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Abstract

Influence diffusion modelling, analysis and applications draw tremendous attention to

both researchers and practitioners since many organisations attempt to utilise its power

to achieve business or political goals. A great many research works have been dedic-

ated to the exploration of maximizing the spread of a particular influence in complex

networks, e.g., social networks. However, influence appears to be a hybrid and complex

effect caused by numerous factors, such as friendship affiliation, preferences, common

communities, etc. Moreover, due to the sophisticated and dynamic environment where

influences reside in, modelling influence diffusion in complex networks becomes a very

challenging topic.

In this thesis, agent-based approaches and multi-agent systems have been employed

to model the influence propagation in complex systems. In other words, the perspective

of exploring the spread of influence diffusion stands at a microscopic level, where the

dissemination of influences is driven by individuals’ personalised traits and behaviours.

First, the thesis elaborates the hybrid effects of influence and systematically presents

a generic architecture of modelling influences from an agent-based perspective. Second,

based on the proposed framework, we further investigate agent-based approach with

stigmergic interactions, to address the influence maximisation problem in a dynamic

and complex environment. Third, driven by the business needs for long-term marketing,

the generic agent-based model has been extended by incorporating the capabilities

for maintaining long-lasting influences. Last but not the least, by considering the

v



coexistence of multiple influences, the agent-based model has been enhanced to handle

the various relations of influences.
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Chapter 1

Introduction

A complex network can be considered as a graph containing a large collection of

nodes connected by links representing various complex interactions among the nodes

(Ganguly, Deutsch & Mukherjee, 2009). Complex networks arise in many diverse

contexts, including viral networks, computer networks, protein-protein interactions,

social networks, etc. The modelling and analysis of these complex systems requires

a broad effort spanning many disciplines (Bonato & Tian, 2012). A complex on-line

social network, i.e., a sub-class of complex network, is an on-line platform for people

to build social relations with others who share similar preferences, career activities

or real-life connections (Boyd & Ellison, 2007). Moreover, a complex on-line social

network is large-scale, having dynamic and evolving topological structures. The thesis

is developed mainly based on this environment.

Within the context of complex on-line social networks, influence diffusion mod-

elling has been extensively studied and widely applied in many research fields, such

as maximization of product adoption (Kempe, Kleinberg & Tardos, 2003), culture

dissemination analysis (Axelrod, 1997). These studies bring benefit to various domains,

such as E-business, marketing and sociology. Particularly, in e-business and marketing

field, one of the famous business strategies relying on the influence propagation is viral

1
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marketing (Kempe et al., 2003), where the spread of influence relies on one of the

social phenomena, i.e., social influence, indicating that one’s opinions or behaviours

are affected by his or her contactable neighbours in the social network (Turner, 1991;

Raven, 1964). With the adoption of such strategies, the influence diffuses among the in-

dividual’s social circle through ‘word-of-mouth’ effect; this has been widely employed

by advertising agencies to increase the brand awareness for their clients (Ahmed &

Ezeife, 2013; East, Hammond & Lomax, 2008; W. Chen et al., 2011).

It is very challenging to model and analyse the influence diffusion process in com-

plex networks. First, influence appears to be a hybrid effect, which can be decomposed

into multiple components focusing on different activities and personalised traits of hu-

man beings (Anthony, 2009). Some common assumptions, e.g., "friendship-affiliation

links represent influence-propagation channels" and "the strength of links is considered

as the only factor affecting the influence propagation probability", cannot hold in gen-

eral. Second, local information is merely available in most real situations. Diffusion

models relying on a global view definitely lose the advantages. Third, networks appear

to be highly dynamic. The nodes join and quit, while the links are forming and vanishing

over time.

By considering these sophisticated features of influence diffusion, in this thesis, I

present an agent-based stack to model the spread of influence in complex networks

to address these challenging issues. Based on the proposed generic models, I further

investigate the in-depth applications and the extended problems that can be addressed

by utilising the models.

1.1 Influence Diffusion

This section aims to introduce the characteristics of state-of-the-art influence diffusion

models and one of the classic applications, i.e., influence maximization.
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1.1.1 Influence Diffusion Models

Most researchers have conducted social influence analysis and modelling based on two

fundamental influence diffusion models, i.e., the Independent Cascade (IC) model and

the Linear Threshold (LT) model (Kempe et al., 2003; W. Chen, Wang & Yang, 2009;

W. Chen, Yuan & Zhang, 2010). In both models, each node has two states: the active

state and the inactive state. At the beginning, a limited set of users, i.e., seed nodes,

are supposed to be selected as the initial active nodes, which attempt to propagate

influence and affect the inactive neighbours at a certain chance. If any neighbour is

activated, the state of the node becomes active, and it starts to propagate influence to

the neighbours. Moreover, both models have two key properties, i.e., propagation and

attenuation. The influence initiates from the seed set, i.e., the selected activated nodes

for propagating influence. These nodes transfer their influence through the correlation

graph, whereas the power of the effect decreases when hopping further and further

away from the activated nodes. The IC model and the LT model represent different

deterministic strategies of influence though they share some common features.

There are also some differences between these two models. The IC model is a kind

of non-deterministic diffusion model, where the receiver’s state is not deterministically

decided by itself but affected and influenced with a predefined probability by the senders

(Y. Jiang & Jiang, 2015). In the IC model, when an active node vi interacts with the

adjacent inactive nodes Γ (vi), it has a single chance to activate each neighbour at a

successful rate, whereas, the features of nodes are not taken into consideration (Y. Wang,

Cong, Song & Xie, 2010). In contrast, the LT model is a deterministic diffusion model

(Y. Jiang & Jiang, 2015). In this model, each node is assigned with a fixed threshold,

where the threshold of node vi can be represented as ϑi. Node vi is influenced by the

neighbours Γ (vi) when the sum of their weights exceeds ϑi. The threshold controls

the opinion or state adoption for each node. Specifically, nodes with a high threshold
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have low probabilities to be influenced, while for those low-threshold nodes, they have

a high tendency of becoming active.

Influence maximization is one of the typical applications based on these two funda-

mental influence diffusion models,

1.1.2 Influence Maximization

In on-line marketing, it is very important to investigate how to disseminate positive

influence in on-line social networks with limited resources, so that the entire network

evolves towards an expected beneficial direction (Domingos & Richardson, 2001). Mo-

tivated by this background, Kempe et al. (2003) formulate the influence maximization

as a discrete optimization problem, which aims to select a finite set of influential users

from the network, expecting that they can effectively spread the positive influence

across the entire network. The selection process is name as seed selection, and the

selected users are call seed set.

Influence maximization is a type of optimisation problem and is NP-hard. Many real-

world applications are far more complex than influence maximization since sophisticated

features, e.g., individual’s personalised traits and behaviours, time-space dynamics,

undiscovered global view, etc., are enabled.

Real-world influence diffusion applications are not just restricted to the influence

maximization. In this thesis, I also investigate how to maintain a long-term influence,

and how to effectively suppress an undesirable influence when multiple influences

emerge.

1.2 Sophisticated Influence

The sophistication of modelling and analysing influence diffusion in complex networks

is mainly reflected in two aspects: the complex nature of networks and characteristics
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of influence.

Many real-world systems in nature are complex networks, with a large collection of

nodes connected by links representing various complex interactions among the nodes

(Ganguly et al., 2009). These systems inherit three significant features, i.e., large scale,

dynamics and complex structure (Newman, 2003; Boccaletti, Latora, Moreno, Chavez

& Hwang, 2006; Ganguly et al., 2009). The paths of propagation vary all the time due

to the dynamics of network topological structure. It is very complicated to track the

influence-diffusion path in an evolving large-scale network. Furthermore, the influence

can be triggered by various types of interactions among the nodes in the complex

networks.

Apart from the complex context, the sophistication also stems from the characterist-

ics of influence, summarised as follows:

• Influence is homophily-driven. Homogeneous influence suggests similarity lead

users to interact, and interactions lead users to behave more similarly (McPherson,

Smith-Lovin & Cook, 2001; Z. Li & Tang, 2012). Specifically, the higher common

preference degree the users have, the greater chance they adopt the behaviours

of their peers. The process of homophily and influence is capable of producing

network convergence (Centola, Gonzalez-Avella, Eguiluz & San Miguel, 2007;

Galam & Moscovici, 1991; DiMaggio, Evans & Bryson, 1996).

• Individuals have different levels of influence acceptance. Users in a social

network are cognitive, and they possess different levels of prior commitment

towards the same item, which is recognised as a critical factor associated with

the preference, affecting individual’s acceptance of the influence (Ahluwalia,

Burnkrant & Unnava, 2000). More specifically, every user has an initial impres-

sion of either unknown or familiar item intrinsically, which is potentially more

dominant than social influences.
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• People tend to be influenced by the neighbours in their social context. Users

in the same network are generally affected by others’ thoughts, feelings and

behaviours (Z. Li & Tang, 2012), and this conformity influence is also named

as confluence (Tang, Wu & Sun, 2013). Users normally have different levels of

individual conformity. In other words, some people are soft-headed and easy to

be influenced by others. Whereas some people are stubborn and their actions do

not necessarily rely on others’ opinions.

• Influence is bi-directional and weighted. User’s preference or prior knowledge

are normally considered when ranking users by their influential capacities (Zhang,

Wang, Han, Yang & Wang, 2015; D. Li et al., 2014). Two influencers normally

exert influences of different degrees on each other, e.g., a computer expert could

exert higher influence on the amateurs in selecting laptops than the others do, but

the amateurs’ opinions may not affect the computer experts a lot.

• The users’ state appear dynamic. Driven by influences, users’ attitude towards

any innovation can be possibly revised. For example, Emily bought a smartphone

and found a tiny piece of dust in the back-end camera. She shared the experience

with her friend Leo. Leo was influenced and started to spread this incidence to his

friends. However, Leo noticed a lot of positive news regarding this smartphone

posted on the wall of his social network, so he bought one as well. Hence,

individual’s attitude is dynamic, which can be revised.

• Influence is of two-sidedness. Both positive and negative opinions towards the

same entity normally coexist in the same environment, and people are getting

influenced by both kind of messages (Fiske, 1980; Rozin & Royzman, 2001). For

instance, ‘word-of-mouth’ effect may be positive to encourage the choice of a

specific product, but it also can be negative to dampen the adoption (East et al.,

2008).
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Therefore, by considering both the real-world environment and complex nature of

influence, it is incredibly challenging to model and analyse the real-world influence

diffusion.

1.3 Research Motivations

From a broad point of view, there are many research motivations of exploring the model-

ling of influence propagation in complex systems. Influence diffusion modelling assists

the sociological researchers with cultural groups’ evolution and culture dissemination

analysis (Centola et al., 2007; Axelrod, 1997). Furthermore, it also helps to investigate

and predict the obnoxious things propagating through the networks (Kimura, Saito &

Motoda, 2008). For instance, computer viruses are capable of spreading across the

computer networks (Serazzi & Zanero, 2004), epidemics and infectious diseases diffuse

via interacting individuals (Webb, 1981), malicious rumours spread in social networks

among the individuals (Doerr, Fouz & Friedrich, 2012). In the context of the social

network, influence-diffusion modelling helps to capture the patterns and trend of the

network evolution, so that the appropriate business strategies can be adopted to reduce

the negative impact and increase the positive influence.

In the contemporary research field, there is much literature describing the modelling

of influence diffusion and its applications.The primary research gaps are identified as

follows:

• Very few research works have been dedicated to the influence modelling in

complex networks. The influence diffusion is oversimplified as a hopping and

infecting process, but the individual’s personalised characters and behaviours

affecting the diffusion of influence are neglected.

• The assumed environment of the spread of influence is different from the complex
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networks in the real-world, which are normally large-scale, dynamic and with

no global view. For example, some literature imitates the dynamics by capturing

snapshots or storing all changes happening around, which seems unrealistic since

this inevitably creates another set of big data. Furthermore, capturing snapshots

or any alternations require a global view, which becomes another obstacle as a

central component is required for monitoring the entire network in real-time.

• Most applications of influence diffusion modelling concentrate on the influence

maximization problem. However, few research works are conducted to investigate

long-term influence maintenance and situations when multiple influences emerge.

By considering the aforementioned challenging issues and the research gaps, the re-

search motivations of this research are mainly explained in two folds from the following

perspectives:

The Modelling Perspective:

• Model the influence diffusion in complex systems through defining the indi-

viduals’ personalised characters and behaviours. This also enables the model to

function without a global view.

• Model the influence diffusion in dynamic and large-scale networks.

• Model multiple influences and the corresponding relations.

The Business/Application Perspective:

Based on the proposed models, the following motivations are expanded:

• Achieve influence maximization via ‘word-of-mouth’ effect in large-scale and

dynamic networks.

• Achieve long-term marketing by maintaining a particular influence.
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• Suppress an undesirable influence effectively without modifying the topological

structure of the networks.

1.4 Research Questions

According to the research motivations mentioned in the previous section, the objectives

of this thesis can be reflected in the following three research questions:

Research Question 1: How to systematically model the influence diffusion for large-

scale and dynamic networks even without discovering a global view?

• Sub-Research Question 1.1: How to generally model the individual’s beha-

viours associated with influence diffusion?

• Sub-Research Question 1.2: How to extend the proposed generic model to

handle the influence maximization in large-scale and dynamic social networks?

Research Question 2: How to maintain an influence message effectively in social

networks?

• Sub-Research Question 2.1: How to develop a model for influence mainten-

ance?

• Sub-Research Question 2.2: How to maintain an influence by utilising the

proposed model?

Research Question 3: How to model multiple influences diffusion in social networks?

• Sub-Research Question 3.1: How to model multiple influences diffusion and

their relationships?

• Sub-Research Question 3.2: How to utilise the proposed model to suppress the

spread of an undesirable influence?
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Figure 1.1: Research Methodology Leveraged in this Thesis

1.5 Design of Study

To answer the research questions, the research methodology utilised in this study is

explained. Next, the proposed approach, i.e., agent-based modelling, leveraged in this

research is introduced. Then, the evaluation methods of the proposed approach are

explained.

1.5.1 Research Methodology

In my PhD study, the research presents an interactive process, including seven major

steps. The research methodology leveraged in this thesis are demonstrated in Figure

1.1, adapted from the Scientific Method as an Ongoing Process (Garland, 2015).

The first step is reviewing literature of the relevant research area. Next, research
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gaps are supposed to be identified, including the issues that have been ignored by

other researchers and performances to be improved. Subsequently, I raise the research

questions based on the observed research gaps. After that, the models are proposed and

developed to tackles the research issues. The next step is collecting valid public dataset

on-line and conducting experiments by using the model. Then, make observation on the

experimental results, explore the insights and evaluate the performance. If the outcome

is satisfying, the model is finalised. Otherwise, the model is considered to be refined or

parameters need to be adjusted, and then conduct experiments again. The final step is

writing research reports and articles.

1.5.2 Agent-based Modelling

By researching and investigating complex problems in open and dynamic environments,

it is universally acknowledged by the research community that the agent-based approach

would be preferable and feasible in this scenario (Macal & North, 2009; Nguyen, 2017).

Therefore, in this project, I attempt to leverage the advantages offered by the agent-based

approach to model the influence diffusion in a complex environment.

Agent-Based Modelling (ABM), also named as individual-based modelling, has

demonstrated many advantages in modelling complex systems (Bonabeau, 2002; Macal

& North, 2009; van Maanen & van der Vecht, 2013; Holland, 1995). ABM is a

specific individual-based computational model, where individuals are modelled the

interactive autonomous agents. Compared with traditional centralised models, ABM is

an appropriate approach to explore the macro world through defining the micro level of

a social system (Bonabeau, 2002; Macal & North, 2009).

A simple and generic ABM is Cellular Automata (CA) (Shiffman, Fry & Marsh,

2012), where each agent keeps evolving by looking at the neighbours’ states. Soph-

isticated ABM sometimes leverages artificial intelligence approaches, such as neural
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networks, evolutionary algorithms, etc., which enable the agents to learn and adapt

their behaviours (Bonabeau, 2002; Chantemargue, Krone, Schumacher, Dagaeff &

Hirsbrunner, 1998).

By utilising ABM to model the influence diffusion process in complex networks,

nodes are modelled as proactive agents interacting with the neighbours by exchanging

the influence messages; the network represents the global environment shared by all the

agents; influence propagation process demonstrates a decentralised evolutionary pattern

driven by the agents’ actions. The entire network evolves through a number of discrete

time steps according to a set of transitional or behavioural rules of each agent.

With ABM applied to influence diffusion modelling, I can concentrate on modelling

individual’s personalised traits and behaviours by neglecting the complexities coming

from the global views.

1.5.3 Evaluation Methods

ABM is proposed to simulate the environments and influence-diffusion phenomenon.

There are a few approaches to regulate the agents’ decisions, including the heuristics,

rules derived from social theories and parametrised utility functions adopted from game

theory.

It is hard to evaluate an ABM itself based on traditional metrics, such as accuracy.

This is because ABM produces and forecasts the trend of a certain phenomenon, rather

than predicting particular values. However, the validation of the model can be obtained

when it is applied to a particular problem, such as influence maximization. Two

traditional evaluation metrics in the field of influence maximization are also considered.

• Influence Activation Coverage (Effectiveness): the estimated number of active

users, i.e., users who have been influenced, after the influence-propagation pro-

cess.
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• Time to carry out the solution (Efficiency): the time required to complete the

seed-selection process.

The evaluation metrics in this thesis are not just restricted to these two traditional

evaluation metrics. New evaluation metrics are defined according to the needs from the

extended models and problems. The details are given in the experiment section of each

chapter.

1.6 Contributions of the Thesis

In this thesis, I have proposed four major influence-diffusion models, focusing on differ-

ent aspects of the propagation process. Based on these four models, the contributions of

this research work are summarised as follows:

(1) I propose a generic agent-based framework to model the influence diffusion,

i.e., Influence Diffusion Multi-Agent System (IDMAS), which serves as a basis for

addressing the related issues in complex networks. The IDMAS does not require a

global view and is capable of tracking a long-term evolutionary trend of social networks

driven by influence, and handling the situations when group opinions revise according

to the changing context. The models and related results are published in (W. Li, Bai &

Zhang, 2016a).

(2) I propose a decentralised approach, called Stigmergy-based Influencers Miner

(SIMiner), to address the influence maximization problem in a large-scale and dynamic

environment efficiently and effectively. SIMiner is applicable in both static and dynamic

complex environments and capable of adapting the solutions in an evolving context.

The model and results are published in (W. Li, Bai, Jiang & Zhang, 2016) and in the

journal of IEEE Transactions on Big Data (W. Li, Bai & Zhang, 2018b).

(3) I study long-term influence maintenance problem by extending the classic

influence maximization problem. The Agent-based Timeliness Influence Diffusion
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(ATID) model is proposed to accommodate the influence maintenance problem. ATID

is capable of capturing two primary elements for maintaining long-lasting influence,

i.e., the temporal feature of a social network and the status of particular influence. The

model and results are published in (W. Li, Bai, Nguyen & Zhang, 2017).

(4) I model multiples influence diffusion, explore the pheromone when various

influences coexist, and study the influence minimization problem based on a proposed

model, called Agent-based Multiple Influences Diffusion (AMID) model. The related

results have been published in (W. Li, Bai, Zhang & Nguyen, 2018b).

1.7 Thesis Structures

The remainder of the thesis is constructed as follows:

• Chapter 2 reviews several state-of-the-art studies of influence diffusion and

influence maximization in social networks, as well as agent-based modelling.

• Chapter 3 introduces a hybrid model and a generic agent-based framework

for modelling influence propagation, which serves as a basis for the following

chapters to explore in-depth issues regarding influence diffusion.

• Chapter 4 presents the Stigmergy-based Influencers Miner (SIMiner) model to

tackle the influence maximization problem in large-scale and dynamic social

networks, which aims to answer Research Question 1.

• Chapter 5 presents an influence maintenance model and investigates how to

maintain a particular influence, which tackles Research Question 2.

• Chapter 6 models multiple influences diffusion and explores negative influence

minimization by leveraging the proposed model. This chapter focuses on Research

Question 3.
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• Chapter 7 concludes the thesis by summarising the advantages and limitations

of the proposed approaches, as well as the outlines for the future work.



Chapter 2

Literature Review

The literature review of the thesis covers three major aspects, i.e., the influence diffusion

modelling, influence maximization and agent-based modelling.

In the PhD study, I reviewed and compared different kinds of influence-diffusion

models. Very few studies merely investigate the modelling of influence diffusion

without applying the proposed model to particular problems. This is because the

values are greatly reflected in the practical applications based on the diffusion models.

Therefore, in this chapter, beside a review of influence-diffusion modelling, I also

further explore the contemporary research works associated with the applications of

the influence-diffusion modelling. Subsequently, I survey the influence maximization

problem as one of the typical applications of the influence diffusion modelling, and

then expand the scope to the extended diffusion models and problems. Next, studies of

multi-agent systems and agent-based modelling in the field of influence diffusion have

been reviewed. In the end, I summarise the findings and briefly explain the research

gaps.

16
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2.1 Influence Diffusion Modelling

There are quite a few existing influence-diffusion models, which are not strictly classi-

fied. In general, these models can be categorised as explanatory models and predictive

models (Guille, Hacid, Favre & Zighed, 2013; M. Li, Wang, Gao & Zhang, 2017).

Epidemics models are similar to the predictive models but sometimes are categorised to

the explanatory models (M. Li et al., 2017).

2.1.1 Explanatory Models

The explanatory models are capable of retracing the influence-diffusion paths (Guille

et al., 2013). Gomez et al. (2010) attempt to infer the structure of the influence

spreading cascade by proposing NETINF. The model has been further extended as

NETRATE, considering the pairwise transmission rates (Gomez-Rodriguez, Balduzzi,

Schölkopf, Scheffer et al., 2011). As these two models cannot handle the dynamics

of the social network, INFOPATH is proposed, as well as a time-varying inference

algorithm (Gomez Rodriguez, Leskovec & Schölkopf, 2013).

The Independent Cascade Model with Pyramid Scheme (ICMPS) proposed in

Section 4 is also a type of explanatory model, which tracks the contributions of activation

of each user.

2.1.2 Epidemic Spread Models

The propagation process of both influence and epidemics share similar patterns. Epi-

demic spread models describe the transmission of communicable disease through

individuals. In other words, the virus spreads from the infected individuals to the sus-

ceptible users via physical interactions. Similarly, the innovations also disseminate from

senders to the reachable contacts in an analogous fashion. Some influence-diffusion

models even stem from the epidemic models. Therefore, to model and analyse influence



Chapter 2. Literature Review 18

diffusion in complex networks, it is essential to review the diffusion models of virus

contagions.

Fundamental Epidemic Models

The epidemic spread models rely on the physical networks, where each node presents

an individual and each link denotes a physical connection between two nodes. There are

four fundamental epidemic spread models, i.e., Susceptible-Infected (SI) model (Bailey

et al., 1975; Pastor-Satorras & Vespignani, 2001), Susceptible-Infected-Susceptible

(SIS) model (Pastor-Satorras & Vespignani, 2001), Susceptible-Infected-Removed (SIR)

model (Xiong, Liu, Zhang, Zhu & Zhang, 2012) and Susceptible-Infected-Removed-

Susceptible (SIRS) model (Jin, Wang & Xiao, 2007).

The differences among these four models are reflected in the rules of contagion and

states. In both SI model and SIS model, only two discrete states exist in the context,

“susceptible" (able to be infected) and “infected". Both models focus on the evolution

of the proportions of nodes in each state. Different from SI model, SIS model allows

the infected users to be cured after having been infected. As for SIR and SIRS model,

another state, i.e., “recovered" (no longer able to infect or be infected), is added. SIR

model also extends SI model, insisting that an individual can be immune from the

contagion after getting cured. Specifically, at each time step, only the nodes infected in

the last time step is able to infect the neighbours with a susceptible state at a certain

probability. At the next step, the previously infected node switches to “recovered" and

becomes immune from being infected. To extend the epidemic model further, SIRS

believes that a cured user also can revert back to a susceptible individual with a certain

probability.
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Epidemic Models in Social Networks

The epidemic models have been extended and utilised in the social network, where the

extensions mainly consider the contextual features of social networks, such as network

topological structures, innovation content, social factors, etc. These models focus on

either simulating the propagation process by defining different states and infecting rules

or exploring the factors affecting the diffusion.

Some representative influence-diffusion models derived from the epidemic models

include the Susceptible-Exposed-Infected-Removed (SEIR) model (M. Y. Li, Graef,

Wang & Karsai, 1999), the infection recovery SIR (irSIR) model (Cannarella & Spechler,

2014), the Fractional SIR (FSIR) model (Feng et al., 2015) and the Emotion-based

Spreader–Ignorant–Stifler (ESIS) model (Q. Wang, Lin, Jin, Cheng & Yang, 2015).

SEIR extends SIR by adding the “Expose" state (M. Y. Li et al., 1999). In the irSIR

model, the infection recovery dynamics have been added to simulate the adoption and

abandonment of user views (Cannarella & Spechler, 2014). FSIR model is developed

based on the intuition that a user with more friends requires more repeated exposures

to spread further the information (Feng et al., 2015). In this model, the infection

probability is proportional to the number of infected neighbours. ESIS simulates the

influence diffusion by considering the information weight with emotion, revealing that

the information diffusion is associated with the propagation probability and transmission

intensity (Q. Wang et al., 2015).

2.1.3 Predictive Models

Predictive models aim to estimate the future influence spread in the entire network ac-

cording to certain factors or heuristics. In this subsection, I introduce three fundamental

models, including Independent Cascade (IC) model, Linear Threshold (LT) model and

General Threshold (GT) model. In these models, each node has two possible states,
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i.e., active and inactive. The set of initially active users are named as seed set, and the

elements inside the seed set are called influencers or seeds.

The GT model is a broader framework of the IC model and the LT model. The IC

model and the LT model are two seminal models which have been widely applied and

extended in modelling influence diffusion in the contemporary research field (Kempe et

al., 2003; W. Chen et al., 2009, 2010, 2011; Shakarian, Bhatnagar, Aleali, Shaabani &

Guo, 2015). Therefore, only classic models are introduced in this subsection, and review

the extended versions for tackling influence maximization problems in the following

subsections.

Independent Cascade Model

The IC model generalises the SIR model introduced previously. The influences are

initiated from seed set S. The active user vi, vi ∈ S attempts to interact and activate the

corresponding inactive neighbour vj, vj ∈ Γ (vi) with Probability pij . If vj is activated

successfully, the state is supposed to be converted to active, and vj starts to exert

influence on the inactive neighbours Γ (vj) at certain probabilities.

Each node has a single chance to activate any of the neighbours. To explain this

further, let node vi be one of the active seeds at time step tm, and vj be one of the

inactive neighbours of vi, vj ∈ Γ (vi). If vi fails to activate vj at tm+1, vj is not supposed

to be activated by vi directly at any other time step tm+n+1, n ∈ N.

Linear Threshold Model

In the LT model, each node vi, vi ∈ V selects a random threshold θi, θi ∈ [0,1], where θi

affects the influence acceptance of vi. A low threshold indicates the user can be easily

affected, while a high threshold means it is difficult to influence this user. Having the

same diffusion process as that of the IC model, influences transfer from the active nodes
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to the inactive neighbourhood. However, the activation rules are different. Suppose that

node vi is influenced by neighbour vj, vj ∈ Γ (vi), at a weight bvi,vj , where

∑
vj∈Γ (vi)

bvi,vj ≤ 1. (2.1)

Node vi becomes active when:

∑
vj∈Γ (vi)

bvi,vj ≥ θi (2.2)

Both the IC model and the LT model inherit two key properties, i.e., propagation

and attenuation. The influences are initiated from the seed set, and they transfer their

influence via the network. Whereas, the power of this effect decreases when hopping

further and further away from the active nodes.

Both models present different deterministic strategies of influence. The IC model is

a kind of non-deterministic diffusion model, where the receiver’s state is not determ-

inistically decided by itself but affected and influenced with a predefined probability

by the senders (Y. Jiang & Jiang, 2015). By contrast, the LT model is a deterministic

diffusion model, where a pre-defined threshold controls the opinion adoption for each

node. In other words, nodes with high threshold have lower chances to be influenced,

while for those low-threshold nodes, they possess a higher tendency of becoming active.

General Threshold Model

The General Threshold (GT) model is a generalised framework of which the LT model

and the IC model are special cases (Kempe et al., 2003; Ahmed & Ezeife, 2013).

Suppose that an inactive node vi and the set of its active neighbours Γ (vi) exist in the

network. To measure the probability that vi will become active, the joint influence

probability of Γ (vi) on node vi, i.e., pvi(Γ (vi)), is supposed to be calculated first.

pvi(Γ (vi)) can be formulated in Equation 2.3.
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pvi(Γ (vi)) = 1 −Πvj∈Γ (vi)(1 − pvj ,vi), (2.3)

where pj,i refers to the influence probability of vj on vi. Node vi turns active if

pvi(Γ (vi)) ≥ θi, where θi refers to the threshold of vi.

These seminal approaches model the influence propagation as a simplified central-

ised diffusion process (W. Chen et al., 2009; Kempe et al., 2003). In particular, a central

component is responsible for controlling the diffusion process. However, such models

are not applicable without a global.

2.2 Influence Maximization

In this subsection, the influence maximization, its extended problems and the corres-

ponding revised diffusion models are reviewed. It is almost impossible to separate

the influence maximization and the extended problems from the influence-diffusion

modelling, since most newly proposed seeding algorithms are developed on the basis of

the existing or extended diffusion models.

Influence maximization is first studied by Domingos and Richardson as a probab-

ilistic problem (Domingos & Richardson, 2001). Kempe et al. (2003) formulate the

influence maximization as a discrete optimisation problem, which aims to select a finite

set of k influencers, i.e., S, ∣S∣ = k, from the network, expecting that they can effectively

spread the positive influence, and maximize the impact f(S) across the entire network.

The initially selected users S can be called seed set, and the seeding process is named

as seed selection. The influence of seed set is defined as the number of active nodes

at the end of the propagation process. This is usually referred to as influence spread

or influence coverage. To find a solution S for the influence maximization problem is

NP-hard.
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Several classic seed selection approaches presented in the literature are listed as

follows. They are normally regarded as the counterparts of the proposed algorithms.

• Greedy Selection: attempts to reach the maximum influence marginal gain in

selecting each seed, coming with a 1 − 1/e approximation guarantee, since f(.)

satisfies normalization (f(∅) = 0), monotonicity (S ⊆ S′, f(S) ≤ f(S′)) and

submodularity (diminishing returns property, i.e., S′, S′′ ⊆ S,S′ ⊆ S′′, f(S′ ∪

{s}) − f(S′) ≥ f(S′′ ∪ {s}) − f(S′′)) conditions (Nemhauser, Wolsey & Fisher,

1978; Kempe et al., 2003).

The greedy algorithm facilitated in the influence maximization problem is simulation-

based, which selects each seed by running numerous times of Monte-Carlo simula-

tions. For example, in seed selection, the first seed can be identified by estimating

each individual’s influence through the simulations. Next, having the first in-

fluencer involved, the second seed can be identified by estimating the influence

coverage of all the possible combinations, and so on and so forth. Eventually, the

seed set will be selected.

• Random Selection: selects each seed randomly, so that the seed set grows

incrementally. This approach does not follow any heuristics.

• Degree-based Selection: ranks the users based on out-degree, i.e., the size of

reachable users.

• Weighted Degree-based Selection: ranks the users based on the cumulative

influence-diffusion probabilities to the neighbours.

• Degree Discount Heuristics: extends the degree-based selection, and is de-

veloped based on the intuition that many of the most central nodes may be

clustered. Therefore, it is not necessary to target all of them (W. Chen et al.,

2009). Specifically, whenever a neighbour of an inactive node becomes active,
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the degree of the inactive node decreases by one. Next, the node with the highest

node degree in the network is supposed to be selected into seed set.

Greedy selection is one of the strongest baselines in the influence maximization

problem, and it appears to be more effective than most of the existing algorithms.

However, the greedy selection is not scalable for large-scale networks. Many studies

aim to develop scalable algorithms without decreasing the effectiveness significantly.

Some other research works in this field investigate the influence maximization by

considering particular features affecting the information dissemination, such as users’

preferences, communities and emergence of negative opinions. Furthermore, to relax the

assumptions of the traditional influence maximization problem, complex environments

are taken into consideration, including the dynamics of networks and temporal features.

Based on the discussions above, in the following subsections, the studies related to

the influence maximization have been reviewed.

2.2.1 Scalable Seeding Algorithms

As mentioned previously, the greedy algorithm in the influence maximization problem

can carry out relatively optimal solutions, which are normally better than the existing

ones. However, the greedy selection is not applicable to the large-scale networks due to

its scalability issue. Therefore, a great many studies have been dedicated to improving

the efficiency and effectiveness of seed selection algorithms.

Chen et al. (2009) study the efficient influence maximization by improving the

original greedy selection, and propose a novel seed selection approach, namely, Degree

Discount Heuristics (DDH) for the uniform IC model.

Wang et al. (2012) handle the influence propagation within large-scale networks by

proposing a new heuristic algorithm based on the IC model. The proposed algorithm

is capable of reducing the operating time by limiting the computation related to local
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influence regions of nodes. Furthermore, a tunable parameter is defined to control the

balance between effectiveness and operating time.

Leskovec et al. (2007) propose the CELF optimisation that significantly reduces

the number of calls (Monte-Carlo Simulations) for the spread estimation procedure,

which improve the running time of the classic greedy algorithm by up to 700 times.

However, the CELF optimisation still turns out to be not efficient when being applied

to super large networks since the first iteration is computationally expensive (W. Chen

et al., 2010; A. Goyal, Bonchi & Lakshmanan, 2011). Therefore, Goyal et al. (2011a)

improve CELF by proposing the CELF++, which further reduce the number of influence

spread estimation calls. Based on the experimental report, the performance of CELF++

is approximately 33%-55% faster than that of CELF.

Goyal et al. (2011b) propose an efficient and effective algorithm based on the LT

model, called SIMPATH, which includes three ways of optimising the computation and

improving the quality of the seed selection. The quality of the seeds is on the basis of

the fact that the larger its spread, the higher its quality.

On top of that, the community-detection approaches are also utilised in the influence

maximization problem to improve the quality of the seed set, as well as addressing the

efficiency issues.

Wang et al. (2010) introduce a community-based greedy algorithm to mine the top-k

influential nodes on the basis of influence diffusion speed. The proposed algorithms

detect communities in a social network by considering information diffusion and select

communities to find the influential nodes.

Chen et al. (2014) leverage the community structure and develop two efficient al-

gorithms, i.e., Community and Degree Heuristic with Kcut (CDHKcut) and Community

and Degree Heuristic with SHRINK (CDH-SHRINK), which significantly decrease the

number of candidate influential nodes. Both scalable algorithms significantly outper-

form state-of-the-art algorithms in efficiency.
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However, very few studies handle the influence diffusion in both large-scale and

dynamic environment. Furthermore, most proposed algorithms are not superior to the

traditional greedy algorithm in terms of effectiveness though the efficiency has been

greatly improved.

2.2.2 Considerations in Influence Maximization

As introduced in Chapter 1, in reality, influence possesses sophisticated characteristics

which inevitably lead to difficulties in analysing the diffusion process. These charac-

teristics become major considerations to tackle the real-world influence maximization

problem.

It is important to understand the factors affecting the probabilities of influence.

Goyal et al. (2010) research learning influence probabilities in social networks based

on the users’ past actions, and successfully predict the time by which a user may

be expected to perform an action. Similarly, Saito et al. (2008) estimate influence

probabilities by measuring pairwise influences among the individuals. Based on these

studies, the probabilities are largely dependent on the individual’s behaviours.

Preference-aware Influence

Preference turns out to be one of the most important factors in analysing the influence

diffusion in social networks since it contributes to the prediction of influential link

formation, as well as the estimation of the corresponding strength. According to the

underlying social theories, social contagion describes a sort of phenomenon where

user’s preferences and actions are influenced by interpersonal contact, impacting the

aggregate diffusion and spread of behaviours, new products and innovations (Watts &

Dodds, 2007). The user preference can be explicitly reflected as the ratings to items in

a heterogeneous network.
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Arora and Allenby (1999) insist that users’ purchasing behaviours are significantly

impacted by the preference structures and the influence they have in a group. Jiang et al.

(2015) design a Preference-based Trust IC (PTIC) model, which takes account not only

the trust connectivity, but also user preference in constructing influence propagation

network. The experimental results demonstrate a better outcome when considering both

trust and preference in the influence maximization problem than that of considering

trust relationship only. Wu et al. (2016) investigate modelling users’ preference and

social links by proposing a model with the explanatory ability and predictive power.

To further narrow down the scope of user’s preferences, i.e., topical interest as a type

of user preference, the investigation of topic-level influence has been studied. Tang et al.

(2009) propose topical affinity propagation to model the topic-level social influence and

measure the strength quantitatively. By considering user’s preferences, Barbieri et al.

(2012) extend the classic IC and LT models to be topic-aware, named as Topic-aware

Independent Cascade (TIC) model and Topic-aware Linear Threshold (TLT) model,

respectively. Chen et al. (2015) define and study topic-aware influence maximization

problem, where the Maximum Influence Arborescence (MIA) model has been proposed

to approximate the computation of influence spread.

Negative Influence

The real-world is filled with positive information, e.g., advertisement with positive

opinions recommending the audience to purchase, while the negative, e.g., rumour,

is usually rarer, making the adverse information more diagnostic (Fiske, 1980). In

reality, the Word-of-Mouth (WoM) effect may be either positive or negative (East

et al., 2008). Motivated by this background, many researchers extend the influence

maximization problem and explore the approaches to minimise the adverse impact of

an existing influence in a social network. To handle the emergence of negative opinions,

the traditional influence diffusion models are supposed to be extended.
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Liu et al. (2010) propose an Ising model to predict positive and negative opinion

formation in a social network by considering the neighbourhood-based interactions.

Wang et al. (2016) propose the IMIC-OC model to explain how users build opinions

during the process of information spreading, where both positive and negative opinions

are considered. Chen et al. (2011) model influence maximization in social networks

when negative opinions may merge and propagate. The IC model with negative opinions,

i.e., IC-N, has been proposed, where each individual possesses the same quality factor,

referring to the probability of turning to negative.

A bulk of studies attempt to block an influence in a very straightforward way, i.e.,

altering the structure of a social network. For example, Kimura et al. (2008; 2009)

claim to minimise the spread of influence contaminations by removing links. Similarly,

Wang et al. (2013) suggest minimising the negative influence by blocking a limited

number of nodes in social networks, and Yao et al. (2015) adopt the same solution from

a topic modelling perspective.

However, these approaches can only be applied based on the assumption that the

organisation is authorised to manage network topological structures. In reality, such

modifications are generally not applicable.

On the other side, some researchers tend to achieve the negative influence minim-

isation by levering the power of competitive influence. In other words, the negative

influence minimisation is developed based on the extended models of competitive

influence. For example, He et al. (2012) address the influence blocking maximization

problem by selecting seed nodes to inject the positive opinions to fight against the

negative rumour.

Most studies relying on the competitive influence models intent to suppress an

undesirable impact by introducing the opposite influence only. Whereas, the possibility

of minimising the adverse impact by introducing other influences has not been experi-

mented. More introductions and studies regarding competitive influence are provided in
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the following subsection.

Competitive Influence

In traditional influence maximization problem, the influencers are identified by con-

sidering a single influence. However, in real-world, various influences coexist in the

same environment. Competitive influence diffusion and its corresponding influence

maximization problem have been investigated by extending the classic IC model and

the LT model.

Bharathi et al. (2007) extend the IC model and focus on the scenario when multiple

innovations are competing within a social network. Based on the traditional IC model,

Zhu et al. (2016) present the C-IC model to characterise how various influences

are competing with others in social networks. Borodin et al. (2010) propose an

extended version of the LT model to handle the competitive influence diffusion of

two different technologies. Liu et al. (2016) extend the LT model to establish the

diffusion-containment model, i.e., D-C model, by incorporating the realistic specialities

of the containment of the competitive influence spread. He et al. (2012) attempt

to tackle the influence blocking maximization problem and extend the LT model to

incorporate competitive influence diffusion. Kostka et al. (2008) present the rumour

game which models the dissemination of competing information in social networks.

Similarly, Trpevski et al. (2010) model the competitive rumour spreading by extending

a well-known epidemic SIS model. Goyal and Kearns (2014) study the product adoption

competition between two firms by developing a game-theoretic framework.

However, in nearly all the research work mentioned above, only one type of influence

is considered. In other words, these studies focus on the adoption of a particular product

or opinion, while other influences in the same context have been ignored. With an

exception, Tang et al. (2009) propose topical affinity propagation to model the topic-

level social influence, which can identify the experts in different topics and measure the
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strength quantitatively. Nevertheless, Tang’s work is developed based on the assumption

that no dependencies are presented among the various topical influences. The impacts

and relationships among the multiple influences are neglected.

2.2.3 Dynamics in Influence Maximization

Modelling emergent properties of social networks appears to be one of the pillars of

social network science (Holme, 2015). Real-world social networks possess a highly

dynamic nature and evolve rapidly over time (R. Kumar, Novak & Tomkins, 2010;

Leskovec, Kleinberg & Faloutsos, 2007). More importantly, the network evolution

is continuous. Some research works have been dedicated to modelling the influence

propagation in dynamically temporal social networks (Holme, 2015; B. Wang, Chen,

Fu, Song & Wang, 2017; Song, Li, Chen, He & Tang, 2017). Within such a dynamic

environment, the influence maximization problem becomes more challenging. In this

subsection, some representative studies of two categories are mainly reviewed, including

the dynamic environment and the corresponding strategies.

Temporal Features and Dynamic Topological Structure

Chen et al. (2014) formulate the influence maximization problem by focusing on the

temporal factors based on the heat diffusion model, a realistic model that simulates

the social influence in accordance with a physical phenomenon, i.e., heat flow (Ma,

Yang, Lyu & King, 2008) . Zhuang et al. (2013) study influence maximization in

dynamic social networks and first introduce the concept of probing in dynamic networks.

Similarly, Bao et al. (2016) study influence maximization in dynamic social networks

by proposing an on-line randomised algorithm dealing with both unknown and non-

stationary influence probabilities. In (Tong, Wu, Tang & Du, 2017) and (Gayraud,

Pitoura & Tsaparas, 2015), traditional IC model and LT model have been extended to
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capture the dynamic aspect of real social networks. Karim and Holme (2013) attempt to

handle the dynamics of users’ interactions by proposing a threshold model of cascades.

Gomez-Rodriguez et al. (2016) develop a flexible model, i.e., NetRate of the spatio-

temporal structure underlying diffusion process.

Whereas, these approaches consider only a few dynamic features of a social network,

such as dynamic propagation probabilities. The fully dynamic topological structure

of real social networks is not handled when modelling the influence diffusion. With

an exception, Naoto et al. (2016) propose the first real-time fully-dynamic index data

structure designed for influence analysis on evolving networks, where five network

operations, i.e., vertex additions, vertex deletions, edge additions, edge deletions, and

propagation probability updates are included.

However, the state-of-the-art dynamic influence maximization solutions are only

capable of processing hundreds of updates per second, which is still far from the updated

rate in real-world (Ohsaka et al., 2016). In this sense, some research works have been

dedicated to the dynamic social streams, which aim to investigate the possible solutions

for real-time influence maximization in a dynamic environment.

Konstantin et al. (2013) present STRIP, the first streaming method computing

influence probabilities. Subbian et al. (2016) propose an influence-query framework

to mine influencers in a time-sensitive fashion from streaming social data. Wang et

al. (2017) propose the Influential Checkpoints framework and a Sparse Influence

Checkpoints framework to tackle the Stream Influence Maximization (SIM) querying

processing.

In spite of the studies of social streaming, for large-scale networks, it is almost

impossible to imitate dynamics by capturing snapshots or storing all changes happening

around since this inevitably creates another set of big data. Furthermore, capturing

snapshots or changes require a global view, which becomes another obstacle as a central

component is required for monitoring the entire network in real-time.
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Adaptive Influence Maximization

Adaptive influence maximization aims to investigate the adaptive budget allocations

based on the changing environment (Golovin & Krause, 2011; Alon, Gamzu & Tennen-

holtz, 2012; Soma, Kakimura, Inaba & Kawarabayashi, 2014).

Hatano et al. (2016) address budget allocation for maximizing influence by consid-

ering adaptive strategies. Yang et al. (2016) model the continuous influence maximiz-

ation problem and devise a coordinate descent framework. Similarly, Rodriguez and

Schölkopf (2012) study influence maximization in continuous time diffusion networks

by developing INFLUMAX model that accounts for the temporal dynamics underlying

diffusion process. Song et al. (2017) address the influence maximization in dynamic

social networks by leveraging an interchange greed approach. The elements in a seed

set are constantly replaced with the evolution of the network, rather than reselecting

all the influencers. An efficient algorithm based on UBI, i.e., UBI+ has been proposed,

which can improve the computation of node replacement upper bound.

2.3 Multi-Agent Systems and Influence

Agent-Based Modelling (ABM) and Multi-Agent Systems (MAS) have demonstrated

many advantages in modelling complex systems, simulating continuous variations and

analysing the trend of a particular phenomenon (Bonabeau, 2002; Macal & North,

2009). Moreover, they are more suitable for exploring the macro world through defining

a micro level of a social system (Bai, Zhang & Zhang, 2005; Ye, Zhang & Vasilakos,

2016).

MAS is comprised of numerous autonomous interactive agents within the same

environment, which are supposed to be goal-driven and self-directed (Wooldridge, 2009;

Gilbert, 2008). There are substantial and active literature of ABM and MAS, including
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methodologies and applications (Macal & North, 2009), and the agent-based approach

has been widely applied to simulate a particular phenomenon at a microscopic level.

Based on the existing research works (Sycara, 1998; Wooldridge, 2009; Su, Zhang &

Bai, 2015; Bai et al., 2005; Ye et al., 2016), the major characteristics of MAS can be

summarised as follows.

• Autonomous: agents access the environment and behave independently. They

can make decisions based on the heuristics or rules.

• Adaptive: the behaviours of the agents are adapting based on the changing

environment.

• Local view: each agent has its own local view, covering partial space/information

of the entire environment, as well as limited understanding of other agents’ states.

• Limited capabilities: the capabilities of each agent are limited. In particular,

they are usually restricted by the design or energy.

• Decentralised: The MAS does not allow a central control. The information

appears decentralised and is stored at the local storage of each individual agent.

• Openness: MAS is an open system, allowing the existing agents to discompose

and new agents to join in the same environment.

On the other side, the agents can interact with each other directly or indirectly. More

specifically, agents contact the reachable peers and deliver information directly. In

contrast, the communications among the agents also can be mediated through leaving

and accessing messages in the same environment. In this subsection, I will review the

studies of both types of MAS being utilised in the influence spread analysis.
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2.3.1 Simulations of Influence Diffusion

Many studies have been focusing on the agent-based simulations for recreating and pre-

dicting the appearance of a particular social phenomenon (Gustafsson & Sternad, 2010).

Almost all the studies in this field leverage the direct communicational mechanism,

where the agents exchange the information directly with each other.

The influence modelling using agent-based approaches defines three levels of social

influence (Kiesling, Günther, Stummer & Wakolbinger, 2012).

• Micro-level influence travels through pairwise communication links. The WoM

effect is one of the typical forms of micro-level influence, where the information

is passing from person to person by oral communications.

• Meso-level influence stems from an agent’s immediate social environment, such

as neighbourhood or community. Meso-level social influence is associated with

some typical concepts, incorporating group conformity, social comparison, herd-

ing behaviour, etc (Veblen, 2017).

• Macro-level influence is defined as global interactions at the level of the en-

tire network as a whole. The network-level opinion aggregation pheromone

demonstrates a macro-level influence (?, ?).

On top of that, social theories play a significant role in explaining various types of

social phenomena and modelling influence diffusion. According to the social influence

and homophily effect, homogeneous influence suggests that similarity leads users to

interact and interaction leads users to behave more similarly (Z. Li & Tang, 2012;

L. Wu et al., 2016). The demographic and preference similarities encourage the users

to adopt the behaviours or accept the influence from the neighbours (Aral, Muchnik

& Sundararajan, 2009). In other words, individuals tend to follow the behaviours and

conform the ideas of their friends since they view them as a source of valid information;
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adjacent users normally exhibit similar behaviours (Tang, Chang & Liu, 2014; Kelman,

1961). Many social influence simulations are developed based on such rules.

Centola et al. (2007) articulate that the influence propagation processes can produce

global convergence. Axelrod (1997) also shows the homophily and influence are

capable of acting of local convergence mechanisms, and both produce emergent social

cleavages that lead to global polarisation. Tang et al. (2013) formally define the

influence conformity and conduct contribution analysis of various social factors, and

their studies show that the conformity plays a significant role in predicting influence

acceptance. Van Maanen and Van der Vecht (2013) propose a multi-disciplinary agent-

based approach for studying on-line social network influence. Li and Tang (2012)

investigate the non-positive social impact on group polarization based on Hop-field

network model by considering the dyad and triad influence and social pressure, so that

social structure balance is achieved. Li and Tang (2015) investigate the microscopic

social mechanisms through ABM and explore the non-positive social impact on group

polarization, where the Voter Model (VM) and Hopfield Attractor Model (HAM) have

been applied. Empirical data evidence proves the importance of non-positive influence

in promoting voters’ opinion polarisation. The social network demonstrates a convergent

trend when considering three types of valence of the social identity tie. The proposed

model considers the polarity relationship among the users, which has been measured by

dyadic and triadic closure.

Whereas, the complex nature of influence is not considered in the most of existing

research work. Moreover, one of the critical assumptions is that users’ opinions are not

supposed to be revised once formed. The dynamics of individual’s complex behaviours

and varying personalised features are ignored as well.
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2.3.2 Stigmergic Interactions

The stigmergic interactions is a type of indirect communication utilised in the ant and

stigmergy-based algorithms. The agents are not supposed to interact with each other

directly, but allocating the messages to the same environment, which are accessible and

can be referred by other agents. Stigmergy-based systems have shown that they can

be applied to generate complicated and robust behaviours in the systems even if each

ant has limited intelligence. Some researchers have applied stigmergy in the computer

science field.

Dorigo et al. (2000) introduce how to solve the Travelling Salesman Problem (TSP)

(K. Wang, Huang, Zhou, Pang et al., 2003) by leveraging ant and stigmergy-based

algorithms, where the pheromones are allocated by considering the distances among the

cities. Ahmed et al. (2014) propose a stigmergy-based approach for modelling dynamic

interactions among Web service agents in decentralised environments. Takahashi et

al. (2012) propose an anticipatory stigmergy model with allocation strategies for

sharing near future traffic information related to traffic congestion management in a

decentralised environment. Hadeli et al. (2004) introduce a novel design and prototype

implementation for manufacturing control systems using stigmergy, which tends to

handle the changes and disturbances. Lewis (2013) claims that the essential social

networking behaviours of human beings are in fact forms of stigmergy, and attempts to

explain a theory of group formation based on stigmergy.

The concept of stigmergic interactions is not new in the contemporary research field.

However, this mechanism is not fully utilised in the influence maximization problem

though it demonstrates its superior in handling optimisation problems in a distributed

manner.
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2.4 Summary

In this chapter, I have given a detailed review of the related works in the field of

influence diffusion modelling, influence maximization and agent-based modelling.

By analysing the pros and cons of these studies, the gaps from the literature review

are summarised as follows.

• Most studies consider the influence as a simple hopping and infecting process,

but the complex nature of influence is ignored, as well as individuals’ personal

traits, behaviours, information intake capacity. These factors also contribute to

the influence acceptance.

• It is difficult for the existing influence-diffusion models to function when the

global view is not available.

• Very few studies focus on handling both dynamics and large-scale networks at

the same time. In spite of this, the existing algorithms appear not superior to the

classic greedy selection though the efficiency is greatly improved.

• Few studies explore the long-term evolutionary trend of social networks driven

by influence. Furthermore, how to handle the situations when group opinions are

revised according to the changing context is not systematically articulated.

• Influence maximization problem has been extensively studied. However, there

is so far nearly no research work tracking the status of influence messages or

investigating the maintenance of a particular influence.

• Almost no research work has been conducted to modelling multiple influences

coexisting in the same environment. Such phenomenon is worthy to be investig-

ated for suppressing the negative opinions especially without any control to the

network topological structure.
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The literature review has pointed out the above research gaps of influence-diffusion

modelling and influence maximization. This also reveals the in-depth studies demanded

in this field. The solutions presented in this thesis cover the aforementioned research

gaps by proposing influence diffusion models from an agent-based perspective to

address the influence maximization and the extended problems.

Specifically, in Chapter 3, the fundamental agent-based framework is proposed

and articulated, serving as a basis for the further investigations. A novel decentralised

model, i.e., SIMiner, introduced in Chapter 4 is capable of handling both dynamic

and large-scale networks. In Chapters 5 and 6, studies of influence maintenance and

multiple influences diffusion using agent-based approaches are conducted extensively,

which attempt to address the real-world issues for the applications of influence diffusion.

The detailed realisation of the agent-based models and solutions are presented in the

following chapters.



Chapter 3

Agent-based Influence Diffusion

Modelling

The challenges of modelling influence diffusion stem from its complexity and the

evolving environment. Therefore, it is essential to develop a generic framework for

handling both features before investigating further.

In this chapter, I systematically articulate the complex effects of social influence and

model the influence-diffusion space as a Hybrid Social Network (HSN), which could be

formed by merging a number of homogeneous or heterogeneous networks representing

possible influence propagation channels. Furthermore, by considering the sophisticated

influential relationships derived from the users’ interactions, I proposed an agent-based

framework to architect the influence diffusion in complex networks through modelling

the individual’s characteristics and behaviours that caused influence propagation.

In this thesis, the proposed generic hybrid and agent-based framework serve as the

foundation for exploring in-depth issues of influence-diffusion in the following chapters.

In Chapter 4, the proposed generic framework will be extended by incorporating the

indirect communications among the agents. The extended influence-diffusion model

can assist researchers in tackling the scalability issues and networked dynamics of the

39
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influence maximization problem. In Chapter 5, I further expand the generic agent-based

framework by considering the status of influence messages and investigate long-term

influence maintenance problem. Chapter 6 studies multiple influences on the basis

of the proposed generic agent-based framework. The model inherits some of the key

features from the influence-maintenance model introduced in Chapter 5.

3.1 Overview

Most research works investigate influence diffusion in social networks based on the

existing network topological structure, where friendship-affiliation links represent

influence propagation channels, and the strength of connections is considered as the only

factor affecting the influence propagation probability. Therefore, an ordinary assumption

is that friendship affiliation links are equivalent to influential links. However, this cannot

hold in general, as friendship-affiliation links and influential links are naturally two

different types of links coexisting in a social network.

Influence is a hybrid effect, which can be decomposed into multiple components fo-

cusing on different activities of human-beings (Anthony, 2009). Specifically, influence

is presented as a mixed type of communications and interactions, such as perceiving

information posted by the friends of on-line social networks, delivering messages or

emails, conducting face-to-face discussions, reviewing the comments from web-pages,

etc. Hence, any of these behaviours are capable of exerting influence and impact-

ing individuals’ decisions. However, most researchers ignore the multiple possible

interactive diffusion channels. On the other side, in many situations, individuals are

more likely getting influenced by the ‘stimuli’ left by others, especially in E-commerce

domain. Feedbacks of a particular product, such as reviews, ratings, comments from

previous buyers influence the purchasing decisions of others, even they are not adjacent

neighbours and without any immediate interactions. Therefore, the influence is still
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capable of propagating through the users in the same context without explicit links,

since they are affiliated implicitly through other features, such as similar preference and

criteria for items. Apparently, this is an important feature to be considered in influence

propagation modelling, but unfortunately, ignored in most existing works.

3.2 A Generic Hybrid Framework

3.2.1 Direct and Indirect Influence

Influence diffusion is a sort of communication which concerns the spread of mes-

sages perceived as new ideas or innovations (Y.-C. Chen et al., 2014). Thus, in this

chapter, direct and indirect influence emphasises the types of communicational channels.

More specifically, direct influence refers to the immediate interactions or message

reciprocation among users with explicit connections, such as friendship affiliation.

The concept of indirect communicational influence stems from the ant and stigmergy

algorithms, where ants interact each other and conduct group activities by leaving and

sensing pheromones (Dorigo et al., 2000). By tailoring this idea, indirect influence

describes a form of indirect communications among the users mediated by modifications

of the environment. Specifically, some users are not connected explicitly, but diffuse

influences by leaving the messages, such as ratings, comments, reviews, beliefs, etc.

Meanwhile, individuals are getting influenced by reading the information produced by

their counterparts, since they locate in the same environment. In other words, indirect

influence implies something shared among the users, which can generally be regarded as

common preferences from a broad view. Sometimes, the strength of indirect influence

is even more prominent than that of direct influence, especially in sparse networks.

Figure 3.1 demonstrates two typical examples focusing on direct and indirect com-

municational influence. In Figure 3.1a, three possible direct influence-diffusion channels
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(a) Direct Influence Propagation (b) Indirect Influence Propagation

Figure 3.1: Influence Diffusion in Social Networks

exist. Whereas, other types of nodes, i.e., item and shop, are involved in Figure 3.1b,

where users a and b potentially influence each other via the messages delivered to the

item and shop, though they are not connected explicitly in this social context. As for

the other two pairs of users, i.e., users a and c, users c and b, they share both implicit

and explicit influential links.

3.2.2 Hybrid Social Network

Hybrid Social Network refers to an implicit heterogeneous user-centric network com-

prised of a number of social networks concerning possible direct and indirect influence

propagation channels. It aims to model various influential relations among the individu-

als. Meanwhile, it implies the decomposition of influence effects, which gives high

extensibility and flexibility. When other available influential factors are added or the

existing elements are revised, the model can be adapted easily by updating a particular

facet.

Figure 3.2 demonstrates a generic HSN model proposed in this thesis. Social
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Figure 3.2: Hybrid Social Network Composition

networks inside the rectangle container represent different influence diffusion channels,

and are supposed to be extracted from the original heterogeneous social network. There

are two types of networks, i.e., the direct and indirect influence propagation network.

The former is a homogeneous network, while the latter is a heterogeneous network,

where the indirect influential relationships are established via their corresponding object

layer. Specifically, in this figure, Ga
I
′ is the object/item layer of network Ga

I . GHSN is

constructed by merging all the social networks.

HSN demonstrates a network of networks pattern driven by merging various social

networks from a low level and reconstructing a hybrid influence-diffusion platform. As

mentioned previously, a HSN is comprised of direct and indirect influence propagation

networks. The former incorporates the explicit social networks with direct links, which

show full lines in this figure. Whereas, the latter consists of a variety of implicit

networks formed by examining the common features or behaviours of the users, where

the implicit relations are denoted using dotted lines.

HSN can be characterised by the diverse entities and influential relations among

them. Take Taobao1 as an example, customers (users), shops, items, etc. coexist

with various types of ties. Customers are not only capable of establishing affiliation

1http://world.taobao.com/
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relationships by following others, but also linked with certain items by adding them to

watching lists or rating them after transactions. In addition, users develop influential

implicit relationships with others via other types of entities in the social context. Since

users with common interests are eager to spend efforts on reading and writing the

attributes of these entities. In other words, customers can interact indirectly by accessing

the entities in the same context. Thus, the implicit influence channels can be established

on the basis of common features of the customers, such as preferences.

The proposed HSN is a type of centralised model, which demonstrates a user-centric

pattern in modelling influence diffusion in social networks. However, HSN requires

attention to other types of entities, as well as the interactions among users and these

entities. Moreover, HSN still needs the topological structure of various networks, which

appears relatively difficult to be obtained. Therefore, inspired by the fundamental

concepts derived from HSN, a generic multi-agent system is designed for modelling

influence diffusion.

3.3 Influence Diffusion Multi-Agent System

To simplify the complicated influence-diffusion modelling process, I proposed a Multi-

Agent System (MAS), namely, the Influence Diffusion Multi-Agent System (IDMAS),

to model the propagation process as an evolutionary behavioural pattern of a social

network.

Fig. 3.3 shows a generic framework of IDMAS. Users in a social network are

represented as autonomous and self-directed agents (Macal & North, 2009). They

locate in the centre of their local social environments, i.e., directed weighted influence

ego-network. The influences among the agents are mediated by direct communications.

Each agent has a preference state (see Definition 3.2) towards a hypothesis item, where

the state is affected by two major factors, i.e., individual’s valuation of the product
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Figure 3.3: Framework of IDMAS

(Bhagat, Goyal & Lakshmanan, 2012) and social conformity (Tang et al., 2013). More

specifically, an agent not only evaluates its intrinsic appreciation towards a particular

item but also handles the social influence coming from the neighbours, especially

those with diverse opinions. Hence, in IDMAS, agents are capable of adapting their

preference states and behaviours based on the internal factor: predisposition towards an

item or an event, as well as the external factor: social context. In this way, agents are

attempting to reach a “comfortable" state over time. On the other side, limited global

information, i.e., Common Knowledge Repository (CKR), is available for all the agents.

CKR provides sufficient data for all the agents to evaluate personalised parameters by

training themselves locally. Meanwhile, agents’ critical behaviours are also uploaded to

the CKR.

Compared with the traditional influence diffusion models (Kempe et al., 2003), the

proposed system demonstrates the advantages in three fields. (1) IDMAS is capable of

capturing the complexity of influence diffusion due to the heterogeneous entities in a

social environment since it concentrates on modelling individuals at a microscopic level.
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IDMAS neglects influence propagation paths and attenuation degrees but focuses on

the users’ personalised characteristics, behaviours and the social influence undertaken

from the local context at a particular time frame. Moreover, there can be numerous

individualised parameters when analysing influence diffusion in a social network, such

as behavioural, demographic, geographic, status-related, and preference similarities

(Aral et al., 2009). By utilising ABM, individual agents can be heterogeneous and

modelled by selecting the principle features associated with the influence capabilities

in a specific context. (2) IDMAS can aid the analysis and predictions of networked

evolution by considering time series. More specifically, the entire network evolves

through a number of discrete time steps according to a set of transitional or behavioural

rules of each agent. The network in time step ti is regarded as generation gi. The

agents keep adapting and evolving, and the network becomes generation gi+1 in the next

time step ti+1. In this way, the network state at ti+n can be predicted. Thus, IDMAS

simulates the macroscopic influence trend through defining the micro-level agents. (3)

Each user agent in IDMAS is capable of adapting its personalised parameters, such as

the degree of stubbornness, i.e., a factor of a user reflecting how easily he or she can be

influenced by others, based on the historical behavioural transactions and limited global

information retrieved from CKR. This feature allows agents, even those with very few

past transactions, to train themselves.

3.4 Modelling Agent-Based Influence Diffusion

In this section, I drill down into the details of the proposed model. Each individual

agent’s personalised features and actions with respect to influence are elaborated and

formally defined.

Inspired by the idea presented in (Chantemargue et al., 1998), the architecture

of individual agents is designed as the form shown in Figure 3.4. For each agent,
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Figure 3.4: Individual Agent Architecture of IDMAS

three major actions are incorporated, i.e., constructing local influence environment,

learning the personalised parameter and making decisions for preference state revision.

Specifically, to establish a local environment, agents attempt to estimate the influential

relationships based on the past transactions. Next, by examining both identical and

adverse opinions, an agent measures the Comprehensive Social Influence (CSI) from its

ego-network. Meanwhile, Prior Commitment Level (PCL) towards the hypothesis item

is evaluated by the agent, indicating its predisposition of this item. Subsequently, the

agent commits a preference state by considering both CSI and PCL (refer to Definitions

5 and 6). On the other hand, to balance the CSI/PCL trade-off, an agent queries the

CKR and conducts training locally to learn and adjust the personalised parameter. The

detailed modelling of agents and social behaviours are elaborated in the following

subsections.

3.4.1 Individualised Agent

Definition 3.1: An Agent is defined as a vertex vi, vi ∈ V in the directed weighed

network G = (V,E), where V = {v1, ..., vn} denotes a set of agents and E represents
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a set of edges; E = {eij ∣1 ≤ i, j ≤ n}, where i, j ∈ N,{vi, vj} ⊆ V . The weight

(strength) of edge eij denotes the influence propagation probability from vi to vj (refer

to Definition 3.4). Agent vi has a set of neighbours Γ (vi). If vj is a neighbour of vi,

then {eij} ∪ {eji} ⊆ E, where vj ∈ Γ (vi). ∣V ∣ and ∣E∣ denote the cardinality of agents

and edges, respectively.

Items, another type of entities, also exist in the same context. I denotes the item

set, i.e., I = {i1, ..., ik}. Agents interact with the item set by giving rating scores, and an

agent vj maintains its own rating list Rj locally. The preference of vj towards item ix

derives from its ratings to items {rjx∣1 ≤ j, x ≤ n}, i, j ∈ N, rjx ∈ Rj , where rjx signifies

the rating score of item ix given by agent vj . rj signifies the average rating value given

by vj . Meanwhile, each agent has a preference state towards any item.

Definition 3.2: Preference State sjx is defined as agent vj’s opinion towards item

ix. stjx denotes the preference state in a particular time step t, and sjx represents the

initial opinion. There are three possible values of a preference state, i.e., sjx, sjx ∈

{PA,NA, IA}:

• Positively Activated (sjx = PA). Agent vj shows its favour towards item ix. vj

tends to diffuse positive influence to the neighbours Γ (vj), and enhances the

agents with same opinion and tries to change those with opposite opinions.

• Negatively Activated (sjx = NA). Agent vj expresses disfavour towards item ix,

and Γ (vj) will be negatively influenced.

• Inactivated (sjx = IA). Agent vj holds a neutral opinion towards item ix. vj is

not supposed to exert any influence on the neighbours, but tends to be influenced

by any of Γ (vj) with non-neutral opinions.
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3.4.2 Local Influence Environment

Each individual agent constructs and maintains its own influence environment, which

is represented as an ego-network, incorporating all its adjacent neighbours and the

influential relationships among them. The establishment of such an environment is

based on one of the well-known social theories, i.e., homophily and influence (Centola

et al., 2007). In the current setting, the influential strength, i.e., the weight of the links

in each ego-network, can be measured by considering Common Preference Similarity

(CPS).

Definition 3.3: Common Preference Similarity cpsij is defined as the similarity

degree of both vi and vj’s valuations towards the items in a social network. The cpsij

can be measured based on the co-rating by using the Adjusted Cosine measure (ACOS)

(Ahn, 2008; H. Liu, Hu, Mian, Tian & Zhu, 2014), which is formulated as follows.

cpsij =
∑ix∈I(rix − ri)(rjx − rj)

√

∑ix∈I(rix − ri)
2
√

∑ix∈I(rjx − rj)
2

(3.1)

Definition 3.4: Influence Propagation Probability (IPP) ippij is defined as the prob-

ability that agent vi propagates influence to vj effectively, where vi and vj are influence

source and target, respectively. As influence diffusion is directed, thus, ippij ≠ ippji.

The IPP can be derived from the CPS by considering the rating counts. The more

ratings an agent gives, the more powerful influence it propagates (Zhang et al., 2015).

ippij is formulated in Equation 3.2, where ∣Ii∣ denotes the number of items rated by

agent vi.

ippij = cpsij ⋅
∣Ii∣

∣Ii ∪ Ij ∣
(3.2)



Chapter 3. Agent-based Influence Diffusion Modelling 50

3.4.3 Social Influence and Agent Behaviours

Social influence generally refers to the way that individuals’ cognition, thoughts and

behaviours are affected by others (Raven, 1964). In the current setting, social influence

indicates an agent’s capability of affecting the neighbours’ sentiment or preference state

towards any item. Each agent constantly receives the influence from its neighbours,

which can be either positive or negative.

Given a hypothesis item, an agent with neutral opinions may turn positive, negative

or retain the same preference state when getting influenced by the neighbours. Whereas,

non-neutral agents can revise their views due to the varying social context. The revising

preference state action normally depends on a set of transitional rules, which consider

the agent’s intrinsic behavioural trait, i.e., prior commitment level towards the hypo-

thesis item, as well as the external factor, i.e., social influence from the peers around.

Definition 5: Prior Commitment Level (PCL) pcljx is defined as agent vj’s estimated

prior preference state or predisposition towards a hypothesis or rated item ix on the

basis of past ratings or experiences. To be more specific, if an estimated or actual rating

on item ix almost reaches the highest rating score, vj has a strong tendency of becoming

PA, vice versa. Thus, pcljx of turning positive can be formulated in Equation 3.3 by

using Min-Max Normalisation.

pcljx =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

rjx−min(Rj)

max(Rj)−min(Rj)
, max(Rj) ≠min(Rj)

0.5, max(Rj) =min(Rj)

(3.3)

In Equation 3.3, max(Rj) −min(Rj) refers to the gap between the highest and the

lowest rating values given by agent vj . While v′js PCL of turning negative is represented

as 1 − pcljx; PCL of retaining neutral opinion on ix is depicted as 1 − ∣pcljx − 0.5∣.

On the other side, PCL also reflects a user’s possible initial preference state towards
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an item. User vj’s initial state towards ix, i.e., sjx, can be evaluated based on the PCL

by using a simple threshold model. Specifically, having two predefined thresholds θPA

and θNA representing the PA threshold and NA threshold, respectively, then:

sjx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PA, if pcljx > θPA

NA, if pcljx < θNA

IA, otherwise

(3.4)

Definition 6: Comprehensive Social Influence (CSI) csijx(s) is defined as a direct

implicit influence on recipient vj , who receives influence messages from the immediate

neighbours Γ (vj), being encouraged to retain the current opinion towards item ix, or to

revise its opinion to the opposite preference state, where s denotes the targeting state,

and s ∈ {PA,NA, IA}.

The comprehensive social influence degree can be measured by examining the

opinions of reachable peers (Z. Li & Tang, 2012; Macy, Kitts, Flache & Benard, 2003).

In other words, when vj has more adverse-opinion neighbours with strong IPP, vj

has a higher tendency to update or revise its current opinion. Whereas, neighbours

with the same preference states contribute supportive influence; such strengths are

capable of alleviating the chances of changing the current preference state. Hence, the

comprehensive social influence of a retaining/revising state to s effected on agent vj

can be estimated by using Equation 3.5.

csijx(s) = 1 −∏vi∈{vm∣vm∈Γ (vj)∧smx=s}
(1 − ippij) (3.5)

In Equation 3.5, s represents a particular preference state of agent vj towards item

ix. If sjx = s, then csijx(s) refers to the supportive strength to encourage vj to retain

its current preference state. Otherwise, csijx(s) indicates the social pressure from the
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neighbours, suggesting vj revise its state from sjx to s.

As mentioned previously, agents can reconsider the preference state on the basis of

both PCL and CSI. Hence, the probabilities of vj turning PA, NA or retaining IA are

formulated in Equations 3.6, 3.7 and 3.8, respectively.

pjx(PA, sjx) = λj ⋅ pcljx + (1 − λj) ⋅
csijx(PA)

∑s∈{PA,NA,IA} csijx(s)
(3.6)

pjx(NA,sjx) = λj ⋅ (1 − pcljx) + (1 − λj) ⋅
csijx(NA)

∑s∈{PA,NA,IA} csijx(s)
(3.7)

pjx(IA, sjx) = λj ⋅ (1 − ∣pcljx − 0.5∣) + (1 − λj) ⋅
csijx(IA)

∑s∈{PA,NA,IA} csijx(s)
(3.8)

In Equation 3.6, pjx(PA, sjx) denotes the probability of agent vj to revise the

preference state towards ix from any state to PA. Similarly, Equations 3.7 and 3.8

formulate the probability of revising or retaining the current preference state sjx as NA

and IA, respectively. The opinion reconsideration of an agent is triggered on a time step

basis. Meanwhile, vj’s personalised parameter, i.e., λj , is a trade-off factor between the

PCL and CSI of vj , representing the stubbornness degree of the agent. The personalised

parameter learning process is detailed in the following section.

3.4.4 Learning Personalised Parameter

As aforementioned, different agents have divergent personalised parameters, describing

the characteristics of users in terms of influence acceptance. For example, λj = 0

means that user vj’s preference state reconsideration totally depends on the neighbours’

opinions. Whereas, λj = 1 implies that vj’s behaviours rely on its own intrinsic opinion

only. To measure λj for agent vj , training is required to be conducted locally based



Chapter 3. Agent-based Influence Diffusion Modelling 53

Figure 3.5: Personalised Parameter Learning

on the historical and predicted transactions, i.e., ratings to items. To be more specific,

agent vj’s personalised parameter can be estimated by comparing all behaviours with

the adjacent neighbours. If vj’s behaviours are similar to most of the neighbouring

agents, it has a high tendency of following the neighbours’ opinions. Otherwise, vj

appears not influenced by the social context easily.

Figure 3.5 demonstrates the idea of how agents train their personalised parameters.

Based on the proposed individual agent architecture of IDMAS in Figure 3.4, each agent

queries the CKR for rating information and establishes its local influence environment

before initiating a training process. The rating set for each item is regarded as an

element of a training dataset, reflecting the users’ opinions. User agents derive the

personalised parameter by comparing the item ratings among itself and corresponding

neighbours.

The preliminary task is to obtain the user-item rating matrix, since it is impossible

for each individual to rate every item, and the matrix is sparse with many missing values.

Hence, collaborative filtering (Breese, Heckerman & Kadie, 1998; Linden, Smith &

York, 2003) can be employed to tackle this issue. One of the popular approaches is
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the Probabilistic Matrix Factorisation (PMF), which performs well on a large, sparse,

and imbalanced dataset (Mnih & Salakhutdinov, 2008). In the current setting, the input

to PMF can be the user-item rating matrix with some missing values corresponding

to individuals, who have not rated an item. PMF is capable of predicting the missing

ratings and fill the matrix. After obtaining the dataset, it has been partitioned into

training dataset and testing dataset. Agent vj trains λj by minimising the objective

function (Equation 3.9), where pmf(rjx) denotes the predicted rating result produced

by PMF.

ϕ(λj) =min∑ix∈I
∣

pjx(PA, sjx)

∑s′jx∈{PA,NA,IA}
pjx(s′jx, sjx)

−
pmf(rjx)

max(Rj)
∣ (3.9)

3.5 Agent-based Influence Maximization

One typical application of the proposed model is to address the influence maximization

problem (Kempe et al., 2003; Domingos & Richardson, 2001). The traditional influence

maximization approaches aim to identify a limited set of influencers, expecting that

they can propagate influence and maximize the positive impact across the entire social

network. The selected users are called seeds, and the selection process is named as

seed selection. Activation/adoption coverage (Bhagat et al., 2012) generally has been

employed to evaluate the effectiveness of a seed selection algorithm, indicating the

number of users getting influenced when the selection algorithm has been applied.

To extend the influence maximization problem a little bit, I consider time series by

estimating the global network state in each time step, where the time series refer to a

sequence taken at consecutive equally spaced points in time, representing a sequence

of discrete-time data. Hence, I define agent-based influence maximization as follows.

Given a fixed budget (seeds amount), i.e., ∣A∣ = k, the elements of seed set A =

{a1, a2, ..., ak} from V , A ⊂ V , are selected to maximize the Cumulative Influence
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Activation Coverage Difference (CIACD) over m time steps, i.e., η(A,m), which is

defined as follows.

η(A,m) =
m

∑

t=1

f(S ∪A, t) −
m

∑

t=1

f(S, t) (3.10)

In Equation 3.10, S denotes the existing PA users in the social network, S ⊂ V . f(.)

is a function computing the weighted difference between PA users and NA users, which

is formulated in Equation 3.11.

f(S, t) = α∣PA∣t − (1 − α)∣NA∣t, (3.11)

where ∣PA∣t denotes the cardinality of PA users in the social network at time t, likewise,

∣NA∣t refers to the amount of NA ones at the same time step. A trade-off factor

α ∈ (0,1) has been introduced to present the different weights for PA and NA.

3.5.1 Seed Selections in IDMAS

In the studies of the influence maximization problem, there are two major types of

seed-selection approaches, i.e., non-feedback model and full-feedback model (Kempe

et al., 2003; Golovin & Krause, 2011). In the former, seeds are selected by ranking the

node features in the social network, such as node degrees, betweenness or closeness.

In other words, all the influencers are identified in advance. Whereas, in the latter,

influencers are gradually identified wholly based on the feedback obtained from the

social network. That means, in the seeding procedure, each seed is selected on the

basis of previous observations. For example, greedy selection belongs to full-feedback

models, which aims to obtain the maximum influence marginal gain in selecting each

seed (Kempe et al., 2003; W. Chen et al., 2010).

The traditional seed selection approaches of both types are also applicable in IDMAS.

However, I assume that the pre-existing negative users are not supposed to be selected
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as seeds, i.e., ∀vj ∈ A, sjx ≠ NA, but their preference states can be revised with the

network evolutions. Furthermore, full-feedback models need to be adapted for obtaining

the feedback from a decentralised environment. Hence, the traditional greedy selection

can be tailored in Algorithm 1.

Algorithm 1 Adapted Greedy Selection Algorithm
Input: G = (V,E), k, ix
Output: A

1: Initialise A ∶= ∅

2: for i = 1 to k do
3: for ∀vj ∈ V ∖A ∧ sjx ≠ NA do
4: Set seeds A ∪ {vj}
5: Network evolves for m time steps
6: Calculate η(A,m) using Equations 3.10 and 3.11
7: end for
8: Select vx which has the maximum η(A ∪ {vx},m)

9: A ∶= A ∪ {vx}
10: end for

I assume that if any user is selected as an element of a seed set, e.g., the mouthpiece

of a particular product, the corresponding status retains PA all along the entire networked

evolutionary process. In other words, seeds are not affected by any other, but exert a

positive influence of the hypothesis item on the adjacent neighbours.

3.5.2 Enhanced Evolution-Based Backward Seed Selection (2E2B)

In (W. Li, Bai & Zhang, 2016a), we proposed the Evolution-Based Backwards (EBB)

selection algorithm, which was developed based on the intuition that minimising the

negative impact is equivalent to improving the positive influence. The objective of

EBB is to turn the "worst enemy" into the "best friend". EBB is a full-feedback model,

since it does not rank the users on the basis of any node features, but identifies seeds

by looking at the convergent status of the network. In other words, the negative user

with the highest influential capabilities is selected as a seed, so that the most negative
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influential user is converted and starts to convey positive impacts to the neighbours.

However, as the previously proposed EBB model is probabilistic-based, the con-

vergent state of a social network can be varied in different attempts. Multiple trials

may reduce such uncertainty of social-network behaviours, but the individual’s actions

are not captured. Furthermore, EBB focuses on the final state of a social network only,

while the evolutionary process is ignored. To overcome the issues mentioned above,

the preliminary EBB algorithm has been revised by proposing 2E2B algorithm. 2E2B

algorithm tracks the tendency of turning negative for all the agents during the entire

influence-diffusion process, where vj’s tendency of turning negative, i.e., Ψ(vj), is

formulated in Equation 3.12.

Ψ(vj) =
1

m

m

∑
t=1

ψ(vj, t) ⋅ csijx(s
t
jx) (3.12)

During the influence diffusion process, vj’s tendency of turning negative is increased

if it becomes or retains NA in any time step. ψ(vj, t) denotes a characteristic function,

which is formulated in Equation 3.13.

ψ(vj, t) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1, if stjx = NA

0, otherwise

(3.13)

The detailed description of 2E2B algorithm by considering agents’ tendency of

turning negative is described by Algorithm 2. The inputs incorporate social network

graph G = (V,E), seed set size k and a hypothesis item ix, while the output is the

selected seed set A, ∣A∣ = k. Lines 2 - 10 comprise the main body of 2E2B; in each

iteration, the user with maximum Ψ(.) is selected. Meanwhile, Ψ(.) of any user is

obtained based on the observations of the previous networked evolutionary process.
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Algorithm 2 2E2B Algorithm
Input: G = (V,E), k, ix
Output: A

1: Initialise A ∶= ∅

2: for i = 1 to k do
3: Set seeds A into G
4: Network evolves for m time steps
5: for ∀vj ∈ V ∖A ∧ sjx ≠ NA do
6: Calculate Ψ(vj) using Equations 3.12 and 3.13
7: end for
8: Select vx, Ψ(vx) is maximum
9: A ∶= A ∪ {vx}

10: end for

3.6 Experiment and Analysis

I have conducted two experiments to evaluate IDMAS and 2E2B algorithm. In Ex-

periment 1, I simulate influence diffusion in a social network by facilitating IDMAS.

Through the simulation, I attempt to explore the of influence, as well as the long-term

trend of the network status driven by the diffusion. Experiment 2 aims to evaluate

the performance of 2E2B algorithm by comparing with some state-of-the-art influence

maximization algorithms.

3.6.1 Experiment Setup

Dataset. The experiments are conducted by using the MovieLens dataset 2, which is a

stable benchmark dataset incorporating approximate one million ratings (range from 1

to 5) for 3,900 movies given by 6,040 users (Harper & Konstan, 2015). There are no

explicit links among the users, but implicit links can be generated based on the users’

ratings of items. For simplification, 500 users have been selected randomly for the

experiments.

2http://grouplens.org/datasets/movielens/
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System Setup. A social context is simulated by creating user agents based on the public

datasets. Each user agent manages its own local information, such as friendship affili-

ations, personalised features and behaviours. Meanwhile, a reporting agent is initialized

for monitoring the entire multi-agent system and collecting global information.

There are three states in the process of IDMAS, which are listed below.

• Initialisation: User agents are initialised, including their neighbours, histor-

ical ratings, CKR and a hypothesis item. Agents initiate training to obtain the

personalised parameter. The selected seeds are set into the environment.

• Evolution: All the user agents conduct social behaviours with a number of time

steps, which drives the evolution of the entire system.

• Termination: The evolutionary process stops, and the outcome can be observed

at this point.

By setting up the system, the parameters for the experiments are given in Table 3.1.

One of the fundamental tasks is to obtain the user-rating matrix based on the existing

ratings. As aforementioned, PMF is utilised for user-item rating matrix prediction

and personalised parameter training; thus, the number of latent features has to be

optimised to improve the quality of PMF prediction. Assume an interval of [0,25]

for latent features count. By inspecting both Mean Absolute Error (MAE) and Root

Mean Squared Error (RMSE) in Figure 3.6, the latent features count is assigned as 15,

which gives the minimum MAE and RMSE. Based on the predicted user-rating matrix,

training can be initiated by all the agents. I further inspect individuals’ personalised

parameter distribution of the current environment. In Figure 3.7, it can be observed that

most agents’ personalised parameters are lower than 0.4. The result implies that the

individuals in this social network tend to be influenced by their social context much
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Table 3.1: Experiment Parameters

Attribute / Parameter Value
Nodes 500
Links 5838
Average degree 12.01
Graph density 0.025
Total time step m (Experiment 1) 1000
Total time step m (Experiment 2) 100
Evolution trials 100
α 0.7
Learning rate (PMF) 0.0001
Regularisation strength (PMF) 0.1
Latent Features Count (PMF) 15

more than that of retaining their own opinions. This is because the influence network is

constructed based on the preference similarities among the individuals.

Next, a hypothesis item is selected. The distribution of users’ PCL towards the

hypothesis item has been demonstrated in Figure 3.8. It reveals that very few users

show high appreciations towards the hypothesis item initially, whereas, a large fraction

of the users may initially decline the adoptions of the hypothesis item. As explained in

Definition 5, a user’s initial preference state is assigned as PA if the corresponding PCL

exceeds the PA threshold, i.e., θPA. Likewise, a user appears NA if its PCL falls below

the NA threshold, i.e., θNA.

Experimental Scenarios. By varying the values of both θPA and θNA, different scen-

arios can be generated. I choose three typical experimental scenarios listed in Table

3.2. In Scenario 1, there are more initially existing PA users than that of NA users.

Scenario 2 demonstrates an opposite situation, where the pre-existing NA users exceed

the PA. Scenario 3 shows an extreme case that all the users have already possessed a

clear attitude towards the hypothesis item, i.e., either PA or NA.
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Figure 3.6: Number of Latent Features

Figure 3.7: Personalised Parameter Distri-
bution

Figure 3.8: PCL Distribution

Table 3.2: Experimental Scenarios

Scenario Parameter Value

Scenario 1

θPA 0.7
θNA 0.1
Initial PA users 82
Initial NA users 52

Scenario 2

θPA 0.8
θNA 0.2
Initial PA users 20
Initial NA users 115

Scenario 3

θPA 0.5
θNA 0.5
Initial PA users 217
Initial NA users 283
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Performance Evaluation Metrics. To evaluate the performance of various seed-

selection algorithms in IDMAS, CIACD formulated in Equation 3.10 is utilised as

the evaluation metrics. Meanwhile, the activation coverage has been leveraged for

exploring the details of a networked evolutionary process, where the activation coverage

refers to the cardinality of the activated users.

3.6.2 Experiment 1

Experiment 1 aims to simulate influence diffusion in social networks by adopting

IDMAS under Scenario 1 (refer to Table 3.2). The simulations are conducted without

selecting any influential users (investment). There are two objectives in Experiment 1:

(1) To explore the complex nature of influence based on the varying the factors. (2) To

investigate the long-term networked trend driven by influences.

IDMAS focuses on the individual’s personalised traits and behaviours, and the

opinion formation/revision of each individual depends on both PCL and CSI. First,

I assume that users are not supposed to revise their PCL over time. In other words,

their decisions of opinion revision in any time step do not affect the intrinsic attitude

towards the hypothesis item at all. Given a fixed time interval, i.e., 1000 time steps, as

we can observe from Figure 3.9 that IA users have been converted rapidly, whereas, the

activation coverage of both PA and NA oscillates significantly all along the way. In this

case, the social network is not capable of reaching a convergent state.

Second, agents are enabled to update their PCL according to any of their decisions:

pcl′jx = pcljx + χj, subject to 1 − pcljx ≥ χj ≥ −pcljx, (3.14)

where pcl′jx signifies the PCL of vj towards the hypothesis item ix in the coming time

step, and χj denotes the PCL changing the rating of user vj . If vj holds a positive attitude

towards the hypothesis item at any time step, thus 1−pcljx ≥ χj > 0. On the contrary, if vj
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Figure 3.9: NO Updating PCL Figure 3.10: Updating PCL

Figure 3.11: CSI Only Figure 3.12: PCL Only

shows a negative opinion, then 0 > χj ≥ −pcljx. Under such a setting, the convergence of

both PA and NA can be observed in Figure 3.10, where the positive opinion dominates

the social network. Based on the significant feature of influence that the diffusion

process eventually leads to global convergence or polarisation (Centola et al., 2007;

Sunstein, 2002; Z. Li & Tang, 2015; Axelrod, 1997), the situation demonstrated in

Figure 3.10 appears more reasonable. Therefore, I can infer that the PCL tends to be an

essential factor for influence propagation and users tend to revise PCL over time. Third,

I assume agents ignore PCL when evaluating their activation tendency, and the trend

is shown in Figure 3.11. The network converges rapidly but demonstrates an entirely

different result from Figure 3.10 that the population of NA users far exceeds that of the

PA. Furthermore, as illustrated in Figure 3.12, without the impact of CSI, most users in

the social network appear negative.
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To inspect the reason, I estimate both PA and NA strength from the initially activated

users by considering the PCL only, using the formulas below:

PCLixPA =∑vj∈V ∧sjx=PA
∣vj ∣ ⋅ λj ⋅ pcljx (3.15)

PCLixNA =∑vj∈V ∧sjx=NA
∣vj ∣ ⋅ λj ⋅ (1 − pcljx) (3.16)

The results of the current setting can be obtained: PCLixPA = 108.1 and PCLixNA =

52.7. Therefore, the PCL of the pilot users plays a significant role in leading the

evolutionary direction of a social network, e.g., if the positive strength of PCL exceeds

the negative, the entire social network can be positive, even of most users have an NA

tendency intrinsically.

Based on the aforementioned intriguing discoveries, IDMAS demonstrates its ration-

ality of being facilitated to analyse the complex influence diffusion in social networks

and the capability of capturing and predicting the long-term evolutionary trend.

3.6.3 Experiment 2

The second experiment aims to evaluate the performance of 2E2B algorithm in the

influence maximization problem under IDMAS, where both efficiency (running time)

and effectiveness (CIACD), formulated in Equation 3.10) are considered. Three different

scenarios listed in Table 3.2 have been applied for the evaluation. Another five classic

seed-selection algorithms of both non-feedback and full-feedback models as follows

are involved as the counterparts.

• Random Selection: Select each seed randomly, so that the seed set grows incre-

mentally.

• Degree Ranking Selection: Rank the users based on out-degree, i.e., the size of
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Figure 3.13: Performance Evaluation under Scenario 1

reachable users.

• Weighted Degree Ranking Selection: Rank the users based on the cumulative IPP

to the neighbours.

• Adapted Greedy Selection: Obtain the maximum influence marginal gain in

selecting each seed whose initial state is not NA.

• EBB Selection: Select the negative user whose influential capability is the highest

in each networked evolutionary trial.

• 2E2B Selection: Select the user with the highest negative tendency and influential

capability in each networked evolutionary trial.

Effectiveness Comparison

In Experiment 2, I first compare the effectiveness of the above algorithms in the three

different scenarios by using IDMAS. The comparison results are demonstrated in
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Figure 3.14: Performance Evaluation under Scenario 2

Figure 3.15: Performance Evaluation under Scenario 3
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Figure 3.16: Efficiency Comparison 1 Figure 3.17: Efficiency Comparison 2

Figures 3.13, 3.14 and 3.15. In the figures, x-axis denotes the seed set size, and the

y-axis represents the effectiveness, i.e., the value of CIACD. We could observe from

these three figures that the full-feedback models (EBB, 2E2B and Adapted Greedy

selection) generally outperforms the non-feedback models (random, degree ranking

selection).

In Figures 3.13 and 3.14, it can be seen that 2E2B performs almost the same as that

of the adapted greedy selection. 2E2B demonstrates its advantages especially when

the seed set size enlarges over 30. This implies that with the increment of seed set, the

negative impact has been suppressed and converted to the positive influence in the social

network to a large extent; thus, CIACD presents significant upward trend. EBB also

gives a relatively promising performance, though yields to 2E2B and adapted greedy

selection. As for the two degree ranking selections, their performances are incredibly

close to each other, but a bit far from that of 2E2B. As expected, the random selection

gives the worst performance, since it is not based on any heuristics.

In Figure 3.15, an extreme scenario is presented, where all the users already possess

a positive or negative attitude towards the hypothesis item. Under such a situation,

2E2B algorithm does not give a promising performance compared with the adapted

greedy selection, but still outperforms the others. On the other side, the network almost

reaches a convergent status before the simulation starts. It is very tough to change the



Chapter 3. Agent-based Influence Diffusion Modelling 68

situation, and minor increment of CIACD can be observed compared with the other

two scenarios, i.e., the maximum rise of CIACD is only 45 when expanding the seed

set size up to 50. From a business perspective, this phenomenon explicitly shows that

the investment in a saturated market is not cost-effective, and strategies should be built

before the marketing maturity.

Efficiency Comparison

Furthermore, the efficiency of 2E2B algorithm is evaluated by comparing the running

time against other seed selection algorithms, which is demonstrated in Figures 3.16 and

3.17. By increasing the seed set size, we can observe that the running time required for

2E2B does not vary a lot. The running time of 2E2B is manageable, though it is less

efficient compared with those none-feedback models (i.e., random selection, degree

ranking selection and weighted degree ranking selection). In Figure 3.17, it is evident

that the running time of the adapted greedy selection far exceeds that of 2E2B when

selecting same amount of seeds, and increases dramatically with the enlarging of seed

set size. Moreover, the adapted greedy selection is not scalable for large social networks,

but 2E2B algorithm can be applied.

According to the results obtained from Experiment 2, it can be seen that 2E2B

outperforms the other classic algorithms by considering both effectiveness and efficiency.

As 2E2B algorithm is based on IDMAS, many individual features can be captured and

utilised in seed selections. Namely, the advantages of 2E2B cannot be achieved without

ABM. Hence, I claim that the proposed IDMAS is capable of producing a certain range

of dynamical behaviours based on different parameter constellation and suitable for

analysing and modelling the real-world complex influence diffusion and tracking the

long-term trend of social networks.
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3.7 Summary

In this chapter, a generic HSN is proposed to model the channels of influence propaga-

tion. I articulated the multi-faceted nature of influence, introduced the decomposition

of influence effects and defined direct/indirect influence. Based on the key concepts de-

rived from HSN, I further systematically modelled preference-based complex influence

propagation by using multi-agent systems.

The information dissemination in social networks has been modelled as an evolution-

ary process driven by individuals’ actions. The proposed agent-based model is capable

of alleviating the issues raised by the complex nature of influence diffusion. Instead of

obtaining the global view of the entire social network, I focus on user’s personalised

traits, preferences, behaviours and other factors, affecting the influence acceptance

towards a hypothesis product. Moreover, a limited global view has been facilitated in

the proposed model, i.e., CKR, which enables each agent to conduct training to learn

its personalised parameter, representing the stubbornness degree. Another outstanding

feature of the agent-based model is that it is capable of tracking a long-term evolutionary

trend of social networks driven by influence, and handling the situations when group

opinions revise according to the changing context. On the other side, a novel seed

selection algorithm is developed based on the proposed model, namely, 2E2B selection.

The experimental results prove that 2E2B outperforms the state-of-the-art approaches

in a dynamic environment.

The agent-based framework proposed in this chapter serves as a basis for the

remaining chapters, where I further extended the generic agent-based model of influence

propagation to tackle in-depth issues in this field.

The related works of this chapter have been published in (W. Li, Bai & Zhang,

2016b), (W. Li, Bai & Zhang, 2016a) and (W. Li, Bai & Zhang, 2018a).



Chapter 4

SIMiner: A Stigmergy-based Model

for Mining Influential Nodes

Based on the challenging issues discussed in Chapter 1, an agent-based approach is

utilised to systematically model the influence diffusion for large-scale and dynamic

networks without a global view. In this chapter, a collective intelligence model, i.e.,

stigmergy-based influencers miner, is proposed to explore influential nodes in a fully

dynamic environment. The proposed model is capable of analysing influential rela-

tionships in a social network in decentralised manners and identifying the influencers

more efficiently than traditional seed selection algorithms. Moreover, it is capable of

adapting the solutions in complex dynamic environments without any interruptions

or recalculations. Experimental results show that the proposed model achieves better

performance than other traditional models in both static and dynamic social networks

by considering both efficiency and effectiveness.

70
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4.1 Overview

The major challenging issues of influence maximization problem stem from two intrinsic

characteristics of the social networks, i.e., large scale and dynamics, and both often come

up together in reality. Most social networks possess a vast number of nodes and links, as

well as evolving topological structures. Nodes keep growing; links form and vanish; link

strengths revise over time. To handle the dynamics of influence maximization, when

the network topological structure changes, traditional seed selection approaches are

supposed to recalibrate the solutions by running over again, which is computationally

expensive. Moreover, using numerous static snapshots of a social network is a typical

representation of dynamics but becomes unrealistic in a large-scale and continuously

evolving environment. It is obvious that capturing snapshots in seconds in a big-data

environment will inevitably create another set of big data, making the existing problem

more complicated. On the other side, almost all the diffusion models require a global

view of the social network for influence-diffusion simulations. However, in many

applications, local information is available merely, e.g., the practitioners intervene in a

population, where the observation of the social network is initially not discovered, and

the data is required to be collected via a laborious process (Brautbar & Kearns, 2010;

Borgs, Brautbar, Chayes, Khanna & Lucier, 2012). Therefore, by considering both

features, it is extremely difficult to analyse and mine influential users by leveraging

classic diffusion models and seeding algorithms.

Collective intelligence approach contributes to the shift of knowledge from indi-

vidual to the collective, which appears more competent in handling the large-scale,

dynamic and distributed environment. It disrupts the limitations and handles dynamics

at the microscopic level using agents. Specifically, individuals revert the latest informa-

tion by exploring the possible solution in a dynamic context through communications;

thus, the solution can be adapted over time based on the evolutionary environment.
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Furthermore, the decentralised model cuts the computational cost by sharing the work-

load and distributing the tasks to individuals, so as can be operated without a global

view. Therefore, such approaches appear applicable in many applications domains with

undiscovered global views, e.g., WeChat business (Lien & Cao, 2014). There are basic-

ally two major types of decentralised models regarding communications. One relies

on direct communications among the individuals, such as cellular automata (Shiffman

et al., 2012), where each cell in the grid adapts its state by looking at the adjacent

neighbours based on a set of rules. The other focuses on indirect communications by

reading or analysing the messages left by the peers. Stigmergy-based models (Dorigo et

al., 2000) are a typical type of decentralised models applicable to the second category.

Stigmergy is defined as "stimulation of workers by the performance they have

achieved" (Bonabeau, 1999), which is a particular indirect communication mechanism

exhibited by tiny social insects, such as ants, to coordinate group activities. Their indir-

ect communications are normally conducted through leaving a chemical substance, i.e.,

pheromones, on the trails, which evaporate over time. Inspired by the stigmergic interac-

tions, the stigmergy and ant algorithms have been widely applied in many applications

without global information, such as communication network routing, exploratory data

analysis and diagram drawing, where the intelligent agents cooperate with each other

by leaving and sensing the artificial pheromone, which indicates application-specific

information (Mostafa et al., 2014).

In this chapter, I propose a collective intelligence model called Stigmergy-based

Influencers Miner (SIMiner), which is able to analyse and mine influential nodes in

dynamic social networks in a decentralised manner. The proposed model is applicable

in both static and dynamic complex environments, and capable of adapting the solutions

in an evolving context. SIMiner is a Multi-Agent System (MAS) (Ye et al., 2016),

which incorporates two types of agents, i.e., user agents and ant agents. The former

provide information actively for ant agents when requested. While the latter traverse
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the network based on the heuristics, seeking for the influencers in a social network. Ant

agents’ key behaviours, including tour formation and pheromone allocation, have been

modelled for selecting appropriate influential nodes to achieve the maximum positive

impact. The pheromone evaporation, another factor affecting the pheromone deposition,

is also formulated in SIMiner. Specifically, tour formation refers to how ants walk and

form a tour in the environment, and the latter aims to distribute pheromone to specific

nodes based on the results of a local influence diffusion model. While pheromone

evaporation is an exploration mechanism that delays faster convergence of the solutions.

Empirical experiments have been conducted to analyse the convergence and evaluate

the performance of SIMiner against other classic models under both static and dynamic

social networks. The experimental results reveal that the proposed model can converge

to an optimal solution gradually and function perfectly in a distributed environment

without a global view. It outperforms state-of-the-art approaches by considering both

influence efficiency and effectiveness. Moreover, SIMiner is able to mine influencers in

dynamic environments without any interruption or recalculation, and the solution can

be adapted quickly over time.

The remainder of this chapter is structured as follows. Section 4.2 reviews the

literature related to this research work. Section 4.3 introduces the preliminaries and gives

formal definitions. Section 4.4 systematically elaborates SIMiner model. Theoretical

analysis of convergence is conducted in Section 4.5. In Section 4.6, experiments

and experimental results are presented to evaluate the performance of SIMiner. The

summary of this chapter is given in Section 4.7.
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4.2 Related Work

4.2.1 Influence Maximization

In on-line marketing, it is very important to investigate how to propagate positive

influence in a social network with limited resources. Motivated by this background,

Kempe et al. (2003) formulate the influence maximization as a discrete optimization

problem.

Recall that in Section 2.2, several popular seed selection approaches for the influence

maximization are reviewed, such as greedy selection, degree ranking selection and

random selection (Kempe et al., 2003). Many studies have been conducted to improve

the efficiency and effectiveness of seed selection algorithms. However, most approaches

can neither handle the dynamics of social networks nor function without a global view.

4.2.2 Dynamic Influence Maximization

How to handle influence propagation in dynamically temporal social networks also has

drawn attention to some researchers (Holme, 2015; B. Wang et al., 2017; Song et al.,

2017). In 2.2.3, I reviewed the contemporary studies of dynamic influence maximization.

Different from most research works in this field, the collective intelligence approach

proposed in this chapter only concentrates on modelling the features and behaviours of

agents and can handle the topologically and temporally dynamic network automatically.

Thus, the proposed model possesses excellent adaptation capability to explore solutions

in a changing environment.

4.2.3 Ant and Stigmergy Algorithm

Ant and stigmergy-based algorithms do not necessarily require global network informa-

tion, and the computation is decentralised. Stigmergy relies on the ant colony knowledge,
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as it demonstrates a particular mechanism exploited for indirect communication among

ants to control and coordinate their tasks. In natural environments, stigmergy-based

systems have shown that they can be utilised for generating complicated and robust

behaviours in the systems even if each ant has limited intelligence.

Some researchers have applied stigmergic interactions in the computer science field.

The relevant studies have been reviewed in Subsection 2.3.2. However, the stigmergy-

based algorithm is not fully utilised in the influence maximization problem though it

demonstrates its superiority in handling optimization problems in a distributed manner.

4.3 Preliminaries and Formal Definitions

4.3.1 Fully Dynamics of Social Networks

Modelling emergent properties of social networks appears to be one of the pillars of

social network science (Holme, 2015). Real-world social networks possess a highly dy-

namic nature and evolve rapidly over time (R. Kumar et al., 2010; Leskovec, Kleinberg

& Faloutsos, 2007). More importantly, the network evolution is continuous. Nearly all

of the approaches in this research field utilise numerous static snapshots of consecutive

discrete time steps to mimic the dynamics of social networks. For example, a fully

dynamic social network can be represented in Figure 4.1. As shown in Figure 4.1, a

social network evolves and updates over time, i.e., from time steps t1 to tn, incorporating

the addition and deletion of nodes and links, as well as the weight updates.

However, for large-scale networks, it is almost impossible to imitate dynamics by

capturing snapshots or storing all changes happening around since this inevitably creates

another set of big data. Furthermore, capturing snapshots or changes require a global

view, which becomes another obstacle as a central component is required for monitoring

the entire network in real-time.
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Figure 4.1: Fully Dynamic Social Network

To overcome the difficulties mentioned above, I argue that compared with other

existing approaches, the stigmergy-based multi-agent system is more suitable for cap-

turing the dynamic behaviours of social networks since individual agents have been

deployed to explore the real-time changes in a local level from a microscopic point of

view. This approach functions even without a global view.

4.3.2 Stigmergy and Multi-Agent Systems

In general, stigmergy refers to a series of behaviours initiated by simple animals, such

as ants, termites and wasps, which is a collection of mechanisms that mediate the

interactions among these animals (Lewis, 2013; Theraulaz & Bonabeau, 1999). The

communications among the individuals are mediated by a sort of biological substance,

i.e., pheromone. By borrowing the ideas from this biological phenomenon, many re-

searchers model the ants as autonomous and self-directed agents (Dorigo et al., 2000;

Mostafa et al., 2014; Takahashi et al., 2012). All of the agents work in the same context

and form a MAS. The agents exchange messages indirectly. Specifically, they keep

modifying the global environment by leaving certain amounts of pheromone trails based

on their local experiences and discoveries. Meanwhile, the agents select walking paths

according to the pheromone concentration and a partial network topological structure
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covered in the local view at a particular time frame. Therefore, the pheromone con-

centration and distribution represent the problem that the agents are currently working

on (Hadeli et al., 2004). From a microscopic perspective, the MAS demonstrates an

evolutionary pattern driven by the local behaviours of individual agents.

In this chapter, the social network is modelled as the dynamic context/environment

of SIMiner, where two types of agents reside in the same context, i.e., user agents and

ant agents. The former represent users or nodes in a social network, while the latter

refer to the agents for analysing users’ influential degrees. Each user agent possesses

a local view covering the neighbourhood. Similarly, ant agents can move among user

agents and sense the environment at a local level. Both types of agents are capable of

interacting with each other, while ant agents can only communicate with their species

indirectly. On the other side, the influence propagation process is simulated as the

crawling behaviours of ant agents. The objective of the ant agents is to investigate the

possible influential users from the social network. To explain this further, the ant agents

keep moving through the network and allocate different amounts of pheromone on each

node that they claw over as rewards. The pheromone rewarding strategy is on the basis

of a local influence propagation model. The users with higher influential abilities will

gain more pheromone and become prominent after a number of iterations.

In SIMiner, multiple ant agents keep crawling in a dynamic context simultaneously

and iteratively. Figure 4.2 illustrates an overall picture of SIMiner, implying how

SIMiner handles the dynamics from a microscopic level and in a distributed environment.

Three ants are presented in this figure. Each ant captures the environment within the

coverage of its local view when it reaches any node at a particular time step. Any

environmental updates prior to the arriving of ants are not supposed to be discovered,

but the modifications will be spotted when they are within the local view of any

ants. From a microscopic viewpoint, ants do not care about the changes of network

topological structures; instead, they concentrate on local time-spatial observations.
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Figure 4.2: Stigmergy-based Influencers Miner Model

Therefore, SIMiner neither relies on a global view nor proactively captures global

network snapshots but is capable of handling the dynamics locally, which explicitly

simplifies the problem significantly.

4.3.3 Influence Diffusion Models

Both the IC model and the LT model can be facilitated to simulate the diffusion process

when given a static network with a global topological structure. However, they cannot

function only with local views; both require a substantial extension to handle the

temporal features of a social network (Tong et al., 2017; Gayraud et al., 2015; Karimi &

Holme, 2013). Moreover, the outcome of both traditional models merely demonstrates

a global activation coverage and ignores the contribution of each individual.

In SIMiner, I propose and leverage an extended version of the IC model, i.e., Inde-

pendent Cascade Model with Pyramid Scheme (ICMPS), to measure the individual’s ac-

tivation contribution or influential capabilities in a local social network, which provides
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Figure 4.3: An Independent Cascade Model with Pyramid Scheme

the evidence for pheromone distribution. ICMPS inherits the key features from the IC

model, where influence diffusion is demonstrated as a hopping and infecting process.

Whereas ICMPS tends to capture the activation contribution of the influencers in a local

environment, and the activation follows a pyramid pattern. Figure 4.3 illustrates a toy

example of ICMPS in a static local network, where the three initially active users, i.e.,

va1 , va2 and va3 , initiate the influence effecting on the two-hop neighbourhood. As we

can observe from the figure that va1 successfully activates its neighbour vb1 only; both

vb2 and vb3 are activated by va2 ; va3 influences vb4 and vb5 . Next, the newly active nodes

in the first layer attempt to exert influence on their direct neighbours, i.e., the nodes

in the second layer. Therefore, activation contribution of va1 , va2 and va3 is 3 ,4 and

4, respectively. As ICMPS is a stochastic model, the results should be averaged over

multiple trials.

4.3.4 Formal Definitions

In general, a social network at a particular time step k, i.e., G(k) = (V (k),E(k)), can

be defined as a graph containing numerous of entities V (k) with their connectivities

E(k), and it possesses an evolving and dynamic topological structure. In this research,
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the problem space is modelled as a distributed MAS. The environment at time step k,

Env(k) = (V (k),A), is considered as a shared working space of two types of agents,

i.e., user agents V (k) = {v1, v2, ..., vj} and ant agents A = {a1, a2, ..., ai}. In static

networks, ∀k ∈ N, G(k) = G(k + 1) and Env(k) = Env(k + 1). For simplification

purpose, "(k)" can be omitted in a general context.

Definition 4.1: A user agent (node) vi refers to an agent in the environment Env.

vi.E denotes the friendship set/attribute of user vi, where vi.E = {eij ∣vj ∈ V ∧ eij ∈

vj.E, vi ≠ vj}. A particular element in vi.E can be represented as a three-tuple, i.e.,

eij = (vi, vj,wij), where wij is the weight of eij , describing the affiliation strength, and

it also can be denoted by using the notation eij.w. Meanwhile, any user agent vi has a

set of neighbours, i.e., Γ (vi) = {vj ∣eij ∈ vi.E ∩ vj.E, vi ≠ vj}. The friendship affiliation

information is supposed to be maintained by each individual locally.

Definition 4.2: An ant agent am is defined as an autonomous agent working for a

specific problem in the environment Env, which crawls across the nodes in the same

environment based on users’ relationships. The friendship affiliation signifies the

available routes for ant agents.

There exist a number of ant agents in the environment,A = {a1, a2, ..., ai}. Moreover,

they are capable of communicating with user agents in order to discover and evaluate

the amount of pheromone on the current user and the ones nearby, as well as examine

the strength of the relationships.

Definition 4.3: A tour T nm = (
Ð→
V n
m,
Ð→
τnm) is defined as the path that ant agent am walks

through d nodes in Round n, where
Ð→
V n
m =< v1, v2, ..., vd > denotes a directed vector

which contains the node sequence in the tour, while Ð→τnm =< t1, t2, ..., td > refers to the

corresponding time when am passing each element in
Ð→
V n
m. For simplification purpose,
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T is regarded as a tour in a general context.

Specifically, am randomly selects a starting point (a user agent). Next, it crawls from

one node to currently existing adjacent neighbours at the next time step and eventually

ceases when it reaches the endpoint vd, where Γ (vd) ⊂ {v1, v2, ..., vd}.

Definition 4.4: N-layer Sub-network Gn
m(N) = (V n

m(N),En
m(N)) is defined as a

local static sub-graph generated by ant am after completing tour T nm. The edge set

En
m(N) includes all the links among V n

m(N), while V n
m(N) denotes the union set of

the nodes in T nm and the corresponding N-hop neighbourhood. Thus, V n
m(N) can be

formulated in Equation 4.1.

V n
m(N) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

{v1, v2, ..., vd}, N = 0

V n
m(N − 1) ∪ Γ (V n

m(N − 1)), N ≠ 0

(4.1)

Definition 4.5: Pheromone represents the information and heuristics passed by ant

agents to their peers based on the local experiences. pnm(vi) represents the pheromone

amount allocated to vi in tour T nm. While vi.p(n) indicates the pheromone amount

accumulated on user agent vi in the nth interactive walking around, and the value is

constantly changing over time.

Pheromone also can be regarded as the reward granted to user agents. Specifically,

each ant agent tends to allocate more pheromone on the nodes which exert high impact

potentially. In other words, the more pheromone amount a user agent (node) possesses,

the higher chance it becomes an influencer.
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Figure 4.4: An Annotated Dynamic Social Network

4.4 Stigmergy-based Influencers Miner Modelling

SIMiner inherits several major features of the ant algorithm and agent-based modelling,

which is capable of dynamically mining influencers by adapting the solutions over

time. In SIMiner, numerous ant agents crawl simultaneously and update the shared

environment by allocating pheromones on user agents. The influence propagation

process is simulated as crawling behaviours of ant agents. The influencers can be

selected based on the pheromone distribution and concentration in the network. The

detailed modelling of SIMiner is elaborated in the following subsections.

4.4.1 Overall Process of SIMiner

In this subsection, the overall process of SIMiner is explained, including (1) how to

handle the dynamic temporal and topological features of a social network, and (2) how

to mine influencers using SIMiner.

First, the network is converted into a distributed environment shared by two types

of agents, i.e., user agents and ant agents. By using the same sample dynamic network

in Figure 4.2, all the agents are annotated and demonstrated in Figure 4.4. Assume

that all the ant agents start tours at the same step t1, and it takes one time step to crawl
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Figure 4.5: Dynamic Local View of Ant ak based on Different Time Steps

from one node to another. As we can observe that all of the three ants complete the tour

after three hops. Each ant agent possesses a dynamic local view which is driven by the

changing structure of a social network, both temporally and spatially. Figure 4.5 shows

the dynamic local view of ant ak ranging from t1 to t4. It is obvious that each ant agent

only focuses on the local context at a particular time step.

In Figure 4.4, I assume the following three events and corresponding time steps.

Thus, the dynamic local view of ant agents at each time step is described in Table 4.1.

• Event 1: Link e9,10 is formed at t2. v9 is not covered in ant al’s local view at t1,

but included at t3 and t4.

• Event 2: Node v11 joins at t3. v8 is not spotted by aj when it passes v3 at t2.

• Event 3: Link e6,7 vanishes at t3. Ant ak can observe v6 at t2, but al cannot see v6

when it reaches v7 at t3. Similarly, aj arrives the end of its tour at t4, due to the

broken linkage.

Second, ant agents embark on the exploration of influencers concurrently, and they

collaborate with each other by distributing pheromone on the nodes. The behaviours of
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Table 4.1: Ant Agents’ Local View Overtime

t1 t2 t3 t4
aj v1, v3 v3, v5, v4, v1, v2 v4, v6, v3 v6, v4
ak v5, v7, v3 v7, v8, v10, v9, v5 v10, v8, v7, v9 v9, v10, v7
al v10, v8 v8, v10, v7 v7, v8, v10, v9, v6, v5 v9, v10, v7

an ant agent incorporate selecting paths, constructing local influence propagation sub-

networks and distributing pheromones. Meanwhile, pheromone evaporation happens

over time, which enables SIMiner to forget the poor choices in the past. The poor

choices refer to the user agents that are seldom visited by the ant agents. When solutions

start to converge, i.e., the pheromone ranking list has few changes, the influencers can

be easily located purely based on the pheromone amount.

4.4.2 Tour Formation

Tour formation ascribes to a series of path selection and skipping behaviours from an

ant agent.

Path Selection

Path selection is one of the ant’s fundamental behaviours. An ant agent am needs to

select the next node to crawl when having various choices Vc = {vj ∣vj ∈ Γ (vi)}, where

vi denotes the node that am arrives at.

Basically, the path selection decision is based on two major aspects, incorporating

the pheromone amount of vj , i.e., vj.p, and the weight of corresponding edge eij.w.

The path selection behaviour is modelled as a probabilistic event by using Equation 4.2,

where qij denotes the probability that an ant agent walks from vi to vj , α and β are two

parameters balancing the weight of two factors.
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qij =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(eij .w)
α⋅(vj .p)

β

∑
vx∈Γ (vi)∖T

(eix.w)α⋅(vx.p)β
, eij ∈ vi.E

0, eij ∉ vi.E

(4.2)

Furthermore, ant agents cannot choose the nodes they have walked through within

the same tour, but can pass the nodes that other ant agents have walked before the

current or previous round.

Skip

Walking from vi to vj , an ant agent can either select vj or skip it by comparing the

ratio of common neighbours between vi and vj . If the ratio is greater than a predefined

threshold, vj is supposed to be skipped. Subsequently, node vj will be neither selected

into the tour nor considered for pheromone allocation.

The rationale of defining "skip" behaviour can be reflected in two folds. (1) "Skip"

is initiated based on the fact that many of the most central nodes in a social network

may be clustered; thus, it is not necessary to target all of them (W. Chen et al., 2009;

Boccaletti et al., 2006). For example, if two users, vi and vj , share many common

neighbours, both are most likely influenced by each other since they own a broad range

of communicational channels. The same concept has been applied in the traditional

influence maximization problem. In other words, if one is selected as a seed, the other

should be ignored, since selecting both cannot enlarge the global activation coverage to

a large extent, and the impact generated by both may be pretty much close to choosing

either of them. (2) "Skip" helps to tailor the ant algorithms to the influence maximization

problem. Different from TSP, the identified influencers are not necessarily connected

with each other or stay in the same path, but they can be scattered everywhere in

the entire social network. "Skip" chops a continuous path selected by an ant agent

into pieces, which satisfies the pattern of the solutions for influence maximization.
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This behaviour significantly improves the quality of the selected influencers, which is

explained in the Experiment section.

In SIMiner, ant agent am skips vj if the common neighbour percentage comparing

with previous node vi, i.e., ηij , exceeds a certain limit ω, where ηij can be measured by

using Equation 4.3.

ηij =
∣Γ (vi) ∩ Γ (vj)∣

∣Γ (vj)∣
(4.3)

Tour Formation Algorithm

As introduced in Definition 4.3, a tour can be represented as a sequential list of nodes

and the corresponding time step of passing each node. In the shared environment, each

ant agent keeps performing an iterative process: walking and selecting paths. Whereas,

the actions stop when the ant agent reaches the endpoint vd. In other words, the iterative

process triggered by ant agent am in Round n produces a path vector, i.e., tour T nm.

Algorithm 3 describes the tour formation process. The inputs of this algorithm

include ant agent am, round index n and the starting time step t0, while the output is

tour T nm. Line 3 shows the criteria of walking to the next node. Lines 5-10 demon-

strate the targeting candidates selection, where σ is a predefined threshold to filter out

those candidates with low probability. Lines 11-21 indicate the path selection process.

Whereas, Lines 12-15 tend to judge whether an node should be included in the tour.

The iterative walking process ends when all of the current node vs’s neighbours reside

in tour T nm.

The complexity of Algorithm 3 is mainly determined by the loops in Line 3 and

Line 5. The complexity is O(ls), where l presents the length of the path and s denotes

the cardinality of the neighbourhood.
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Algorithm 3 Tour Formation Algorithm
Input: am, n, t0
Output: T nm = (

Ð→
V n
m,
Ð→
τnm)

1: Initialise am and randomly select a starting point vs, vs ∈ V
2: Initialise a tour vector

Ð→
V n
m ∶=<>, a tour set V n

m ∶= ∅

3: while Γ (vs) /⊂ V n
m do

4: Initialise candidate list Vc ∶= ∅
5: for ∀vi ∈ Γ (vs) ∧ vi ∉ V n

m do
6: Compute the probability qsi using Equation 4.2.
7: if qsi > σ then
8: Vc ∶= Vc ∪ {vi}
9: end if

10: end for
11: vs ∶= null
12: if Vc ≠ ∅ then
13: Choose the next node vn ∈ Vc
14: Compute ηsn using Equation 4.3
15: if ηsn ≤ ω then
16:

Ð→
V n
m ∶=<

Ð→
V n
m, vn >

17:
Ð→
τnm ∶=<

Ð→
τnm, t0 >

18: V n
m ∶= V n

m ∪ {vn}
19: end if
20: vs ∶= vn, t0 ∶= t0 + 1
21: end if
22: end while
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4.4.3 Pheromone Operations

Pheromone plays a significant role in the proposed model since it represents information

or heuristics based on the ant agents’ experiences which can be referred by their peers.

In this section, pheromone operations, including evaporation, N-layer sub-network

generation and allocation will be introduced in the following subsections.

Pheromone Evaporation

Pheromone evaporation is a common phenomenon, where the amount of allocated

pheromone decreases over time. In stigmergy-based algorithms, this mechanism delays

the faster convergence and avoids to converge to a locally optimal solution (P. Kumar

& Raghavendra, 2011). In the current model, pheromone evaporation increases the

randomness and encourages ant agents to select divergent walking paths. Furthermore,

pheromone evaporation eliminates the poor choices in the past, so that the present

influencers become more prominent.

Pheromone evaporates through each node within the scope of the whole network

at the same time. At a justified time, all of the nodes in the network will evaporate

a predefined unit of pheromone. The pheromone evaporation is quantified by using

Equations 4.4 and 4.5, where ρn denotes evaporation rate, n represents the iterative time

step, and a is a constant.

vj.p(n + 1) = vj.p(n) ⋅ ρn (4.4)

ρn = 1 −

√
n

n + a
(4.5)
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Figure 4.6: N-Layer Sub-Network

N-Layer Sub-network Generation

N-layer sub-network generation is the preliminary step of pheromone allocation, which

constructs a local environment to estimate the influence contribution of each individual

in a tour. "N" is natural number describing the depth of influence propagation.

Once ant agent am completes tour T nm, a corresponding local N-layer sub-network

Gn
m(N) = (V n

m(N),En
m(N)) is supposed to be generated based on the path that am

walked through. V n
m(N) incorporates all the elements in tour T nm and the corresponding

N-hop neighbourhood. For example, given N = 2, V n
m(2) = V n

m(0) ∪ Γ (V n
m(0)) ∪

Γ (Γ (V n
m(0))). While the edge set En

m(2) includes all the links among V n
m(2).

Figure 4.6 describes an example of a generated two-layer sub-network, i.e., Gn
m(2).

Ant am completes tour T nm in Round n, where
Ð→
V n
m =< v1, v2, v3, v4, v5 >. The pheromone

distribution initiated by each ant agent relies on the generated N-layer sub-network.
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Pheromone Allocation

Pheromone allocation, in general, refers to how ant agents determine the amount of

biological information left on the nodes that they have crawled over. From a broader

point of view, the pheromone allocation unravels the rewarding strategies initiated by ant

agents. Basically, ant agents tend to reward the potential influential users and update the

environment by modifying the pheromone amount on each node. Thus, it demonstrates

an evolutionary group work, and the solution is continuously being optimised.

The pheromone allocation is determined based on the generated N-layer sub-

network; more pheromone will be allocated to the nodes in a sub-network with larger

size and a path with a shorter length generally.

Next, the approach to disseminate pheromone to the environment is elaborated as

follows. The pheromone amount ∆qnm distributed by am to node vi, vi ∈ T nm is propor-

tional to the contribution of vi in the tour. The individual’s activation contribution of

vi in T nm, i.e., cnm(vi), refers to the number of nodes that have been activated by vi in a

sub-network, which can be calculated through the ICMPS model. The activation contri-

bution of vi, vi ∈ V n
m(N), is denoted by using cnm(vi), and pnm(vi) can be formulated in

Equation 4.6.

pnm(vi) = g(vi) ⋅ ρn (4.6)

In this equation, g(vi) refers to an adjustment function of vi formulated in Equation

4.7, where D denotes a constant. g(vi) is proportional to cnm(vi).

g(vi) =
cnm(vi)

cnm(vi) +D
(4.7)

Therefore, by considering both evaporation and allocation, the pheromone update

of vi after tour T nm completed is described in Equation 4.8.
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vj.p(n + 1) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

vj.p(n) ⋅ (1 − ρn) + pnm(vi) , if vj ∈ T nm

vj.p(n) ⋅ (1 − ρn) , otherwise

(4.8)

Algorithm 4 Pheromone Allocation Algorithm

Input: T nm = (
Ð→
V n
m,
Ð→
τnm),N

Output: {vm.p∣vm ∈
Ð→
V n
m}

1: Initialise Gn
m(N) = (V n

m(N),En
m(N))

2: Initialise V n
m(N) ∶= ∅,En

m(N) ∶= ∅

3: Initialise temp variable κ = 0

4: for ∀vi ∈
Ð→
V n
m do

5: Obtain the next element vj from
Ð→
V n
m

6: Calculate ηij using Equation 4.3.
7: if ηij ≤ ω then
8: V n

m(N) ∶= V n
m(N) ∪ {vi}

9: end if
10: end for
11: while κ < N do
12: for ∀vi ∈ V n

m(N) do
13: En

m ∶= En
m ∪ vi.E

14: end for
15: V n

m(N) ∶= V n
m(N) ∪ Γ (V n

m(N))

16: κ ∶= κ + 1
17: end while
18: Initialise seed set S ∶=

Ð→
V n
m

19: for ∀vx ∈ S do
20: vx.activatedBy ∶= vx
21: end for
22: Given Gn

m(N) and S, estimate individual contribution using ICMPS
23: for ∀vk ∈ S do
24: for ∀vx ∈ V n

m(N) ∖ S do
25: Calculate pnm(vk) using Equation 4.6
26: vk.p ∶= vk.p + pnm(vk)
27: end for
28: end for

Algorithm 4 shows the pheromone allocation process initiated by ant am in tour T nm.

The inputs of the algorithm include tour T nm and number of layers of sub-network N .

While the output is a set of updated pheromone. Lines 1-3 initialise the environment
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and a temporal variable. Lines 4-10 identify the candidates for pheromone allocation

by considering the threshold ω. The N-layer sub-network is constructed through Lines

11-17. While Lines 18-22 estimate the influence contribution of each node in the tour.

In the end, Lines 23-28 aim to allocate the pheromone.

The complexity of Algorithm 4 is O(n). More specifically, the complexity of Lines

9-15 is O(n) since N is a constant. As the seed set size is limited, the complexity of

Lines 21-26 is O(n).

4.4.4 Mining Influential Users

Mining influential users is the last step of SIMiner, which happens when the convergence

of the solution emerges. It aims to identify a limited set of influential users based on the

environment modified by ants, having the pheromone with different intensity distributed.

Nodes with high pheromone intensity demonstrate their important position and superior

influential capability in the social network. Therefore, this group of users should be first

targeted and selected as seeds.

The influential users mining algorithm applied in this context is a degree-based

approach, which identifies the influential users by only considering the amount of

pheromone on each node. Thus, the computational complexity is merely O(n).

4.5 Theoretical Analysis

Given a random process, i.e., Xn = {P (n),E(n), T (n)}, n ∈ N , the status space

S is defined over a finite set of discrete decision variables Xi, i ∈ N. n represents

the a particular time step; P (n) refers to a collection of the pheromone distribution

across the entire network, where P (n) = {vj.p(n)∣vj ∈ V }. E(n) indicates the edge

set, and T (n) denotes a set of tours generated by all the ants in the Env(n), where

T (n) = {T nm∣am ∈ A}.
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At time step n of a dynamic network, ant am’s transfer probability Q(n) merely

depends on P (n − 1) and E(n). Whereas, tour T (n) relies on T (n − 1) and Q(n).

While P (n) can be determined by Equation 4.8. Therefore, Xn+1 is only affected by

Xn, which explicitly shows a typical Markov process.

Let B = {(vi, vj)∣vi, vj ∈ T (n), vi ∈ Γ (vj)}, and vi is followed by vj in T (n). Then,

∀a, b ∈ S, the transfer probability Q(n) satisfies:

Q(n) = Qn(Xn+1 = b∣Xn = a) = ∏
(vi,vj)∈B

qij(n) (4.9)

Thus, Q(n) depends on n only. The Markov process is a non-homogeneous Markov

chain.

Theorem 1. Given N ∈ N+, ∀n ≥ N , if ∃qmin(n) > 0, having vj.p(n) ≥ qmin(n) > 0

and
∞

∑
i=1
ρi =∞, then the non-homogeneous Markov processX(n) = {P (n),E(n), T (n)}

converges to the optimal solution with a probability of 1.0.

Proof. ∀eij ∈ vi.E, ∃emin, emax, having 0 < emin ≤ eij ≤ emax ≤ 1. Then:

qij =
(eij.w)α ⋅ (vj.p)β

∑
vx∈Γ (vi)∖T

(eix.w)α ⋅ (vx.p)β

≥
(emin)α ⋅ (vj.p)β

∑
vx∈Γ (vi)∖T

(emax)α ⋅ (vx.p)β

≥
(emin)α ⋅ (vj.p)β

∑
vx∈Γ (vi)∖T

(vx.p)β
= qmin

According to Equation 4.9, q(n) ≥ (qmin)∣B∣ > 0. Therefore, the lower bounds of

probability that Markov chain Xn converges to the optimal solution is:
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q∗(n) = 1 − (1 − q̂)n ≥ 1 − (1 − (qmin)
∣B∣)n

As 0 < (qmin)∣B∣ < 1, therefore 0 < 1−(qmin)∣B∣ < 1. When n→∞, (1−(qmin)∣B∣)n =

0, thus, lim
n→∞

q∗(n) = 1

The proof in Theorem 1 is a foundation of Theorem 3.

Lemma 2. Given ρn = 1 −
√

n
n+a , a ∈ N+,

∞

∑
n=1

ρn =∞

Proof.

∞

∑
n=1

ρi =
∞

∑
n=1

(1 −

√
n

n + a
)

=
∞

∑
n=1

√
n + a −

√
n

√
n + a

=
∞

∑
n=1

a

n + a +
√
n(n + a)

≥ a ⋅
∞

∑
n=1

1

2(n + a)

=
a

2

∞

∑
n=1

1

n + a
=∞

Theorem 3. Let ρn as evaporation rate, non-homogeneous Markov chain X(n) =

{P (n),E(n), T (n)} converges to the optimal solution with a probability of 1.0.

Proof. Suppose that vi is not passed by any ant, the pheromone intensity of this node

reaches the minimum at time step n.
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vj.p(n) =
n

∏
i=1

(1 − ρi) ⋅ vj.p(0)

=
n

∏
i=1

√
i

i + a
⋅ vj.p(0)

=
a

∏
i=1

√
i

n + i
⋅ vj.p(0)

Thus, qmin =
a

∏
i=1

√
i
n+i ⋅ vj.p(0)

In Lemma 2, I prove
∞

∑
n=1

ρn = ∞, so the Markov chain satisfies the conditions in

Theorem 1.

4.6 Experiments and Analysis

Four experiments have been conducted to evaluate SIMiner. In Experiment 1, the

convergence of SIMiner is explored. Experiment 2 intends to analyse the time to

converge of SIMiner when giving the different size of ant agents. Experiment 3

evaluates the performance of SIMiner in static networks, and Experiment 4 analyses the

behaviour of SIMiner in dynamic networks.

4.6.1 Experiment Setup

Datasets. The empirical analysis and evaluation have been conducted by using four

public datasets as follows.

• Ego-Facebook1 dataset, collected by McAuley et al. (2012) using a Facebook
1http://snap.stanford.edu/data/egonets-Facebook.html
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application, which is archived in Stanford Large Network Dataset Collection

(Leskovec & Krevl, 2014). It contains profile and network data from 10 ego-

networks, consisting of 193 circles, 4,039 users and 88,234 edges.

• Email-Enron2 dataset, which covers all the email communication. It has been

posted to the web by the Federal Energy Regulatory Commission (Klimt &

Yang, 2004; Leskovec, Lang, Dasgupta & Mahoney, 2009). The Enron email

network has 36,692 nodes and 367,662 Edges. To diminish the computing time, a

sub-graph with 10k nodes is captured for the experiment.

• Wiki-Vote3 dataset, which incorporates administrator elections and votes history

data from 3 January 2008. There are 2,794 elections with 103,663 total votes

and 7,066 users participating in the elections. Nodes refer to Wikipedia users

and edges represent votes from one user to another (Leskovec, Huttenlocher &

Kleinberg, 2010a, 2010b).

• Flixster4 is a movie social network which enables users to publish and share the

reviews on movies by rating and commenting movies. The raw dataset has been

collected by Jamali et al. (2010), which contains over 1 million users, 8,196,077

ratings and 7,058,819 undirected friendship affiliation links. The collected ratings

range from December 2005 to November 2009. To process the raw dataset,

duplicated links have been removed since the raw dataset has been crawled as a

directed network. In the meanwhile, as for those users whose behaviours appear

abnormal, their data have been removed. More specifically, the rating counts of

such users are over 1,000 in a single day, and all the given rating scores are either

1 or 5; thus, they are most likely robots. On the other side, users with less than

100 ratings are also eliminated from the experiments.
2https://snap.stanford.edu/data/email-Enron.html
3https://snap.stanford.edu/data/wiki-Vote.html
4http://www.flixster.com/
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Evaluation Metrics. To quantitatively evaluate the proposed model, two major per-

formance metrics are utilised, i.e., the activation coverage and running time. Meanwhile,

seed set variation rate is regarded as an indicator of convergence, and the corresponding

indices are elaborated in Experiment 1.

• Influence Activation Coverage refers to the number of nodes that have been

activated by the selected influential users, which represents the effectiveness of

the algorithms. Specifically, by selecting the same amount of users from the same

network using different selection algorithms, the higher the activation coverage,

the better the performance. The IC model has been selected as the influence

propagation model for evaluating the activation coverage of the selected seeds.

• Time to Converge describes the total time steps required by ant agents to carry

out an optimal solution, at which point the convergence emerges. This means the

ants already finished exploring the influencers from the environment, and it is

ready for seeding process. Since SIMiner is a distributed approach, traditional

estimation of running time may not be suitable.

Influence Probability and Estimation. Degree Weighted Activation (DWA) has been

applied for influence probability estimation. DWA assigns the probability of each edge

based on the degrees of both nodes. For example, the weight of edge is estimated as:

eij.w = 1/∣Γ (vj)∣.

The influence coverage of a seed set carried out by any algorithm is estimated by

running numerous times of Monte-Carlo simulations.

Baselines. I compare SIMiner approach against the following algorithms in terms of

influence activation coverage.

• Greedy: Attempt to the reach the maximum influence marginal gain in selecting

each seed, coming with a 1 − 1/e approximation guarantee. Greedy selection
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Table 4.2: Experiment Parameters

Parameter Default Value
Seed set size 50
Ant agents size 10
Number of time steps 500
Sub-network layer N 2
α in Equation 4.2 0.8
β in Equation 4.2 0.4
Initial pheromone amount of vi (vi.p(0)) 0.5
Threshold of skip ω 0.4
Constant D in Equation 4.7 1000

is not scalable since it relies on a large number of Monte-Carlo simulations.

However, in regards to the effectiveness, i.e., global influence activation coverage,

it outperforms almost all the existing improved algorithms, such as IRIE (Jung,

Heo & Chen, 2012).

• Degree-based Selection: Select the users with high degree, which is based on

the intuition that users with larger friend circle can influence more users in the

social network.

• Degree Discount Heuristic: If one node is nominated as a seed, all its adjacent

neighbours’ node degrees are discounted by one due to the presence of the node

in the seed set (W. Chen et al., 2009).

• Random Selection: Select seeds randomly. It normally performs the worst since

it is not based on any heuristics.

Experiment Parameters. The default parameters for running the experiments are

listed in Table 4.2. The choice of the parameters is mainly based on the heuristics.
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Figure 4.7: Seed Set Variations (Ego-
Facebook)

Figure 4.8: Pheromone Distribution (Ego-
Facebook)

Figure 4.9: Activation Coverage (Ego-
Facebook)

Figure 4.10: One Ant (Ego-Facebook)

Figure 4.11: Five Ants (Ego-Facebook) Figure 4.12: Ten Ants (Ego-Facebook)
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Figure 4.13: Different Ant Size (Ego-
Facebook)

Figure 4.14: Ego-Facebook

4.6.2 Experiment 1 : Convergence Analysis

Experiment 1 aims to explore the convergence of SIMiner, showing the evolution of the

solution, which is continuously optimised. In this experiment, I compute the seed set

variation rate of the selected seeds over time and estimate the activation coverage of the

seed set at each time step.

In SIMiner, a group of ant agents conducts global searching activities for exploring

the influencers across the entire network. I regard the convergence emerges when the

top k, i.e., the seed set size, users stay stable, without any significant seed-set variations

in a number of consecutive time steps. In other words, low variation rate is a sign of

convergence, and activation coverage of the seed set remains stable accordingly.

To quantify the variations between any two seed sets, three indices are adopted, i.e.,

Jaccard distance djcd(S1, S2), Dice dissimilarity ddic(S1, S2) and sequential distance

considering the index of the elements dsqc(S1, S2), which are formulated in Equations

4.10, 4.11 and 4.12, respectively. In these three equations, S1 and S2 denote two

different seed sets, having the same cardinality, i.e., S1 ≠ S2, ∣S1∣ = ∣S2∣. I(c∣S1) refers

to the index of element c in set S1.

djcd(S1, S2) = 1 −
∣S1 ∩ S2∣

∣S1 ∪ S2∣
(4.10)
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Figure 4.15: Wiki Vote Figure 4.16: Email Enron

ddic(S1, S2) = 1 −
2∣S1 ∩ S2∣

∣S1∣ + ∣S2∣
(4.11)

dsqc(S1, S2) =
1

∣S1∣
( ∑
c∈S1∩S2

∣I(c∣S1) − I(c∣S2)∣

∣S1∣
+ ∣S1 ∖ S2∣) (4.12)

In this experiment, I explore the convergence phenomenon of SIMiner by using

Ego-Facebook dataset only since the same trend can be observed by using other datasets.

Figure 4.7 demonstrates the distribution of three indices within 500 walking rounds.

The seed set variation rate declines slowly with the evolutionary effect from SIMiner.

Meanwhile, Figure 4.8 shows the global pheromone distribution trend over time. As we

can observe from Figure 4.9 that the influence activation coverage climbs up to around

750 rapidly within 50 walking rounds, and oscillates slightly. The experimental results

explicitly reveal that the solutions carried out by SIMiner evolves and eventually start

to converge from a certain point.

4.6.3 Experiment 2 : Time to Converge

To further explore SIMiner, Experiment 2 analyses the efficiency of SIMiner based on

the previous experiment. As SIMiner is a distributed approach, the efficiency evaluation

and improvement are very different from other centralised algorithms. Specifically,
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the traditional algorithm only can be improved by modifying the algorithm itself or

leverage other statistical methods. By contrast, SIMiner models the individual agent,

and the overall efficiency can be improved easily by adding more ant agents. In this

experiment, the efficiency of SIMiner is analysed by exploring the time to converge.

By using the Ego-Facebook dataset, the number of the ant agents is increased

to explore the trend of the convergence. The results of seed set variation rate when

involving one ant, five ants and ten ants are demonstrated in Figures 4.10, 4.11 and

4.12, respectively. It is clear that in general the more ant agents are deployed, the faster

convergence can be observed.

Figure 4.13 compares the activation coverage trend when involving the ants of the

different size in SIMiner. It is evident that a larger number of ants have a higher starting

point. The time to converge is longer when only one ant is working in the environment.

30 ants and 10 ants perform almost the same in terms of efficiency.

4.6.4 Experiment 3 : SIMiner in Static Networks

Experiment 3 aims to evaluate the performance of SIMiner in static networks. SIMiner is

compared against some other state-of-the-art algorithms using three public datasets, i.e.,

Ego-Facebook, Email-Enron and Wiki-Vote. Greedy selection is one of the strongest

baselines in the influence maximization problem, and it outperforms most of the existing

algorithms but appears not scalable.

As we can see from Figures 4.14, 4.15 and 4.16 that SIMiner performs similarly or

even better than Greedy algorithm.

Next, the parameters of SIMiner, including ω, α and β, are adjusted to investigate

the performance. Figures 4.17 and 4.18 demonstrate the results of parameter choices

using Ego-Facebook dataset. No significant changes but slight differences can be

observed.
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Figure 4.17: Parameter Choices ω Figure 4.18: Parameter Choices α, β

4.6.5 Experiment 4 : SIMiner in Dynamic Networks

In Experiment 4, I analysed dynamic social networks and conducted influential nodes

mining from a temporal perspective. This experiment describes SIMiner handles

the dynamics by reusing the pheromone accumulated at previous time step in the

environment.

The experiment encompasses two scenarios, i.e., the social network keeps expanding

on a monthly basis, and the size of the network varies quarterly. In both scenarios,

SIMiner keeps running over time, and no interruptions occur when changing the snap-

shots. However, the greedy selection algorithm identifies a set of influential nodes when

given the first snapshot, and is executed again after a specific time interval, so that the

influential user set is recalibrated. To simulate the dynamics and evolution of social

networks, I have extracted a number of snapshots from Flixster dataset by following the

assumptions below.

• A user is regarded as joining the social network when giving the first rating to

any movie, while he or she quits the network after contributing the last rating.

• A user is considered as effective in a particular time frame if he or she has

contributed any ratings during this period, i.e., a particular snapshot.
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Figure 4.19: Monthly Flixster Network (In-
cremental)

Figure 4.20: Quarterly Flixster Network
(Dynamic)

• When users join the social network, the affiliation relationships are formed

immediately.

• The influential nodes selected from a snapshot at k remain effective in the next

snapshot at k + 1.

Figures 4.19 and 4.20 demonstrate the aforementioned two scenarios, i.e., 36-month

and 12-quarter snapshots respectively, ranging from the year 2006 to 2008. Figures

4.21 and 4.22 reflect the dynamic features of social networks, where the users join and

quit, and links are forming and vanishing over time. As can be observed from Figure

4.22 that the social network is actually ‘changing the blood’ over time, and the effective

users’ life cycle appears short. In Q1 2007, the difference between new joining users

and quitting users is very high, while more users quit than that of joining in Q3 and Q4

2007.

The experimental results of the first scenario is presented in Figure 4.23, where

the performance of both greedy selection and SIMiner have been compared in an

incremental social network. SIMiner keeps running and selecting influential nodes.

Whereas, the seed set identified by greedy algorithm is recalibrated every first month of

the year. The seeds from greedy algorithm perform well for a few months. However,

obvious performance degradation can be observed when the social network evolves.
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Figure 4.21: Quarterly Flixster Links Vari-
ation

Figure 4.22: Quarterly Flixster Nodes Vari-
ation

Figure 4.23: SIMiner in an Incremental En-
vironment (Monthly)

Figure 4.24: SIMiner Handling Incremental
Environment

Figure 4.25: SIMiner in a Dynamic Envir-
onment (Quarterly)

Figure 4.26: SIMiner Handling Dynamic
Environment
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To examine the detailed operations of SIMiner, two consecutive months are selected,

i.e., December 2007 and January 2008. In Figure 4.24, it can be seen that when social

network evolves, SIMiner is capable of adapting the solutions rapidly and carrying out

an optimal solution.

Figure 4.25 demonstrates the results of the second scenario, where the effective

users in the dynamic network vary on a quarterly basis. Greedy selection recalibrates

the solution on the first quarter of each year. It is obvious that SIMiner is adaptive

and performs well, whereas, without any calibration, the greedy selection loses its

advantages when the social network evolves. In Figure 4.26, the performance of SIMiner

degrades suddenly when the network snapshot changes, but increases immediately,

approaching an optimal solution.

4.6.6 Discussion

Four experiments are conducted to explore the key features of SIMiner, as well as

its performance in the influence maximization problem in both static and dynamic

networks. SIMiner’s advantages are demonstrated in mining influencers and handling

dynamics from a microscopic level. The following insights can be uncovered from the

experiments.

(1) In the influence maximization problem, SIMiner can always converge to an

optimal solution within a number of iterations. Equipped with the same knowledge,

the individual’s behaviours lead to a global convergence. The identified seed set

is continuously being revised and optimised, and eventually reaches a stable status.

SIMiner is a global searching algorithm with evolutionary computing features, which

are powered by stigmergic interactions. The influence effectiveness of the seed set

from SIMiner is closer or even superior to that of the Greedy algorithm. Furthermore,

SIMiner demonstrates a fast convergence, implying an excellent adaptability.
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(2) SIMiner can handle large-scale networks when big data emerge. As SIMiner

is a distributed approach, inheriting from ABM, the modelling merely focuses on

individual’s features and behaviours. To improve the efficiency in handling large-

scale networks, more agents can be simply added to expedite the convergence speed.

Therefore, SIMiner is not affected by the data size.

(3) SIMiner requires relatively complicated parameter choices, and the selection

of these parameters are dataset-dependent. In SIMiner, parameters are supposed to be

carefully determined to achieve a good performance. The selection still relies on the

attempts of different combinations but I would like to set the investigation of parameter

choices for SIMiner as one of the future work.

(4) The ant size appears to be a critical factor affecting the performance. Given a

finite walking rounds within a limited time frame, employing one ant to explore a large

network causes performance degradation. Because the solution may not fully converge

before the walking finished. In this case, SIMiner more likely carries out a premature

solution.

(5) SIMiner handles dynamics using agents in a local level. The environment

changes are captured from a microscopic perspective. Given an undiscovered network,

SIMiner requires a few time steps to “warm up”, allocating pheromone to the environ-

ment, which can be regarded as an initialization. Any topological structure update is

not supposed to affect the initial pheromone intensity. In other words, the exploration

can be continued based on the existing pheromone and without any interruption.

4.7 Summary

This chapter presented a novel decentralised approach, i.e., SIMiner, to mine influential

nodes in social networks. The outstanding merit of the proposed model is its adaptation

ability. SIMiner is capable of adapting the solutions in complex dynamic environments.
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Specifically, a set of artificial ant agents have been deployed, which keep crawling

in the network and updating the environment via stigmergic interactions, thus, the

solutions keep revising with the network evolution over time. Four experiments have

been conducted to analyse and evaluate the performance of SIMiner in both static and

dynamic environments. Experimental results reveal that SIMiner can fast converge to

an optimal solution, whose effectiveness is closer or even better than Greedy selection.

Moreover, it is able to handle the influential users mining tasks in dynamic networks

without any re-calibrations. Furthermore, the proposed decentralised approach is

suitable for many real-world networks, as it is applicable to large-scale networks and

even functions without a global view.

This chapter mainly answers the Research Question 1 mentioned in Chapter 1. The

model and results of this chapter have been published in (W. Li, Bai, Jiang & Zhang,

2016) and in the journal of IEEE Transactions on Big Data (W. Li, Bai & Zhang, 2018b).

In the next chapter, based on the generic agent-based influence diffusion model

proposed in Chapter 3, I will further extend the influence maximization problem by

investigating how to achieve long-term marketing by maintaining a particular influence.



Chapter 5

Automated Influence Maintenance in

Social Networks

As introduced in Chapter 1, most existing studies in the field of influence maximization

concentrate on how to maximize positive social impact to promote product adoptions

based on static network snapshots. Such approaches can only increase influence in a

social network in short-term, but cannot generate sustainable or long-term effects.

In this chapter, I study on how to maintain long-term influence in a social network

and propose an agent-based influence maintenance model, which can select influential

nodes based on the current status in dynamic social networks in multiple time-frames

Within the context of my investigation, the experimental results indicate that multiple-

time seed selection is capable of achieving more constant impact than that of one-shot

selection. I claim that influence maintenance is crucial for supporting, enhancing

and assisting long-term goals in business development. The proposed approach can

automatically maintain long-lasting impact and achieve influence maintenance.

109
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5.1 Overview

With the prevalence and advancement of the Internet, on-line social networks have

become an important and efficient channel for information propagation. The propagation

relies on one of the social phenomena, i.e., social influence, indicating that one’s

opinions or behaviours are affected by his or her contactable neighbours in the social

network (Turner, 1991; Raven, 1964). Influence message is a common and concrete

representation of social influence, which ‘travels’ rapidly through the network topologies

via users’ sharing experiences or behaviours.

In recent years, influence maximization draws tremendous attention to both re-

searchers and domain experts. From a business perspective, influence maximization

corresponds to short-term marketing effects, which tend to cause sudden profit spikes

that rarely last (Valencia, 2013). Whereas, long-term marketing is typically more be-

neficial since it emphasises on long-term and sustainable business goals. Specifically,

long-term influence can establish brand awareness and continually produce results even

years down the road; thus, without having long-term marketing strategies, short-term

success may be short-lived (Marketing, 2015). Motivated by this background, in this

chapter, I aim to achieve constant impact for long-term marketing by investigating

the preservation of a particular type of influential situation or status, called influence

maintenance.

There are many limitations for short-term (or even one-shot) influence maximization

when being utilised in real business cases. First, it focuses on how to maximize the

influence of one-shot investment. Based on the risk management theory and best

practice (Bender et al., 2010), with the same budget, the multiple-time investment could

enable a better business strategy. In this way, the next action can be planned and carried

out based on the outcome of the previous investment. For example, in a stock market,

very few investors purchase stocks with all their money at only one time. Second, a
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great many business owners intend to expand the lifespan of influence, so that the brand

awareness can be enhanced and increased in the long run (Aaker, Aaker & Biel, 1993).

Influence maintenance not only cares about the quantity of users being affected but also

considers constant influence impact.

Influence maintenance needs to be supported by a formal influence diffusion model

which possesses two attributes: (1) the model is capable of capturing the temporal

feature of a social network; (2) the model can monitor the status of a particular influence.

On the other hand, in most existing on-line social media applications, information

cannot be delivered to the users directly, but cached in individual’s message repository,

pending for users to access. The timeliness of a particular influence message becomes

an important factor to be considered. More specifically, an individual reading list in

on-line social networks, such as Weibo1, is typically presented as a stack, which turns

out to be last-post-first-read. Thus, the accessing priority of a particular message keeps

decreasing over time, and posting or sharing behaviours are not supposed to be triggered

without reading it.

In this chapter, I systematically elaborate and formulate the influence maintenance

problem, which tends to maximize the constant impact of a particular influence by

considering time-series. Meanwhile, a decentralised influence propagation model,

i.e., the Agent-based Timeliness Influence Diffusion (ATID) model, is proposed. In

the ATID model, the diffusion process is considered as a networked evolutionary

phenomenon, users are modelled as autonomous agents, and each maintains its local

information incorporating friendship affiliation list, message repository and posting

histories. Furthermore, I propose the Timeliness Increase Heuristic (TIH) algorithm for

solving the influence maintenance problem. Extensive experiments are conducted by

using three real datasets. The experimental results show that:

1http://www.weibo.com
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• Multiple-time selection can maintain influence better than one-shot selection.

• The TIH algorithm outperforms the other traditional seed selection algorithms

regarding maintaining influence in social network.

• Seed-set variation is associated with both selection approaches and network

properties.

The remainder of this chapter is structured as follows. Section 5.2 reviews the

literature related to this research work. Section 5.3 introduces the preliminaries, formal

definitions and problem description. Section 5.4 systematically elaborates the influence

maintenance using the proposed decentralised diffusion model, and the TIH algorithm

is also described. In Section 5.5, experimental results are presented to evaluate the

performance of the proposed model. The summary of this chapter is given in Section

5.6.

5.2 Related Work

5.2.1 Adaptive Influence Maximization

A rich body of research works has been devoted to the influence maximization problem

over the past ten years (Kempe et al., 2003; Domingos & Richardson, 2001). The

majority of these studies fall into either full-feedback or non-feedback models (Golovin

& Krause, 2011). In the former, all the seeds are committed based on the networked

features or specific heuristics. Namely, there is no adaptive seed selection policy

applied. Whereas, the latter utilises the observations during the seeding process, where

the rules for identifying influencers are also known as adaptive policies. Based on the

full-feedback model, some researchers extend the influence maximization problem by

exploring the adaptive budget allocations (Golovin & Krause, 2011; Alon et al., 2012;
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Soma et al., 2014). Typical research works tackling adaptive influence maximization

problem have been reviewed in Section 2.2.3 of Chapter 2.

My research work departs from the body of these studies mainly in two aspects.

First, the existing studies focus on investigating adaptive policies on the basis of the

concept of adaptive submodularity (Golovin & Krause, 2011). Whereas, I concentrate

on modelling the influence maintenance, achieving a constant impact by considering the

timeliness degrees, though adaptive seeding algorithms are proposed to accommodate

to the model. Second, these research works do not give a clear concept of time-series,

and the networked evolutionary trend driven by influences is not captured. While, in

this chapter, the time-series can be presented and the global observation of a social

network status can be captured since ABM has been applied in the proposed model.

5.2.2 Influence Diffusion Modelling

As mentioned in Subsection 2.1.3 that the IC model and the LT model are two popularly

adopted influence-diffusion models and many studies are conducted under various

extended influence diffusion models.

However, most of the existing research works oversimplify the influence diffusion

process, and the traditional propagation models concentrate on the activation state of

each individual. Whereas, the users’ features and behaviours affecting the influence

acceptance have not been considered. Moreover, the dynamic status of influence

messages over time is neglected. By contrast, the proposed ATID model for influence

maintenance is decentralised, focusing on modelling individuals’ personalised traits and

behaviours. Furthermore, ATID model is capable of capturing the evolutionary network

trend based on time-series, as well as the status of influence messages.



Chapter 5. Automated Influence Maintenance in Social Networks 114

5.2.3 Agent-based Modelling for Influence Diffusion

As introduced in Section 2.3.1 of Chapter 2 that some studies are conducted to model

the influence diffusion in a social network by leveraging ABM. Different from the

works in this field, the proposed ATID model captures the properties of the influences

existed in the same environment as that of the individuals’. Therefore, the observations

of the disseminated influence messages can also be reflected from ATID model.

5.3 Preliminaries and Problem Formulation

5.3.1 Social Networks and Newsfeed

Most on-line social networks can be classified into two categories, depending on whether

the newsfeed is re-organised.

First, some popular on-line social networks, such as Facebook2, create personalised

activity feeds for increased interactions and content contributions (Berkovsky & Freyne,

2015). For example, Facebook previously employed the EdgeRank algorithm3 to

determine which stories appear as newsfeed for each user by considering three original

elements, i.e., affinity, weight and time decay (Carlton, 2015). Therefore, to maximize

the impact of a particular influence, social media marketers need to stay informed of

the changes to the latest newsfeed algorithms. Nowadays, newsfeed algorithms have

become much more sophisticated. For example, Facebook has begun to employ a more

complex ranking algorithm based on machine learning (Berkovsky & Freyne, 2015;

Carlton, 2015; McGee, 2013). In this sense, it is nearly impossible for researchers to

investigate the influence diffusion modelling in such social networks, as the outcome is

much dependent on the newsfeed algorithms.

2https://www.facebook.com/
3http://edgerank.net/
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(a) Social Network Graph (b) Agent-based Influene Diffusion Model

(c) Influence Diffusion Facets

Figure 5.1: General Idea of the Proposed Model

Second, on-line social networks, like WeChat4, enable users to share daily moments

with friends. The newsfeed is generated instantly based on the timeline. Moreover,

the social interactions among the individuals, such as ‘comments’ and ‘like’, are only

visible if friendship connections are established. Different from Facebook, such kind

of social networks allow duplicate messages propagating through the network, and

4http://www.wechat.com/en/
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no newsfeed algorithms are applied. Moreover, ‘posting a message’ or ‘forwarding a

message’ can be regarded an influential behaviour, while ‘like’ and ‘comments’ weigh

less due to the visibility and privacy restrictions.

In this research, I mainly focus on the second category of social networks and

investigate influence maintenance, where the timeliness degree of a message plays a

pivotal role in organising the newsfeed.

5.3.2 Agent-based Influence Diffusion

ABM simulates the influence diffusion process by emphasising individualised features

and behaviours. Based on the influence theory, homophily and influence are driven

by the users’ preferences. Thus, individuals have different tendencies of reading and

posting different types of topics (L. Wu et al., 2016). The messages wrapped with

influence are supposed to be delivered to the repository of corresponding recipients,

where the repository is filled with the influence messages from the neighbours. Each

agent has a different frequency of accessing its repository. Based on agent’s preference

and message timeliness degree (see Definition 5.4), the agent determines whether the

information is to be shared with its adjacent neighbours. If an agent is influenced

(activated), i.e., posting action is triggered, then, the influence message reaches its

neighbours’ repositories. Whereas, in the recipient’s repository, the timeliness degree

of this message keeps decreasing over time, but this will be refreshed if the repository

owner is activated or the same message has been received again.

Figure 5.1 demonstrates a toy example, which represents the general idea of the

proposed model. Figure 5.1a shows an ordinary social network graph in traditional

influence diffusion models. Let vi be an initial influencer who attempts to activate vj

with a certain success rate. If vj is activated by vi, it will then intend to influence the

adjacent neighbour vk. Figure 5.1b describes the proposed model from a microscopic
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Table 5.1: Frequently Used Notations

Notation Description
vi user agent
msgp influence message
ϕ timeliness degree
r influence attenuation constant
λ the speed of influence decay
Rvi incoming message repository of vi
Hvi historical records of vi
A seed set
%msgp global activation coverage (GAC) of msgp
ξtnmsgp global timeliness degree (GTD) of msgp at tn
Ωmsgp global cumulative timeliness degree (GCTD) of msgp
∆Ω incremental timeliness contribution
P (.) probability
g(.) timeliness gain

point of view. Individual’s influence activation is achieved by accessing the repository.

More specifically, if a user is influenced (activated), the influence message is supposed

to be delivered to all the neighbours’ repositories. Meanwhile, this message is archived

as one of the sender’s historical records. From a macroscopic viewpoint, apart from the

topological structure of a social network, two more factors are affecting the influence

propagation, i.e., the historical records and the repository, which is illustrated in Figure

5.1c. The detailed modelling will be elaborated in Section 5.4.

Before moving on to the technical parts of this chapter, the frequently used notations

are summarised in Table 5.1.

5.3.3 Formal Definitions

Definition 5.1: A user agent vi, (vi ∈ V ) is defined as a vertex in a social network

G = (V,E), where V = {v1, ..., vn} denotes a set of agents and E represents a set of

edges, E = {eij ∣1 ≤ i, j ≤ n}, i, j ∈ N+,{vi, vj} ⊆ V . vi has a neighbour set Γ (vi). If

agent vj is a neighbour of vi, then {eij} ⊆ E,vj ∈ Γ (vi). While, Evi indicates the edge
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set connected with vi, where Evi = {eij ∣vi ≠ vj ∧ vj ∈ Γ (vi)}. ∣V ∣ and ∣E∣ denote the

cardinality of agents and edges respectively. The affiliation information is maintained

by each agent locally. In addition, agent vi has a binary state smsgpvi towards a particular

influence messagemsgp (see Definition 5.3), where smsgpvi ∈ {0,1}, representing inactive

and active, respectively.

Definition 5.2: Environment εvi is an ego network representing the local influence

diffusion context or the local view of a particular agent vi. The environment of vi is

denoted by using a four-tuple, εvi = (Γ (vi),Evi ,Rvi ,Hvi), where Rvi and Hvi represent

the repository and historical records of vi, respectively (see Definitions 4 and 5). Each

agent is capable of accessing all the resources in its environment.

Definition 5.3: Influence message msgp is defined as a particular piece of information

sent from one person to his or her contactable recipients, affecting their opinions or

behaviours. It is a common and concrete representation of social influence in on-line

social networks. In the current settings, each influence message msgp belongs to a

particular topic τx, i.e., msgp ∈ τx. If agent vi is influenced after accessing msgp, then

s
msgp
vi ∶= 1; meanwhile, vi attempts to deliver the influence message to the repositories

of neighbours Γ (vi).

Definition 5.4: Timeliness degree of an influence message is a real value, describing

the position of an influence message in a user’s repository at a particular time. Timeliness

degree not only reflects the status of the influence message, but also implies whether a

specific piece of news arrives at a suitable time. In reality, it happens more than often

that users check the friend-circle or moments update right after a message has been

posted. Subsequently, this influence message has a higher chance to draw the user’s

attention than that of the others. Mathematically, the timeliness degree of message
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msgp in vi’s repository at time tm is defined using the notation ϕ(vi,msgp, tm).

Inspired by the behaviour analysis approach introduced in (Benevenuto, Rodrigues,

Cha & Almeida, 2009; Fang, Hu, Li & Tsai, 2013), I assume that the effect of influence

satisfies the principle of natural decay; thus, the exponential decay, i.e., e−r, can be

leveraged to describe the attenuation of influence, where r denotes the attenuation

constant. Suppose message msgp has been delivered to vi’s repository at tb, then the

timeliness degree is formulated in Equation 5.1.

ϕ(vi,msgp, tm) = e−r⋅(m−b) (5.1)

The timeliness degree of any message equals to 1 when arriving at the repository,

i.e., m = b, and starts to decrease over time. Therefore, the speed of influence decay λ

is described in Equation 5.2, which shows the speed is gradually slowing down.

λ = ϕ(vi,msgp, tm−1) − ϕ(vi,msgp, tm)

= e−r⋅(m−1−b) − e−r⋅(m−b)

= (er − 1) ⋅ e−r⋅(m−b),m ≥ b

(5.2)

I assume msgp is supposed to be ignored by agent vi after time te, subject to e ∈ N,

e >m − b and ϕ(vi,msgp, te) ≥ σ(msgp), where σ(msgp) denotes the valid timeliness

degree threshold ofmsgp. Likewise, the higher timeliness degree, the greater probability

that the influence message can be accessed by the user when visiting the repository.

Definition 5.5: Repository Rtm
vi =< r1, r2, ..., rn > refers to a cached container of agent

vi at time step tm. It incorporates all the valid incoming messages from neighbours

Γ (vi) to agent vi. Each agent has a different frequency of accessing the repository.

An element in Rtm
vi can be represented as a three-tuple, i.e., rk = (vj,msgp, ϕ), where

vj denotes the agent who posts the influence message msgp, vj ∈ Γ (vi) ∪ {vi} and
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ϕ ≥ σ(msgp). For simplification purposes, ϕ is regarded as the timeliness degree of the

corresponding message at tm, which is equivalent to ϕ(vi,msgp, tm).

Definition 5.6: Historical records refer to past outgoing influence messages delivered

from a particular user to the neighbours. Historical records Hvi = {txn1, txn2, ..., txnn}

is defined as a collection of user vi’s past sharing transactions, i.e., posted messages.

An element of Hvi can be denoted by a three-tuple, i.e., txnn = (msgp, ϕ, tm), where

ϕ represents the message timeliness degree when posted (clarified in Definition 5.5),

ϕ ≥ σ(msgp). While, tnow refers to the current time step, and ∆t describes the valid

lifespan of a transaction, tnow − tm ≤ ∆t. Given tnow − tm > ∆t, the corresponding

transaction is supposed to be removed from the collection. Historical records Hvi is

also an implication of agent vi’s interests or preferences.

5.3.4 Problem Description

Influence maintenance in this thesis is defined as the process of preserving a particular

type of influential situation or the status of influence being preserved. The concept is

derived from influence maximization. Specifically, given a finite budget k (seed set size)

and a limited time span [t0, tm], an investment (seed selection) occurs once every n

time steps, thus, the investment time steps I = {tN×n∣N ∈ N ∧N × n <m}, where tN×n

represents a particular seed selection point. There are ∣I ∣ times of investment considered

for maintaining the influence.

Influence maintenance aims to find a solution of identifying the seed set AtN×n
for

each time step tN×n to maximize the influence lifespan of msgp. Thus, the selected

seed set A is a collection of seeds identified from each investment time step, i.e.,

A = {At∣t ∈ I} and
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∑
t∈tN×n

∣At∣ = k (5.3)

I assume that the same amount of seeds are supposed to be selected for each

selection point, and any seeds cannot be selected more than once. In other words, given

{Ai,Aj} ⊆ A, ∣Ai∣ = ∣Aj ∣,Ai ∩Aj = ∅.

The Global Timeliness Degree (GTD) of msgp at a particular time step tn is rep-

resented as ξtnmsgp , which can be calculated by using Equation 5.4. The popularity

trend of a particular influence message can be reflected by connecting the GTD of the

corresponding influence in each time step.

ξtnmsgp = ∑
vi∈V

ϕ(vi,msgp, tn) (5.4)

The overall effective influence lifespan of msgp in the entire social network is

evaluated by using Global Cumulative Timeliness Degree (GCTD) of a specific time

span [t0, tm], i.e., Ωmsgp , which can be derived by using Equation 5.5.

Ωmsgp =
tm

∑
t0

ξtnmsgp =
tm

∑
t0

∑
vi∈V

ϕ(vi,msgp, t) (5.5)

The objective of influence maintenance is to maximize Ωmsgp . Furthermore, the

traditional influence effectiveness evaluation metrics, i.e., Global Activation Coverage

(GAC), is taken into consideration as well. GAC of influence message msgp is denoted

using the notation %msgp , indicating the number of users in the social network getting

affected or activated by msgp. %msgp can be calculated by using Equation 5.6.

%msgp = ∑
vi∈V

∣{vi∣s
msgp
vi = 1}∣ (5.6)
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5.4 Influence Maintenance Model

5.4.1 The Agent-based Timeliness Influence Diffusion (ATID) Model

ATID model is a decentralised influence diffusion model which utilises the advantages

offered by ABM. The influence propagation in social networks demonstrates a net-

worked evolutionary pattern driven by individuals’ actions. In this model, each agent

maintains its ego-network and makes decisions of performing social activities based on

both timeliness degree of the influence message and its preference.

There are many reasons to make a user to carry out a social behaviour, such as influ-

ence from neighbours in the same social networks, affected by any external events, or

the user actively posts some messages without getting influenced by anybody (A. Goyal

et al., 2010). In the proposed model, I assume users deliberately post messages after

influenced by the neighbours, and each individual’s repository and historical records

contain enough evidence for statistical analysis. Furthermore, each user agent (e.g.,

vi) has a different frequency of accessing its repository, i.e., freq(vi), which can be

calculated by using Equation 5.7. It can be seen that freq(vi) is equivalent to the

probability of vi accessing a particular message msgp in its repository at time tm, i.e.,

Pf(vi,msgp, tm).

freq(vi) =Pf(vi,msgp, tm),

subject to ϕ(vi,msgp, tm) ≥ σ(msgp)

(5.7)

One important task of influence diffusion modelling is to identify the probability

of getting activated after reading message msgp of topic τx at time tm, where the

influence probability may not remain constant independently of time (A. Goyal et al.,

2010). Therefore, in the proposed model, a user agent has the capability of adapting

its probability of posting message msgp based on two major factors, i.e., the attention
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degree of influence message msgp and the user preference derived from the latest k

posts. Therefore, the probability of user agent vi posting message msgp at time tm can

be estimated in Equation 5.8:

P (msgp∣R
tm
vi
,Hvi) = P (msgp∣R

tm
vi

)P (τx∣Hvi ,msgp ∈ τx) (5.8)

In Equation 5.8, P (msgp∣R
tm
vi ) represents the attention degree of influence mes-

sage msgp in vi’s repository at time tm, i.e., the probability of getting attracted by

msgp, which is associated with the message timeliness degree ϕ(vi,msgp, tm). While

P (τx∣Hvi ,msgp ∈ τx) denotes the probability of sharing topic τx at time tm on the basis

of vi’s past behaviours.

Thus, the attention degree of influence message msgp in vi’s repository at time tm

is formulated in Equation 5.9.

P (msgp∣R
tm
vi

) =

∑
rn∈R

tm
vi

∧rn.msg=msgp

ϕ(vrn , rn.msg, trn)

∑
rn∈R

tm
vi

ϕ(vrn , rn.msg, trn)
, (5.9)

where trn = tm − tn, tn denotes the time when the message rn arrives the repository.

According to vi’s historical records, the probability of sharing topic τx,msgp ∈ τx at

time tm can be derived from the weighted average of topic τx’s timeliness difference.

Specifically, if msgp has been posted when its timeliness degree msgp.ϕ is low, this

implies that the user is very interested in the topic of msgp (i.e., msgp.τ ), and the

message timeliness degree will not significantly impact the chances of posting such

messages. Hence, P (τx∣Hvi ,msgp ∈ τx)) is represented in Equation 5.10.

P (τx∣Hvi ,msgp ∈ τx)) =

∑
msgp∈τx

(1 −msgp.ϕ)

∑
msgq∈Hvi

(1 −msgq.ϕ)
(5.10)
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5.4.2 Diffusion Process under ATID Model

Benefited from ABM, individual’s features, behaviours and the local environment can

be considered in ATID model. As ATID model is a decentralised influence propagation

model, the diffusion algorithm under ATID model corresponds to an agent’s response

when accessing its repository. The diffusion process in ATID model is described in

Algorithm 5.

Algorithm 5 The Influence Diffusion Algorithm under ATID Model
Input: vi, tm,msgp,msgp ∈ τx
Output: vi’s social behaviour (posting / not)

1: Generate random decimal rand1
2: if rand1 ≤ freq(vi) ∧Φ(msgp∣Hvi) = 0 then
3: Compute P (msgp∣R

tm
vi ) using Equation 5.9

4: Compute P (τx∣Hvi ,msgp ∈ τx)) using Equation 5.10
5: Compute P (msgp∣R

tm
vi ,Hvi) using Equation 5.8

6: Generate random decimal rand2
7: if P (msgp∣R

tm
vi ,Hvi) ≤ rand2 then

8: for ∀vj ∈ Γ (vi) ∪ {vi} do
9: Rtm+1

vj ∶= Rtm
vj ∪ {(vi,msgp,1)}

10: end for
11: Hvi ∶=Hvi ∪ {(msgp, ϕ, tm)}

12: end if
13: end if
14: for ∀rn ∈ Rtm+1

vi ∖ {(vi, τx, ϕ)} do
15: rn.ϕ ∶= rn.ϕ − λ
16: end for

In Algorithm 5, the inputs incorporate user agent vi, time tm, the influence message

msgp and msgp’s corresponding topic τx; while the output is vi’s social behaviour, i.e.,

post msgp at time tm or not. Line 2 checks the precondition of sharing msgp, where

Φ(msgp∣Hvi) is an indicator function, which returns 0 ifmsgp is not posted by vi before,

and 1 otherwise. Lines 3-5 aim to compute the probability of posting msgp by vi at

tm. Lines 8-11 update the repositories of agents in vi’s ego-network, as well as its own

historical records. Lines 14-16 demonstrate that the message timeliness attenuation

occurs in vi’s repository.
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5.4.3 The Timeliness Increase Heuristic (TIH) Algorithm

There are some classic seed selection algorithms, such as degree-based, greedy, random

and Degree Discount Heuristic (DDH) selections (Kempe et al., 2003; W. Chen et al.,

2009). These algorithms are developed based on either the node features or influence

diffusion models. More specifically, degree-based approach identifies the influencers

by considering the node degree; greedy algorithm attempts to reach the maximum

influence marginal gain in each selection, but it is not scalable; DDH extends the rank-

based algorithm that once a node is selected, the degree of corresponding neighbours is

deducted by one; random selection does not follow any heuristics, which selects seeds

randomly.

DDH is developed based on the fact that many of the most central nodes may be

clustered; thus, it is not necessary to target all of them (W. Chen et al., 2009). A similar

concept can be utilised for maintaining an influence, that is, the influence fading-out

zone should be first targeted to achieve influence maintenance.

Inspired by DDH, I have developed the TIH algorithm (i.e., Algorithm 6). For

selecting each seed, the TIH tends to search for the user v∗, who can bring the maximum

message timeliness gain, which is calculated in Equations 5.11 and 5.12.

v∗tm = argmax
vi

∑
vj∈{vi}∪Γ (vi)

g(vj,msgp, tm) (5.11)

g(vj,msgp, tm) = 1 − ϕ(vj,msgp, tm) (5.12)

In Equations 5.11 and 5.12, g(vj,msgp, tm) denotes vj’s message timeliness gain

if vi is selected as a seed. The selection of the next seed is based on the assumption

that if previously identified seeds are selected. Thus, the TIH selection is described in

Algorithm 6.
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Algorithm 6 The TIH Algorithm
Input: G = (V,E), km, tm,msgp
Output: Am

1: Initialise Am ∶= ∅

2: for ∀vi ∈ V do
3: vi.ϕ′ ∶= vi.ϕ
4: end for
5: while ∣Am∣ < km do
6: for ∀vi ∈ V do
7: gsum(vi,msgp, tm) ∶= 0
8: for ∀vj ∈ {vi} ∪ Γ (vi) do
9: g(vj,msgp, tm) = 1 − vj.ϕ′

10: gsum(vi,msgp, tm)+ = g(vj,msgp, tm)

11: end for
12: end for
13: Find v∗ using Equation 5.11
14: Am ∶= Am ∪ {v∗}
15: v∗.selected ∶= true
16: for ∀vj ∈ {v∗} ∪ Γ (v∗) do
17: vj.ϕ′ ∶= 1
18: end for
19: end while



Chapter 5. Automated Influence Maintenance in Social Networks 127

In Algorithm 6, the inputs include the social network G, the number of seeds to be

selected km, the time step tm and influence message msgp; the output is the selected

seed set at tm. Lines 2-4 replicate all the user agents’ current timeliness degree of

msgp to a temporary variable. Lines 6-11 calculate the global timeliness gain for all

the users in G, in other words, this evaluates the influence impact of each individual.

Lines 12-13 aim to find the most ‘beneficial’ user. Lines 15-16 update the temporary

timeliness variables of all the users in v∗’s ego network with the assumption that if v∗ is

activated and selected as a seed. The worst-case time complexity of the TIH algorithm

is determined by Lines 5-8. As km is a constant, the complexity is O(n2).

It can be seen that the seed set selected by TIH algorithm is the local optimal

solution, following the heuristic that the largest timeliness fading-out zone should be

firstly targeted. Moreover, the TIH demonstrates its advantages in maintaining the

influence of a hypothesis message.

∆Ω = ∑
vj∈{vi}∪Γ (vi)

tm+n

∑
t=tm

ϕ′(vj,msgp, t) − ϕ(vj,msgp, t)

= ∑
vj∈{vi}∪Γ (vi)

(
tm+n

∑
t=tm

ϕ′(vj,msgp, t) −
tm+n

∑
t=tm

ϕ(vj,msgp, t))

= ∑
vj∈{vi}∪Γ (vi)

(
n

∑
i=0

e−i⋅r −
n

∑
i=0

e−(mj+i)⋅r)

= ∑
vj∈{vi}∪Γ (vi)

(
1 − e−(n+1)⋅r

1 − e−r
−

1 − e−(n+1)⋅r

1 − e−r
⋅ e−mj ⋅r)

= ∑
vj∈{vi}∪Γ (vi)

1 − e−(n+1)⋅r

1 − e−r
⋅ (1 − e−mj ⋅r)

=
1 − e−(n+1)⋅r

1 − e−r
∑

vj∈{vi}∪Γ (vi)

(1 − e−mj ⋅r)

=
1 − e−(n+1)⋅r

1 − e−r
∑

vj∈{vi}∪Γ (vi)

(1 − ϕ(vj,msgp, tm))

=
1 − e−(n+1)⋅r

1 − e−r
∑

vj∈{vi}∪Γ (vi)

g(vj,msgp, tm)

(5.13)

Theorem 4. In TIH algorithm, to obtain the node at tm with maximum timeliness gain
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using Equation 5.11, is equivalent to get the node with maximum GCTD increment, i.e.,

v∗tm = argmax
vi

∆Ω

Proof. Given current time step tm, and ϕ(vj,msgp, tm) = e−mj ⋅r, where mj denotes

the time difference between when msgp arrives and tm. If node vi has been selected

as a seed, the corresponding timeliness degree of node set {vj ∣vj ∈ {vi} ∪ Γ (vi)} is

supposed to be reset back to 1, i.e., ϕ′(vj,msgp, tm) = 1. Therefore, the incremental

timeliness contribution of activating vj , i.e., ∆Ω can be derived using Equation 5.13.

In Equation 5.13, n ∈ N, representing the difference between the total time steps and

the current time step, and e−mj ⋅r denotes the timeliness degree of a particular message

in vj’s repository at tm according to Equation 5.1. It is obvious that 1−e−(n+1)⋅r

1−e−r is a

coefficient, ∑vj∈{vi}∪Γ (vi) g(vj,msgp, tm) exactly corresponds to the objective function

of TIH algorithm in Equation 5.11. Therefore, TIH is a kind of greedy algorithm.

Lemma 5. Let S be the seed set selected by TIH and S∗ be the seed set that maximizes

Ωmsgp . Ωmsgp(S) be the GCTD of msgp with seed set S. Then Ωmsgp(S) ≥ (1 −

1/e) ⋅Ωmsgp(S
∗). In other words, the theoretical guarantee for TIH in the influence

maintenance problem is 1 − 1/e.

Proof. Let A be the initial seed set and X =< v1, v2, ..., vh > be one of the paths

activated by A. f(A) represents the GCTD of msgp caused by A. fX(A) denotes the

GCTD accumulated by path X . Similar to the calculations in Equation 5.13, we have:

fX(A) =
h

∑
j=1

tm+n

∑
t=tm+j

g(vj,msgp, t)

, where g(vj,msgp, tm) is defined in Equation 5.12, and 0 ≤ g(vj,msgp, t) ≤ 1. It is

easy to proof that fX(A) is sub-modular. Hence:
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f(A) = ∑
outcomes x

Prob∣X ∣ ⋅ fX(A)

, which is also sub-modular since the non-negative linear combination of sub-modular

functions is sub-modular. As is clarified in Theorem 4 that TIH is a kind of greedy

algorithm. According to Theorem 2.4 in (Kempe et al., 2003), we have f(A) ≥

(1 − 1
e)f(A

∗), where A∗ denotes the set that maximizes f(.) over all k-element sets.

Let f(S) = Ωmsgp(S), the lemma is proofed.

5.4.4 Influence Maintenance Analysis

I analyse the influence maintenance by considering the timeliness gain contributed by

two seeds va and vb under both scenarios, i.e., one-shot selection and multiple-time

selection, where the time discrepancy of selecting both users is denoted by using m0.

In the former, no time discrepancy is presented, i.e., m0 = 0, while in the latter, m0 ≠ 0.

Suppose that enough time is given for the influence decay, i.e., n → ∞, if any

node is activated, the theoretical timeliness gain would be 1/(1 − e−r) according to

Equation 5.13. If all the influence-diffusion paths of active users fail to overlap with

each other, the global timeliness gain of one-shot selection would be the same as that

of the multiple-time selection. Whereas, in reality, this rarely happens. Therefore, I

consider the situation when the influence-propagation paths cover same partial nodes

with each other.

Suppose the influences disseminated from va and vb can reach each other. In other

words, path Ð→va,b =< va, v1, v2, ..., vn, vb > exists in the network, which is illustrated in

Figure 5.2. Moreover, for simplification purpose, I assume that the influence propagation

probability remains the same.
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Figure 5.2: One of the Overlapped Influence Diffusion Paths

Table 5.2: Influence Maintenance Parameters

v1 v2 ... vn

Tva d0 d0 + 1 ... d0 + n − 1

Tvb m0 + d0 + n − 1 m0 + d0 + n − 2 ... m0 + d0

∆T ∣m0 + n − 1∣ ∣m0 + n − 3∣ ... ∣m0 + n − (2n − 1)∣

∆Ω
∣m0+n−1∣−1

∑
i=0

e−ir
∣m0+n−3∣−1

∑
i=0

e−ir ...
∣m0+n−(2n−1)∣−1

∑
i=0

e−ir

For any node vx in path Ð→va,b, the corresponding ∆Ω is explicitly determined by

the time discrepancy of the influences ∆T from two sources, va and vb, where ∆T

is associated with the number of nodes in between, i.e., n and the time difference in

activating va and vb, i.e., m0. Hence, values of influence maintenance related parameters

are described in Table 5.2.

In Table 5.2, Tva is an n-tuple, having a finite ordered list of n elements, where

each element denotes the time step when the influence initiated from va arrives at the

corresponding node, and the sequence implies the influence-diffusion path. Meanwhile,

∆T = (Tvb − Tva), where each element indicates the absolute value of the difference

between the elements in Tvb and Tva at the same position.

If ∆T is odd, ∆T starts from m0+n−1, decreasing by 2 further down the influence-

diffusion path, and begins to increase by 2 for each hop when the value reaches 1.

Similarly, if ∆T is even, ∆T drops by 2 and then is added by 2 after reaching 0. For

example, given n = 6, we can obtain the data in Table 5.3.
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Table 5.3: Example: value variation of ∆T (n=6)

m0 (even) ∆T (odd)

0 (5,3,1,1,3,5)

2 (7,5,3,1,1,3)

4 (9,7,5,3,1,1)

6 (11,9,7,5,3,1)

m0 (odd) ∆T (even)

1 (6,4,2,0,2,4)

3 (8,6,4,2,0,2)

5 (10,8,6,4,2,0)

7 (12,10,8,6,4,2)

Apparently, in both scenarios where∆T is even or odd, merely one different element

can be seen when m0 increases by 2.

Lemma 6. ∀k ∈ N, ∆Ω(m0 = k + 2) >∆Ω(m0 = k).

Proof.

∆Ω′ =∆Ω(m0 = k + 2) −∆Ω(m0 = k)

=

∣k+2+n−1∣−1

∑
i=0

e−ir −
∣k−n+1∣−1

∑
i=0

e−ir

=

∣k+n+1∣−1

∑
i=∣k−n+1∣

e−ir > 0,{n, k} ∈ N, n ≥ 1

According to Lemma 6, ∀k ∈ N, we have:

∆Ω(m0 = 0) <∆Ω(m0 = 2) < ... <∆Ω(m0 = 2k)

∆Ω(m0 = 1) <∆Ω(m0 = 3) < ... <∆Ω(m0 = 2k + 1)

(5.14)

Theorem 7. Multiple-time selection maintains a particular influence more effectively

than that of one-shot selection, i.e., for any t > 0, ∆Ω(m0 = t) >∆Ω(m0 = 0)

Proof. Based on Equation 5.14, I only need to proof ∆Ω(m0 = 1) > ∆Ω(m0 = 0).

Assume that the path length between two active nodes has an equal chance to be even
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Table 5.4: Value Comparison for ∆T and ∆Ω (n = 2h)

v1 ... vh vh+1 vh+2 ... v2h

∆T (n = 2h,m0 = 0) 2h − 1 1 1 3 2h − 1

∆Ω(n = 2h,m0 = 0)
2h−2

∑
i=0

e−ir
0

∑
i=0
e−ir

0

∑
i=0
e−ir

2

∑
i=0
e−ir

2h−2

∑
i=0

e−ir

∆T (n = 2h,m0 = 1) 2h 2 0 2 2h − 2

∆Ω(n = 2h,m0 = 1)
2h−1

∑
i=0

e−ir
1

∑
i=0
e−ir 0

1

∑
i=0
e−ir

2h−3

∑
i=0

e−ir

Table 5.5: Value Comparison for ∆T and ∆Ω (n = 2k+1)

v1 ... vk vk+1 vk+2 ... v2k+1

∆T (n = 2k + 1,m0 = 0) 2k 2 0 2 2k

∆Ω(n = 2k + 1,m0 = 0)
2k−1

∑
i=0

e−ir
1

∑
i=0
e−ir 0

1

∑
i=0
e−ir

2k−1

∑
i=0

e−ir

∆T (n = 2k + 1,m0 = 1) 2k + 1 3 1 1 2k − 1

∆Ω(n = 2k + 1,m0 = 1)
2k

∑
i=0
e−ir

2

∑
i=0
e−ir

0

∑
i=0
e−ir

0

∑
i=0
e−ir

2k−2

∑
i=0

e−ir

or odd. In other words, P (n = 2h) = P (n = 2k + 1), where k, h ∈ N. The values of

∆T and ∆Ω under different parameters are listed and compared in Tables 5.4 and 5.5.

Then, Equations 5.15 and 5.16 can be obtained.

∆Ω(n = 2k + 1,m0 = 1) −∆Ω(n = 2h,m0 = 0)

= 2
2h

∑
i=0

e−ir + ... + 2
2k−2

∑
i=0

e−ir +
2k

∑
i=0

e−ir
(5.15)

∆Ω(n = 2h,m0 = 1) −∆Ω(n = 2k + 1,m0 = 0)

= −(
2h−1

∑
i=0

e−ir + 2
2h+1

∑
i=0

e−ir + ... + 2
2k−1

∑
i=0

e−ir)
(5.16)

Suppose h > k, then by adding Equation 5.15 to Equation 5.16, we can obtain:
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(∆Ω(n = 2h,m0 = 1) +∆Ω(n = 2k + 1,m0 = 1))

− (∆Ω(n = 2k + 1,m0 = 0) +∆Ω(n = 2h,m0 = 0))

= e−2hr + ... + e−2(2k−2)r + e−2kr

− (e−(2h+1)r + ... + e−(2k−1)r)

= (e−2hr − e−(2h+1)r) + ...

+ (e−(2k−2)r − e−(2k−1)r) + e−2kr

> e−2kr > 0

(5.17)

The same proof can be applied when h ≤ k. Therefore, ∆Ω(m0 = 1) > ∆Ω(m0 =

0).

5.5 Experiments and Analysis

Three major experiments are conducted for this research work. The first one aims

to compare the difference in influence impact between one-shot and multiple-time

investment. The second experiment evaluates the performance of the TIH algorithm.

In the third experiment, I further compare one-shot selection against multiple-time

selection by exploring the variations of selected seeds based on ATID model.

5.5.1 Experiment Setup

Datasets. In the experiments, the following three datasets are used.

• Ego-Facebook5 dataset, collected by McAuley et al. (2012) using a Facebook

application, which is archived in Stanford Large Network Dataset Collection. It

contains profile and network data from 10 ego-networks, consisting of 193 circles,

4,039 users and 88,234 edges.
5http://snap.stanford.edu/data/egonets-Facebook.html
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• Email-Enron6 dataset, which covers all the email communication. It has been

posted to the web by the Federal Energy Regulatory Commission (Klimt & Yang,

2004). The Enron email network has 36,692 nodes and 367,662 Edges. To

diminish the computing time, a sub-graph with 10k nodes is captured for the

experiment.

• Wiki-Vote7 dataset, which incorporates administrator elections and votes history

data from 3 January 2008. There are 2,794 elections with 103,663 total votes

and 7,066 users participating in the elections. Nodes refer to Wikipedia users and

edges represent votes from one user to another (Leskovec et al., 2010b).

System Setup. The social context is simulated by creating a number of user agents

based on the public datasets. Each user agent manages its local information, including

a friendship list, a repository and historical records. I assume a hypothesis influence

message is supposed to be maintained and each agent has a different tendency of posting

this message. In the meanwhile, the reporting agent is responsible for monitoring the

entire multi-agent system and collecting global information. The system has three types

of states as follows:

• Evolve: user agents perform actions, incorporating accessing the repository,

reading the message and making decisions (share the post or not) based on both

past experiences and timeliness degrees.

• Pause: the entire system pauses, and stops functioning temporarily. This state

allows seed selection algorithms to identify influential users and select seeds

based on the current network status. In other words, further investment happens

at this point. The system evolution resumes as soon as the seed selection is

completed.
6https://snap.stanford.edu/data/email-Enron.html
7https://snap.stanford.edu/data/wiki-Vote.html
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Table 5.6: Experiment Parameters

Parameter Value(s)
Fixed time steps for seed selections 100
Fixed time steps in total 150
Number of seeds to be selected for each
selection points 25, 5, 1

The interval (time steps) of seed
selection 100, 20, 4

Seed set size 25
attenuation constant r 0.1
General action frequency of user agents
(times per second) 5

• Stop: All the user agents decompose, and the system terminates.

By setting up the system, the parameters for the experiments are given in Table 5.6.

I assume that the observations of network evolution are within a fixed interval, and

the same amount of seeds are supposed to be selected at each seed selection point. To

reduce the bias of measuring the performance of different strategies, additional time

steps, i.e., 50 time steps in the experiments, are given after the final seed selection for

the influence dissemination and attenuation. Furthermore, the budget is limited, in other

words, the seed set size is limited. The overall action frequency of user agents controls

the speed of network evolution.

Evaluation Metrics. As introduced in Section 5.3.4, three major evaluation metrics are

taken into consideration, i.e., GTD, GCTD and GAC, which have been explained and

formulated in Equations 5.4, 5.5 and 5.6, respectively. GCTD and GAC were applied

in both Experiment 1 and Experiment 2 for comparing the performance of different

selection strategies. GTD has been mainly utilised in Experiment 1 for tracking the

variation of timeliness degree of a particular influence message in different time steps.

In Experiment 3, some distance indices were facilitated to measure the variation of seed

sets.
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Figure 5.3: Rank-based (GCTD) Figure 5.4: DDH Selection (GCTD)

Figure 5.5: TIH Selection (GCTD) Figure 5.6: Rank-based (GAC)

5.5.2 Experiment 1: One-shot vs multiple-time selection

Experiment 1 compares one-shot investment against the multiple-time by facilitating

different seed selection algorithms, i.e., rank-based, DDH and the TIH selection. In this

experiment, the Ego-Facebook dataset is applied for the explorations. The notations of

selection approaches are listed in Table 5.7.

Figure 5.7: DDH Selection (GAC) Figure 5.8: TIH Selection (GAC)
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Figure 5.9: Rank-based (GTD) Figure 5.10: DDH Selection (GTD)

Figure 5.11: TIH Selection (GTD)

Table 5.7: Notations of Selections

Notation Meaning

1 × 25 One-shot selection, 25 seeds

5 × 5 5-time selection, select 5 each time

25 × 1 25-time selection, select 1 each time

As we can observe from Figures 5.3, 5.4 and 5.5 that multiple-time selections can

produce higher GCTD. The gap between one-shot selection and multiple-time selection

turns out to be evident over time. 5×5 and 25×1 give pretty close performance, but 25×1

shows slightly better, especially after 100 time steps when the selections are completed.

By comparing the GAC in Figures 5.6, 5.7 and 5.8, the multiple-time selection also

outperforms the one-shot selection. One-shot selection demonstrates a rapid influence

activation coverage, but unfortunately it loses the leading position halfway.

Based on the results in Figures 5.3 - 5.8, we can observe that with the same budget,
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increasing the frequency of investments generally carries out higher GCTD and GAC,

subject to additional time for influence diffusion and attenuation provided. This is due

to the reason that the last-round investment in multiple-time selections is not supposed

to give much credit without additional time for influence spread and decay. The results

also explicitly reveal that multiple-time selections target the reward in the long-run, but

may yield short-term performance. If an organisation intends to maintain an influence

by considering both effectiveness and time required for GCTD to reach a certain level,

selection strategies with extremely high frequencies (25 × 1 in the experiment) may not

be advocated, since it takes longer time to reach the maximum GCTD. Whereas, 5 × 5

balances the trade-off between time and GCTD, which is a better option under such a

scenario. The same rule also applies to GAC.

To drill down into the details, I explore timeliness variations of the influence message

after adopting different selection strategies in Figures 5.9, 5.10 and 5.11. One-shot

selection has the highest starting point, but it declines faster than that of 5 × 5 and

generally falls behind the others after around 20 time steps. Obvious spikes can be

observed in multiple-time selections and appear to be more prominent in the TIH 5 × 5.

Whereas, 25 × 1 demonstrates a different pattern. It climbs to the peak point, which

is higher than that of the other two selection approaches, then falls gradually. The

organisation expects a sharp upward trend after each investment. However, this is not

guaranteed based on the results. For example, no obvious increase can be observed at

time steps 60 and 20 of rank-based 5 × 5 and DDH 5 × 5, respectively. In contrast, the

TIH 5 × 5 sees an evident spike after each investment.

5.5.3 Experiment 2: The TIH Seed Selection Evaluation

Experiment 2 aims to evaluate the performance of the TIH algorithm. I compare the

proposed TIH algorithm against state-of-the-art algorithms. Since the diffusion model
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Table 5.8: Seed Selection Performance Comparison

Social Network Algorithm Metrics One-shot
Selection 1 × 25

Multiple-time
Selection 5 × 5

Multiple-time
Selection 25 × 1

Ego-Facebook TIH GCTD 195,951 207,115 209,675
Ego-Facebook TIH GAC 2,222 2,242 2,249
Ego-Facebook RANK GCTD 170,966 187,696 189,968
Ego-Facebook RANK GAC 1,996 2,124 2,118
Ego-Facebook DDH GCTD 181,994 190,653 205,774
Ego-Facebook DDH GAC 2,097 2,123 2,151
Ego-Facebook Random GCTD 168,733 175,899 188,300
Ego-Facebook Random GAC 1,889 1,988 2,003

Email Eron TIH GCTD 341,418 358,722 384,861
Email Eron TIH GAC 4,307 4,445 4,331
Email Eron RANK GCTD 328,026 352,744 362,992
Email Eron RANK GAC 4,082 4,391 4,365
Email Eron DDH GCTD 338,803 355,452 373,218
Email Eron DDH GAC 4,227 4,255 4,492
Email Eron Random GCTD 324,994 337,380 338,269
Email Eron Random GAC 4,181 4,189 4,196
Wiki Vote TIH GCTD 254,710 267,810 272,292
Wiki Vote TIH GAC 2,868 3,001 2,953
Wiki Vote RANK GCTD 247,659 264,417 267,213
Wiki Vote RANK GAC 2,826 2,944 2,878
Wiki Vote DDH GCTD 249,977 265,950 270,906
Wiki Vote DDH GAC 2,843 2,954 2,829
Wiki Vote Random GCTD 247,626 253,349 257,599
Wiki Vote Random GAC 2,813 2,843 2,824

is probabilistic based, the results are obtained by averaging multiple trials. To reduce

the bias, I evaluate the TIH algorithm by using the three datasets mentioned previously,

i.e., Ego-Facebook, Email-Enron and Wiki-Vote.

The experimental results are demonstrated in Table 5.8. It can be seen that the TIH

outperforms the others in all the three datasets. By using any selection strategy, the TIH

performs the best in terms of GCTD and GAC.

Another intriguing finding from the experimental results is concerning the relation-

ship between GCTD and GAC. More specifically, given the same budget, GCTD rises

with the increment of selection trails. In general, GAC gains when GCTD increases.

However, by adopting rank-based 25×1, the GAC yields that of the 5×5, though GCTD

rises. This phenomenon implicitly shows that the outcome of influence maintenance

is not always in accordance with that of the influence maximization. Whereas, the

relationship between GCTD and GAC tends to be affected by the applied business

strategies. In other words, the strategies created for long-term marketing can possibly
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Table 5.9: Network Properties and Seed Sets Variations

Dataset Average
Path Length

one-shot selection vs.
multiple-time selection 5 × 5

one-shot selection vs.
multiple-time selection 25 × 1

multiple-time selection 5 × 5
vs. multiple-time selection 25 × 1

Jaccard Dice Sequence Jaccard Dice Sequence Jaccard Dice Sequence
Email Enron 3.123 0.442 0.284 0.365 0.498 0.332 0.424 0.094 0.051 0.113
Wiki Vote 3.247 0.622 0.452 0.540 0.730 0.576 0.650 0.424 0.270 0.394
Ego-Facebook 3.693 0.768 0.624 0.631 0.792 0.656 0.668 0.477 0.315 0.383

suppress the short-term growth of the product adoptions.

5.5.4 Experiment 3: Seed Set Variation Analysis

With the same budget, different selection approaches inevitably produce different seed

sets. To understand the outcome of various strategies, in this experiment, I further

compare one-shot selection against multiple-time selection by exploring the variations

of selected seeds based on ATID model. The TIH algorithm has been applied for the

seeding procedures in three social networks mentioned previously.

Three evaluation metrics are adopted for measuring the distance (referring to vari-

ation or dissimilarity) between any two seed sets, i.e., Jaccard distance djcd(A1,A2),

Dice dissimilarity ddic(A1,A2) and sequential distance considering the index of the

elements dsqc(A1,A2), which are formulated in Equations 5.18, 5.19 and 5.20, respect-

ively. In these three equations, A1 and A2 denote two different seed sets, having the

same cardinality, i.e., A1 ≠ A2, ∣A1∣ = ∣A2∣. I(c∣A1) refers to the index of element c in

set A1.

djcd(A1,A2) = 1 −
∣A1 ∩A2∣

∣A1 ∪A2∣
(5.18)

ddic(A1,A2) = 1 −
2∣A1 ∩A2∣

∣A1∣ + ∣A2∣
(5.19)

dsqc(A1,A2) =
1

∣A1∣
( ∑
c∈A1∩A2

∣I(c∣A1) − I(c∣A2)∣

∣A1∣
+ ∣A1 ∖A2∣) (5.20)
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Figure 5.12: Seed Set Variation Comparison under Different Strategies

As the influence diffusion appears to be probabilistic-based, different sets of the

nodes could be selected by using the same algorithm. To reduce the bias, results are

averaged over multiple trials. Figure 5.12 compares the variations of the seed sets

produced by using different strategies. It explicitly shows that the seed-set variations

between one-shot selection and multiple-time selection appear to be more prominent

when having a higher frequency of selections. Two multiple-time selection approaches,

i.e., 5 × 5 and 25 × 1, share larger overlapping seeds than that of one-shot selection.

To investigate the correlations between network properties and seed-set variations, I

list the detailed results in Table 5.9, where "Average Path Length" (APL) refers to the

average number of steps along the shortest paths for all possible pairs of nodes. APL

is one of the key metrics to measure the transitivity of the network (Peres, 2014). A

shorter APL generally indicates that less time is required for any influence travelling

from one node to another.

It can be seen from Table 5.9 that a greater average path length corresponds to a

higher seed-set variation. The reason behind is that in shorter APL networks, influences

become relatively easier to reach any node, thus e−r⋅(m−b) in Equation 5.1 appears to

be lower as b shrinks. Subsequently, timeliness gain turns out to be less prominent.

Therefore, based on Equations 5.11 and 5.12, the TIH algorithm has a higher chance to

carry out similar seed sets under such circumstances.
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5.5.5 Discussion

I simulated a social environment and the process of influence maintenance in a social

network. Through the experiments, the advantages of applying ATID to model the

influence propagation process are demonstrated. Two critical factors required by the

influence maintenance can be presented clearly in ATID model, i.e., the temporal feature

of the social network and the status of a particular influence. Furthermore, the seed-set

variations are compared after applying different selection approaches. I also evaluate the

effectiveness of various seed-selection algorithms in maintaining an influence. The TIH

algorithm surpasses some selected traditional selection algorithms on three different

datasets.

More importantly, three empirical laws can be drawn from the experimental results.

• Given the same budget, the multiple-time investment is generally more beneficial

for achieving the long-lasting influence of a particular product than that of the

one-shot investment.

• Influence maintenance is not always in accordance with that of the influence

maximization. In other words, sustaining a long-term impact of a particular

influence cannot ensure a large fraction of activation coverage; the long-term

marketing strategies may hinder the profit spikes.

• Seed-set variation is not only associated with the frequency of selections, but

also affected by the network property. A greater average path length of social

networks leads to a higher seed-set variations.

5.6 Summary

In this chapter, I systematically studied the influence maintenance problem, which

targets the long-term and sustainable business goals. To the best of my knowledge,
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this is the first full research work that characterises the influence maintenance in social

networks. The distributed influence diffusion model, i.e., ATID model, can also pave

the way in exploring influence propagation social pheromone, since it concentrates on

modelling the agent’s personalised traits and behaviours, tracking the temporal feature

of a social network, as well as the status of influence messages. Many features of both

individuals and influences can be enabled in ATID model when analysing the social

influence diffusion phenomenon. I have also proposed a novel seed selection algorithm,

i.e., the TIH, which is capable of maintaining long-term influence effectively. Extensive

experiments are conducted, and the empirical results show that the proposed model

is capable of enhancing long-term influence. Given the same budget and limited time

frame, multiple-time investment is superior to one-shot investment in terms of influence

maintenance. Moreover, the experimental results also explicitly show that the TIH

performs better than the other traditional selection algorithms by considering GCTD

and GAC. I believe that the findings can shed light on the understanding of influence

maintenance for long-term marketing.

This chapter mainly answers the Research Question 2 mentioned in Chapter 1. The

research work of this chapter has been published in (W. Li et al., 2017) and (W. Li, Bai,

Zhang & Nguyen, 2018a).

The next chapter aims to model multiple influences diffusion and investigate adverse

influence minimisation problem from an agent-based perspective.



Chapter 6

Modelling Multiple Influences

Diffusion in On-line Social Networks

In the real-world, various influences normally coexist in the same context and have

subtle relations, such as supportive, contradictory and competitive relations, affecting

the users’ decisions of adopting any innovations. Therefore, modelling diffusion process

of multiple influences is an important, yet challenging research question.

By extending the generic agent-based framework proposed in Chapter 3, in this

chapter, a distributed approach has been proposed to model the diffusion process

of multiple influences in social networks. The proposed model has been applied in

the undesirable influence minimisation problem, where the time series is taken into

consideration. The experimental results show that the model can be utilised to minimise

the adverse impact of a certain influence by injecting other influences. Furthermore, the

proposed model also sheds light on understanding, investigating and analysing multiple

influences in social networks.

144
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6.1 Overview

In real-world, multiple influences of various topics normally coexist within the same

context, and their divergent relationships impact each other regarding individual’s

influence acceptance. Intuitively, influences of the same topic can be either supportive

or contradictory to each other. Influences usually propagate in the presence of a

wide variety of rich content, i.e., influence messages, which can be images, videos,

long articles or even short comments, conveying the opinions or ideas towards the

one or more innovations. When multiple influence messages with the same opinion

flood into one’s friend circle, he or she has a high tendency of adopting the opinion.

Whereas, individuals usually struggle with taking a side when adverse opinions of the

corresponding topic emerge. In addition, different influences appear to be associated

with each other indirectly by competing for the ‘common resources’, i.e., the users’

attention. More specifically, nobody can take care of all the influence messages due

to the limited vigour of human nature. Instead, individuals usually get attracted by

the information that they care most. In other words, each individual possesses a finite

capacity of considering and absorbing the impact of influences, and the corresponding

attention is always focused on particular influence messages. Meanwhile, the existing

information keeps fading out of the public attention, especially when other significant

influences are injected into the same context. This feature becomes more prominent in

time-sensitive social networks, such as microblogging platforms (Castillo, Mendoza &

Poblete, 2013).

There are several motivations to model and analyse multiple influences diffusion

in social networks. A non-trivial incentive is to investigate effective approaches for

rationally alleviating or even suppressing the impact of a particular undesirable influence

message, e.g., a rumour, or negative opinions towards a social event. Based on the

contemporary research work, when any adverse opinions are propagating through a
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social network, some researchers recommend blocking a particular group of nodes

(S. Wang et al., 2013) or a bunch of links (Kimura et al., 2008) from on-line social

networks to control the influence contaminations. However, these approaches can only

be facilitated to a few types of networks, such as virus or epidemic networks (Basaras,

Belikaidis, Maglaras & Katsaros, 2016). As for those ordinary or customer-based

social networks, any user or affiliation link is not supposed to be blocked or removed.

Furthermore, the topological structure of a network is out of control in most cases.

Therefore, approaches without restricting users’ behaviours or altering the networked

structure are highly recommended. This scenario frequently arises in the real world:

when a piece of sensational news disseminates fast, public attention tends to be diverted

by other news eventually. Inspired by this social phenomenon, the subtle relationships

among multiple influences and the individualised features of users can be utilised to

achieve the undesirable influence minimisation.

In this chapter, I proposed an Agent-based Multiple Influences Diffusion (AMID)

model to analyse multiple influences propagation in social networks by considering

their relationships. Each user’s personalised traits, preferences, behaviours and social

context have been taken into consideration. Influential relationships among the entit-

ies, including user and user, user and influence, influence and influence, have been

considered in the proposed model. Furthermore, undesirable influence minimisation

is utilised as a typical application of the proposed model. Extensive experiments have

been conducted, and the results suggest that by using the proposed model, introducing

external influences can suppress the adverse influence effectively.

The remainder of this chapter is structured as follows. Section 6.2 reviews the

literature related to this research work. Section 6.3 introduces the modelling of multiple

influences diffusion using ABM and the formal definitions. Section 6.4 systematically

elaborates the influential relationships modelling. In Section 6.5, experiments and

experimental results are presented by using a typical application, i.e., undesirable
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influence minimisation. The summary of this chapter is given in Section 6.6.

6.2 Related Work

6.2.1 Influence Diffusion

As clarified in Chapter 2 that Domingos and Richardson (2001) attempt to mine the

value of customers in social networks by considering influence diffusion. The seminal

research works by Kempe et al. (2003) have been extensively extended.

However, in nearly all the extended research works in the field of influence max-

imization, only a single influence is considered. In other words, most studies focus

on the adoption of a particular product or opinion, while other influences in the same

context have been ignored. With an exception, Tang et al. (2009) propose topical

affinity propagation to model the topic-level social influence, which can identify the

experts in different topics and measure the strength quantitatively. Nevertheless, Tang’s

work is developed based on the assumption that no dependencies are presented among

the various topical influences. Different from the aforementioned research work, I

model the influence propagation by considering the impacts and relationships among

the multiple influences.

6.2.2 Competitive Influence

Competitive influence turns out to be one of the extended works in the field of influence

maximization. Substantial related studies have been reviewed in Subsection 2.2.2.

Three major limitations are spotted as follows.

• The studies focus on the influential competitive relationships among the social

influence and ignore other factors, such as supportive influences and the impact

of other innovations. For example, the introduction of Samsung phone competes
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with that of the Apple phone for the public attention (H. Wu, Liu, Yue, Huang

& Yang, 2015). Whereas, the emergence of Samsung 3D Glasses tends to be a

supportive influence for Samsung phones due to its compatibility, but becomes a

subtle force of discouraging the adoption of Apple phones.

• A major assumption in most current approaches is that each user possesses a

single adoption when given multiple choices, e.g., various products from different

firms. Whereas, users may adopt the multiple products or innovations, e.g., a

customer can purchase both Samsung phone and Apple phone.

• Nearly all of the research work extends the IC or LT model to accommodate the

competitive influence dissemination. However, due to the nature of both models,

i.e., centralised influence diffusion models (W. Li, Bai, Jiang & Zhang, 2016), the

extended IC and LT models can neither capture the dynamics of social networks

nor track the long-term trend of a social network driven by influence propagation

(W. Li, Bai & Zhang, 2016a; W. Li et al., 2017).

To cover the limitations mentioned above, my study models multiple influences

diffusion by considering the various corresponding relationships. An agent-based

diffusion model is utilised to capture the evolutionary trend of a social network, as well

as the individual’s features and behaviours. Thus, the multiple adoptions of different

innovations by a particular user at different time steps can be enabled.

6.2.3 Negative Influence Minimisation

Many researchers explore the approaches to minimise the adverse impact of a particular

existing influence in a social network. As mentioned in Subsection 2.2.2 that most

studies attempt to block an influence in a very straightforward way, i.e., altering the

structure of a social network. Such kind of approaches can only be applied based on the
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Figure 6.1: The Framework of an Agent-based Multiple Influences Diffusion Model

assumption that the organisation is authorised to manage network topological structures.

However, in reality, the modifications are generally not applicable.

Some other studies propose competitive influence models to suppress the adverse

impact by introducing the opposite influence only. However, the influential effects

originated from other influences are neglected, and these ‘irrelevant’ influences can

be even more powerful in distracting users from focusing one opinion. Moreover, the

individual’s features, such as preference and information intake capacity, are not taken

into consideration. These factors can affect a user’s influence acceptance to a large

extent.

By contrast, I attempt to alleviate the negative influence minimisation problem in a

real situation when multiple influences coexisted in the same social context. Further-

more, three possible relationships among the influences, i.e., support, competitiveness

and irrelevance, are taken into consideration.
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6.3 Multiple Influences Diffusion

6.3.1 An Agent-based Multiple Influences Diffusion Model

To analyse and model multiple influences diffusion in social networks, traditional

propagation models, such as the IC model and the LT model, only concentrate on the

diffusion process and activation status of each node, ignoring the interactions between

users and influence messages, as well as the co-actions among influences. Motivated by

this background, a novel propagation model is necessarily required.

The AMID proposed in this thesis models the propagation process in a decentral-

ised manner. In the AMID model, users have been modelled as a set of interactive

autonomous agents that possess their own personalised traits and behaviours. Mean-

while, influence messages appear to be another type of entities in the same context

which can be interacted with the agents directly. From a macroscopic point of view,

the influence diffusion demonstrates a networked evolutionary pattern driven by the

individuals’ actions, i.e., interactions with various influences.

Figure 6.1 shows the framework of the proposed AMID model. An ordinary influen-

tial behaviour of a particular user agent incorporates only two simple sequential steps,

i.e., reading messages from the wall of on-line social networks and getting influenced

by posting an influence message. More specifically, in time-sensitive social networks,

such as Twitter, various influence messages of different topics are constantly posted

to a user’s wall. He or she tends to be influenced by the received influence messages

based on the interests and peer trust relationships (Hsu & Lin, 2008). Subsequently,

an influence message is not only posted to the adjacent neighbours, but also archived

as one of the posting records, reflecting the user’s latest interests. In this model, three

major attributes of an influence message are taken into consideration, including the

topic, delivered from and the opinion.
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I assume that only a particular number of the latest messages are regarded as valid,

accessible information, and each user has a limited and different-size capacity (vigour)

for taking care of the influence messages. Once a new message has been posted, a

certain amount of space is occupied. The space it takes depends on the peer trust and

the user’s interests. In addition, the old ones are fading out of the user’s attention.

6.3.2 Formal Definitions

Definition 6.1: A User Agent vi, (vi ∈ V ) refers a node in a time-sensitive social

network G = (V,E), where V = {v1, ..., vn} denotes a set of agents and E represents

a set of edges, E = {eij ∣1 ≤ i, j ≤ n}, i, j ∈ N+,{vi, vj} ⊆ V . User agent vi has a set of

neighbours Γ (vi), and such affiliation information is maintained by the agent locally.

If vj is a neighbour of vi, then {eij} ⊆ E,vj ∈ Γ (vi). While Evi indicates the edge set

connected with vi, where Evi = {eij ∣vi ≠ vj ∧ vj ∈ Γ (vi)}. In addition, each user agent

has a local view, which covers all its neighbours and the corresponding posting records

(refer to Definition 6.4).

Definition 6.2: An Influence Message msgp, (msgp ∈M) in general refers to a com-

munication containing some information, which potentially affects users’ opinions and

behaviours, where M = {msg1,msg2, ...,msgk} denotes the influence message set in a

social network. msg(vj→vi)p refers to msgp delivered from vj to vi, subject to vj ∈ Γ (vi).

Given a finite number of n influence topics T = {τ1, τ2, ..., τn}, each influence

message is associated with all the topics with different membership degrees. Therefore,

the relationships among influence message msgp and the topics T can be represented as

a fuzzy set:
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Smsgp = (T,mp)

=mp(τ1)/τ1 +mp(τ2)/τ2 + ... +mp(τn)/τn,

(6.1)

where mp(.) is a membership function, and mp(τk) ∈ [0,1], k ∈ [1, n] quantifies τk’s

membership degree of topic τk in the fuzzy set. An influence message msgp can be

expressed by using a two-tuple: msgp = (Smsgp , op), where op ∈ {0,1} refers to the

general opinion of msgp, op = 1 means positive, and negative otherwise.

Definition 6.3: Social Network Wall W (vi)
tm refers to a dynamic area on a time-

sensitive social network profile or home page of user agent vi at time step tm, dis-

playing the latest n influence messages posted by Γ (vi) in a reverse chronological

order. W (vi) generally represents vi’s wall in a predefined context. Mathematically,

W
(vi)
tm = ⟨msg

(vj→vi)
p ∣vj ∈ Γ (vi),msgp ∈M⟩ describes a sequential vector, incorporat-

ing n messages delivered to vi. User agent accesses the messages from W
(vi)
tm at time

tm and determines which message to be posted.

Definition 6.4: Posting Records PR(vi)tm describes a collection of historical influence

messages delivered by user agent vi. Similar to social network wall, the posting re-

cords also can be represented by using a sequential vector PR(vi)tm = ⟨msg
(vi→vj)
p ∣vj ∈

Γ (vi),msgp ∈M⟩, which reflects vi’s preferences. For simplification purpose, PR(vi)

denotes vi’s posting records in a predefined context.

Definition 6.5: Capacity c(vi) is defined as vi’s capability to take care of the influence

messages, which implies the limited vigour or attention of a user agent. When an

influence message msg(vj→vi)p arrives or pre-exists, a particular amount of capacity

Â(msg
(vj→vi)
p ) is supposed to be occupied if the message has been accepted (see Rela-

tionship 3). In addition, the old influence messages are suppressed and fading out of the
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user’s attention.

6.4 Influential Relationship Modelling

Relationship 1: User and User. Users are far more likely to be influenced by the

people they know and trust, rather than from strangers or systems (Sinha & Swearingen,

2001). In the current setting, TR(vi, vj) describes the trust relationship established

between two users, i.e., truster vi and trustee vj . In this chapter, the definition of trust

of (Jøsang, Hayward & Pope, 2006) is borrowed, and it can be interpreted truster’s

engagement probability respected to the influence messages posted by the trustee.

When user vi accesses influence message msg(vj→vi)p , there is a possibility that

msg
(vj→vi)
p will be posted (or shared) by vi. If vi posts the same message, we say

vi trusts vj on the topics of msg(vj→vi)p . Therefore, the trust value of vi to vj can be

estimated from the number of times that vi shares vj’s posting records. As each user

agent is able to access the posting records of its neighbours, the trust relationships are

obtained by individuals locally.

There are two possibilities of an action towards an influence message, i.e., post or

not post. Therefore, the probability density over these binary events can be expressed

as Probability Density Function (PDF), i.e., beta(α,β). A simplified subjective logic

approach in (Jøsang et al., 2006) can be applied to estimate the trust degree. Here, the

transitive trust is not considered. I denote s, u, a as the number of posted, unshared

messages, and the priori, which is the default value that can be assigned to users.

Then α and β can be determined as:

α = s + 2a, β = u + 2(1 − a) (6.2)
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As only two possible responses exist in the environment, a can take 0.5. With s shared

and u unshared messages, the a posteriori distribution is beta PDF with α = s + 1 and

β = u + 1. To capture the dynamic sharing behaviours, a forgetting factor λ is used to

weight a message at time tnow:

fmsgp = λ
(tnow−tmsgp), (6.3)

where 0 ≤ λ ≤ 1, tmsgp is the time at which the message was posted. After that, the trust

relationship is measured using all posts related to vi and vj . I denote the cumulative

post and not post rate as s̄ and ū. They can be aggregated by summing up the weights

of the posted and not posted messages, respectively, using the following equations.

s̄vi,vj = ∑
msgh∈PR

(vi)

f
msg

(vj→vi)

h

(6.4)

ūvi,vj = ∑
msgh∈W

(vi)∖PR(vi)

f
msg

(vj→vi)

h

(6.5)

The trust relationship between vi and vj can be estimated by aggregating the evid-

ence from both users, while the base trust value a is involved in the case that both users

have never interacted before. The trust values of vi to vj can be obtained by calculating

the mean of their distribution:

TR(vi, vj) = E[beta(s̄vi,vj + 1, ūvi,vj + 1)] (6.6)

Apply the mean value of beta distribution, Equation 6.6 can then be normalised to:

TR(vi, vj) =
s̄vi,vj + 1

s̄vi,vj + ūvi,vj + 2
(6.7)

Relationship 2: User and Influence. User’s influence acceptance of a particular
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influence mainly depends on two major factors, i.e., the peer trust relationships and

individual’s interests. Similar to an influence message, a user agent’s topical level

interests can also be expressed as a fuzzy set:

S(vi) = (T,m(vi))

=m(vi)(τ1)/τ1 +m
(vi)(τ2)/τ2 + ... +m

(vi)(τn)/τn,

(6.8)

where the membership degree m(vi)(τk) represents vi’s interest towards influence topic

τk, which can be evaluated by user agents locally based on the past posting records

PR(vi). Thus, m(vi)(τk) can be formulated in Equation 6.9.

m(vi)(τk) =
1

∣PR(vi)∣
∑

msgp∈PR(vi)

mp(τk) ⋅ f(t)

∑τx∈T mp(τx)
, (6.9)

where ∣PR(vi)∣ denotes the cardinality of posting records, mp(τk), τk ∈ T refers to the

membership degree of msgp, and f(t) is an attenuation function formulated in Equation

6.10.

f(t) = e−t⋅k, k > 0 (6.10)

The relationship between user agent vi and the message msgp is presented as the

Cartesian product of the topical fuzzy set of msgp and user’s interest fuzzy set, which

is described in Equation 6.11.

R(vi,msgp) = Sp × S
(vi) = (T,µ

(vi)
R )

= µ
(vi)
R (τ1)/τ1 + µ

(vi)
R (τ2)/τ2 + ... + µ

(vi)
R (τn)/τn,

(6.11)

The fuzzy relationship R(vi,msgp) is a mapping from Cartesian space to the inter-

val, and the strength of the mapping can be expressed by using the membership function

µ
(vi)
R ∶ Sp × S(vi) → [0,1]. Therefore, we can derive the user agent vi’s acceptance to
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message msgp sent from neighbour vj by using Equation 6.12.

A(msg
(vj→vi)
p ) = g(R(vi,msgp), TR(vi, vj))

= γR(vi,msgp) + (1 − γ)TR(vi, vj),

(6.12)

where g(.) is a weighted average function and γ represents a trade-off factor balancing

the peer trust relationship and the individual’s interests.

Relationship 3: Influence and Influence. Different from user agents, influences are

not capable of interacting with each other directly, but their relations and impacts are

mediated by user agents. Individuals have high chances to adopt the opinion strongly

supported by most of the adjacent neighbours, which complies a common social phe-

nomenon, i.e., social conformity (Tang et al., 2013). In other words, messages of

similar topics with the same opinion are supportive to each other, and contradictory

otherwise. As aforementioned, fuzzy set Sp represents the degree of topical belong-

ingness of msgp. Therefore, to obtain the topical similarity between msgx and msgy,

i.e., SimT (msgx,msgy), is equivalent to measure the similarity between fuzzy sets

Sx and Sy. The most obvious way of calculating fuzzy sets similarity is based on the

distance of their membership degrees (Beg & Ashraf, 2009). Thus, SimT (msgx,msgy)

is formulated in Equation 6.13 by using normalised Hamming distance, namely, one of

the most widely used distances for fuzzy sets (Szmidt & Kacprzyk, 2000).

SimT (msgx,msgy) = 1 −
1

∣T ∣
∑
τk∈T

∣mx(τk) −my(τk)∣ (6.13)

The comprehensive strength exerting on vi to accept the opinion of msgp is formu-

lated in Equation 6.14, where θ denotes the similarity threshold.
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ϕ(msgp) = ∑
msgq∈W (vi)

A(msg
(vj→vi)
q )

subject to SimT (msgp,msgq) ≥ θ,msgp.op =msgq.oq

(6.14)

Similarly, the comprehensive strength of declining the opinion ofmsgp, i.e., ϕ′(msgp),

stems from the similar messages with adverse opinions, thus ϕ′(msgp) can be formu-

lated in the same way as ϕ(msgp), but with a different constraint, i.e., msgp.op ≠

msgq.oq. We can derive the probability that vi accepts the opinion of msgp by using

Equations 6.15 and 6.16.

p(msgp) = 0, ϕ(msgp) ≤ ϕ
′(msgp) (6.15)

Otherwise:

p(msgp) =
ϕ(msgp) − ϕ′(msgp)

ϕ(msgp)
⋅

ϕ(msgp) + ϕ′(msgp)

∑msgq∈W (vi) ϕ(msgq) + ϕ′(msgq)

=
ϕ(msgp)2 − ϕ′(msgp)2

ϕ(msgp) ⋅∑msgq∈W (vi) ϕ(msgq) + ϕ′(msgq)

≤
ϕ(msgp)2 − ϕ′(msgp)2

ϕ(msgp)2
≤ 1

(6.16)

As mentioned previously, the influence competitive relations are reflected from the

limited capacity of each user agent. Once an influence message msg(vj→vi)p has been

accepted, the amount of occupied capacity can be represented as the normalised value of

user acceptance to msg(vj→vi)p , i.e., Â(msg
(vj→vi)
p ). In addition, C(PR(vi))tm denotes

the influence message set drawing vi’s attention at time tm, which appears to be a subset

of PR(vi)tm , i.e., C(PR(vi))tm ⊆ PR
(vi)
tm , subject to:

∑

msg
(vj→vi)
n ∈C(PR(vi))tm∧vj∈Γ (vi)

Â(msg
(vj→vi)
n ) ≤ c(vi) (6.17)
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Algorithm 7 describes a user agent’s response towards an incoming influence

message. The inputs include msg(vj→vi)p and wall W (vi)
tm at the time step tm, while the

output of the algorithm produces an influence message set that attracts user agent vi’s

attention at the following step tm+1. Lines 1-2 calculate the probability of accepting

the msg(vj→vi)p and the influence message set drawing vi’s current attention. Lines

3-4 initialise the variables. Lines 5-7 determine if msg(vj→vi)p is posted by vi, and

update the posting records by adding msgp to the head of C(PR(vi))tm . Lines 8-14

tend to construct the influence message set drawing vi’s attention in time step tm+1 by

replicating the influence messages until user agent’s capacity reaches the limit.

Algorithm 7 Multiple Influences Diffusion Algorithm

Input: msg(vj→vi)p ,W
(vi)
tm

Output: C(PR(vi))tm+1

1: Calculate p(msgp) by using Equations 6.15 and 6.16.
2: Obtain C(PR(vi))tm by using In-equation 6.17.
3: Initialise C(PR(vi))tm+1 = ∅

4: Generate a random decimal rand
5: if rand ≤ p(msgp) then
6: PR(vi) ∶= PR(vi) ∪ {msg

(vj→vi)
p }

7: C(PR(vi))tm ∶= {msgp} ∪C(PR(vi))tm
8: Initialise temp variable c(vi)temp ∶= Â(msg

(vj→vi)
p )

9: for ∀msgq ∈ C(PR(vi))tm do
10: if Â(msgq) + c

(vi)
temp ≤ c

(vi) then
11: C(PR(vi))tm+1 ∶= {msgq} ∪C(PR(vi))tm+1

12: c
(vi)
temp ∶= c

(vi)
temp + Â(msgq)

13: end if
14: end for
15: end if
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6.5 Experiments and Analysis

Two experiments have been conducted to evaluate the proposed model. In both ex-

periments, the AMID model has been applied in an extended version of the influence

maximization problem (Kempe et al., 2003) by considering how to suppress and min-

imise the constant impact of a particular influence message or opinion within a fixed

time-span (Yao, Zhou, Xiang, Cao & Guo, 2014). The objective of the experiments

is set to suppress an undesirable influence by utilising various strategies based on the

AMID model. In the experiments, three major types of influences are involved:

• Irrelevant Influence: the topics of the influences are not relevant to any of the

existing influences. In other words, the influence messages are not topically

related at all.

• Opposite Influence: the topics of the influences are close to the existing ones but

with an adverse opinion.

• Relevant Influence: the topics of the influences are strongly related the existing

ones, and the opinion appears to be supportive.

The differences between the two experiments are reflected as follows: In the first

experiment, I intend to explore and analyse the trend of the undesirable influence after

adopting different strategies. Whereas, the second experiment tends to measure and

compare the effectiveness of different approaches, including blocking nodes (Kimura et

al., 2008), by varying the seed set size and aggregating the results in each time step.

6.5.1 Problem Formulation

Assume that an undesirable influence msgp is spreading across the social network

G = (V,E), and new messages with same opinion keep emerging over time. An
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organisation aims to suppress the impact of such opinions as much as possible in a fixed

time-span, i.e., [t0, tm]. I regard the targeting influence message/opinion msgp has been

suppressed successfully if msgp has been faded out of users’ attention. Specifically, I

leverage Active Influence Coverage Degree (AICD) as the evaluation metric, which

implies how much the users care about a particular opinion at a specific time step,

and the value can be derived from the users’ latest posting records. Furthermore,

Cumulative AICD measures the influence impact within a timespan. Therefore, the

problem can be represented as an optimisation problem, expecting to minimise the

objective function:

min
tm

∑
t=t0

∑
vi∈V

∑
msgp∈C(PR(vi))t∧vj∈Γ (vi)

Â(msg
(vj→vi)
p ) (6.18)

6.5.2 Experiment Setup

Dataset and settings. The experiments have been conducted by using the Facebook-

like social network, which is originated from an on-line community for students at the

University of California, Irvine. The public dataset is collected by Opsahl and Panzarasa

(Opsahl & Panzarasa, 2009), which incorporates 1,899 users and 20,296 directed links.

Since how to estimate individuals’ topical interests and how to generate fuzzy sets for

a particular influence message are not part of the major purpose of the experiments, thus,

to make it simple, dataset is extended by giving the following settings and assumptions:

• The individuals’ capacities are randomised by following the Gaussian distribution.

• There are ten pre-defined topics in the social network, i.e., T = {τ1, τ2, ..., τ10}.

• Users’ interests towards these ten topics are randomly generated. Peer trust and

user’s interests are equally important for an individual to accept any influence,

i.e., γ = 0.5.
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• There are four pre-existing influence messages in the context, which are not

topically related to each other.

• Among the four influence messages, Influence Message 2 in Figures 2-7 is targeted

to be suppressed.

• Each individual’s social network wall is initialised by filling with randomised

influence messages.

• Measures are not supposed to be taken until the evolution of the network reaches

the 30th time step.

Comparison methods. Based on the settings mentioned above, given such a social

network with several pre-existing influence messages, users interact and exert influences

on each other by disseminating influence messages to the adjacent neighbours. The

evolution of the network pauses after some time steps. Next, based on this state, I

attempt various strategies to navigate the direction of the networked evolution. Two

scenarios are involved in the experiments. (1) The social network is under the control

of this organisation, having the privileges to manipulate the topological structure of the

social network. (2) The organisation does not possess any control to the social network.

Therefore, any nodes or links are not supposed to be blocked or removed. In the

former, I attempt to identify the most negative influencers and block their capabilities

of spreading the designated undesirable influence. While, in the latter, three types

of influences are supposed to be injected into the same environment to suppress the

existing undesirable influence, which are

• the influences topically irrelevant to any of the existing influences

• the influences holding the opposite opinion towards the undesirable influence
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• the influences strongly associated with the existing influences but excluding the

undesirable influence

The process of identifying influential users are named as seed selection; the selected

users are called seed set; the size of seed set refers to the budget. In the experiments, the

greedy selection algorithm (Kempe et al., 2003) has been applied for all the approaches.

The approach which can minimise the Cumulative AICD of undesirable influence (refer

to Equation 6.18) with less budget is regarded as the optimal solution.

6.5.3 Experiment 1

In the first experiment, my objective is to explore and analyse the trend of the undesirable

influence after adopting different strategies. As aforementioned, among four pre-existing

influence messages, Influence Message 2 is undesirable and supposed to be minimised.

In Figures 6.2 - 6.9, the x-axis represents the networked evolving time steps, and the

y-axis denotes the AICD. Various strategies are only supposed to be adopted after the

30th time step when the adverse influence does not fully dominate the network.

Figure 6.2 demonstrates the evolutionary trend of the social network without taking

any measures. As we can observe that the undesirable influence message spreads

rapidly and dominates the entire social network after 50 time steps. Whereas, others

keep fading out of context gradually. During the evolving process, Influence Message 1

seems competitive and shows a spike around the 20th time step, but loses the public

attention eventually.

Next, a new influence message is injected into the social network to compete with

the existing ones for the resources, expecting that the undesirable influence message

could be suppressed. The injected influence is totally independent and not associated

with any existing influences in terms of topics. Unfortunately, as we can see from Figure

6.3 that given investment budget as 20 (seed set size), the undesirable influence still
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attracts most users’ attention, though an upper shaking trend is spotted. As illustrated

in Figure 6.4, by increasing the seed set size (up to 30) of the same injected influence

message, the undesirable influence demonstrates a sharp downward trend and is fading

out of the users’ attention eventually. In addition, the injected influence dominates the

entire social network.

Moreover, I attempt to inject an influence message, which is topically associated

with two of the existing influence messages, i.e., Influence Messages 1 and 3. In Figure

6.5, the expected outcome can be achieved with merely ten seeds. In addition, an

interesting phenomenon can be observed from Figure 6.5 that the associated influences,

i.e., both Influence Messages 1 and 3 rise up when the new influence message has been

injected into the social network, and this is due to topical similarities among the three

influence messages.

Another ordinary strategy is introducing influences with opposite opinions. Accord-

ing to Figures 6.6 and 6.7, undesirable influence stops expanding and demonstrates

a sharp downward trend after injecting an opposite influence. However, the injected

message shows different growing tendencies when varying the seed set size. In Figure

6.6, the injected message increases and starts to oscillate when reaching the 45th time

step. Meanwhile, Influence Message 3 shows an upper trend from the same point and

steadily rises to 400. A higher budget in Figure 6.7 can ensure a relatively smooth

increase, though other influences still show a slightly upper trend.

6.5.4 Experiment 2

Experiment 2 tends to measure and compare the effectiveness of different approaches in

suppressing an undesirable influence, including injecting irrelevant influences, opposite

opinions, relevant influences and blocking nodes, by employing the proposed AMID

model.
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Figure 6.2: No Strategies Applied - Without
Injecting any Influences

Figure 6.3: Inject Irrelevant Influence
(Seed Set Size = 20)

Figure 6.4: Inject Irrelevant Influence
(Seed Set Size = 30)

Figure 6.5: Inject Relevant Influence
(Seed Set Size = 10)

Figure 6.6: Inject Opposite Influence
(Seed Set Size = 10)

Figure 6.7: Inject Opposite Influence
(Seed Set Size = 30)
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Figure 6.8: Undesirable Influence (Cumu-
lative AICD)

Figure 6.9: Injected Influence (Cumulative
AICD)

Figure 6.8 describes the trend of the undesirable influence by applying various

strategies. The AMID model employs probabilistic methods. Therefore, the results are

averaged over 100 trials in the experiment. By varying the seed set size, the traditional

approach, i.e., blocking influential nodes, performs very well, especially when the

budge is limited. However, the administrative privileges of the social network must be

granted to adopt this approach. By contrast, without any authorisations, injecting a new

influence topically associated with multiple existing influences can produce an even

better performance than that of blocking nodes. Overall, injecting a relevant influence

topically associated with one or more existing influences appears more effective than

that of bringing in opposite opinions or irrelevant influences. Furthermore, utilising

irrelevant influences is not cost-efficient compared with others, but it outperforms that

of adopting the adverse-opinion influence when the seed set size increases up to 25.

I also measure and compare the dissemination of newly injected messages when any

strategy has been adopted. It can be seen from Figure 6.9 that the influence message

topically relevant to multiple existing ones can easily dominate the social network,

and a low budget of approximate ten seeds can almost achieve the maximum spread.

Whereas, a new message requires a much higher budget and appears not cost-efficient.
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6.5.5 Discussions

Based on the experimental results, I can derive that the fast dissemination of the newly

injected influence message can generally suppress the expansion of the undesirable

influence effectively. The results also suggest that to suppress an undesirable influence,

introducing new influences topically associated with the existing ones appears more cost-

efficient than that of injecting an influence message of brand new topics. Meanwhile,

the supportive strength of the new influence message encourages the spread of the

pre-existing influence messages with similar topics. On the other side, involving

influences with opposite opinions does not carry out a desirable result unless the budget

reaches a certain threshold. If the opposite influence appears not strong enough, i.e.,

limited budget, such strategy may cultivate the growth and spread of other influences,

since their competitions and the contradicting opinions reduce the probability of being

shared. As a standard approach, blocking nodes has been widely acknowledged as an

effective method to alleviate the spread of any undesirable influence, especially when

having a low budget. However, the targeting nodes are usually those influences of

the social network, and such approaches are not applicable in most of the scenarios.

From the above analysis and discussions, I can conclude that the undesirable influence

can be suppressed by injecting other influences based on the AMID. The experiments

also prove the rationality of applying AMID in analysing influence propagation when

multiple influences involve. The proposed model can shed light on understanding,

investigating and analysing multiple influences in social networks.

6.6 Summary

In this chapter, I studied the problem of multiple influences diffusion in social networks

and proposed an Agent-based Multiple Influences Diffusion (AMID) model to describe
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the problem by using the concepts from multi-agent systems. In this model, I precisely

formulated three types of influential relationships among different entities, i.e., user

and user, user and influence, influence and influence. A distributed multiple influences

diffusion algorithm was presented to show the user agent’s response towards an influ-

ence message, where the personalised features, behaviours and social context were

considered. To evaluate the proposed model, it is applied to the undesirable influence

minimisation problem. The experimental results revealed that the proposed model was

capable of alleviating the adverse impact of a particular influence by injecting other

influences. The approach is also applicable in cases where the organisation does not

possess the control of the social network.

This chapter mainly answers the Research Question 3 mentioned in Chapter 1. The

model and results of this chapter have been published in (W. Li, Bai, Zhang & Nguyen,

2018b).

The conclusions of the thesis and future research directions will be given in the next

chapter.



Chapter 7

Conclusion

7.1 Introduction

This chapter summarises the findings in influence diffusion modelling for complex

networks using agent-based approaches, as well as the newly extended real-world

problems addressed in this thesis. There are four major agent-based models proposed

in this thesis, and each of them focuses on a particular aspect of influence diffusion in

complex networks.

The research contributions are summarised in Section 7.2. The limitations of the

models and possible directions for the future work are discussed in Section 7.3.

7.2 Research Contributions

This thesis contributes to the field from the following four aspects.

7.2.1 Agent-based Influence Diffusion Model

• I studied influence diffusion in social networks by using ABM, where the soph-

isticated features of social influence are considered. I systematically articulated
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and simulated influence diffusion process through defining the characteristics and

behaviours of micro-level individuals.

• I further proposed a generic agent-based influence diffusion model, focusing on

the individual’s personalised traits and behaviours. Moreover, agents are granted

capabilities of conducting training to evaluate the personalised parameter.

• I produced a specific range of dynamical behaviours based on various parameters

by leveraging the proposed model and analyse the implications.

• I proposed Evolution-Based Backwards (EBB) and Enhanced Evolution-Based

Backwards (2E2B) algorithm for effectively mining influencers under the pro-

posed model.

7.2.2 Stigmergy-based Influencers Miner (SIMiner)

• I first systematically articulated the influence maximization using the stigmergy-

based approach in a distributed environment. In other words, to the best of my

knowledge, SIMiner is the first distributed model in this field.

• I leveraged SIMiner to tackle the challenging issues, i.e., the large-scale and

dynamic environment, from a microscopic level using multi-agents.

• I explored the convergence of SIMiner, as well as the impact of varying para-

meters, showing that the efficiency of the mining capability can be improved by

simply adding the same ant agents to the environment.

• I analysed and evaluated the performance of SIMiner. The empirical results reveal

that SIMiner can give excellent performance, and even better than that of greedy

algorithm in some datasets. The greedy algorithm in the influence maximization

problem outperforms most of the proposed algorithms but is not scalable.
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7.2.3 Agent-based Timeliness Influence Diffusion Model

• I formally defined the influence maintenance problem. To the best of my know-

ledge, this is the first literature describing the maintenance of influence in on-line

social networks, which is significantly different from the adaptive influence

maximization problem (clarified in the related work of Chapter 5).

• I proposed a novel decentralised influence diffusion model to accommodate to

the influence maintenance problem. The proposed model is capable of capturing

two primary elements for maintaining long-lasting influence, i.e., the temporal

feature of a social network and the status of particular influence.

• I proposed a novel timeliness-based seed selection algorithm to maximize the

influence lifespan.

7.2.4 Agent-based Multiple Influences Diffusion Model

• I formally defined a multiple influences diffusion model. To the best of my

knowledge, this is the first literature systematically articulating the multiple

influences and their relationships.

• I proposed a novel decentralised multiple influences diffusion model by consider-

ing the influential relationships, as well as individual’s personalised traits, such

as interests and trusts.

• I explored the intriguing discoveries and insights through modelling the relation-

ships of different influences and evaluate the effectiveness of different approaches

to minimise the undesirable influences by facilitating the proposed model.
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7.3 Limitations and Future Directions

In my PhD study, I developed a basic model for modelling the hybrid effects of influence

diffusion in complex networks. There are various potential directions to investigate

influence diffusion by leveraging this generic approach. (1) Capture the dynamics of

influence diffusion using HSN. Hybrid social network implies the decomposition of

influence effects, which gives high extensibility and flexibility. Specifically, when other

available influential factors are added or the existing factors are changed, the model can

be extended by granting adaptation capabilities, which is able to update a particular

influence facet with the evolution of social networks. (2) Analyse major channels of

influence diffusion. The hybrid social network model can be extended by considering

the impact factor in each influence facet. A particular influence can be diffused through

various channels with different chances/possibilities. Further research works can be set

to analyse the major channels for influences.

Second, in SIMiner, the selection still relies on the attempts of different combinations

but I would like to set the investigation of parameter choices for SIMiner as one of

the future work. It is possible to improve the effectiveness of SIMiner by granting

the adaptation capabilities to each ant agent, so that they can explore the influential

nodes more effectively. In addition, I may exploit a hybrid model by leveraging both

centralised and decentralised approaches, where both local views from ant agents and

limited global information are available.

Third, there are quite a few assumptions when I investigate the influence mainten-

ance problem by leveraging ATID model. I plan to free up some of them. In particular,

I will attempt to explore the solutions for the situations, where (1) the time step is not

fixed; (2) for each investment, the seed set size is not fixed; and (3) the seed selection

point can be a variant.

Last but not least, in the studies of multiple influences diffusion, I would like to set
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the theoretical explorations as one of the future works. There are also some possible

extended research questions based on my studies: (1) What kind of influence message

is most suitable to suppress an undesirable influence in a hypothesis situation (multiple

influences exist)? (2) What’s the impact of injecting multiple influence messages?
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Appendix A

Glossary

2E2B Enhanced Evolution-Based Backward Seed Selection

ABM Agent-Based Modelling

ACOS Adjusted Cosine measure

AICD Active Influence Coverage Degree

AMID Agent-based Multiple Influences Diffusion

APL Average Path Length

ATID Agent-based Timeliness Influence Diffusion

ATID Agent-based Timeliness Influence Diffusion model

CA Cellular Automata

CDHKcut Community and Degree Heuristic with Kcut

CDH-SHRINK Community and Degree Heuristic with SHRINK

CIACD Cumulative Influence Activation Coverage Difference

CKR Common Knowledge Repository

CPS Common Preference Similarity

CSI Comprehensive Social Influence

DDH Degree Discount Heuristics

DWA Degree Weighted Activation
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EBB Evolution-Based Backwards Seed Selection

ESIS model Emotion-based Spreader–Ignorant–Stifler model

GAC Global Activation Coverage

GCTD Global Cumulative Timeliness Degree

GT model General Threshold model

GTD Global Timeliness Degree

HAM Hopfield Attractor Model

HSN Hybrid Social Network

IC model Independent Cascade model

ICMPS Independent Cascade Model with Pyramid Scheme

IDMAS Influence Diffusion Multi-Agent System

IPP Influence Propagation Probability

irSIR model infection recovery SIR model

LT model Linear Threshold model

MAE Mean Absolute Error

MAS Multi-Agent Systems

MC Monte-Carlo Simulations

MIA model Maximum Influence Arborescence model

PCL Prior Commitment Level

PDF Probability Density Function

PMF Probabilistic Matrix Factorisation

PTIC model Preference-based Trust IC model

RMSE Root Mean Squared Error

SEIR model Susceptible-Exposed-Infected-Removed model

SI model Susceptible-Infected model

SIM Stream Influence Maximization

SIMiner Stigmergy-based Influencers Miner
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SIR model Susceptible-Infected-Removed model

SIRS model Susceptible-Infected-Removed-Susceptible model

SIS model Susceptible-Infected-Susceptible model

TIC model Topic-aware Independent Cascade model

TIH Timeliness Increase Heuristic

TLT model Topic-aware Linear Threshold model

TSP Travelling Salesman Problem

VM Voter Model

WoM effect Word-of-Mouth effect
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