) > Ut(ω, f(t, ω)) for all t ∈ S and for almost all
ω ∈ Ω0. The ex-post core of Ẽc is the set of all feasible allocations that cannot be
ex-postly blocked by any coalition.

Next, we establish a relation between the set of all fine non-dominated alloca-
tions and the ex-post core. This result is new even for finite dimensional commodity
space. For an ω ∈ Ω, let Ẽc(ω) denote the full information economy whose com-
modity space being Y+, the set of agents being I, the utility function and initial
endowment of agent t being Ut(ω, ·) and a(t, ω) respectively.
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Theorem 4.9. Assume that Ẽ satisfies (A1)-(A3) and (A5). Let x be a feasible
allocation of Ẽ. If x is fine non-dominated in Ẽ(r, x) for any r ∈ [0, 1]n, then x is
in the ex-post core of Ẽ .

Proof. Suppose that x is not in the ex-post core of Ẽ . Then, the simple function f

on I, defined by f(t, ·) = xi for all t ∈ Ii and i ∈ N , is not in the ex-post core of Ẽc.
Thus, there is Ω0 ∈ Σ with ν(Ω0) > 0 such that f(·, ω) is feasible and not in the
core of Ẽc(ω) for almost all ω ∈ Ω0. Let A ∈ ∨

i∈N Fi with ν(Ω0∩A) 6= 0. Applying
Theorem 3.13 for each Ẽc(ω) and the fact that f(t, ·) and a(t, ·) are constant on
Ω0 ∩ A for all t ∈ I, there exist a coalition SA ⊆ I with µ(SA) > 1 − 1

n , and a
function gA : SA × (Ω0 ∩A) → Y+ such that
(A.1.1) gA(t, ·) is constant on Ω0 ∩ A for all t ∈ SA and

∫
SA gA(t, ω)dµ(t) ≤∫

SA a(t, ω)dµ(t) for almost all ω ∈ Ω0 ∩A,
(A.1.2) Ut(ω, gA(t, ω)) > Ut(ω, f(t, ω)) for all t ∈ SA and for almost all ω ∈ Ω0∩A.
Pick an ω0 ∈ Ω0∩A such that both (A.1.1) and (A.1.2) hold. Now, define a function
hA : SA × A → Y+ such that hA(t, ω) = gA(t, ω0) for all (t, ω) ∈ SA × A. Then,
hA(t, ·) is

∨n
i=1 Fi-measurable for all t ∈ SA and hA(·, ω) is Bochner integrable for

all ω ∈ A. Since a(t, ·) ∈ Li for all t ∈ Ii and i ∈ N , a(·, ω) = a(·, ω′) for all
ω, ω′ ∈ A. Hence,

∫
SA hA(t, ω)dµ(t) ≤ ∫

SA a(t, ω)dµ(t) for all ω ∈ A.

Let SA
i = SA ∩ Ii and rA

i = nµ(SA
i ) for all i ∈ N . Since µ(SA) > 1 − 1

n ,

we have rA
i > 0 for all i ∈ N . Now for all i ∈ N , yA

i = 1
µ(SA

i
)

∫
SA

i
hA(t, ·)dµ(t) is∨n

i=1 Fi-measurable. By (A3), Ui(ω, yA
i (ω)) > Ui(ω, xi(ω)) for all i ∈ N and ω ∈ A.

Further, following from
∑

i∈N µ(SA
i )yA

i ≤ ∑
i∈N µ(SA

i )ai, we have
∑

i∈N rA
i yA

i ≤∑
i∈N rA

i ai. If we put zA
i = rA

i yA
i + (1 − rA

i )xi for all i ∈ N , then zA
i is

∨n
i=1 Fi-

measurable and ∑

i∈N

zA
i ≤

∑

i∈N

{rA
i ai + (1− rA

i )xi} =
∑

i∈N

ai(rA
i , xi).

By (A3) again, Ui(ω, zA
i (ω)) > Ui(ω, xi(ω)) for all i ∈ N and ω ∈ A. Now for

each i ∈ N , the assignment bi : Ω → Y+ defined by bi(ω) = zA
i (ω) if ω ∈ A and

bi(ω) = xi(ω) if ω 6∈ A, is
∨n

i=1 Fi-measurable, and b = (b1, ..., bn) is feasible in
Ẽ(rA, x), where rA = (rA

1 , ..., rA
n ). Since

Vi(bi) >

∫

A

Ui(ω, xi(ω))ν(dω) +
∫

Ω\A
Ui(ω, xi(ω))ν(dω) = Vi(xi),

x is fine dominated by b in Ẽ(rA, x). The proof is completed. ¤

We conclude this section with a characterization of the private core of Ẽ by the
set of all privately non-dominated allocations of Ẽ(r, x), which is new even for finite
dimensional commodity space.

Theorem 4.10. Assume that Ẽ satisfies (A1)-(A3) and (A5). Then x is in the
private core of Ẽ if and only if x is a privately non-dominated allocation in Ẽ(r, x)
for any r ∈ [0, 1]n.

Proof. Let x be in the private core of Ẽ . Suppose that x is privately dominated in
Ẽ(r, x) for some r = (r1, ..., rn) ∈ [0, 1]n. Then, there is an allocation (y1, ..., yn)
such that Vi(yi) > Vi(xi) for each i ∈ N and

∑
i∈N yi(ω) ≤ ∑

i∈N{riai(ω) + (1 −
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ri)xi(ω)} for almost all ω ∈ Ω. Since x is feasible,
∑

i∈N yi(ω) ≤ ∑
i∈N ai(ω) for

almost all ω ∈ Ω, a contradiction with the fact that x is in the private core of Ẽ .
Conversely, let x be a privately non-dominated allocation in Ẽ(r, x) for any r ∈

[0, 1]n. Assume that x is not in the private core of Ẽ . Then, the simple function f

on I is not in the private core of Ẽc Note that the conclusion of Theorem 3.13 is
true in Ẽc under (A1)-(A3) and (A5). Then, the conclusion can be derived by an
argument similar to that in Theorem 4.5. ¤

Let Ẽ(s) be a symmetric information economy which is identical with Ẽ except
for the information for each agent being Fs

i =
∨

i∈N Fi.

Corollary 4.11. Assume that Ẽ satisfies (A1)-(A3) and (A5). Then, a feasible
assignment x is weak fine non-dominated in E(r, x) for any r ∈ [0, 1]n if only if x

is in the private core of Ẽ(s).

Remark 4.12. In Section 4, we have applied the equivalence theorems and the
Vind’s type theorem in Section 3 to establish characterizations of Walrasian expec-
tations allocations for an asymmetric economy with finitely many states of nature.
The perspective reader may wonder why such characterizations are not discussed in
the scenario where infinitely many states of nature are considered. Although Vind’s
theorem is valid for an economy with an arbitrary probability space of states of na-
ture, these equivalence theorem are only valid for the scenario where finitely many
states of nature are considered. So, the techniques employed in Section 4 do not
allow us to establish similar results for characterizing Walrasian expectations allo-
cations in the scenario with infinitely many states of nature. However, the difficulty
may be overcome by applying new and different techniques, which could be done
in the future work. ¤

(A.2) Discussion on ATY-properness

In this subsection, we discuss the ATY-properness of utility functions. Let Ai(xi) =
{yi ∈ Li : Ui(ω, yi(ω)) > Ui(ω, xi(ω)) for each ω ∈ Ω} for xi ∈ Li. So, Ai(xi) ⊆
Pi(xi). By (A2), xi ∈ clAi(xi). Then, it is clear from the proof of Theorem 3.7
that it is enough to consider the following fact instead of (A8):
(A.2.1) If x is a privately Pareto optimal allocation, then there is a convex and

‖ · ‖Ω-open subset Wi of Y Ω such that ∅ 6= Wi ∩ Li ⊆ Ai(xi) and ‖ · ‖Ω-
clAi(xi) ⊆ ‖ · ‖Ω-clWi for each i ∈ N .

We now introduce the definition of ATY-properness of a random utility function
similar to that of preference relation.

Definition 4.13. For ω ∈ Ω, the utility function Ui(ω, ·) is called ATY-proper at
x ∈ Y+ if there exists a convex subset Ãi(ω, x) of Y with non-empty ‖ · ‖-interior
such that Ãi(ω, x) ∩ Y+ = Ai(ω, x) and (intÃi(ω, x))∩Y+ 6= ∅, where Ai(ω, x) =
{y ∈ Y+ : Ui(ω, y) > Ui(ω, x)}.

We need the following assumptions of agents’ utility functions.
(A′8) State Properness. If (xi)i∈N is a privately Pareto optimal allocation in E ,

then Ui(ω, ·) is ATY-proper at xi(ω) for each ω ∈ Ω and i ∈ N .
(A′′8) Measurability. For each i ∈ N and x ∈ Y+, Ui(·, x) is Fi-measurable.
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Replacing (A8) with (A′8) and (A′′8), we can derive (A.2.1) by taking Wi =
∏

ω∈Ω

intÃi(ω, xi(ω)) for each i ∈ N , where Ãi(ω, xi(ω)) = Ãi(ω′, xi(ω′)) if ω, ω′ ∈ R ∈
Fi. Alternatively, similar to the v-properness of the preference relation in [2], one
can assume in the definition of ATY-properness of Ui(ω, ·) that xi(ω) + yi(ω) ∈
intÃi(ω, xi(ω)) for some yi ∈ Li in the place of (intÃi(ω, x))∩Y+ 6= ∅ and we
obtain (A.2.1) by using (A′8) only. Analogous assumptions are not sufficient for
(A9), because the preference Pi(xi) coming from expected utility plays an important
role. However, (A8) and (A9) directly follow from the v-properness of the preference
relation in a full information economy. To see this, consider a correspondence Si :
Y Ω

+ ⇒ Y Ω
+ defined by Si(x) = {y ∈ Y Ω

+ : Vi(y) > Vi(x)} for i ∈ N . By (A3), Si(xi)
is convex. Choose a non-zero element vi ∈ Li. By the vi-properness assumption,
there is a convex-valued correspondence S̃i : Y Ω

+ ⇒ Y Ω such that for each x ∈ Y Ω
+

the following hold: (i) x + vi ∈ ‖ · ‖Ω-intS̃i(x); and (ii) S̃i(x) ∩ Y Ω
+ = Si(x). Note

that if x ∈ Li, then we have x + vi ∈ (‖ · ‖Ω-intS̃i(x)) ∩ Li and S̃i(x) ∩ Li = Pi(x),
and so Pi is ATY-proper. Applying a similar argument, one can derive the strong
ATY-proper preference relation by taking vi ∈ Li ∩ L(

∑
i∈N ai) for all i ∈ N .

(A.3) Mathematical preliminaries

Given a real vector space X, a function ‖ · ‖ : X → [0,∞) satisfying (i) ‖x‖ ≥ 0
for all x ∈ X and ‖x‖ = 0 if and only if x = 0; (ii) ‖αx‖ = |α|‖x‖ for all x ∈ X
and α ∈ R; (iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X, is called a norm on X,
and (X, ‖ · ‖) is called a normed space. If A and Z are subsets of a normed space
(X, ‖ · ‖) with A ⊆ Z, the closure and the interior of A in the relative topology
generated by norm on Z are denoted by ‖ · ‖Z-clA and ‖ · ‖Z-intA respectively.
When Z = X, without confusion, we simply write ‖ · ‖-clA and ‖ · ‖-intA instead.
In addition, if A is convex with ‖ · ‖-intA 6= ∅, then ‖ · ‖-clA = ‖ · ‖-cl(‖ · ‖-intA).
If X is a real vector space and ≤ is a partial order on X, then the pair (X,≤) is
called an ordered vector space if for any x, y, z ∈ X and any positive real number
α, x ≥ y implies that αx + z ≥ αy + z. Recall that a Riesz space is an ordered
vector space that is also a lattice, that is, every pair of elements x, y ∈ X has a
supremum x ∨ y and an infimum x ∧ y. For any element x of a Riesz space, |x|
stands for the absolute value of x and is expressed in the form |x| = x+ +x−, where
x+ = x ∨ 0 and x− = (−x) ∨ 0 are positive and negative parts of x respectively.
Note that x = x+ − x− and x+ ∧ x− = 0. An element x ∈ X is called a positive
element of X if x ≥ 0 and X+ = {x ∈ X : x ≥ 0}. We write x > 0, if x ∈ X+ and
x 6= 0. For two points x, y ∈ Y , x > y means x− y > 0. If x ≤ y in X, then [x, y]
denotes the order interval {z ∈ X : x ≤ z ≤ y}. A subset A of X is called order
bounded if A ⊆ [x, y] for some x, y ∈ X. A norm is called a lattice norm if |x| < |y|
implies ‖x‖ ≤ ‖y‖. A normed Riesz space is a Riesz space with a lattice norm. A
complete normed Riesz space is called a Banach lattice. A lattice norm on a Riesz
space is an M -norm if ‖x∨ y‖ = max{‖x‖, ‖y‖} for any x, y ≥ 0. An M -space is a
normed Riesz space with an M -norm. A norm complete M -space is an AM -space.
A subset A of a Riesz space is called solid if |x| < |y| and y ∈ A imply x ∈ A. A
solid vector subspace of a Riesz space is called an ideal. A pair (X, τ) is called a
locally solid Riesz space if X is a Riesz space and τ is a linear topology on X such
that τ has a basis at zero consisting of solid neighborhoods.
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A linear functional f : X → R on a Riesz space X is called ordered bounded if
f(A) is bounded in R for any order bounded subset A of X. Recall that an order
dual X̃ of a Riesz space X is an ordered vector space consisting of all order bounded
linear functionals on X under the usual algebraic operations, and the ordering f ≤ g
if 〈f, x〉 ≤ 〈g, x〉 for all x ∈ X+. If (X, ‖ · ‖) is a normed space, its norm dual X∗ is
the set of continuous linear functionals on X equipped with the norm ‖ · ‖ defined
by ‖f‖ = sup{|〈f, x〉| : x ∈ X, ‖x‖ ≤ 1}. If (X, ‖ · ‖) is a locally solid Riesz space,
X∗ is an ideal in X̃. If (X, ‖ ·‖) is a Banach lattice, then X∗ = X̃ and ‖ ·‖-topology
is the finest locally solid topology on X. The order dual X̃ of any Riesz space X is
an order complete Riesz space, and its lattice operations are given by

〈f ∨ g, x〉 = sup{〈f, y〉+ 〈g, z〉 : y, z ∈ X+ and y + z = x}
and

〈f ∧ g, x〉 = inf{〈f, y〉+ 〈g, z〉 : y, z ∈ X+ and y + z = x}
for all f, g ∈ X̃, and x ∈ X+. These two equalities are called the Riesz-Kantorovich
formulas. The Hahn-Banach Theorem claims that a continuous linear functional
defined on a subspace of a normed space can be extended to a continuous linear
functional on the entire space, with its norm preserved. In addition, the separation
theorem says for any two disjoint (non-empty) convex subsets A and B in a Banach
lattice (X, ‖·‖), if either A or B has non-empty interior, then there exists a non-zero
f ∈ X∗ that separates A and B.

Let X be a Banach lattice. If Ω is a finite set, then XΩ is endowed with point-
wise algebraic operations, the pointwise order and the product norm of X is a
Banach lattice. If x ∈ (X, ‖ · ‖)Ω (i.e., XΩ equipped with the ‖ · ‖Ω-topology)
and g ∈ ((X, ‖ · ‖)Ω)∗, then there is an element f ∈ ((X, ‖ · ‖)∗)Ω such that
〈g, x〉 =

∑
ω∈Ω〈f(ω), x(ω)〉 and vise-versa. For any x ∈ X, the principal ideal

generated by x is defined by L(x) = {y ∈ X : |y| ≤ n|x| for some n ∈ N}. A point
x ∈ X+ is called an order unit of X if L(x) = X, and a quasi-interior point of
X+ if L(x) is norm dense in X (equivalently, 〈f, x〉 > 0 for all f ∈ X∗

+ \ {0}).
If x is a quasi-interior point of X+, we write x À 0. An order unit is a quasi-
interior point, but the converse is not true in general. Note that L(x) with the
norm ‖y‖x̂ = inf{λ > 0 : |y| < λ|x|} is an AM-space with x as an order unit.

Let (Ω, Σ, µ) be a measure space and X a Banach lattice. A function φ : Ω → X
that assumes only a finite number of values, say x1, ..., xn, is called a simple function
if Ai = φ−1({xi}) ∈ Σ for each i. As usual, the formula φ =

∑n
i=1 xi1Ai is the

standard representation of φ, where

1Ai(t) =

{
1, if t ∈ Ai;

0, otherwise,

is called the characteristic function of Ai on Ω. Moreover, we say that a function
f : Ω → X is µ-measurable if there exists a sequence of simple functions {φn : n ≥
1} such that lim ‖f(t)− φn(t)‖ = 0 for almost all t ∈ Ω. A µ-measurable function
f : Ω → X is said to be Bochner integrable if there exists a sequence of simple
functions {φn : n ≥ 1} such that the real measurable function ‖f(t) − φn(t)‖ is
Lebesgue integrable for each n and lim

∫
Ω
‖f(t) − φn(t)‖dµ(t) = 0. In this case,

for each E ∈ Σ, the Bochner integral of f over E is defined by
∫

E
f(t)µ(t) =

lim
∫

E
φn(t)dµ(t), where the last limit is in the norm topology on X.
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