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ABSTRACT 

With the increasing use of solar thermal energy systems and small-scale 

photovoltaic (PV) energy generation, there is a need to develop intelligent controllers 

to manage efficiently the energy generated by these systems. Ideally, these intelligent 

controllers will be able to predict the availability and magnitude of the solar resource 

and energy demand to plan in advance for periods when the solar resource is low or 

when energy demand is high. 

This work demonstrates that it is possible to deliver a viable energy management 

strategy for a small-scale photovoltaic-battery-grid (PBG) system that is capable of 

coordinating the energy flows among the different energy sources. In doing so, the 

problems of modelling and control of the energy distribution for the PBG system using 

model predictive control (MPC) were addressed.  

In devising this strategy, this work developed a nonlinear autoregressive 

recurrent neural network with exogenous inputs (NARX) and demonstrated that such a 

network was able to forecast both the energy demand for a typical New Zealand house, 

and the solar irradiation levels across a number of different locations (within New 

Zealand). Following on from this it was shown that using artificial neural network 

(ANN) based solar radiation and energy demand forecasts as measured disturbances 

allowed the MPC to plan for periods of low sunshine or high-energy demand.  

The performance of the overall ANN informed model predictive control system 

was verified using simulation results and compared with the open-loop optimal control 

approach. The results showed that, for a typical Auckland weekly household load of 

355 kWh, the MPC approach imported approximately 110 kWh less energy from the 
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grid than the optimal control approach. Furthermore, for the one-week period examined, 

the MPC approach managed to export over 15 kWh more energy to the grid than a 

controller based on the optimal control approach using the same PV production and 

energy demand data with the same objective function and constraints. 
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Chapter 1. INTRODUCTION 

1.1.  Introduction 

The growing concerns of global warming, diminishing world supplies of the non-

renewable fuels, as well as economic aspects, are driving factors in the current efforts to 

save energy (Tiwari & Dubey, 2010). The United Nations Environment Programme 

indicates that buildings use about 40% of global energy, 25% of global water, 40% of 

global resources, and they emit approximately 1/3 of greenhouse gas (GHG) emissions. 

Therefore, addressing energy use in buildings offers great potential for achieving 

significant GHG emission reductions in different countries. Furthermore, energy 

consumption in buildings can be reduced by using advanced technologies and 

management (Thi et al., 2015) as well as advanced control concepts in building 

management systems (Laustsen, 2008).  

Energy derived from the sun, the wind, the Earth's heat, water and the sea has the 

potential to meet the world's energy needs (Hallett & Wright, 2011). Unfortunately, these 

sustainable resources are often intermittent, thus needing storage and intelligent control 

strategies to utilize these resources to their full potential (Hove & Tazvinga, 2012), this 

is particularly the case for solar energy. 

1.2. Photovoltaic and battery based energy systems 

In recent years, the installed photovoltaic (PV) capacity in the world has rapidly 

increased. In 2013, PV capacity of more than 37 GW was installed worldwide, adding up 

to a cumulative capacity of approximately 137 GW (Wang, 2012).  
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Electricity generation by PV systems is often portrayed as the quintessential 

“green” energy option for the future and an attractive energy return on investment 

(Fthenakis & Alsema, 2004). PV installations can be identified as grid-connected 

centralised (large power plants), grid-connected distributed (smaller rooftop and façade 

systems), off-grid non-domestic (power plants and industrial installations in remote 

areas), or off-grid domestic (mainly stand-alone rooftop systems for houses in remote 

areas). The main discriminating aspect among these four types of installations is the 

requirement for battery storage as well as the difference due to the balance of system 

(BOS) components, size and location. PV systems with battery storage usually work well 

to provide continuous and stable energy and to overcome the intermittent nature of solar 

energy i.e., the PV-battery hybrid system (Fthenakis et al., 2008).  

That said; many domestic systems installed in recent times have been grid-

connected PV systems without battery storage. In this respect, the grid acts as a “battery” 

to backup these systems and so they do not require complex energy dispatch strategies, 

but rather can rely on simple load management strategies. Prioritizing the use of a PV 

system is the only rule when the PV energy is less than the energy requirement of the 

load. In contrast, battery storage brings a number of challenges to energy dispatch and 

load management strategies, as more complicated scenarios must be considered; such as 

charging the battery during the daytime, discharging during the night or when there is 

high demand. As a result, advanced controllers are needed for hybrid PV-battery systems, 

such that the utilisation of the PV array can be enhanced and the grid regulation can be 

improved in terms of safety and efficiency (Zhu et al., 2015).  

For grid-connected hybrid PV-battery systems, the changing electricity price, the 

timing of energy transactions, the mismatch between solar energy generation and energy 
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demand are the main challenges and have been discussed by both Arun & Banerjee, 

(2009) and Giraud & Salameh, (2001). Hence energy management for hybrid systems 

with battery storage is an issue that has attracted significant interest from researchers 

(Palma et al., 2013; Levron et al., 2013).  

1.3. Control of renewable electric power systems 

The control of large-scale solar energy systems has received some attention, with 

most researchers having considered energy management and demand response for large-

scale integration of renewable energy at the utility side (Moura & de-Almeida, 2010; 

Huang, et al., 2012). In this respect, numerous utility companies are investigating and 

implementing “smart” grids (SG) with a view to making the existing power generation 

system advanced, reliable, self-healing and economical. To achieve this requires the use 

of sensors, communication and controllers to enhance the overall operation of electric 

power systems (Nalbalwar et al., 2012). In saying this most optimal scheduling methods 

cannot handle complicated cases when hybrid systems experience external disturbances, 

with only a few closed-loop control methods having been designed (Palma et al., 2013) 

and (Zervas et al., 2008). Furthermore, the uncertainties associated with forecasting of 

renewable energy availability and energy demand have been studied for utility scale 

integration of renewable energy (Makarov et al., 2011), but the impact of these on small-

scale renewable energy systems has not been fully evaluated.  

1.4. Control of residential electrical energy systems 

In addition to the attention that has been paid to larger renewable electrical energy 

systems a number of studies have attempted apply similar strategies to residential scale 

electricity use. Patel and Khosla, (2015) reviewed a number of research studies on energy 
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management controllers for smart homes where the aims were to address reducing energy 

consumption, peak to average ratio and energy wastage. They identified various control 

and pricing schemes, such as real time pricing (RTP), critical peak pricing (CPP), time of 

use (TOU) and day ahead pricing (DAP). In one particular study, Liu et al., (2014), used 

peak to average ratio (PAR), daily energy demand, electricity cost and the hourly energy 

demand of shiftable electrical appliances of the consumers as the constraints in a control 

system. The objective function was to minimize the energy cost of the consumers through 

the determination of the optimal power usage and operation time of the appliances. This 

was achieved by shifting the high energy consuming loads to off peak hours, which helped 

minimize the energy consumption in the peak hours. 

In a later study Rahim et al., (2016), presented a demand side management (DSM) 

model for a residential energy management system in order to avoid peak formation while 

decreasing electricity demand and preserving user comfort levels within specified limits. 

In their work, three heuristic algorithms were used to evaluate the objective function. 

They suggested that the genetic algorithm based controller was better in term of electricity 

cost reduction, PAR minimization and maximization of user satisfaction than binary 

particle swarm optimization (BPSO). However, the computational time of the algorithm 

was higher. In a similar vein, Arafa et al., (2014), reduced the computational time for load 

scheduling in homes by introducing an evolutionary algorithm, that improved the 

performance (convergence rate and accuracy) of differential evolution (DE). On this basis 

there appears to be scope for advanced control strategies in renewable electric power 

systems. 

In this vein, Erol-Kantarci and Mouftah, (2010), studied a linear programming (LP) 

based model to minimize the electricity cost in a residential dwelling. In their study, a day 
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was divided into time slots of equal lengths with different pricing rates, similar to a TOU 

scheme. In their LP model the home appliances were scheduled in appropriate time slots 

to reduce the electricity bill such that the consumer could enter the schedule detail in the 

LP model which would then deliver the most efficient and optimal scheduling output. 

On a more simplistic level rule-based strategies have also developed for energy 

management of hybrid systems, (Wang & Nehrir, 2008; Jain & Agarwal, 2008; Teleke et 

al., 2010) which can obtain promising but not optimal solutions to ensure practical 

constraints are satisfied. In Kanchev et al., (2011), a deterministic planning method was 

proposed in order to perform day-ahead energy flow scheduling for conventional and 

renewable energy systems. Similarly, Tazvinga et al., (2013) studied an optimal control 

approach to improve the performance of EMS for scheduling of energy flow for a hybrid 

energy system with a view to minimizing the cost of electricity and maximizing PV 

energy usage. 

In their work to achieve maximum efficiency from photovoltaic systems using 

small-scale batteries and flexible thermal loads, Vrettos et al., (2013), proposed four rule-

based control algorithms and calculated the building energy flows and PV self-

consumption ratios (the consumption of most of the PV energy within the building 

premises) on an annual basis. Results showed that installing batteries for local PV 

utilization was an attractive investment due to decreasing trends in battery cost and feed-

in tariffs (FIT). In a more general sense, Wang & Nehrir, (2008) discussed the 

effectiveness of a rule-based energy management strategy for a hybrid wind/PV/fuel-cell 

stand-alone application. In their work, real weather and load profile data were utilized 

such that the proposed controller managed the energy flow among different energy 

sources and storage units under realistic conditions. 
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Residential energy management systems were also studied in Mohsenian-Rad & 

Leon-Garcia, (2010) where an optimal and automatic residential energy consumption-

scheduling framework was proposed. The aim of this work was to achieve a desired trade-

off between minimizing the electricity cost and minimizing the waiting time for the 

operation of each appliance in the households. In Juan et al., (2012), an optimal load 

management strategy for residential households was examined that utilized the 

communication infrastructure of the future smart grid. The proposed controller utilized 

predictions of electricity prices, energy demand and renewable energy production in 

determining the optimal relationship between hourly electricity prices and the use of 

different household appliances and electric vehicles in a typical smart house. Results 

showed that the proposed model allowed users to reduce their electricity bill between 8% 

and 22% for a typical summer day analysed and adapt the electricity bill to their actual 

economic situation.  

In a subsequent, and similar, study by Chen et al., (2013), an appliance scheduling 

scheme for residential building energy management was proposed. This system utilized 

a time-varying retail pricing structure that was enabled by two-way communication 

infrastructure. In realising this, finite-horizon scheduling optimization problems were 

formulated to exploit the operational flexibilities of the thermal and non-thermal 

appliances, and incorporated both forecasts and newly updated information. Their 

simulation results showed that customers can have notable energy cost savings on their 

electricity bills with the time-varying pricing. 

One of the challenges of a residential energy controller is the variation in daily 

energy requirement between summer and winter period. Qi et al., (2011) examined this 

problem for a stand-alone PV-battery energy system. The operational efficiency of the 
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proposed system over a 24 h period was evaluated and they concluded that optimal 

solutions could be found to reduce the corresponding fuel costs. This resulted in fuel 

savings of 73-77% in winter and 80.5-82% in summer. 

Despite simple rule and schedule based controllers achieving good outcomes, 

predictive control strategies for hybrid renewable energy systems have been shown to be 

more efficient when compared to conventional, non-predictive strategies for energy 

efficient home automation (Bourgeois & Macdonald, 2006; Cho & Zaheer, 2003; Henze 

et, al., 2005). Wu et al., (2015) proposed a demand side management system for PV-

battery hybrid systems using a model predictive control (MPC) approach. In this system 

the battery would be charged by the grid during off-peak times and discharged during 

peak times to minimize grid imports when electricity prices were higher. The proposed 

MPC achieved improved control performance in terms of accuracy and robustness. 

Furthermore, it was shown that greater cost savings could be achieved by using closed-

loop control.  

This finding is analogous to proposed developments in the field of solar thermal 

energy systems (where the thermal storage system is equivalent to an electrical battery). 

In particular, the European Solar Thermal Technology Platform’s (ESTTP) recent 

industry report on "Solar Heating and Cooling for a Sustainable Energy Future in Europe" 

stresses that one central control system is vital to maximize the overall efficiency of solar 

energy systems. It also discusses that to achieve renewable energy targets by 2030 

“Advanced control concepts for components and overall systems, including self-learning 

control, fuzzy logic and adaptive control techniques should be adopted” (Stryi-Hipp et 

al., 2012). In addition, it noted the need for: 
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 Development of advanced control equipment that is easy to use and 

standardized 

 Self-adapting and self-optimizing strategies 

 Control systems responsive to weather forecasts 

 Integration of new automated methods, such as “fuzzy logic” controllers 

and control algorithms based on optimization theory 

In this respect, it raises questions as to why a similar line of enquiry has not yet been 

raised with respect to photovoltaic energy systems, and grid connected photovoltaic-

battery power systems in particular. 

1.5. Thesis objective 

The literature has shown that very few attempts have been made towards the 

development of an advanced controller for grid connected photovoltaic-battery power 

systems. Furthermore, relatively few attempts have been found in the literature where 

solar radiation prediction and energy consumption prediction are used in control 

strategies to plan in advance for periods of low sunshine or periods when energy demand 

is more than usual. These factors, combined with the industry-identified needs, suggest 

that there is significant demand for controllers that incorporate solar radiation and load 

energy prediction to improve efficiency, and maximise self-consumption of electricity. 

Therefore, this work aims to explore this and answer the question: 

Can a controller that incorporates energy generation and consumption forecasts be 

developed to manage the electricity produced by domestic grid connected photovoltaic-

battery power systems?  
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Chapter 2. HOURLY GLOBAL SOLAR IRRADIATION 

PREDICTION FOR A PREDICTIVE CONTROLLER 

2.1.  Introduction 

In the preceding chapter it was noted that with the growing use of solar energy 

systems by domestic users, there is an increasing need to develop intelligent controllers 

that allow these users to efficiently manage the energy generated by these systems. 

Ideally, these intelligent controllers will be able to forecast the availability and magnitude 

of the solar resource, more accurately than a persistence approach, to plan for periods 

when the solar irradiance magnitude is small or unavailable. In addition, the method used 

to provide this forecast needs to be adaptable to a range of timescales and locations.  

In many cases limited coverage of irradiation measuring networks prompts the 

development of techniques for estimating and forecasting the global irradiation using 

climatological parameters (Maitha et al., 2011). Several techniques have been developed 

in order to estimate solar irradiance data at different scales including empirical 

(Loutzenhier et al., 2007), analytical (Ulgen & Hepbasli, 2009) and numerical techniques, 

as well as neural network approaches (Moustrisa et al., 2008). Additionally, a significant 

number of studies have used physics-based approaches as shown by Gueymard, (2005, 

2008), & Perez at al., (2007) and also statistical forecasting of solar irradiation (Goh & 

Tan, 1977).  

Approaches based on statistical processes such as autoregressive (AR), moving-

average (MA), autoregressive moving-average (ARMA), autoregressive-integrated 

moving-average (ARIMA) and Markov chain have also been widely used. However, 

these approaches require some statistical transformations to the data before they are 
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applied. Due to these transformations, it is not possible to ensure that the results are 

accurate and represent a precise correlation with the measured solar irradiance values (Al-

Alawi & Al-Hinai, 1998) and so it is necessary to develop alternative approaches (Mellit 

et al., 2010).  

In this regard, artificial neural network (ANN) techniques for predicting irradiation 

have been shown to have greater accuracy than other techniques such as linear, nonlinear 

and fuzzy approaches (Yadav & Chandel, 2014) and so have been used in a number of 

solar energy applications. Kalogirou, (2001) has reviewed the use of ANN in renewable 

energy systems applications while Mellit & Kalogirou, (2008) and Mellit et al., (2009) 

reviewed ANN’s in photovoltaic applications and for sizing of photovoltaic systems 

respectively. Similarly authors such as Esen et al., (2008) have examined adaptive neuro-

fuzzy inference systems (ANFIS) and ANN models of ground-coupled heat pump 

(GCHP) systems.  

Based on the predictive capabilities of ANN systems, a number of studies have 

begun to examine the ability of these systems to forecast future values of solar irradiation. 

Mellit & Alessandro, (2010) presented a review of artificial intelligence techniques for 

solar radiation forecasting and concluded that ANN models can be generalized to be used 

in different locations around the world. 

In an early study in this area Sfetsos and Coonick, (2000) introduced an approach 

for a one-step ahead prediction of mean hourly solar radiation received by a horizontal 

surface through ANN and ANFIS models. It was shown that the performance of the 

models was enhanced when a wind direction term was included in the input list. They 

also found that the best prediction resulted from the use of a multivariate Levenberg 

Marquardt (LM) case that exhibited a 74% improvement in the Root Mean Square Error 
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(RMSE) when compared with a benchmark persistence approach. The results indicated 

that the ANN models predict the solar radiation time series more effectively than 

procedures based on the clearness index. 

Paoli et al., (2010) also used an ANN prediction approach based on Multi-Layer 

Perceptron to determine global irradiation at daily horizon (d+1). Their proposed model 

was compared with AR, ARMA, k-Nearest Neighbors (k-NN) and Markov Chains 

approaches. Without pre-processing AR and ANN models showed a daily normalised 

Root Mean Square Error (nRMSE) of approximately 21% compared to Markov chain, 

Bayes and k-NN methods where nRMSE was in the order of 25–26%. However, annual 

pre-processing ANN methods based on clearness index and clear sky index reduce 

forecasting errors of about 5–6% (nRMSE~20%) compared to classical predictors as 

Markov chains. 

More recently, Voyant et al., (2014) developed an ANN based MLP model that was 

applied to two years of pre-treated time series data in order to forecast global solar 

irradiation 24-hours ahead. The results of the MLP were compared with those of ARMA 

and the benchmark persistence approaches and showed that the prediction error could be 

reduced by using the proposed approach.  

Similarly, Rich et al., (2013) developed statistical models, ANN models, satellite 

imaging based models, numerical based models and hybrid methods for solar irradiance 

forecasting. In their work, they found that regressive methods such as AR, MA, ARMA 

and ARIMA take advantage of the correlated nature of the irradiance observations and 

tend to work well in both data-poor and data-rich environments. However, it was 

concluded that ANN modelling offers improved nonlinear approximation performance 
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and provides an alternative approach to physical modelling for irradiance data when 

enough historical data is available and are not typically temporally limited.  

Now, it is noted in the literature that physics-based, statistical and ANN based feed-

forward network techniques have demonstrated their ability to predict future values of 

solar irradiation, however, recurrent neural network based methods have received little 

attention. Therefore, this study aims to investigate several techniques for forecasting solar 

irradiation that could be implemented into future solar control systems, and particularly, 

the ability of nonlinear autoregressive recurrent neural networks to forecast global solar 

irradiation 24 hours in advance for a number of major New Zealand cities, as shown in 

Figure 1. 

 

Figure 1. Map of New Zealand with major cities 
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2.2. Methodology 

For this work several forecasting techniques were utilised: NARX, MLP, ARMA 

and a benchmark persistence forecast. However, given the lack of attention it has received 

in the literature, the NARX ANN architecture is the main typology described in this paper.  

For each approach mentioned in this study, three years of historic hourly data for: 

global solar irradiation, Temperature (𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛), Barometric Pressure (𝑃), Relative 

Humidity (𝑅𝐻), Solar Zenith Angle (𝑆𝑍𝐴), Azimuth Angle (𝐴𝑧), Rain amount (𝑅𝑎), 

Wind speed (𝑊𝑠) and Wind direction (𝑊𝑑) were taken from the National Institute of 

Water and Atmosphere’s (NIWA) CliFlo database (2014) to test each method. Hourly 

global solar irradiation 24 hours in advance being the target output variable.  

For the ANN approaches, that is NARX and MLP, the input weather data was 

presented as unprocessed data, to study the effect of real input variables on the predicted 

values of the target variable. In doing this 70% of the historic data was presented to the 

network during training, allowing the network to be adjusted according to its error. 

Subsequently 15% of the data was used to measure network generalization, and to halt 

training when generalization stops improving. Finally, the remaining 15% of the data was 

used to test the network thus providing an independent measure of the network 

performance during and after training. For the ARMA and the benchmark persistence 

approach, the same data was utilised in developing the forecast, however, a more detailed 

account of these methods is provided in the latter discussion for each of these. 

2.2.1. Input variables selection for all prediction methods 

The prediction accuracy of the proposed methods is dependent on the combination 

of weather predictor variables and training algorithm (Yadav & Chandel, 2014). This is 
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particularly pertinent, as one of the key tasks in time series prediction is the selection of 

the input variables and the choice of variables depends on data availability, its quality and 

their correlation. To provide a sound analytical basis for the choice of variables, a 

statistical analysis was carried out to check the correlation of each input variable with 

global solar irradiance. The Pearson correlation coefficient (𝑅) is a measure of the linear 

correlation between two variables, giving a value between +1 and −1 inclusive, where 1 

is total positive correlation, 0 is no correlation, and −1 is total negative correlation. 

MATLAB neural network toolbox was used to perform the regression analysis. 

Regression takes cell array or matrix targets (T) and output (Y), each with total matrix 

rows of N, and return the linear regression for each of the N rows. Here a feedforward 

network was trained and regression performed on its targets and outputs. The 𝑅 values 

for each input variable with respect to global solar irradiance is shown in Table 1. 

Table 1. Regression values for input weather variables vs global solar irradiance 

Input variables R 

Max Temperature (Tmax) 0.462 

Min Temperature (Tmin) 0.404 

Relative Humidity (RH) 0.505 

Rain Amount (Ra) 0.055 

Solar Zenith Angle (SZA) 0.066 

Azimuth (Az) 0.183 

Pressure (P) 0.020 

Wind Speed (Ws) 0.002 

Wind Direction (Wd) 0.005 
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From Table 1 it can be seen that RH, Tmax and Tmin have a reasonable degree of 

correlation with solar irradiance, while  Ws and Wd have almost no correlation. To group 

the input weather variables, Moody et al., (1995), two-step sensitivity analysis technique 

was utilized. Once the most significant variables were determined (based on the 

regression values), twelve significant combinations of the nine weather predictor 

variables as shown in Table 2 were tested in order to investigate their effect on the 

accuracy of the global solar irradiation forecast for Auckland. 

Table 2. Test cases based on different combinations of input variables 

Case  Input Parameters Case  Input Parameters 

1 Tmax, Tmin, P, RH, SZA, Az, Ra,Ws,Wd  7 P, RH, SZA, Az, Ra 

2 Tmax, Tmin, P, RH, SZA, Az, Ra 8 Tmax, Tmin, SZA 

3 Tmax, Tmin, P, RH, SZA, Az 9 Tmax, Tmin, P, SZA, Az 

4 P, RH, SZA, Az, Ra,Ws,Wd 10 RH, SZA, Az, Ra 

5 Tmax, Tmin, P, RH, SZA 11 Tmax, Tmin, P 

6 Tmax, Tmin, SZA, Az 12 Tmax, Tmin,Ws,Wd 

 

2.2.2. Nonlinear autoregressive with exogenous input (NARX) 

Having determined the input variables, a NARX recurrent neural network was 

developed to forecast future values of global solar irradiation in Auckland, based on the 

previous values of global solar irradiation and the nine weather predictor variables 

described. The approach can be expressed mathematically by predicting future values of 

the solar irradiation time series 𝑦(𝑘) from past values of that time series and past values 

of the weather predictor variables time series 𝑥(𝑘). This NARX approach is based on the 

linear ARX approach that is commonly used in time-series modelling and can be 
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represented by Equation (1), where the next value of the dependent output signal (global 

solar irradiation) 𝑦(𝑘)  is regressed on previous values of the output signal and previous 

values of an independent input signal (historic weather data). 

𝑦(𝑘) = 𝑓 (𝑦(𝑘 − 24), 𝑦(𝑘 − 25),… , 𝑦(𝑘 − 𝑛𝑦), 𝑥(𝑘 − 24), 𝑥(𝑘 − 25),… , 𝑥(𝑘 − 𝑛𝑥)) (1) 

The NARX approach is implemented using a feed-forward neural network to 

approximate the function 𝑓. A diagram of the resulting network is shown in Figure 2, 

where the 𝑦(𝑘) output series is predicted from past values of 𝑦(𝑘) and another input 

series 𝑥(𝑘). 

 

Figure 2. NARX block diagram 

 

There are different connection styles and learning algorithms in neural networks, 

the most common being the back propagation algorithm. The back propagation algorithm 

consists of two phases: a training phase and recall phase (Fatih et al., 2008). Before the 

training phase starts, the weights of the network are randomly initialized. Then the output 

of the network is calculated and compared to the desired value. At each step during 

training, error of the network is calculated by means of gradient methods and used to 

adjust the weights of the output layer (Haykin, 1998). In the case of more than one 

network layer the error is propagated backward to adjust the weights of the previous 

layers. Once the weights are determined, after several training steps and correlation 

between different combinations of input variables with targets are finalized, the recall 
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phase may run. In doing this the network output computations are performed using 

finalized iterations of input data and weights from the training phase. 

The training phase is important as it determines the success of the resulting network. 

In back propagation, there are two methods of updating the weights. In the first method, 

weights are updated for each of the input patterns using an iteration method. In the second 

method, used in this study, the mean value of input and output patterns of the training sets 

is calculated (Yousefizadeh & Zilouchian, 2001). As soon as the weight update values 

are obtained, the new weights and biases can be calculated using Equation (2). 

𝑊𝑖𝑗,𝑛 = 𝑈𝑛 +  α𝑊𝑖𝑗,𝑛 − 1 (2) 

where 𝑊𝑖𝑗,𝑛 is a vector of current weights and biases, 𝛼 is the momentum factor 

rate which determines how the past weights will reflect to the current value, and 𝑈𝑛 is the 

update function which can be chosen according to the problem and data type.  

According to Fatih et al., (2008) and Yousefizadeh & Zilouchian, (2001) the most 

commonly used equation solving algorithm is the LM algorithm. It can be considered as 

an alternative to the conjugate methods for second derivative optimization. In LM, the 

update function, 𝑈𝑛 can be calculated using Equation (3). 

𝑈𝑛 = −[𝐽𝑇  × 𝐽 +  µ𝐼]−1  ×  𝐽𝑇  × 𝑒 (3) 

where 𝐽 is the Jacobian matrix that contains the first derivatives of the network 

errors with respect to the weights and biases, and 𝑒 is a vector of network errors. The 

parameter 𝜇 is a scalar number and 𝐼 is the identity matrix. Depending on when the 𝜇 

parameter is large, the update function 𝑈𝑛 becomes identical to the basic back propagation 

(with a small step size). During processing the 𝜇 value decreases after each successful 
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step and should be increased only when a tentative step increases the error term or 

performance function. Consequently, the performance function is guaranteed to reduce or 

to become bounded at each iteration (Martin & Mohammad, 1994).  

In order to determine the performance of developed ANNs quantitatively, and 

verify whether there was any underlying trend in performance of the ANNs, the 

regression (R) and root mean squared error (RMSE) values were analysed. The root mean 

squared error (Equation 4) provides information on the short term performance and is a 

measure of the variation of predicated values around the measured data, where the lower 

the RMSE, the more accurate is the estimation.  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝐼𝑝 − 𝐼𝑖)

2
𝑁

𝑖=1

(4) 

where 𝐼𝑝 is the predicted solar irradiance in 𝑀𝐽/𝑚2, 𝐼𝑖 is the measured solar 

irradiance in 𝑀𝐽/𝑚2, and 𝑁 denotes the number of observations. 

2.2.3. Number of hidden neurons and delays 

Now in developing a NARX ANN there is an important trade-off to be made 

between the size and the predictive capability of the network. If the number of neurons 

or number of delays is increased, the network has the tendency to over-fit the data and 

allows the network to solve more complicated problems but on the other hand requires 

more computation. Therefore, the effect of changing the number of neurons in the hidden 

layer, increasing and decreasing the number of delays was also investigated. During 

experiments, both the number of neurons in the hidden layer and the number of delays in 

the tapped delay lines were increased until the network performed well in terms of the 
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root mean square error and the regression values. Using tapped delay lines in the network 

is essential as it stores previous values of 𝑥(𝑘) and 𝑦(𝑘) sequences. The number of hidden 

neurons, network delays and time steps for training, validation and test were varied to 

determine which network exhibited the best performance.  

In this respect, an initial network was developed with the minimum number of 

neurons and this the number was increased until the network performed well in terms of 

the root mean square error and regression values. During this phase, each proposed 

configuration was trained multiple times to stabilize the weight initialization process and 

deliver the best accuracy in the shortest processing time. As such, networks with up to 

250 neurons were examined as part of this sensitivity analysis, however, it was found that 

a network of 90 neurons was more than adequate, as beyond this the computing time of 

the network increased significantly without significant increase in the accuracy, similarly 

delays between 1 and 5 were also tested.  

Computing time was observed and it was noted that time increased with increasing 

numbers of neurons or delays. However, after several trials, it was decided that the most 

suitable network, considering accuracy and computing time, had 90 hidden neurons and 

2 delays in the tapped delay lines. The reason computing time was closely monitored, was 

because if the approach was to be implemented on a standalone hardware platform, such 

as a solar controller, processing power and memory would be limited compared to 

desktop resources. Using the weather data for Auckland from Case 2 as an example, Table 

3 shows the RMSE and R values for various numbers of neurons in the hidden layer.  
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Table 3. RMSE, R and computing time values for different numbers of neurons and delays 

using Case 2 weather data 

Number of 

Neurons 

Number of  

Delays  

RMSE 

(MJ/m2) 

R  Computing Time 

(min: sec)  

5 2 0.287 0.950 00:20 

10 2 0.277 0.951 00:24 

20 2 0.274 0.952 00:22 

30 2 0.266 0.955 00:48 

40 2 0.257 0.957 00:53 

50 2 0.263 0.956 00:50 

50 3 0.249 0.964 01:02 

90 2 0.243 0.963 01:20 

90 3 0.232 0.966 02:20 

90 5 0.221 0.969 04:42 

150 2 0.251 0.963 02:02 

200 2 0.251 0.963 04:33 

250 2 0.247 0.964 05:10 

 

2.2.4. NARX results 

To validate the approach used, the root mean squared error (RMSE) performance 

function was examined during the training phase. Network training could be stopped early 

by the validation vectors if the network performance on the validation vectors failed to 

improve or remained the same, as indicated by an increase in the root mean square error 

of the validation samples. Test vectors were used as a further check that the network was 

generalizing well, but did not have any effect on training. The best validation performance 

for the Auckland weather data shown in Case 2 was 0.2699 MJ/m2 at epoch 9 (a measure 
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of the number of times all of the training vectors are used once to update the weights) 

with seven input variables. 

Further, the network outputs with respect to the target for training, validation, and 

test sets are shown in Figure 3. The dashed line in each axis represents the perfect result, 

that is: outputs = targets. The solid line represents linear best fit between the outputs and 

targets. For this problem, the fit is reasonably good for all data sets, with the overall 

regression values as high as 0.963. 

 

Figure 3. Regression analysis of the network outputs with respect to targets for training, 

validation and test sets 
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For the twelve cases described in Table 2, the NARX network architecture with 

LM training algorithm was trained, validated and tested. Values of RMSE and regression 

were closely monitored to find the best approach; Table 4 shows the RMSE and R values 

for 90 neurons in the hidden layer.  

Table 4. RMSE and Regression values for all 12 NARX networks 

Case RMSE  (MJ/m2) R  Case RMSE (MJ/m2) R  

1 0.259 0.956 7 0.270 0.953 

2 0.243 0.963 8 0.270 0.953 

3 0.257 0.957 9 0.259 0.956 

4 0.266 0.953 10 0.274 0.952 

5 0.268 0.953 11 0.280 0.949 

6 0.261 0.956 12 0.277 0.950 

 

Figure 4 illustrates this point further, by showing the forecast for an arbitrarily 

selected single day, that for the first three cases there is correlation between the measured 

and NARX forecast values for global solar irradiation in Auckland. However, in Table 4, 

it can be seen that Case 2 has the lowest RMSE among all 12 configurations, with a 0.243 

MJ/m2 RMSE and a 0.963 regression value. As shown in Table 2, all twelve cases have 

different combinations of weather variables. The combination of weather variables in 

Case 2 produces lower RMSE values as compared to other combinations. Further, RMSE 

values for all the prediction methods were compared with a benchmark persistence 

approach and RMSE values lower than the persistence approach was considered as 

acceptable in this study. 
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Figure 4. Measured and predicted irradiation values for Auckland using NARX ANN 

 

Exploring the predictive capability of the NARX architecture further, Figure 5 

shows a randomly selected one week forecast of global solar irradiation in Auckland using 

the weather data from Case 2, presented earlier.  It can be seen that over this single week, 

that the NARX forecasts the global solar irradiation.  

 

Figure 5. Measured and predicted solar irradiation values using NARX ANN 
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2.2.5. Other forecasting techniques 

Having developed an appropriate NARX ANN forecasting system for Auckland, it 

was decided to benchmark this approach against three other common forecasting 

approaches: A Multilayer Perceptron ANN (MLP), an Auto Regressive Moving Average 

(ARMA) prediction and a benchmark persistence forecast to provide a comparative 

assessment of their forecasting abilities in Auckland. 

2.2.6. Multilayer perceptron (MLP)  

MLP is a feed forward ANN approach that maps a set of input data onto a set of 

appropriate output data. An MLP is made of several layers: one input layer, one or several 

intermediate layers and one output layer as shown in Figure 6. Neurons in input layer 

only act as buffers for distributing the input signals 𝑥𝑖  (𝑖 = 1, 2, … . 𝑛) to neurons in the 

hidden layer. As shown in Figure 7, each neuron 𝑗 in the hidden layer sums up its input 

signals 𝑥𝑖 after weighting them with the strengths of the respective connections 𝑤𝑗𝑖 from 

the input layer and computes its output 𝑦𝑖 as a function 𝑓 of the sum given by Equation 

(5). 

𝑦𝑖 = 𝑓 (∑𝑤𝑗𝑖𝑥𝑖

𝑛

𝑖=1

) (5) 

𝑓 can be a simple threshold function or a sigmoidal, hyperbolic tangent or radial 

basis function.  
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Figure 6. Multi-layered perceptron (MLP) network 

 

In most cases, a single neuron is of no interest however, interconnected single 

neurons build a network of neurons that can solve complex problems such as 

classification, pattern recognition and time series prediction. The output of neurons in the 

output layer is computed similarly and the backpropagation and gradient descent are the 

most commonly adopted MLP training algorithm. The MLP gives the change ∆𝑤𝑗𝑖 the 

weight of a connection between neurons 𝑖 and 𝑗 as given by Equation (6). 

∆𝑤𝑗𝑖 = 𝜂𝛿𝑗𝑥𝑖 (6) 

where 𝜂 is a parameter called the learning rate and 𝛿𝑗 is a factor depending on 

whether neuron 𝑗 is an input neuron or a hidden neuron. 

 

Figure 7. Detail of the perceptron process 
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For output neurons, Equation (7) applies, where 𝑛𝑒𝑡𝑗 is the total weighted sum of 

input signals to neurons 𝑗 and 𝑦𝑗
(𝑡)

 is the target output for neuron 𝑗. 

𝛿𝑗 = (
𝜕𝑓

𝜕𝑛𝑒𝑡𝑗
⁄ )(𝑦𝑗

(𝑡) − 𝑦𝑗) (7) 

And for hidden neurons as there are no target outputs Equation (8) applies, where 

the difference between the target and actual output of a hidden neurons 𝑗 is replaced by 

the weighted sum of the 𝛿𝑞 terms already obtained for neurons 𝑞 connected to the output 

of 𝑗. 

𝛿𝑗 = (
𝜕𝑓

𝜕𝑛𝑒𝑡𝑗
⁄ ) (𝛴𝑞𝑤𝑗𝑞𝛿𝑞) (8) 

The process begins with the output layer, the 𝛿 term is computed for neurons in all 

layers and weight updates determined for all connections, iteratively. The weight 

updating process can happen after the presentation of each training pattern (pattern-based 

training) or after the presentation of the whole set of training patterns (batch training). 

Training the epoch is completed when all training patterns have been presented once to 

the MLP. 

A commonly adopted method to speed up the training is to add a “momentum” term 

to Equation (9), which effectively lets the previous weight change influence the new 

weight change 

∆𝑤𝑖𝑗(𝐼 + 1) = 𝜂𝛿𝑗𝑥𝑖 + 𝜇∆𝑤𝑖𝑗(𝐼) (9) 
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where ∆𝑤𝑖𝑗(𝐼 + 1) and ∆𝑤𝑖𝑗(𝐼) are weight changes in epochs (𝐼 + 1) and (𝐼), 

respectively, and 𝜇 is the “momentum” coefficient (Jayawardena & Fernando, 1998). 

Using the weather data from Case 2, presented earlier, Figure 8 shows a randomly 

selected one week forecast of global solar radiation in Auckland using the ANN based 

MLP architecture. RMSE for the ANN based MLP approach was found to be 

0.484 𝑀𝐽/𝑚2 and it can be seen that, in general, the MLP network is able to provide a 

reasonable forecast of the future irradiation values when compared with the benchmark 

persistence approach. 

 

Figure 8. Measured and predicted solar irradiation values using an MLP ANN 

 

2.2.7. Auto regressive moving average (ARMA) 

ARMA is a type of the time-series analysis that can be used in situations that deal 

with a large amount of observed data from the past. The ARMA system is developed 
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𝑆(𝑘) =∑𝛼𝑖𝑆(𝑘 − 𝑖) +∑𝛽𝑗𝑒(𝑘 − 𝑗)

𝑞

𝑗=1

𝑝

𝑖=1

(10) 

where 𝑆(𝑘) is the forecasted solar irradiance at time instant 𝑘. In the AR part, 𝑝 is 

the order of the AR process, and 𝛼𝑖 is the AR coefficient. In the MA part, 𝑞 is the order 

of the MA error term, 𝛽𝑗 is the MA coefficient and 𝑒(𝑘) is the white noise that produces 

random uncorrelated variables with zero mean and constant variance (Rajagopalan & 

Santoso, 2009). Typically, this method requires large amount of historical data to obtain 

the ARMA, that is, to find the orders 𝑝, 𝑞 and the coefficients 𝛼𝑖 and 𝛽𝑗. In addition, due 

to the geographical differences, each location requires its own unique coefficients. Based 

on the given historical data, the construction of the ARMA for each location consists of 

two phases, identifying the orders 𝑝, 𝑞 and determining the coefficients 𝛼𝑖 and 𝛽𝑗.  

The mathematical methods of finding the orders and coefficients of the ARMA 

architecture are introduced in Torres et al., (2005). The order identification is proposed 

by Daniel & Chen (1991), and coefficients determination is calculated by applying the 

Yule-Walker relations for 𝑖 and the Newton-Raphson algorithms for 𝑗.  

The ARMA approach was implemented using the MATLAB System Identification 

Toolbox using the same three years of historical data used for ANN based NARX and 

MLP approaches. Orders and coefficients for the ARMA model were calculated, as 

shown in Table 5. 
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Table 5. Orders and coefficients of the realized ARMA system 

p q 𝛂𝐢 𝛃𝐣 

 

2 

 

3 

𝛂𝟏 = −𝟏.𝟔𝟔𝟐 

𝛂𝟏 = 𝟎. 𝟕𝟖𝟓𝟔 

𝛃𝟏 = −𝟎. 𝟑𝟐𝟐𝟑 

𝛃𝟐 = 𝟎. 𝟔𝟎𝟕𝟒 

𝛃𝟑 =0.0591 

 

Utilising these parameters the global solar irradiance in Auckland was forecasted 

using Equation (11) giving the results for a single week (as used in the MLP forecast) as 

shown in Figure 9, with a RMSE of 0.315 𝑀𝐽/𝑚2. From this it can be seen that on the 

first and seventh day the ARMA forecast values vary considerably from the actual data, 

while on days 2-6 the forecasted values resemble the actual data.  From this it can be 

suggested that the ARMA approach performs well on a sunny days and its accuracy 

decreases with increasing clouds cover. 

𝑆(𝑘 + ℎ) =∑𝛼𝑖𝑆(𝑘 − 𝑖)

𝑝

𝑖=1

+∑𝛽𝑗

𝑞

𝑗=1

𝑒(𝑘 − 𝑗) (11) 

where 𝑆(𝑘 + ℎ) is the forecasted solar irradiance at time 𝑘 + ℎ.  

 

Figure 9. Measured and predicted solar irradiation values using ARMA 
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2.2.8. Persistence forecasting approach 

As a benchmark study, a persistence forecast was developed using Equation (12) 

to provide the day-ahead forecast (ℎ = 24 ℎ𝑜𝑢𝑟𝑠).  

𝑆(𝑘 + ℎ) = 𝑆(𝑘) (12) 

where 𝑆(𝑘 + ℎ) is the forecast solar irradiance at time 𝑘 + ℎ. 

Figure 10 shows a one week forecast of global solar irradiance in Auckland using 

a persistence approach and the same data used for the MLP and ARMA systems. The 

average RMSE for the benchmark persistence forecast was found to be 0.514 𝑀𝐽/𝑚2, 

which was the highest of all the prediction methods discussed. It can be seen in Figure 10 

that the persistence model performs well on days 3, 4, 5 and 6 whereas the forecasted 

values for days 1, 2, and 7 vary considerably from the actual data.  

 

Figure 10. Measured and predicted solar irradiation values using a benchmark persistence 

approach 
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2.3. Results 

2.3.1. Comparison of methods 

In the previous section a discussion of each method was presented and some broad 

findings were presented, where the same three years of measured data used for the 

ARMA, MLP and NARX approaches were utilized, with global solar irradiation as the 

objective function. For each forecast approach the root mean square errors were closely 

monitored to quantify the performance of the approach and assess their accuracy.  Now, 

Table 6 shows the RMSE and nRMSE values using Equation (4) and (13) respectively 

for all four approaches, where the same number of hourly data (26363 samples) points 

for the input variables and the target variable (Global Solar Irradiance) were used to 

forecast the day ahead solar irradiance in 𝑀𝐽/𝑚2 for a single year. 

𝑛𝑅𝑀𝑆𝐸 =

√
  
  
  
  
 

1

𝑁
∑

(𝐼𝑖 − 𝐼𝑝)
2

𝐼𝑖,𝑚𝑎𝑥
− 𝐼𝑖,𝑚𝑖𝑛

𝑁

𝑖=1

(13) 

where 𝐼𝑝 is the predicted solar irradiance in 𝑀𝐽/𝑚2, 𝐼𝑖 is the measured solar 

irradiance in 𝑀𝐽/𝑚2, and 𝑁 denotes the number of observations. 

Table 6. RMSE and nRMSE values for all forecasting approaches 

Approach RMSE (𝑀𝐽/𝑚2) nRMSE (𝑀𝐽/𝑚2) 

MLP 0.484 0.0968 

NARX 0.243 0.0495 

ARMA 0.315 0.0656 

Persistence 0.514 0.0901 

 



47 

 

From Table 6 it can be seen that the ARMA approach performs well in terms of the 

weekly RMSE value. Similarly, it was previously demonstrated that the MLP approach 

performed well for certain days but the RMSE value increases as the number of data sets 

increases due to the feed-forward architecture of the approach, this is borne out by its 

poor RMSE.  In contrast the NARX approach appears to perform well in terms of short 

term and long term forecasting, and has the lowest weekly RMSE of the forecasting 

approaches tested.   

To illustrate this point further, Figure 11 shows an example of the day ahead solar 

irradiation forecast and measured data curves for all four methods for 1 January 2014 in 

Auckland. From this it can be seen that the NARX forecast closely follows the actual 

measurements, whereas the benchmark persistence forecast shows a significant under-

prediction. 

 

Figure 11. Day ahead solar irradiation forecast and actual data for Auckland on 1 January 2014 
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2.3.2. Irradiation prediction for New Zealand cities 

Having determined the most suitable method for forecasting solar irradiation for 

Auckland, the NARX based Case 2 (as given in Table 2 and trained with data from each 

location) was used to predict global solar irradiation in ten cities across New Zealand. 

Figure 12 shows the forecast and measured results for a common single arbitrary day 

from a one-week prediction horizon. Though there is a degree of variation for some 

locations, as a result of choosing a common single day rather than the best day. More 

work is needed to investigate, why global solar radiation prediction and actual values 

differ towards the lower South Island of New Zealand. It can be seen that using real data 

to train the ANN gives predicted values of global irradiation similar to those measured 

for the majority of the locations. In this regard, it suggests that recurrent NARX with the 

LM training algorithm offers a suitable predictive tool for global irradiation in New 

Zealand. Moreover, it shows that training neural networks with real data can deliver 

satisfactory prediction of the output variable, in this case the solar irradiation.  
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Figure 12. Predicted irradiation for New Zealand cities 

2.4. Summary 

 The need for improved solar controllers necessitates the ability of such devices to 

have an understanding of the future magnitude of the solar resource. This work has 

examined possible ways in which this can be achieved, with particular reference to a 

NARX ANN forecasting method. In testing the methods input and target data were used 

unprocessed to study the real effects of input variables on outputs. Based on an analysis 

of the root mean squared error, regression and time series response, a NARX approach 

was proposed as a means to forecast global solar irradiation values at a later time. 
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Subsequently, the NARX architecture was used to successfully forecast global solar 

irradiation in ten major cities across New Zealand. These results have demonstrated the 

generalization capability of this approach and its ability to produce forecasts for global 

irradiation that can be translated to a number of diverse locations. On this basis it is 

conceivable that such a NARX ANN forecasting approach could be embedded into model 

predictive controllers to better manage the energy generated by solar energy systems. 
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Chapter 3. HOURLY ENERGY CONSUMPTION PREDICTION 

FOR A PREDICTIVE CONTROLLER 

3.1.  Introduction 

Previously it was noted that one element of a predictive controller could be a solar 

forecasting system. Similarly, prediction of energy consumption would allow the 

capability of such controllers to be further enhanced. One reason for this is that predicting 

electricity consumption 24 hours in advance would help optimize energy distribution 

between loads, particularly in buildings, and the local grid. Energy consumption 

prediction is essential for generators, wholesalers and retailers of electric energy, who 

buy and sell, switch loads, plan maintenance and unit commitment and much more. 

However, with increasing costs being passed to consumers, there is also a need for 

consumers to be able to predict their requirements with a view to better utilizing on-site 

generators such as photovoltaic panels and grid-tied storage systems, thus delivering 

intelligent buildings. 

In Flax, (1991) an intelligent building was defined as the one which maximizes the 

efficiency of the service and minimizing the use of grid energy. The author lists intelligent 

building components, with the energy management system (EMS) ranked most highly. 

Such a system controls and monitors energy consumption of the building. However, for 

effective operation of an EMS, an accurate prediction of energy consumption is needed. 

Such a system would ideally be able to plan and take actions to avoid power shortages, 

as well as shift loads to off peak time when electricity prices are lower.  
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In this regard, short-term load prediction has attracted significant attention from 

scientists and engineers. Various mathematical techniques have been widely used for load 

energy consumption prediction including regressive analysis, wavelet analysis, fuzzy 

system modelling, neural network modelling and evolutionary algorithms (Xia et al., 

2010). There are also a large variety of models presented in the literature, both simple and 

hybrid, created by combining two or more approaches (Maia & Goncalves, 2009; Niu et 

al., 2009). These models are attractive because some physical interpretation may be 

attached to their components, allowing engineers and system operators to understand their 

behaviour. However, they are basically linear devices, and the load series they try to 

explain are known to be distinctly nonlinear functions of the exogenous variables. 

In recent years, much research has been carried out on the application of ANN 

techniques to the load energy demand forecasting problem. As such, expert systems have 

been tried out (Ho et al., 1990; Rahman & Hazim, 1993), and compared with traditional 

methods (Moghram & Rahman, 1989). The advantage of using ANN as compared to the 

other models is the ability to extract the implicit non-linear relationships among the 

variables by means of ‘‘learning’’ with training data. Many interesting ANN applications 

have been reported in power system areas, due to their computational speed, their ability 

to handle complex non-linear functions, robustness and great efficiency, even in cases 

where full information for the studied problem is absent. Also it appears that the use of 

ANN for load forecasting has been well accepted in practice, and is used by many utilities 

(Khotanzad et al., 1998). On this basis, it appears that ANN may be able to play a part in 

forecasting loads in a domestic situation with this to be incorporated into an advanced 

controller for a domestic energy system. 
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3.2. Methodology 

Given the capabilities of ANN as a forecasting tool it was decided to try and predict 

the electricity consumption in a typical NZ residential house with four occupants (2 adults 

& 2 children), 24 hours into the future. Having shown the generalisability of ANN’s to 

radiation forecasting it is likely that a similar model could be used for forecasting 

electricity usage at a range of locations and with a varying number of household 

occupants. 

3.2.1 Persistence model 

As a benchmark study, the persistence model was developed using Equation (14) 

to predict the ℎ hour-ahead forecasting (ℎ = 1, 2, 3, … . ℎ𝑜𝑢𝑟𝑠).  

𝑆(𝑘 + ℎ) = 𝑆(𝑘) (14) 

where 𝑆(𝑘 + ℎ) is the forecasted electricity consumption at time 𝑘 + ℎ. 

The same three years measured data for eight weather variables used for the ANN 

models were utilized for the persistence model, with electricity consumption prediction 

as the objective function. RMSE, as defined in Equation (14), was calculated to validate 

the prediction method and compare the model performance. Figure 15 shows a 

comparison of the benchmark persistence model prediction with the measured data. 
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Figure 13. Measured and predicted load values using the benchmark persistence model with 

RMSE = 0.486 kWh 

3.2.2 Nonlinear autoregressive with exogenous input (NARX) 

Nonlinear autoregressive recurrent neural network with exogenous input (NARX) 

based predictive models were developed to forecast future values of electricity 

consumption, based on the previous values of electricity consumption and eight input 

variables (Temperature (Tair), Barometric Pressure (P), Relative Humidity (RH), Rain 

amount (Ra), Wind speed (Ws), Wind direction (Wd), Hour of the Day (HD) and Day of 

the Week (DW)). The predictive model can be expressed mathematically by predicting 

future values of the electricity consumption time series 𝑦(𝑘) from past values of that time 

series and past values of input variables time series 𝑥(𝑘) as expressed in Equation (1).  

Three years of hourly data for eight input variables along with three-years hourly 

electricity consumption data from a residential house in Auckland were used as inputs to 

the ANN. Input weather data were downloaded from the National Institute of Water and 

Atmospheres CliFlo database, (2014) to train the ANN with electricity consumption as 

the target variable.   
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The data was presented in an unprocessed format, to study the effect of real input 

variables on target to predict the output. Input and target data were used to train, validate 

and finally, test the network ability to predict 24 hours in advance electricity consumption 

for a residential house with four occupants. 

As there were 256 possible combinations of eight weather predictor variables, 

testing the network with all combinations was taking a long time. Therefore, Moody et 

al., (1995), two-step sensitivity analysis technique was utilized to determine the most 

significant training variables. Once the most significant variables were determined, the 

network was trained with every selected variable, until the training error was minimized 

and the influence of each variable was removed by replacing it with its mean value or 

zero. To simplify the process, the twelve most significant combinations of the eight 

weather predictor variables were tested in order to investigate their effect on the electricity 

consumption prediction accuracy, as shown in Table 7. 

Table 7. Models based on different combinations of input variables 

Model Input variables Model Input variables 

1 Tair, RH, P,Ws,Wd, Ra, HD, DW 7 Tair, RH,Ws,Wd, Ra, HD, DW 

2 Tair, RH, P,Ws,Wd, Ra, HD 8 Tair, P,Ws,Wd, Ra, HD, DW 

3 Tair, RH, P,Ws,Wd, Ra, DW 9 RH, P,Ws,Wd, Ra, HD, DW 

4 Tair, RH, P,Ws,Wd, HD, DW 10 Tair, RH, HD, DW 

5 Tair, RH, P,Ws, Ra, HD, DW 11 Tair, RH, P, Ra 

6 Tair, RH, P,Wd, Ra, HD, DW 12 Tair, RH, P, HD, DW 

 

In order to determine the performance of developed ANN models quantitatively, 

and verify whether there was any underlying trend in performance of ANN models, the 
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regression (R) (Pearsons correlation coefficient) and root mean squared error (RMSE) 

values were analysed. The root mean squared error (Equation 15) provides information 

on the short term performance and is a measure of the variation of predicated values 

around the measured data, where the lower the RMSE, the more accurate the estimation.  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝐼𝑝 − 𝐼𝑖)

2
𝑁

𝑖=1

(15) 

Where 𝐼𝑝,𝑖 is the predicted electricity consumption in kWh, 𝐼𝑖 is the measured 

electricity consumption in kWh, and 𝑁 denotes the number of observations. 

If the number of neurons or number of delays is increased, the network has a 

tendency to over-fit the data and also allows the network to solve more complicated 

problems, but on the other hand requires more computation. During experiments both the 

number of neurons in hidden layer and the number of delays in the tapped delay lines 

were varied until the network performed well in terms of the mean square error values. 

Therefore, the effect of changing the number of neurons in the hidden layer, increasing 

and decreasing the number of delays was also investigated. Using tapped delay lines in 

the network is essential as it stores previous values of 𝑥(𝑘) and 𝑦(𝑘) sequences. The 

number of hidden neurons, network delays and time steps for training, validation and test 

were varied to determine which network exhibited the best performance. The number of 

neurons was changed between 10 and 250 and delays between 2 and 5 were tested in 

order to come up with the most suitable ANN prediction model. Table 8 shows the RMSE 

and Regression values for various numbers of delays and number of neurons in the hidden 

layer. 
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Table 8. RMSE and Regression values for different number of neurons and delays 

Neurons Delays RMSE (kWh) R Processing Time 

(mm: ss) 

10 2 0.255 0.524 00:04 

20 2 0.259 0.509 00:06 

30 2 0.261 0.528 00:12 

40 2 0.263 0.476 00:13 

50 2 0.254 0.514 00:18 

60 2 0.264 0.472 00:23 

60 3 0.259 0.529 00:42 

60 4 0.260 0.489 01:05 

60 5 0.261 0.508 01:32 

70 5 0.252 0.517 01:55 

70 2 0.267 0.513 00:26 

90 3 0.270 0.479 01:04 

90 2 0.269 0.496 00:38 

100 2 0.260 0.515 00:50 

120 2 0.262 0.486 00:59 

150 2 0.279 0.484 01:49 

150 4 0.275 0.455 08:58 

200 2 0.272 0.469 03:31 

250 2 0.275 0.458 04:36 
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Processing time was also observed and it was noted that time increased 

exponentially with increasing numbers of neurons or delays. After several trials, it was 

decided that the most suitable network, considering accuracy and processing time, had 50 

hidden neurons and 2 delays in the tapped delay lines. Processing time was closely 

monitored because if the model were to be implemented on a hardware platform, 

processing power and memory would be limited compared to desktop resources. 

Network training can be stopped early by the validation vectors if the network 

performance on the validation vectors fails to improve or remains the same, as indicated 

by an increase in the mean square error of the validation samples. Test vectors are used 

as a further check that the network is generalizing well, but do not have any effect on 

training. The best validation performance for Model 4 is 0.0622 at epoch 4 with seven 

input variables as shown in Figure 13. It is shown that training, validation and testing 

errors decreased and merges with the dotted line on epoch 4 thus demonstrating the best 

validation performance. 
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Figure 14. Mean Square Error (MSE) performance of the network 

 

For the twelve models described in Table 7, the NARX network architecture with 

LM training algorithm was trained, validated and tested. Values of RMSE and regression 

were closely monitored to find the best model; Table 9 shows the RMSE and regression 

values for 50 neurons in the hidden layer with 2 delays in the tapped layers.  

Table 9. RMSE and Regression values for all 12 ANN models 

Model RMSE Regression (R) Model RMSE Regression (R) 

1 0.253 0.514 7 0.264 0.514 

2 0.282 0.504 8 0.265 0.487 

3 0.263 0.470 9 0.261 0.516 

4 0.252 0.527 10 0.259 0.514 

5 0.258 0.508 11 0.265 0.491 

6 0.261 0.519 12 0.259 0.518 
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Figure 14 illustrates this point further, by showing for a single day, that for the first 

six models there is close correlation between the measured and ANN predicted values for 

electricity consumption in Auckland, when compared with the benchmark persistence 

approach values. However, in Table 9, it can be seen that Model 4 has the lowest RMSE 

of 0.252 and highest R value of 0.527 among all 12 models. RMSE and regression values 

in Table 9 are average of one week prediction horizon and does not directly correspond 

to the plots in Figure 14. 

 

Figure 15. Measured and predicted electricity consumption values for the first 6 models 

 

3.3. Electricity consumption prediction for a residential house 

Having determined the most suitable configuration of ANN, Model 4 was used to 

predict electricity consumption of a house with four occupants (2 adults & 2 children) in 

Auckland, New Zealand, as shown in Figure 16. In Figure 16, it can be seen that 

predicting electricity consumption using the proposed NARX approach produces similar 

consumption pattern to those measured by the electricity meter. In this regard, it suggests 
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that the ANN with the LM training algorithm offers a suitable predictive tool for 

electricity consumption. Moreover, it shows that training neural networks with real data 

can deliver satisfactory prediction of the output variable. Predicting electricity in 

residential houses is a complex problem and other factors for example users behaviour 

should be incorporated in the model to improve prediction accuracy.  

 

Figure 16. Measured and predicted values for a residential house in Auckland with RMSE = 

0.252 kWh using the NARX approach 

3.4. Summary 

A predictive model based on a recurrent neural network, was developed in this 

chapter to forecast hourly electricity consumption using three years of historical 

electricity consumption and weather data. Twelve different combinations of eight weather 

variables were used to train, validate and test twelve ANN models. Real-time input and 

target data were used without normalizing to study the effects of input variables on 

outputs. Subsequently, one model, with the lowest RMSE value, highest regression value 

and lowest processing time was used to predict electricity consumption for a house with 

four occupants in Auckland, New Zealand. Predicted values were compared with 

measured data from the house’s electricity meter and showed similar consumption 
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patterns. The proposed NARX approach was compared with a benchmark persistence 

approach and found that the root mean square error with the NARX approach was 0.252 

kWh and 0.486 kWh with the persistence approach.  

Based on the RMSE and regression analysis, the proposed ANN model illustrated 

the ability to predict 24 hours ahead electricity consumption patterns for the house. Hence 

this model has the potential to be implemented in a predictive controller with a view to 

providing it with knowledge of upcoming energy demand. 
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Chapter 4. ADVANCED CONTROL DEVELOPMENT 

4.1. Overview 

In the preceding chapters the use of forecasting methods was examined with a view 

to providing a controller with knowledge of future energy demand and availability. That 

said, there is a need for these controllers to manage the interaction of photovoltaic and 

storage systems with wider electricity distribution networks. The integration of 

photovoltaic energy systems into the grid has attracted interest due to their many benefits, 

such as: high reliability, low maintenance, decreasing prices of PV panels and the 

regulatory incentives established in many countries. However, the disadvantage of these 

PV energy systems is that solar energy is subject to daily and seasonal variations (Belfkira 

et. al., 2011). To overcome the intermittent nature of PV based systems, battery storage 

can be used to store excess solar energy, and to supply energy when the solar energy is 

not sufficient to satisfy demand.  

Sometimes the daily energy demand might be so high that it cannot be satisfied by 

the PV energy and battery storage together. In this situation, the imbalance must be met 

by some other means, such as a diesel generator or utility grid (Shaahid & Elhadidy, 2008) 

and it is this fact that necessitates the development of advanced controllers to manage this 

situation. 

4.2. Predictive control for domestic energy systems 

As mentioned previously, a number of control strategies have been applied to 

energy management in buildings, most commonly rule or scheduled based systems. An 

attempt to advance this situation was made by Wahab et al., (2011) who used TRNSYS 
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and Matlab/Simulink for predictive control of a building integrated photovoltaic thermal 

(BIPVT) energy system. They suggested that further research was needed to design and 

develop advance predictive control strategies to improve the performance of the overall 

system.  

That said, one particular control strategy that has shown significant promise, but little 

application to grid connected photovoltaic systems, is model predictive control (MPC). 

MPC is a method for constrained optimal control, which originated in the late seventies 

and early eighties in the process industries (oil refineries, chemical plants, etc.) (Richalet, 

et al., 1976; Maciejowski, 2002; Richalet, et al., 1978; Kwon, 1983). MPC is a class of 

control methods with the model of the process explicitly expressed in order to obtain a 

control signal by minimizing an objective function subject to some constraints. In the case 

of domestic energy system control, one would aim at optimizing the energy delivered (or 

cost of the energy) subject to comfort and the power system constraints.  

The basic idea of MPC is to predict future behaviour using a system model, given 

measurements or estimates of the current state of the system and a hypothetical future 

input trajectory. During each sampling interval, a finite horizon optimal control problem 

is formulated and solved. The result is a trajectory of inputs and states into the future, 

respecting the dynamics and constraints of the domestic energy system while optimizing 

an objective function. In terms of domestic energy system control, this means that at the 

current control step, energy demand and PV energy production measurements are 

obtained for the next hour. Predictions of any other disturbances (e.g. internal gains), 

time-dependencies of the control costs (e.g. dynamic electricity prices), solar radiation, 

electricity demand or of the constraints (e.g. thermal comfort range) can be readily 

included in the optimization (Cigler, 2013).  
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The first step of the control plan is applied to the building, then the process moves 

one step forward and the procedure is repeated at the next time instant. This receding 

horizon approach is what introduces feedback into the system, since the new optimal 

control problem solved at the beginning of the next time interval will be a function of the 

new state at that point in time and hence of any disturbances that have acted on the 

domestic energy system. 

Some attempts have been made to test MPC for small scale distributed power 

generation systems, including the work of Qi, et al., (2011), which proposed a supervisory 

control, focused on the optimal management and operation of small-scale hybrid wind-

solar energy system. Two local controllers were used to drive the two subsystems to the 

power references and MPC capability to reduce the peak values of inrush or surge currents 

was discussed. In Sossan et al., (2013), a model predictive control strategy was utilized 

to maximize PV self-consumption in a household context exploiting the flexible demand 

of an electric water heater. The controller used a water heater model and forecast of the 

hot water consumption in order to predict the future temperature of the water, and 

managed its state (on and off) according to the forecasted PV energy production. 

Simulations showed the ability of MPC to move the consumption of the heater to a time 

when there was energy production from the PV system.  

Zhu et al., (2015), developed a switched MPC approach for energy dispatching of 

a PV-diesel-battery (PDB) hybrid system. Simulation results and comparison with the 

open-loop optimal control approach showed that the performance of the proposed 

switched MPC algorithm was satisfactory in dispatching energy usages for the PDB 

energy system. Diesel energy consumption for the proposed MPC was 63.9 kWh, while 

81.4 kWh for the open loop optimal control approach. Similarly, a photovoltaic-diesel-
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battery hybrid energy system was proposed in Tazvinga et al., (2013) to supply daily 

energy requirements in a rural Zimbabwean public clinic. In this case a diesel generator 

was used to cover the imbalance when PV energy and battery storage could not satisfy 

energy demand. In this work the diesel generator has not been included, because energy 

produced by diesel generators is typically costlier than grid energy.  

The reasons for MPC in domestic energy systems being rarely used until now are 

primarily due to the complicated derivation of a correct model for the building that can 

be used in the MPC controller and the fact that energy cost played a minor role in the 

past. Using the energy savings potential of buildings, by applying MPC, has become more 

realistic recently, due to several developments. Computational power of devices has 

significantly increased during the last decade and the possibility to shift computations to 

external servers or clouds; the use of simulation tools in building planning are becoming 

standard and can help to obtain models for the MPC; the accuracy of weather predictions 

is increasing and hence its usefulness for building climate control. Energy cost is rising, 

and finally, there is a need to formulate control strategies, which can handle time-varying 

electricity prices. According to Oldewurtel et al., (2012), MPC has the ability to improve 

energy efficiency of the building and handle time-varying electricity prices. 

Domestic energy systems are subject to intermittent disturbances, i.e. the weather, 

the energy consumption of building’s appliances and the number of occupants, who set 

demands for temperature, illuminance and air quality. Also, the building dynamics are 

typically slow which gives rise to a constrained control problem and the goal is to use 

weather as well as energy demand predictions in order to be able to make appropriate use 

of the thermal storage capacity of a building, electrical appliances and energy dispatch 

strategies. Model Predictive Control (MPC) is an ideal framework to tackle this problem 
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(Oldewurtel et al., 2010). Given that MPC has been widely used in closed-loop control 

for adaptively changing control variables according to external disturbances (Duran et al., 

2011; Barrero et al., 2011; Thomsen et al., 2011). It was decided to examine its 

application in this work because of its capability to explicitly handle constraints and to 

adjust the energy flows when disturbances occur. 

Figure 17 summarizes the basic principle of MPC for a domestic energy system 

where time-varying parameters (i.e. the electricity price, the comfort criteria, energy 

demand prediction, solar radiation prediction and occupancy) are inputs to the MPC. One 

can see that the modelling and design effort consist of specifying a dynamic model of the 

domestic energy system, as well as constraints of the control problem and a cost function 

that encapsulates the desired behaviour. At each sampling interval, these components are 

combined and converted into an optimization problem depending on the MPC framework 

chosen. 
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In this work, a photovoltaic-battery-grid system is proposed; where, PV energy and 

battery storage can be used to cover the energy demand of a residential house. In 

situations where both the PV array and the battery bank cannot satisfy energy demand; 

non-critical loads in the house would be deactivated. If the energy demand is still greater 

than the combined energy available from the PV and battery bank the deficit would be 

imported from the local grid.  

MPC Controller 

Optimization 

Objective function 

Constraints 

Mathematical model 

State estimator 

Time varying 
parameters 

Electricity price 

Comfort criteria 

Energy demand prediction 

Solar radiation prediction 

Weather 

Occupancy 

Measurement
s 

Current state 

Optimal inputs 

Figure 17. Basic principal of the MPC for buildings 
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4.3. Structure of the photovoltaic-battery-grid system 

In order to achieve the outcome described previously, a model predictive control 

setup was developed with a view to ensuring PV energy usage within the house is 

maximized, by storing excess PV energy in the hot water cylinder, rather than exporting 

available excess energy to the grid. Additionally, grid imports are to be minimized by 

reducing energy demand in situations where the PV energy and battery storage cannot 

satisfy demand. In doing this, solar radiation and energy demand predictions are utilized 

by the MPC to plan in advance for periods of low sunshine or periods of high energy 

demand.  

The overall structure of the proposed PBG system is shown in Figure 18, where future 

values of global solar radiation and electricity consumption predictions were calculated 

as discussed in Chapter 2 and 3 respectively. These predictions are made available to the 

MPC to activate or deactivate non-critical loads and so adjust current energy demand of 

the house according to the availability or unavailability of the PV energy. Model 

predictive control uses the energy consumption of the house and the PV array production 

as reference signals with the objective of the controller being to: 

 minimize the difference between the PV array production and the electricity 

consumption 

 to maximize the usage of PV energy within the house 

 extend battery life by reducing excessive charge-discharge cycles 
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Figure 18. Overall structure of the photovoltaic-battery-grid energy system 

 

At a holistic level the energy dispatching procedures are shown in Figure 19, 

where the energy from the PV array, battery bank and grid are used to satisfy the load. 

The arrows in Figure 19 show direction of energy flow in the system. The output energy 

of the PV array is used to satisfy energy demand of the house and charge the battery bank. 

At any given time, 80% of the PV energy (𝐸𝑃𝑉1) is used to satisfy the energy demand of 

the house and 20% of PV energy (𝐸𝑃𝑉𝑏) to charge the battery bank. When the battery 

bank is fully charged and excess PV energy is available, the temperature in the hot water 

cylinder is increased using 𝐸𝑃𝑉2. Further, if the PV array is still producing more energy 

than required at any given time, it is exported to the grid as a last priority (represented by 

𝐸𝑃𝑉3). If energy demand of the house is larger than the PV array production, the energy 
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requirements should be met by the battery bank using 𝐸𝑏 or the grid energy 𝐸𝑔 in the case 

where the battery bank is fully depleted. 

 

 

Figure 19. Configuration of the photovoltaic-battery-grid energy system 

 

Hence, several priorities are specified in the MPC design for the PV array energy. 

𝐸𝑃𝑉1 is the PV energy to satisfy energy demand of the house with first priority, 𝐸𝑃𝑉2 is 

the PV energy to increase hot water cylinder temperature to its maximum threshold with 

second priority and 𝐸𝑃𝑉3 is the PV energy flowing to the grid with third priority. 𝐸𝑃𝑉𝑏 is 

the PV energy to charge the battery bank, 𝐸𝑏 is battery bank energy to satisfy energy 

demand of the house when energy from the PV array is not sufficient and 𝐸𝑔 is the energy 

flowing from the grid whenever, energy from both the PV array and the battery bank is 

not sufficient to satisfy energy demand of the house.  
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4.4. Outline of the MPC approach and implementation 

Following on from this broad description of the system, Figure 20 shows the 

process flow for the MPC design. In this the model states 𝑥(𝑘) are initialized and updated 

to initial values. Concurrently one-step ahead prediction states for global solar radiation 

and electricity consumption are initialized and process variables are calculated at the 

current time step.  

The MPC gains are calculated and model states are updated within the specified 

constraint limits. The PV array production 𝐸𝑃𝑉(𝑘) at any instant is compared with the 

energy demand 𝐸𝑑(𝑘). The hour-ahead solar radiation prediction 𝑆𝑅𝑃(𝑘) and energy 

demand prediction 𝐸𝐷𝑃(𝑘) are checked to decide if non-critical loads of the house should 

be ON or OFF. If the PV production is less than demand, non-critical loads are turned 

OFF to reduce the total energy demand of the house. Further, if PV production is still less 

than the limited demand 𝐸𝑑(𝑘)𝐿𝑖𝑚, then the battery energy (𝐸𝑏) is used to satisfy the 

limited demand. Lastly, if PV production is still less than the limited demand of the house, 

the required energy is imported from the grid (𝐸𝑔). Otherwise, if PV production is more 

than the energy demand and no negative disturbance exists, PV energy charges the battery 

(𝐸𝑃𝑉𝑏). When the battery is fully charged and excess PV energy is still available; the hot 

water cylinder temperature is increased to its maximum level. At this stage if excess PV 

energy is available, it is exported to the grid.  
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Figure 20. Flow chart of the MPC approach 
 

More specifically, the PV array is generating 𝐸𝑃𝑉1, 𝐸𝑃𝑉2, 𝐸𝑃𝑉3 and 𝐸𝑃𝑉𝑏 as shown 

in Figure 19. These are used to satisfy the energy demand of the house, increase the hot 

water cylinder temperature to its maximum threshold, export excess PV energy to the grid 

and charge the battery bank respectively. 𝐸𝑏 is the energy which flow from the battery to 

the load and 𝐸𝑔 is the grid energy to satisfy energy requirement of the load. 
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The mathematical model of the proposed system is similar to that used by Zhu et 

al., (2015), for a photovoltaic-diesel-battery (PDB) hybrid energy system that was used 

to supply daily energy requirement for an off-grid medical clinic. However, in the 

proposed MIMO state-space model the use of a diesel generator is replaced with a model 

of the grid.  

4.4.1 MIMO state-space model of the proposed system 

Model predictive control systems are designed based on a mathematical model of 

the plant. In this work a MIMO state-space model has been used for the MPC design. By 

using a state-space model, the current information required for predicting ahead is 

represented by the state variable at the current time. In order to explain the design 

procedures of the MPC, MIMO state-space model transformation is presented first 

followed by objective function, MPC algorithm, optimization and constraints.  

The proposed photovoltaic-battery-grid model has five inputs (Equation (16)) and 

three outputs (Equations (17), (20) & (23)). The number of outputs are less than the 

number of inputs, therefore, each of the measured output can be controlled independently 

with zero steady-state errors. The plant model inputs are defined as 

𝑢(𝑘) ≜ [𝐸𝑃𝑉1(𝑘), 𝐸𝑃𝑉2(𝑘), 𝐸𝑃𝑉3(𝑘), 𝐸𝑃𝑉𝑏(𝑘), 𝐸𝑏(𝑘)]
𝑇 (16) 

and the outputs of the model are defined as  

𝑦1(𝑘) = 𝑤1 (𝐸𝑑(𝑘) − 𝐸𝑔(𝑘)) (17) 

where 𝐸𝑑(𝑘) is the energy demand of the house, 𝐸𝑔 is the grid energy to satisfy 

energy requirement of the load and 𝑤1 is a positive weight coefficient.  
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𝐸𝑑(𝑘) = 𝐸𝑃𝑉1(𝑘) + 𝐸𝑃𝑉2(𝑘) + 𝐸𝑏(𝑘) + 𝐸𝑔(𝑘) 

𝐸𝑑(𝑘) − 𝐸𝑔(𝑘) = 𝐸𝑃𝑉1(𝑘) + 𝐸𝑃𝑉2(𝑘) + 𝐸𝑏(𝑘) 

Therefore 𝑦1(𝑘) = 𝑤1(𝐸𝑃𝑉1(𝑘) + 𝐸𝑃𝑉2(𝑘) + 𝐸𝑏(𝑘)) 

And the first controller reference is given by 

𝑦𝑟𝑒𝑓,1(𝑘) = 𝑤1𝐸𝑑(𝑘) (18) 

which gives  

∑(𝑦𝑟𝑒𝑓,1(𝑘) − 𝑦1(𝑘))
2

=∑𝑤1
2 𝐸𝑔(𝑘)

2 (19) 

It can be seen that minimizing  ∑(𝑦𝑟𝑒𝑓,1(𝑘) − 𝑦1(𝑘))
2

is equivalent to minimizing 

∑𝑤1
2 𝐸𝑔(𝑘)

2, which is used to minimize the grid imports. Similarly, the second output of 

the model is given by 

𝑦2(𝑘) = 𝑤2(𝐸𝑃𝑉1(𝑘) + 𝐸𝑃𝑉2(𝑘) + 𝐸𝑃𝑉3(𝑘) + 𝐸𝑃𝑉𝑏(𝑘)) (20) 

where 𝑤2 is a positive weight coefficient. From Figure 19, it can be seen that the 

PV array energy is equal to 

𝐸𝑃𝑉(𝑘) = 𝐸𝑃𝑉1(𝑘) + 𝐸𝑃𝑉2(𝑘) + 𝐸𝑃𝑉3(𝑘) + 𝐸𝑃𝑉𝑏(𝑘) 

thus 

𝑦2(𝑘) = 𝑤2𝐸𝑃𝑉(𝑘) or 

𝑤2𝐸𝑃𝑉(𝑘) − 𝑦2(𝑘) = 0 (21) 
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which shows that PV array usage can be maximized by minimizing ∑(𝑤2𝐸𝑃𝑉(𝑘) −

𝑦2(𝑘))
2 

𝑦𝑟𝑒𝑓,2(𝑘) = 𝑤2𝐸𝑃𝑉(𝑘) (22) 

Similarly, output 3 is given by 

𝑦3(𝑘) = 𝑤3(𝐸𝑃𝑉𝑏(𝑘) + 𝐸𝑏(𝑘)) (23) 

and  

𝑦𝑟𝑒𝑓,3(𝑘) = 𝑤3(0) (24) 

Next, the augmented system states are given by 

𝑥(𝑘) = [𝑆𝑜𝑐(𝑘), 𝑦1(𝑘 − 1), 𝑦2(𝑘 − 1), 𝑦3(𝑘 − 1)]𝑇 (25) 

and the augmented system output is given by 

𝑦(𝑘) = [ 𝑦1(𝑘 − 1), 𝑦2(𝑘 − 1), 𝑦3(𝑘 − 1)]𝑇 (26) 

Such that a linear state-space model can be determined as  

{ 
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵∆𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝜔(𝑘)
(27) 

where 𝐴, 𝐵, 𝐶 𝑎𝑛𝑑 𝐷 are the linear state-space system matrices. 𝜔(𝑘) is the 

measured output disturbance which represents the ANN based solar radiation and 

electricity consumption predictions. As such it affects two of the controller outputs 𝑦1(𝑘) 

and 𝑦2(𝑘).  
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where   

𝐴 = [

1 0 0 0
0 0 0 0
0
0

0
0

0
0

0
0

] 

𝐵 = [

0 0 0 𝜂𝑐 −𝜂𝑑
𝑤1 𝑤1 𝑤1 0 𝑤1
𝑤3
0

𝑤3
0

𝑤3
0

𝑤3
𝑤2

0
𝑤2

] 

𝐶 = [
0 1 0 0
0 0 1 0
0 0 0 1

] 

𝐷 = [
1 0
0 1
0 0

] 

The linear state-space system in Equation (27) is the plant controlled using the MPC 

approach.  

4.4.2 Objective function for the MPC 

MPC is developed for the closed-loop control, in which the objective of the controller is 

to manage the scheduling of 𝐸𝑃𝑉1, 𝐸𝑃𝑉2, 𝐸𝑃𝑉3, 𝐸𝑃𝑉𝑏(𝑘), 𝐸𝑏 and 𝐸𝑔 for the PBG system. 

In doing so, it must efficiently optimize charging and discharging coefficients (𝜂𝑐 and 

𝜂𝑑), ensure electricity imports from the grid are minimized and the PV energy usage in 

the house is maximized. Excessive usage of the battery is avoided to extend battery life 

and usage of non-critical loads in the house is deferred to periods when excess PV energy 

is available. For the MPC to reduce grid energy imports it plans in advance for periods of 

low sunshine, or periods of high energy demand, by utilizing solar radiation and 

electricity consumption predictions. As such, the overall objective function is given by 
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𝐽(𝑘) = ∑ {

[𝑤1𝐸𝑑(𝑘) − 𝑤1𝐸𝑃𝑉1(𝑘) − 𝑤1𝐸𝑃𝑉2(𝑘) − 𝑤1𝐸𝑃𝑉3(𝑘) − 𝑤1𝐸𝑏(𝑘)]
2 +

[𝐸𝑃𝑉(𝑘) − 𝑤2𝐸𝑃𝑉1(𝑘) − 𝑤2𝐸𝑃𝑉2(𝑘) − 𝑤2𝐸𝑃𝑉3(𝑘) − 𝑤2𝐸𝑃𝑉𝑏(𝑘)]
2 +

[𝑤3𝐸𝑃𝑉𝑏(𝑘) + 𝑤3𝐸𝑏(𝑘)]
2

}

𝑘+𝑁𝑝

𝑘

(28) 

where 𝑁𝑝 represent the number of hours in the prediction horizon for the MPC design.   

4.4.3 MPC algorithm and optimization 

In the proposed MPC approach, an optimal control problem over the prediction 

horizon is repeatedly solved (𝑘 = 0, . . . . , 𝑁 − 𝑁𝑝). With the linear state-space Equation 

(27), the objective function (28) and the constraints (Table 10, Table 11 & Table 12), a 

MIMO MPC is developed for the PBG system in Figure 19. The optimization variable is 

the energy flow sequence at each sampling period. At the 𝑘𝑡ℎ sample, an optimal solution 

[𝑈(𝑘), 𝑈(𝑘 + 1),… . 𝑈(𝑘 + 𝑁𝑝 − 1]𝑇 can be obtained after solving the optimal problem. 

Only the first part of the solution, i.e. 𝑈(𝑘), is used in the current period. At each instant, 

𝑘 is set to 𝑘 + 1 and system states, inputs and outputs are updated. Also, the estimated 

parameters 𝜂̂𝑐 and 𝜂̂𝑑 are updated using the proposed updating law (Equation (38)). The 

objective function 𝐽 is expressed as 

min  𝐽(𝑘) = min 
1

2
𝑈(𝑘)𝑇𝐻𝑈(𝑘) + 𝑈(𝑘)𝑇𝐹 (29)

𝑠. 𝑡  constraints in Table 10, Table 11 and Table 12
 

where 𝐻 and 𝐹 are MPC gains calculated based on the objective function (Equation 

(28)). MPC gains are calculated according to classical MPC design (Wang, 2009). The 

output vector can be expressed with respect to input vector as 

𝑌(𝑘) = 𝐹𝑥(𝑘) + 𝛷𝑈(𝑘) 

where 𝐹 and 𝛷 are MPC gains matrices and calculated as follows 
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𝐹(𝑘) = [(𝐶𝐴)𝑇 , (𝐶𝐴2)𝑇 , . . . , (𝐶𝐴𝑁𝑝(𝑘))𝑇]𝑇 

and  

𝛷(𝑘) = [

𝛷11 0 ⋯ 0
𝛷21 𝛷22 … 0
⋮

𝛷𝑁𝑝,1

⋮
𝛷𝑁𝑝,2

⋱ ⋮
… 𝛷𝑁𝑝,𝑁𝑐

] 

Where 𝛷𝑖,𝑗 = 𝐶𝐴𝑖−𝑗𝐵̂ and  𝐵̂ is in the form of 𝐵 with 𝜂𝑐 and 𝜂𝑑 replaced by 𝜂̂𝑐 and 

𝜂̂𝑑.  The objective function is given by 

min 𝐽(𝑘)  = min(𝑌(𝑘) − 𝑅(𝑘))
𝑇
(𝑌(𝑘) − 𝑅(𝑘)) 

min 𝐽(𝑘) = min[2(𝐹𝑥(𝑘) − 𝑅(𝑘)𝑇𝛷𝑈(𝑘) + 𝑈(𝑘)𝑇𝛷𝑇𝛷𝑈(𝑘)] 

min 𝐽(𝑘) = min(𝑈(𝑘)𝑇𝐻𝑈(𝑘) + 2𝑊𝑈(𝑘)) 

where 𝐻(𝑘) = 𝛷(𝑘)𝑇𝛷(𝑘), and 𝑊(𝑘) = (𝐹𝑥(𝑘) − 𝑅(𝑘))𝑇𝛷. 

4.4.4 Constraints for the MIMO linear system  

The constraint variables are parametrized using the same parameter vector ∆𝑈 as 

the one used in the predictive control design. Therefore, the constraints are expressed in 

a set of linear equations based on the parameter vector ∆𝑈. Constraints are categorized as 

shown in Table 10. 
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Table 10. Constraints for the MIMO system 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑀 𝛾 

𝐸𝑃𝑉1(𝑘) > 0 

𝐸𝑃𝑉2(𝑘) > 0 

𝐸𝑃𝑉3(𝑘) > 0 

𝐸𝑃𝑉𝑏(𝑘) > 0 

𝐸𝑏(𝑘) > 0 

𝐸𝑃𝑉1(𝑘) + 𝐸𝑃𝑉2(𝑘) + 𝐸𝑏(𝑘) < 𝐸𝑑(𝑘) 

𝐸𝑃𝑉1(𝑘) + 𝐸𝑃𝑉2(𝑘) + 𝐸𝑃𝑉3(𝑘) + 𝐸𝑃𝑉𝑏(𝑘)
< 𝐸𝑃𝑉(𝑘) 

𝐸𝑃𝑉1(𝑘) < 𝐸𝑃𝑉1
𝑚𝑎𝑥 

𝐸𝑃𝑉2(𝑘) < 𝐸𝑃𝑉2
𝑚𝑎𝑥 

𝐸𝑃𝑉3(𝑘) < 𝐸𝑃𝑉3
𝑚𝑎𝑥 

𝐸𝑃𝑉𝑏(𝑘) < 𝐸𝑃𝑉𝑏
𝑚𝑎𝑥 

𝐸𝑏(𝑘) < 𝐸𝑏
𝑚𝑎𝑥 

𝐸𝑃𝑉1(𝑘) + 𝐸𝑃𝑉2(𝑘) + 𝐸𝑏(𝑘)
> 𝐸𝑔

𝑚𝑎𝑥 − 𝐸𝑑(𝑘) 

 

-1   0   0   0   0 

0   -1   0   0   0 

0   0   -1   0   0 

0   0   0   -1   0 

0   0   0   0   -1 

1   1   0   0   1 

 

1   1   1   1   0 

1   0   0   0   0 

0   1   0   0   0 

0   0   1   0   0 

0   0   0   1   0 

0   0   0   0   1 

-1   -1   0   0   -1 

0 

0 

0 

0 

0 

𝐸𝑑(𝑘) 

 

𝐸𝑃𝑉(𝑘) 

𝐸𝑃𝑉1
𝑚𝑎𝑥 

𝐸𝑃𝑉2
𝑚𝑎𝑥 

𝐸𝑃𝑉3
𝑚𝑎𝑥 

𝐸𝑃𝑉𝑏
𝑚𝑎𝑥 

𝐸𝑏
𝑚𝑎𝑥 

𝐸𝑔
𝑚𝑎𝑥 − 𝐸𝑑(𝑘) 

 

 

In Table 10, 𝐸𝑃𝑉1
𝑚𝑎𝑥, 𝐸𝑃𝑉2

𝑚𝑎𝑥, 𝐸𝑃𝑉3
𝑚𝑎𝑥 and 𝐸𝑃𝑉𝑏

𝑚𝑎𝑥are the maximum amount of energy that 

can be transmitted to the load, hot water cylinder, utility grid and battery bank 

respectively from the PV array during any 1 hour period. 𝐸𝑏
𝑚𝑎𝑥 is the maximum amount 

of energy that can flow from the battery to the load in situation where PV array energy is 

not sufficient to satisfy demand. The utility grid energy (𝐸𝑔) is used to cover the 

imbalance when the PV array energy and the battery bank energy are not sufficient to 

cover the energy demand of the house. In this work, positive values of 𝐸𝑔 represent grid 
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imports and negative values of 𝐸𝑔 represent grid exports. 𝐸𝑔(𝑘) is subject to the following 

constraint 

−𝐸𝑔
𝑚𝑎𝑥 ≤ 𝐸𝑔(𝑘) ≤ 𝐸𝑔

𝑚𝑎𝑥 

where 𝐸𝑔
𝑚𝑎𝑥 is the maximum amount of energy that can be imported from the grid 

and −𝐸𝑔
𝑚𝑎𝑥 is the maximum amount of energy that can be exported to the grid during 1 

hour. Energy demand of the house at any given hour should satisfy the following 

condition 

𝐸𝑃𝑉1(𝑘) + 𝐸𝑃𝑉2(𝑘) + 𝐸𝑏(𝑘) + 𝐸𝑔(𝑘) ≥ 𝐸𝑑(𝑘) 

where 𝐸𝑑(𝑘) represent the energy demand of the house at any given hour.  

Constraints for the state-of-charge of the battery should be in the form similar to 

the predictive control vector 𝑈(𝑘). Predicted values of 𝑥𝑚 for the SOC can be calculated 

by 

𝑆𝑜𝑐(𝑘 + 𝑖|𝑘) = 𝑆𝑜𝑐(𝑘) + 𝑏𝑚 ∑ 𝑢(𝑗)

𝑗≤𝑘+𝑖−1

𝑗=𝑘

(30) 

where 𝑆𝑜𝑐(𝑘 + 𝑖|𝑘) is the predicted value of 𝑆𝑜𝑐 from sampling time 𝑘. It follows 

from Equation (30) that 

𝑋𝑚(𝑘) ≜ [𝑆𝑜𝑐(𝑘)[1, 1, … , 1]
𝑇 + 𝐵𝑚𝑈(𝑘)]

𝑇 

where 

𝑋𝑚(𝑘) ≜ [𝑆𝑜𝑐(𝑘), 𝑆𝑜𝑐(𝑘 + 1|𝑘), … , 𝑆𝑜𝑐(𝑘 + 𝑁𝑐 − 1|𝑘)]𝑇 
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𝐵𝑚(𝑏𝑚) = [

𝑏𝑚 0
𝑏𝑚 𝑏𝑚

… 0
⋱ ⋮

⋮ ⋮
𝑏𝑚 𝑏𝑚

⋱ 0
… 𝑏𝑚

] 

As 𝑏𝑚 is uncertain, its estimated value 𝑏̂𝑚 = [0, 0, 0, 𝜂̂𝑐 , 𝜂̂𝑑] is used in calculating 

𝐵𝑚.  

Further the state of charge of the battery is restricted between its minimum and maximum 

values, such that 

𝐵𝑐
𝑚𝑖𝑛 ≤ 𝑆𝑜𝑐(𝑘) ≤ 𝐵𝑐

𝑚𝑎𝑥 

Which can be written in a compact form as follow and as shown in Table 11 

𝑀2𝑈(𝑘) ≤ 𝛾2 (31) 

Table 11. Battery constraints 

𝑀2 𝛾2 

−𝐵𝑚 

𝐵𝑚 

(𝑆𝑜𝑐(𝑘) − 𝐵𝑐
𝑚𝑖𝑛)[1, 1, … , 1]𝑇 

(𝐵𝑐
𝑚𝑎𝑥 − 𝑆𝑜𝑐(𝑘))[1, 1, … , 1]

𝑇 

 

𝐵𝑚(𝑏̂𝑚) =

[
 
 
 
𝑏̂𝑚 0

𝑏̂𝑚 𝑏̂𝑚

… 0
⋱ ⋮

⋮ ⋮
𝑏̂𝑚 𝑏̂𝑚

⋱ 0
… 𝑏̂𝑚]

 
 
 

 

Which shows that battery constraints are expressed with respect to the predictive control 

vector 𝑈(𝑘) and 𝑆𝑜𝑐(𝑘) can be obtained in real-time.  
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To avoid charging and discharging the battery simultaneously, 𝐸𝑃𝑉𝑏 = 0 can be set for 

charging and 𝐸𝑏 = 0 can be set for discharging. The procedure mentioned applies for 

charging, whereas for discharging row 4 in Table 10 is replaced by 

Table 12. Discharging constraint 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑀 𝛾 

𝐸𝑃𝑉𝑏(𝑘) < 0 0   0   0   1   0 0 

 

4.4.5 Battery parameters estimation 

In a domestic setting, PV installations are located close to the loads so require the 

storage of energy at appropriate times to minimize the imbalance between generation and 

consumption. The charging and discharging model of the battery for the MPC 

computation is given by Equation (32) 

𝑆𝑜𝑐(𝑘 + 1) = 𝑆𝑜𝑐(𝑘) + 𝜂𝑐𝐸𝑃𝑉𝑏(𝑘) − 𝜂𝑑𝐸𝑏(𝑘) (32) 

where 𝑆𝑜𝑐(𝑘) is the state-of-charge (SOC) at sampling time 𝑘 and 𝑆𝑜𝑐(𝑘 + 1) is the 

SOC at the next hour. 𝐸𝑃𝑉𝑏 and 𝐸𝑏 are charging and discharging energies respectively. 

𝜂𝑐 and 𝜂𝑑 are charging and discharging efficiencies respectively. 𝜂𝑐 and 𝜂𝑑 are uncertain 

constant parameters, which are estimated online in the MPC design. Discrete model of 

the SOC in Equation (32) is based on the continuous model proposed in Vahidi et al. 

(2006), where, variation of the SOC is proportional to the charging and discharging 

currents. According to Equation (32), the current SOC (𝑆𝑜𝑐(𝑘)) can be expressed by the 

initial SOC (𝑆𝑜𝑐(0)) and can be expressed as 
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𝑆𝑜𝑐(𝑘) = 𝑆𝑜𝑐(0) + 𝜂𝑐 ∑ 𝐸𝑃𝑉𝑏(𝑘)

𝑘+𝑁𝑐−1

𝑘=0

− 𝜂𝑑 ∑ 𝐸𝑏(𝑘)

𝑘+𝑁𝑐−1

𝑘=0

(33) 

The SOC of the battery is subject to several constraints, such as the maximum 

allowable charge limit and the minimum allowable discharge limit, referred to as the 

depth of discharge (DOD). The lower and upper bounds of SOC are subject to the 

following constraint 

𝐵𝑐
𝑚𝑖𝑛 ≤ 𝑆𝑜𝑐(𝑘) ≤ 𝐵𝑐

𝑚𝑎𝑥 

where 𝐵𝑐
𝑚𝑖𝑛 and 𝐵𝑐

𝑚𝑎𝑥 are the minimum and maximum allowable SOC of the 

battery bank respectively.  

The battery bank is charged during the day time when PV energy is available and 

discharged during night time. Simultaneous charging and discharging are avoided using 

Equation (34) in the MPC design. 

𝐸𝑃𝑉𝑏(𝑘)𝐸𝑏(𝑘) = 0 (34) 

When PV array production exceeds total energy demand of the house, the battery 

bank is set in charging mode and when total energy demand of the house exceeds PV 

production, the battery bank is set in discharging mode.  

SOC of the battery bank can be expressed by 

𝑆𝑜𝑐(𝑘) = 𝑆𝑜𝑐(𝑘 − 1) + 𝑏𝑚𝑢(𝑘 − 1) (35) 

where 𝑏𝑚 ≜ [0, 0, 0, 𝜂𝑐, −𝜂𝑑], therefore 

𝑆𝑜𝑐(𝑘) = 𝑆𝑜𝑐(𝑘 − 1) + 𝑏𝑝𝑢𝑏(𝑘 − 1) (36) 
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where 𝑏𝑝 ≜ [𝜂𝑐 , −𝜂𝑑] and 𝑢𝑏 ≜ [𝐸𝑃𝑉𝑏(𝑘), 𝐸𝑏(𝑘)]
𝑇 

The estimated battery dynamic system is given by 

𝑆̂𝑜𝑐(𝑘) = 𝑆𝑜𝑐(𝑘 − 1) + 𝑏̂𝑝(𝑘 − 1)𝑢𝑏(𝑘 − 1) (37) 

Where 𝑆̂𝑜𝑐(𝑘) is the estimated SOC and 𝑏̂𝑝 ≜ [𝜂𝑐, −𝜂𝑑] is estimated battery charge 

and discharge parameters.  

Online identification is designed using the cost function 𝐽. 

𝐽 =
1

2
(𝑆̃𝑜𝑐(𝑘))

2 

𝐽 =
1

2
(𝑆𝑜𝑐(𝑘) − 𝑆𝑜𝑐(𝑘 − 1) − 𝑏̂𝑝(𝑘 − 1)𝑢𝑏(𝑘 − 1))2 

where  𝑆̃𝑜𝑐(𝑘) ≜ 𝑆𝑜𝑐(𝑘) − 𝑆̂𝑜𝑐(𝑘). The gradient with respect to 𝑏̂𝑝 can be calculated 

by 

∇𝐽 = −(∆𝑆𝑜𝑐(𝑘) − 𝑏̂𝑝(𝑘 − 1)𝑢𝑏(𝑘 − 1))𝑢𝑏(𝑘 − 1) 

where  ∆𝑆𝑜𝑐(𝑘) ≜ 𝑆𝑜𝑐(𝑘) − 𝑆𝑜𝑐(𝑘 − 1). Next the updating law for 𝑏̂𝑝 can be 

calculated by  

𝑏̂𝑝(𝑘) = 𝑏̂𝑝(𝑘 − 1) − ∇𝐽 

Similarly the updating law for 𝑏̂𝑚 can be calculated by 

𝑏̂𝑚(𝑘) = [0, 0, 0, 𝜂̂𝑐(𝑘), −𝜂̂𝑑(𝑘)] = [0, 0, 0, 𝑏̂𝑝(𝑘)] (38) 



86 

 

The proposed updating law in Equation (38) facilitate the convergence of estimated 

parameters to their actual values if the control 𝑢𝑏 is persistently exciting (PE) as discussed 

in Ioannou, (2012).   

PE of 𝑢𝑏(𝑘) can be explained as 

𝑢𝑏(𝑘)𝑢𝑏(𝑘)
𝑇 = [

𝐸𝑃𝑉𝑏(𝑘)
2 𝐸𝑃𝑉𝑏(𝑘)𝐸𝑏(𝑘)

𝐸𝑃𝑉𝑏(𝑘)𝐸𝑏(𝑘) 𝐸𝑏(𝑘)
2 ] 

where  𝐸𝑃𝑉𝑏(𝑘)𝐸𝑏(𝑘) = 0 as in Equation (34), which shows that simultaneous 

charging and discharging are not allowed.  

4.5. Summary 

In this chapter the MPC strategy was developed for the energy dispatching of a PBG 

energy system using solar radiation and electricity consumption predictions as a measured 

disturbance. A detailed structure of the PBG system was presented along with the step-

by-step process flow, as well as the process model, objective function and optimization 

techniques. Various switched states of the battery were described by switched constraints, 

so that the PBG system could be expressed by a unified linear MIMO state-space model, 

and the difficulty of constructing a complicated switched predictive state-space model 

was avoided.  
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Chapter 5. RESULTS AND DISCUSSION 

5.1. Simulation results of the proposed MPC 

In order to examine the behaviour of the proposed MPC a simulation of a 

photovoltaic-battery-grid system was undertaken using a week’s measurements of the PV 

array production (𝐸𝑃𝑉(𝑘)) and the energy demand (𝐸𝑑(𝑘)) taken from a real house 

(Appendix B).  Values of the system parameters and control parameters are listed in Table 

13 and Table 14, respectively. Initial values of 𝐸𝑃𝑉1(𝑘), 𝐸𝑃𝑉2(𝑘), 𝐸𝑃𝑉3(𝑘), 𝐸𝑃𝑉𝑏(𝑘), 

𝐸𝑏(𝑘) and 𝐸𝑔(𝑘) are set to zeros. Initial values of 𝑆𝑜𝑐 are set to 𝑥𝑚(1) = 0.5𝐵𝑐
𝑚𝑎𝑥. 𝐸𝑃𝑉2

𝑚𝑎𝑥 

is the maximum energy that could be used to increase hot water temperature within any 

given hour. MATLAB® code was used for simulation and implementation of the proposed 

MPC framework. 

Table 13. Values of the system parameters 

Notations Values Notations Values 

𝐸𝑃𝑉1
𝑚𝑎𝑥 7 kWh 𝐸𝑃𝑉𝑏

𝑚𝑎𝑥 7 kWh 

𝐸𝑃𝑉2
𝑚𝑎𝑥 1.2 kWh 𝐸𝑏

𝑚𝑎𝑥 7 kWh 

𝐸𝑃𝑉3
𝑚𝑎𝑥 7 kWh 𝐸𝑔(𝑘) +/- 7 kW 

𝐵𝑐
𝑚𝑎𝑥 60 kWh 𝐵𝑐

𝑚𝑖𝑛 15 kWh 

𝜂𝑐 0.8 𝜂𝑑 1.0 

 

It should be noted that, although MPC is applied, the energy dispatching of the PBG 

system is fundamentally an optimization problem rather than a control design problem, 
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therefore, stability of the closed-loop system is not assured by the proposed MPC 

approach. However, states of the closed-loop system are guaranteed bounded, since the 

optimization in the MPC is processed with constraints on  𝐸𝑃𝑉1, 𝐸𝑃𝑉2, 𝐸𝑃𝑉3, 𝐸𝑃𝑉𝑏, 𝐸𝑏, 𝐸𝑔 

and 𝑆𝑜𝑐.  

Table 14. Values of the control parameters 

Notations Values Notations Values 

𝑤1 1.0 𝑤3 0.2 

𝑤2 0.8   

 

 The total energy demand in Figure 21 represents the sum of the critical loads (hot 

water cylinder, lighting, fridge/freezer, power sockets and cooking range) and non-critical 

loads (dish washer, washing machine & dryer).  

 

Figure 21. PV array production and total energy demand of the house 
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On this basis the behaviour of the MPC was analysed in the presence of two 

measured disturbances (solar radiation & electricity demand forecasts). In doing this the 

global solar radiation and electricity demand forecasts were used to test if the controller 

was able to respond if one or both the forecasts were unfavourable. If the energy demand 

forecast was more than current demand and PV array production could not satisfy the 

forecasted demand, then the controller would aim to reduce total demand of the house by 

switching off non-critical loads to avoid grid imports and utilize PV energy or battery 

energy. Figure 22 shows the MPC behaviour for this particular week, as such, whenever 

the PV array production is less than the demand, usage of the non-critical loads is deferred 

until periods when excess PV energy is available. By doing so, grid imports would be 

reduced and PV energy utilized within the house. As such, it can be seen that non-critical 

loads in the house would be used mainly during the day, when energy is available from 

the PV array.  

 

Figure 22. Switching behaviour of the MPC (On=1, Off=0) 
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Figure 23 shows switching behaviour of the MPC, where, if the predicted PV 

energy is significantly less than the current PV production, or predicted load demand is 

more than the current load demand, non-critical loads remain off (even during the day) to 

reduce total load of the house. To avoid switching due to small weather variations, a 

weighting factor was added to reduce switching sensitivity. For example, if predicted PV 

energy at any hour is 1.5 times more than the current PV energy or predicted energy 

demand is 1.5 times more than the current load demand, non-critical loads would be 

turned off.  

 

Figure 23. MPC performance in the presence of disturbance (PV energy prediction) (On=1, 

Off=0) 

 

Further, MPC performance is analysed by using energy demand prediction as a 

disturbance. It can be seen in Figure 24 that, whenever the energy demand prediction is 

more than the current demand and PV production is less than the current demand, non-

critical loads would be turned off. This shows the capability of the MPC to adjust the 

energy demand of the house according to the predicted PV production and predicted 

energy demand for the house.  
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Figure 24. MPC performance in the presence of disturbance (Energy demand prediction) (On=1, 

Off=0) 

 

 To further analyse the performance of the proposed MPC, Figure 25 shows energy 

demand and PV production. When PV energy is sufficient to satisfy demand and excess 

energy is available, the battery would be charged.  Negative values in Figure 25 show that 

energy would be exported to the grid when energy demand is satisfied and the hot water 

temperature has been increased to the specified level. Positive values represent energy 

imports from the grid when PV and battery energy combined are not sufficient to satisfy 

demand.  
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Figure 25. 24-hours energy demand, PV production and energy flow to and from the grid 

 

Following on from this, Figure 26 shows how energy would be moved to and from 

the battery bank. It can be seen that excess energy is used to charge the battery bank 

during the day-time and energy is supplied by the battery to loads during periods when 

the PV array alone cannot satisfy load energy demand (where for the proposed MPC with 

online estimation, initial values of the estimated parameters are given by 𝜂̂𝑐(0) = 1.0 and 

𝜂̂𝑑(0) = 1.0). It can be seen that during the last three days’ energy demand is high and 

PV production is lower than the previous days, therefore, more PV energy is assigned to 

satisfy demand and less PV energy is available to charge the battery bank.  
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Figure 26. Energy flow from the PV array to battery and battery to satisfy load 

 

Now in discussing the behaviour of the battery, the state of charge (SOC) of the 

battery bank is shown in Figure 27 for the same week shown in the previous figures. For 

this week, it is constrained between 15% and 85% to avoid overcharging or fully depleting 

the battery bank. The battery capacity for the SOC curve in Figure 27 is 60kWh, however, 

if the battery capacity were decreased, the SOC would reach its maximum threshold faster 

and vice versa.    

 

Figure 27. State-of-charge of the battery bank (Capacity=30 kWh) 
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Figure 28 shows the priority setup for the PV energy influences the consumption of 

energy. The first priority for the PV energy was to satisfy the total demand of the house 

(80%) and charge the battery bank (20%), the second priority was to increase the hot 

water cylinder temperature to its maximum threshold and the third priority was to export 

excess PV energy to the grid. It can be seen that whenever energy demand is satisfied, 

PV energy flows to the hot water cylinder and the remaining energy is exported to the 

grid. PV energy to the hot water cylinder  (𝐸𝑃𝑉2) was constrained such that only 1.2 kWh 

was used to increase the hot water temperature within any given hour, this assumes that 

the household uses approximately 300 litres of hot water each day and that the water 

needs to be heated by 50 degrees. From this positive values of the “Grid Import/Export” 

in Figure 28 represent grid imports and negative values are representing grid exports.  

 

Figure 28. PV energy flow priorities according to demand 
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than exporting available excess PV energy to the grid has the potential to minimize grid 

imports. The objective function in the MPC design ensure to minimize grid imports, 

encourage PV energy usage, charge the battery bank and store thermal energy in the hot 

water cylinder.  

Finally, the performance of the proposed MPC was tested by analysing how closely 

the outputs of the controller follow the reference signals (demand and PV energy 

production). From Equation (19), it can be deduced that minimizing the difference 

between the controller output and the reference signal (demand) is equivalent to 

minimizing grid imports. Similarly, from Equation (21), it can be seen that minimizing 

the difference between the controller output and the reference signal (PV energy 

production) is equivalent to maximizing PV energy usage within the house.  In Figure 29 

it can be seen that the MPC is attempting to minimize the difference between the 

controller output signal and the reference signal (demand). This is equivalent to 

minimizing electricity imports from the grid. It can be seen in Figure 29 that the controller 

output follows the reference (demand) more closely on Saturday than other days of the 

week for this particular period.  Also Figure 30 shows the MPC response in its attempt to 

reduce the difference between the controller output and the reference signal (PV energy 

production). This is equivalent to maximizing the usage of the PV array energy within 

the house and consequently helping reduce grid imports. It is obvious from Figure 29 and 

Figure 30 that the proposed control strategy is trying to minimize the difference between 

the reference signal and the output and is understandable that the controller cannot 

minimize the difference completely but attempting to minimize the gap.  
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Figure 29. Controller output signal 1 vs reference signal 1 

 

 

Figure 30. Controller output signal 2 vs reference signal 2 
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5.2. Optimal control method  

To analyse the potential of the MPC approach for facilitating self-consumption, an 

open-loop optimal control approach was developed and results are compared with the 

proposed approach.  

The open-loop optimal control approach was used to dispatch the hourly energy for 

𝐸𝑃𝑉1(𝑘), 𝐸𝑃𝑉2(𝑘), 𝐸𝑃𝑉3(𝑘), 𝐸𝑃𝑉𝑏(𝑘), 𝐸𝑏(𝑘) and 𝐸𝑔(𝑘) over a one week period using the 

same constraints and objective function used for the closed-loop MPC approach without 

receding horizon control, online estimation of the battery parameters and priority settings 

for the energy dispatch. As the objective function is quadratic, the energy flow control 

problem is expressed as a quadratic programing problem as given in Equation (39). 

min
𝑥

1

2
𝑥𝑇𝐻𝑥 + 𝑓𝑇𝑥, 𝑠. 𝑡. {

𝐴. 𝑥 ≤ 𝑏,
𝐴𝑒𝑞 . 𝑥 = 𝑏𝑒𝑞
𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏.

(39) 

where 𝐻, 𝐴 𝑎𝑛𝑑 𝐴𝑒𝑞 are matrices and 𝑓, 𝑏, 𝑏𝑒𝑞 , 𝑙𝑏, 𝑢𝑏 and 𝑥 are vectors.  𝐻 𝑎𝑛𝑑 𝑓 

are symmetric matrices of doubles representing the quadratic in the expression 
1

2
𝑥𝑇𝐻𝑥 +

𝑓𝑇𝑥. 𝐴𝑒𝑞 and 𝑏𝑒𝑞 are the coefficients related with the equality constraints, 𝐴 and 𝑏 are 

the coefficients related with inequality constraints, and 𝑙𝑏 and 𝑢𝑏 are the lower and upper 

bounds of the variables respectively. Energy dispatch variables (𝐸𝑃𝑉1(𝑘), 𝐸𝑃𝑉2(𝑘), 

𝐸𝑃𝑉3(𝑘), 𝐸𝑃𝑉𝑏(𝑘), 𝐸𝑏(𝑘), 𝐸𝑔(𝑘)), energy demand (𝐸𝑑(𝑘)), PV energy (𝐸𝑃𝑉(𝑘)) and 

state-of-charge (𝑆𝑜𝑐(𝑘)) are transformed into the 𝑓(𝑥) format to facilitate the experiment 

for the open-loop optimal control as shown in Table 15. 
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Table 15. Energy variables replacement for the open-loop optimal control approach 

𝐸𝑃𝑉1(𝑘) 𝑥1(𝑘) 𝐸𝑔(𝑘) 𝑥6(𝑘) 

𝐸𝑃𝑉2(𝑘) 𝑥2(𝑘) 𝐸𝑑(𝑘) 𝑥7(𝑘) 

𝐸𝑃𝑉3(𝑘) 𝑥3(𝑘) 𝐸𝑃𝑉(𝑘) 𝑥8(𝑘) 

𝐸𝑃𝑉𝑏(𝑘) 𝑥4(𝑘) 𝑆𝑜𝑐(𝑘) 𝑥9(𝑘) 

𝐸𝑏(𝑘) 𝑥5(𝑘)   

 

The objective function 𝐽 is transformed into the 𝑓(𝑥) form as given in Equation 

(40). 

𝑓(𝑥) = {

[𝑤1𝑥7(𝑘) − 𝑤1𝑥1(𝑘) − 𝑤1𝑥2(𝑘) − 𝑤1𝑥3(𝑘) − 𝑤1𝑥5(𝑘)]
2 +

[𝑤2𝑥8(𝑘) − 𝑤2𝑥1(𝑘) − 𝑤2𝑥2(𝑘) − 𝑤2𝑥3(𝑘) − 𝑤2𝑥4(𝑘)]
2 +

[𝑤3𝑥4(𝑘) + 𝑤3𝑥5(𝑘)]
2

} (40) 

𝑓 = [
−𝑤1
−𝑤2
0
 
−𝑤1
−𝑤2
0
 
−𝑤1
−𝑤2
0
 
0

−𝑤2
𝑤3

 

−𝑤1
0
𝑤3

 
0
0
0
 
𝑤1
0
0
 
0
𝑤2
0
 
0
0
0
] 

Constraints are given as 

𝑥1(𝑘) + 𝑥2(𝑘) + 𝑥3(𝑘) + 𝑥4(𝑘) ≤ 𝑥8(𝑘) 

𝑥1(𝑘) + 𝑥2(𝑘) + 𝑥5(𝑘) + 𝑥6(𝑘) = 𝑥7(𝑘) 

0 ≤ 𝑥1(𝑘) ≤ 7 𝑘𝑊ℎ 

0 ≤ 𝑥2(𝑘) ≤ 1.2 𝑘𝑊ℎ 

0 ≤ 𝑥3(𝑘) ≤ 7 𝑘𝑊ℎ 

0 ≤ 𝑥4(𝑘) ≤ 7 𝑘𝑊ℎ 
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0 ≤ 𝑥5(𝑘) ≤ 7 𝑘𝑊ℎ 

and 

0.15 ≤ 𝑥9(𝑘) ≤ 0.85 

The parameters of the PBG system for the open-loop optimal control approach are 

given in Table 16. 

 

Table 16. Photovoltaic-battery-grid system Parameters 

Parameters of the PBG system Values 

Nominal battery capacity 

Battery charge efficiency 

Battery discharge efficiency 

Battery’s depth of discharge 

Initial state of charge 

PV array capacity 

60 kWh 

80% 

100% 

15% 

15 kWh 

7 kW 

 

5.2.1. Results of the optimal control 

The open-loop optimal control approach was used to dispatch energy for the PBG system 

over a one-week period while attempting to minimize grid imports and maximize usage 

of the PV array. Figure 31 shows hourly energy dispatch for the closed-loop MPC and 

open-loop optimal control approach. It can be seen that MPC imports less energy from 

the grid during periods when PV production is less than the demand. MPC also exports 

more energy during the day due to the load management strategies and also by utilizing 

solar radiation and electricity demand forecasts. The MPC approach shows the potential 
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to reduce electricity bills by importing less energy from the grid and exporting more 

energy during the day by planning in advance with the help of global solar radiation and 

electricity consumption forecasts. 

 

Figure 31. 24-hours analysis of grid imports/exports for the MPC and open-loop optimal control 

 

Figure 32 elaborate this point further by showing one-week analysis of energy 

exported or imported to show cost saving potential for both the approaches. Overall 

analysis of both the approaches show that closed-loop MPC export more energy to the 

grid when energy demand is satisfied and excess energy is available; also import less 

energy from the grid than the open-loop optimal control approach.  
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Figure 32. One-week analysis of grid imports/exports for MPC and open-loop optimal control 

 

Table 17 show grid exports and imports for the closed-loop MPC, open-loop 

optimal control and a house with the PV installation without controller and battery 

storage. Same PV production, energy demand data, constraints and objective function 

were used for both the MPC and optimal control approaches. 

 

Table 17. One-week comparison of the MPC and optimal control approaches 

MPC Grid 

Exports 

(kWh) 

MPC Grid 

Imports 

(kWh) 

Optimal 

Control Grid 

Exports (kWh) 

Optimal 

Control Grid 

Imports (kWh) 

No Control 

Grid Exports 

(kWh) 

No Control 

Grid Imports 

(kWh) 

-89.28 165.53 -73.80 275.49 -73 198 

 

Results in table 17 shows that 165.53 kWh energy was imported within a week 

period by the MPC from the grid when PV and battery storage cannot satisfy electricity 

demand of the house while, optimal control approach imported 275.49 kWh and the house 

without controller and battery storage, imported 198 kWh. In addition, MPC approach 
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managed to export more energy to the grid for the same hours within a week due to the 

utilization of the global solar radiation and electricity demand forecasts. MPC has the 

potential to reduce electricity imports from the grid due to intelligent battery management 

as well as utilization of the thermal storage capacity of the hot water cylinder. 

 



103 

 

Chapter 6. CONCLUSION AND FUTURE WORK 

6.1. Conclusion 

In this work artificial neural network based global solar radiation and electricity 

consumption forecasts were utilized for the discrete-time model predictive control 

system. This approach allowed the controller to plan in advance for periods of low 

sunshine or high energy demand for a residential house. Four forecasting approaches 

including non-linear auto-regressive recurrent neural network with exogenous input 

(NARX), Multilayer Perceptron (MLP) method, a statistical approach using auto 

regressive moving average (ARMA) and a reference persistence approach were 

experimented to find a forecasting tool which is free, simple and adaptable to any 

location.  

Hourly time series data were used to train and test the forecasting methods for New 

Zealand’s largest city, Auckland. Predicted values of hourly global solar radiation were 

compared with the measured values, and it was found that the root mean squared error 

was 0.243 𝑀𝐽/𝑚2 for the NARX method as compared to 0.484 𝑀𝐽/𝑚2, 0.315 𝑀𝐽/𝑚2 

and 0.514 𝑀𝐽/𝑚2 for the MLP, ARMA and the benchmark persistence approaches 

respectively. Subsequently the NARX approach was used to forecast global solar 

radiation for other major cities across New Zealand. The results demonstrated the ability 

of the NARX approach to forecast radiation values at a later time and across a number of 

different locations.  

Similar experiments were conducted to forecast 24 hours ahead electricity 

consumption for a residential house with four occupants. Regression analysis were 

performed to find effects of temperature, pressure, relative humidity, rain amount, wind 
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speed, wind direction, hour of the day and day of the week on electricity consumption. 

Various combinations of the eight variables were tested in order to investigate their effect 

on the electricity consumption prediction accuracy. It was found that NARX approach 

predicts 24-hour ahead electricity consumption with root mean square error of 0.252 kWh 

as compared to 0.486 kWh with persistence approach.  

Along with the two measured disturbances, PV array energy and electricity 

consumption data for the same residential house have been used as reference signals for 

the closed-loop MPC design. Optimal dispatching problem was modelled into a control 

problem and solved by using MIMO state-space model. Charge and discharge modes of 

the battery were described by switched constraints rather than switched state-space model 

to simplify the predictive model. 

On this basis an adaptive MPC strategy was developed for the energy dispatching 

of the photovoltaic-battery-grid system, to ensure that the battery bank charge and 

discharge processes do not occur simultaneously. Electrical appliances of the house were 

divided into critical loads (hot water cylinder, lighting, power sockets & cooking range) 

and non-critical loads (dish washer, washing machine & dryer). The MPC has shown the 

capability to shift non-critical loads operation to period when excess PV energy was 

available. Battery parameters were estimated online using an adaptive updating law. 

These MPC techniques were applied in the management and control of the proposed 

energy supply system with the aim of minimizing grid imports, minimizing use of the 

battery and maximizing the use of the PV array energy.  

Simulation results and comparison with the open-loop optimal control approach 

suggested that the proposed MPC approach imported 109.96 kWh less energy from the 

grid within a one-week period as compared to the optimal control approach. Also MPC 
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approach managed to export 15.48 kWh more energy to the grid within a one-week period 

as compared to the optimal control approach using the same PV production and energy 

demand data with the same objective function and constraints. In this respect it shows 

that an MPC based controller for the PBG systems offers significant cost saving potential 

in consideration of the outcomes from this study. Future work for this area could include: 

1. NARX network for global solar radiation and electricity consumption forecasts 

could be incorporated into the MIMO state-space model to make the framework 

more robust and faster. 

2. More factors can be included in the objective function to improve the MPC design, 

for example, electricity cost signal, peak and off-peak electricity tariffs. 

3. For off-grid applications battery storage is of great significance. Various types 

and sizes of the battery storage could be tested to analyse the efficiency of the 

system.  

4. The proposed MPC design can be implemented on a hardware platform and can 

be tested in a house with a PV array installation, battery storage and grid 

connection to analyse the cost saving potential in real-time. 

5. Further investigation is needed to develop a model that automatically relates 

energy (kWh) consumption to the temperature in the hot water cylinder. Energy 

flow to the cylinder can be stopped when a specified temperature is reached and 

excess PV energy should be exported to the grid. Hot water tank parameters could 

be included in the MIMO state space model.      

6. Electricity consumption forecasts require more research to improve their 

accuracy. 
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Appendix A: MODEL PREDICTIVE CONTROL WITH 

CONSTRAINTS 

In this section, basic ideas and terms about discrete-time model predictive control 

with constraints are discussed. In section A.4, multi-input-multi-output (MIMO) state-

space model with an embedded integrator is discussed. Section A.3 examines the design 

of predictive control within one optimization window, which is expanded to demonstrate 

the idea of receding horizon control as well as, state feedback gains matrices and the 

closed loop configuration of the predictive control system. The constrained control 

problem in the context of quadratic programming problem is formulated and discussed.  

A.1. MIMO State-space models 

In the earlier formulation of model predictive control, finite impulse response (FIR) 

and step response models were favoured because, these models allow intrinsic dead time 

compensation due to the use of process model to predict future behaviour. Cutler and 

Ramaker, (1979) and Garcia and Morshedi, (1986) are significant works towards using 

FIR/step response model based design algorithms for dynamic matrix control (DMC) and 

quadratic DMC formulation respectively.  

The FIR type of models are attractive to process engineers because the model 

structure gives a transparent description of process time delay, response time and gain. 

However, FIR model’s performance deteriorates for stable plants and often require large 

model orders. FIR model structure typically requires 30 to 60 impulse response 

coefficients depending on the process dynamics and choice of sampling intervals. On the 

other hand, transfer function models give a more parsimonious description of process 

dynamics and are applicable to both stable and unstable plants. Predictive control 
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algorithm of Peterka, (1984) and the generalized predictive control (GPC) algorithm of 

Clarke et al. (1987) are significant works on transfer-function model based predictive 

control. Later experiments showed that state-space model-based formulation of GPC can 

handle multivariable plants more effectively than transfer-function model-based 

predictive control (Ordys and Clarke, 1993).  

Recent years have seen the growing popularity of predictive control design using 

state-space models due to the simplicity of the design framework and its direct link with 

the linear quadratic regulators (Rawlings, 2000) and (Maciejowski, 2002). 

Model predictive control systems are designed based on a mathematical model of 

the plant. By using a state-space model, the current information required for predicting 

ahead is represented by the state variable at the current time. 

A MIMO state-space plant model is represented by Equation (a1) and (a2) which 

has m inputs, q outputs and n1 states with noise and disturbances.  

𝑥𝑚(𝑘 + 1) = 𝐴𝑚𝑥𝑚(𝑘) + 𝐵𝑚𝑢(𝑘) + 𝐵𝑑𝜔(𝑘) (𝑎1) 

𝑦(𝑘) = 𝐶𝑚𝑥𝑚(𝑘) (𝑎2) 

where ω(k) is the input disturbance, assumed to be a sequence of integrated white noise. 

This means that the input disturbance ω(k) is related to a zero-mean, white noise sequence 

ϵ(k) by the following difference Equation (a3).  

𝜔(𝑘) − 𝜔(𝑘 − 1) = 𝜖(𝑘) (𝑎3) 

Note that from Equation (a1), the following difference equation is also true. 

𝑥𝑚(𝑘) = 𝐴𝑚𝑥𝑚(𝑘 − 1) + 𝐵𝑚𝑢(𝑘 − 1) + 𝐵𝑑𝜔(𝑘 − 1) (𝑎4) 
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By defining ∆𝑥𝑚(𝑘) = 𝑥𝑚(𝑘) − 𝑥𝑚(𝑘 − 1) and ∆𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑘 − 1), then 

subtracting Equation (a3) from Equation (a1) leads to 

∆𝑥𝑚(𝑘 + 1) = 𝐴𝑚∆𝑥𝑚(𝑘) + 𝐵𝑚∆𝑢(𝑘) + 𝐵𝑑𝜖(𝑘) (𝑎5) 

In order to relate the output y(k) to the state variable ∆𝑥𝑚(𝑘), we deduce that 

∆𝑦(𝑘 + 1) = 𝐶𝑚∆𝑥𝑚(𝑘 + 1) = 𝐶𝑚𝐴𝑚∆𝑥𝑚(𝑘) + 𝐶𝑚𝐵𝑚∆𝑢(𝑘) + 𝐶𝑚𝐵𝑑𝜖(𝑘) (𝑎6) 

where ∆𝑦(𝑘 + 1) = 𝑦(𝑘 + 1) − 𝑦(𝑘) 

choosing a new state variable vector 𝑥(𝑘) = [∆𝑥𝑚(𝑘)
𝑇 𝑦(𝑘)𝑇]𝑇, we have the following 

state-space matrices  

[
∆𝑥𝑚(𝑘 + 1)

𝑦(𝑘 + 1)
] = [

𝐴𝑚 𝑂𝑇𝑚
𝐶𝑚𝐴𝑚 𝐼𝑞×𝑞

] [
∆𝑥𝑚(𝑘)

𝑦(𝑘)
] + [

𝐵𝑚
𝐶𝑚𝐵𝑚

] ∆𝑢(𝑘) + [
𝐵𝑑
𝐶𝑚𝐵𝑑

] 𝜖(𝑘) 

𝑦(𝑘) = [𝑂𝑚 𝐼𝑞×𝑞] [
∆𝑥𝑚(𝑘)

𝑦(𝑘)
] (𝑎7) 

where 𝐼𝑞×𝑞 is the identity matrix with dimensions 𝑞 × 𝑞, which is the number of outputs, 

and 𝑂𝑚 is a 𝑞 × 𝑛1 zero matrix. 𝐴𝑚, 𝐵𝑚 and 𝐶𝑚 have dimension 𝑛1 × 𝑛1, 𝑛1 ×𝑚 and 𝑞 ×

𝑛1 respectively in Equation (a7). For notation simplicity, we denote Equation (a7) by 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵∆𝑢(𝑘) + 𝐵𝜖𝜖(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘) (𝑎8) 

where A, B and C are matrices corresponding to the forms given in Equation (a7).  
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A.2 Prediction of state and output variables 

Next step in the formulation of model predictive control is to calculate the predicted 

plant output with the future control signal as the adjustable variables. 𝑘𝑖 is the current 

time and 𝑁𝑝 is the length of the optimization window. At sampling instant 𝑘𝑖 , 𝑘𝑖 > 0, the 

state variable vector 𝑥(𝑘𝑖) is available through measurements, the state 𝑥(𝑘𝑖) provides 

the current plant information. The future control trajectory is denoted by 

∆𝑢(𝑘𝑖), ∆𝑢(𝑘𝑖 + 1), . . . . . , ∆𝑢(𝑘𝑖 + 𝑁𝑐 − 1)  (a9) 

where 𝑁𝑐 is the control horizon dictating the number of parameters used to capture 

the future control trajectory. With given information 𝑥(𝑘𝑖), the future state variables are 

predicted for  𝑁𝑝 number of samples, where 𝑁𝑝 is called the prediction horizon which is 

also the length of the optimization window. The future state variables are denoted by 

Equation (a10) below 

𝑥(𝑘𝑖 + 1 | 𝑘𝑖), 𝑥(𝑘𝑖 + 2 | 𝑘𝑖), …… , 𝑥(𝑘𝑖 +𝑚 |𝑘𝑖), …… , 𝑥(𝑘𝑖 + 𝑁𝑝 | 𝑘𝑖) (a10) 

where  𝑥(𝑘𝑖 +𝑚 |𝑘𝑖) is the predicted state variable at 𝑘𝑖 +𝑚 with given current 

plant information 𝑥(𝑘𝑖). The control horizon 𝑁𝑐 is chosen to be less than (or equal to) the 

prediction horizon 𝑁𝑝.  

The input ∆𝑈 and output 𝑌 are defined in Equation (a11) and (a12) respectively. 

The dimensions of output variables vector y, input variables vector u and state variables 

vector 𝑥𝑚 are 𝑝 × 1,𝑚 × 1 𝑎𝑛𝑑 𝑛1 × 1 respectively. 

∆𝑈 = [∆𝑢(𝑘𝑖)
𝑇∆𝑢(𝑘𝑖 + 1)𝑇∆𝑢(𝑘𝑖 + 2)𝑇… . . ∆𝑢(𝑘𝑖 + 𝑁𝑐 − 1)𝑇]𝑇 (a11) 
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𝑌 = [𝑦(𝑘𝑖 + 1 |𝑘𝑖)
𝑇 𝑦(𝑘𝑖 + 2 |𝑘𝑖)

𝑇 𝑦(𝑘𝑖 + 3 |𝑘𝑖)
𝑇……𝑦(𝑘𝑖 + 𝑁𝑝 |𝑘𝑖)

𝑇]𝑇 (a12) 

∆𝑈 = 𝑁𝑐𝑚 × 1, 𝑌 = 𝑁𝑝𝑝 × 1 

Now from the state-space model (A, B, C), the predicted state variables are 

computed sequentially using the set of future control parameters as: 

𝑥(𝑘𝑖 + 1 |𝑘𝑖) = 𝐴𝑥(𝑘𝑖) + 𝐵∆𝑢(𝑘𝑖) + 𝐵𝑑𝜖(𝑘𝑖)  

𝑥(𝑘𝑖 + 2 |𝑘𝑖) = 𝐴𝑥(𝑘𝑖 + 1 |𝑘𝑖) + 𝐵∆𝑢(𝑘𝑖 + 1) + 𝐵𝑑𝜖(𝑘𝑖 + 1 |𝑘𝑖)  

 = 𝐴2𝑥(𝑘𝑖) + 𝐴𝐵∆𝑢(𝑘𝑖) + 𝐵∆𝑢(𝑘𝑖 + 1) + 𝐴𝐵𝜖𝜖(𝑘𝑖)
+ 𝐵𝑑𝜖(𝑘𝑖 + 1 |𝑘𝑖) 

 

𝑥(𝑘𝑖 + 3 |𝑘𝑖) = 𝐴𝑥(𝑘𝑖 + 2 |𝑘𝑖) + 𝐵∆𝑢(𝑘𝑖 + 2) + 𝐵𝑑𝜖(𝑘𝑖 + 2 |𝑘𝑖)  

 = 𝐴[𝐴2𝑥(𝑘𝑖) + 𝐴𝐵∆𝑢(𝑘𝑖) + 𝐵∆𝑢(𝑘𝑖 + 1) + 𝐴𝐵𝜖𝜖(𝑘𝑖)
+ 𝐵𝑑𝜖(𝑘𝑖 + 1 |𝑘𝑖)] + 𝐵∆𝑢(𝑘𝑖 + 2)
+ 𝐵𝜖𝜖(𝑘𝑖 + 2 |𝑘𝑖) 

 

 = 𝐴3𝑥(𝑘𝑖) + 𝐴2𝐵∆𝑢(𝑘𝑖) + 𝐴𝐵∆𝑢(𝑘𝑖 + 1)
+ 𝐵∆𝑢(𝑘𝑖 + 2) + 𝐴2𝐵𝜖𝜖(𝑘𝑖)
+ 𝐴𝐵𝜖𝜖(𝑘𝑖 + 1 |𝑘𝑖) + 𝐵𝑑𝜖(𝑘𝑖 + 2 |𝑘𝑖) 

 

 .  

 .  

 .  

𝑥(𝑘𝑖 + 𝑁𝑝 |𝑘𝑖) = 𝐴𝑁𝑝𝑥(𝑘𝑖) + 𝐴𝑁𝑝−1𝐵∆𝑢(𝑘𝑖) + 𝐴
𝑁𝑝−2𝐵∆𝑢(𝑘𝑖 + 1)

+ 𝐴𝑁𝑝−𝑁𝑐𝐵∆𝑢(𝑘𝑖 + 𝑁𝑐 − 1)
+ 𝐴𝑁𝑝−1𝐵𝑑𝜖(𝑘𝑖)
+ 𝐴𝑁𝑝−2𝐵𝑑𝜖(𝑘𝑖 + 1 |𝑘𝑖)+. . . +𝐵𝑑𝜖(𝑘𝑖
+ 𝑁𝑝 − 1 |𝑘𝑖) 

(a13) 

With the assumption that 𝜖(𝑘) is a zero-mean white noise sequence, the predicted 

value of 𝜖(𝑘𝑖 + 𝑖 |𝑘𝑖) at future samples 𝑖 assumed to be zero. The prediction of state 
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variable and output variable is calculated as the expected values of the respective 

variables, hence, the noise effect to the predicted values being zero. 

For 𝑁𝑝 = 4 𝑎𝑛𝑑 𝑁𝑐 = 2 

𝑥(𝑘𝑖 + 4 |𝑘𝑖) = 𝐴4𝑥(𝑘𝑖) + 𝐴3𝐵∆𝑢(𝑘𝑖) + 𝐴2𝐵∆𝑢(𝑘𝑖 + 1)
+ 𝐴3𝐵𝜖𝜖(𝑘𝑖) + 𝐴2𝐵𝜖𝜖(𝑘𝑖 + 1 |𝑘𝑖)
+ 𝐵𝜖𝜖(𝑘𝑖 + 2 |𝑘𝑖) 

 

For 𝑁𝑝 = 4 𝑎𝑛𝑑 𝑁𝑐 = 4 

𝑥(𝑘𝑖 + 4 |𝑘𝑖) = 𝐴4𝑥(𝑘𝑖) + 𝐴3𝐵∆𝑢(𝑘𝑖) + 𝐴2𝐵∆𝑢(𝑘𝑖 + 1)
+ 𝐴𝐵∆𝑢(𝑘𝑖 + 2) + 𝐵∆𝑢(𝑘𝑖 + 3) 

 

Now the predicted output variables are computed from predicted state variables as: 

𝑦(𝑘𝑖 + 1 |𝑘𝑖) = 𝐶𝐴𝑥(𝑘𝑖) + 𝐶𝐵∆𝑢(𝑘𝑖)  

𝑦(𝑘𝑖 + 1 |𝑘𝑖) = 𝐶𝑥(𝑘𝑖 + 1 |𝑘𝑖) 

= 𝐶𝐴2𝑥(𝑦(𝑘𝑖) + 𝐶𝐴𝐵∆𝑢(𝑘𝑖) + 𝐶𝐵∆𝑢(𝑘𝑖 + 1) 

 

𝑦(𝑘𝑖 + 3)|𝑘𝑖) = 𝐶𝑥(𝑘𝑖 + 2 |𝑘𝑖) 

= 𝐶𝐴3𝑥(𝑘𝑖) + 𝐶𝐴2𝐵∆𝑢(𝑘𝑖) + 𝐶𝐴𝐵∆𝑢(𝑘𝑖 + 1)
+ 𝐶𝐵∆𝑢(𝑘𝑖 + 2) 

 

 .  

 .  

 .  

𝑦(𝑘𝑖 + 𝑁𝑝 |𝑘𝑖) = 𝐶𝑥(𝑘𝑖 + 𝑁𝑝 − 1 |𝑘𝑖) 

= 𝐶𝐴𝑁𝑝𝑥(𝑘𝑖) + 𝐶𝐴
𝑁𝑝−1𝐵∆𝑢(𝑘𝑖)

+ 𝐶𝐴𝑁𝑝−2𝐵∆𝑢(𝑘𝑖 + 1) +⋯
+ 𝐶𝐴𝑁𝑝−𝑁𝑐𝐵∆𝑢(𝑘𝑖 +𝑁𝑐 − 1) 

(a14) 
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For 𝑁𝑝 = 4 𝑎𝑛𝑑 𝑁𝑐 = 2 

𝑦(𝑘𝑖 + 4 |𝑘𝑖) = 𝐶𝐴4𝑥(𝑘𝑖) + 𝐶𝐴3𝐵∆𝑢(𝑘𝑖) + 𝐶𝐴2𝐵∆𝑢(𝑘𝑖 + 1)  

For 𝑁𝑝 = 4 𝑎𝑛𝑑 𝑁𝑐 = 4 

𝑦(𝑘𝑖 + 4 |𝑘𝑖) 𝑦(𝑘𝑖 + 4 |𝑘𝑖) = 𝐶𝐴4𝑥(𝑘𝑖) + 𝐶𝐴
3𝐵∆𝑢(𝑘𝑖)

+ 𝐶𝐴2𝐵∆𝑢(𝑘𝑖 + 1) + 𝐶𝐴𝐵∆𝑢(𝑘𝑖 + 2)
+ 𝐶𝐵∆𝑢(𝑘𝑖 + 3) 

 

Equation (a13) and (a14) can be collected together in a compact matrix form as 

𝑌 = 𝐹𝑥(𝑘𝑖) + 𝛷∆𝑈 (𝑎15) 

Where 

𝐹 =

[
 
 
 
 
𝐶𝐴
𝐶𝐴2

𝐶𝐴3

⋮
𝐶𝐴𝑁𝑝]

 
 
 
 

;  Φ =

[
 
 
 
 

𝐶𝐵
𝐶𝐴𝐵
𝐶𝐴2𝐵
⋮

𝐶𝐴𝑁𝑝−1𝐵

   

0
𝐶𝐵
𝐶𝐴𝐵
⋮

𝐶𝐴𝑁𝑝−2𝐵

    

0
0
𝐶𝐵
⋮

𝐶𝐴𝑁𝑝−3𝐵

  

⋯
⋯
⋯
⋯
⋯

  

0
0
0
⋮

𝐶𝐴𝑁𝑝−𝑁𝑐𝐵]
 
 
 
 

 

where dimensions of 𝑌 is 𝑁𝑝𝑝 × 1, 𝑥 is 𝑛 × 1, 𝐹 is 𝑁𝑝𝑝 × 𝑛,Φ is 𝑁𝑛𝑝 × 𝑁𝑐𝑚 and 

∆𝑈 is 𝑁𝑐𝑚 × 1. The control calculations are based on minimizing the predicted 

deviations between the predicted output and the reference trajectory. The predicted error 

vector is defined as 

𝐸̂(𝑘𝑖 + 1) = 𝑌𝑟(𝑘𝑖 + 1) − 𝑌(𝑘𝑖 + 1) (𝑎16) 

This is 𝑁𝑝𝑝 × 1 vector. The objective of the control calculations is to determine the 

control moves ∆𝑈(𝑘𝑖) for the next 𝑁𝑐 time intervals. The 𝑁𝑐𝑚-dimentional vector 

∆𝑈(𝑘𝑖) is calculated such that an objective function is minimized. Also the predicted 
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error over the prediction horizon 𝑁𝑝 and the size of the control move over the control 

horizon 𝑁𝑐 is minimized.  

A.3 Optimization 

The objective of the predictive control system for a given reference signal 𝑟(𝑘𝑖) at 

sample time 𝑘𝑖, within a prediction horizon 𝑁𝑝 to bring the predicted output as close as 

possible to the reference signal. To find the optimum control parameter vector ∆𝑈, the 

objective is translated into a design such that the error function between the reference 

signal and the predicted output is minimized as shown in Equation (a16). The cost 

function 𝐽 which reflects the control objective is defined as 

𝐽 = (𝑅𝑠 − 𝑌)𝑇(𝑅𝑠 − 𝑌) + ∆𝑈𝑇𝑅̅∆𝑈 (𝑎17) 

where the first term is linked to the objective of minimizing the errors between the 

predicted output and the reference signal while the second term reflects the consideration 

given to the size of  ∆𝑈 when the objective function 𝐽 is made to be as small as possible. 

𝑅̅ is the diagonal matrix in the form that 𝑅̅ = 𝑟𝑤𝐼𝑁𝑐×𝑁𝑐  (𝑟𝑤 ≥ 0) where 𝑟𝑤 is used as a 

tuning parameter for the desired closed-loop performance. For the case when 𝑟𝑤 = 0, the 

cost function in Equation (a17) is interpreted as the situation where we would not want 

to pay any attention to how large the ∆𝑈 might be and our goal would be solely to make 

the error (𝑅𝑠 − 𝑌)𝑇(𝑅𝑠 − 𝑌) as small as possible. For the case when 𝑟𝑤 > 0, the cost 

function in Equation (a17) is interpreted as the situation where we would carefully 

consider how large the ∆𝑈 might be and cautiously reduce the error (𝑅𝑠 − 𝑌)𝑇(𝑅𝑠 − 𝑌).  

The optimal ∆𝑈 which will minimize 𝐽, by using Equation (a15), 𝐽 can be expressed 

as  
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𝐽 = (𝑅𝑠 − 𝐹𝑥(𝑘𝑖))
𝑇
(𝑅𝑠 − 𝐹𝑥(𝑘𝑖)) − 2∆𝑈𝑇Φ𝑇(𝑅𝑠 − 𝐹𝑥(𝑘𝑖)) + Δ𝑈𝑇(Φ𝑇Φ+ 𝑅̅)∆𝑈(𝑎18) 

First derivative of the cost function 𝐽 is given by 

𝜕𝐽

𝜕∆𝑈
= −2Φ𝑇(𝑅𝑠 − 𝐹𝑥(𝑘𝑖)) + 2(Φ𝑇Φ+ 𝑅̅)∆𝑈 (𝑎19) 

The necessary condition of the minimum 𝐽 is given by 

𝜕𝐽

𝜕∆𝑈
= 0 (𝑎20) 

By using these condition, the optimal solution for the control signal can be 

expressed as 

∆𝑈 = (Φ𝑇Φ+ 𝑅̅)−1Φ𝑇(𝑅𝑠 − 𝐹𝑥(𝑘𝑖)) (𝑎21) 

with the assumption that (Φ𝑇Φ+ 𝑅̅)−1 exists. The matrix (Φ𝑇Φ+ 𝑅̅)−1 is called 

the Hessian matrix in the optimization literature. The optimal solution of the control 

signal is linked to the reference signal 𝑟(𝑘𝑖) and the state variable 𝑥(𝑘𝑖) via Equation 

(a22) 

∆𝑈 = (Φ𝑇Φ+ 𝑅̅)−1Φ𝑇(𝑅̅𝑠𝑟(𝑘𝑖) − 𝐹𝑥(𝑘𝑖)) (𝑎22) 

A.4 Constraints for the MIMO state-space model 

Constraints are specified for each input independently for the MIMO state-space 

model. Constraints for the upper limits are given by Equation (a23) 

[Δ𝑢1
𝑚𝑎𝑥 Δ𝑢2

𝑚𝑎𝑥 . . . . Δ𝑢𝑚
𝑚𝑎𝑥] (𝑎23) 

And constraints for the lower limits are given by Equation (a24)  
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[Δ𝑢1
𝑚𝑖𝑛 Δ𝑢2

𝑚𝑖𝑛 . . . . Δ𝑢𝑚
𝑚𝑖𝑛] (𝑎24) 

Variable with rate of change is specified as 

Δ𝑢1
𝑚𝑖𝑛 ≤ ∆𝑢1(𝑘) ≤ ∆𝑢1

𝑚𝑎𝑥 

Δ𝑢2
𝑚𝑖𝑛 ≤ ∆𝑢2(𝑘) ≤ ∆𝑢2

𝑚𝑎𝑥 

. 

. 

. 

Δ𝑢𝑚
𝑚𝑖𝑛 ≤ ∆𝑢𝑚(𝑘) ≤ ∆𝑢𝑚

𝑚𝑎𝑥 (𝑎25) 

Similarly, constraints for the upper limit of the control signal are given by 

𝑢1
𝑚𝑎𝑥 𝑢2

𝑚𝑎𝑥 . . . . 𝑢𝑚
𝑚𝑎𝑥 

And for lower limit as  

𝑢1
𝑚𝑖𝑛 𝑢2

𝑚𝑖𝑛 . . . . 𝑢𝑚
𝑚𝑖𝑛 

Also the amplitude of each control signal is required to satisfy the constraints as 

specified in Equation (a26)  

𝑢1
𝑚𝑖𝑛  ≤ 𝑢1(𝑘) ≤ 𝑢1

𝑚𝑎𝑥 

𝑢2
𝑚𝑖𝑛 ≤ 𝑢2(𝑘) ≤ 𝑢2

𝑚𝑎𝑥 

. 

. 

. 

𝑢𝑚
𝑚𝑖𝑛 ≤ 𝑢𝑚(𝑘) ≤ 𝑢𝑚

𝑚𝑎𝑥 (𝑎26) 
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Constraints for each output and state variables are specified similarly if required. It 

should be noted that constraints for each input and output in a MIMO system are specified 

independently.  

A.5 Constraints as part of the optimal solution 

Constrained variables are parametrized using the same parameter vector ∆𝑈 and 

since the predictive control problem is solved using the receding horizon control 

framework, the constraints are taken into consideration for each moving horizon window. 

This firstly allows us to vary the constraints at the beginning of each optimization window 

and secondly to provide the means to tackle the constrained controlled problem 

numerically. If the constraints on the rate of change of the control signal ∆𝑢(𝑘) at time 

𝑘𝑖, then the constraints at sample time 𝑘𝑖 are defined as 

∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘𝑖) ≤ ∆𝑢𝑚𝑎𝑥 (𝑎27) 

The predictive control scheme calculates future instances (𝑘 + 1,𝐾 + 2…𝐾 + 𝑁𝑝) 

from the time instance 𝑘𝑖. The constraints at future samples, ∆𝑢(𝑘𝑖), ∆𝑢(𝑘𝑖 + 1), ∆𝑢(𝑘𝑖 +

2), ∆𝑢(𝑘𝑖 + 3)…∆𝑢(𝑘𝑖 + 𝑁𝑝 − 1) are given as 

∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘𝑖) ≤ ∆𝑢𝑚𝑎𝑥 

∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘𝑖 + 1) ≤ ∆𝑢𝑚𝑎𝑥 

∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘𝑖 + 2) ≤ ∆𝑢𝑚𝑎𝑥 

. 

. 

. 

∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘𝑖 + 𝑁𝑝 − 1) ≤ ∆𝑢𝑚𝑎𝑥 
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In principle, all the constraints are defined within the prediction horizon but in some 

cases smaller set of sampling instants are chosen to impose the constraints, instead of all 

the future samples to reduce computational load. The requirement to obtain optimal 

solutions using quadratic programming is to decompose the constraints into two parts to 

reflect the lower limit, and the upper limit with opposite sign is define as 

∆𝑈𝑚𝑖𝑛 ≤ ∆𝑈 ≤ ∆𝑈𝑚𝑎𝑥 

Can be expressed by two inequalities as follow 

−∆𝑈 ≤ −∆𝑈𝑚𝑖𝑛 (𝑎28) 

∆𝑈 ≤ ∆𝑈𝑚𝑎𝑥 (𝑎29) 

Equation (a28) and (a29) can be written in matrix from as 

[
−𝐼
𝐼
] ∆𝑈 ≤ [−∆𝑈

𝑚𝑖𝑛

∆𝑈𝑚𝑎𝑥
] (𝑎30) 

where  ∆𝑈𝑚𝑖𝑛 and ∆𝑈𝑚𝑎𝑥 are column vectors with 𝑁𝑐 elements of ∆𝑈𝑚𝑖𝑛 and 

∆𝑈𝑚𝑎𝑥, respectively. The output constraints are expressed in terms of ∆𝑈 as follow 

𝑌𝑚𝑖𝑛 ≤ 𝐹𝑥(𝑘𝑖) + Φ∆𝑈 ≤ 𝑌𝑚𝑎𝑥 (𝑎31) 

Further, the model predictive control with the hard constraints is proposed which 

has the objective of finding the parameter vector ∆𝑈 which is minimizing the cost 

function 𝐽 as given in Equation (a32) below. 

𝐽 = (𝑅𝑠 − 𝐹𝑥(𝑘𝑖))
𝑇
(𝑅𝑠 − 𝐹𝑥(𝑘𝑖)) − 2∆𝑈𝑇Φ𝑇(𝑅𝑠 − 𝐹𝑥(𝑘𝑖)) + Δ𝑈𝑇(Φ𝑇Φ+ 𝑅̅)∆𝑈(𝑎32) 

Subject to the inequality constraints 
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[
𝑀1

𝑀2

𝑀3

] ∆𝑈 ≤ [
𝑁1
𝑁2
𝑁3

] (𝑎33) 

where Φ𝑇Φ+ 𝑅̅ is a Hessian matrix and is assumed to be positive definite. As the 

cost function  𝐽 is quadratic and constraints are linear inequalities, the solution for the 

optimal predictive control is similar to finding an optimal solution for a standard quadratic 

programming problem. For compactness of expression, Equation (a33) can be expressed 

as 

𝑀∆𝑈 ≤ 𝛾 (𝑎34) 

Where 𝑀 is a matrix representing constraints. The number of rows and columns in 

the matrix 𝑀 is equal to the number of constraints and the dimension of ∆𝑈 respectively. 

When the constraints are fully imposed, the number of constraints is equal to 4 ×𝑚 ×

𝑁𝑐 + 2 × 𝑞 × 𝑁𝑝, where 𝑚 is the number of inputs and 𝑞 is the number of outputs.  

A.6 Numeric solution of MPC using quadratic programming 

Quadratic programming (QP) is the problem of minimizing a quadratic objective 

function of many variables subject to a set of linear equality or inequality constraints and 

possibly constraints on variable values. QP attracts more attention than linear 

programming (LP) approach because it allows the modelling and investigation of 

interactions between variables, such as a demand change resulting from a price change, 

both of which would obviously affect total profits. In LP, the assumption that price is 

independent of demand should be made to achieve the objective (Byrne, 1984). Using QP 

is also useful because it provides the ease of accessing the code if anything goes wrong 

or to write safety ‘jacket’ software for real-time applications. To be consistent with the 
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literature of quadratic programming, the decision variable is denoted by 𝑥. The constraints 

and objective function 𝐽 are expressed as given in Equation (a35) below.  

𝐽 =
1

2
𝑥𝑇𝐸𝑥 + 𝑥𝑇𝐹 (𝑎35) 

𝑀𝑥 ≤ 𝛾 (𝑎36) 

where 𝐸, 𝐹,𝑀 and 𝛾 are compatible matrices and vectors in the quadratic 

programming problem.  𝐸 is assumed to be symmetric and positive definite.  

A.7 Quadratic programming for equality and inequality constraints 

To find the constrained minimum of a positive definite quadratic function with 

linear equality constraints 𝑀𝑥 = 𝛾 is the simplest problem of QP. Each linear equality 

constraint defines a hyperplane. Positive definite quadratic functions have their level 

surfaces as hyperellipsoids. Intuitively, the constrained minimum is located at the point 

of tangency between the boundary of the feasible set and the minimizing hyperellipsoid. 

On the other hand, the number of constraints could be larger than the number of decision 

variables in the minimization with inequality constraints. The inequality constraints 

𝑀𝑥 ≤ 𝛾 may contain active and inactive constraints. An inequality 𝑀𝑖𝑥 ≤ 𝛾𝑖 is 

considered to be active if 𝑀𝑖𝑥 = 𝛾𝑖 and inactive if 𝑀𝑖𝑥 < 𝛾𝑖, where 𝑀𝑖 together with 𝛾𝑖 

form the 𝑖𝑡ℎ inequality constraints and are the 𝑖𝑡ℎ row of 𝑀 matrix and the 𝑖𝑡ℎ element 

of 𝛾 vector, respectively.  

A.8 Hildreth’s quadratic programming procedure 

(Luenberger, 1969) and (Wismer and Chattergy, 1978) have proposed a simple 

algorithm called the Hildreth’s quadratic programming procedure to solve the dual 
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functional problem. In this algorithm, a decent procedure is employed with direction 

vectors equal to the usual basis vectors 𝑒𝑖 = (0, 0, . . . , 1, 0, . . . , 0). Specifically, the 

infinite sequence of direction vectors be {𝑒1, 𝑒2, . . . , 𝑒𝑛, 𝑒1, 𝑒2, . . . , 𝑒𝑛, . . . }. thus the vector 

𝜆 can be varied by one component at a time. At a given step in the process, having 

obtained a vector 𝜆 ≥ 𝜃, priority is given to the solution of single component 𝜆𝑖. The 

objective function may be regarded as a quadratic function of this single component. 𝜆𝑖 

is adjusted to minimize the function, or if that would require 𝜆𝑖 < 0, 𝜆𝑖 = 0 can be 

adjusted. In any case, however the objective function is minimized. Then the next 

component 𝜆𝑖+1 is considered. If one complete cycle through the components to be one 

iteration is considered and taking the vector 𝜆𝑚 to 𝜆𝑚+1, the method can be expressed 

explicitly as 

𝜆𝑖
𝑚+1 = max(0, 𝜔𝑖

𝑚+1) (𝑎37) 

with 

𝜔𝑖
𝑚+1 = −

1

ℎ𝑖𝑖
[𝑘𝑖 +∑ℎ𝑖𝑗𝜆𝑗

𝑚+1 + ∑ ℎ𝑖𝑗𝜆𝑗
𝑚

𝑛

𝑗=𝑖+1

𝑖−1

𝑗=1

] (𝑎38) 

where the scalar ℎ𝑖𝑗 is the 𝑖𝑗𝑡ℎ element in the matrix 𝐻 = 𝑀𝐸−1𝑀𝑇, and 𝑘𝑖 is the 

𝑖𝑡ℎ element in the vector 𝐾 = 𝛾 +𝑀𝐸−1𝐹. Also it can be noted that in Equation (a38), 

there are two sets of 𝜆 values in the computation, one involves 𝜆𝑚 and the other involves 

the updated 𝜆𝑚+1. 

The converged 𝜆∗ vector contains either zeros or positive values of the Lagrange 

multipliers, 𝑥 can be written as 

𝑥 = −𝐸−1(𝐹 + 𝑀𝑇𝜆∗) (𝑎39) 
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It can be noted that Hildreth’s quadratic programming algorithm is based on an 

element-by-element search, consequently it does not require any matrix inversion. As a 

result, if the active constraints are linearly independent and their number is less than or 

equal to the number of decision variables, then the dual variables will converge. However, 

if one or both of these requirements are violated, then the dual variables will not converge 

to a set of fixed values. The iteration will terminate when the iterative counter reaches its 

maximum value. As there is no matrix inversion, the computation will continue without 

interruption and give near-optimal solution with constraints if the situation of conflict 

constraints arise which is one of the key strength of using this approach in real-time 

applications. Further this approach has the ability to automatically recover from an ill-

conditioned constrained problem for the safety of plant operation.  

The one-dimensional search technique in Hildreth’s quadratic programming 

procedure has been shown to converge to the set of 𝜆∗, When the conditions are satisfied. 

𝜆∗ contains zeros for inactive constraints and the positive components corresponding to 

the active constraints. The positive component collected as a vector is called 𝜆𝑎𝑐𝑡
 ∗  with its 

value defined by 

𝜆𝑎𝑐𝑡
∗ = −(𝑀𝑎𝑐𝑡𝐸

−1𝑀𝑎𝑐𝑡
𝑇 )−1(𝛾𝑎𝑐𝑡 +𝑀𝑎𝑐𝑡𝐸

−1𝐹) (𝑎40) 

where 𝑀𝑎𝑐𝑡 and  𝛾𝑎𝑐𝑡 are the constraints data matrix and vector with deletion of the 

row elements that corresponding to the zero elements in 𝜆∗. The proof of the convergence 

relies on the existence of a set of bounded 𝜆𝑎𝑐𝑡
∗ . This is virtually determined by the 

existence of the 𝑀𝑎𝑐𝑡𝐸
−1𝑀𝑎𝑐𝑡

𝑇  (Wang, 2009).  
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A.9 Summary 

Discrete-time MPC with constraints was discussed. The current plant information 

was represented by the state variable vector 𝑥(𝑘𝑖), the prediction of the future behaviour 

of the plant output relies on the state-space model where the optimal control trajectory 

was captured by the set of parameters that define the incremental control movements. The 

objective of the control system was expressed in terms of the error function between the 

reference and the predicted output signal within the optimization window. Although the 

optimal control trajectory was calculated for 𝑁𝑐 future samples, the implementation of 

the predictive control used only the first sample, ∆𝑢(𝑘𝑖) while ignoring the rest of the 

trajectory. The optimization procedure repeated itself when the next sample period 

arrived, based on the receding horizon control principle, where feedback was naturally 

incorporated in the control system design. 

Plant operational limits, including limits on the input variables, the incremental 

change of the input variables, state variables and plant output variables were defined. Also 

the steps involved in solving the constrained optimization problem using a quadratic 

programming procedure at every sampling instance to obtain the optimal solution of the 

decision variables have been presented.  

MPC with disturbances was discussed and disturbance matrix was incorporated in 

the state-space model equations. Global solar radiation prediction and energy demand 

prediction as discussed in chapter 2 and 3 respectively were used as measured 

disturbances in the MPC development in to plan for periods of low sunshine or high 

energy demand.  
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Appendix B: HOURLY LOAD ENERGY DEMAND AND PV ARRAY 

PRODUCTION DATA 

B.1 Hourly load energy demand data 

 

 

Table 18. Load energy demand (Ed(k) profiles in kWh for a residential house 
Date and Time Load Energy Demand 

(kWh) 

Date and Time Load Energy Demand 

(kWh) 

1/08/2015 0:00 0.11 4/08/2015 11:59 1.78 

1/08/2015 1:00 0.11 4/08/2015 12:59 1.93 

1/08/2015 2:00 0.12 4/08/2015 13:59 2.38 

1/08/2015 3:00 0.13 4/08/2015 14:59 2.21 

1/08/2015 4:00 0.12 4/08/2015 15:59 1.75 

1/08/2015 5:00 0.12 4/08/2015 16:59 2.54 

1/08/2015 6:00 0.14 4/08/2015 17:59 2.47 

1/08/2015 7:00 0.13 4/08/2015 18:59 0.96 

1/08/2015 8:00 0.11 4/08/2015 19:59 2.64 

1/08/2015 9:00 1.65 4/08/2015 20:59 2.61 

1/08/2015 10:00 4.67 4/08/2015 21:59 5.68 

1/08/2015 11:00 1.98 4/08/2015 22:59 3.05 

1/08/2015 12:00 4.89 4/08/2015 23:59 3.06 

1/08/2015 13:00 1.87 5/08/2015 0:00 3.74 

1/08/2015 14:00 2.89 5/08/2015 1:00 0.12 

1/08/2015 15:00 3.7 5/08/2015 2:00 0.13 

1/08/2015 16:00 3.59 5/08/2015 3:00 0.13 

1/08/2015 17:00 3.5 5/08/2015 4:00 0.12 

1/08/2015 18:00 0.15 5/08/2015 5:00 0.12 

1/08/2015 19:00 1.77 5/08/2015 6:00 0.12 

1/08/2015 19:59 1.78 5/08/2015 7:00 0.14 

1/08/2015 20:59 1.91 5/08/2015 8:00 1.65 

1/08/2015 21:59 1.87 5/08/2015 9:00 1.63 

1/08/2015 22:59 1.71 5/08/2015 10:59 1.65 

1/08/2015 23:59 1.62 5/08/2015 11:00 2.11 

2/08/2015 0:00 1.62 5/08/2015 12:00 2.69 

2/08/2015 1:00 2.61 5/08/2015 13:00 3.49 

2/08/2015 2:59 2.62 5/08/2015 14:00 1.76 

2/08/2015 3:00 2.62 5/08/2015 15:00 1.76 

2/08/2015 4:00 2.61 5/08/2015 16:00 1.75 

2/08/2015 5:00 5.47 5/08/2015 17:00 1.09 

2/08/2015 6:00 0.15 5/08/2015 18:00 3.47 

2/08/2015 7:00 1.64 5/08/2015 19:00 3.48 
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2/08/2015 8:00 1.64 5/08/2015 20:00 2.65 

2/08/2015 9:00 2.2 5/08/2015 21:00 2.61 

2/08/2015 10:00 2.22 5/08/2015 22:00 2.64 

2/08/2015 11:00 3.81 5/08/2015 23:00 3.03 

2/08/2015 12:00 1.87 6/08/2015 0:00 2.96 

2/08/2015 13:00 1.69 6/08/2015 2:59 2.66 

2/08/2015 14:00 0.25 6/08/2015 3:00 2.62 

2/08/2015 15:00 3.59 6/08/2015 4:00 2.63 

2/08/2015 16:00 3.47 6/08/2015 5:00 0.12 

2/08/2015 17:00 3.46 6/08/2015 6:00 0.13 

2/08/2015 18:00 2.78 6/08/2015 7:00 1.63 

2/08/2015 19:00 1.7 6/08/2015 8:00 1.63 

2/08/2015 20:00 1.73 6/08/2015 9:00 1.64 

2/08/2015 21:00 4.57 6/08/2015 10:00 1.66 

2/08/2015 22:00 2 6/08/2015 11:00 1.64 

2/08/2015 23:00 1.65 6/08/2015 12:00 1.63 

3/08/2015 0:00 1.61 6/08/2015 13:00 1.62 

3/08/2015 1:00 1.62 6/08/2015 14:00 1.72 

3/08/2015 2:00 1.62 6/08/2015 15:00 1.73 

3/08/2015 3:00 0.11 6/08/2015 16:00 2.71 

3/08/2015 4:00 2.6 6/08/2015 17:00 2.71 

3/08/2015 5:00 2.62 6/08/2015 18:00 3.77 

3/08/2015 6:00 2.64 6/08/2015 19:00 4.38 

3/08/2015 7:00 2.63 6/08/2015 20:00 6.31 

3/08/2015 8:00 2.65 6/08/2015 21:00 3.46 

3/08/2015 9:00 3.17 6/08/2015 22:00 2.63 

3/08/2015 10:00 1.2 6/08/2015 23:00 2.62 

3/08/2015 11:00 1.56 7/08/2015 0:00 5.66 

3/08/2015 12:00 2.97 7/08/2015 1:00 3.11 

3/08/2015 13:00 3.24 7/08/2015 2:00 2.87 

3/08/2015 14:00 3.04 7/08/2015 3:00 2.71 

3/08/2015 15:00 1.75 7/08/2015 4:00 2.61 

3/08/2015 16:00 2.58 7/08/2015 5:00 0.11 

3/08/2015 17:00 1.5 7/08/2015 6:00 0.11 

3/08/2015 18:00 0.97 7/08/2015 7:00 0.1 

3/08/2015 19:00 0.46 7/08/2015 8:00 1.61 

3/08/2015 20:00 2.72 7/08/2015 9:00 1.6 

3/08/2015 21:00 2.77 7/08/2015 9:59 1.62 

3/08/2015 22:00 5.87 7/08/2015 10:59 1.64 

4/08/2015 0:00 2.92 7/08/2015 11:59 1.63 

4/08/2015 1:00 2.7 7/08/2015 12:59 1.62 

4/08/2015 2:00 2.62 7/08/2015 13:59 2.16 

4/08/2015 3:00 2.62 7/08/2015 14:59 4.67 

4/08/2015 4:00 2.62 7/08/2015 15:59 1.9 

4/08/2015 5:00 2.61 7/08/2015 16:59 1.5 
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4/08/2015 6:00 0.1 7/08/2015 17:59 3.15 

4/08/2015 7:00 0.14 7/08/2015 18:59 1.22 

4/08/2015 8:00 0.14 7/08/2015 19:59 3.6 

4/08/2015 9:00 0.13 7/08/2015 20:59 3.58 

4/08/2015 9:59 0.14 7/08/2015 21:59 6.38 

4/08/2015 10:59 0.1 7/08/2015 22:59 2.78 

 

B.2 Hourly PV array production data 

 

 

Table 19. PV Array production (EPV(k), kWh) 
Date and Time PV Array Output 

(kWh) 

Date and Time PV Array Output 

(kWh) 

1/08/2015 0:00 0 4/08/2015 11:59 2.26 

1/08/2015 1:00 0 4/08/2015 12:59 2.36 

1/08/2015 2:00 0 4/08/2015 13:59 3.24 

1/08/2015 3:00 0 4/08/2015 14:59 3.58 

1/08/2015 4:00 0 4/08/2015 15:59 4.02 

1/08/2015 5:00 0 4/08/2015 16:59 3.62 

1/08/2015 6:00 0 4/08/2015 17:59 3.02 

1/08/2015 7:00 0.5 4/08/2015 18:59 2.02 

1/08/2015 8:00 1.7 4/08/2015 19:59 1.5 

1/08/2015 9:00 3.45 4/08/2015 20:59 0.8 

1/08/2015 10:00 5.36 4/08/2015 21:59 0.01 

1/08/2015 11:00 5.68 4/08/2015 22:59 0 

1/08/2015 12:00 5.84 4/08/2015 23:59 0 

1/08/2015 13:00 5.26 5/08/2015 0:00 0 

1/08/2015 14:00 5.36 5/08/2015 1:00 0 

1/08/2015 15:00 4.56 5/08/2015 2:00 0 

1/08/2015 16:00 4.67 5/08/2015 3:00 0 

1/08/2015 17:00 3.35 5/08/2015 4:00 0 

1/08/2015 18:00 2.26 5/08/2015 5:00 0 

1/08/2015 19:00 2.3 5/08/2015 6:00 0 

1/08/2015 19:59 0.56 5/08/2015 7:00 0 

1/08/2015 20:59 0 5/08/2015 8:00 0 

1/08/2015 21:59 0 5/08/2015 9:00 0.15 

1/08/2015 22:59 0 5/08/2015 10:59 1.62 

1/08/2015 23:59 0 5/08/2015 11:00 2.24 

2/08/2015 0:00 0 5/08/2015 12:00 2.98 

2/08/2015 1:00 0 5/08/2015 13:00 4.58 

2/08/2015 2:59 0 5/08/2015 14:00 3.65 

2/08/2015 3:00 0 5/08/2015 15:00 3.97 
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2/08/2015 4:00 0 5/08/2015 16:00 2.86 

2/08/2015 5:00 0 5/08/2015 17:00 2.25 

2/08/2015 6:00 0 5/08/2015 18:00 1.94 

2/08/2015 7:00 0.64 5/08/2015 19:00 1.64 

2/08/2015 8:00 2.59 5/08/2015 20:00 0.84 

2/08/2015 9:00 3.26 5/08/2015 21:00 0.11 

2/08/2015 10:00 4.57 5/08/2015 22:00 0.02 

2/08/2015 11:00 5.62 5/08/2015 23:00 0 

2/08/2015 12:00 5.89 6/08/2015 0:00 0 

2/08/2015 13:00 4.51 6/08/2015 2:59 0 

2/08/2015 14:00 3.34 6/08/2015 3:00 0 

2/08/2015 15:00 2.25 6/08/2015 4:00 0 

2/08/2015 16:00 2.96 6/08/2015 5:00 0 

2/08/2015 17:00 1.67 6/08/2015 6:00 0 

2/08/2015 18:00 1.08 6/08/2015 7:00 0 

2/08/2015 19:00 0.17 6/08/2015 8:00 0 

2/08/2015 20:00 0.01 6/08/2015 9:00 0 

2/08/2015 21:00 0 6/08/2015 10:00 0 

2/08/2015 22:00 0 6/08/2015 11:00 0 

2/08/2015 23:00 0 6/08/2015 12:00 0.04 

3/08/2015 0:00 0 6/08/2015 13:00 1.26 

3/08/2015 1:00 0 6/08/2015 14:00 2.54 

3/08/2015 2:00 0 6/08/2015 15:00 2.95 

3/08/2015 3:00 0 6/08/2015 16:00 3.51 

3/08/2015 4:00 0 6/08/2015 17:00 3.93 

3/08/2015 5:00 0 6/08/2015 18:00 4.28 

3/08/2015 6:00 0 6/08/2015 19:00 4.95 

3/08/2015 7:00 0 6/08/2015 20:00 3.65 

3/08/2015 8:00 0 6/08/2015 21:00 2.25 

3/08/2015 9:00 1.56 6/08/2015 22:00 1.27 

3/08/2015 10:00 2.58 6/08/2015 23:00 0.16 

3/08/2015 11:00 3.86 7/08/2015 0:00 0.01 

3/08/2015 12:00 4.78 7/08/2015 1:00 0 

3/08/2015 13:00 4.56 7/08/2015 2:00 0 

3/08/2015 14:00 4.59 7/08/2015 3:00 0 

3/08/2015 15:00 3.28 7/08/2015 4:00 0 

3/08/2015 16:00 2.95 7/08/2015 5:00 0 

3/08/2015 17:00 2.3 7/08/2015 6:00 0 

3/08/2015 18:00 1.53 7/08/2015 7:00 0 

3/08/2015 19:00 2.95 7/08/2015 8:00 0 

3/08/2015 20:00 1.53 7/08/2015 9:00 0 

3/08/2015 21:00 0.56 7/08/2015 9:59 0 

3/08/2015 22:00 0 7/08/2015 10:59 0 

4/08/2015 0:00 0 7/08/2015 11:59 0 

4/08/2015 1:00 0 7/08/2015 12:59 0.11 
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4/08/2015 2:00 0 7/08/2015 13:59 1.54 

4/08/2015 3:00 0 7/08/2015 14:59 2.65 

4/08/2015 4:00 0 7/08/2015 15:59 2.56 

4/08/2015 5:00 0 7/08/2015 16:59 2.01 

4/08/2015 6:00 0 7/08/2015 17:59 1.56 

4/08/2015 7:00 0 7/08/2015 18:59 1.29 

4/08/2015 8:00 0 7/08/2015 19:59 0.8 

4/08/2015 9:00 0 7/08/2015 20:59 2.36 

4/08/2015 9:59 0.15 7/08/2015 21:59 0.88 

4/08/2015 10:59 1.25 7/08/2015 22:59 0.16 

 

 

 

 


