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Abstract  
There has been a growing body of literature suggesting 
that some of the problems faced by software development 
project managers can be at least partially overcome by 
using fuzzy logic techniques. However, one issue that has 
been generally overlooked in this recommendation is the 
means by which these “software metricians” can collect 
data for, develop, and interpret fuzzy logic models in 
practice. We describe a freely available system that has 
been built with this in mind called FULSOME (FUzzy 
Logic for SOftware MEtrics). While there are many tools 
available for developing fuzzy models, it is suggested that 
before there will be real adoption of such techniques by 
project managers there will need to be suitable tools that 
support their particular work-flows and that use 
appropriate terminology. Another requirement will be the 
development of some standard procedures and definitions 
for such models. Issues involved with membership function 
elicitation and extraction are also discussed as a first step 
towards this second goal.  
 
1. SOFTWARE METRIC MODELS  

Software metrics is the field of research and practice that 
involves investigating the characteristics of and 
relationships between sets of attributes associated with 
software development projects, usually in terms of 
products, processes, and resources [1]. Such analyses can 
be exploratory or model building in nature and 
applications can be classified as predicting, monitoring, 
controlling, or assessing some aspect of development. 
Here the focus is on predictive models since these form 
the majority of applications and support the other three 
varieties of analyses.  

By far, the most common application for software metric 
models has been predicting development effort based on 
system characteristics from the development 

specifications (available relatively early in the project 
life-cycle). The emphasis that has been placed on this 
particular application originates from the considerable 
financial and strategic implications of accurately timing 
and costing software development projects. For example, 
a common scenario would be to predict development 
effort (perhaps in person-months) based on measures of 
system size, system complexity, and developer 
competence. Such models are most useful in the early 
stages of development where the uncertainty is at its 
greatest and such estimates are essential for contract 
negotiation and strategic planning.  
 
1.1 Difficulties with current approaches  

In the past several problems have been almost ubiquitous 
for “software metricians” and these have proved to be 
considerable impediments to both the adoption of 
techniques by practitioners and the advancement of 
researchers’ theoretical understanding. Primary difficulties 
experienced with developing and calibrating models for 
development effort prediction include data acquisition, 
data purity, model expression, and knowledge gathering 
issues.  

The first of these, acquiring data, is especially problematic 
since the most commonly used formal techniques for 
modeling development effort are regression based 
(generally linear least-squares). The process of capturing 
meaningful data is made more difficult by both rapidly 
changing technologies (rendering data sets quickly 
outdated) and the reluctance of organizations to share their 
data. The problem is further compounded by the influence 
of developers disliking such close monitoring of their 
performance.  

Even once sufficient quantities of data are available, data 
purity is generally difficult to ascertain – necessitating 
some treatment of unusual observations [4]. Such points 
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may originate from unusual systems, unexpected 
developer performance, or recording errors. Alternatively, 
such cases may be due to factors that are, for all intents 
and purposes, unrecordable, for example personality 
characteristics of team members. The use of expert 
knowledge based estimates has dominated all formal 
techniques in software metric modeling, with the 
considerable influence of human factors perhaps 
necessitating some form of expert intervention in any 
model development or deployment process.  

Since software metric models are generally expressed as 
simple linear equations, the inherent nonlinearities and 
interactions intrinsic to the development process are 
disregarded, leading to inferior models in cases where the 
true underlying relationship is significantly more complex 
than this simplified view of reality. Some basic 
transformations are used on occasions to remedy this, but 
there has been little use of more general nonlinear 
approaches, aside from some elementary use of neural 
network models [3].  

Finally, process maturation within an organization can be 
impeded by the inability of management to extract a 
sufficiently meaningful understanding of the underlying 
mechanisms behind the development process from such 
simple, and often ineffectual, models. As development 
projects become increasingly large, such “data mining” 
applications will become ever more imperative in order to 
optimize development practices.  
 
1.2 Fuzzy logic for software metric models  

Fuzzy logic has recently gained a greater amount of 
attention in the software metrics literature as a means for 
solving some of these long-standing problems [2, 3]. 
Obviously fuzzy logic is not a panacea for all of project 
management’s ills. In fact it seems quite likely that the 
improvements from better modeling would be less than 
those from better management and coding practices. 
However, the use of fuzzy logic techniques to support 
other existing techniques (allowing each to operate within 
its own niche) does appear to offer some potential benefits 
that are worth pursuing.  

The data acquisition problem is considerably alleviated 
under conditions where expert knowledge can be used to 
augment or even supplant empirical data. Similarly, the 
lessened reliance on data for the initial specification of the 
model can be seen as a more robust approach in terms of 
treatment for potentially outlying observations.  

Since fuzzy logic models can be specified in a piecewise 
manner, the restrictions of linearity are easily overcome. 
In the same way, interactions are implicitly included in 
multiple antecedent models.  

Finally, the transparency of fuzzy logic models provides 
both a check on the model’s reasonableness (even where 
data-driven calibration techniques are used) and can assist 

organizational learning via process awareness. 
Discussions with several New Zealand software houses 
have verified that this is a useful outcome in itself. 
 
2. FULSOME  

FULSOME (FUzzy Logic for SOftware MEtrics) is a 
Microsoft Windows application (although the code 
libraries are written in standard C++ and should be easily 
ported to any operating system) that provides project 
managers with access to fuzzy logic modeling techniques 
in a manner that reflects their particular needs and 
workflows.  

Figure 1 shows the basic structure of the FULSOME 
program – “systems” containing data sets, membership 
functions, rules, and the output of the inference process. 
The figure also illustrates the basic functionality of the 
system, and the approach that was taken to make the 
system as user-friendly as possible.  

Two additional modules are also available, for fuzzy 
clustering and model evaluation, although they are not 
technically part of the FULSOME core system and are 
correspondingly absent from Figure 1. The fuzzy 
clustering module allows for the automatic extraction of 
membership functions from data sets (using 
one-dimensional fuzzy c-means clustering), and the 
extraction of rules based on a set of membership functions 
(using multi-dimensional fuzzy c-means clustering). The 
model evaluation module provides several measures of 
goodness of fit for a pre-specified model on different data 
sets.  

Since one of the applications discussed here is the 
extraction of membership functions some further detail is 
provided on the first of these two supplementary modules. 
The basic algorithm for membership function extraction is 
as follows.  

1. select an appropriate mathematically defined function 
for the membership functions of the variable of interest (i) 
say fi (x) 

2. select the number of membership functions that are 
desired for that particular variable, mi functions for 
variable i. 

3. call each of the mi functions fij ([x]) where j=1... mi and 
[x] is an array of parameters defining that particular 
function (usually a center and width parameter are 
defined, either explicitly or implicitly) 

4. using one-dimensional fuzzy c-means clustering on the 
data set find the mi  cluster centers,  cij  from the 
available data 

5. sort the cluster centers cij  into monotonic (generally 
ascending) order for the given i 



6. set the membership function center for fij, generally 
represented as one of the parameters in the array [x], to the 
cluster center cij   

7. set the membership function widths for  fij in [x] such 
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possible for the chosen f(x)  where this cannot be 
achieved exactly (for example for triangular membership 
functions each function can be defined using three points, 
a, b and c where a  is the center of the next smaller 
functions and c  is the center of the next larger function) 

Similarly, rules can be extracted from data by using the 
same process of clustering with multiple dimensions (the 
number of dimensions matching the number of 
antecedents plus the single consequent). 

1. start with known membership functions  fij ([x]) for all 
variables, both input and output, where j represents the 
number of functions for variable i and [x]  is the set of 
parameters for the particular family of function curves 

2. select the number of clusters k  (which represents the 
number of rules involving the k – 1 independent variables 
to estimate the single output variable) 

3. perform fuzzy c-means clustering to find the centers (i 
dimensional) for each of the k  clusters 

4. for each cluster k  with center ck 

(a) determine the kth  rule to have the antecedents and 
consequent fij  for each variable i  where fij (ck) is 
maximized over all j. 

(b) weight the rule, possibly as  
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5. combine rules with same antecedents and consequents, 
either summing, multiplying, or bounded summing rule 
weights together 

6. (optionally) ratio scale all weights so that the mean 
weight is equal to 1.0 to aid interpretability 

 

 
 

Figure 1. Structure of the FULSOME system – reading from left to right, top to bottom reflects the usual sequence 
of work 



3. MEMBERSHIP FUNCTIONS  

Three means for deriving membership functions have 
been examined for suitability to the metrics application 
domain, namely derivation through polling of 
classifications, combining expert drawn membership 
functions, and automated data-driven methods. The most 
useful of these approaches for general software metric 
models, in our experience, has been that of polling where 
a sufficient number of experts are available. Since fuzzy 
logic models are intended to be used as a communication 
vehicle it is important that they reflect, as well as possible, 
the consensus view of stakeholders.  

Two separate surveys of New Zealand software 
development project managers were used for this 
approach, with surprisingly different results. The 
differences observed suggest that the two seemingly 
similar approaches are in fact quite different in terms of 
the responses generated.  

In the first survey, the respondents were asked to provide 
ranges of values that they felt best described fuzzy labels 
(where the ranges were non-overlapping). For example, a 
manager may have replied that small ranged between 0 
and 30 entities, medium between 30 and 60 entities, and 
large was 60 or more entities. The membership functions 
were then plotted using the proportion of respondents who 
ascribed each label to equally spaced intervals throughout 
the ranges.  

In the second survey, the respondents were provided with 
a list of values for each variable and asked to classify 
these as best belonging to one of several labels. The 
functions were again derived by using the proportion of 
respondents classifying each value as belonging to a 
particular function, although this time the points evaluated 
were pre-specified.  

The first survey involved 36 respondents, and the second 
produced 34 responses. Both surveys were the result of 
mailings to major New Zealand software development 
organizations.  

In the two surveys the results for the data model size 
questions are shown in Figures 2 and 3. The smoothed 
functions are produced using Bezier curves, since this 
removes (in most cases) the incongruity of “bumpy” 
membership functions with several maxima and minima. 
As can be seen the second approach has led to much 
cleaner looking functions, with significantly less 
ambiguity regarding the middle function. Similar, and in 
some cases much more extreme, results emerged with the 
graphs of other variables.  

It could be suggested from this result that providing (and 
thereby limiting) survey respondents’ freedom has 
produced better results. Allowing the managers to specify 
their own ranges has seemingly led to lower cut-off points 
(the two sets of membership functions are plotted on the 

same x-range for comparability). Alternatively, it could be 
said that using the predefined list of values has led 
managers into delimiting the range into the number of 
membership functions. However, we believe that the 
former is a much more likely proposition here. In order to 
determine which explanation best reflects the results, a 
follow-up survey will be used where managers will be 
presented with a survey in the manner that they were not 
originally exposed to. 

 

4. PROCESS FOR DEVELOPING FUZZY 
LOGIC MODELS FOR SOFTWARE 
METRIC PREDICTION  

As part of encouraging fuzzy logic models for software 
project management it is important to provide some form 
of standard. The procedure that we recommend for 
developing fuzzy logic models for predictive software 
metric applications consists of the following (not 
necessary mandatory nor sequential) steps. This is only a 
skeleton of the actual guideline document that we are 
providing to commercial organizations, however it 
illustrates the basic procedures.  

1. Define the goal of the metrics (sub)program.  

2. Define the dependent variable (including scale).  

3. Using some process, such as a standard model or GQM 
(or one of its variants) determine the n independent 
variables and similarly define them in an unambiguous 
manner (including scale).  

4. Obtain membership functions for all variables  

• If a sufficiently large number of experts are available 
then use polling techniques to determine membership 
functions for all variables after providing a fuzzy logic 
tutorial if necessary.  

• Otherwise, if a small number of sufficiently qualified 
experts are available for drawing membership functions 
then have them each draw membership functions and 
combine these.  

• Otherwise, using data automatically extract cluster 
centers for standard shaped membership functions.  

• Otherwise, use a standard defined set of membership 
functions (provided).  

5. Validate the set of membership functions using a 
measure of inter-reliability. If the results are too low then 
re-negotiate the function(s) in question.  

6. Obtain rules  

• If a sufficiently large number of experts are available 
then use voting techniques to determine rules for all 
combinations of independent variables after providing a 
fuzzy logic tutorial if necessary.  



• Otherwise, if a small number of sufficiently qualified 
experts are available for deriving rules, then have them 
each provide rules and use Delphi methods to arrive at a 
final set of rules.  

• Otherwise, using data automatically extract rules for 
the currently defined membership functions. 

• Otherwise, use a standard defined set of rules 
(provided). 

7. Validate the set of rules using a measure of 
inter-reliability. If the results are too low then re-negotiate 
the rules(s) in question.  

8. Assess model performance on any data used for 

membership function and/or rule derivation above. This 
provides some measure of the ability of the model to fit to 
the data, but should not be seen as indicative of 
generalization performance.  

9. If additional holdout data is available, then use this to 
assess the model’s ability to generalize.  

10. If model’s performance is acceptable then implement 
model.  

11. As managerial experience and empirical data allow 
revise functions and rules. 
 

 

 
 

Figure 2. Graphs of “entities” size membership functions derived from the first survey 

 
 

 
 

Figure 3. Graphs of “entities” size membership functions derived from the second survey 

 
 
 
 
 



5. CONCLUSIONS  

The use of fuzzy logic models appears to be a promising 
addition to the current suite of methods used for the 
empirical support of software development processes. In 
particular, the ability of this technique to operate without 
large quantities of data and to provide a basis for the 
acquisition of further organizational process knowledge is 
especially appealing.  

By providing a simple set of procedures and supporting 
software we have been able to attract the interest of 
several commercial organizations, leading to our next 
phase of implementing the techniques in live projects (as 
opposed to completed projects or where the use of fuzzy 
logic was limited to one phase of development). 
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