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Abstract

Plant growth is a broad topic that is of interest in many different research

fields from the basics of plant functioning, to agricultural research, and eco-

logy. In this thesis, I first distinguish different aspects of plant growth, and

discuss how they are coupled across spatiotemporal scales. I then focus on

short term eudicot leaf growth measurements, as this is a topic that is rel-

atively sparsely explored in the literature, despite its importance for plant

resource use efficiency and performance. There are methodological chal-

lenges to measure leaf expansion, particularly in situ because of adverse

environmental conditions. I adopted an existing leaf growth measurement

method based on leaf fixation and marker tracking for long term outdoor

measurements, and I explored the viability of a custom made stereo vision

system for the same task. Using marker tracking, I observed a consistent

diel growth pattern with considerable leaf area shrinkage in the morning,

re-expansion in the afternoon, and growth at night in the mangrove Avicen-

nia marina. Using stereo vision, I achieved a high correlation of leaf area

measurements with a ground truth from scanned leaves, but the accuracy

was comparatively low. The marker tracking worked well in the most ad-

verse environment and is a suitable low cost method for in situ leaf growth

measurements.

Keywords: auxanometer, diel growth cycle, instantaneous leaf growth

measurement, image analysis, leaf expansion, leaf shrinkage, plant growth

definitions, stereo vision
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Chapter 1

Introduction

“Photographic registration will probably be largely employed in the future, for series

of pictures may be obtained which when placed in a kinematograph show the phases

of several days’ or weeks’ growth in a minute or so” (Pfeffer, 1903, p. 23).

“The current availability and comparatively low cost of integrative computer

graphics equipment should greatly ease the formerly laborious job of analyzing

plant growth patterns from the time lapse photographs of marked plants” (Silk &

Erickson, 1979, p. 500).

The idea to use photographs to quantify plant growth is not new by any means.

In the last two decades this research field has seen rapid progress driven by the de-

velopment in computer hardware, image sensors, and computer vision algorithms.

Nevertheless, many aspects of plant growth remain under-explored, among them is

the quantification of short-term leaf growth, particularly under natural conditions.

1.1. Motivation

Measuring leaf growth is crucial for understanding the influence of envir-

onmental and ontogenetic drivers on plant resource efficiency and perform-

ance (Walter, Silk & Schurr, 2009). The development of plant organs re-

quires the availability of carbohydrates for building material and as an en-

ergy source, as well as favourable hydraulic conditions to drive expansion

(Pantin, Simonneau & Muller, 2012). Other important environmental factors

that can drive or limit plant growth are temperature, and nutrient availab-

ility (Körner, 2015). This multitude of environmental influences on plant
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growth leads to a high phenotypic plasticity in many plants, which makes it

hard to disentangle genetic and environmental effects on growth (Tardieu,

Cabrera-Bosquet, Pridmore & Bennett, 2017). Today, the analysis of the gen-

ome is a standard process, while the quantification of the phenotype and

of plant of growth is far more challenging (Walter, Liebisch & Hund, 2015).

Furthermore, the manifestation of growth processes also depends on the

timescale of the measurement. Because of such challenges it is necessary to

clearly distinguish different growth processes, and to select a method that

best describes the investigated process. This is the focus of Chapter 2. In

this section I give a more general overview of leaf growth drivers, and of

shoot growth measurement methods.

Ontogenetic and environmental influence on leaf growth

The spatial expansion pattern of monocotyledon and eudicotyledon leaves

is distinctly different. Monocot leaves have a one-dimensional expansion

pattern with a growth zone consisting of a basal meristem followed by an

expansion zone, while in eudicots cell proliferation and expansion occur in

the whole lamina (Granier & Tardieu, 2009). In monocots, the number of

meristem cells is the main determinant of leaf growth (Gazquez & Beem-

ster, 2017). In eudicot leaves no similar analysis is possible, because growth

is not evenly distributed in different leaf zones, and exit from proliferation

usually (but not always) occurs in a tip-base gradient (Granier & Tardieu,

2009). Factors that theoretically could influence eudicot leaf size include the

number of cells in the primordium, the duration and rate of cell prolifera-

tion, the duration and rate of cell expansion (including endoreduplication),

and the extent of meristemoid division (Gonzalez, Vanhaeren & Inzé, 2012;

see Section 2.2 for more details) . In the next section I present evidence

from the well studied species maize (Zea mays) and sunflower (Helianthus

annuus) as case studies how ontogenetic and environmental factors impact

long-term leaf growth (at timescales of one day or longer).
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Long-term leaf growth

Final leaf area is dependent on plant ontogeny. It is a function of leaf

position and follows a bell shaped curve in maize (Chenu, Rey, Dauzat,

Guilioni & Lecoeur, 2008) and sunflower (Dosio et al., 2003). Both species

show an S-shaped development of leaf length or area for individual leaves

(Muller, Reymond & Tardieu, 2001; Dosio et al., 2003). For a given leaf pos-

ition the growth duration is constant when expressed in thermal time, and

when growth is not limited by other factors (Muller et al., 2001; Dosio et al.,

2003). Thermal time is the temperature integral above a species dependant

threshold with regards to time (see Chapter 2, Table 3).

The exact shapes of the leaf development curves demonstrate the dif-

ference between monocot and eudicot growth forms. In maize, early leaf

elongation is almost exponential, although a detailed analysis shows that

relative growth rates slightly decrease at first, before they increase to a max-

imum. This is followed by a short period of truly linear growth when the di-

vision and elongation zone are at their maximum size, before growth ceases

(Muller et al., 2001). In sunflower, there is no linear leaf growth phase. In-

stead, there are two exponential growth phases, followed by an exponential

decrease of the relative growth rate (Dosio et al., 2003). The first exponential

phase is in the very early stage of leaf development when the leaf area is be-

low 1 mm2. The second exponential phase is first driven by an exponential

increase in the number of cells, and a small increase in cell size (Tardieu,

Granier & Muller, 1999). Then, the cell division rate decreases, while the

leaf area continues to grow at the same rate for a short period, driven by a

steep increase in cell expansion.

A decrease in soil water content leads to a decreased leaf length, respect-

ively area, in both maize and sunflower. In maize the shorter leaf length

results from a reduced number of cells, which is caused by a reduction in

both cell division rate, and meristem size, while the final cell length remains
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unchanged (Sprangers, Avramova & Beemster, 2016). In sunflower, the tim-

ing of the water deficit determines the mechanism of leaf area reduction.

An early deficit leads to a reduction of cell number but not cell size, while a

late water deficit does not affect cell number, but reduces cell size (Granier

& Tardieu, 1999a). Because of the base-tip gradient in leaf development, one

water deficit period can have different effects in different parts of the same

leaf. The duration of the leaf development expressed in thermal time is un-

affected by water deficits, but cell division or expansion rates are reduced

(Granier & Tardieu, 1999a).

In maize, a short period of intense shading during the exponential

growth phase reduced the final leaf length. The shading caused an im-

mediate decrease in leaf elongation rates, which was partly compensated

by a longer development time (Muller et al., 2001). Similarly, in sunflower

a shading treatment starting during the exponential growth phase reduced

the final leaf area by reducing cell division rates and final cell number. When

the shading started during later leaf development, the final leaf area was un-

affected (Granier & Tardieu, 1999a). The growth duration in thermal time

was increased when the shading started at the leaf initiation, but it remained

unaffected when the treatment started later during leaf development. The

reduction of the whole plant available photosynthetic radiation by either

shading, or by partly covering leaves resulted in similar leaf development

patterns, suggesting an involvement of carbon metabolism in the decrease

of leaf growth rates. The final cell area was not affected by shading, except

for the most intense treatment, which lead to an increase in cell area, while

the final cell number remained low.

A reduction in available nitrogen lead to a reduced leaf length in maize

for leaf position seven or higher (Vos, Putten & Birch, 2005). In sunflower,

nitrogen limitation lead to a uniform decrease in leaf area independent of

leaf position (Trápani & Hall, 1996). Inter-plant competition lead to a de-

crease in leaf area above a certain leaf position in maize (Maddonni, Otegui
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& Cirilo, 2001) and sunflower (Dosio et al., 2003).

From the above examples the following general picture emerges. First,

the duration of leaf development is constant when expressed in thermal

time, but shading treatments can increase the duration of leaf development.

Second, soil water deficits lead to a decrease in cell division or expansion

rates. In maize the mature cell size is not affected by water deficits, while

in sunflower cell size can be reduced. Third, shading can reduce the final

leaf area by reducing cell division rates. Fourth, nutrient limitation leads to

whole plant leaf area reduction. Similar patterns have also been reported

for Arabidopsis thaliana in terms of thermal time (Granier et al., 2002), wa-

ter stress (Skirycz et al., 2010), and shading (Cookson, Van Lijsebettens &

Granier, 2005).

A feature that cannot be measured by observing leaf area growth is the

specific leaf area (SLA, m2 kg-1) expressed as leaf area per unit dry weight

of leaf tissue. To approximate SLA development, it would be necessary to

obtain information about leaf thickness and density in addition to the area.

In general, SLA strongly depends on light intensity and temperature, with

low light leading to higher SLAs, and low temperature leading to lower

SLAs (thicker leaves; Poorter, Niinemets, Poorter, Wright & Villar, 2009).

Short-term leaf growth

The knowledge of the influence of environmental factors on short-term leaf

growth at sub-daily timescales is limited. The best studied species are

among cereal crops where it was generally found that monocot leaf growth

is driven by soil and air temperature (Walter et al., 2009). Eudicot leaf

growth, on the other hand, is subject to strong endogenous controls. For

example, in Arabidopsis thaliana and Ricinus communis a distinct diel growth

patterns exist even when plants are grown in continuous light, suggesting

that the timing of growth is influenced by the circadian clock (Poire et al.,

2010). Additionally, there was no influence of short-term temperature fluc-
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tuations on leaf growth in several eudicot species when the daily mean tem-

perature was kept the same (Poire et al., 2010).

It has been suggested that there are two types of short-term eudicot leaf

growth patterns (Walter et al., 2009; Ruts, Matsubara, Wiese-Klinkenberg &

Walter, 2012): type 1 plants that show the highest leaf growth rates at dawn

just after the onset of light, and type 2 plants that show the highest growth

rates at dusk. For example, in Arabidopsis thaliana leaf growth is peaking

shortly after the transition from night to day (Wiese, Christ, Virnich, Schurr

& Walter, 2007; Dornbusch, Michaud, Xenarios & Fankhauser, 2014). Fur-

thermore, this peak persists if the night length is manipulated (Dornbusch

et al., 2014). Therefore, A. thaliana would be classified as type 1 plant (Walter

et al., 2009).

Leaf growth measurements on Arabidopsis thaliana showed an interest-

ing shift in leaf expansion rates during its development (Pantin, Simonneau,

Rolland, Dauzat & Muller, 2011). In the first few days after emergence the

growth rate was higher during the day while in older leaves the growth rate

was higher at night. This might reflect a switch from metabolic limitations

restricting growth at night in young leaves to hydraulic limitations restrict-

ing growth at day in older leaves. In mutants without starch production

or with impaired starch degradation the nocturnal growth reduction was

much stronger than in the wild type. Therefore, the lack of starch at night

seems to impair leaf growth in young leaves. This is in line with the gen-

eral observation that in A. thaliana starch pools are depleted almost linearly

during night time to optimise growth (Stitt & Zeeman, 2012).

Hydraulic growth limitation occurred in older A. thaliana leaves, and rel-

ative growth rates at day were lower than at night. Evidence suggested that

growth was reduced during the day because water was lost by transpiration

which limited the potential for cell expansion. This hypothesis was suppor-

ted by the observation that under water stress A. thaliana showed higher

growth rates at night even in young leaves, and the amplitude between di-
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urnal and nocturnal growth was increased. A similar pattern was also ob-

served in a mutant with higher stomatal conductance but similar net photo-

synthesis compared to the wild type. In Section 2.2 I give a detailed explan-

ation on how hydraulics can limit tissue expansion.

Overview of shoot and leaf growth measurement methods

Plant growth can be defined as an increase in biomass (structural growth),

or plant size (expansive growth; Pantin et al., 2012; Chapter 2) . Dry bio-

mass can only be measured post harvesting, which has the disadvantage

that the same individual can only be measured once, and therefore growth

patterns can only be derived from mean values of different individuals, as

opposed to observing the same plant over time. Furthermore, harvesting

is highly labour intensive. Therefore, automated non-invasive methods for

measuring plant growth are desirable.

The simplest non-automated method for recording expansive growth is

repeated measurements with a ruler, which is also labour intensive and not

very precise. Historically, precision was improved by observing the plant

through a “horizontal microscope” as described by Pfeffer (1903, p. 20). An

early example of an automated growth meter (auxanometer) is the record-

ing of shoot elongation on a rotating cylinder (Pfeffer, 1903). Other classical

instruments to measure elongation are the interferometer based on two in-

terfering light rays of which one is displaced by a mirror connected to the

plant (reviewed by Ruge, Whaley & Ziegler, 1961), or the linear variable

differential transformer (LVDT; Hsiao, Acevedo & Henderson, 1970).

Auxanometer and LVDT both require the application of force by fixing

the plant through a cord to a weight to record changes in position. Obvious

shortcomings of this setting are that applied tensile forces may influence

the growth and that it is not suitable to attach a weight to small plant or-

gans (Pfeffer, 1881). Furthermore, there may be thermal expansion of the

cord, although this is described as “insignificant” in comparison to the total
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growth (Hsiao et al., 1970, p. 591). The method of applying a force to the leaf

tip to measure its elongation is still applied for measuring leaf elongation in

the field (Nagelmüller, Kirchgessner, Yates, Hiltpold & Walter, 2016). Based

on this principle, leaf elongation was measured by visually tracking beads

connected to the leaf.

Leaf area was traditionally measured by tracing the shape directly to

paper or by using light and diazo paper (H. T. Brown & Escombe, 1905).

Later photoelectric devices were developed to measure the area of harvested

leaves (reviewed by Ruge et al., 1961). This technology resembles the use of

scanners which today is a very simple method for measuring leaf area (e.g.

O’Neal, Landis & Isaacs, 2002). A notable historic study that used manual

ruler measurements was conducted by Gregory (1921) who applied ellipse

or hexagon models to calculate leaf area. Additionally, for some monocoty-

ledon species there exist well-established statistical correlations to calculate

the leaf area from length and maximal width (reviewed by Ruge et al., 1961).

Another method to describe and measure plant growth is the analysis

of photographs, an idea already implemented by Pfeffer (1900) who set up

a device to acquire time lapse series of growing plants and algae. Pfeffer’s

aim was to demonstrate plant movements during his lectures but later the

method was also used to measure growth by manually analysing images

(reviewed by Ruge et al., 1961). While this method used to be expensive and

labour intensive, today it is possible to automatically and non-invasively

measure plant growth using relatively cheap devices. An extensive review

of early computer vision applications in plant science was given by Price

and Osborne (1990). Plant growth can be estimated from digital images

and statistical correlations (Eguchi & Matsui, 1977), a method still widely

applied today. To my knowledge the first study directly and automatically

measuring plant growth using image analysis was presented by Jaffe, Wake-

field, Telewski, Gulley and Biro (1985) recording the elongation of maize

seedlings.
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Classic plant or leaf growth measurement methods like the auxanometer

or LVDT only collect information about elongation and are not able to meas-

ure leaf area increase or to detect where within the organ the growth takes

place. In monocots, leaf growth takes place at the base of the leaf and is

largely one-dimensional, therefore this is not much of a limitation. In eu-

dicots, it has long been observed that leaf growth is often not uniformly

distributed and that “various parts of the lamina expand at different rates,

depending upon their distance from the tip and age of the leaf” (Maksy-

mowych, 1973, p. 41). By using digital image analysis and optical flow

estimations (Barron & Liptay, 1994, 1997) it becomes possible to distinguish

growth in different areas of a leaf at a high temporal resolution (Schmundt,

Stitt, Jahne & Schurr, 1998). Optical flow tracks the same point in a series

of pictures over time. Some species lack distinctive features at the leaf sur-

face, and ink dots have often been applied to simplify the tracking (e.g. Das

Gupta & Nath, 2015; Granier & Tardieu, 1998b; Remmler & Rolland-Lagan,

2012). This approach is similar to a classical study using small holes and red

lead as markers (Hales, 1727).

Despite the potential of image analysis in plant quantification, there still

remain many challenges of which one is the measurement of leaf growth

(Minervini, Scharr & Tsaftaris, 2015). Complicated leaf shapes or wavy

surfaces can make computer-vision-based growth measurements difficult.

Today, the most widely used semi-automated method to measure eudicot

leaf growth requires the fixation of a leaf to keep it in a plane (Schmundt

et al., 1998). Since the fixation prevents movements, it becomes possible

to estimate relative leaf growth by tracking the perceived leaf area in time-

lapse pictures from a camera that is set up parallel to the leaf surface. This

task can be simplified by automatically tracking markers at the leaf fixa-

tion point (expansive growth; Mielewczik, Friedli, Kirchgessner & Walter,

2013; Chapter 3) . However, just like it is the case for the one-dimensional

auxanometer or LVDT, the fixation may influence growth since it applies
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tension to the leaf and prevents it from moving. Schmundt et al. (1998) com-

pared their image-based growth analysis to simultaneous measurements

with an LVDT and found that the measured growth was similar but that

the image analysis was less noisy.

Since the application of tensile forces potentially impacts leaf growth, the

choice of the weight needs to be determined carefully. Surprisingly, this is-

sue is only briefly discussed in the literature. In their pioneering study Jaffe

et al. (1985) applied different forces to corn seedlings and observed their

growth pattern compared to an undisturbed control. Low forces slightly in-

creased growth between ca. 0.5 and 3.5 hours after application, while higher

forces slightly decreased growth. Later, the difference in growth rates was

reduced but did not completely disappear. While the growth rate was sim-

ilar with no applied force and 1.14N , the growth was higher at forces of

0.38N or 0.76N (no difference between the two latter treatments).

In contrast, Ricinus communis leaves showed decreased growth rates for

low forces and increased growth rates for high forces compared to an un-

constrained control (Walter, Feil & Schurr, 2002). In old leaves experiencing

mechanical stress the starch concentration at day was significantly higher

than in the control which indicates a disturbance of the carbohydrate meta-

bolism. In their experiments on maize leaves Hsiao et al. (1970) simply com-

pared the growth rate with the applied force of 0.04N to the one with twice

the force and found no difference. Further, they observed that the leaf was

shrinking after cutting off the roots despite the applied tension indicating

that the force by itself did not cause growth. In Laurus nobilis, leaves lateral

mechanical stress shifted the direction of growth in the treated area (Bar-

Sinai et al., 2016). These examples show that mechanical stress can influ-

ence leaf growth and that there is no linear relationship between the applied

force and changes in growth rate. Therefore, no general conclusion on the

best force to be used in such experiments can be drawn. Instead, for any

species the appropriate force needs to be determined before the experiment.
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Leaf fixation restricts movements that are present in many species. In Ri-

cinus communis low tensile forces lead to a lower growth rate during night-

time compared to the control (Walter et al., 2002). Under undisturbed con-

dition Ricinus communis leaves show strong movements during the night.

Therefore, it was speculated that the restriction of leaf movements reduces

the leaf growth rate at times when strong movements would occur (Walter

et al., 2002). The application of stronger forces lead to a re-establishment

of similar growth rates in fixed and undisturbed leaves. In a study using

a laser scanner to determine leaf length and inclination angle of Arabidop-

sis thaliana, it was found that leaf elongation and movements are coupled

(Dornbusch et al., 2014). Such examples suggest that the application of

mechanical force to measure leaf growth is rather questionable for species

that show strong leaf movements.

Image analysis and phenotyping

As shown by the quotes in the Chapter abstract, the use of image analysis

and computer vision for plant growth measurements has long been pre-

dicted (Pfeffer, 1903; Silk & Erickson, 1979). In recent years, various plant

phenotyping methods emerged that allow the measurement of plant traits

in a semi-automated manner for hundreds of plants based on spectral char-

acteristics (Fiorani & Schurr, 2013; Gibbs et al., 2016). Among these traits,

growth is central since it often characterises plant sensitivity to stresses

(Tardieu et al., 2017). Probably the simplest approximation for plant growth

using image analysis is the increase of the shoot area as observed by one

camera. This requires that the growth mainly occurs in a plane so that the

distance between the camera and the object remains the same. If this is not

the case, plant parts that are close to the camera appear bigger which im-

pairs the result.

It is also required to accurately segment the plant from the background.

In controlled conditions this can easily be achieved by having a back-
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ground colour that is distinctly different from the greenish plant parts. This

simple approach was implemented by many researchers (Arvidsson, Perez-

Rodriguez & Mueller-Roeber, 2011; De Vylder, Vandenbussche, Hu, Philips

& Van der Straeten, 2012; Jansen et al., 2009; Leister, Varotto, Pesaresi, Ni-

wergall & Salamini, 1999; Tisné et al., 2013; Walter et al., 2007; X. Zhang,

Hause & Borevitz, 2012; Dobrescu, Scorza, Tsaftaris & McCormick, 2017;

Minervini, Giuffrida, Perata & Tsaftaris, 2017; Tomé et al., 2017; Faragó,

Sass, Valkai, Andrási & Szabados, 2018; Vasseur, Bresson, Wang, Schwab &

Weigel, 2018) for analysing Arabidopsis thaliana or Nicotiana tabacum growth

using top view images. The rosette shapes of young Arabidopsis thaliana and

to some degree Nicotiana tabacum plants fulfil the requirement that growth

mainly takes place in a plane. However, plant leaves show oscillating move-

ments which can be observed by using a similar top view imaging setup and

by tracking leaf tips in older (32 days) Arabidopsis thaliana (Bours, Muthura-

man, Bouwmeester & van der Krol, 2012). The most challenging tasks in

this approach are background removal (Minervini, Abdelsamea & Tsaftaris,

2014), and segmentation of individual leaves (Scharr et al., 2015; Giuffrida,

Doerner & Tsaftaris, 2018).

This method provides an approximation of relative shoot growth. To

include plant features such as dry weight, statistical correlations with the

observed plant area in the image need to be established by harvesting the

plant and manually measure the features. For herbaceous grasses it is pos-

sible to predict fresh and dry biomass using side view images (Tackenberg,

2007). Therefore, this approach is the most widely used method for the ob-

servation of monocot crops in automated plant phenotyping systems (Fahl-

gren et al., 2015; Hartmann, Czauderna, Hoffmann, Stein & Schreiber, 2011;

Klukas, Chen & Pape, 2014; Knecht, Campbell, Caprez, Swanson & Walia,

2016; W. N. Yang et al., 2014). One example is the commercial Scanalyzer

system (LemnaTec GmbH) in which plant pots are kept on a conveyer belt

and are frequently moved to an imaging chamber where top and side view
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images are taken. It is also possible to establish phenotyping systems in

agricultural fields, albeit at high costs and with considerable technological

effort (Kirchgessner et al., 2016).

Three-dimensional leaf reconstruction

Since plant leaves sometimes have complex three-dimensional (3D) shapes

and show movements throughout the day, a system that captures 3D in-

formation of the leaf surface is preferred. There are several such methods

available that already have been tested on plants. Here, I give an overview

on some of these methods and briefly discuss their advantages and disad-

vantages. Generally, 3D imaging approaches can be categorised into active

and passive methods, where active methods require laser emittance, or the

projection of a light pattern, and passive methods rely on ambient light, or

require illumination.

One active method is laser scanning. This term may refer to different

technologies; here I will use it to refer to laser triangulation. Another laser-

based technollogy called time of flight is presented below. Simply speaking,

in laser triangulation the distance to the object is calculated by projecting a

laser spot or line and measuring its reflectance angle in a receiving sensor.

Laser triangulation has a high accuracy and precision for plant growth

measurements but it is only suitable for close range measurements (Paulus,

Schumann, Kuhlmann & Leon, 2014). In that study, measurements were

conducted manually once a day, but automated measurements of whole

plants are possible using robots (Chaudhury & Barron, 2018). There are

also commercial systems available that are specifically designed for meas-

uring plants, for example Phenospex PlantEye, or LemnaTec PhenoCenter. The

LemnaTec system is described in Dornbusch et al. (2012) for measuring leaf

elongation and movements of Arabidopsis thaliana. The Phenospex PlantEye

system is suitable for field applications for both monocot (Vadez et al., 2015)

and eudicot plants (Kjaer & Ottosen, 2015). It also includes an automated
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calculation of total visible leaf area. However, the laser scan line moves dur-

ing the measurement which disturbs the result in case of plant movements

due to wind.

Time of flight (ToF) cameras estimate the distance to an object based on

the measured return time of a laser signal; they give an image with a depth

value for each pixel. Time of flight is a class of lidar (light detection and

ranging), a technology that is often used for broad-scale canopy character-

isation; see Section 2.3. It is generally suitable for imaging leaves, but in

direct sunlight the depth measurement may be noisy (Kazmi, Foix, Alenya

& Andersen, 2014). Furthermore, ToF sensors have a low pixel resolution

which may impair the accuracy of the measurement. This can be overcome

by combining the depth image with high-resolution colour images (Alenya,

Dellen & Torras, 2011; Uchiyama et al., 2017). One advantage of ToF is the

availability of low cost consumer grade devices such as the Microsoft Kin-

ect v2, or the Intel RealSense SR300. Some ToF application examples in-

clude plant volume estimation (Andujar, Dorado, Fernandez-Quintanilla &

Ribeiro, 2016), stalk thickness estimation (Batz, Méndez-Dorado & Thomas-

son, 2016), or weed detection (Gai, Tang & Steward, 2015). Further, ToF

has been used for plant shoot reconstruction (McCormick, Truong & Mul-

let, 2016), and for measuring total leaf area growth (Hu, Wang, Xiang, Wu

& Jiang, 2018). Song, Glasbey, Polder and van der Heijden (2014) used in-

formation from ToF and from stereo vision (described below) for individual

leaf area calculation.

The last active method I discuss here is structured light. In such a sys-

tem a defined light pattern is projected and the geometry of the object is

calculated from the shift of the pattern. This technology is used in the Mi-

crosoft Kinect v1 which can be used for plant imaging and leaf segmentation

(Chene et al., 2012), but it is not suitable for leaf area measurements due to

the low image resolution (Paulus, Behmann, Mahlein, Plumer & Kuhlmann,

2014). With higher resolution, structured light systems allow accurate leaf
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area estimations (Bellasio, Olejnickova, Tesar, Sebela & Nedbal, 2012) and

the characterisation of growth processes (Li et al., 2013). The Microsoft Kin-

ect v1 sensor also works for measurements in the field although there is the

potential of sunlight interfering with the projected light pattern (Andujar,

Fernandez-Quintanilla & Dorado, 2015).

Two widely used passive methods are stereo vision and structure from

motion. In a stereo vision system, two cameras with fixed positions relative

to each other are used to calculate the distance of an object to the camera.

Matching points in corresponding pictures from the two cameras are detec-

ted and used for the calculation, see Chapter 4. Therefore, for every pixel

that is matched in both images, real world coordinates are available. How-

ever, some plant leaves lack a distinct texture which makes this matching

challenging. Furthermore, if images are acquired in direct sunlight, sensor

saturation may occur which also impairs the matching (Kazmi et al., 2014).

Stereo vision can be used to measure leaf angles (Biskup, Scharr, Schurr

& Rascher, 2007; Muller-Linow, Pinto-Espinosa, Scharr & Rascher, 2015),

leaf cover area (Lati, Filin & Eizenberg, 2013) or the leaf area index (LAI;

Leemans, Dumont & Destain, 2013). However, LAI estimations become im-

precise in case of occlusion due to overlapping leaves. The area of fully vis-

ible leaves can be accurately reconstructed (Xiong et al., 2017). T. T. Nguyen,

Slaughter, Maloof and Sinha (2016) used an extensive setup consisting of

five stereo camera pairs, a rotating turntable and the projection of a ran-

dom light pattern to reconstruct whole plant geometry and growth. Finally,

Aksoy et al. (2015) used stereo vision for leaf detection and estimate to leaf

growth by applying an ellipse model.

Structure from motion (SfM) uses multiple pictures from different view-

points to calculate a 3D model of the object (Snavely, Seitz & Szeliski, 2008).

Real world dimensions need to be added to the model by defining the

coordinates of reference points in the scene. Plant models generated by

SfM can then be segmented into different organs (Pound, French, Fozard,
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Murchie & Pridmore, 2016) and properties such as leaf area or stem height

can be calculated (Paproki, Sirault, Berry, Furbank & Fripp, 2012). Struc-

ture from motion is also suitable for crop monitoring in the field (Jay, Ra-

batel, Hadoux, Moura & Gorretta, 2015). There are commercial SfM soft-

ware packages available which makes the reconstruction of one scene fairly

simple. However, for an automated plant growth analysis a more complic-

ated image analysis workflow is required (Duan et al., 2016). Structure from

motion is a good method for generating whole plant models but it requires a

lot of input images. Image acquisition therefore requires some time or a sys-

tem that automatically captures pictures from different viewpoints. Also,

the post processing can take a long time for complicated plant structures

(Pound et al., 2016).

Other methods for three dimensional reconstruction that have not yet

been applied broadly are light-field photography (Apelt, Breuer, Nikoloski,

Stitt & Kragler, 2015), shape from silhouette (Golbach, Kootstra, Damjan-

ovic, Otten & van de Zedde, 2015), or photometric stereo (Smith, Zhang,

Hansen, Hales & Smith, 2018).

1.2. Contributions

“Plant growth” is an umbrella term that refers to different processes, and

the development of a single leaf may be of limited relevance for the whole

plant. Therefore, I first take a step back in Chapter 2 to discuss different

aspects of plant growth, and how growth definitions shift depending on the

spatiotemporal focus of analysis. I continue with an overview of growth

measurement methods from cell to system, and conclude with a discussion

why plant growth measurements are important in the first place.

In Chapters 3 and 4, I focus on outdoor leaf growth measurements. Most

studies are conducted in growth chambers or greenhouses, and there is a

lack of knowledge of leaf development in situ. For large plants such as trees,
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experiments under controlled conditions are hardly possible, but methods

for direct measurements of individual leaves are sparse.

In Chapter 3, I adopted the leaf fixation method (Mielewczik et al., 2013)

for long-term outdoor measurements. To my knowledge, this is the first

study measuring leaf area growth in situ on a mature tree. Although a sim-

ilar method has been used in the greenhouse for measuring leaf growth of

young Populus deltoides (Walter et al., 2005; Matsubara et al., 2006), and there

is also a method for in situ palm frond elongation measurements (Zhen,

Tripler, Peng & Lazarovitch, 2017).

Because leaf fixation and the application of tensile forces can alter

growth, a contactless method would be preferable. In Chapter 4, I explored

the suitability of stereo vision for this task. Outdoor measurements are

generally challenging for vision-based methods, because of direct sunlight,

wind, and rain. I built a custom made device in order to minimise such ef-

fects. I found that stereo vision is a suitable technology for in situ leaf area

measurements, but the measurement error was relatively large.



Chapter 2

Plant Growth: the What, the How, and the

Why

Plant growth is a widely used term that can have different meanings depending

on the context and the spatiotemporal scale of analysis. In this chapter, I first an-

swer the question what is plant growth? I then review different methods for how

plant growth can be measured and analysed at different organisational and tem-

poral levels. I conclude by discussing why gaining a better understanding of plant

growth is essential in particular to disentangle genetic and environmental effects

on the phenotype.

This Chapter has been submitted to New Phytologist as an invited Tansley

Review. It is co-authored by Sebastian Leuzinger, Bertrand Muller, and

Florent Pantin.

2.1. Introduction

One of the first modern attempts to study plant growth can be found in

the seminal book “Vegetable Staticks” of the botanist Stephen Hales (1727).

Hales designed methods to locate and quantify internode and leaf blade

growth. Over the following century, it was understood that growth depends

on the fixation of carbon from the atmosphere (de Saussure, 1804), and on

nutrient uptake from the soil (Sprengel, 1828; von Liebig, 1840). The obser-

vation and measurement of plant growth has a long tradition in agriculture

(e.g. Kreusler, 1878) and forestry (e.g. Weber, 1891), but also in the study
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of plant physiology (Pfeffer, 1881). However, many aspects of growth still

remain obscure.

Inherent challenges of growth studies are the observation and quanti-

fication of processes that spatially span several orders of magnitude from

cell to plant and community, and temporally range from immediate stress

reactions to centuries for ecosystem succession. Furthermore, strong en-

vironmental effects on growth induce feedbacks between development,

physiology, and microclimate, which make it hard to isolate individual

processes. This difficulty can (and must) be overcome by clearly defining

frames of analyses, i.e. a robust definition of growth variables, and ideally

formalisms accounting for the impact of the environment.

Despite the interest in measuring and predicting growth, there is no

single definition of “plant growth”, as a multitude of processes can be sum-

marised under this term. At the smallest scale, growth is related to the

functioning of meristems and consequently cessation of meristem growth

is often followed by cessation of organ growth (Granier & Tardieu, 1998b;

Moreno-Ortega, Fort, Muller & Guédon, 2017). Consistent with this, there

are often strong correlations between cell number and organ size (Cookson

et al., 2005; Gazquez & Beemster, 2017). However, there also exist large peri-

ods during which organs grow without cell proliferation. For example, in

the sunflower leaf the total number of cells is reached when the leaf area

is approximately 25% of its final size (Granier & Tardieu, 1998b). The leaf

keeps expanding for about another week and the final area is highly vari-

able depending on environmental conditions (Granier & Tardieu, 1999b). In

this example, growth is defined as organ expansion. In another sense, plant

growth is the accumulation of biomass, resulting from the balance between

carbon assimilation and carbon loss through respiration, exudation, shed-

ding, or herbivory.

In this paper, I distinguish these different viewpoints on growth, and

I discuss how and to what degree the various underlying processes are
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coupled at different spatiotemporal scales. I then review various meth-

ods to measure growth, as particular methods often implicitly target cer-

tain aspects of plant growth but not others. While growth regulation at the

molecular level is beyond the scope of this review, I believe that a precise

definition of the various facets of “plant growth” is the first step in the ana-

lysis of growth processes and their underlying genetic and environmental

drivers.

Following the bon mot to see the forest for the trees, I discuss growth

concepts at different levels from cells to, organs, plants, and ecosystems,

and at different temporal scales from hours to centuries. I take this hier-

archical approach, because growth activities manifest differently at differ-

ent scales, despite all resulting from similar processes at the cell level. Each

unit does not exist in isolation, but in relation to plant internal controls and

external environmental constraints. For example, a cell of a developing eu-

dicot leaf will undergo proliferation, expansion, or no growth depending on

the location in the leaf, the leaf and plant ontogeny, as well as the plant’s en-

vironmental conditions such as temperature, soil water potential, or shad-

ing from competing plants. At the same time, the growth of one particu-

lar leaf could coincide with plant net defoliation due to litterfall. In this

case we would observe biomass growth at the leaf level, but no growth or

even biomass loss at the plant or ecosystem level. Such simple examples

demonstrate the need to define reference metrics to analyse plant growth

(Leuzinger & Hättenschwiler, 2013). I present a general growth concept for

plants (viridiplantae) in the next subsection, but implicitly focus on seed

plants for the rest of the paper.
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2.2. The What. A clarification of various growth

concepts

Different aspects of plant growth

I define “growth” in a strict sense as an irreversible increase in cell number,

structural biomass, or plant volume (Table 1, Figure 1). I adopt the ter-

minology structural growth to refer to an irreversible increase in structural

biomass, that is biomass fixed into plant structures such as cellulose, lip-

ids, or proteins (Figure 1a,b,c,e). Alternatively, biomass can be present in

the form of secondary metabolites, or as storage compounds referred to as

non-structural carbohydrates (NSC; Figure 1h). I also adopt the term expans-

ive growth to refer to an irreversible increase in fresh volume (Figure 1a,c,d;

Pantin et al., 2012). The irreversible nature of expansion is linked to the

plastic deformation of cell walls, as opposed to their elastic deformation

(Cosgrove, 1993) resulting in reversible elastic cell swelling, or shrinkage

(Figure 1i). Plant volume is the space occupied by plant tissue; it is the sum

of all cell volume and intercellular space. Expansive growth is the irrevers-

ible increase in plant volume as a result of cell (and airspace) expansion that

can occur during or after the cell cycle (Green, 1976). Growth sensu lato is

often related to cell production (Figure 1a,b), which is essential for later cell

differentiation (Figure 1f). According to the strict definition, the loss of cells

through shedding of plant parts is not part of growth (Figure 1g).

In a broader sense, “growth” can be defined as biomass or volume

change. This definition does not distinguish between different biomass types

or functions, and it allows for “negative growth”. In this sense, biomass

change is the mass balance between material “acquisition” through photo-

synthesis and nutrient uptake, and losses from respiration, exudation, shed-

ding, herbivory, etc. Similarly, volume change is the difference between or-

gan expansion and losses of plant parts. Throughout the rest of this chapter
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Table 1. Definition of terms used

Plant Land plants and green algae; viridiplantae

Plant growth
Irreversible increase in cell number, structural
biomass, or volume of a plant; change in plant
biomass, or volume

Structural growth Irreversible increase in structural biomass

Expansive growth Irreversible increase in cell, organ, or plant size

Cell production The increase in cell number as the result of a
mitotic or meiotic cell cycle

Cell proliferation Increase in cell number and concurrent increase in
total tissue size

Cell partitioning Cell production without an increase in total
volume

Endoreduplication DNA replication without increase in cell number

Structural biomass
Structural components of plant tissues (cellulose,
lignin, cell membrane lipids, proteins, nucleic
acids, etc.)

Non-structural
carbohydrates
(NSC)

Insoluble polymers (e.g. starch, fructans) or
soluble oligomers (hexoses, sucrose, sugar-alcools,
etc.) that are used as short-term or long-term
stores

Net primary
production (NPP)

The integral of gross primary production minus
autotrophic respiration during a given time on a
given area, expressed in biomass, carbon mass, or
energy

Size Length, area, or volume

the term “growth” without specification refers to either of the growth pro-

cesses, or their combination.

Cell production and cell cycle

Cells are the fundamental building blocks of all life, and their multiplica-

tion through the cell cycle always requires structural growth for DNA and

cell wall synthesis (Figure 1a,b). Usually, there is also expansive growth

during the cell cycle, so that the combined volume of the daughter cells is

larger than the initial volume of the mother cell. The term cell division could
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Figure 1. Different aspects of plant growth and their coupling. Growth can
be described as an irreversible increase in cell number, structural biomass,
or plant volume. The irreversible increase in structural biomass is called
structural growth; the irreversible increase in volume is called expansive
growth. The increase in cell number through the cell cycle is always part of
structural growth, as it requires DNA and cell wall synthesis. (a) Cell prolif-
eration is the process of increasing in cell numbers, while maintaining an av-
erage cell size. Therefore, proliferation includes all three aspects of growth.
(b) A cell cycle without an increase in total size is called cell partitioning. (c)
Cell expansion is the irreversible increase in cell size under turgor pressure
(expansive growth), which requires cell wall synthesis to maintain stability
(structural growth). (d) In hypocotyls, cell wall synthesis and cell expansion
are regulated by different mechanisms which implies that cell expansion
can occur without structural growth for short times (Ivakov et al., 2017). (e)
Secondary cell wall growth, protein synthesis, and endoreduplication are
structural growth processes without notable changes in volume (although
ploidy correlates with cell size). (f) Cell differentiation, and (g) shedding, as
well as (h) the accumulation and depletion of storage components, and (i)
elastic deformation are not directly part of growth sensu stricto.
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refer either to the whole cell cycle, or only to the mitotic phase. Therefore,

I favour the term cell proliferation to describe this case of an increase in

cell number and tissue volume (Figure 1a). Usually, the mean cell size is

maintained during proliferation. In the shoot apical meristem this may be

achieved by coordinating the regulation of the cell cycle duration, the cell

growth rate, or both depending on the cell area at birth (Serrano-Mislata,

Schiessl & Sablowski, 2015; Willis et al., 2016; Jones et al., 2017). Cell pro-

liferation also includes cases where the individual cell size is decreasing

but the total tissue size is increasing, for example during early Arabidopsis

thaliana embryo development (Yoshida et al., 2014), or in root tips (Erickson

& Sax, 1956; Moreno-Ortega et al., 2017). On the other hand, a cell cycle

without any increase in total size, for example zygote cleavage, is called cell

partitioning (after Green, 1976, Figure 1b). Finally, a special case of the cell

cycle is endoreduplication, the replication of DNA not followed by mitosis.

The resulting high-ploidy cells are generally also larger in size (Sugimoto-

Shirasu & Roberts, 2003).

Expansive growth

Cell volume change strongly depends on turgor pressure and results from

two different processes, elastic cell deformation, and irreversible cell wall

extension (Figure 1c,d), as formulated in the Lockhart equation (Lockhart,

1965; Ortega, 1985):

dV

V dt
=

1

ε

dP

dt
+ θ ·max (P − Pc, 0) , (1)

where V [µm3] is the cell volume, P [MPa] is the turgor pressure, Pc [MPa]

is the critical turgor pressure, or yield stress, ε [MPa] is the cell elastic mod-

ulus, and θ [MPa-1] is the cell wall extensibility. Relative cell volume change

results from elastic swelling or shrinkage, or from irreversible cell expan-

sion, with both components depending on turgor. This poses a challenge
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for the study of expansive growth. For single cells it is possible to experi-

mentally distinguish elastic deformation and expansion (Proseus, Ortega &

Boyer, 1999), while for tissue expansion it is assumed that there are only lim-

ited growth activities during periods of elastic shrinkage (Zweifel, Haeni,

Buchmann & Eugster, 2016). Turgor pressure by itself does not lead to ex-

pansive growth, as it first requires cell wall loosening (Cosgrove, 2016).

Bioamss change and structural growth

Biomass change is the mass balance between biomass formation and bio-

mass losses. A large part of total biomass is stored as compounds that form

the structure of plants: cellulose and lignin in the cell walls, lipids in the

membranes, and proteins within the cell. Another part of total biomass is

stored in the form of NSC (sugars and starch) as a buffer against diel (Stitt

& Zeeman, 2012), seasonal (Klein, Vitasse & Hoch, 2016), or disturbance-

based fluctuations in carbohydrate assimilation. Because NSC reserves can

be depleted (negative biomass change) their accumulation falls outside the

definition of structural growth (Figure 1h). Similarly, the production, accu-

mulation, and release of secondary metabolites are also not part of structural

growth (Fig. 1h).

The introduced constraint that structural growth is irreversible allows

a clear theoretical definition, but there are also some ambiguities. For

instance, membrane lipids and proteins generally show a much shorter

lifespan than the lignocellulosic compounds within a given cell, e.g. in the

xylem where the cytoplasmic content rapidly disappears for the cell to be

functional just through its empty walls. Similarly, nutrient remobilisation

is not accounted for as negative growth, but it can contribute to structural

growth in another plant part. Therefore, in terms of structural growth, the

irreversibility refers to chemical-functional characteristics and time frames.

For the growth of seeds, fruits, or storage organs the construction of cells

is part of structural growth, but the accumulation of sugars or starch is not.
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Such cases are accounted for by the broader “growth” definition biomass

change. Similarly, the loss of plant parts through shedding, litterfall, or herb-

ivory is not part of structural growth, although it is a biomass loss which

may affect growth potential. When NSC reserves are depleted to support

structural growth, the two “growth” concepts may have different signs. For

example, a sprouting potato has a (positive) structural growth, while the

biomass change is negative because of respiration losses.

Frame of analysis

Growth analysis requires the definition of the analysed system, of the sys-

tem variable, and of reference metrics (Table 2). The system under con-

sideration can be any of the hierarchical levels cell, organ, plant, or com-

munity (Figure 2). The system variable is typically a metric for one of the

two main aspects of growth: biomass or volume; see Table 2. Alternatively,

it can express a count or an index, e.g. the number of cells, or leaf area

index (LAI; Watson, 1958). The definition and selection of reference met-

rics such as per unit surface area, or per individual is critically important, as

its choice can cause a sign reversal while interpreting results (Leuzinger &

Hättenschwiler, 2013). In growth analysis, per time duration is a required ref-

erence metric, and it typically varies from hours to years, depending on the

analysed system. Again, changing the temporal reference metric can change

the interpretation of results fundamentally. For example, alpine meadows

have the same net primary production (NPP) as tropical rainforests when

only analysed for the growing season, but vastly different NPP over the

whole year (Körner, 2003a).

To account for the temperature dependence of growth it can be use-

ful to introduce thermal time instead of chronological time (Gallagher,

1979; Granier & Tardieu, 1998a). Rates of different plant development pro-

cesses are dependent on temperature and follow species specific negatively

skewed Arrhenius-type bell curves (Parent, Turc, Gibon, Stitt & Tardieu,
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2010; Parent & Tardieu, 2012). When the temperature increases above an

optimum, development rates decrease rapidly. Below the optimum, there is

an ideal range in which rates increase quasi-linearly with temperature, and

thermal time is the integral of temperature above a species-specific lower

threshold (Table 3).

For the quantitative description of growth, we are interested in the size

of a system variable Y at any time, as well as its change with respect to

time. Growth analysis requires at least two measurements of Y at different

points in time. Given enough measurements, we may be able to formulate

a growth model Y = f(t) to predict Y as a function of time, or thermal

time. The absolute growth rate (AGR) is the derivative dY/dt = f ′(t), and

absolute growth is the integral of the absolute growth rate during a given

time period. The analysis of relative growth rates (RGR = dY/(Y dt)) is of-

ten more meaningful than the analysis of absolute growth rates, because it

controls for the quantity of Y . Relative growth rates can be calculated using

exponential (Blackman, 1919), or linear models (West, Briggs & Kidd, 1920),

see Table 3. The predicted RGR can substantially differ between the two

models, except for very small ∆Y when the enumerator approaches zero.

Very small ∆t usually coincide with small ∆Y and therefore indirectly lead

to the same result. However, for plant growth analyses both exponential

and linear models are usually too simplistic and may only be suitable dur-

ing certain developmental stages. For the analysis over a plant’s life cycle,

nonlinear models such as logistic models are more appropriate to describe

growth (Paine et al., 2012).



Table 2. Different metrics for growth analysis and associated methods

System variable Method

Mass

– Fresh mass [kg] Lysimeter, harvesting

– Biomass (dry) [kg] Harvesting

– Structural biomass [kg] Harvesting and chemical
analysis

– Carbon mass, other element’s mass
[kg]

Harvesting and chemical
analysis

– Fixed energy; calorific value [kJ] Calorimeter

– “Useful” biomass [kg]

– Carbon flux [kg] Eddy covariance

Size

– One dimension (1D) [m]

◦ Leaf, root, stem length Meter, auxanometer, image
analysis

◦ Stem radius, diameter change Dendrometer

◦ Canopy height Airborne or space-borne
lidar, or image analysis

– Two dimensions (2D) [m2]

◦ Cell area (projected) Microscope

◦ Leaf area (one sided, projected) Harvesting, image analysis

– Three dimensions (3D) [m3]

◦ Cell, organ, plant volume Confocal microscopy, X-ray
◦ Shoot architecture, root convex

hull; space “covered”
Image analysis, terrestrial
lidar

Indices

– Cell, organ, plant count

– Leaf area index (LAI) [m2 m-2] Ceptometer, hemispherical
photography

– Greenness; Normalised difference
vegetation index (NDVI), enhanced
vegetation index (EVI)

Remote sensing (near surface,
airborne, space-borne)

Reference metric

– Time [h], [d], [wk], [yr]

– Thermal time [°C h], [°C d]

– Land surface area [m2]

– System variable (relative growth)

– Higher hierarchy, individual
Growth analysis requires the definition of the system variable (main metric)
and of one or multiple reference metrics. Time is always a reference met-
ric. At the landscape-scale, land surface area is also a mandatory reference
metric (except for indices).
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Table 3. Mathematical formulas

Formula Definition

Model Y = f(t)
Development of system

variable Y (see Table 2) as a
function of time t

Absolute
growth rate
(AGR)

gAGR =
dY

dt
= f ′(t)

gAGR =
∆Y

∆t

Change in Y per time

Absolute
growth

∆Y =
∫ ti

ti−1

f ′(t) dt

= f(ti)− f(ti−1),

∆Y > 0

Absolute change of Y
between two points in time

Relative growth
rate (RGR),
exponential

gRGRexp =
ln
(

Yi

Yi−1

)
∆t

Change in Y per time,
relative to Y

Relative growth
rate (RGR),
linear

gRGRlin
=

Yi − Yi−1
1
2
(Yi + Yi−1) ·∆t

Change in Y per time,
relative to mean Y

Thermal time

tT =
∫

(T (t)− T0)dt

≈
∑

∆t · (T − T0),
T εTopt

“Physiological time”; Mean
temperature T above species

specific threshold
temperature T0 multiplied

by time duration ∆t (usually
expressed in hours, or days),

given T is in the optimal
temperature range Topt



Figure 2. A summary of growth processes across spatiotemporal scales, growth
metrics, and measurement methods. (a,b) Eudicot leaf area growth modelled by
a logistic function. (a) Development of cell number (black), and cell area (blue)
visualising the transition from proliferation to cell expansion driven leaf expan-
sion. (b) Leaf area development in green as an example for organ expansion, cor-
responding relative growth rate (RGR) in black, and absolute growth rate (AGR)
in red. (c) Tree volume growth modelled by a von Bertalanffy function in green;
estimated water content in blue. Data for seedling hydration during the first
five days from soybean (Wahab, 1971). Later, water content is exponentially de-
creasing towards 50%. (d) Stylised diel fluctuation of fresh volume, and (e) car-
bon mass (NSC: Non-structural carbohydrates; SC: structural carbohydrates). (f)
Ecosystem primary succession modelled by a Chapman-Richards function. Total
standing carbon mass per area in black, and corresponding net ecosystem pro-
duction (NEP) in red. The development of the leaf area index (LAI) has been
modelled independently based on a simple asymptotic curve. (g,i) Stylised diel
curves of net ecosystem exchange (NEE) carbon fluxes for an early and late stage
of succession (different scales). (h) Stylised yearly course of the enhanced vegeta-
tion index (EVI) for a deciduous forest. Arrows and corresponding labels indicate
different methods for growth measurement, or approximation.
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For the spatiotemporal analysis of tissue expansion, it is necessary to in-

troduce metrics that account for regional variation across the tissue. Botan-

ical pioneers have proposed to treat the tissue as a mechanical continuum,

allowing the development of kinematic frameworks similar to the ones used

in fluid dynamics (Silk & Erickson, 1979; Goodall & Green, 1986). Two al-

ternative approaches are distinguished: the Eulerian and the Lagrangian

specifications of growth. While both approaches require tracking the po-

sition of landmarks in the growing tissue over time (Section 2.3), their re-

spective usefulness depends on how growth organises across the tissue. On

the one hand, the Eulerian or spatial approach generates a velocity vector

field that describes the displacement of points relative to a fixed coordinate

system. It is particularly suitable for organs with a one-dimensional ex-

pansion pattern such as roots (Beemster & Baskin, 1998), or monocot leaves

(Muller et al., 2001). In such systems expansive growth can be expressed

as a function of the distance to the meristem. The Lagrangian or material

approach, on the other hand, follows the displacement of given elements

through space and time so that the coordinate system is attached to the

tracked points and deforms with growth. This approach describes the local

growth properties of a physical region in terms of growth rate, anisotropy,

direction, and rotation rate, four types of parameters that can be encapsu-

lated within the growth tensor (Hejnowicz & Romberger, 1984). It is partic-

ularly suitable for eudicot leaves (Figure 2a,b) where the size and location

of the expansion and proliferation zone changes during development, with

variation depending on the species (Walter et al., 2009; Das Gupta & Nath,

2015) and the tissue layer (Alvarez, Furumizu, Efroni, Eshed & Bowman,

2016; Fox et al., 2018).

While the Eulerian and Lagrangian frameworks are useful to quantify

the spatiotemporal changes in tissue shape, they may also be used to dis-

sect the contributions of cell division and expansion to tissue growth rate

(reviewed in Fiorani & Beemster, 2006). They also help in interpreting the
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spatiotemporal changes in concentration of any molecule observed along a

growing zone, by enabling the computation of biosynthesis and deposition

rates (e.g. Merret et al., 2010; Silk & Bogeat-Triboulot, 2014). However, these

frameworks do not inform us directly about the mechanisms underlying the

establishment of regional differences that originate tissue morphogenesis,

since the biological specification of particular regions does not result from

Eulerian and Lagrangian processes. As argued by Coen, Rolland-Lagan,

Matthews, Bangham and Prusinkiewicz (2004), mechanistic frameworks of

tissue morphogenesis should account for mutual interactions between tis-

sue patterning and growth.

Coupling and uncoupling of growth processes

Structural growth is mainly associated with carbon and metabolic pro-

cesses, while expansive growth is mainly associated with water and hy-

draulic processes. The ratio between structural growth rate and expansive

growth rate determines tissue density, and the ratio between cell prolifera-

tion rate and cell expansion rate determines cell density. Over long times-

cales all aspects of growth have to be coordinated to a certain degree, as

there must be upper and lower boundaries to cell and tissue density that

limit the accumulation of matter without expansion, or expansion without

structural growth.

The duality of structural and expansive growth becomes apparent when

analysing cell expansion. Structural growth requires carbohydrates, which

are assimilated during daytime, while expansive growth requires turgor

pressure, which usually is higher at night time when water loss through

transpiration is minimal. This temporal variation in growth conditions

requires a complex coordination of cell wall synthesis and expansion

(Verbančič, Lunn, Stitt & Persson, 2018). In Arabidopsis thaliana hypocotyls,

cell expansion and cell wall synthesis are regulated by different mechan-

isms, which suggests that for short timescales cells can expand without cell
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wall synthesis (Ivakov et al., 2017). After expansion, structural growth can

take place without (notable) volume change through secondary cell wall

growth, or protein synthesis. For whole organs, similar mechanisms ap-

ply, and growth can be limited by either carbohydrate supply, or hydraulics

(Pantin et al., 2011; Pantin et al., 2012). The detailed (and separate) analysis

of these processes is critical as one will likely be more limiting for growth at

any given time, thus driving the overall progress of growth (Fatichi, Pappas,

Zscheischler & Leuzinger, 2019).

A special case of tissue expansion is “stored growth” which is observed

at the transition from water stress to hydration. During water stress tis-

sue expansion is low or zero, but immediately after hydration there is a

short growth spurt, before expansion drops to a steady state level. This

phenomena has been described for maize leaves (Acevedo, Hsiao & Hende-

rson, 1971), and stems of different tree species (Zweifel et al., 2016). It sug-

gests that the potential for cell wall extension “accumulates” during water

stress. Two possible mechanisms for this phenomenon are ongoing cell wall

loosening without subsequent expansion, or the provision of new material,

as it has been shown for calcium pectate in Chara corallina (Proseus & Boyer,

2008).

The total number of cells in a given species and organ is much more vari-

able than the mature size of its cells. A striking example is the comparison of

bonsai trees to trees of similar genomes but with unrestricted growth, which

showed little differences in leaf cell size, while the total leaf area differed by

a factor of five to fifty depending on the species (Körner, Pelaez & John,

1989). This implies that for leaves final cell size is under strong genetic con-

trol, and that long-term expansive growth coincides with an augmented cell

proliferation.

Structural equation modelling in Arabidopsis suggests that epidermal cell

area, cell division, cell expansion, and endoreduplication are controlled at

the leaf level, rather than cellular processes determining organ properties
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(Tisné et al., 2008; Massonnet et al., 2011). Such “organ-level regulation”

mechanism could account for the phenomenon of “compensation”, accord-

ing to which a change in leaf cell number appears to be (partly) balanced by

a change in cell size (Tsukaya, 2008; Hisanaga, Kawade & Tsukaya, 2015). A

mechanistic model of the Arabidopsis leaf suggests that cell growth and di-

vision are controlled by spatiotemporal regulators that partly overlap, gen-

erating correlations between division and expansion variables (Fox et al.,

2018). Changing parameters in this model predicted compensation pheno-

types as an emergent property, without invoking a compensating mechan-

ism at the organ level. Thus, shared spatiotemporal regulators are likely to

generate coordination between cell expansion and proliferation, resulting

in a constrained phenotypic space for cell number, cell size, cell ploidy and

organ size.

For the growth of individual plants I consider the development from

seed to death, which covers a huge temporal range from one growing sea-

son for annual plants, to millennia for some trees (Figure 2c). This entails

that different aspects of growth are in focus depending on the plant’s life

form and the applied research question. Often, plant growth is approxim-

ated from measurements at the organ level such as stem diameter for trees,

or total leaf area for herbaceous plants (see Section 2.3). Because a large

part of plant volume is made up of water, these are metrics for expansive

growth. Plant water content ranges from about 50% for fresh wood to al-

most 95% for lettuce leaves, while seeds have a water content of around

10% (Sonnewald, 2013). (In forestry the general metric for this is moisture

content, which is water mass per dry mass.) As plant water content, re-

spectively dry matter content, changes over a plant’s life cycle (Figure 2c),

so does the relation between expansive and structural growth. Seeds have a

low water content, and germination starts with hydration, followed by the

onset of metabolism, and ends with further water uptake and cell expan-

sion of early seedling growth (Nonogaki, Bassel & Bewley, 2010). During
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the first few days after hypocotyl emergence the water content increases to

more than 90%. Before the unfolding of cotyledons all material and energy

for expansive and structural growth has to be accessed from storage com-

ponents (negative biomass change). Leaf water content varies over a wide

range from ca. 50% to 85% depending on the plant growth form (Shipley &

Vu, 2002). Throughout the life cycle plant water content is expected to de-

crease in line with the share of leaves in total plant mass. For woody plants

the water content also decreases with a higher heartwood to sapwood ratio

in mature wood.

Biomass allocation

Functional growth analysis allows the study of resource allocation and plant

performance in a given environment. Briggs, Kidd and West (1920) ob-

served a close resemblance of the development of biomass-based relative

growth rates (RGR, kg kg-1 d-1) with the leaf area per plant mass (leaf area

ratio, LAR, m2 kg-1) of maize. This suggests that biomass allocation between

leaves, and other plant parts determines the whole plant biomass growth

rate, which means that the net assimilation rate (NAR; plant mass increase

per leaf area per time, kg m-2 d-1) stays roughly constant over the plant’s

life cycle. This can be expressed in the growth formula RGR = NAR · LAR,

which states that structural growth is exponential as long as NAR and LAR

stay constant. Biomass allocation to different plant parts depends on envir-

onmental factors, particularly nutrient availability, water availability, and

temperature (Poorter et al., 2012). However, allocation alone does not de-

termine LAR, because the leaf mass per leaf area also depends on light in-

tensity and temperature (Poorter et al., 2009).
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Growth at the community and ecosystem level

The analysis of plant growth fundamentally changes when the analysis fo-

cuses on communities rather than individual plants, which requires the ad-

ditional reference metric per area (Table 2). Individual plants may grow

slower, or reach smaller final sizes because of competition for resources

(Weiner, 1990). On the other hand, complementarity effects in space or time,

as well as positive species interactions can lead to higher production per

unit ground area in systems with higher diversity compared to the average

production of the same species growing in monocultures (Cardinale et al.,

2007).

At the ecosystem level, plant growth during a given period per unit

ground area is measured by the net primary production (NPP, kg m-2

y-1). Depending on the research question NPP is expressed in total plant

biomass, carbon mass, or occasionally as calorific value (“fixed energy”;

kJ m-2 y-1). When expressed in carbon mass, NPP is the difference between

all plant carbon uptake (gross primary production, GPP) and autotrophic

respiration (Lieth & Whittaker, 1975). The subtraction of heterotrophic

respiration results in the net ecosystem production (NEP), the change in

the ecosystem carbon pool (Figure 2f; Woodwell & Whittaker, 1968). Net

primary production can also be expressed as total biomass change plus the

sum of all biomass losses from litterfall, etc. during a given time period.

For mature ecosystems it is expected that the long-term mean carbon

pools stay approximately constant. Therefore, the term “growth” is avoided

for the analysis of ecosystem carbon pools, and it is only used when the

mean carbon pool changes as a result of changing environmental conditions

(Schimel, 1995). In managed systems, such as forestry and agriculture, the

variable of interest is not the total biomass, but the “useful” biomass, or

yield. Conceptually, this is similar to the biomass change of the desired

plant part such as stems or grains, with the considered time period being
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one harvest cycle. (If the biomass losses are zero, yield is similar to NPP.)

2.3. The How. Growth measurement methods

In this section I present different methods for measuring growth at different

spatiotemporal scales (Figure 2), and discuss in which frameworks they can

be useful.

Saptiotemporal analysis of tissue and organ growth

Quantifying where and when growth occurs in a tissue or an organ is the

first step towards understanding the establishment of its shape. One ap-

proach is to study the relationship between cell proliferation and growth

(Figure 2a), and many kinematic studies have reported joint estimates of

cell division and expansion rates since the pioneering work of Erickson and

Sax (1956). However, only recently has live confocal microscopy enabled the

direct imaging of cell production and tissue growth over several cell genera-

tions in multicellular tissues. It has been achieved in Arabidopsis, on a shoot

apical meristem (Willis et al., 2016), a sepal (Hervieux et al., 2016; Hong et

al., 2016), and an entire leaf (Fox et al., 2018). While many researchers inter-

ested in morphogenesis are also interested in cell proliferation, most meth-

ods employed to quantify spatiotemporal patterns of growth actually do

not rely on cellular variables. The general principle is to identify or generate

landmarks on the growing tissue, and to track them over time using a micro-

scope or a camera. Natural landmarks may be tracked such as cell vertices

(Kuchen et al., 2012), trichomes (Lipowczan, Piekarska-Stachowiak, Elsner

& Pietrakowski, 2013), or vein junctions (Taylor et al., 2003). Any identifi-

able feature can be used to automatically track entire leaves at late stages

of development by optical flow analysis (Schmundt et al., 1998). For early

stages of development, confocal microscopy coupled to image analysis soft-

ware is most suitable (Barbier de Reuille et al., 2015; Bassel & Smith, 2016),
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but this technique requires plants to be stained or genetically transformed so

that cells can be properly imaged. Landmarks may also be artificially added

on the surface using ink spots (e.g. Granier & Tardieu, 1998b; Das Gupta &

Nath, 2015), or fluorescent particles (Remmler & Rolland-Lagan, 2012). Al-

ternatively, clonal or sector analysis may be used to compare the rate and

direction of growth across different regions of an organ. The principle is

to genetically mark individual cells at an early stage, and to visualize their

lineage at a later stage. This can be achieved by chimeric, heat-shock induc-

tion of antocyanins (Rolland-Lagan, Bangham & Coen, 2003), or fluorescent

proteins (Kuchen et al., 2012) in adapted genetic backgrounds.

Saptiotemporal analysis of tissue and organ growth

Leaves

Expansive leaf growth is typically approximated from leaf length or area

measurements, but ignoring thickness (Figure 2b). Leaf area is defined as

the projected area of the fresh leaf lamina (Cornelissen et al., 2003). How-

ever, in functional growth analysis, petiole and rachis are also included for

the estimation of specific leaf area. In some cases there are considerable dif-

ferences between projected and real surface area, for example in buckled

leaves (Nath, Crawford, Carpenter & Coen, 2003), or in cylindrical leaves

such as pine needles (Grace, 1987). For harvested leaves, the area can be

measured using scanners (e.g. O’Neal et al., 2002). In this case, a time-course

of average leaf growth is established from multiple, destructive harvests.

To increase measurement frequency and precision, auxanometers have

been developed to automatically record one-dimensional shoot or leaf

elongation by tracking growth induced displacements. Early examples in-

clude the mechanical registration on a rotating cylinder (Pfeffer, 1903), or

the recording of the voltage output of a linear variable differential trans-

former (Hsiao et al., 1970). For the measurement of two-dimensional leaf
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area growth, an auxanometer (leaf area meter) has been developed that re-

cords the displacement of multiple markers using image analysis (Mielew-

czik et al., 2013; Chapter 3) . This type of auxanometers rely on the ap-

plication of forces to keep the organ extended, so that the recorded move-

ments truly reflect growth. This method is not suitable for small or fragile

organs. Furthermore, the mechanical stress could alter growth (Walter et al.,

2002), which needs to be ruled out in preliminary control experiments; see

Chapter 1.

A direct measurement of individual leaf area and orientation is possible

fron three dimensional reconstruction, for example using light-field cam-

eras (Apelt et al., 2015), or commercial laser scanning systems (Dornbusch

et al., 2012; Kjaer & Ottosen, 2015). A truly 3D volume measurement of

single leaves (i.e. accounting for leaf thickness) can be achieved with X-

rays (Pfeifer, Mielewczik, Friedli, Kirchgessner & Walter, 2018), but not with

laser scanning (Dupuis, Holst & Kuhlmann, 2017).

Roots

The measurement of root architecture and growth in situ is inherently dif-

ficult. In turn, many laboratory-based methods have been developed (Zhu,

Ingram, Benfey & Elich, 2011). The continuous measurement of root elong-

ation requires cultivating the plant in a transparent growth medium. Of-

ten, root growth is limited to a plane to simplify root tip tracking (Neufeld,

Durall, Rich & Tingey, 1989). Systems with automated image acquisition

and analysis allow the continuous measurement of a high number of plants

(Nagel et al., 2012; Wu et al., 2018). Such setups limit the size of plants

that can be analysed, and may not accurately represent unrestricted growth

in soil (Hargreaves, Gregory & Bengough, 2009). In the field, minirhizo-

tron tubes allow the observation of root production and turnover (Johnson,

Tingey, Phillips & Storm, 2001), with dedicated software available for image

analysis (Zeng, Birchfield & Wells, 2008).
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Stems

For trees, growth of the whole stem is hard to measure as it would require

to accurately quantify the biomass allocation, or volume increase along the

whole stem and branches. However, total stem biomass can be estimated

from height and diameter based on statistical models (e.g. Repola, 2009).

This approach is useful for forest inventories (see below), and could also be

applied to estimate the growth of individual trees if the measurement inter-

val is long enough to observe an effect that is above the model uncertainty.

Stem volume can also be reconstructed from terrestrial lidar measurements

(Raumonen et al., 2013), and biomass can be estimated based on average

wood density. The absolute radius change of woody stems can be measured

using band or point dendrometers (Zweifel et al., 2010). Point dendromet-

ers with automated data logger allow a high sampling frequency, but only

a limited number of measurement points per stem.

Reproductive organs

Some methods cited above also apply to reproductive organs depending on

their morphology. For instance, the variations in diameter of large fruits

(e.g. Higgs & Jones, 1984), or the changes in length of long styles (e.g.

maize silks, Turc, Bouteillé, Fuad-Hassan, Welcker & Tardieu, 2016) can be

monitored using displacement transducers at a daily or hourly timescale.

At the hourly timescale, these devices record patterns of contraction and

expansion; these data are useful to understand organ water relations. Non-

etheless, displacement transducers are a low-throughput technology and

imaging methods are being developed to monitor the development of re-

productive organs at a high throughput (e.g. maize silks and ear, Brichet

et al., 2017).
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All organs

Finally, optical projection tomography allows visualizing detailed internal

structures and gene expression patterns in any organ (Lee et al., 2006) up to

the whole-plant level for small specimens (Lee et al., 2016).

Growth at the plant level

Imaging methods

In recent years, various plant phenotyping methods emerged that allow the

measurement of plant traits in a semi-automated manner for hundreds of

plants (Fiorani & Schurr, 2013; Gibbs et al., 2016; Tardieu et al., 2017). The

rapid developments in digital photography, computer vision algorithms,

deep learning, and computing power, have also made it possible to auto-

matically and non-invasively measure shoot growth using relatively cheap

devices (Tsaftaris & Noutsos, 2009; Paulus, Behmann et al., 2014; Pound

et al., 2017). For herbaceous grasses it is possible to predict fresh and dry

biomass using side view images (Tackenberg, 2007). Therefore, this simple

approach is often used for the observation of monocot crops in phenotyp-

ing systems (e.g. Fahlgren et al., 2015; Knecht et al., 2016). Other features

such as shoot height, or leaf count can also be extracted. For eudicots, the

perceived shoot area as observed by one top-view camera is often directly

used to approximate expansive growth (e.g. Leister et al., 1999; Dobrescu et

al., 2017; Vasseur et al., 2018). This requires that the leaf expansion mainly

occurs in a plane so that the distance between the camera and the object

remains the same, which is the case for young Arabidopsis thaliana or Nico-

tiana tabacum. A better representation of shoot size can be achieved from

three-dimensional reconstruction (Gibbs et al., 2016). However, a general

limitation of vision-based methods is the occlusion of plant parts. Further-

more, outdoor measurements may be restricted or inaccurate due to direct

sunlight, rain drops, or wind movements, depending on the method. Most
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of these methods measure shoot growth, with only few studies also measure

root growth simultaneously (Nagel et al., 2012; Ruts, Matsubara & Walter,

2013).

Direct determination of biomass

All methods discussed so far rely on size measurements to approximate ex-

pansive growth, or to estimate structural growth based on statistical mod-

els. The direct measurement of dry matter content, or chemical analysis

(NSC, nitrogen) requires destructive harvesting. For reliable model fitting it

is recommended to have a relatively high sampling rate (Paine et al., 2012).

Alternatively, lysimeters combined with measurements of net water balance

enable estimating a daily (dry) biomass increase on individual potted plants

without destructive harvest (Halperin, Gebremedhin, Wallach & Moshelion,

2017).

Growth at the ecosystem level

At the landscape level, the ways we measure plant growth change fun-

damentally because the reference metric moves from individual organs of

plants to a unit surface area. Apart from eddy covariance gas exchange

measurements (Baldocchi et al., 2001), and perhaps large microcosm lysi-

meters, it is impossible to accurately track below-ground and above-ground

processes simultaneously. Eddy covariance measurements track net ecosys-

tem productivity, not plant growth directly, and their interpretation and in-

terpolation is biased, as only homogenous, undisturbed sites are monitored

(Körner, 2003c).

Aboveground biomass can be extrapolated from vegetation sampling

and tree biomass allometric relationships (S. Brown, Schroeder & Birdsey,

1997), assuming constant growth patterns along the stem and branches,

which may not be warranted (Chhin, Hogg, Lieffers & Huang, 2010). Sim-

ilar to individual trees, biomass per unit surface area can also be estimated
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from terrestrial lidar measurements, which increases the measurement pre-

cision compared to allometric equations (Calders et al., 2015). Addition-

ally, airborne lidar measurements allow the sampling of large areas (Lim,

Treitz, Wulder, St-Onge & Flood, 2003). Unless they are carried out over the

same area multiple times, these methods can only be used to assess biomass

stocks, rather than vegetation growth rates.

Ecosystem productivity can be estimated from remotely sensed indices

such as the normalised difference vegetation index (Tucker, 1979), or the

enhanced vegetation index (Huete et al., 2002). These methods are most ef-

fective at low leaf area indices, because they rely on the reflectance of light,

which levels off at high LAIs (Asner, Scurlock & Hicke, 2003). Satellite-

based observations have relatively low spatial and temporal resolutions.

A way to overcome some of these shortcomings is vegetation monitoring

using digital cameras, called near surface remote sensing (“phenocams”;

Richardson et al., 2007; Sonnentag et al., 2012). Such approaches essen-

tially measure greenness, which is only a limited approximation of plant

growth. It is for example not possible to precisely predict the start of sea-

son for evergreen forests since the greenness only changes slightly over a

year course (Toomey et al., 2015). Also, in short periods of drought the leaf

colour remains largely unchanged while photosynthesis and growth are re-

duced. Litter traps are an extremely simple but effective method for estim-

ating long-term leaf productivity, which, at constant carbon use efficiency,

correlates well with stem growth.

Measuring below-ground (root) growth over large areas is very difficult.

Apart from minirhizotrons (see above), ingrowth cores allow rough estim-

ates, but are constrained to certain soil depths and difficult to extrapolate to

the whole soil profile. A very tight and universal correlation between litter

production, soil respiration, and root growth was found (Raich & Nadelhof-

fer, 1989), so that over short timescales and large areas, litterfall may be the

best proxy for otherwise difficult to measure below-ground plant growth.
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Again, monitoring long-term changes in soil carbon stocks is more relev-

ant than direct estimates of below-ground growth (Scharlemann, Tanner,

Hiederer & Kapos, 2014; Bailey et al., 2018). In summary, estimating plant

growth at ecosystem level is very difficult, and ultimately perhaps not ne-

cessary, as changes in C pools (the net balance of all C fluxes over time) will

be more important than changes in C fluxes (Leuzinger & Hättenschwiler,

2013).

2.4. The Why. Interpretation and application of

results

In the previous sections, I discussed the wealth of definitions for plant

growth (the “what”), and the myriad of methods to measure it (the “how”).

I showed that understanding exactly what is measured by which method

and how to integrate results at various spatiotemporal scales is pivotal. In

this last section, I discuss why measuring plant growth is so essential in the

first place. There are three areas of research with a fundamental interest

in plant growth in the widest sense: (1) basic research interested in the ge-

netic basis and molecular regulation of plant functioning, (2) agricultural

and forestry research that is ultimately interested in the quality and quant-

ity of harvest yield of various plant organs, and (3) basic and applied eco-

logical research, with an urge to understand the fundamental mechanisms

of plant-environment interactions and productivity. The ongoing develop-

ment of plant growth measurement methods makes it increasingly possible

to quantify multiple growth processes simultaneously. Particularly high

throughput phenotyping for agricultural research and plant breeding gener-

ates vast amounts of data that can be used for trait identification and model

building (Tardieu et al., 2017). For ecosystems, it is currently not feasible to

generate similar quantities of growth data for individual plants, but meth-

ods such as phenocams and eddy covariance integrate over communities at
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a high temporal resolution and the combination of multiple locations allows

for global extrapolations (Baldocchi et al., 2001; Richardson et al., 2007).

The multitude of growth measurement methods requires a clear descrip-

tion of the processes they quantify (Table 2). I feel that the applied methods

often imply the definition of “growth”, rather than the other way round.

Because of the coupling of different growth processes, imprecise definitions

may still be sufficient for certain research questions. However, particularly

at sub-daily timescales it is important to distinguish between irreversible

structural and expansive growth, and reversible phenomena. For the under-

standing of growth regulation it would be necessary to analyse processes at

the sub-cell level, which is beyond the scope of this review. Therefore, Fig-

ure 1 offers a general overview, trying to tease apart the different processes

and point out where they occur simultaneously. For example, cell prolifer-

ation (Figure 1a) combines DNA, protein, and cell wall synthesis with cell

extension processes and other aspects of the cell cycle, such as size control.

Similarly, long-term cell expansion combines cell wall synthesis and cell ex-

tension.

As pointed out in Section 2.2, most plant growth measurement meth-

ods actually describe changes in size, and may therefore not accurately

represent changes in biomass or structural growth. For example, leaf area

measurements cannot account for changes in leaf thickness or density. Leaf

mass per area (LMA) increases with plant age in A. thaliana (Weraduwagel

et al., 2015), and with leaf age in several evergreen species (Wright, Leish-

man, Read & Westoby, 2006). Furthermore, LMA strongly depends on daily

photon irradiance and temperature (Poorter et al., 2009). An extreme ex-

ample of uncoupling is that short term stem diameter variations negatively

correlate with stand carbon flux measurements, despite strong positive cor-

relations for monthly and yearly observations (Zweifel et al., 2010). Also,

it may not be accurate to assume that the measured plant part is represent-

ative for the growth of the whole plant, as biomass allocation depends on
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the environment, including plant density effects (Poorter et al., 2012). Such

examples demonstrate the need for growth measurements at multiple spa-

tiotemporal scales.

Genetic and environmental effects on growth

One aim of growth measurements is to disentangle ontogenetic from en-

vironmental effects on growth (Walter et al., 2015; Tardieu et al., 2017).

Growth can be limited by the lack of resources, that is nutrients or car-

bohydrates, or by unfavourable growth conditions, particularly extreme

temperatures, or water (soil water availability and atmospheric vapour-

pressure deficit). Knowledge about environmental influences on growth

can be gained from individual experiments with treatment-control compar-

isons, or from pooled data in the form of dose-response curves (Poorter,

Niinemets, Walter, Fiorani & Schurr, 2010). To a certain degree these ap-

proaches do not account for the dynamic nature of environmental variables

and growth responses. Here, continuous growth measurements can help to

separate intrinsic controls and environmental factors. For example, maize

leaf elongation shows immediate responses to changes in water potential

of the root medium (Acevedo et al., 1971). On the other hand, Arabidop-

sis leaf expansion follows a circadian rhythm which is not affected by dif-

ferent (sub-daily) temperature curves, when the daily temperature sum is

the same (Poire et al., 2010). Long-term observations are essential for the

description of initial stress reactions and subsequent growth adjustments,

such as the decrease and later (partial) compensation of leaf cell prolifera-

tion under osmotic stress (Skirycz et al., 2011). The use of thermal time is

favoured over calendar time to account for the strong temperature depend-

ence of growth processes (Parent & Tardieu, 2012).

At the cell level, the variability of environmental effects on growth be-

comes particularly apparent. For example, in sunflower leaves water stress

causes a reduction in final cell number or in cell area depending on the time
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of the water deficit (Granier & Tardieu, 1999b). Stems with seasonal growth

also show a huge variation in cell size between earlywood and latewood

(Cuny, Rathgeber, Frank, Fonti & Fournier, 2014), and between different en-

vironments tree diameter growth can vary as a result of increased cell size

rather than cell number (Deslauriers et al., 2008). However, for some ques-

tions the cellular characteristics of a growth response are not important and

the observation of the whole organ is sufficient (Granier & Tardieu, 2009).

Under this premise, plant phenotyping allows for the description of vari-

ous traits such as radiation use efficiency (Cabrera-Bosquet et al., 2016), or

water use (Vadez et al., 2015). As it is not feasible to experimentally test for

any possible environmental stress scenario, growth models have to be built

based on limited data availability, and can then be tested against real world

performance (Tardieu et al., 2017).

Plant growth modelling

Leaf area expansion is central in most crop models since it determines

the leaf area index, and thus light capture from the Beer-Lambert analogy

(Monsi & Saeki, 2005), and C fixation using the radiation use efficiency

concept (Monteith, 1977). A broad distinction between model types can be

made, depending on how growth in surface is formalised (Parent & Tardieu,

2014). In a first type of models (e.g. GECROS, Xinyou & Van Laar, 2005),

the C fixed by the plant is then “transformed” into leaf area using specific

leaf area as a parameter. Leaf expansion is thus determined by carbon as-

similation and implicitly, under stressful conditions, leaf growth is reduced

because photosynthesis is reduced. Several studies point to the limit of put-

ting photosynthesis as the sole driver of leaf expansion, in particular un-

der stressful conditions (Bogeat-Triboulot et al., 2007; Hummel et al., 2010;

Tardieu, Parent, Caldeira & Welcker, 2014). The strongest evidence is prob-

ably that photosynthesis is reduced much later than growth is reduced un-

der water stress (Muller et al., 2011). Other model types recognise that light
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capture and leaf growth are two independent processes with some feed-

backs. Leaf expansion is essentially driven by physical constraints, either

linked to the hydraulics (Boyer & Silk, 2004), or to the mechanics of the

cell wall (Cosgrove, 1993) as formalised in the Lockhart model (Eq. 1; Lock-

hart, 1965). While no crop model actually uses the Lockhart equation, these

models formalize climate-based limitation of leaf expansion (Jamieson, Se-

menov, Brooking & Francis, 1998; Lizaso, Batchelor & Westgate, 2003). A

better understanding of what are the main drivers and constraints to leaf

expansion is thus crucial in order to propose relevant formalism of the pro-

cesses in crop models.

Much like in the smaller-scale crop models, in terrestrial biosphere mod-

els we have a choice of modelling plant growth on the basis of C source

(photosynthesis), or C sink (mainly structural growth) processes. The past

fifty years saw a focus on carbon source processes rather than on the pro-

cesses affecting the net sink (ultimately NPP) directly. Net primary pro-

ductivity is impossible to measure in its entirety in situ, while the ease of

measuring C uptake at the leaf level has certainly contributed to a wide-

spread perception that carbon sources control carbon sinks (Körner, 2015).

To date, source-driven algorithms to estimate growth are still reflected in the

architecture of almost all vegetation models (Fatichi et al., 2019). However,

there have been several recent attempts of sink limited vegetation model-

ling (e.g. Leuzinger, Manusch, Bugmann & Wolf, 2013; Fatichi, Leuzinger

& Körner, 2014; Guillemot et al., 2017). This realisation that growth pro-

cesses are often directly controlled by environmental conditions is perhaps

the key reason why direct plant growth measurements are fundamentally

important, and certainly an underlying motivation to write this review.
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2.5. Conclusions

The study and modelling of plant growth is an increasingly important re-

search field, particularly in a changing climate. Because of the different

aspects of growth (Figure 1) and of vastly different perspectives on plant

growth depending on the spatiotemporal scale (Figure 2) it is necessary to

clearly define growth metrics (Table 2). Despite the ongoing methodolo-

gical advances, it is extremely hard to integrate different growth aspects and

scales into holistic plant growth measurements. It is only (partly) possible

in a controlled glasshouse environment, and virtually impossible in situ.

At the same time, scaling from organ level observations to plant or ecosys-

tem level may not be possible, as it would require detailed knowledge of

allometric relationships. Therefore, we have to be extremely cautious when

using the term “growth”. On the other hand, these methods allow for ever

more detailed quantification of plant development, particularly in agricul-

tural crops and the model species Arabidopsis.

Growth measurement in herbaceous plants is much simpler than in

woody plants, because of their size and life cycle. Therefore, agricultural re-

search and ecology are likely to face different challenges going forward. In

agriculture, the focus is increasingly on the integration of growth and envir-

onmental data for model building, which requires new approaches in terms

of data management and analysis (Tardieu et al., 2017). In an ecological con-

text, direct plant growth measurements are still under-represented, mainly

for logistic reasons. At this scale, coarse “opportunity for growth” models

based on leaf temperature, water supply, nutrient availability, ontogeny and

growing season length, may be best suited to model future plant growth.

The key challenge in plant growth research remains firstly the paucity (or

complete lack) of commercially available sensors to measure leaf, root, and

stem growth in situ, and secondly a lack of unified concepts and definitions

of plant growth. I hope that with this review I am able to shed some light
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onto the hidden complexities of the term “plant growth”, which appears

deceivingly simple at first sight.



Chapter 3

Measurements using Marker Tracking

I measured in situ leaf growth on adult Avicennia marina mangrove trees at a 5

minute resolution. I observed a consistent diel growth pattern with considerable

leaf area shrinkage in the morning, re-expansion in the afternoon, and growth at

night. There was also a strong correlation between instantaneous leaf area change

and turgor, suggesting that growth was driven by plant hydraulic status rather

than by the rate of carbon uptake.

Prelude

Instantaneous leaf growth is rarely measured in the field. Recent exception

are the tracking of leaf elongation of different grasses (Nagelmüller et al.,

2016), or of palm frond elongation (Zhen et al., 2017). There are also a few

classical studies, see Körner (2003a, p. 226) for an overview. To my know-

ledge this is the first study measuring in situ leaf area growth on a mature

tree over a prolonged time period.

This chapter has been pulished: Hilty, J., Pook, C., & Leuzinger, S. (2018).

Water relations determine short time leaf growth patterns in the mangrove

Avicennia marina (Forssk.) Vierh. Plant, Cell & Environment, 42(2), 527-535.

doi:10.1111/pce.13435, © John Wiley & Sons Ltd. I extended the methods

section to include details which were too extensive for the journal article.
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3.1. Introduction

Plant growth is the single most important process to sustain terrestrial life

on earth. The net accumulation of phytomass can be quantified via a num-

ber of direct (dendrochronology, stem radius variation, biomass harvest,

root ingrowth cores) or indirect (eddy covariance, remote sensing) methods.

Most of these methods integrate growth over long time spans, and do not

allow to quantify exactly when growth occurs during the day or night. Also,

particularly modelling studies continue to use photosynthesis as a driver of

plant growth (e.g. Mercado et al., 2018), despite evidence showing that in

natural environments, other factors such as temperature, water, or nutri-

ent availability directly limit growth long before photosynthesis is affected

(Fatichi et al., 2014). The abundance of photosynthesis data and their mis-

interpretation as a proxy for growth exists at least partly because measure-

ments of leaf gas exchange have become relatively straightforward, with

easy to use and portable instruments. In contrast, non-destructive meas-

urements of high-resolution leaf and plant growth are technically much

more challenging, particularly in the field. Nevertheless, measuring instant-

aneous leaf growth is pivotal for understanding the influence of environ-

mental and endogenous drivers on plant resource efficiency and perform-

ance (Walter et al., 2009). A fundamental understanding of the mechanism

of plant growth will also inform a new generation of carbon sink driven

ecosystem models (Leuzinger et al., 2013).

Leaf growth is approximated by observing leaf area over time. The de-

velopment of leaf area is the result of three main processes: Cell prolif-

eration, expansive cell growth, and elastic cell deformation (swelling and

shrinkage). It is not possible to clearly distinguish between the three pro-

cesses from non-destructive measurements, especially in eudicotyledons

where all processes can occur simultaneously in the same region of the leaf.

Therefore, net leaf area change is often equated with growth, which ignores
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elastic deformation. In this chapter, I adopt the terminology from the ana-

lysis of stem radius variations, which has long dealt with similar analyt-

ical challenges, and that postulates that growth is negligible in periods of

shrinkage (Zweifel et al., 2016). Periods of elastic shrinkage and swelling

are called water deficit periods, and are distinguished from periods with

irreversible growth.

Traditional auxanometers that automatically measure plant or leaf

elongation rely on the application of a tensile force to keep the object

stretched, and they record changes in the position of the tip (Hsiao et al.,

1970; Pfeffer, 1903). A similar principle has also been used to measure leaf

elongation of grasses in the field (Nagelmüller et al., 2016). In recent years,

new methods emerged that use digital image analysis to quantify plant

characteristics (Minervini et al., 2015). However, many of these methods

are designed for indoor use, and do not focus on high-resolution growth

measurements. Outdoor conditions are particularly challenging because

direct sunlight can interfere with the sensor measurement, and electronic

components require protection from rain, humidity, and overheating. A re-

latively simple method to measure leaf area growth of eudicotyledons is to

fix a leaf in a plane, and observe it through a camera with the image plane

parallel to the leaf (Schmundt et al., 1998; Walter et al., 2002). Relying on this

principle, Mielewczik et al. (2013) presented a semi-automated image ana-

lysis software based on marker tracking, and they also showed the general

feasibility of their method for field studies.

For eudicotyledons two different instantaneous leaf growth types have

been described. One growth form shows the highest growth rates around

dawn and the lowest rates around dusk, while the other form shows a re-

versed pattern with growth peaking around dusk (Walter et al., 2009). In

contrast, leaf elongation in monocots largely follows meristem temperature,

and the highest growth rates occur at midday (Walter et al., 2009). However,

in Zea mays leaf elongation rates during daytime are lowered by evaporative
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demand when expressed in thermal time (Sadok et al., 2007). Eudicotyle-

dons show a diel leaf growth cycle that is partly controlled by the circadian

clock (Poire et al., 2010; Ruts et al., 2012). A circadian regulation is thought

to optimise resource use throughout the day, and to buffer against short-

term environmental fluctuation that are especially pronounced for eudicot

leaves (Walter et al., 2009). For example, growth does not respond to short-

term temperature changes (Poire et al., 2010), and the circadian clock seems

to be involved in the overnight partitioning of starch (Apelt et al., 2017).

Young Arabidopsis thaliana leaves have lowered growth rates at night, which

is associated with carbon metabolism. After a few days, this shifts to lower

growth rates during daytime, when leaf expansion is limited by hydraulics

(Pantin et al., 2012; Pantin et al., 2011).

Here, I present the first data on in situ leaf growth of a mature tree. I

measured instantaneous leaf growth on an Avicennia marina subsp. aus-

tralasica tree over several weeks using the leaf fixation method. Avicennia

marina is highly salt tolerant, and is therefore an interesting model species

to study the interplay between environmental conditions, water relations,

and growth processes (Ball, 1988). My study site also has the advantage of

a monospecific stand, where even mature tree crowns are easily accessible,

avoiding confounding of succession and interspecific competition. My aims

were (1) to test the usability of instantaneous leaf growth measurements in

situ in adult trees, (2) to identify when exactly leaves grow during the day

or night at a sub-hourly resolution, and (3) what environmental or plant-

intrinsic parameters drive this growth.
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Figure 3. Example of a picture taken by the leaf growth meter with high
contrasts between sunlit and shaded areas. The bar at the bottom left gives
the scale at the leaf plane.

3.2. Materials and methods

Instrument Design

I modified the method described by Mielewczik et al. (2013) for long-term

outdoor use. The basic principle of this method is to fix the leaf in a frame

to limit horizontal and prevent vertical movement (Figure 3). A camera

was mounted with the image plane parallel to the leaf, and image time

series were acquired. Leaf expansion was approximated by tracking arti-

ficial markers placed at the leaf fixation points. The development of the

area spanned between the markers served as a proxy for relative leaf area

change.

For the application of this method in the field I designed a compact
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and weatherproof instrument, which is easy to install and allows reliable

data acquisition. Pictures were taken using a Pi NoIR v2 camera controlled

by a Raspberry Pi 1 B+ single board computer (Raspberry Pi Foundation,

Cambridge, United Kingdom). The Pi NoiR v2 does not have an infrared

filter, which makes night vision possible. To continuously measure leaf

growth at night I used two infrared light-emitting diodes (LEDs) with a

peak wavelength of 850 nm, which were attached to the Pi NoIR camera

(Shenzhen Xingmu Technology Co., Ltd, Shenzhen, China; purchased on

alibaba.com).

Pictures were taken every five minutes at resolutions of 1 and 8 mega-

pixels (MP); JPEG compression was applied to reduce the file size. The 1 MP

images were uploaded to a server which allowed for continuous monitor-

ing of the experiment, and also served as a backup. The infrared LEDs were

switched on five seconds before taking a picture, and switched off after-

wards to minimise any potential effect on physiological processes. This was

controlled using an Arduino Nano board (Arduino SA, Chiasso, Switzer-

land) connecting the Raspberry Pi with a relay in the LED’s power sup-

ply. A detailed sketch of the technical components is given in Figure 4. All

processes were executed in a Python script (version 3.5, Python Software

Foundation, Delaware, USA) running on the Raspberry Pi.

The instrument design included a frame where the leaf was fixed, a

housing parallel to that frame containing the camera and LEDs, a separate

housing for the Raspberry Pi and other components, and a third external

housing containing a Huawei E5330 mobile 3G router (Huawei Technolo-

gies Co. Ltd., Shenzhen, China), and a power converter. The frame and

camera box were rotated upwards by an angle of 20°, which has been found

to be a suitable rotation for the experiment species A. marina. The camera

was placed 25 cm above the leaf frame. For the design I used the free soft-

ware OpenSCAD (Figure 5; Kintel, 2015); individual elements were laser

cut from 6 mm thick acrylic and glued together. During the experiment the
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Figure 4. Different components of the instrument. Red arrows represent
power flow, yellow arrows represent information flow. Dashed arrows rep-
resent wireless connections, and dashed boxes represent external elements.
PV: photovoltaic; IR: infrared; LED: light-emitting diode.

instrument was covered with an aluminium hood for additional rain and

radiation protection.

I also attached a Melexis MLX90614ESF-BCI-000-SP infrared thermo-

meter (Melexis N.V., Ieper, Belgium) to the Arduino board with the intention

to measure leaf surface temperature. However, the measured temperatures

reached unreasonably high peaks of more than 40°C. Therefore, those meas-

urements were not included in the analysis. The thermometer was pointing

to the middle of the frame. It has a field of view of 5 degrees, which trans-

lates to a measured area of approximately 15 cm2 at the leaf plane (circle

with a radius of 2.19 cm). This means that the whole leaf but also a con-

siderable amount of background was included in the measurement, which

may have corrupted the signal.

The instrument was fixed with T-head bolts on a matching frame built

with aluminium strut profiles (Bosch Rexroth AG, Lohr am Main, Ger-

many), that was strapped to a horizontal pole. The leaf was fixed and kept

flat using five small wooden pegs connected to small lead weights of 7 g

each. The surfaces of the pegs were coloured black using a waterproof pen

with one spot left blank to serve as the marker for the image analysis (Fig-

ure 3). The application of tensile forces to the leaf could potentially cause
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Figure 5. Design of the instrument in OpenSCAD and assembled compon-
ents. (a) Frame where the leaf is placed. (b) Camera box parallel to frame.
(c) Box where electronics component are located; the Raspberry Pi is rep-
resented in red. (d) Frame to mount the structure. (e) Additional box with
modem and power converter.
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changes in growth behaviour. In a control experiment I showed that the

treatment did not affect long-term leaf growth in A. marina (Figure 6). In

general, the forces need to be high enough to keep the leaf in place in windy

conditions, but low enough to not impact growth. Avicennia marina has

quite sclerophyllous leaves, and the leaf was not damaged by the pegs or

the tensile force. However, after the experiment the fixation points were

clearly visible by a lack of chlorophyll on the adaxial surface and slightly

visible on the abaxial surface (Figure 7). Additionally, leaf 1 seemed to have

a slight growth reduction at the fixation points at the leaf side (Figure 7a). A

general limitation of this method is that it cannot be used for young leaves

that are too small or too fragile for fixation. Further, the fixation of leaves

can alter growth patterns in species with leaf hyponasty, even when low

tensile forces are applied (Walter et al., 2002). I therefore analysed leaf angle

variations from unrestricted leaves visible within the picture frames, but

while they changed randomly with wind throughout the day, there was no

diurnal trend (not shown).

Experiment

The measurements were conducted on a mature tree of the mangrove

Avicennia marina (Forssk.) Vierh. subsp. australasica. The research site was

located in the Mangawhai Heads estuary at the east coast of New Zealand’s

North Island (36.097°S, 174.573°E). In this environment A. marina grows in

uniform, monospecific forests with trees reaching mean heights of 3.1 m

(Tran, Gritcan, Cusens, Alfaro & Leuzinger, 2017). The forest covers an area

of approximately 0.8 km2 located around Tara Creek. Power was available

from a small photovoltaic system.

The experiment was conducted on two different leaves on the same tree,

first from mid December 2016 to early January 2017, and again from early

February to early March 2017. Young leaves at the top of the canopy facing

north were selected for the experiment to minimise shading from the instru-
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Figure 6. Control experiment testing the effect of tensile forces on the long-
term growth of A. marina leaves. (a) From 4 to 13 December 2017, a Wil-
coxon signed rank test showed that there was no difference between the two
groups, p = 0.625, n = 5. (b) From 4 December 2017 to 28 February 2018,
p = 0.500, n = 3. (c) From 13 December 2017 to 28 February 2018, p = 1.000,
n = 5. During the first measurement period one leaf got damaged, and one
got infected by a disease. Therefore, both leaves were replaced.

Figure 7. Leaves after the experiment. (a) Adaxial surface of leaf 1.
(b) Abaxial surface of leaf 2.
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ment. Additionally, for the second run a relatively large leaf was chosen in

order to observe growth cessation. To restrict movements of the leaf, the

branch on which it was growing was fixed to the strut frame using Vel-

cro straps (Velcro Ltd, Middlewich, United Kingdom). The leaf opposite to

the observed one was bent backwards because it would otherwise have ob-

structed the view of the markers (Figure 3). The final installation is shown

in Figure 8. In December I also installed two leaf turgor pressure probes

in the same tree (YARA ZIM Plant Technology GmbH, Hennigsdorf, Ger-

many). Those sensors measure a magnetic force between two clamps that is

inversely proportional to leaf turgor (Zimmermann et al., 2008). It can only

be interpreted as a relative signal of turgor change, because the measured

pressure depends on the cell elastic modulus, which can vary with temper-

ature.

During the first run, one thread got stuck in the frame which lead to a

bending of the leaf and to a corruption of the growth measurements. The

first occurrence of this incident was determined by manually inspecting the

pictures, and the time series was stopped at this point. After the second run,

the data on the Raspberry Pi was lost completely, and only the 1 MP images

on the backup server could be used for the image analysis. The most likely

case for the failure was an error in my custom made controlling software,

because I did not account for the possibility of no free disk space, and at

the same time I forced the software to restart in case of failure causing the

system to crash. Comparison of the image analysis with 1 or 8 MP resolution

did not show any significant difference, therefore I used the 1 MP images for

all analysis to allow for consistency between the two runs.

Environmental data were measured close to the leaf as well as above

canopy on a tower approximately 5 m away from the experiment. Leaf illu-

minance was measured in intervals of one minute using six HOBO UA-002-

64 data logger (Onset Computer Corporation, Bourne, USA; spectral range

150 nm to 1200 nm) that were placed around the leaf (Figure 3). Local air



3.2. Materials and methods 62

temperature Tair and relative humidity, denoted by Hrel, were measured in

intervals of five minutes using a HOBO Pro v2 U23-002 data logger (Onset

Computer Corporation, Bourne, USA) located below to the leaf (Figure 8).

The saturation water pressure Psat and vapour-pressure deficit (VPD), de-

noted by Pvpd, were calculated from Tair and Hrel:

Psat = a · exp

(
b · Tair
c+ Tair

)
, (2)

Pvpd = Psat ·
(

1− Hrel

100

)
, (3)

with the coefficients a = 0.61121 kPa, b = 17.368, and c = 238.88°C for the

temperature range from 0°C to 50°C (Buck, 1981).

Above canopy solar radiation was measured using a pyranometer

(Model PYR, Decagon Devices, Inc., Pullman, WA, USA; spectral range 380

nm to 1120 nm). Precipitation was measured using a Tipping Bucket Rain

Gauge (Model 52203, R. M. Young Company, Traverse City, USA; resolution

of 0.1 mm per tip). The precipitation sensor broke between the first and

the second experimental run. For the second period, the time of precipita-

tion was determined from inspecting the recorded images, and the intensity

was estimated using measurements from the Mangawhai Heads Weather

Station, located approximately 2 km from the research site. Potential evapo-

transpiration (PET) was measured using an ETgage (Model E, Style #54, ET-

gage Company, Loveland, CO, USA; signal resolution of 0.254 mm). Unfor-

tunately, the sensor broke on 11 February 2017 during the second run, and

the data was not included in the analysis. Tidal flooding was reconstructed

from previous measurements and data from Land Information New Zeal-

and (2017), see Appendix. All sensors listed in this paragraph had a meas-

urement interval of around five minutes.

I also conducted a seasonal leaf growth experiment from May 2017 until

February 2018 to test for seasonal leaf growth variations. The experiment

took place at Panmure Basin, Auckland (36.907°S, 174.845°E). I started co-
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Figure 8. Installation of the leaf growth meter. The branch was fixed to
the strut frame using Velcro straps. The temperature and relative humidity
sensor was placed in the radiation shield below the leaf.

horts in fall (May 2017), winter (July 2017), and summer (December 2017,

January 2018). For each cohort I selected ten young leaves on five different

trees (two leaves per tree). Leaf length and maximal width were measured

every few weeks with callipers.

Data Analysis

Relative expansive leaf growth was measured using a custom made marker

tracking software similar to Martrack Leaf (Mielewczik et al., 2013). I did not

use Martrack Leaf because it turned out to be sensitive to movements due

to wind. However, in non-windy conditions my software and Martrack Leaf

show similar results (Figure 9). I also conducted a control run with a carbon

fibre plate instead of a leaf. I did not observe any systematic diel trends, and

the measurement error of the aggregated data was approximately 0.5% (not
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Figure 9. Comparison of my image analysis software (black) with Martrack
Leaf (red) before outlier removal and smoothing. The inset shows a linear
regression in red with the unity line in dashed blue.

shown).

My marker tracking software is semi-automated; in case of misdetec-

tions the user needs to redefine the marker location. This happened in

windy conditions when the leaf was moved more than the software’s max-

imal search range set at an upper limit of approximately 2.8 mm. The soft-

ware is a console application written in C++ (Standard C++ Foundation,

Redmond, USA) using the open source image analysis library OpenCV (ver-

sion 3.4.1; Bradski & Kaehler, 2008). The principal functionality is similar to

Martrack Leaf : (1) Each marker is selected individually in the first image of

the time series. (2) The software searches for the markers in each following

frame and displays the detected point; the search range can be changed by

the user. (3) For each image the area covered by the detected points is calcu-

lated and saved in a csv-file together with the filename that contains a time
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stamp.

The marker size and shape is determined by the manual selection in the

first frame. The user draws a rectangle around the marker and confirms

the automated detection. The image is converted to grayscale, and for each

region of interest potential markers are detected by histogram equalisation

and subsequent thresholding. A suitable threshold was determined before

the analysis. In each following frame the marker is detected by searching for

it around the previous location in the user defined range, and the best match

after histogram equalisation and subsequent thresholding is selected. To

account for potential miss-detections due to wind movements or in case of

speckles with similar shapes to the marker, the software also tests whether

the points are plausible, by comparing them to the previous frame. This

approach has a tendency to fail during rain, when glare from raindrops can

obscure the markers, or be miss-classified as marker (Figure 10).

The detected marker locations can be noisy due to slight movements

of the leaf caused by wind, or due to changes in illumination. Therefore,

the measured relative leaf area was adjusted by outlier removal and sub-

sequent smoothing. I applied the loess smoothing (Cleveland, 1979; Cleve-

land & Devlin, 1988) with second degree polynomial regression, weighted

least squares fitting, and a neighbourhood of 49 data points, which trans-

lates to a smoothing window of approximately four hours. The leaf turgor

data was smoothed using the same parameters.

Statistical analysis was conducted using R version 3.4.2 (R Core Team,

2017); environmental data were matched to the nearest leaf area measure-

ment sing the rolling join function of the R package data.table (Dowle et al.,

2017). The data from the six light sensors around the leaf was aggregated

over the five minutes before a picture was taken. Instantaneous relative area

change (crac) was calculated for every measurement from the smoothed val-

ues:

crac =
Ai − Ai−1

Ai−1
· 100 , (4)
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Figure 10. Marker tracking during rain. (a) Example of a picture taken
at night during rain. Glare from rain drops may lead to miss-detections.
(b) Rain events can lead to temporal tracking errors. Data from the con-
trol run with a carbon fibre plate. Blue bars represent rain events, output
from image analysis in black, smoothened curve in yellow, and cumulative
maximum in red.
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where Ai represents the pentagon area for measurement i. The relative

growth rate (RGR, denoted as grgr) was calculated based on the exponential

growth formula (Blackman, 1919):

grgr =
ln
(

Ai

Ai−1

)
ti − ti−1

· 100 , (5)

where ti represents a point in time, and the time difference between two

measurements is expressed in hours. For periods of leaf shrinkage I calcu-

lated the relative leaf water deficit (LWD, denoted as dlwd) compared to the

previous maximum area:

dlwd =
max (Aj≤i)− Ai

max (Aj≤i)
· 100 . (6)

Leaf water deficit is similar to the concept of tree water deficit used to de-

scribe stem shrinkage (Zweifel et al., 2016). A distinction between a water

deficit and a growth phase rather than between a shrinkage and an expan-

sion phase assumes that structural growth is largely absent in water deficit

periods. During deficit periods, RGR does not actually measure growth,

but rather elastic leaf area changes. Normalised leaf turgor change (ctgr)

was calculated like:

di =
1

Pi

− 1

Pi−1
, (7)

ctgri = di ·
1

max (|min (d) |, |max (d) |)
, (8)

where Pi represents the clamp pressure at time i, and d represents a vec-

tor of all observed turgor changes di. Leaf growth and environmental data

are shown in Figure 11. The absolute leaf area was estimated from a regres-

sion model based on pixel counting (Figure 12), with the pixel size known

from the camera geometry and object distance.
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Figure 11. Leaf area change and environmental variables. (a, b) Absolute
leaf area development: raw data in black, smoothed curve in yellow, cu-
mulative maximum based on smoothed curve in red. The arrows indicate
different growth phases (see text). (c, d) Relative growth rate (RGR) from
frame to frame in red (only shown for growth periods), leaf water deficit
in blue. (e, f) Local air temperature in red, vapour-pressure deficit (VPD)
in blue. (g, h) Water depth during tidal flooding in light blue, precipitation
sum per diel cycle in purple. Shaded areas represent night as measured by
the illuminance sensors next to the leaf.
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Figure 12. Linear regression between smoothed pentagon area and manu-
ally measured leaf pixels to calculate absolute leaf area. (a) Leaf 1. (b) Leaf 2.
Filled dots represent measurements during nighttime.

3.3. Results

I measured instantaneous leaf area change on a mature tree in its natural

environment over several weeks. My measurements show a distinct diel

leaf growth cycle that starts in the morning after dawn when the leaf area

reaches a local maximum. Subsequently, the leaf is shrinking until a local

minimum is reached around noon, after which it is expanding again in the

afternoon and during the night (Figures 11a,b, 13). The mean daily net

growth was 2.9% (standard deviation σ = 2.1%), and the mean maximum

shrinkage was 1.1% (σ = 1.0%) when aggregated by time since the last peak

(Figure 13). On average, leaf shrinkage was 37% of the daily net growth.

The re-expansion to the previous maximum took place until late afternoon,

which means that most of the net growth occurred at night. In general, a
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Figure 13. Mean relative diel growth cycle from one local maximum to the
next for leaves 1 and 2A (n = 23). One standard deviation of the area is
shaded in blue. The standard deviation of tmax is given by the dark blue er-
ror bar. The x-axis shows time since tmax, but converted to 24 h clock time for
better readability. The inset shows leaf water potential measurements from
13 February 2015 (Donnellan Barraclough, Zweifel, Cusens & Leuzinger,
2018).

small shrinkage was followed by a larger net growth (Figure 14c). Relative

leaf area change was strongly correlated with changes in leaf turgor (Fig-

ure 14a,b).

Leaf 1 was observed over a period of 16 diel cycles from 17 December

2016 to 2 January 2017 (Figure 11a). During the experiment it expanded

from a minimum of approximately 472 mm2 in the night after the installa-
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Figure 14. Correlation of leaf water status with leaf area changes. (a) Time
series of relative area change (black) and turgor change of a different leaf
on the same tree (dotted red) from 25 December 2016 to 1 January 2017.
(b) Regression curve for the same sensor in light red; red points represent
observations during leaf water deficit, orange points during growth phases,
and the same for a second turgor sensor that preceded leaf growth by ca.
55 min in blue; dark blue points represent observations during leaf water
deficit, light blue points during growth phases. Linear models were fit after
shifting the data to non-negative values, and square root transformation.
(c) Linear regression between maximum diel growth (RGmax) and shrinkage
(RSmax) for leaves 1 and 2A combined.

tion to 1340 mm2 at the end of the measurement, which is an increase by

183.8%. The second leaf was observed over 29 diel cycles and only showed

a small area increase of 15.2% from approximately 824 mm2 to 950 mm2

(Figure 11b). The growth mainly occurred in the first seven days after the

start of the measurement from 3 February to 10 February 2017, referred

to as leaf 2A. This was followed by phase 2B, a nine day period of strong

leaf shrinkages and gradual recovery, ending on 19 February 2017 after two

days of little net growth. During the last 13 days of the measurement until

4 March 2017, phase 2C, the leaf did not grow any further but continued

a diel cycle of area shrinkage and expansion. I hypothesize that the early

growth cessation of leaf 2 might reflect a seasonal effect. The seasonal leaf

growth experiment confirmed leaf growth variations throughout the year.
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Figure 15. Seasonal leaf growth patterns from May 2017 to February 2018.
In summer leaves grow faster and to a longer length than in autumn, while
in winter growth is slower, and the final length is shorter. At the start of
each cohort ten young, light green leaves were selected. Monomolecular
models of the form Length L = Lmax−e−rt · (Lmax−L0) were fit. The shaded
areas show the maximal standard error of individual measurements for each
cohort.

Leaves which emerged in December 2017 or January 2018 were growing at

higher rates and to larger sizes than leaves which emerged in May 2017,

while leaves which emerged in July 2017 were growing at lower rates and

remained smaller (Figure 15).

Figure 13 shows the mean diel growth cycle from leaf 1 and leaf 2A

(n = 23) aggregated by time after the local area maximum, and defines key

metrics for our analysis. I divided the diel growth cycle into two phases: a

water deficit phase during which the leaf area is below the previously meas-

ured maximum in the early morning, and a growth phase, exceeding the

previous maximum. The deficit phase can be further divided into a shrink-

age and a recovery phase. The shrinkage phase starts at the time of the

local area maximum in the morning (tmax) and ends when the area reaches

a minimum (tmin). During the recovery phase, the leaf expands again to the

previous area maximum which is reached at trec. The relative net growth
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Figure 16. Diel growth cycles. (a) Leaves 1 in blue and 2A in red. (b) Leaves
2B and 2C combined.

RGmax in one diel cycle is the leaf area at the end relative to the start. It can-

not be quantified which part of RGmax is the result of growth processes, and

which part results from elastic swelling. The relative maximal shrinkage

RSmax is the minimal leaf area during a diel cycle relative to the initial leaf

area. The analysis also includes two diel cycles with slightly negative RGmax

(effectively a net shrinkage): from December 30 to 31 2016 with a net area

decrease of 0.18%, and from February 7 to 8 2017 with a decrease of 0.13%.

The leaf shrinkage started at 7:21 a.m. New Zealand Standard Time

(NZST, σ = 53 min), or 119 min after dawn (σ = 59 min). Dawn was defined

as a leaf illuminance of more than 425 lux. The diel growth cycles for each

leaf individually are shown in Figure 16a. The two observed leaves star-

ted shrinking at the same hour of the day. However, leaf 1 had a lower

RSmax, and a higher RGmax than leaf 2A. The aggregated tmin for leaves 1

and 2A combined was at 11:45 a.m. NZST; there was no significant differ-

ence between the two leaves. In phases 2B and 2C the timing of the diel

cycle was not as distinct as in leaf 1 and 2A. The shrinkage started usually

around dawn as well, but sometimes earlier. Additionally, tmin was only

reached in the early afternoon (Figure 16b).
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Table 4 shows linear correlations between environmental variables ag-

gregated over the night and day time, respectively, and the extent of RSmax,

RGmax, as well as tmax, and the duration of the deficit phase, tdef . The mean

night temperature preceding the observed diel cycle marginally correlated

with RSmax, RGmax, and tdef . The warmer the previous night, the higher was

the relative shrinkage, the longer was the LWD period, and the smaller was

the relative growth. However, none of these measures correlated with the

mean VPD of the previous night. For the mean day temperature I observed

a marginally significant correlation with RSmax, but no correlation with any

of the other variables. For the mean daytime VPD, on the other hand, I

observed a marginally significant positive correlation with RSmax, and a sig-

nificant negative correlation with RGmax. The mean radiation was also signi-

ficantly negatively correlated with RGmax. Tidal flooding and precipitation

are not included in Table 4, because I could not find any correlation between

the time or height of the tide and leaf growth parameters, and there were

too few rain events in my dataset for a quantitative analysis. For the daily

cycle, I observed a strong negative correlation between RSmax and RGmax

(Figure 14c).

The in in situ relative leaf area change and change of leaf turgor followed

a similar diel pattern, and were strongly correlated in a non-linear way (Fig-

ure 14a,b). Both turgor sensors showed a similar trend (not shown), but with

a time lag of 55 min between the two observed leaves, which was correc-

ted before the correlation analysis. Linear models were fit after shifting the

turgor change data to non-negative values, and square root transformation:

craci = a ·
√
|min (ctgr) |+ ctgri + b+ ε . (9)

During leaf water deficit periods turgor had a stronger impact on relat-

ive area changes (shrinkage and re-expansion) than during growth periods

(Figure 14b). I also tested for correlations between in situ RGR and environ-
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Table 4. Correlations between key metrics defined in Figure 13 and average
environmental conditions (temperature (T ), vapour-pressure deficit (VPD),
and radiation (E)) in the night previous to the cycle (np), and during the
day (d).

Tnp VPDnp Td VPDd Ed

RSmax
•

0.087 ns •

0.098
•

0.085 ns

RGmax
•

0.117 ns ns **
0.245

*
0.177

tdef
•

0.089 ns ns ns •

0.123

tmax ns ns n/a n/a n/a
The arrows indicate the direction of the correlation; significance of p values
are indicated as follows: • 0.10 < p; * 0.05 < p; ** 0.01 < p; adjusted R2

values are given below; tmax was expressed in decimal hour of day; ns: not
significant.

mental variables. I did not find any pattern other than small but highly sig-

nificant negative correlations with temperature, VPD, and irradiance, which

reflects the opposite diel cycles of leaf area and temperature, VPD, and ir-

radiance, respectively. Scatterplots of environmental variables and RGR for

different growth phases are shown in Figure 17.

3.4. Discussion

This chapter reports the development of a bespoke, inexpensive, and open-

source instrument for long-term measurements of instantaneous leaf area

changes in the field. I observed a clear diel growth pattern with considerable

leaf area shrinkage in the morning, and leaf expansion in the afternoon and

at night. On average the shrinkage was 37% of the diel net growth, which, to

my knowledge, is the highest value ever observed over a prolonged growth

period. Diel leaf growth was limited by the amount of leaf shrinkage im-

mediately preceding growth, and relative leaf area changes were strongly

correlated with leaf turgor changes. Together these correlations strongly
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Figure 17. Scatterplots of relative growth rate (RGR) and environmental
variables temperature, vapour-pressure deficit (VPD), and irradiance for
different leaf growth phases.
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suggest that in A. marina instantaneous leaf growth patterns are driven by

leaf water relations, and not by carbon assimilation. This supports the view

that leaf growth is generally limited by hydraulics (Pantin et al., 2012).

Leaf expansion can directly be limited by water stress, e.g. leaf elong-

ation in Zea mays shows an immediate response to changes in soil water

potential (Hsiao et al., 1970), or evaporative demand (Bouchabké, Tardieu

& Simonneau, 2006). In Helianthus annuus a soil water deficit leads to a de-

crease in long-term relative leaf growth rates, resulting from a reduction in

cell number, or cell size, depending on leaf ontogeny (Granier & Tardieu,

1999b). In general, soil water deficits have a much stronger negative effect

on shoot growth than on photosynthesis (Muller et al., 2011). My results

strongly support these findings.

Avicennia marina has a high salinity tolerance, and long-term leaf area

expansion rates decrease with increasing salinity (Ball, 1988). Here I showed

that water stress did not only lead to an in situ growth reduction, but to a

pronounced period of leaf area shrinkage. Leaf shrinkage in growing leaves

has been described before in Tripolium pannonicum (Aster tripolium) and Beta

vulgaris exposed to salt water (Rozema, Arp, Diggelen, Kok & Letschert,

1987; Waldron, Terry & Nemson, 1985). Short periods of leaf area decrease

of up to two hours have also been observed in Glycine max (Mielewczik et

al., 2013), or Arabidopsis thaliana (Apelt et al., 2017).

My observations suggest that the extent of the diurnal leaf shrinkage lim-

its diel growth (Figure 14c). The decrease in leaf area seems to be driven by

water loss through transpiration, concurrent with a strong drop in leaf water

potential (Figure 13), and a decrease in leaf turgor (Figure 14a,b). Despite a

lower leaf water potential in the late afternoon compared to mid-morning, I

observed shrinkage in the morning and leaf expansion in the late afternoon

(Figure 13). This is a classic hysteresis response and can only be due to

changes in osmolyte concentrations, or plant-intrinsic hydraulic properties

(elastic modulus, xylem conductivity, cell wall extensibility). The correl-
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ation between leaf turgor and area change was nonlinear, suggesting that

turgor had a stronger impact on elastic deformation during water deficit

periods, than on growth.

It has recently been reported that extracellular water storage, and wa-

ter uptake from the air by trichomes contribute to the maintenance of leaf

water status of A. marina (H. T. Nguyen, Meir, Wolfe, Mencuccini & Ball,

2017). I often observed an RGR peak in the early morning (Figure 11c,d)

and it could be speculated that this reflects direct leaf water uptake from

dew or air of high relative humidity surrounding the leaf, and not expans-

ive growth. Earlier measurements of water relations of the same species and

at the same site support this: highest stomatal conductance values were ob-

served in the morning, after which they declined (Donnellan Barraclough,

Zweifel, Cusens & Leuzinger, 2018). Leaf water potential measurements

on February 13 2015 ranged from a predawn maximum of -0.6 MPa to a

minimum of -4.1 MPa in the early afternoon (Donnellan Barraclough et al.,

2018). Pressure–volume curves of the same species growing in Australia

showed that a decrease in water potential below -0.9 MPa is driven by a

decline in turgor (H. T. Nguyen, Meir, Sack et al., 2017). My observed mid-

day leaf water potentials are close to the turgor loss point which depends

on salinity and occurs between -4.5 MPa and -5.1 MPa in A. marina subsp.

australasica (H. T. Nguyen, Meir, Sack et al., 2017). In this domain the rel-

ative leaf water content decreases from approximately 87% to 76%, which

translates to a decrease in leaf volume of about 13%. This potential volume

loss results from a modulus of elasticity of about 26 MPa (H. T. Nguyen,

Meir, Sack et al., 2017). The highest leaf area shrinkage observed in our ex-

periment was 6.4% on 13 February 2017. If we assume that leaf thickness

decreased by a similar amount, the total volume loss would be close to the

total water storage before turgor loss. Therefore, I conclude that the ob-

served leaf area shrinkage was driven by water loss similar to the observed

decline in turgor (Figure 14a,b) and leaf water potential (Figure 13).
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I did not investigate whether the observed growth was driven by cell

proliferation, or expansion, or both. Based on the approximately linear long-

term growth (Figure 11a,b) I assume that turgor driven cell expansion was

the dominant process, but this may well be different for emerging leaves,

where ontogenetic growth regulation is important (Pantin et al., 2011). Some

limited growth activities may still be present during water deficit periods, as

it has been observed for stem shrinkage (Zweifel et al., 2016). Such “stored

growth” leads to higher initial growth rates after the deficit period. How-

ever, I was unable to detect this effect in the present study.

My marker tracking software performed well in all but the windiest

or rainiest conditions. I obtained a slightly noisy relative leaf area signal

that required smoothing for further analysis (Figure 11a,b). The choice of

smoothing parameters does affect the observed in situ RGR, as well as the

exact tmax, tmin, and trec. However, the general observation of a diel growth

cycle is unaffected, and the extent of the relative shrinkage RSmax and re-

lative growth RGmax are largely independent of the smoothing paramet-

ers. Applying the same analysis to the control data obtained with a carbon

fibre plate showed that there was no artifactual diel trend (Figure 18). The

method could be further improved by a better marker design that would

allow for a less noisy tracking, for example by using the ArUco library

(Garrido-Jurado, Muñoz-Salinas, Madrid-Cuevas & Marı́n-Jiménez, 2014).

Although, the problem of glare (Figure 10) might still be present.

I found marginally significant correlations between the mean temperat-

ure of the previous night and RSmax, and RGmax, respectively (Table 4). I

cannot think of any hydraulic process that could explain this correlation,

especially because night VPD did not correlate with any of the measured

parameters. However, it could be speculated that higher night temperat-

ures lead to a depletion of carbohydrate reserves, which reduces the abil-

ity to maintain turgor in the morning. A mechanistic explanation would

need a set of dedicated additional measurements such as high-resolution
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Figure 18. Results from the control run with a carbon fibre plate instead of
a leaf. (a, b) Equivalent to Figure 14a,b. (c) Equivalent to Figure 13 (n = 13).
Data analysis and figure formatting are similar to the originals.

leaf osmotic potential, and leaf starch and sugar content. On the other hand,

mean daytime VPD correlated marginally positively with RSmax, and negat-

ively with RGmax. It can be expected that a higher VPD increases leaf water

stress and thus leaf water deficit, and so indirectly decreases the potential

for growth (Figure 14c). The observed negative correlation between mean

radiation and RGmax might reflect an indirect effect, since radiation and VPD

were highly correlated (not shown).

This study demonstrates the importance of high-resolution leaf growth

measurements to detect and characterise minute changes in leaf area. In an

experiment with only one or two measurements per day, for example by us-

ing a smartphone app such as Petiole (petioleapp.com), the diurnal shrink-

age could have remained undetected, and the dependence of leaf growth

on water relations in A. marina would have been much harder to establish.

By measuring instantaneous leaf area changes I showed a strong correla-

tion with leaf turgor (Figure 14a,b). Leaf turgor seems to have a stronger

influence on shrinkage and re-expansion than on structural growth (Fig-

ure 14b), and the extent of diel shrinkage limits diel growth (Figure 14c).

The limitation of leaf growth by water relations has been shown before for
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agricultural crops, or the model species A. thaliana, and the importance of

turgor for cell expansion is reflected in the Lockhart model (Lockhart, 1965;

Ortega, 1985; Equation 1) . Here I show that water limitations also directly

limit instantaneous leaf growth of a mature tree, namely the mangrove A.

marina. Measurements of non-structural carbohydrates at the same site in-

dicate that while carbon is important as an osmolyte (sugar), it is hardly

limiting under natural conditions. I therefore argue that there is no carbon

trade-off involved, and instantaneous growth patterns are largely driven by

plant hydraulic relations in this species. This may simply be a consequence

of life in saline conditions, but, if confirmed for other species, may point at

a subordinate role of carbon in comparison to water when plant growth, at

least at the scale reported here, is concerned. This adds to the paradigm that

plant growth processes are generally decoupled from carbon assimilation,

as has been shown for larger spatiotemporal scales (Körner, 2003b). High-

resolution leaf growth data under realistic in situ conditions are understud-

ied but urgently needed to inform plant hydraulic and growth models (e.g.

Steppe, De Pauw, Lemeur & Vanrolleghem, 2006), whose improvement in

turn is pivotal for a better understanding of vegetation modelling in a future

climate (Fatichi, Pappas & Ivanov, 2016).



Chapter 4
Measurements using Stereo Vision

In this chapter I explore the suitability of a stereo vision system for outdoor measure-

ments of leaf area, which is the prerequisite for growth estimates. I built a prototype

using machine vision cameras, lenses, and filters to optimise image acquisition in

direct sunlight, while relying on open source software for the image analysis part.

The results show a good correlation of leaf area measurements with ground truth

data from scanning.

4.1. Introduction

In Chapter 3, I successfully adopted the leaf fixation and marker tracking

method to study instantaneous leaf growth in the field. While this ap-

proach is very simple, the application of tensile forces is not suitable for all

types of leaves, and it requires laborious control measurements. It is there-

fore desirable to have a method that allows us to directly measure leaf area

and growth without any direct interaction with the plant. As reviewed in

Chapter 2 this can be achieved from statistical correlations, or from three-

dimensional (3D) reconstruction (Fiorani & Schurr, 2013; Gibbs et al., 2016).

The statistical approach works well for entire shoots but not for individual

organs. Therefore, I only considered 3D methods to measure the leaf area.

Additionally, the method should be suitable for continuous outdoor meas-

urements. Following the overview in Chapter 1, below I briefly discuss the

advantages and disadvantages of some 3D methods.

Each method has its tradeoffs in terms of costs, accuracy, and potential to
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be used in the field, see Table 5. Particular challenges for outdoor measure-

ments are sensor overexposure, or interference due to sunlight, movements

due to wind, and raindrops on the leaf, or sensor lens. Sunlight and rain

pose similar problems for all 3D methods, while sensitivity to movements

depends on the method. I decided to use a stereo vision set up for measur-

ing the leaf area because of its (potentially) high image resolution and rather

low cost.

By comparison, structure from motion (SfM) is also a low cost method if

free software is used, but it is less flexible because it requires a lot of input

images and extensive post-processing. On the other hand, SfM can provide

a more detailed geometrical model than a stereo vision system, which only

gives the depth projection of a scene. Time of flight systems give similar

data to stereo vision, but at a lower image resolution. There are low cost

consumer grade systems available, for example the Microsoft Kinect v2.

Structured light systems can generate high-resolution data, but they might

be hard to set up outdoors, and sunlight interference may be particularly

challenging. I did not consider laser scanning or light-field systems, be-

cause of their high cost. Medium cost light-field systems are available, but

their suitability for plant phenotyping is limited (Schima et al., 2016). Sur-

prisingly, stereo vision has not yet been fully implemented for automated

leaf area growth measurements, despite good results for indoor leaf area

measurements (Xiong et al., 2017).

4.2. Materials and methods

Ground truth from scanned leaves

The lamina area was measured from scanned leaves and used as a ground

truth for the 3D analysis. This requires three steps: leaf segmentation, peti-

ole removal, and area calculation. Leaf segmentation can be achieved by
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Table 5. Qualitative comparison of selected 3D methods.

Method Sensitive to
object movement

x-y
resolution

Depth
accuracy Cost

Laser scanning Yes High High High

Time of flight No Low Low Low

A
ct

iv
e

Structured light No Low to
high

Low to
high

Low to
medium

Stereo vision Sometimes Low to
high

Low to
high

Low to
medium

Structure from
motion Yes n/a n/a Low to

medium

Pa
ss

iv
e

Light-field No Low to
high

Low to
high

Medium to
high

Note: Laser scanning refers to laser triangulation. Stereo vision’s sensitivity
to movement depends on camera shutter type and exposure time. Structure
from motion requires reference points for real world dimensions.

hue thresholding. Most plant species have green leaves, but leaf colours

can range from red, purple, and blue for some species, to yellow in case of

autumn colouring, disease, or decay. It is therefore not possible to define

a general hue range to identify leaves, but most leaves can easily be seg-

mented when scanned against a blue background, see Figure 19a. In my

analysis I did not determine whether parts of the leaf were damaged or de-

caying, and all non-blue pixels were included.

Petiole removal requires some knowledge about leaf geometry. A

straightforward approach is to restrict the analysis to leaves that are scanned

upright (Borianne & Brunel, 2012; Maloof, Nozue, Mumbach & Palmer,

2013). I took a more general approach, by allowing leaves with an unknown

orientation, which is closer to real world scenarios. I tried to detect the peti-

ole based on the leaf shape only. The general idea was that the leaf contour

direction changes sharply at the petiole. To detect such “turning points” I

fitted thick digital straight segments (DSS) along the leaf contour (Debled-

Rennesson, Rémy & Rouyer-Degli, 2005). I used the OpenCV (Bradski &
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Figure 19. Petiole removal from scanned leaves. (a) Scanned leaf on blue
background. (b) Segmented leaf. (c) Leaf lamina. (d) False positive. Tip
instead of petiole was removed. (e) Petiole detected correctly, but not cut at
the right points.

Kaehler, 2008) rotating callipers algorithm which is implemented using the

convex hull algorithm by Sklansky (1982). Turning points were classified

as points where subsequent DSS orientations lay in different quarters of the

unit cycle. This approach avoids to set a fixed angle threshold, but turning

points vary with different leaf directions. Therefore, it is not suitable for a

general shape description.

Many of the detected turning points were not part of the petiole. To

identify potential petiole points, I analysed the mean width and the width

fluctuation along the DSS normal. The width fluctuation was quantified

as the slope of a linear regression, with the element width along the DSS

normal at each contour point as the dependent variable, and the contour

index as the independent variable. In most cases during my tests, the DSS

with the lowest width fluctuation was part of the petiole. If no DSS was

within a pre-defined threshold range for mean width and width fluctuation,

I assumed that no petiole was present.

As a petiole has a linear structure, the algorithm is searching for DSS

which are oriented parallel to the potential petiole DSS at the opposite side
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of the object. I considered two DSS close enough to parallel when their

angle was 180°± 45°. If there was no parallel DSS, it was assumed that the

analysed element was not a petiole. When there were multiple matches, I

proceeded with the DSS closest to 180°. From both detected DSS I fitted fur-

ther DSS along the leaf until an object width-threshold was exceeded. The

orientation of the DSS extension was set depending on its direction towards

the object’s mass centre. Depending on the leaf shape, the petiole cutting

point was determined at the beginning or end of the last DSS.

In my test dataset I had 28 leaves, and I achieved a correct petiole clas-

sification rate of 75% , see Figure 19a-c for an example. Cases of false posit-

ive detections included leaf tips being mistaken for the petiole (Figure 19d).

This happened when the parallelness at some part of the tip was higher than

anywhere in the petiole. The algorithm did not test the extrema, because the

end of the petiole may be irregular. Because the petiole cut off point was set

at the end of a DSS, it also happened that the petiole was correctly detected,

but the removal did not take place at the right point (Figure 19e). Because of

these inaccuracies, I decided to manually segment the petiole for the ground

truth. Another simple approach would be to physically cut off the petiole

before scanning, but this may be avoided because a trait like the specific leaf

area includes the petiole area.

Once the lamina region R is segmented, its metric area A can be calcu-

lated from the pixel area A(R), and the scanner resolution r given in dots

per inch:

A = A(R) ·
(

25.4 mm
in

r

)2

. (10)

This method measures the projected two-dimensional (2D) lamina area. It

is not suitable for non-flat leaves, such as needles, or leaves with very curly

surfaces.
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Leaf features

Leaves have a huge variety of shapes and sizes between species, but also

within species, and in some cases even during the development of a single

leaf. Therefore, I tried to come up with a set of general features that are

suitable to describe a leaf, and could be used for segmentation. All leaves

are attached to the stem, so the presence of a petiole is a potential feature.

However, leaves can also be sessile, or the petiole can be occluded in an im-

age. Instead of the petiole the presence of veins seems to be a better feature,

even though not all species have visible veins at the leaf surface.

Leaf venation patterns can be extracted using a series of simple mor-

phological operations (Zheng & Wang, 2010, see Figure 20). First, the in-

put image was converted to grayscale, and blurred with a Gaussian kernel.

Then, the vein structure was extracted by subtracting the black top hat trans-

form from the white top hat transform. These are morphological operations

based on erosion and dilation. In both operations a filter kernel W is moved

over the image I so that each pixel is changed.

In this example, the kernel W is a square with an odd side length.

Erosion changes each pixel value to the minimum value in the neighbour-

hood defined by W ; it is denoted by I 	W . Dilation is the opposite opera-

tion, and every pixel value is replaced by the maximum value in the neigh-

bourhood; it is denoted by I⊕W . Performing these operations subsequently

is called opening and closing, respectively. The opening operation is the

dilation of the erosion, denoted by I ◦W = (I	W )⊕W . Similarly, the clos-

ing operation is the erosion of the dilation, denoted by I •W = (I⊕W )	W .

In binary images, the opening operation is used to remove small fore-

ground objects (white dots), and the closing operation fills small holes

(black dots). Such small objects can be extracted by subtracting the result of

the opening respectively closing operation from the input image, which is

called top hat transform. The white top hat transform is denoted by I−I◦W ,
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Figure 20. Leaf venation pattern. (a) Input. (b) Result of the morphological
operations after normalisation and thresholding. (c) Detected vein segments
after skeletonisation and straight segment fitting. (d) Connected vein seg-
ments. The grayscale image has been inverted for display.

and the black top hat transform is denoted by I − I •W . On a grayscale leaf

image with veins brighter than the lamina, the white top hat transform en-

hances vein pixels, while the black top hat transform enhances non-vein

pixels.

The extracted differences are actually very small. Therefore, it is neces-

sary to threshold the image before further processing. I usually achieved

good results by first normalising the image, and then thresholding it using

Otsu’s method (Otsu, 1979), but in some cases another thresholding method

is preferred. In the next step, the extracted veins were thinned using the

skeletonization algorithm by T. Zhang and Suen (1984). Along the vein skel-

eton I fit DSSs, as described above. Finally, the vein DSSs, were clustered

based on their location in the leaf, and their directions (Figure 20d).

For some species the veins are not visible at the leaf surface. In this case

symmetry is another general feature that applies to most species. However,
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Figure 21. Leaf symmetry and direction determination. (a, b) Symmetry and
direction correctly determined. (c) Non-symmetry and direction correctly
determined. The eucalyptus leaf is more symmetric along the semi minor
axis but this was not tested, because the shape is not circular. (d) The most
symmetric orientation that was tested was not the correct direction. Leaves
have been rotated upright for display.

many other objects are also symmetric, therefore this feature is not generally

applicable. It has to be implicitly assumed that leaves are expected in the

analysed scene.

The symmetry was determined as follows. First an ellipse was fit to the

object contour using the algorithm by Fitzgibbon, Pilu and Fisher (1999).

Many species have ellipse-like leaf shapes, but this approach also works

well for different shapes such as maple leaves, see Figure 21b. The object

was then split in half along the direction of the semi-major ellipse axis.

Symmetry was simply approximated by the ratio of the areas of both

sides not exceeding± 20%. In cases of nearly circular objects I also tested the

symmetry along the semi-minor axis, as well as the same ratios after rotating

the axes by 45°. The direction with the highest symmetry was assumed to

be the direction of leaf. This logic worked well for scanned leaves, but failed

in some cases, see Figure 21.

In real world scenarios with different viewing angles this approach is

very limited, because it relies on the perceived 2D shape. Therefore, I did

not use this symmetry classification, but the even simpler ellipseness. That
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Figure 22. Ellipseness of scanned leaves (a) 92.4% (b) 86.4% (c) 80.6%
(d) 77.5% (e) 69.7%. The leaf outline is marked in green, the ellipse out-
line is marked in red. White represent non-overlapping areas used for the
ellipseness calculation.

is, how well the fitted ellipse corresponds with the object, calculated by

1− A (Rob4E(Rob))

A (E(Rob))
, (11)

where Rob is the region of the object, E denotes the ellipse fitting, A is the

area of a region, and4 denotes the symmetric difference of two regions. In

a graphical representation, the white regions in Figure 22 are compared to

the ellipse region. Ellipseness is quite a crude feature as seemingly elliptic

leaves can have a relatively low value, while non-elliptic leaves can still

have a relatively high value; see Figure 22d,e.

Stereo vision setup

In a stereo vision system, two cameras are used to calculate the distance of

an object to the cameras. Each camera needs to be calibrated individually to

determine its camera matrix and distortion coefficients (Bradski & Kaehler,

2008). The cameras are set up in a stereo rig with a fixed distance to each

other. The exact geometrical relation of the cameras is determined by stereo

calibration. The depth Z of one real world point can then be calculated from
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the baseline distance b between the two cameras, the disparity d of the point

in the two images, the focal length f of the cameras (part of the camera

matrix), and the pixel size s by the formula

Z = b · f

d · s
. (12)

To find the disparity, corresponding points need to be detected in both im-

ages. The search for corresponding points is simplified by first rectifying

the images so that the points are on the same image rows. The rectification

relies on the previously obtained calibration information.

Once the disparity is found by a stereo matching algorithm, the depth

Z can be calculated using the equation above. Based on the depth and the

camera matrix, the coordinates X and Y can then also be determined result-

ing in a 3D representation for either of the two input images. Some points

cannot be matched in both images because they are either only visible in one

of the two images due to different perspectives, or because there is no clear

correspondence because of a uniform texture. Consequently, no coordinates

can be calculated for such points. For camera calibration and image rectific-

ation I was using the open source computer vision library OpenCV (Bradski

& Kaehler, 2008). For the calibration I used a printed checkerboard pattern,

which was glued to a flat piece of wood.

To be able to continuously observe a growing leaf, it is necessary to il-

luminate it during nighttime. The illumination needs to be at a wavelength

that does not interfere with growth or photosynthetic processes which is

the case in the near infrared spectrum at around 900 nm (Gates, Keegan,

Schleter & Weidner, 1965; Walter et al., 2009). Image sensors that are used

in consumer grade cameras are able to detect light at wavelengths of up

to 1100 nm, although the sensor efficiency is decreasing with increasing

wavelengths. Cameras are typically equipped with an infrared cut-off fil-

ter to only represent visible light in the image. In contrast, when infrared
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illumination is used for continuous plant monitoring, a bandpass filter can

be used to block visible light leading to a more uniform image exposure

throughout the day.

For outdoor measurements, the influence of direct sunlight can be min-

imised with a bandpass filter at 940 nm because of the water vapour ab-

sorbance band at this wavelength (Hill & Jones, 2000). This feature has been

utilised for leaf imaging before (W. Zhang, Hansen, Smith, Smith & Grieve,

2018). Another approach to minimise the influence of sunlight is the use

of a linear polarising filter to block glare (Bao, Tang, Breitzman, Fernandez

& Schnable, 2018). Colour image sensors largely record the same informa-

tion at wavelengths higher than approximately 800 nm. Therefore, no ad-

ditional information can be gained from a colour image and the use of a

monochrome sensor is preferred.

The goal of this project was to explore the potential of stereo vision for

outdoor leaf growth measurements using components that would allow the

design of a small device that is easy to install. Therefore, I restricted the

camera selection to small industrial grade cameras that offer a higher image

quality and more customisation options than consumer grade webcams. To

minimise the effects of object movements, a camera with a global shutter is

required. This means that all sensor pixels are exposed at the same time,

as opposed to rolling shutter cameras. I selected the Basler daA1600-60um

camera (Basler AG, Ahrensburg, Germany) which is a small module with

a size of 29 mm × 29 mm, and a weight of 15 g. The sensor has a pixel

resolution of 1,600 × 1,200 with a pixel size of 4.5 µm. The pixel depth is 10

bit, which means that the maximum number of different pixel intensities is

210 = 1024. (Although the camera software inflates this to 12 bit per pixel.)

For the lens I selected the NMV-8M23 (Navitar, Inc., Rochester, NY, USA)

with a focal length of 8 mm. The appropriate focal length depends on the

distance to the object, and the object size. A shorter distance or a larger ob-

ject requires a shorter focal length (larger viewing angle). It also needs to
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be considered that the object has to be fully visible in both cameras. Fur-

thermore, the distance to the leaf needs to be sufficiently large to ensure

that the cameras do not interfere with plant growth, for example by inter-

cepting light. The lens also needs to be infrared transparent, which was

relatively hard to find. For the illumination I used LISIPAROI LEDs with

a wavelength of 940 nm (Cyntech Components Ltd, Milton Keynes, United

Kingdom), and a corresponding bandpass filter was selected to minimise

the influence of sunlight (BN940, Midwest Optical Systems, Inc., Palatine,

IL, USA).

The cameras were mounted with a baseline distance of 40 mm, which

is the smallest possible distance with the lenses I used. Cooling for the

cameras was provided by a fan. The LEDs were mounted above and be-

low the lenses. A computer power supply was used for the fan and LEDs.

The whole installation was fixed to a tripod to support height and viewing

angle adjustments; see Figure 23. The focal plane was about 20 cm from

the lenses and 25 cm from the cameras. The cameras were connected to a

computer over USB 3 cables, and image acquisition was controlled using

Basler’s pylon software.

The camera exposure was triggered using software which could result

in slightly different image acquisition time points for the two cameras. In

a series of test pictures with a stopwatch I determined that both cameras

usually triggered within the same millisecond. Initial tests of plant images

showed that the two images had very different histograms when the ex-

posure time was automatically determined by the camera software. As this

poses a potential problem for the stereo matching algorithm, I decided to

set the exposure time manually. To achieve a good illumination, exposure

times between about 1 ms in full sunlight and 40 ms in indoor settings were

required. This rather long exposure time is presumably a consequence of

the low sensor efficiency at 940 nm. Such a long exposure time renders

the discussion about shutter and trigger time obsolete, as any object move-
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Figure 23. Stereo camera. (a) Image acquisition outdoors. (b) Camera on
tripod with power supply below. (c) Rear view showing camera boards and
USB cables.

ment will result in motion blur. The exposure time could potentially be

reduced by stronger illumination, or by camera gain (amplifying the sensor

signal). Despite the manually set exposure time, corresponding points in the

two images sometimes still had very different pixel values, possibly result-

ing from different reflection angles. Tests with illumination from different

angles could not remove this effect.

Data acquisition

It was necessary to have a portable software that can run on any modern

computer with the Windows operating system, to facilitate outdoor data ac-

quisition (Figure 23). I wrote a console application using Basler’s pylon C++

application programming interface, and OpenCV to acquire pictures. It was

also required to install Basler’s camera driver. The application is extremely

simple; it allows to set the exposure time, displays a preview image, and

takes images based on keyboard commands.

I acquired two test datasets: one indoors, and one outdoors. For the
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indoor setting, I recorded eight different scenes of freshly harvested plants

(seven different species), and measured a total of 15 leaves. The species dis-

tribution in this dataset was not even, with two species constituting nine

specimens. For the outdoor setting, I recorded 11 different scenes (all dif-

ferent species), and measured a total of 13 leaves. I intentionally selected

challenging scenes with varying lighting conditions from no direct sunlight,

to partial sun exposure, and full sunlight. The image exposure time was set

between 0.8 ms and 8 ms. In some scenes there was a mild wind, but no

motion blur was apparent.

Setting up the tripod, and manually setting the exposure time was time

consuming. In the outdoor tests it took up to 20 min until a good perspect-

ive and exposure was found. I only selected leaves which were fully visible,

and I did not acquire outdoor images at night. I also did not test the effect

of water drops on the leaf surface. During the indoor measurements, the

leaves were scanned for ground truthing immediately after image acquisi-

tion. During the outdoor measurements, leaves were harvested and stored

in a zipper bag in a fridge until scanning.

Stereo matching

The 10 bit per pixel sensor data is inflated by the camera to 12 bit, and then

stored as a 16 bit image. This means that the maximum pixel value equals

4,095, and the rest of the 16 bit container is unused. A higher pixel depth

potentially leads to a more accurate stereo matching. However, the match-

ing algorithms I tested only accept 8 bit images, which requires to normalise

the image to values between 0 and 255.

For indoor settings only the plant in the foreground was visible, while

the background was mostly black, presumably because of the bandpass fil-

ter and low infrared reflectance. The algorithms I tested cannot cope well

with large uniform areas. Therefore, I inserted an artificial background pat-

tern before stereo matching; see Figure 24. The pattern was shifted by the
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Figure 24. Artificial background pattern for better stereo matching. (a) Nor-
malised input image. (b) The background and some ill lit leaves are replaced
by an irregular pattern.

minimum expected disparity between the left and right image.

I tested four different algorithms for stereo matching: Efficient large-

scale stereo matching (ELAS; Geiger, Roser & Urtasun, 2010), semi global

matching (SGM; Hirschmüller, 2005), constant-space belief propagation (Q.

Yang, Wang & Ahuja, 2010), and efficient belief propagation for early vis-

ion (Felzenszwalb & Huttenlocher, 2006). The C++ code for ELAS has

been downloaded from the author’s website, and the OpenCV implement-

ation was used for the other algorithms. For SGM I additionally tested the

OpenCV post-filtering algorithm based on Min et al. (2014). The best results

were obtained with ELAS; see Figure 25b. All algorithms implemented in

OpenCV produced large miss-matched foreground areas (Figure 25c-f).

The ELAS algorithm first detects “support points” that have a strong

stereo correspondence, and then uses triangulation between these points.

This approach can lead to good results in low texture areas such as some leaf



4.2. Materials and methods 97

Figure 25. Comparison of stereo matching algorithms. (a) Input image
(without background pattern) (b) Efficient large-scale stereo matching. (c)
Semi global matching without, and (d) with post-filtering. (e) Constant-
space belief propagation. (f) Efficient belief propagation. The background
has been removed after stereo matching.
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surfaces. There is a tradeoff between incorrect support points and a dense

disparity map. I obtained good results by using a threshold of τ = 0.9, as

suggested by the authors (Geiger et al., 2010).

Leaf segmentation

Given a colour or grayscale image, and corresponding depth information,

leaves can be segmented based on distance transform (Apelt et al., 2015),

edge blending and region growing (Song et al., 2014), or multi object act-

ive contour models (Xia, Wang, Chung & Lee, 2015) for sparse canopies.

For more complex cases, leaves can be over-segmented based on the intens-

ity image, and then be clustered based on 2D shape models (Aksoy et al.,

2015), or 3D surface models (Alenya, Dellen, Foix & Torras, 2013). Recently,

a deep-learning-based leaf segmentation method has been presented that

shows good results for dense canopies using only 2D colour images as in-

put (Morris, 2018).

Here, I follow Alenya et al. (2013) in applying the graph-based segment-

ation algorithm by Felzenszwalb and Huttenlocher (2004). This algorithm

aims to segment an image into similar regions by considering edges within

and between regions. In particular, a threshold function is applied to de-

termine whether two components R are similar or not using the function

τ(R) =
k

A(R)
, (13)

where k is a constant. For the image resolution and leaf sizes in my test im-

ages, a value of k = 800 usually resulted in desired over-segmentation; see

Figure 26c,f,j. Then, leaf components were merged based on three criteria:

depth, venation, and shape.

I assumed that foreground clusters were likely part of a leaf. Addition-

ally, I defined a range of combinations of foreground share, veins share, and

ellipseness to classify clusters as potential leaf segments. The foreground
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share was calculated as the ratio of foreground pixels to the cluster area.

This excludes background objects, but also foreground objects with a sparse

disparity map. In my test I set the highest foreground distance to 28 cm.

Veins were extracted as described above, except the white top hat transform

was subtracted from the black top hat transform, because the veins were

darker than the leaf blade in my test images. The veins share was calcu-

lated as the ratio of vein pixels to the cluster area. Finally, I also included

clusters with an ellipseness higher than 0.7 or 0.8, depending on foreground,

or veins share. Even though I tested the ellipseness of a cluster rather than of

a leaf, this criterion helped to exclude weirdly shaped clusters which were

usually not part of a leaf.

From the clusters classified as potential leaf parts, I proceeded with the

one that had the highest foreground share. Around that cluster, I identified

all other clusters lying on an overlapping depth region. I then extracted all

potential veins in the main cluster. To exclude noise, I only selected those

which had an angle of less than 20° to the semi-major or minor axis of the

best fit cluster ellipse.

Some of the identified potential veins were actually leaf edges, which

was detected by their proximity to a depth edge. Along the remaining

vein candidates I identified new clusters to be merged with. Clusters were

merged if the tested vein was the longest vein (i.e. likely the midrib), or

if the ellipseness of the merged clusters was larger than the previous el-

lipseness. This logic was iteratively applied to all vein segments starting

with the longest, or until the ellipseness of the merged clusters exceeded

0.8. This strong reliance on ellipseness also worked for non-elliptic leaves

(not shown).

It cannot be assumed that all clusters contain veins. Therefore, I added

a second merging iteration testing for concavity defects, that is the distance

between the object contour and its convex hull. Small defects were ignored

to account for serrated leaf contours, while large defects were always filled,
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if the components were lying on the same depth level. This is an oppor-

tunistic approach which may not work if concave leaves are strongly over-

lapping, or if the stereo matching is inaccurate. Medium convexity defects

were merged if it improved the ellipseness.

This relatively simple approach worked quite well for scenes with uni-

form illumination (see Figure 26a,d), while it failed for clusters of sunlight

and shadow; see Figure 26h. It entirely relies on graph-based segmenta-

tion, and currently does not correct inaccuracies in its clustering. I generally

achieved good clustering results with this algorithm running on a 16 bit im-

age; see Figure 26c,f,j. Furthermore, the leaf segmentation strongly depends

on the accuracy of the stereo matching. In the outdoor test images the dis-

parity map was rather sparse; see Figure 26e,i. Also, the depth edge was

not exactly on the object edge of the intensity image. Because of such in-

accuracies I also segmented the leaves manually to obtain the best possible

area measurement with my hardware setup.

Leaf surface reconstruction

After stereo matching, the 3D coordinates were calculated using OpenCV,

and then processed using Point Cloud Library (Rusu & Cousins, 2011).

Particularly for the outdoor data the disparity maps were sparse, and for

the matched areas the 3D data was noisy; see Figure 27. This required

some heavy preprocessing before the surface reconstruction. First, outliers

were removed from the point cloud by applying geometrical and statistical

thresholds. Points were removed if they had fewer than 100 neighbours in

a sphere with a radius of 1 cm, or when they were more than one standard

deviation away from the mean in a neighbourhood of 100 points. From the

remaining points, I only continued with points on the concave hull (neg-

ative aplpha-hull; Edelsbrunner, Kirkpatrick & Seidel, 1983). Second, slid-

ing least square smoothing was applied to the hull points. The smoothing

neighbourhood was set to a sphere with a relatively high radius of 3 cm
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Figure 26. Leaf segmentation examples. (a-c) Indoors. (d-j) Outdoors.
(a, d, h) Intensity images with the detected leaf outlined in red, further
potential leaves outlined in green, and potential veins in random colours.
(b, e, i) Depth map after background removal. Red indicates close val-
ues, blue indicates distant values. (c, f, j) Output of the graph-based im-
age segmentation in random colours. (a) Most fully visible leaves correctly
detected, but stem segments also identified as potential leaves. (d) Most
leaves detected. (h) One leaf mostly detected, one leaf not detected due to a
shadow patch.
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Figure 27. Leaf surface reconstruction examples from the outdoor test. The
reconstructed Poisson surface mesh is shown in green, and the leaf inlier
points in red. (a) Decent disparity map, and good reconstruction, relative
error of -4,9% compared to ground truth. (b) Mediocre disparity map, but
good reconstruction, error of -4.4%. (c) Mediocre disparity map, but bad
reconstruction because of smoothing, error of -16.7%. (d) Sparse disparity
map due to shadow, and incomplete reconstruction, error of -10.3%. Leaves
have been segmented manually to generate the input point cloud. All leaf
point clouds are approximately at scale to each other, indicated by the bar
at the bottom left.

compared to the analysed leaf sizes.

Finally, Poisson surface reconstruction was applied to the smoothed

point cloud (Kazhdan, Bolitho & Hoppe, 2006). This algorithm produces

a watertight triangulated surface that exceeds the leaf boundaries; see Fig-

ure 27. Leaf points were determined if they were inside the convex hull of

the filtered or smoothed point cloud. For the inliers, the leaf area has been

calculated as the sum of all individual surface triangles using the “shoelace

algorithm”:

A =
n∑

k=1

1

2

(∣∣∣∣ 2∑
i=1

vi,k × vi+1,k

∣∣∣∣+ ∣∣∣∣v3,k × v1,k∣∣∣∣
)
, (14)

where n is the number of triangles and vi,k is a vertex of a triangle.
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4.3. Results

Linear regressions of the ground truth with reconstructed leaf areas showed

high correlations for indoor and outdoor measurements. Both tests coincid-

entally had the same coefficient of determination of 0.994; see Figure 28.

I segmented the leaves manually before stereo matching to test the best

possible 3D reconstruction with my hardware and software setup. Out-

liers with incomplete stereo matching due to the images being out of focus,

or due to unfavourable image exposure were excluded from the analysis.

This test was across species, and with an unbalanced species mix in the in-

door dataset. It shows the general performance across different leaf sizes,

shapes, and textures. For compound leaves, only individual leaflets were

considered.

While the general regression correlation was good, the relative meas-

urement errors were still quite high. The mean absolute errors were 5.8%

(σ = 6.7%) for the indoor test, and 6.7% (σ = 4.8%) for the outdoor test. Be-

cause of the low sample sizes of 14 in the indoor dataset and 11 in the out-

door dataset, the results have to be interpreted cautiously. Furthermore, the

two tests did not have the same regression slope. The indoor analysis sug-

gests that the reconstructed area is higher than the ground truth area, while

the outdoor analysis shows the opposite. For the indoor data there is no

apparent reason for the positive deviation from the unity line, while for the

outdoor data insufficient surface reconstruction could explain the negative

deviation.

4.4. Discussion

The results presented here confirm the general viability of stereo vision for

leaf area measurements, which has been reported before for indoor meas-

urements (Xiong et al., 2017). I further showed that this method also works
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Figure 28. Linear regression of ground truth area measurements from leaf
scans, and leaf area reconstruction from stereo-vision-based on manual leaf
segmentation. (a) Indoor measurements. (b) Outdoor measurements. Out-
liers are marked with triangles; they have been excluded from the analysis
because of incomplete stereo matching, because the image was out of focus,
or underexposed. The unity line is indicated in dashed gray.

for outdoor measurements in direct sunlight, provided that the camera

setup is suitable. Nevertheless, the measurement accuracy was insufficient

to capture minute leaf area changes required for high-resolution growth

measurements. My results are similar or slightly better than those repor-

ted using other methods. Structure from motion showed R2 values of up to

0.99 for indoor leaf area reconstruction (Rose, Paulus & Kuhlmann, 2015),

while values for outdoor measurements were lower at 0.94 (Jay et al., 2015).

Indoor measurements with the Microsoft Kinect v2 time of flight device

showed an R2 value of 0.95 (Hu et al., 2018), and I am not aware of a similar

analysis under outdoor conditions. Different studies may not be directly

comparable due to different point cloud processing approaches.

There are a couple of hardware and software improvements, which

could reduce the measurement errors and bring the regression slope closer

to one. Stronger infrared LEDs might reduce the contrast between sunlit

and shadow areas, and lead to better stereo matching in daylight condi-

tions. I also did not test different camera baseline distances, or focal lengths
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of lenses, which could be altered to match the leaf size of the target spe-

cies. Better results would also be expected with single-lens reflex cameras

(Muller-Linow et al., 2015), but I have not considered such a solution un-

der the premise that the components should be as small as possible. The

ultimate goal would be a system in one box with a single board computer

controlling data acquisition, and potentially processing.

It may be worth testing the Intel Realsense D435 sensor as an alternat-

ive to the custom made system presented here. It combines stereo vision

and structured light, which may overcome the problem of sparse disparity

maps encountered in this study. It showed good performance over a range

of light conditions from twilight to direct sunlight (Vit & Shani, 2018), but I

am not aware of a study evaluating its performance in complete darkness.

The structured light laser projection is at 850 nm which is at the lower end of

suitable wavelengths. A commercial product would also have the advant-

age that preparatory steps for image acquisition, camera calibration, and

stereo matching would be simpler or redundant.

In terms of stereo matching algorithms, I limited myself to open source

software available in C++ and with a simple OpenCV interface. I found that

the OpenCV implementation of semi global matching (SGM; Hirschmüller,

2005) did not perform well, while ELAS (Geiger et al., 2010) showed good

results (Figure 25). A possible explanation for the comparatively bad res-

ults of SGM is that the algorithm is not designed for curved surfaces. It only

distinguishes between changes of neighbouring disparities of one pixel, or

more than one pixel. Furthermore, OpenCV uses a cost function which

prefers flat surfaces with constant disparities (Birchfield & Tomasi, 1999).

The disparity maps were sparse and noisy which required strong outlier

filtering and smoothing of the point cloud. A first improvement would be

to make these steps size-dependent, instead of using fixed thresholds. The

general 3D leaf shape was preserved by smoothing, but small surface fea-

tures such as wrinkles were flattened out. From a theoretical point of view,
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surface area triangulation can never give the true value (Schwartz, 1890).

Better results could be achieved with normal integration (Coeurjolly, Flin,

Teytaud & Tougne, 2003), provided that the normals are evenly distributed,

or from planar surface patches (Klette & Sun, 2001). However, with the

noisy 3D data in my tests, this is hardly a concern.

I simplified the analysis by manually segmenting the leaves. This is not

suitable for growth measurements, particularly in outdoor settings where

movements due to wind are expected. The rule-based segmentation ap-

proach shown in Figure 26 was a decent first step, but it relies on a couple

of different algorithms and assumptions. It may be hard to improve the

reliability for a vast range of scenes with different leaf sizes and densities.

Artificial-intelligence-based methods seem more promising for this task. An

initial study showed good results (Morris, 2018), and the combination with

depth data should make it simple to remove background noise. Leaf seg-

mentation and stereo matching during rain may be challenging due to glare

and raindrops obscuring the view. Such a situation has not been tested here.

The intended next step would be actual growth measurements, which

follows a simple logic: repeatedly measure leaf area over time. Besides the

measurement accuracy, there are two practical challenges: leaf segmenta-

tion, as discussed above, and image exposure time. Because I initially got

inconsistent histograms for the two stereo cameras when using automatic

exposure, I decided to set the exposure manually for this test. This is no

issue for experiments in growth chambers where the exposure time can be

adjusted to the ambient illumination, but for greenhouse or outdoor meas-

urements with varying illumination this is not possible. Potentially, there is

a camera setting that would support automated image acquisition without

artefacts. Alternatively, I could imagine an iterative image grabbing process

until leaf pixel intensities are in a desired range.

Once these issues are resolved, there are a couple of other features that

would be interesting to analyse in addition to leaf area growth. First, the



4.4. Discussion 107

3D leaf shape could be extracted, as the knowledge on shape development

is limited (Runions, Tsiantis & Prusinkiewicz, 2017). Building on this, leaf

shape reconstruction could also be used to predict the area of partly oc-

cluded leaves. Second, the tracking of points on the leaf surface would al-

low us to calculate growth rates of different leaf regions. Third, the extracted

venation patterns could be analysed quantitatively, for example by measur-

ing vein angles. In conclusion, the results presented here are a promising

step towards the study of leaf development in situ.



Chapter 5

Conclusions

In this thesis, I first explored the different aspects of plant growth, how

they can be measured, and why growth measurements matter. Growth

can be described in terms of structural growth, expansive growth, or mer-

istem growth (Figure 1), and the focus of interest can shift depending on

the spatiotemporal scale of the analysis (Figure 2). Similar to the distinc-

tion between structural and expansive growth, most growth measurement

methods quantify either plant mass, or plant size (Table 2). There is an ob-

vious difference between destructive and non-destructive measurements:

analyses at the sub-organ level, or biomass measurements generally require

the harvesting of plants or organs, while most size metrics, and indices such

as the LAI, or NDVI allow non-destructive observations.

In addition to the system variable (main metric; see Table 2), one or more

reference metrics need to be defined. For growth analyses, time is always

one of the reference metrics, and usually ranges between hours and years.

Instead of chronological time, thermal time can be a more meaningful ref-

erence metric, as it facilitates the comparison between experiments with

different growth conditions (Table 3; Gallagher, 1979; Granier & Tardieu,

1998a). Growth analysis fundamentally changes when the focus shifts from
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the organ, or plant level to the community, or landscape level, where the

reference metric shifts from per organ, or plant to per unit surface area (Sec-

tion 2.2).

Some methods directly measure the system variable, while others meas-

ure the change (absolute growth) between two points in time. For example,

stereo vision can measure the absolute leaf area (Figure 28), while a method

like the linear variable differential transformer (Hsiao et al., 1970) only

measures absolute leaf elongation. The formulaic description of growth has

briefly been discussed in Table 3. Linear models are widely used, particu-

larly the exponential growth formula, but for long-term analyses non-linear

models are more appropriate (Paine et al., 2012).

While this thesis focuses on short-term leaf growth, I tried to see the tree

for the leaf and the forest for the tree. Therefore, the review in Chapter 2

covers the spatial scales from cells to ecosystems, and the temporal scales

from hours to centuries. The importance of one particular leaf for the whole

plant depends on the total leaf area, and on the leaf position in the canopy,

among other factors. This one leaf has hardly an impact at the ecosystem

scale, but the net change of all leaf emergence and loss processes can be

observed using remote sensing methods.

The knowledge about short-term individual leaf growth drivers is re-

latively sparse, compared to whole shoot, but also root growth of herb-

aceous plants. This is partly due to methodological challenges to accurately

measure or approximate two-dimensional leaf area expansion, while one-

dimensional leaf elongation is simpler to measure. Shoot growth is easier to

approximate than individual leaves, because it integrates all above-ground

parts, and one-dimensional root growth can be tracked using dedicated ex-

perimental systems such as rhizotrons (Section 2.3).

Ultimately, the aim of plant growth measurements is to understand and

model the influence of ontogenetic and environmental factors on growth

(Section 2.4). Temperature is a relatively well understood factor, and
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species-specific response curves can be established (Parent et al., 2010; Par-

ent & Tardieu, 2012). As long as the temperature is in the optimal range,

thermal time can be linearly approximated (Table 3; Gallagher, 1979; Granier

& Tardieu, 1998a). Observations on Arabidopsis thaliana show an interesting

temperature response: while long-term leaf growth follows thermal time

(Granier et al., 2002), short-term leaf growth is not affected by different sub-

daily temperature patterns (Poire et al., 2010). This suggests that under the

experimental settings endogenous growth controls were stronger than tem-

perature effects.

Besides the direct “enzymatic” effect of temperature on growth, there

are also indirect effects such as the dependence of vapour-pressure deficit

(VPD) on temperature (Equations 2-3), which also impacts growth. Gener-

ally, the importance of environmental factors on growth can be classified as

either growth drivers, or the provision of material. Aside from temperature,

soil water potential and VPD are important factors for expansive growth,

with turgor pressure being a major driver (Equation 1). The acquisition of

building material occurs through carbon assimilation, and nutrient uptake,

with their respective dependences on temperature, radiation, VPD, soil wa-

ter potential, soil pH values, etc. In this simple framework it is straightfor-

ward to postulate that any environmental factor can be limiting and causing

a growth reduction away from the ontogenetic potential (Körner, 2015), and

with sufficient plant growth measurements it becomes possible to model

such effects (Tardieu et al., 2017).

Nevertheless, the view that growth is driven or limited by photosyn-

thesis and carbon availability is widespread and almost all dynamic veget-

ation models are based on this logic (Fatichi et al., 2014; Section 2.4). It

has been argued that our understanding of growth regulation is skewed to-

wards photosynthetic source activities, and away from metabolic sink activ-

ities because of the ease of gas exchange measurements in comparison to in-

tegral growth measurements (Körner, 2015). Source driven vegetation mod-
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els are relatively simple to formulate in comparison to sink driven mechan-

istic models (Fatichi et al., 2019). An accurate representation of sink activit-

ies has to take into account plant ontogeny as well as dynamic responses to

fluctuating environmental conditions, such as changing biomass allocation

(Section 2.2). Ideally, different organs are considered individually, as well

as in relation to the whole plant. Turgor-driven plant growth models ex-

ist (Coussement, De Swaef, Lootens, Roldán-Ruiz & Steppe, 2018), but they

currently don’t include other growth factors.

For many species, growth experiments under controlled conditions are

not feasible, which only leaves outdoor observations, which are extremely

challenging. Adverse weather conditions can cause erroneous measure-

ments, or damage the equipment, which leads to noisy, or incomplete data.

Therefore, a high number of observations is required, which can be achieved

with long time series, or many repetitions. There are elaborate systems

which allow growth measurements in agricultural fields (e.g. Kirchgessner

et al., 2016), but particularly for tall trees direct growth measurements meth-

ods are sparse (Section 2.3). I specifically focused on in situ leaf area and

growth measurements in such challenging conditions.

In Chapter 3, I adopted the established leaf fixation method for outdoor

use. This required the design of a weather-proof instrument for image ac-

quisition (Figure 5), as well as the programming of a marker tracking soft-

ware that was performing well under the experimental conditions. While

this method is extremely simple in principle, it was tedious to install the

instrument in the canopy so that it was placed in the right position to fix a

leaf (Figure 8). Furthermore, a tedious control experiment was required to

verify that the tensile forces did not affect long-term leaf growth (Figure 6).

I observed a clear diel trend with leaf area shrinkage in the morning, fol-

lowed by re-expansion and growth (Figure 13). This suggests that in Avicen-

nia marina leaf expansion is limited by hydraulics, which was also suppor-

ted by leaf turgor measurements (Figure 14), and aggregated environmental
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variables (Table 4). Other direct influences of environmental conditions on

leaf area change could not be established. Despite several weeks of obser-

vations, I only had a small dataset of 23 growth days, and the unaggregated

data did not show a direct effect of environmental variables (Figure 17).

Because of the effort required for testing and installing the leaf growth

meter based on the fixation method, I also tested the suitability of a stereo

vision system for outdoor leaf area measurements (Chapter 4). Previous

publications gave a mixed picture with reports of a commercial stereo cam-

era being insufficient for outdoor leaf measurements (Kazmi et al., 2014),

but good results for outdoor leaf angle measurements (Muller-Linow et al.,

2015), and indoor leaf area measurements (Xiong et al., 2017). I decided to

build a small custom-made device with optical filters to mitigate the ad-

verse effects of direct sunlight. The cost was relatively high at about NZD

3,000.00 for cameras, lenses, and filters.

First results were promising (Figure 28), and there are a couple of poten-

tial hardware improvements that could increase the measurement accuracy;

see Section 4.4. However, the results are based on perfect manual leaf seg-

mentation. Accurate automated segmentation may be achieved using deep

learning (Morris, 2018). I did not test the performance in (simulated) rain

conditions, and I assume that rain drops could impair the stereo matching,

as well as the leaf surface reconstruction. Furthermore, the results suggest

that there is an effect of illumination on the measurement, which needs to

be removed or accounted for to enable reliable growth observations. There

may be a “halo effect” due to illumination, which also seemed to be appar-

ent in the field study at night (Figure 12).

In summary, the leaf fixation method had a high accuracy with relative

errors of about 0.5% in all weather conditions, while stereo vision had a

lower accuracy with relative errors of more than 5.0% in good conditions.

The leaf fixation method did have a low measurement precision, which re-

quired smoothing and data aggregation, but it was reliable and accurate
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enough to detect the leaf shrinkage in A. marina. With a mean relative

shrinkage of 1.1% it is uncertain whether my stereo vision system could

have detected the same effect. I therefore conclude that the fixation method

is well suited for outdoor measurements of high-resolution leaf growth,

while for stereo vision some practical issues first need to be resolved.

The fixation method sets a benchmark of high accuracy and reliability at

low cost, which makes up for the high installation effort and limited applic-

ability. As discussed in Section 4.4, new consumer grade devices are being

developed which possibly could give similar or better results than my ste-

reo vision system, and at a much lower cost. Cost is an important factor

in method selection, and the acquisition of high accuracy laser scanning or

light-field systems is not feasible for many researchers.

The in situ installation of a contactless measurement device may not be

much simpler than the leaf fixation method. It would still require care-

ful placement in the canopy, and potentially some twig fixation to restrict

movements due to wind. The smaller and lighter the device, the simpler

the installation tends to be. The ideal system would be low cost and easy

to install. If the cost is low enough, a high number of measurements could

potentially also compensate for a medium measurement accuracy.

Much of my time was spent writing software. Plant image analysis is

a relatively young research field. Therefore, few established methods exist,

and many research groups develop their own custom-made solutions. I

intend to make my code publicly available to follow best practice (Lobet,

2017), and to encourage other researchers to conduct similar work.
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Tomé, F., Jansseune, K., Saey, B., Grundy, J., Vandenbroucke, K., Hannah,

M. A. & Redestig, H. (2017). rosettR: protocol and software for seed-

ling area and growth analysis. Plant Methods, 13(1), 13. doi:10.1186/

s13007-017-0163-9

Toomey, M., Friedl, M. A., Frolking, S., Hufkens, K., Klosterman, S.,

Sonnentag, O., . . . Richardson, A. D. (2015). Greenness indices from

digital cameras predict the timing and seasonal dynamics of canopy-

scale photosynthesis. Ecological Applications, 25(1), 99–115. doi:10 .

1890/14-0005.1

Tran, P., Gritcan, I., Cusens, J., Alfaro, A. C. & Leuzinger, S. (2017). Bio-

mass and nutrient composition of temperate mangroves (Avicennia

marina var. australasica) in New Zealand. New Zealand Journal of Mar-

https://dx.doi.org/10.1104/pp.113.233353
https://dx.doi.org/10.1104/pp.011296
https://dx.doi.org/10.1104/pp.011296
https://dx.doi.org/10.1104/pp.108.124271
https://dx.doi.org/10.1111/tpj.12131
https://dx.doi.org/10.1186/s13007-017-0163-9
https://dx.doi.org/10.1186/s13007-017-0163-9
https://dx.doi.org/10.1890/14-0005.1
https://dx.doi.org/10.1890/14-0005.1


146

ine and Freshwater Research, 51(3), 427–442. doi:10.1080/00288330.2016.

1260604
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Appendix

Tidal Inundation

This Appendix reports the recontruction of the tidal innundation for the field study

presented in Chapter 3.

At high tide, the study site is flooded for about two hours and twenty

minutes depending on the tide height (µ = 143 min, σ = 58 min). Water

depth data was acquired in 2014 at the same location using a CTD-5 elec-

trical conductivity, temperature, and depth sensor (Decagon Devices, Inc.,

Pullman, WA, USA; depth resolution of 1 mm; Donnellan Barraclough et

al., 2018). The sensor was located in a tube approximately 270 mm below

the ground level. For the study period I reconstructed the high tide times,

maximal tide height, and flooding duration correlating these data to water

depth measurements in Auckland (36°50’S, 174°47’E) obtained from Land

Information New Zealand (2017). Land Information New Zealand operates

two water depth sensors in Auckland; in this analysis I included data from

both. The recorded sensor data for the water depth measurements in the

field were very noisy. Therefore, I manually selected three periods with a

clean signal including a total of 73 high tide observations for the analysis. A

selection example is shown in Figure 29.

The highest water level at the study site lags behind the high tide at sea.

The mean observed time difference between the field and Auckland is 135.6

min (σ = 7.7 min; Figure 30).

There is a linear relation between the water depth at high tide in Auck-

land and in the field, adjusted R2 = 0.889, F (1, 71) = 577.7, p < 0.001;
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Figure 29. Example of the field water depth sensor data. The period from
8 October to 14 October 2014 (solid red line) was included in the analysis.
Negative values occur because the sensor was installed below the ground
level.

Figure 30. Linear regression between the water depth at high tide in Auck-
land and in the field. The inset shows the histogram of the time difference
of high tide in Auckland and in the field.
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see Figure 30 and Eq. (18). The relationship between the flooding dura-

tion and the water depth at high tide in the field is linear after square-root-

transformation (red curve in Figure 31). An untransformed linear model fits

the data quite well too (blue dashed line in Figure 31), but it misrepresents

low and high water depth observations. The fact that the linear model pre-

dicts a positive intercept, i.e. a positive flooding duration when the water

depth is zero, shows that this does not accurately represent reality.

The linear model assumes a constant inflow and outflow speed. The

water depth Di would then simply be a function of the duration ti:

Di = a · ti + b , (15)

with coefficient a in the unit meter per minute and intercept b in the unit

meter. Equation 15 can be rewritten like:

ti =
1

a
·Di −

b

a
,

= c ·Di + d , (16)

with coefficient c in the unit minute per meter and intercept d in the unit

minute.

However, the flow dynamics of tidal flooding are far more complicated

than this linear model. For the purpose of this thesis it is not required to

model the flooding depth for any given time point, but it is sufficient to es-

timate the time point of maximal depth, as well as the inflow and outflow

duration. The square-root-transformation leads to a modelled slope coeffi-

cient in the unit minutes per square-root of meter, which does not have any

physical meaning, but the model represents the observed values very well.

Flooding was defined as water covering the ground (horizontal blue line

in Figure 29). For one high tide observation in the sample this was not the

case. The tide inflow is significantly faster (µ = 58.8 min) than the outflow
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(µ = 83.8 min), t(71) = −12.94, p < 0.001. Therefore, inflow and outflow

time were modelled individually. Both models have a good fit and are

highly significant, with adjusted R2 = 0.959, F (1, 70) = 1659, p < 0.001

for the inflow; see Eq. (19). For the outflow we have adjusted R2 = 0.974,

F (1, 70) = 2695, p < 0.001; see Eq. (20).

Based on these results the tidal inundation was modelled as follows:

tF = tA + a1 , (17)

DF = a2 ·DA + b2 , (18)

tin = a3 ·
√
DF + b3 , (19)

tout = a4 ·
√
DF + b4 , (20)

with a1 = 135.6 min, a2 = 0.591, b2 = −3.395 m, a3 = 141.3 min√
m

, b3 = −3.1 min,

and a4 = 235.3 min√
m

, b4 = −19.2 min. Where tA denotes the high tide time in

Auckland, tF denotes the high tide time in the field, DA denotes the water

depth in meter at high tide in Auckland, DF denotes the water depth in

meter at high tide in the field, tin and tout denote the inflow and outflow

duration in minutes. The inundation starts at tF − tin and ends at tF + tout.

In cases of no surface flooding (DF < 0 m), tin and tout were set to zero.
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Figure 31. Regression between the water depth at high tide and the flooding
duration in the field. Water depth was square-root-transformed for the ana-
lysis (red curve). The blue dashed line represents an untransformed linear
model.
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