
Full citation: MacDonell, S.G., Gray, A.R., & Calvert, J.M. (1999) FULSOME: a fuzzy logic modeling
tool for software metricians, in Proceedings of the Annual Meeting of the North American Fuzzy
Information Processing Society (NAFIPS'99). New York, IEEE Computer Society Press, pp.263-267.
http://dx.doi.org/10.1109/NAFIPS.1999.781695

FULSOME: A Fuzzy Logic Modeling Tool for Software Metricians

Stephen G. MacDonell, Andrew R. Gray, and James M. Calvert
Department of Information Science

University of Otago, PO Box 56, Dunedin, New Zealand
{stevemac} {agray} {jmcalvert}@infoscience.otago.ac.nz

Abstract
There has been a growing body of literature suggesting
that some of the problems faced by software development
project managers can be at least partially overcome by
using fuzzy logic techniques. However, one issue that has
been generally overlooked in this recommendation is the
means by which these “software metricians” can collect
data for, develop, and interpret fuzzy logic models in
practice. We describe a freely available system that has
been built with this in mind called FULSOME (FUzzy
Logic for SOftware MEtrics). While there are many tools
available for developing fuzzy models, it is suggested that
before there will be real adoption of such techniques by
project managers there will need to be suitable tools that
support their particular work-flows and that use
appropriate terminology. Another requirement will be the
development of some standard procedures and definitions
for such models. Issues involved with membership function
elicitation and extraction are also discussed as a first step
towards this second goal.

1. SOFTWARE METRIC MODELS

Software metrics is the field of research and practice that
involves investigating the characteristics of and
relationships between sets of attributes associated with
software development projects, usually in terms of
products, processes, and resources [1]. Such analyses can
be exploratory or model building in nature and
applications can be classified as predicting, monitoring,
controlling, or assessing some aspect of development.
Here the focus is on predictive models since these form
the majority of applications and support the other three
varieties of analyses.

By far, the most common application for software metric
models has been predicting development effort based on
system characteristics from the development

specifications (available relatively early in the project
life-cycle). The emphasis that has been placed on this
particular application originates from the considerable
financial and strategic implications of accurately timing
and costing software development projects. For example,
a common scenario would be to predict development
effort (perhaps in person-months) based on measures of
system size, system complexity, and developer
competence. Such models are most useful in the early
stages of development where the uncertainty is at its
greatest and such estimates are essential for contract
negotiation and strategic planning.

1.1 Difficulties with current approaches

In the past several problems have been almost ubiquitous
for “software metricians” and these have proved to be
considerable impediments to both the adoption of
techniques by practitioners and the advancement of
researchers’ theoretical understanding. Primary difficulties
experienced with developing and calibrating models for
development effort prediction include data acquisition,
data purity, model expression, and knowledge gathering
issues.

The first of these, acquiring data, is especially problematic
since the most commonly used formal techniques for
modeling development effort are regression based
(generally linear least-squares). The process of capturing
meaningful data is made more difficult by both rapidly
changing technologies (rendering data sets quickly
outdated) and the reluctance of organizations to share their
data. The problem is further compounded by the influence
of developers disliking such close monitoring of their
performance.

Even once sufficient quantities of data are available, data
purity is generally difficult to ascertain – necessitating
some treatment of unusual observations [4]. Such points

http://dx.doi.org/10.1109/NAFIPS.1999.781695�

may originate from unusual systems, unexpected
developer performance, or recording errors. Alternatively,
such cases may be due to factors that are, for all intents
and purposes, unrecordable, for example personality
characteristics of team members. The use of expert
knowledge based estimates has dominated all formal
techniques in software metric modeling, with the
considerable influence of human factors perhaps
necessitating some form of expert intervention in any
model development or deployment process.

Since software metric models are generally expressed as
simple linear equations, the inherent nonlinearities and
interactions intrinsic to the development process are
disregarded, leading to inferior models in cases where the
true underlying relationship is significantly more complex
than this simplified view of reality. Some basic
transformations are used on occasions to remedy this, but
there has been little use of more general nonlinear
approaches, aside from some elementary use of neural
network models [3].

Finally, process maturation within an organization can be
impeded by the inability of management to extract a
sufficiently meaningful understanding of the underlying
mechanisms behind the development process from such
simple, and often ineffectual, models. As development
projects become increasingly large, such “data mining”
applications will become ever more imperative in order to
optimize development practices.

1.2 Fuzzy logic for software metric models

Fuzzy logic has recently gained a greater amount of
attention in the software metrics literature as a means for
solving some of these long-standing problems [2, 3].
Obviously fuzzy logic is not a panacea for all of project
management’s ills. In fact it seems quite likely that the
improvements from better modeling would be less than
those from better management and coding practices.
However, the use of fuzzy logic techniques to support
other existing techniques (allowing each to operate within
its own niche) does appear to offer some potential benefits
that are worth pursuing.

The data acquisition problem is considerably alleviated
under conditions where expert knowledge can be used to
augment or even supplant empirical data. Similarly, the
lessened reliance on data for the initial specification of the
model can be seen as a more robust approach in terms of
treatment for potentially outlying observations.

Since fuzzy logic models can be specified in a piecewise
manner, the restrictions of linearity are easily overcome.
In the same way, interactions are implicitly included in
multiple antecedent models.

Finally, the transparency of fuzzy logic models provides
both a check on the model’s reasonableness (even where
data-driven calibration techniques are used) and can assist

organizational learning via process awareness.
Discussions with several New Zealand software houses
have verified that this is a useful outcome in itself.

2. FULSOME

FULSOME (FUzzy Logic for SOftware MEtrics) is a
Microsoft Windows application (although the code
libraries are written in standard C++ and should be easily
ported to any operating system) that provides project
managers with access to fuzzy logic modeling techniques
in a manner that reflects their particular needs and
workflows.

Figure 1 shows the basic structure of the FULSOME
program – “systems” containing data sets, membership
functions, rules, and the output of the inference process.
The figure also illustrates the basic functionality of the
system, and the approach that was taken to make the
system as user-friendly as possible.

Two additional modules are also available, for fuzzy
clustering and model evaluation, although they are not
technically part of the FULSOME core system and are
correspondingly absent from Figure 1. The fuzzy
clustering module allows for the automatic extraction of
membership functions from data sets (using
one-dimensional fuzzy c-means clustering), and the
extraction of rules based on a set of membership functions
(using multi-dimensional fuzzy c-means clustering). The
model evaluation module provides several measures of
goodness of fit for a pre-specified model on different data
sets.

Since one of the applications discussed here is the
extraction of membership functions some further detail is
provided on the first of these two supplementary modules.
The basic algorithm for membership function extraction is
as follows.

1. select an appropriate mathematically defined function
for the membership functions of the variable of interest (i)
say fi (x)

2. select the number of membership functions that are
desired for that particular variable, mi functions for
variable i.

3. call each of the mi functions fij ([x]) where j=1... mi and
[x] is an array of parameters defining that particular
function (usually a center and width parameter are
defined, either explicitly or implicitly)

4. using one-dimensional fuzzy c-means clustering on the
data set find the mi cluster centers, cij from the
available data

5. sort the cluster centers cij into monotonic (generally
ascending) order for the given i

6. set the membership function center for fij, generally
represented as one of the parameters in the array [x], to the
cluster center cij

7. set the membership function widths for fij in [x] such

that, []() 1,...
1

=∑ = in
m

n in cfi or as close as

possible for the chosen f(x) where this cannot be
achieved exactly (for example for triangular membership
functions each function can be defined using three points,
a, b and c where a is the center of the next smaller
functions and c is the center of the next larger function)

Similarly, rules can be extracted from data by using the
same process of clustering with multiple dimensions (the
number of dimensions matching the number of
antecedents plus the single consequent).

1. start with known membership functions fij ([x]) for all
variables, both input and output, where j represents the
number of functions for variable i and [x] is the set of
parameters for the particular family of function curves

2. select the number of clusters k (which represents the
number of rules involving the k – 1 independent variables
to estimate the single output variable)

3. perform fuzzy c-means clustering to find the centers (i
dimensional) for each of the k clusters

4. for each cluster k with center ck

(a) determine the kth rule to have the antecedents and
consequent fij for each variable i where fij (ck) is
maximized over all j.

(b) weight the rule, possibly as

)(
1∏ =

i

n kij cf or)(
1 k

i

n ij cf∑ =

5. combine rules with same antecedents and consequents,
either summing, multiplying, or bounded summing rule
weights together

6. (optionally) ratio scale all weights so that the mean
weight is equal to 1.0 to aid interpretability

Figure 1. Structure of the FULSOME system – reading from left to right, top to bottom reflects the usual sequence
of work

3. MEMBERSHIP FUNCTIONS

Three means for deriving membership functions have
been examined for suitability to the metrics application
domain, namely derivation through polling of
classifications, combining expert drawn membership
functions, and automated data-driven methods. The most
useful of these approaches for general software metric
models, in our experience, has been that of polling where
a sufficient number of experts are available. Since fuzzy
logic models are intended to be used as a communication
vehicle it is important that they reflect, as well as possible,
the consensus view of stakeholders.

Two separate surveys of New Zealand software
development project managers were used for this
approach, with surprisingly different results. The
differences observed suggest that the two seemingly
similar approaches are in fact quite different in terms of
the responses generated.

In the first survey, the respondents were asked to provide
ranges of values that they felt best described fuzzy labels
(where the ranges were non-overlapping). For example, a
manager may have replied that small ranged between 0
and 30 entities, medium between 30 and 60 entities, and
large was 60 or more entities. The membership functions
were then plotted using the proportion of respondents who
ascribed each label to equally spaced intervals throughout
the ranges.

In the second survey, the respondents were provided with
a list of values for each variable and asked to classify
these as best belonging to one of several labels. The
functions were again derived by using the proportion of
respondents classifying each value as belonging to a
particular function, although this time the points evaluated
were pre-specified.

The first survey involved 36 respondents, and the second
produced 34 responses. Both surveys were the result of
mailings to major New Zealand software development
organizations.

In the two surveys the results for the data model size
questions are shown in Figures 2 and 3. The smoothed
functions are produced using Bezier curves, since this
removes (in most cases) the incongruity of “bumpy”
membership functions with several maxima and minima.
As can be seen the second approach has led to much
cleaner looking functions, with significantly less
ambiguity regarding the middle function. Similar, and in
some cases much more extreme, results emerged with the
graphs of other variables.

It could be suggested from this result that providing (and
thereby limiting) survey respondents’ freedom has
produced better results. Allowing the managers to specify
their own ranges has seemingly led to lower cut-off points
(the two sets of membership functions are plotted on the

same x-range for comparability). Alternatively, it could be
said that using the predefined list of values has led
managers into delimiting the range into the number of
membership functions. However, we believe that the
former is a much more likely proposition here. In order to
determine which explanation best reflects the results, a
follow-up survey will be used where managers will be
presented with a survey in the manner that they were not
originally exposed to.

4. PROCESS FOR DEVELOPING FUZZY
LOGIC MODELS FOR SOFTWARE
METRIC PREDICTION

As part of encouraging fuzzy logic models for software
project management it is important to provide some form
of standard. The procedure that we recommend for
developing fuzzy logic models for predictive software
metric applications consists of the following (not
necessary mandatory nor sequential) steps. This is only a
skeleton of the actual guideline document that we are
providing to commercial organizations, however it
illustrates the basic procedures.

1. Define the goal of the metrics (sub)program.

2. Define the dependent variable (including scale).

3. Using some process, such as a standard model or GQM
(or one of its variants) determine the n independent
variables and similarly define them in an unambiguous
manner (including scale).

4. Obtain membership functions for all variables

• If a sufficiently large number of experts are available
then use polling techniques to determine membership
functions for all variables after providing a fuzzy logic
tutorial if necessary.

• Otherwise, if a small number of sufficiently qualified
experts are available for drawing membership functions
then have them each draw membership functions and
combine these.

• Otherwise, using data automatically extract cluster
centers for standard shaped membership functions.

• Otherwise, use a standard defined set of membership
functions (provided).

5. Validate the set of membership functions using a
measure of inter-reliability. If the results are too low then
re-negotiate the function(s) in question.

6. Obtain rules

• If a sufficiently large number of experts are available
then use voting techniques to determine rules for all
combinations of independent variables after providing a
fuzzy logic tutorial if necessary.

• Otherwise, if a small number of sufficiently qualified
experts are available for deriving rules, then have them
each provide rules and use Delphi methods to arrive at a
final set of rules.

• Otherwise, using data automatically extract rules for
the currently defined membership functions.

• Otherwise, use a standard defined set of rules
(provided).

7. Validate the set of rules using a measure of
inter-reliability. If the results are too low then re-negotiate
the rules(s) in question.

8. Assess model performance on any data used for

membership function and/or rule derivation above. This
provides some measure of the ability of the model to fit to
the data, but should not be seen as indicative of
generalization performance.

9. If additional holdout data is available, then use this to
assess the model’s ability to generalize.

10. If model’s performance is acceptable then implement
model.

11. As managerial experience and empirical data allow
revise functions and rules.

Figure 2. Graphs of “entities” size membership functions derived from the first survey

Figure 3. Graphs of “entities” size membership functions derived from the second survey

5. CONCLUSIONS

The use of fuzzy logic models appears to be a promising
addition to the current suite of methods used for the
empirical support of software development processes. In
particular, the ability of this technique to operate without
large quantities of data and to provide a basis for the
acquisition of further organizational process knowledge is
especially appealing.

By providing a simple set of procedures and supporting
software we have been able to attract the interest of
several commercial organizations, leading to our next
phase of implementing the techniques in live projects (as
opposed to completed projects or where the use of fuzzy
logic was limited to one phase of development).

REFERENCES

[1] N. E. Fenton and S. L. Pfleeger. Software Metrics: A
Rigorous & Practical Approach. PWS, 1997.

[2] A. Gray and S. MacDonell. Applications of fuzzy
logic to software metric models for development effort
estimation. In Proceedings of the 1997 Annual
meeting of the North American Fuzzy Information
Processing Society -NAFIPS’97, pages 394–399.
IEEE, 1997.

[3] A. Gray and S. MacDonell. A comparison of model
building techniques to develop predictive equations
for software metrics. Information and Software
Technology, 39:425–437, 1997.

[4] Y. Miyazaki, M. Terakado, K. Ozaki, and N. Nozaki.
Robust regression for developing software estimation
models. Journal of System and Software, 27:35–16,
1994.

