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Abstract 

Shoe print identification/classification technology is a great significance in crime scene 

investigation. Traditional shoe print identification and classification technology relied 

on the experience of investigators. More recently, machine learning technology has 

brought new research direction and impetus to shoe print identification technology.  

This thesis presents a method for classifying shoe print images based on convolutional 

neural networks (CNN). The main contributions of this thesis are listed as follows. (1) 

The research includes surveys and summarises existing classification methods of shoe 

print and proposes: the implementation of a CNN in the classification of shoe prints. (2) 

The traditional machine learning method artificial neural network (ANN) is used as the 

classification accuracy benchmark for CNN. (3) The traditional machine learning 

method support vector machine (SVM) provides a second classification accuracy 

benchmark for CNN.  (4) This research uses CNN to establish an image classification 

model, optimising the neural network to have higher classification accuracy. The results 

show that CNN has an outstanding performance in binary classification: the accuracy 

of classification reaches 99.91%; the sensitivity of CNN reaches 100%; and the 

specificity reaches 97.05%. These results surpass the other approaches (ANN and 

SVM). (5) The research successfully visualized the CNN model, which included 

features extracted from different layers, the kernel visualization, and the kernel heat 

map. 

Keywords: Pattern Identification, Shoe print identification, Convolutional neural 

network, Neural network Visualisation. 
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1. Introduction

1.1 Background and motivation 

Shoe print identification is one of the oldest technologies used to judge whether a 

person had been present at a crime scene, dating back to before the Southern Song 

Dynasty (960-1297A.D.) (Ci, 1235). Now, the same is achieved through the computer 

to identify the shoe from an image and determine the shoe print owner. Shoe print 

identification is an important research direction of a criminal investigation. The shoe 

print can be broadly broken into two classes: 1) those including 3-dimensional 

information (such as shoe print on the sand or dirt); and 2) those containing two-

dimensional information (shoe print on the hard floor). Shoe print is a common 

biometric characteristic in the scene of a crime, more frequent in fact than a fingerprint 

(Bodziak, 2000). Statistical techniques have been used extensively in the process of 

image classification and have a long history. Early studies used a manual classification 

method for the shoe mark image. It was an encoding form similar to the ASCII coding 

table for classification of a shoe image such as wave, rectangular, cube, circle pattern. 

(Xiao, 2007) This process is complicated, and some practical difficulties exist in 

processing. Existing research in the field focuses on a content-based image retrieval 

system (Dai, 2010; Arumugam & Rathinavel, 2011) which uses three layers to 

implement shoe print identification. 

A study of the traditional shoe print showed how it was divided into two parts or 

more, the front and the heel or the front, middle and the heel (Heinonenb, 1996). The 

first trial to separate shoe print into some parts is found in a 1990s study (Keyser, 

1996). The researchers set up a shoe database in cooperation with the Netherland 

police; each shoe consisted of more than 80 characters, stored in the database. Each 

character was labelled on the sole and was represented by a small shape, such as 

circles, rectangles, and hexagons in the image classification section; they used an 
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image processing package ‘Khoros’ (Konstantinides, 1994). This method can deal 

with two-valued images, black and white images. 

In any image database, dimension reduction is essential (Hamiane, 2008). It can 

extract characteristics efficiently and reduce computational complexity in 

classification. Discrete Cosine Transform (DCT) (Levine, 2001), Linear Discriminant 

Analysis (LDA) (Sirvoich, 1990) and Principal Component Analysis (PCA) 

(Pentland, 1991; Belhumeur, Hespanha, & Kriegman, 1997) are the main techniques 

used for data reduction and feature extraction in the appearance based approaches. 

DCT, Eigen faces and Fisher faces (Lu, Plataniotis, & Venetsanopoulos, 2003) have 

proven to be the most successful of all the others. It was noticed in the image 

processing literature that most effort is put mainly into developing a characteristic 

extraction method and creating powerful classifiers. For example, Euclidean Distance 

Classifier, Hidden Markov Models (HMMs) (Aboulnasr & Othman, 2003) and 

Support Vector Machine (SVM). Convolutional neural networks and deep learning 

development provide a new idea for pattern recognition in images (Lawrence, 1997). 

In convolutional neural networks, the generic descriptors extracted are very powerful. 

Through using a linear SVM classifier, the feature representation is extracted from a 

neural network intermediate layer (Razavian, 2014). Using simple augmentation 

techniques, such as jittering, enhances the outcome (Everingham, Gool, Williams, 

Winn, & Zisserman, 2012). The results show that the features obtained from deep 

convolutional network learning should be the primary candidate for most visual 

recognition tasks (Razavian, 2014). These general classification methods enabled the 

processing of an image to allow recognition automatically, which was an important 

achievement. 

When the original image has been processed as a grain image (grayscale), the Gabor 

transform can provide another multi-resolution feature of a shoe print (Woźniak, 

2017), which enables rotation and intensity invariant shoe print matching images 

(Creighton, 2017). Compared with the Fourier Transform (Remes & Senko, 2016) 
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and its Power Spectral Density (Gómez, 2017), Gabor transform represents an 

improvement in accuracy. An especially unclear or fragmented image, even with 

various interference factors, can be managed well so Gabor transform is taking shoe 

print recognition in a new direction. 

1.2 Contributions 

The main contributions of this study are as follows. The first is an investigation and 

summary of the existing shoe print analyses and shoe print classification methods. 

Second, an artificial neural network (ANN) is proposed for classifying shoe print 

images. Third, a support vector machine (SVM) is proposed for classifying shoe print 

images. ANN and SVM are used as a benchmark for convolutional neural networks. 

Fourth, a model of the convolutional neural network is proposed to deal with the 

problem of shoe print classification. Fifth, the existing convolutional neural network 

model is optimised, and the different performances of convolutional neural networks 

under different parameters are discussed. Sixth, a visualisation of neural networks is 

presented that shows the shape and function of the layer and the convolution nucleus 

of the neural network at different angles.  

1.3 Structure of this thesis 

The second part of the thesis introduces the development of shoe print identification 

technology. Traditional shoe-print identification technology divides images to extract 

their features. These techniques also use a variety of classifications and definitions, 
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using a variety of methods and algorithms and will be highlighted in 2.1.  

Using convolutional neural networks to identify facial images is a popular research area. 

In the process of studying face classification, researchers have experimented with a 

variety of deep learning models. These models can be used in this research because 

facial image and shoe print image have common relevance in some areas and the details 

are described in Chapter 2.2.  

This study requires deep neural network technology. The convolutional neural network 

model (compared to ANN) is relatively new. It is essential to have a strong platform to 

provide technical support. We studied the Tensorflow which was developed by Google 

as the main implementation platform for our research. The development of TensorFlow 

and the present situation is summarised in Chapter 2.3. 

In the third chapter of the thesis, the researcher sets out the problems that need to be 

solved in this study and discusses its methodology. In this section, the research process 

is outlined. 

Chapter 4 explains the research technique used in this thesis. The core of the technology 

- artificial neural networks, support vector machines, convolutional neural networks -

will be discussed in detail. Especially focused on in this research are convolutional 

neural networks in terms of the neurons, forward propagation theory and back 

propagation theory.  

The fifth chapter is the experimental design. The researcher has designed several 

experimental approaches to improve the credibility of the research methods used in this 

experiment. Specific details will be discussed in this chapter. 

The sixth chapter of the thesis is the significant section of the study: the results and 

discussion of the experiment. In this stage, the advantages and disadvantages of the 

three methods are compared, and the superiority of convolutional neural network model 
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is analysed. The researcher visualises convolutional neural networks and tries to 

understand the functionality of convolutional layers and filters.  

The last chapter of this thesis is the conclusion. It discusses the results of this study, 

summarises the shortcomings of this study, and suggests future research directions. 

Note that all tables and figures are located in separate appendix to ensure clarity of 

presentation and intelligibility. 
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2. Literature Review

2.1 A Survey of shoe print recognition 

2.1.1 Introduction 

Shoe print is the mark left on the surface of the sole. When a person walks, his sole will 

exert pressure on the floor and leave a mark. Shoe print plays a significant role in the 

detection of new criminal cases (Gharsa, 2008). The shoe print which is left at the crime 

scene will express various kinds of information about criminals (Sawyer, 1995). 

According to the size of the shoe print, the height and weight of the suspect can be 

obtained (Sawyer, 1995). Most shoe brands have their unique texture; the modern 

classification standard can be used to determine the suspect's social status and income 

level (Rathinavel, 2011). The faster classification and identification of shoe prints 

obtained at the crime scene will effectively improve the efficiency of solving cases 

(Horswell & Cordiner, 2002). 

A shoe print can be mainly divided into two parts, the toe and the heel. It also can be 

divided into four parts which are tip, forefoot, bow and heel (Guan, Li, & Zhong, 2008). 

In many cases, the footwear stamps collected at the crime scene are incomplete, perhaps 

only a quarter complete. Using the limited original evidence to infer the classification 

of the entire shoe print is complicated in the traditional manual identification stage, and 

it takes much time to identify and match. Some researchers have begun to use part of 

the shoe print to match some or all of the shoe prints by using sub-space approaches. 

In their experiments, the accuracy of complete shoe prints was 65% to 87%, and 55% 

to 78% in partial shoe prints. Nibouche, Bouridane, Gueham, and Laadjel (2009) 

propose a solution to rotated partial shoe prints retrieval, based on the combined use of 

local features. 

This survey is divided into three parts. The first part focuses on the collection 

technology of the shoe print. The second part lists the preprocessing technology of the 
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shoe print image. The third part discusses the various techniques and algorithms used 

in the identification and classification system of the shoe print. Finally, we provide 

some concluding observations and further instructions. 

2.1.2 Shoe print collection and image preprocessing 

Shoe print collection and image preprocessing are two main stages of image 

identification; these two stages have the same goal, which is to improve the position of 

shoe printing in the image. Whether it is a manual identification or machine-classified, 

the researchers want the shoe prints to be clearly shot in the picture, so that the judgment 

will be more accurate.  

Shoe print collection can be divided into two types: (1) using the high precision shoe 

prints provided by the manufacturer to create a database; and (2) collecting the shoe 

prints from the scene of the crime. 

Shoe print collection 

Most shoe prints provided by shoe manufacturers are highly accurate pictures 

(Rathinavel, 2011). The picture will contain many details; the size, colour and material 

of the shoe will be shown in the image. The texture of the sole will be visible. Some 

shoe factories even offer shoe print templates with 3D information such as texture depth. 

If it is hard to obtain the shoe print template provided by the manufacturer, using digital 

camera shooting is a standard way to expand the shoe print database. The existing 

photographic equipment has been able to display the high precision details of shoe 

printing. 

According to Shuhui et al.'s study (2003), shoe prints are separated into two categories: 

plain shoe prints and three-dimensional shoe prints (Gao, 2003). The impression of the 

plain shoe only exerts the force on the surface of the object and does not change the 

carrying object significantly. Plain shoe prints can only reflect the structural features of 

the convex part of the sole. When high-heeled shoes are encountered, the characteristics 

of the middle-shoe cannot be expressed, and the entire shoe print will appear to be 
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interrupted. Therefore, the plain print is often incomplete, and its features are 

incomplete, too. When the photographs of the soles are compared with the shoe print, 

the inside and the outside are opposite (left and right side). A shoe print sample must 

be produced from the forming conditions of the plain shoe print. 

A three-dimensional shoe print is an object that a shoe acts on, and the shoe causes the 

object to undergo a significant deformation. When stereoscopic photographs are 

compared with a sole image, their concave-convex surfaces are reversed, and the 

recessed part of the shoe print is precisely the protruding part of the sole. For 

verification, plaster or other plastic materials can be used to make a three-dimensional 

shoe print model, which can be consistent with the photos of the sole. 

The collection of images at the crime scene will be more difficult and require more skill 

for on-site investigators. Due to the different materials on the tread surface, shoe print 

collection requires the use of different technologies. Depending on the surface material 

being stamped on, there are three main techniques for collecting shoes: (1) on sandy 

land; (2) soft materials, mainly on the surface of carpets, beds, quilts, sofas; and (3) on 

a hard surface, mainly refers to the ceramic, glass, wall and other materials (Crookes, 

2007).  

On the surface of a soft texture, a puzzle will be encountered - that the shoe print colour 

is too similar to the background. It can lead to the inability to extract the shoe print from 

the computer. Peng et al.'s research focuses on photography (2005). They used the 

difference in reflection and absorption of different wavelengths of UV light from 

various substances and recorded the reflection of ultraviolet light on shoe prints. Peng 

used ultraviolet rays with a wavelength of 253 nm to irradiate shoe prints. Since the 

flannel carrying the shoe prints absorbs most of the ultraviolet light, the dust is not 

substantially absorbed. It gives a higher contrast between the dust shoe print and the 

background. So that can get the details of shoe prints. This method is suitable for all 

photography that needs to remove traces of background colour. 
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Shoe prints left on hard surfaces are usually better collected, but criminals often use 

water to wash the leftovers. This makes shoe collection on hard surfaces also 

complicated (Yang, 2010). Ordinary shoe prints are due to subtle dust and water stains 

left on the tile surface. There is no colour difference between the shoe print and the 

background, and the above-mentioned ultraviolet colour separation photographic 

method cannot work efficiently. Yang adopted the technique of reflected light and 

obtained more successful images of unclear shoe prints (2010). There are three main 

types of shoe prints: more water, less water, and completely dry. A shoe mark with much 

moisture can be regarded as a three-dimensional shoe print, and a shadow of the water 

droplets irradiated by a single-side light is used to take a shoe print. The camera needs 

to be directly above the tile, and the angle between the light source and the camera at 

70° to 90°. When shooting shoes with less moisture, the light source needs to be moved 

up, and the angle between the lens and the light source set between 0 and 38°. When 

the shoe print is completely dry, the distance between the light source and the shoe print 

needs to be increased when taking pictures, and the angle between the light source and 

the ground set between 60° and 90°. The camera takes a photo on the other side of the 

light source. However, the samples obtained by this photographic means are deformed. 

It is necessary to place a scale next to the shoe print to facilitate later correction. 

 

Image preprocessing 

Segmenting the target image from a complex background is a critical step in the image 

processing flow. So far, no method can accurately extract the target from the 

background. What the researchers do is to get as much detail as possible from the 

original picture. In shoe print identification, the required preprocessing steps include 

image enhancement, noise elimination, colour image conversion to grayscale, grayscale 

conversion to the binary image, contour extraction, and other steps.  

Step one: Shoe print contour extraction and tilt correction. 

The light should come as the primary consideration during the shooting. In order to get 

a clearer shoe print texture, the technical personnel need to adjust the shooting angle so 
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the shoe print can be seen at various angles. When the shoe image is preprocessed, the 

image is rotated to make the top of the shoe point upwards. However, it cannot ensure 

that all the images have the same inclination, which directly affects the automatic 

recognition accuracy, so the tilt angle needs to be detected, and the rotation for the 

image corrected. The idea of Guan et al. (2008) was that the longest distance in a shoe 

print image is the length of the shoe, which is longer than the length of any other two 

points in the shoe print. The angle between the long line and the vertical axis is the 

angle of the image deflection. This angle is also the point of view that needs to be 

correctly turned.  

To achieve this effect, Guan et al. worked with a four-part process. The first involves 

extracting the outline of the shoe print (Guan, Li, & Zhong, 2008), recording the first 

black pixel point on each row from the left and the first black pixel on the right side of 

each row. Through this algorithm, the outline of the shoe print can be stored in a two-

dimensional matrix: 

A= .  (2.1) 

Where ax0 stores the vertical coordinates of the first black pixel point on the left, ax1 

stores the vertical coordinates of the first black pixel point on the right; h is less than x 

less than k, h indicates the first black pixel point that appears on a line by line, and k is 

used to represent the cross coordinates of the last black pixel point (see Figure 2-0). 

After the shoe print is extracted, Guan et al. calculated the shoe length (the longest axis) 

– the second part of the process. The distance between the longest two points of the

shoe is used as the length of the shoe, and the formula is used: l= { max( distance ( ( i, 

ai0 ) , ( j, aj, 1 ) ) |h≤ i≤k, i≤j≤ k}. Among them: distance ((I, ai0), (J, aj. 1)) the distance 

between the outline points of coordinates (I, ai0) and coordinates (J, AJ, 1); h is the 
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transverse coordinates of the top black pixels in the outline; k is the transverse 

coordinates of the bottom black pixels in the outline; the ai0 is the column coordinates 

of the left wheel profile of the row coordinates; ai1 is the right wheel of the row mark. 

The column coordinates are the outline point. To improve the execution efficiency and 

avoid duplicated two-wheel profile points, the contour points on the left of the longest 

axis and all the right contour points on the right side of the longest axis are more than 

equal to all the right contour points of the left profile point line (also see Figure 2-0). 

The third part is to calculate the angle α between the longest axis and the horizontal X-

axis. 

The fourth part is if α is less than 90°, then the angle of the rotation of the image is 90° 

- α (anticlockwise), if the α > 90°, then the image rotates clockwise at the α - 90°.

Step two: image enhancement. 

Image enhancement is employed to highlight specific information in a particular image 

according to specific requirements while removing unnecessary information to improve 

the recognition rate of images. Guan et al. pointed out that the use of Retinex image 

enhancement algorithm will have a good effect in dealing with shoe print images (2008). 

Retinex has good results in sharpening, colour constancy, dynamic range compression, 

colour fidelity, and so on. The colour image itself contains a large amount of colour 

information, the space occupied by the image is ample, and the processing takes a much 

longer time. However, in shoe print identification, what the researchers need is the 

relationship between the effective pixels of each shoe print, without the need for colour 

information. Converting colour images into black and white pictures is an effective way 

to reduce image size. During the transformation from a grayscale image to a two-value 

map, the maximum entropy principle is used to select the threshold value to cut the 

image. After segmentation, the image is transformed into a two-value image with a 

white background and a black shoe print.  
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Step three: image feature extraction 

The rotated image needs to re-extract features. There are two main methods for 

extraction. One is extracting the outline only, in accordance with Guan et al. (2008), 

and the subsequent identification is also based on the critical points of the shoe print 

outline. These researchers divided the shoe print into four areas: the tip of the shoe, the 

sole, the bow, and the heel. Each area occupies part of the shoe print. According to the 

above-proposed method, they calculated the width of each area. If only using the four 

parameters of shoe length, palm width, bow width and heel width, describing the outline 

characteristics of the shoe print is not enough; the two shoe print outlines with entirely 

identical four parameters will appear completely different, as shown in Figure 2-1.  

The main reason for this situation is that the position of the palm width, width of the 

bow, and the width of the heel relative to the entire shoe are not taken into account. 

That is the distance or angle of each feature point. Guan et al. not only considered the 

length and width of each part but also the distance of each feature point. The distance 

reflects the position of the palm width, bow width, and heel width relative to the entire 

shoe. The shape characteristics of the shoe print are described as S = (CD/AB, EF/AB, 

GH/AB, AI/AB, AJ/AB, AK/AB, CI/CD, EJ/EF/GK/GH). 

The second method of extracting image features is to record the position of each point 

in the image. The abscissa and ordinate of each point are arranged in a row as a sample. 

The sample with the largest length is used as the length of the entire matrix, and the rest 

is filled with 0. 

2.1.3 Verification algorithm 

Identification and verification are the two phases of the entire identification system. In 

verification, only a yes/no response is required. In identification, the shoe print must be 

identified by matching against a database entry (Adams, 2009). The verification 

requires high accuracy, and the identification needs to have fast identification speed 

with high accuracy. Only in this way can the theory be used in actual projects. However, 

it is regrettable that existing researchers rarely record the speed of identification and 
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verification. This is because computer hardware is very different. Machines at different 

price points will have utterly different verification speeds. On the other hand, most 

researchers are only aiming for an improvement of one of the algorithms. Compared 

with the traditional model, the improved system efficiency after the optimised 

algorithm is obvious. In this section, the advantages of various algorithms will be 

compared. Verification and identification approaches are mainly divided into pattern-

based, subspace-based, and other complicated methods. The survey here is also based 

on these three categories. 

Pattern-based approaches: 

The shoe print identification technology based on the pattern is the most traditional 

shoe print identification method, and shoe printing itself is a collection of various 

patterns. According to the study by Gao et al., today's police department in China is still 

based on the preservation and identification of shoe prints (2003), which are mainly 

based on the different pattern features of different regions after the segmentation of the 

shoes and the identification of different images: the damaged shape of the shoe tip, the 

main bearing area of the shoe, the shape of the shoe bow, and the wear degree of the 

heel. These indicators can be used as a basis for judging a person's walking habits. Soles 

vary from person to person as a result of the amount and style of walking. The damage 

from the shoe tip area usually reflects the characteristics of a person when starting a 

step. The damage pattern of the toe is mainly circular, triangular or irregular. The 

abrasion of the sole reflects the main force exerted by a person while walking. 

According to the different shapes of the pressure surface, it is possible to learn about 

the change of the centre of gravity of his/her body when walking. For the same reason, 

the wear of shoe bows and heels can also be recognized as revealing attributes of the 

person. 

According to different parameters of the shoe print profile, the classification of shoe 

prints has reached a better level (Guan, Li, & Zhong, 2008). Similarly, the shoe print is 

divided into four parts, and the information of the area, width, and length of each part 
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can also be used as the attribute of classification. To improve the efficiency of 

identification, Guan at al. not only match the properties of the width and area and the 

data in the database, but also deal with the offset of the shoe palm and the shoe bow 

relative to the whole shoe, and thus get a more accurate value. 

Subspace-based approaches 

Compared to the traditional way of classifying shoes based on patterns, the subspace-

based approach is more varied. Scale-Invariance Feature Transform (SIFT) is one of 

the popular methods for detecting key points of an object (Li, 2011). According to the 

research of Li (2011)., SIFT can identify the same object in another image by rotating, 

translating and illuminating the shoe print on the premise of invariable scale. The same 

method is used in Dong's research (2017). SIFT can rely only on partial patterns to 

match the complete pattern. Moreover, this algorithm makes full use of the grayscale 

statistical characteristics of the image and avoids any influence on the picture quality 

due to factors such as local environment, light, and noise. The overall performance of 

the SIFT operator is better than other operators, and the extracted feature points have 

good stability, especially for local tasks such as image identification and image 

matching. 

Based on SIFT, Dong introduced Random Sample Consensus, RANSAC. The 

algorithm can further improve the overall system accuracy, enhancing the availability 

and robustness. The experimental results also show that the accuracy of the matching 

is 91% to 96% using a identification system combining SIFT and RANSAC. 

Because the ordinary shot image contains much information such as environment, 

colour, light, and so on, this information will greatly increase the time of image 

identification. The researchers want to achieve high-speed matching of existing pictures 

and pictures in the database, dimensionality reduction is inevitable (Rathinavel, 2011). 

Principal component analysis (PCA), linear discriminant analysis (LDA), discrete 

cosine transform (DCT), and single-value decomposition (SVD) are methods that can 
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effectively reduce the size of the image. Rathinavel pointed out that DCT is 

conceptually similar to the discrete Fourier transform (DFT), except that the DCT does 

a better job of concentrating energy into lower order coefficients than does the DFT for 

image data (2011). 

PCA is also known as the Karhunen-Loeve method. This technique can effectively 

reduce the dimensions of computer vision. In previous studies, PCA has often been used 

in face identification to reduce the size of data. In the study by Rathinavel , PCA was 

used to form eigenvectors of the covariance matrix of the set of shoe print images, 

treating an image as a point in a very high dimensional space (2011). 

SVD, such as principal component analysis, digital watermarking, and data 

compression, has been widely used by past researchers. This has also been of high 

research value in the field of image identification (Guo, 2018). Images are compressed 

on a large scale and, after undergoing singular value decomposition, most of the 

elements in the matrix have a value of 0. 

Other Approaches 

In the most advanced research, it is evident that single means are not enough to achieve 

the most accurate and efficient results. Researchers have tried to improve the accuracy 

of identification by various means. In the study by Sun, canonical correlation analysis 

(CCA) is used to extract features and form more representative identification vectors 

(Sun, 2005). 

The use of K-SVD dictionary to learn about and solve the problem of image 

identification is a new way of thinking. Especially in the processing of large sample 

data sets, dictionary learning will ensure greater progress (Liu & Liu, 2018). Image 

processing using SVM-PSO and complex image processing methods in SVD and DWT 

domains also has excellent classification results (Chang, 2016). According to Chang 

(2016), the accuracy of this method for complex texture image classification reaches 

95% to 97%. Chang used SVD to enhance the image texture and extract the DWT and 
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SVD features in the image. The two features are combined to get the best feature 

combination (2016). 

2.1.4 Conclusion 

In the field of shoe print identification, many researchers have designed algorithms 

based on previous face recognition methods. To improve the accuracy and speed of 

recognition, the researchers hope to design better algorithms. A combination of multiple 

algorithms can lead to a breakthrough in accuracy. Before introducing new technologies 

into the field of shoe print identification, research into the existing models is of great 

value, and this has also provided the direction for our subsequent research. 

According to this chapter’s survey, there are still no research organisations or 

individuals using artificial neural networks to classify shoe prints in the literature 

published so far. So in this study, we will use traditional machine learning methods to 

classify shoe prints, using the obtained accuracy as the benchmark for the convolutional 

neural network training. We chose the artificial neural network and support vector 

machine as the two methods to classify the existing datasets, hoping to get a good 

benchmark.  

In addition, the survey revealed that there are still no organisations or individuals using 

the convolutional neural network for shoe printing classification either. In order to 

understand the current situation of convolution neural network in pattern classification, 

some research needs to be carried out into the convolution neural network in facial 

recognition in order to obtain some methods and means for use when applying CNN to 

shoe print recognition. This is the subject of the next chapter.   
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2.2 A Survey of Face Recognition with Convolutional 

Neural Network 

2.2.1 Introduction 

With the development of traditional machine learning technology, deep learning can 

produce more appropriate expressions from one layer to multi-layers, and, as a result, 

has been widely used in many areas.  The traditional deep learning algorithm loses the 

structure information of the original image in pattern recognition. This leads to a decline 

in the recognition accuracy (Yin, Wang, & Wang, 2015). However, the convolution 

neural network not only inherits the advantages of the automatic extraction of features 

from the traditional deep learning neural network but also guarantees the spatial 

information of the original data by the local receptive field (Yin, Wang, & Wang, 2015). 

During sub-sampling, Local Correlation Principle (LeCun, Boser, Denker, & 

Henderson, 1989) is used to reduce the amount of data processing while preserving the 

structure information. The parameters needed in the training process are reduced, so it 

has a better effect in various recognition fields by sharing weights, and it still has a high 

level of robustness after the image shift, scale, and distortion invariance. 

Convolution neural network has apparent advantages in the face recognition area. 

Convolution neural network can reduce the complex structure of the traditional neural 

network as far as possible. Convolution neural network can be used as input directly by 

using raw data (such as pixel value or original images), avoiding the extra data 

preprocessing as in traditional recognition algorithms (LeCun, Bottou, Bengio, & 

Haffner, 1998). There are two main reasons for focusing on facial recognition 

technology. First, the shoe print and the human face both have clear edges; in the same 

way that the human face may be oval or round, the shoe print also has a unique shape. 

Digits or articles of clothing, for example, do not share this feature. Second, the leather-

grain of sole has huge difference from other shoes. CNN may extract more features 

than fingerprint technologies.  
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The earliest use of the convolution neural network can be traced back to the 1980s York 

University professor LeCun et al. who used CNN for handwritten digital recognition 

and as a tool for bank identification of bill data (LeCun, Boser, Denker, & Henderson, 

1989). In 2012, in Canada, Hinton and others got the best results on ImageNet and they 

used a deeper convolution neural network (Hinton & Salakhutdinov, 2006; Hinton, 

Osindero, & Teh, 2006; Hinton & Krizhevsky, 2012). Facebook also achieves 97.25% 

accuracy in face recognition using deep convolution neural network (Taigman & Yang, 

2014). Team Face++ from China won the championship by using Pyramid CNN in face 

recognition public data LFW (Fan & Cao, 2014). In 2012, researchers at the GoogleX 

laboratory built the world's largest artificial neural network, Google brain, using 1,000 

computers (16K CPU in total). They extracted nearly ten million still images from 

YouTube videos as training sets. The trained Google brain can automatically classify 

faces, human beings, animals and other types of images from the Internet video 

(Sungjoon, 2013). 

Face recognition technology is a significant branch of machine learning. A face 

recognition system usually includes face image acquisition, image preprocessing, face 

feature extraction and feature classification. Among these stages, feature extraction 

plays a core role in a face recognition model and affects the recognition rate of the 

whole system. Because of this, the construction and extraction of facial expression 

features received extensive attention. Images of faces contain many feature points that 

can be extracted by CNN; the complexity of the image is incomparable with digital or 

character images. This is very similar to the image of the shoe print, which also contains 

a lot of random feature points. Some of these features can be extracted by neural 

networks, while others are more difficult. Based on facial recognition studies (referred 

to below), we can understand the methods used to process complex images.  

Researchers have designed a range of methods including: Active Appearance Model 

(AAM) (Cootes, 2001), Gabor Features transfer (Gu, 2012), Local Binary Pattern (LBP) 

(Shan, 2009), Histograms of Oriented Gradients (HOG) (Wang, 2013), and Local 
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Discriminative Component Analysis (LDCA) (Jiang, 2014). The common point of 

these methods is use features which, to a certain extent, are human-made and so lose 

the original feature information. Alternatively, assuming that the features are 

independent of each other, these features cannot express the actual practical 

environment. In recent years, in the machine learning area, feature learning algorithms 

have appeared (Bengio, 2013). These include: Local Linear Embedding (LLE) (Roweis, 

2000), Laplacian Eigenmap (LE) (Belkin, 2003), ISO metric MAP ping (ISOMAP) 

(Tenenbaum, 2000), Uncorrelated Locality Sensitive Discriminant Analysis (ULSDA) 

(Lu G. , Neonatalpainexpresionrec- ognition based on uncorelated loclaity 

sensitivediserimi- nantanlaysis, 2013), Two-dimensional Locality Preserving 

Discriminant Analysis (2D-LPDA) and (Lu G. , 2014). These methods abandon manual 

marking and the obvious feature extraction methods, and build a multilayer neural 

network so that the machine can learn the more essential features from sample data, 

which make these features more generalizable and characterisable. 

This survey mainly investigates several recent studies on the realisation of facial 

recognition using convolution neural networks and introduces the different 

performance of various algorithms or combination of algorithms in identifying facial 

features. The first part of the chapter is an introduction to the deep learning model and 

the theory of convolution neural networks. The second part introduces approaches and 

implementation methods used by researchers in the process of facial recognition 

research. The third part introduces several common facial recognition databases. The 

fourth part of the chapter discusses the methods that can be used in subsequent research. 

2.2.2 Deep learning model with CNN 

Deep learning is essentially a general term for a class of training methods that have 

deep structure models. The deep structure is relative to the shallow structure. The 

shallow structure model usually contains nonlinear feature transformations that are not 

more than one or two layers, such as Gaussian Mixture Model (GMM), Support Vector 
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Machine (SVM), and Multi-layer Perceptron (MLP). The related research has proved 

that the shallow structure has a good effect on uncomplicated and constrained data (Lu , 

2016). However, when researchers must deal with complex data in the real world, such 

as voice, natural sound, natural image, and video, these models will have problems 

related to the inability to capture expressions. The deep learning structure model is 

characterised by hierarchical representation. Regarding learning about highly nonlinear 

relationships and complex function representation in large data sets, multi-layer 

structures are more capable than shallow structural models. 

  

Typical deep learning models include Deep Belief Networks (DBN) (Hinton & 

Salakhutdinov, 2006), Stacked Auto-encoder (SAE) (Hinton, Osindero, & Teh, 2006) 

and Convolutional Neural Networks (CNN). DBN consists of several structural units 

stacked, and the structural unit is usually Restricted Boltzmann Machine (RBM). RBM 

is a special form of Boltzmann Machine; variables between the graph model connection 

forms are restricted, only visible layer nodes and hidden layer nodes have connection 

weights, whereas there is no connection between two visible layer nodes or two hidden 

layer nodes. The number of neurons in the visible layer of each RBM cell in the stack 

is equal to the number of neurons in the hidden layer of the previous RBM unit. DBM 

automatically learns the abstract features of different levels from bottom to top, and 

finally obtains the nonlinear description of features. It expresses an automatic feature 

extraction process that does not depend on human-marked. DBN has been successfully 

applied to many fields such as handwritten digit recognition. However, DBN ignores 

the two-dimensional spatial structure information of the image and the local structure 

between adjacent pixels, and it is difficult to learn the local features of the face image. 

Moreover, the learning processing of DBN is slow, and the improper selection of 

parameters will lead to the convergence of the learning to the local optimal solution. 

The structure of Stacked Auto-encoder (SAE) is similar to DBN and is stacked by 

several structural units. However, the difference between the two is that the structural 

unit of SAE is Auto-encoder instead of RBM.  
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The convolution neural network is a deep neural network containing a convolution layer, 

whose template was initially inspired by neuroscience, mimicking the axon and nucleus 

(cell body) in nerve cells which are on the visual cortex to process visual information. 

Axon responds to edge information from different directions, and the cell body 

accumulates the output of single cells nearby. It became known as the Hubel-Wiesel 

structure (Hubel & Wiesel, 1962). CNN includes a multi-stage Hubel-Wiesel structure. 

Each stage usually contains basic convolution operations that simulate axon and 

pooling operations that simulate cell body. In CNN, the units in the image (local 

receptive fields) are input, and they are the lowest in the network hierarchy. The 

information is transmitted to different layers, each layer using a digital filter to obtain 

the most valuable characteristics of the observed data. This method can obtain 

significant characteristics of the observed data for image shift, scale, and distortion 

invariance, because the local receptive fields of the image allow neurons or processing 

units to access the most salient features, such as directional edges or corner points. 

The basic structure of the convolution neural network is: data input layer (the dimension 

centre of input data to 0, remove many deviations, avoid impact results); convolution 

computing layer (CONV, linear involution, summation); motivation layer (ReLU, one 

of the motor function); pooling layer (marked as POOL, take the region average or 

maximum value, effectively reduce the matrix size, reduce the full connection layer 

parameters); full connection layer (FC, output a program to select the category of an n-

dimensional vector); and output layer (OUTPUT recognition classification results) (Xu 

& Liu, 2018). 

The basic learning processing is: 

1) The image is processed into the neural network model by the input layer

preprocessing; 2) the convolution layer of the filter is placed in the convolution 

operation because the filter in each convolution operation has the ability of local 

perception so that the neural network can perceive the local characteristics of the image; 
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3) the motivation function of the convolutional operator processes the results; and 4)  

the processing result is output to the neuron, all the neurons output in the layer 

constitutes the feature map of this layer, set as the input of the next layer. Each neuron 

in the next layer is connected to the local receptive fields of the previous layer. 

 

It is assumed that the attribute a is on convolutional layer b which can be explained by 

Xlj, then: 

 𝑥𝑗
𝑙 = 𝑓 ((∑ 𝑖𝑖=𝑀 ⋅ 𝐾𝑖⋅𝑗

𝑙 ) + 𝑏𝑗
𝑖) (2.2) 

 

Formula: f (.) is the activition function, M as the input of the previous layer of the set 

of feature graphs. K is the weighted value of the convolution kernel, and b is the only 

variable that can be added to the convolution feature chart X, so that can reduce the 

amount of computation in the next stage. After the convolution features are extracted 

from the image, a computational layer, which is used to compute the local mean and 

secondary feature extractions, is needed. It is called the sub-sampling layer, and the 

lower sampling layer can reduce the feature dimension extracted by the convolution 

layer and reduce the resolution of the feature.  

 

Assuming that the feature map j of the sampling layer l is represented by X, then:  

 

 𝑥𝑗
𝑙 = 𝑓(𝛽𝑗

𝑙𝑑𝑜𝑤𝑛(𝑥𝑖
𝑙−1) + 𝑏𝑗

𝑙) (2.3) 

 

In the formula: down () is a sub-sampling function, β is the unique product variable of 

the feature graph, b is the only addition and subtraction variable of the convolution 

feature graph. Multiple convolution layers and a sub-sampling layer be have operate it 

according to the experiment requirement.  

 

 

The training of the convolution neural network is set out below. 
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1) The forward propagation stages. Sample x is a sample of the training sample set. y 

is the corresponding category label, and the X is input from the input layer to the 

convolution neural network model, and then the output of the current layer is calculated 

by the motivation function of the current layer. In the convolution neural network, 

except for the last layer, the output of each layer is used as the input for the next layer 

and passed down by layers. The Softmax layer is finally obtained. The output of the 

layer is Y. Y is an n-dimensional vector. Every dimension in the n-dimensional vector 

represents the probability that x becomes the corresponding category.  

2) The stage of error propagation. Calculate the error between the output Y from 

Softmax layers and vector y from the labelled class of given samples. The weight value 

parameter is adjusted by minimising the mean square error cost function. 

 

2.2.3 Application of CNN in face recognition  

The complexity of face images brings new inspiration to research on shoe printing. In 

recent years, facial recognition technology has made great progress. The face image 

contains many random feature points, and the shoe print image also contains many 

random feature points. Thus, it can be said that there is a certain correlation between 

the two technologies. The researcher tried to investigate existing methods of facial 

recognition in the hope of finding the right way to use them, drawing on their techniques, 

for the study of shoe print recognition 

 

Improved Fisher criterion with CNN 

Sun used an improved Fisher criterion in CNN (Sun F. , 2015). The traditional deep 

learning technique decreases rapidly when the number of data set samples drops. 

According to Sun’s statistics (2015), using the classic CNN algorithm, the image 

recognition accuracy is 88.6%, when the training sample number is 60,000. However, 

when the data set sample number is reduced to 20,000, the recognition accuracy of the 

pattern falls to 70.2%. When the number of training samples is below 10,000, the 

accuracy is less than 20%. Sun effectively use the deep learning technology to extract 
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features automatically and put forward a CNN algorithm based on an improved Fisher 

criterion (2015). The constraint criterion based on Fisher is adopted in the adjustment 

of the weight value of the backward propagation. The minimisation of error is 

considered in the iterative adjustment of weights. It is important to keep the sample 

distance small within the class, and considerable distance between the classes so that 

the weight can be more quickly approximated to the optimal classification of the best 

value. When the sample size or the number of training iterations is not enough, the 

Fisher criterion can effectively improve the system recognition rate.  

Deep consecutive convolutional neural network 

In order to improve the extraction ability of convolution neural networks, Niu and Chen 

put forward a neural network model for the continuous use of multiple convolution 

layers (Niu & Chen, 2016). The model uses a small scale convolution kernel and a 

consecutive two convolution layer to deal with the issue of excessive convolutional unit 

quantity. This method, combined with dropout technology, can increase the non-linear 

expressive ability of the model and reduce the interdependence between neurons. 

Deep convolutional neural network  

Unlike the traditional CNN model, Oxford University's Parkhi and Omkar tried to use 

a much deeper CNN model (2015), which maximises the ability of neural networks to 

extract and learn samples. They used up to 37 layers of neural networks (Table 2-1). 

This neural network contains 11 blocks, each containing a linear operator (CONV) and 

several nonlinearities, such as Max Pooling and ReLU. The first eight are called 

convolution blocks because the operators are linear operators. The last three blocks are 

fully connected; they are the same as the first eight convolution layers, but the size of 

the filter matches the input layer. 

After 37 layers of neural network training, the final output will be 4096-dimensional 

descriptor vectors. Compared with other algorithm models, using this very deep neural 

network, the number of samples in the training set is one per cent of the other methods. 

Moreover, the accuracy is very similar. It shows that a convolution neural network can 

be used to establish appropriate structures and suitable training methods. It also can 

have a good result even without any modifier algorithm (Table 2-2). 
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Multimodal deep face representation 

The traditional CNN model focuses on two-dimensional images and has an outstanding 

result in recognition accuracy. Although the CNN model can effectively solve the 

problem of image shift, zoom and shrink, the details are missing,  so this still cannot 

satisfy the actual requirement. The face images obtained in daily life will vary greatly 

depending on the angle, light, and colour in the shooting. The same face can also be 

large changed by the expression. The robustness of the CNN model has been questioned. 

Ding’s research aimed to try to solve this problem (2015). Instead of using a single 

image to train the neural network, they used multiple-angle images of the same person 

to create a face model multiple time. They firstly used OpenGL to simulate a photo of 

the three-dimensional model and then create Multi-angle images as input. The 

researchers built different blocks; each block should contain two to three convolution 

layers and a pooling layer (total 12 convolution layers and five pooling layers). The 

human face model created in this way is robust. Moreover, it is suitable for multi-angle 

images. It should be recorded that this method would have the best accuracy in 

supervised training - the correct rate is over 98%.  

Domain-specific data augmentation in CNN 

In recent years, much of the human face recognition progress has been due to the 

expansion of the dataset. Facebook created labelled Faces in the Wild (LFW), which 

contains 4.4 million face images (Taigman & Yang, 2014). After that, to study VGG-

face representation, Parkhi and Omkar. trained 2.6 million samples (2015). Moreover, 

face++ 's team used 5 million photos for their Megvii System (Zhou & Cao, 2015). And 

the latest Google FaceNet used 200 million tagged images (Schroff & Kalenichenko, 

2015). Collecting and labelling these images is a huge expense, and this is not at all 

affordable to most researchers. 

For this reason, Masi used a new method to improve the image sampling rate and reduce 

the number of samples in the dataset (2016). The traditional CNN model does not 

require preprocessing of samples. CNN's unsupervised training model automatically 
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extracts valuable features and feeds back to the entire neural network. It is also the 

reason why the researchers increased the size of the dataset - more samples will repair 

a few samples of abnormal conditions to prevent overfitting. Masi used image 

preprocessing technology, data enhancement, especially in specific areas of image 

enhancement, such as the eye, mouth and other parts. They used face synthesis 

technology to enlarge, significantly, the original data set; for example, they constantly 

modified the emotion appearing on the mouth to create a new sample. This approach 

ensures the sample quantity of the dataset, enhances the system robustness and reduces 

the possibility of overfitting (2016). 
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2.2.4 Dataset collection 

Besides the databases mentioned above from Google's, Facebook's and Face++'s 

database, some databases, as detailed below, also have significant research value. 

1. FERET face database (Gross, 2005) 

Created by the FERET project, it contains 14,051 multi-pose, illuminated grey-scale 

face images, which is the most widely used in the face recognition field. 

In one of the face databases, most of them are Westerners, and each of them contains 

relatively simple changes in face images. 

2. MIT face database (MIT, 2018) 

Created by MIT Media Lab, there are 2,592 different poses, light and size facial images 

of 16 volunteers. 

3. Yale face database 

Created by the computing vision and control centre of Yale University, 165 images of 

15 volunteers, including illumination, expression and posture changes, are presented. 

4. Yale face database B 

This database contains 5,850 multi-pose and multi-illumination images of 10 people. 

The images of attitude and illumination change are collected under strictly controlled 

conditions. It is mainly used for modelling and analysis of light and attitude problems. 

Further application of the database is limited by the small number of people. 

5. PIE face database 

PIE was created by the Carnegie Mellon University, including 41,368 facial images, 

light and facial images of 68 volunteers. The attitude and illumination change images 

are also collected under strict control and have gradually become an important test set 

in the field of face recognition. 

6. KFDB face database 

There are 1,000 people, a total of 52,000 multi-pose, multi-illuminated, multi facial 

images, in which the volunteer's attitude and illumination condition changed are 

collected under strict rules. The volunteers are mainly Korean. 
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7.XM2VTS face database 

This includes 295 people in four different periods of image and voice video clips. Each 

period, each person is recorded two head rotating video clips and six voice video clips. 

In addition, a three-dimension model of 293 of them is also available. 

2.2.5 Conclusion and discussion 

Section 2.2. briefly introduced the theoretical knowledge of convolution neural 

networks and the various existing research methods. Since LeCun proposed the 

traditional convolution neural network in 1989 (LeCun, Boser, Denker, & Henderson, 

1989), researchers have continued to put forward new ideas in all aspects. CNN rely on 

many samples to achieve an unsupervised learning process. CNN can automatically 

extract parameters from samples without any pretreatment and get better recognition 

results. The dataset used by the researchers rose from LeCun’s 60,000 patterns to 200 

million facial images used by the Google FaceNet team. There has been an amazing 

rise in accuracy. However, another part of the research is thinking about how to use the 

existing, even smaller datasets to get similar precision, image enhancement and image 

synthesis technology. The face area is constantly modified to expand the existing 

dataset. The Fisher Criterion is also a way to reduce the number of sample sets; that is, 

the methods in the traditional recognition model can also be used in the CNN, such as 

Simultaneous Feature and Dictionary Learning (Lu, 2017). The CNN is not kept 

constant since the new structure is still proposed continuously. It is feasible to add 

multiple continuous coiling layers and increase the number of the whole neural network. 

Compared to two-dimensional images, the three-dimensional image can contain more 

information and details, use two-dimensional photos to simulate the stereoscopic shape 

and establish the multimodal structure. It is also an effective method to improve the 

robustness of the CNN model. 
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2.3 The Literature Review of Deep Neural Network and 

TensorFlow 

2.3.1 Introduction 

The convolution neural network model is a particular kind of deep neural network 

model (Zhang, 2017). Its particularity is embodied in two aspects: on the one hand, its 

neuron link is not fully connected; and, on the other hand, the weight of the connection 

between some neurons in the same layer is shared (the same). CNN’s incomplete 

connection and weight sharing network structure make it more similar to the biological 

neural network, reduces the complexity of the neural network model, reduces the 

number of weights, and solves the problem of excessive computation of the weights of 

traditional neural networks. The basic structure of the CNN consists of two special 

neuronal layers, one of which is the convolutional layer; the input of each neuron is 

connected with the local part of the previous layer, and the local characteristics are 

extracted. The second is the pooling layer, which is used to compute the local sensitivity 

and two-time feature extraction. These two feature extraction structures reduce the 

resolution of features and reduce the number of parameters that need to be optimised. 

 

In terms of the current convolution neural network, when defining the objective 

function of solving weights, the general definition of reconstruction error is minimal, 

or the actual output value and the label error are minimal. This deep neural network 

learning model requires many tag samples for training. Moreover, the time complexity 

is very high, and it often requires tens of thousands of iterations to get better recognition 

performance. Then in practice, the cost of sample tagging is high, too, whereas the 

requirement of time complexity is also very demanding (for example, it is sometimes 

necessary to recognise in real time). 

  

The Google Brain Project began in 2011 to explore the use of a large scale of deep 

neural networks. This was both for Google's product development and for scientific 

research. As part of the early work of the project, researchers from Google Brain set up 
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DistBrief, the first generation of neural network research and inference systems that 

can be customised (Dean & Corrado, 2012). DistBrief provides an outstanding service; 

the entire system is widely used in Google's multiple projects, including unsupervised 

learning (Le & Ranzato, 2012), language recognition and expression (Mikolov & Chen, 

2013; Vinyals & Kaiser, 2014), building models,  images classification and 

recognition (Frome & Corrado, 2013; Szegedy & Liu, 2015), classified video files 

(Karpathy & Toderici, 2014), behavior monitoring (Angelova & Krizhevsky, 2015), as 

well as Google search (Clark, 2015). However, because the DistBrief system has 

shortcomings, the Google Brain team developed a new neural network system, 

TensorFlow. TensorFlow is deployed in some Google products, including Google 

search (Clark, 2015), Google ads, voice recognition system (Hasim & Andrew, 2015;  

Beaufays, 2015), Google Photos (Rosenberg, 2013) and Google Street View 

(Goodfellow & Bulatov, 2014). TensorFlow is a second-generation product that 

implements and deploys a large machine learning model (Abadi & Agarwal, 2016). The 

expression of the calculation in TensorFlow is similar to a data flow graph model and 

uses the data flow graphs for different OS platforms, from running on mobile platforms 

such as Android and iOS to running on a desktop system that contains one or more GPU. 

Having a system that spans such a wide platform will significantly simplify the 

difficulty of machine learning in actual use due to different platforms. A massive 

training mission deployed on a small system will have significant maintenance costs 

and errors. The TensorFlow computation is represented as a stateful data flow diagram, 

which allows researchers to focus on the use of flexible and rapidly generated new 

models and to apply models to experiments. TensorFlow model is sufficiently robust 

and high-performing for the production and training of machine learning patterns. In 

order to allow TensorFlow to be deployed on larger neural networks, users can express 

the various model using the replication and parallel execution of the core data flow 

graph, while the multiple computing devices included in the model collaborate to 

complete the updated state. A variety of methods can achieve moderate changes in 

computation and attempt to bring about small effects (Dean, Corrado, & Monga, 2012). 

When the user is employing TensorFlow, parameter settings allow for some flexibility, 
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and users can easily express and utilise these settings in larger deployments. Compared 

with DistBrief, the TensorFlow model is more flexible, has significantly improved 

performance, and it also supports a wider range of hardware platforms and more diverse 

models and algorithms. Google's internal customers shifted to using the new platform 

after the TensorFlow release. These customers use TensorFlow in research and 

production, the tasks and reasoning of which are diverse, and can be used on mobile 

phone vision models for large-scale deep neural network training, with over tens of 

millions of neurons using parallel computing in hundreds of devices (Javier & Ignacio, 

2015). Today, TensorFlow mainly focuses on machine learning and deep neural 

networks, but in the future TensorFlow will be used in other fields, including different 

types of machine learning algorithms, and possibly in other forms of digital computing, 

such as accounting calculations or financial analysis.  

The open source version of TensorFlow can only be run on a single machine. However, 

it supports parallelisation of multiple processors (CPUs or GPUs) on a single machine. 

The TensorFlow version, which is capable of distributed computing on a group of 

machines, was released towards the end of 2016. This is the standard development time 

for deep learning tools. Most current frameworks do not support distributed computing, 

but TensorFlow does. After the release of TensorFlow in November 2015, several 

problems, such as uptime and extensive memory use, caused TensorFlow to be 

compared unfavourably with other state-of-the-art deep learning frameworks. Google 

acknowledged these initial performance problems, and many of them were resolved in 

a new version of 0.6 released in December 2015. This rapid turnaround indicates that 

Google is committed to supporting and developing this open source project.  

Section 2.3.2 below will introduce the advantages and characteristics of TensorFlow. 

Section 2.3.3 will identify the weaknesses of TensorFlow's previous generation of 

product, DistBrief, and the reason for Google Brain developing a new generation of 

deep learning platforms. Section 2.3.4 will introduce the direction that the TensorFlow 

or machine learning model needs to be optimised when running on a small device. The 
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last part of the article is the existing summary and discussion. 

 

2.3.2 The characteristics of TensorFlow 

The abstract representation of the processing model is handled automatically by the 

framework. This makes TensorFlow and Theano particularly suitable for the 

development of new models using gradient-based optimisation. The deep neural 

network architecture, which also includes other types of models, falls into this category. 

The main disadvantage of Theano is that it takes time to compile the symbolic model. 

TensorFlow significantly improved this bottleneck. Another advantage of TensorFlow 

is that it comes with an assistive tool called TensorBoard for in-depth simulation of 

training progress. The structure of the calculation diagram can be studied interactively, 

and how the parameters and model performance change in the training iterations (Abadi 

& Agarwal, 2016). TensorBoard visualization provides a modular representation of a 

complex model. It facilitates the global representation of the model, debugging, and 

checking to gain insight during model development (see Figure 2-3).   

 

 

The primary component in the TensorFlow system is the client, which communicates 

with the central server using a session interface; one or more worker processes, each of 

which is responsible for the quorum access to one or more computing devices (such as 

the CPU kernel or GPU card) and the graphics nodes on those devices that perform the 

main instructions. The client has a local and distributed implementation of the 

TensorFlow interface. When clients, primary servers, and workers are running on a 

single computer in the context of a single operating system process (there may be 

multiple devices), a local implementation is used, for example, many GPU cards are 

installed on the computer. The distributed system could share the most of the code from 

localhost, but TensorFlow extends support for environments where clients, primary 

servers, and workers can have different processes on different computers. In a 

TensorFlow distributed environment, these various tasks are containers in jobs 
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managed by the cluster dispatch system. 

TensorFlow is computed using data flow diagrams, where the nodes represent 

mathematical operations, and the lines in the graph represent the interactions between 

multidimensional arrays (Tensor). This is described as follows:  

Data Flow graph - mathematical calculations are expressed using the nodes and changes 

of a directed graph. The nodes in the graph represent mathematical operations that can 

represent the endpoints of data input and output. The edges represent the relationships 

between the nodes, and the interaction between the transfer operations is tensor in the 

graph. Once a node is connected to a data stream, the node is assigned to either 

asynchronous (between nodes) or parallel (within the node) of the computing device. 

TensorFlow has the following advantages:  

Mobility - TensorFlow is not a regular neural network library. If the user want to express 

any calculation as a data flow diagram, he/she can use TensorFlow. The user constructs 

a graph, writes the inner layer loop code to drive the computation; TensorFlow can help 

to assemble the child graph. To define a new operation, the user only needs to write a 

Python function.  

Adaptability - TensorFlow can be used on different devices, such as CPU, GPU, mobile 

devices and cloud platforms.  

Automatic recurrence relation: TensorFlow's automatic difference function is beneficial 

to many graph-based machine learning algorithms.  

Multiple programming languages available - TensorFlow is easy to use, with Python 

APIs and C + + APIs. Other languages can rely on the clear wrapper and Interface 

Generator (SWIG) tool to use the C + + API.   

Optimisation Performance - TensorFlow enables the full use of hardware resources, can 

be the graphic computing units which is automatically allocated to different devices. 
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2.3.3 The limitations of the previous platform 

TensorFlow is a DistBrief successor and a neural network system for distributed 

systems. DistBrief uses the parameter server architecture, which is limited (Chen & Li, 

2015; Jia & Shelhamer, 2014). This architecture restricts the upgrade of these systems, 

especially in other systems based on DistBrief. In a parameter server architecture, a 

project consists of two sets of disjoint processes: a stateless worker process that 

performs most of the calculations while the model is being trained, and a stateful 

parameter server process parameter that maintains the current version of the model. The 

DistBrief programming model is similar to Caffe (Jia & Shelhamer, 2014): the user 

defines a neural network as a forward-free graph of a layer terminated by a loss function. 

One layer is the composition of mathematical operators; for example, a fully connected 

layer multiplies its input by increasing the weighting matrix, adding a bias vector, and 

applying the non-linear function (such as Sigmoid) to the result. A loss function is a 

scalar function that quantifies the difference between a predicted value (a given input 

data point) and the ground state truth. In the fully connected layer, the weighting matrix 

and the bias vector are the parameters, and the learning algorithm is updated to 

minimise the value of the loss function. By backpropagation (Rumelhart & Hinton, 

1988), DistBrief uses the DAG structure and knowledge of the layer's semantics to 

compute gradients for each model parameter. Because parameter updates in many 

algorithms are interchangeable and have weak consistency requirements, the worker 

process can independently compute the upgrade and update its current state. However, 

the model still has shortcomings, and it uses Python scripting interface to compose a 

predefined layer, which is simple, fast, but does not have enough flexibility for 

advanced users: 1) cannot define a new layer; 2) refines training algorithm, 3) defines 

a new training algorithm. For traditional neural networks, many models use stochastic 

gradient descent (SGD) as the losing function, but this is not enough for researchers, 

who want to use more optimised algorithms (such as Mini-batch SGD). DistBrief work 

follows a fixed execution pattern: loads a batch of input data and current parameter 
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values, calculates the loss function (passed forward over the network), calculates the 

gradient (pass backwards) of each parameter, and writes the gradient back to the 

parameter server. This model is suitable for training simple feedforward neural 

networks, but for more advanced models (such as recursive neural networks, including 

loops (Jordan, 1986)), DistBrief cannot achieve the original results. In adversarial 

networks, two related networks are alternately trained (Goodfellow, 2014); and in the 

reinforcement learning model, the loss function is computed by some agents in a 

separate system, such as a video game emulator (Mnih & Kavukcuoglu, 2015). Also, 

there are many other machine learning algorithms, such as expectation maximisation, 

decision forest training, and potential allocation, which are not suitable for training the 

same model as neural networks but can also benefit from a common, optimised 

distribution. In addition, researchers have designed a new platform for DistBrief: a large 

multicore server cluster (Dean & Corrado, 2012). They want to be able to increase 

support for GPU acceleration, which will effectively lift convolution operations 

(Krizhevsky, Sutskever, & Hinton, 2012). However, DistBrief is still a heavyweight 

system that is suitable for training deep neural networks in huge datasets and is difficult 

to extend to other environments. This is especially so because many users want to adjust 

their models locally on a GPU-driven workstation, and then scale the same code to train 

on more massive datasets. After training the model on the cluster, the next step is to 

push the model to production, which may involve integrating the model into an online 

service or deploying it to a mobile device for offline execution. Based on the 

requirements mentioned above, Google Brain in 2016 released the TensorFlow. 

TensorFlow provides a programming model that can also run in all environments. 

2.3.4 Acceleration of hardware in machine learning 

In 2018 since the release of TensorFlow, the deep learning technology has gradually 

changed people's understanding and view of machine learning. Using mobile devices 

to make judgments about the real world - such as facial recognition, text and speech 

recognition – can be achieved. Unlike traditional models, which rely heavily on local 
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computing, new technologies increasingly rely on cloud computing resources to get 

results from the way local computing joins. Even the new computational model requires 

only a small amount of computation, and even on the handheld device the model can 

be completed the model and the target classified and synthesised. Lane and Warden . 

suggested that mainstream learning and classification techniques will appear on 

embedded devices or mobile devices and that the accuracy and robustness of deep 

neural networks will also be passed on to home devices, office equipment, automobiles 

and mobile phones (2018). And because these devices are more human-like, they may 

even offer better experiences and better performance than before (e.g., in machine 

translation, image understanding, and speech synthesis). Examples of mainstream 

learning and classification techniques  include Microsoft's seeing AI, a mobile visual 

processing program that can accurately describe the current environment to visually 

impaired people. Another example is Babylon from Babylon Health Inc., a medical 

assistant who can provide adequate medical diagnosis and advice based on the patient's 

situation. 

 

In order to improve the efficiency of these mobile terminals, Andreas et al. (2018) put 

forward the model of hardware acceleration, and the new acceleration mode modifies 

the computational structure. The new structure accepts 16 activations and 16 weights. 

It multiplies these pairs and then uses the adder tree to reduce the 16 products to add 

the result to the output register. The hardware can calculate output activation for 

multiple cycles. Accelerators can use several units to handle more activation and weight 

pairs per cycle. Because the convolution layer usually has more than one filter, each 

filter can be assigned a separate unit, and all units reuse the same 16 activations. As 

memory access is much more expensive than typical calculations in modern 

semiconductor technology, reusing data is desirable. 

 

 

DaDianNao is an accelerator based on the structure in Figure 2-4 (Chen, Luo, Liu, 

Zhang, & He, 2014), using the active reuse advantage in the convolution layer to 
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balance the computing and communication requirements with the new resources. The 

DaDianNao contains 256 processing units. Each unit can handle a single filter; in total 

DaDianNao can handle more than 4,000 products, each of which contains 256 parts. 

Depending on the settings, different results will be available.  

An ideal accelerator would be: 1) specialised enough to provide the desired 

performance level; 2) versatile enough to support a broader range of application classes; 

and 3) designed for the future so as to enhance flexibility. 

 

In all the CNN studies, many multiplications are ineffective because they involve 0-

value activation. More multiplication operations can be avoided if the activation input 

value is close to 0. In different networks or layers, this ‘close enough’ is different. 

Andreas et al. (2018) developed an empirical approach to finding thresholds for each 

layer. This invalid multiplication represents an opportunity to improve performance. 

However, leveraging the performance is the challenge of large-scale data parallel 

engines. To improve any performance, a method is needed to facilitate other useful 

calculations to replace this invalid calculation. Unfortunately, just checking whether 

activation is invalid will cost as much time as doing multiplication, whereas, activation 

requires another data access. Fortunately, input, in each CNN layer, which is the 

previous layer of output. Therefore, at the output of each layer, the output place the 

active activation function tightly in memory so that the next layer of processing can 

proceed smoothly without having to check for invalid computations or perform 

additional memory accesses. The Cluvlutin5 is such a design, and Figure 2-4 reports its 

performance improvements to DaDianNao. 

 

 

 

Activation can be considered a probability that an image feature appears in a location 

unless the image is filled with this feature; most of this feature appears in a low 

probability, that is, activation is 0 (ReLU) or close to 0 (Sigmoid). A large amount of  

invalid activation is an intrinsic attribute of a neural network. The efficient inference 
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engine also skips 0 activations and uses sparse weights to perform a single 

multiplication accumulation unit. CNN, even for such a sparse neural network, is the 

only neural network that processes many weights into 0, skipping the invalid weight 

and activation. 

2.3.5 Conclusion 

The deep network represented by convolution neural network signalled a breakthrough 

in the artificial neural network field, which was dormant for many years yet, more 

recently, has attracted new research hotspots. The feature of the global training, which 

is based on the local receptive fields, hierarchical structure, feature extraction and 

classification process of CNN, makes it widely used in the area of image recognition.  

CNN is the best-known model of deep learning, which belongs to the discriminant 

mode and is mainly used in machine vision field. Since CNN has been proposed, deep 

learning has made rapid progress in the areas of image identification and classification, 

target detection and localisation, and even played an invaluable role in the field of the 

human-computer game. The standard CNN is a special feedforward neural network 

model, which usually has a comparatively deep structure, and is composed of the input 

layer, convolution layer, pooling layer, full connection layer and the output layer. 

TensorFlow is a second-generation machine learning platform developed by DistBrief. 

It is a relatively high order machine learning library; researchers can efficiently use it 

to design a neural network structure, without having to write C + + and Cuda code for 

efficient implementation. TensorFlow supports automatic derivation, the researchers do 

not need to pass the reverse propagation solution gradient, the core code in C + + 

simplifies the complexity of the online deployment so that the mobile phone tablet and 

other memory and CPU resources with sensitive equipment can also run complex 

models. In addition to the core code of the C + + interface, TensorFlow also supports 

Python, Java and other interfaces. 
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3. Research Question and Methodology 

3.1 Methodology 

In this chapter, the goal is to present the necessary links between all the elements of this 

study together with its methodology.  

 

3.2 Research Questions 

 

Putting forward research questions is the first step in all aspects of scientific research. 

This section corresponds to Figure 3-1. Research questions and problem definitions are 

based on the past and current shoe print identification technology and convolutional 

neural networks and other technologies explored in Chapter 2’s literature review . The 

purpose is to understand existing methods – such as means of classification and image 

processing - and their functions in terms of their advantages and limitations. 

  

In this thesis, we have collected a few of the current research results in shoe print 

identification area. We need a basic research target and link it to existing outcomes in 

this area. Our work begins with the information we have gathered and the results that 

others have already researched from our surveys and literature review. This, in turn, 

enables us to introduce new methods of image classification. For example, in this 

study’s experiment, the convolution neural network is used to classify the shoe print 

image.  

 

The purpose of this thesis is to explore the identification and classification of the image 

for shoe prints by using deep learning, convolutional neural networks (CNN). The 

overall research questions are three.  

The first question, what is the performance of traditional pattern classification methods 

on shoe prints identification? 

The data sets are categorised using traditional machine learning methods. When using 

traditional methods, the accuracy of the classification, the time consumed, the merits 
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and demerits of the structure will be discussed. The second question: does CNN have 

better performance on shoe print identification? Using CNN, we employ more massive 

datasets to classify images. Moreover, the advantages and disadvantages between the 

convolutional neural network and the original machine learning method are discussed. 

The third research question of this thesis: can the CNN performance be improved 

furhter with fine-tuning? 

This thesis will also list the direction of research after this research (section 7.2); for 

example, the classification of the type of shoe print, or the changes from shoe print 

image collection that comes from a different substance.  

3.3 Research Objectives 

The goal of these experiments is to achieve the binary classification of images: shoe 

print or not shoe print. We try to propose an efficient CNN classification model to 

improve the accuracy of the classification as much as possible and try to improve the 

robustness of the model. At the same time, the objective of these experiments is to 

understand the performance of a convolutional neural network when it is not so accurate 

when dealing with the positional relationship between lines and patterns.  

3.4 The Experimental Hypothesis 

Research Hypothesis.  

First, we hypothesize that previous research in face identification using CNNs is also 

applicable to shoe print identification.  

Second, the researchers hypothesize that the convolution neural network can have 

excellent performance and accuracy when it identifies the shoe print.  

This means that we need to hypothesize that CNN has a significant advantage over 

traditional machine learning methods such as artificial neural networks.  
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3.5 Experimental Design 

To verify that our hypotheses are correct or incorrect, we have designed multiple 

experiments and used different methods to obtain the results. Datasets will be tested in 

artificial neural networks, support vector machines and convolutional neural networks. 

We also designed an experiment to optimise the neural network and compare it to the 

previous neural network to detect the results of the optimisation. The specific 

experimental content will be discussed in the sixth chapter.  

3.6 Data Collection and Analysis Tools 

A variety of image classification tools are used in this experiment. In the artificial neural 

network classification, we use MATLAB pattern identification toolbox as the primary 

research tool. In the study of support vector machine, we used MATLAB classification 

learner as a research tool because it contains a variety of binary classification 

algorithms and can be very intuitive to get the results and accuracy of the classification. 

The new model was developed in the Python language. Moreover, the new model uses 

TensorFlow as the primary research tool. Among this tool many highly efficient APIs 

are included, which can help us to use and analyse CNN better. 

Moreover, at the end of the neural network visualisation phase, we used Keras as a 

visual tool. Compared to the traditional TensorFlow platform, Keras's visualisation 

function is more powerful. 

3.7 Development Testing and Validation of Neural 

Networks 
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The stage after data collection and analysis is the instrument development test and 

instrument validation in the methodology. Implementation is one of the essential steps 

in this study. At this stage, a new convolutional neural network model is selected and 

designed. It is based on preliminary experimental research. In the test and validation 

phase, we use one dataset to discuss and evaluate different methods to study the 

performance and characteristics of each. The data is inputted into a different method 

model to verify the performance of its various aspects. In this experiment, the data set 

is divided into training sets and testing sets for evaluation. The performance of the CNN 

model will be compared with traditional machine learning methods. 

This stage will be discussed in the main text of Chapters 6 and 7.  

3.8 Limitation of the Study 

The research environment and previous studies limit this thesis such that some research 

goals may not be achieved. For example, the further classification of the shoe print 

image and the sample rotation or the classification containing multiple shoe print 

images are not considered here.  

We have put these discussions in the “Future Work” section in Chapter 8.  

Another limitation is face identification was used as a guide to the research. This is 

because, according to the survey, no previous research has used neural networks to 

classify shoe-print images. This meant that during the survey of research approaches, it 

was not possible to get a sufficiently valid reference. However, it must be pointed out 

that there is still a large gap between shoe print and the human face. Both feature 

extraction and neural network structure, but there are obvious differences. This also 

leads us to need to repeatedly verify whether the original research approaches in face 

identification can be used in the new research. 
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4. Research Method and Techniques

4.1 Artificial Neural Network 

Artificial neural network (ANN) is a network structure interconnected by a large 

number of processing units (neurons), which reflects the essential characteristics of 

human brain function and is an abstraction, simplification, and simulation of the human 

brain. ANN information processing is realized by the interaction between neurons; the 

storage of knowledge and information is the physical relation of network structure 

distribution, and the learning and processing process of the network depends on the 

dynamic change of neuron connection weights. Because ANN usually adopts nonlinear 

function, its dynamic operation constitutes a nonlinear system. The system is 

characterised by unpredictable, irreversible and multiple factors. Therefore, ANN can 

simulate large-scale, adaptive, nonlinear complex systems. ANN is widely used in 

optimisation, pattern identification, knowledge processing, signal processing and other 

fields.  

This experiment uses the pattern identification toolbox in Matlab. ANN is a linear 

classifier that requires the experimenter to convert the original image into a linear data 

band and enter the neural network (Figure 4-0). It should be noted that this method is 

relatively primitive, and the spatial relationship between the upper and lower two pixels 

is lost in the process of resizing. Moreover, because the neurons of ANN are all 

connected, there is a large amount of computation after forming the neural network. 

Before using ANN, we need to add a variety of image preprocessing methods to 

improve the image identification rate. 

The primary purpose of this experiment is to create a baseline value for the subsequent 

convolution neural network. In previous studies, ANN has been a fundamental tool in 

image classification. This method can effectively help we understand the advantages of 

neural networks and the direction of improvement. 
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4.2 Support Vector Machine 

Support vector machine (SVM) is a modelling method based on the small sample, 

statistical learning theory and structural risk minimisation, which is a research hotspot 

in the machine learning field after artificial neural network research. In the binary image 

classification, there is good accuracy. SVM overcomes the shortcomings of other 

machine learning methods such as overfitting, lack of learning, low generalisation 

ability and local minimum value. In practical applications, SVM-related parameters 

generally rely on human experience. The selection of parameters is directly related to 

the predictive accuracy of SVM.  

4.3 Convolutional Neural Network 

4.3.1 Characteristics of convolutional neural network 

Convolutional Neural Network is one kind of deep neural networks, which combines 

artificial neural network and deep learning technology. Its particularity is mainly 

embodied in two aspects as the following paragraphs explain. 

First, the neural elements of CNN are not fully connected, and Figure 4-1a illustrates a 

fully connected network. For images with 1000x1000 pixels, there are one million 

hidden neurons in each layer of neural networks. Each hidden layer neuron is linked to 

the one-pixel point in the image, and there is a 1000x1000x1000000=1.00e+12 

connections. This means that the neural network will have 1.00e+12 weights. Figure 5-

1b shows a locally connected network, and each node is connected to the 10x10 window 

near the same location as the previous node, then the one million hidden layer neurons 

have only 10x10x100000=1.00e+08 weights, so that the number of local connection 

neural network weights will be one out of 10,000 of the fully connected neural network. 

Second, in CNN, the weights of connections between certain neurons are shared. In a 

locally connected neural network, each neuron of the hidden layer is connected only to 
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the 10x10 image area; each neuron has 100 connection parameters. However, in CNN, 

these 100 parameters are the same, that is, each neuron uses the same convolution 

kernel convoluting image, the weights are shared. A convolution kernel provides a 

feature of an image. If it was needed to extract many different features, users could add 

several filters. Various parameters of the filter indicate the extraction of different image 

features. The different characteristics of images can be obtained by using different 

filters to convolute images. So, 100 convolution kernels have 100 feature maps, and 

these 100 feature maps form one single layer of neurons. Each convolution kernel 

shares 100 parameters, with a total of 10,000 parameters. 

  

In CNN, the number of parameters in a hidden layer is related to the size of the filter 

and the type of filter, regardless of the number of neurons in the hidden layer. The 

number of neurons in the hidden layer is related to the original image, the size of the 

filter, and the sliding step length of the filter in the image. For example, the original 

image is 1000*1000 pixels, and the filter size is 10x10. If the filter does not overlap, 

that is, the sliding step is 10, the number of neurons in the hidden layer can be 

(1000x1000)/(10x10) = 10,000 neurons. The non-full connection and weighted value 

sharing network structure of a CNN reduces the number of weights and reduces the 

complexity of the network model, which is very important for the deep structure. The 

three essential ideas of the CNN are local receptive fields, weighted value sharing, and 

space sampling. These three theories combine to let CNN achieve translational, 

proportional scaling, skewing or other forms of high-level invariance. 

 

4.3.2 The topological structure of convolutional 

neural network 

Part One: 

Convolution neural network is a multi-layered neural network; each layer consists of 

the two-dimensional plane, each two-dimensional plane is composed of several 

independent neurons. The network contains some simple neurons and complex neurons. 
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Simple neurons combine to form S-plane, and S-plane to form S-layer. Similarly, C-

planes, which are composed of complex neurons, have similar structures in C-layers. 

Any intermediate stage in the network is made up of S-layer and C-layer, and the sample 

feature extraction step is embedded in the interconnected structure of the network 

Structure. 

  

Usually, S-layer is a feature extraction layer, and each neuron's input is connected to 

the local receptive field in the previous layer, and the local characteristics are extracted. 

Once the local feature is extracted, the position relation between it and other local 

features is determined. C-layer is a feature map layer; each computing layer is 

composed of multiple features, every feature map is a plane, the weights of all neurons 

on the plane are shared, which have the same degree of displacement or rotation 

invariance. Because of the neuron sharing weights of the same mapped polygons, the 

parameters in the network are greatly reduced. Each feature extraction layer (S-layer) 

is followed by a computed layer (C-layer) that is used, twice, to extract the local average. 

This unique two-time feature extraction structure enables the network to have a high 

distortion tolerance to the input sample when it is identified. The structure of most CNN 

is similar.  

 

The CNN structure in our experiment is shown in Table 4-1 and Figure 4-2. Except for 

the input layer, it contains eight layers, which receives a 64x64 pixel image area to 

determine whether it is a shoe print or non-shoe print. The Conv1 layer to Pool2 layer 

contains a series of planes that can perform convolution and pooling operations. These 

planes are called feature maps, and they are responsible for extracting and combining a 

set of appropriate features. ReLU functions are used as an activation function for each 

layer in the two convolutional layers C1 and two fully connected layers fc1, fc2. The 

neural network adds the dropout layer to increase the classification accuracy of the 

network and reduce overfitting. The last layer of Softmax layer uses the features 

extracted from the front layer to classify tasks. 
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Each unit in the same layer accepts input from a small neighbourhood unit in the 

previous layer. The idea of connecting local receptive field units is largely inspired by 

Hubel and Wiesel (1962) and their notion of local sensitivities. Neurons can extract 

basic visual features, such as image edges and endpoints. These features can be 

combined with subsequent layers to detect higher-level features. Distortions or input 

displacements can cause significant changes in the location of the feature. Moreover, a 

primary feature detector that is useful for a part of the image is likely to be useful for 

an entire image. The units within the same layer are organized in space and all units 

within that space share weights. Therefore, each feature map had a fixed feature 

detector, which is equivalent to a trained convolution kernel and applied to the previous 

layer of space. Each layer uses several feature graphs (with different weights vectors) 

to allow multiple features to be detected at each location. These features are graphically 

formed as convolutional layer Ci.  

Once a feature is detected, its exact position will become less critical. Its approximate 

position is relative to other characteristics. The absolute position is likely to be different 

in different shoe print images. Various features may have different coding positions in 

the feature map, and a simple way to reduce positional precision is to reduce the spatial 

resolution of the feature map. Therefore, a lower sampling layer Pi usually follows each 

convolutional layer Ci; the lower sampling layer performs local maximization and 

down-sampling operations, reduces the resolution of the feature map and, therefore, 

reduces the sensitivity to output such as translation, skew, scale change, and rotation. 

Part Two: 

After confirming the basic structure of the neural network, we have carried out a large 

amount of research to determine the number of layers, the number of filters, the number 

of neurons, and the size of the filter. The C1 layer consists of three feature graphs (three 

channels), each of which is connected to the input image pixels of the 3x3x3. The field 
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of the adjacent units of each feature graph is concentrated in the corresponding adjacent 

units of the input image. The size of the feature map is 62x62x3 pixels, regardless of 

the expansion of the boundary. Each feature plot unit calculates the weighted sum of its 

inputs, including 27 (3x3x3) coefficients and one bias. Therefore, the Conv1 layer has 

a 90(3x30) parameters which can be trained. The P1 layer consists of a 64x3 feature 

map, each corresponding to the C1 layer's feature map. The receptive field for each unit 

is the 2x2 field of the previous layer corresponding to the feature map. Each unit 

calculates its four-input means, multiplied by a training bias, plus a training bias, which 

passes the result to the activation function ReLU. Adjacent kernels have the distinct 

adjoining field of receptive. Therefore, the feature map of the lower sampling layer has 

half rows and columns of the previous layer's feature graph. As a result, the Pool1 layer 

has 64 feature graphs of size 32x32 pixels, and the 128 (64x2) can be trained parameters. 

The successive alternation of the convolution layer and the lower sampling layer result 

in the double cone. At each level, the number of feature graphs is increased, and the 

resolution is decreased. 

The Conv2 layer is a convolution layer with a 16x3 feature map. Each element of each 

feature map connects to a subset of the Pool1 layer feature map at the same location as 

a 3x3 neighbouring unit. This implementation corresponds to a 3x3x3-trained 

convolution kernel, which is followed by a trained bias. Here, the output of the different 

feature graphs is fused to facilitate the combination of different features to extract more 

complex information. Each of the 64 down-sampled feature plots of the P1 layer serves 

as input to eight different feature graphs of the C2 layer, which has the first eight feature 

graphs of the C2 layer. Each of the 64 feature graphs of P1 produces an additional eight 

features of the C2 layer for every eight combinations. 

The P2 layer is an sub-sampling layer with 16 feature mappings. The 2x2 receptive 

field of each unit corresponds to the area of the above C2 layer feature map, just like 

P1 and C1. Therefore, P2 has 16 feature maps of size 16x16, 32x3 (16x2x3) can be 

trained parameters. In the P2 layer, a series of disjoint and stable low-dimensional 
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features are extracted and used by simple MLP for classification. The FC1 and FC2 

layers contain standard neural units. These layers act as a classifier, and the front layers 

act as feature extractors. In the FC1 layer, each of the 128 neurons is fully connected to 

all the units of the corresponding P2 feature map. The FC1 units perform a classical dot 

product operation between their input vector and the weight vector. FC2 and FC1 have 

the same size and number of neurons. There is a dropout layer after two fully connected 

layers; the samples passed through the FC2 layer are discarded at a certain scale to 

reduce the model overfitting. Finally, the data after the dropout layer is Softmax, and 

the kernel of each classification is calculated at the Softmax layer. The output of the 

neuron of the Softmax layer is used for classification; if its value is less than 0.5, the 

input image is nonshoe print, if its value is greater than 0.5, then the input image is a 

shoe print. 

With regard to our learning strategy, all weights are calculated based on gradient 

learning, using a modified version of the inverse propagation algorithm. The main 

change here is the calculation of the local gradient of the inverse propagation error 

signal of the shared weights. Considering that each feature map contains a simple 

neuron (with multiple instances), the local gradient of the neuron is simply the sum of 

the local gradients of all its instances. During the training, the network output response 

is less than 0.5 for non-shoe printing, more than 0.5 for shoe print.  

Because all weights can be learned, the system is a feature extractor that synthesizes its 

specific problems. Although this network structure uses many connections, weight 

sharing reduces the number of parameters, the computational capacity of the machine, 

and the gap between training errors and test errors, and thus has a better predictive 

ability. Local receptive field, weight sharing, and down-sampling provide many 

advantages to solve two critical problems: robustness and good generalization. It is 

important, though, to consider the impossibility of acquiring all possible variations of 

the shoe-print pattern within a limited-scale training set. 

The topology proposed has another interesting feature. In most image-based methods, 
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to search for a shoe print of a given size, the network must copy (or scan) all the images 

in the image. In our method, there is no local preprocessing sub-window, the original 

image is passed directly to the network. Because each layer essentially performs small-

size convolution in parallel, a large portion of the calculation is the same for each 

convolution in two adjacent processing windows. This redundancy is eliminated by 

making convolution in each layer. The whole calculation is included in the transmission 

path of the convolution and the nonlinear transformation of the whole image. On each 

layer of the transmission path, the entire image convolution and the nonlinear transform 

of the small size kernel can be executed in parallel efficiently.  

4.4 Derivation of Convolution Neural Network Theory 

4.4.1 Neuron 

Neurons are the basic elements of neural networks. Neurons have three basic 

characteristics: weighted, summed, and transferred. Chart 𝑥1  ... 𝑥𝑛 represents the 

input from the previous layer, the line represents the corresponding weight of the input 

neuron, b is the threshold, 𝑓(. )  is the activation function, and y is the output 

component of the neuron. We use 𝑛ⅇ𝑡𝑗  to represent the activation of a unit j, 𝑥𝑖 

represents the input of this unit, and 𝑤𝑖𝑗 represents the weight of the corresponding 

input, then it can be expressed as (LeCun, Bottou, Bengio, & Haffner, 1998): 

𝑛ⅇ𝑡𝑗 = ∑ 𝑥𝑖𝑤𝑖𝑗

𝑛

𝑖=1
+ 𝑏  (4.1) 

Each neuron corresponds to an output component, which is the value that it gets after 

the activating function and can be represented as: 

𝑦𝑗 = 𝑓(𝑛ⅇ𝑡𝑗)  (4.2) 
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because the output is only active or inactive:  

 𝑓(𝑛ⅇ𝑡) = {
1    𝑛ⅇ𝑡 ≥ 0
0    𝑛ⅇ𝑡 < 0

  (4.3) 

 

ReLU function is represented as (Glorot, Bordes, & Y., 2011): 

 

 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)  (4.4) 

 𝑚𝑎𝑥(0, 𝑤𝑇𝑥 + 𝑏)  (4.5) 

 

 

4.4.2 Forward propagation 

BP algorithm can solve the learning problem of neuron weights in the hidden layer of 

multilayer feedforward networks systematically. BP algorithm is a kind of natural 

extension of gradient descent criterion based on error; the basic idea is that the input 

data is transmitted through the neural network, and finally a result is obtained. If the 

actual result is not the same as the expected result, the error is propagated in some form 

through the hidden layer to the input layer. In the process of propagation, the error is 

assigned to each neuron unit of each layer according to certain rules, and the error of 

all the neurons in the first layer is formed as a graph (sensitivity map). Each neuron unit 

will update the weights of each unit according to these errors. The process of correcting 

forward propagation and reverse propagation is repeated until the input error of the 

result is reduced to the threshold of our acceptable range, or the number of repetitions 

reached the predetermined number of times.  

 

We take the three-layer neural network as an example, as shown in Figure 4.5. A three-

layer network consists of an input layer, an output layer, and a hidden layer in the middle. 

Forward propagation is the transfer of data from the input layer to the hidden layer, and 

then from the hidden layer to the output layer, and finally  a result. The neuron state 

of each layer affects only the neurons in the next layer. If the final actual result is not 
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the same as the expected result, it will be converted to the error reverse propagation 

process. The process of training and learning of BP Neural network is the process of 

forwarding propagation and reverse propagation until the satisfactory result is obtained 

at the end.  

We hypothesize that the input layer has s units, the hidden layer has q units, the output 

layer has c units, 𝑣𝑗𝑖 represents the input unit i and the hidden unit j connection weights. 

The 𝑤𝑘𝑗  represents the weighted value of the hidden unit j and the output unit k

connection. The activation function used by the hidden layer is represented by 𝑓1(). 

The output layer is represented by 𝑓2(). So, for each value of the input 𝑥𝑖, 

Each unit value in the hidden layer is:  

𝑧𝑘 = 𝑓1 (∑ 𝑣𝑗𝑖𝑥𝑖

𝑠

𝑖=0
) , 𝑗 = 1,2, … , 𝑞 (4.6) 

The value of each unit of the output layer is: 

𝑦𝑗 = 𝑓2 (∑ 𝑤𝑘𝑗𝑧𝑘

𝑞

𝑗=0
) , 𝑘 = 1,2, … , 𝑐 (4.7) 

According to the formula 2.8 and formula 2.9, we can get the approximate output of BP 

network once. The above operation is equivalent to obtaining a mapping function that 

maps the s-dimensional space into a c-dimensional space.  

4.4.3 The backpropagation 

After a forward propagation, we need to measure this result. We define an error to 

describe the state of this network. The process of reverse propagation is to pass the error 

to the previous layer so that each neuron in the upper layer can update its weight 

according to the error condition. We use the squared error cost function. According to 

Bouvrie’s research (2006), for multi-class problems with c classes, N training samples, 

the error function is: 

𝐸 =
1

2
∑ ∑ (𝑡𝑘

𝑛 − 𝑦𝑘
𝑛)2𝑐

𝑘=1

𝑁

𝑛=1
(4.8) 
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Where 𝑡𝑘
𝑛 is the kth dimension of the corresponding label of n samples, 𝑦𝑘

𝑛 is the kth 

output of the corresponding network of the nth sample. 

  

The error of all training sets is only the sum of the two errors of each training, and, in 

line with Bouvrie (2006), the error of the nth sample is expressed as:  

 𝐸𝑁 =
1

2
∑ (𝑡𝑘

𝑛 − 𝑦𝑘
𝑛)2𝑐

𝑘=1
=

1

2
‖𝑡𝑛 − 𝑦𝑛‖2

2 (4.9) 

 

The backpropagation algorithm is based on a gradient descent algorithm, the purpose 

of calculating the global error is to adjust the unit weight to the direction of the error 

reduction. The current output layer can be expressed as:  

 𝑥𝑙 = 𝑓(𝑢𝑙), 𝑢𝑙 = 𝑊𝑙𝑥𝑙−1 + 𝑏𝑙 (4.10) 

 

Backpropagation error is the basic sensitivity of each neuron; that is, how much b 

changes, thus how much the error will change. The error is based on the rate of change. 

We use 𝜕 to denote the base sensitivity:  

 
𝜕𝐸

𝜕𝑏
=

𝜕𝐸

𝜕𝑢

𝜕𝑢

𝜕𝑏
= 𝛿 (4.11) 

 

Because 
𝜕𝐸

𝜕𝑏
= 1, so 

 
𝜕𝐸

𝜕𝑏
=

𝜕𝐸

𝜕𝑏
= 𝛿 (4.12) 

We can roll out, the base sensitivity 
𝜕𝑢

𝜕𝑏
= 𝛿 and error E are equal to the reciprocal 

𝜕𝐸

𝜕𝑢
 of all input u in a node. This countdown allows high-level errors to be propagated 

back to the lower levels. Bouvrie’s (2006) relational formula is: 

 𝛿𝑙 = (𝑤𝑙+1)𝑇𝛿𝑙+1 ∘ 𝑓′(𝑢𝑙) (4.13) 

 

Here “。” represents the multiplication of each element. According to formula 4.13, the 

neuron sensitivity of the output layer can be expressed as: 
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 𝛿𝑙 = 𝑓′(𝑢𝑙) ∘ (𝑦𝑛 − 𝑡𝑛) (4.14) 

 

Finally, using delta rules to update the weights of each neuron, for the first l layer, the 

derivative of the error for each weight of the layer is the cross-multiplication of the 

input and the sensitivity of the layer. The learning rate of the partial derivative 

multiplied by the negative number is the weight of this neuron and is updated. 

 
𝜕𝐸

𝜕𝑤𝑙
= 𝑥𝑙−1(𝛿𝑙)𝑇 (4.15) 

 𝛥𝑤𝑙 = −𝜂
𝜕𝐸8

𝜕𝑤𝑙 (4.16) 

 

4.4.4 Convolution layer gradient calculation 

Reverse propagation will update the convolution layer; in the convolution layer, the 

previous layer of the feature map using the convolution kernel can be learned, and, from 

the consequent results of the activation function, we can get the output feature map. 

Each output feature graph may have multiple input feature graphs combined.  

According to Bouvrie (2006), usually there is:  

 𝑥𝑗
𝑙 = 𝑓 (∑ 𝑥𝑖

𝑙−1
𝑖∈𝑀𝑗

∗ 𝑘ⅈ𝑗
𝐿 + 𝑏𝑗

𝑙)  (4.17) 

 

Where 𝑥𝑗
𝑙  represents the l-layer j feature diagram, 𝑓(. )  represents an activation 

function. 𝑀𝑗  represents a collection of input graphs, * represents convolution 

operations, k for convolution kernels, and b for biasing items. The more common 

combinations of input feature graphs are, “one to two”, and “one to three”. One to two 

means that a feature graph on the current layer has a combination of two feature graphs 

from the previous layer. One to three means that a feature graph on the current layer is 

composed of three feature graphs from the previous layer. Each output feature graph 

will be added a bias item b, for different output mappings, the input uses different 

convolution kernels. In other words, although the output mapping j,k is obtained by 

summing the input mappings i, they do use different convolution kernels for the input 

mapping i.  
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We assume that each convolutional layer l will be followed by a lower sample layer l+1. 

According to the backpropagation algorithm, to calculate the sensitivity of the l-layer 

neurons, it is necessary to multiply each element in the next layer with the function 

defined on the l+1 layer and then sum the values. The sum is then multiplied by the 

activation function of the current layer, it less than the partial derivative of the input u. 

When the convolution layer is followed by a lower sampling layer, a pixel in the 

sensitive graph δ is connected to a neuron in the convolution output map. To better 

calculate the sensitivity of the l layer, we can sample the residual plot of the lower 

sample layer so that the two layers are the same size. Then it will take the sample after 

the sensitive graph δ multiply the l-layer activation function of the partial derivative. 

And the weight defined in the next sample layer is β. Therefore, when calculating 

residuals, it is also necessary to enlarge the result to β-times. Each feature graph j in the 

convolution layer is computed once and corresponds to the following sample layer 

(Bouvrie, 2006): 

𝛿𝑗
𝑙 = 𝛽𝑗

𝑙+1(𝑓′(𝑢𝑗
𝑙) ∘ 𝑢𝑝(𝛿𝑗

𝑙+1)) (4.18) 

The 𝑢𝑝(. ) in formula 4.18 is the up-sampling operation, and the process is to put 

each element of the input layer in a simple n-repetition in both vertical and horizontal 

directions, where n is the sampling from a multiple at that time.  

𝑝(𝑥) = 𝑥 ⊗ 1𝑛 × 𝑛 (4.19) 

For the sensitivity of known graphs, we can directly calculate the gradient of the bias 

of the feature graph in the current layer according to formula (4.11): 

𝜕𝐸

𝜕𝑏𝑗
= ∑ (𝛿𝑗

𝑙)
𝑢𝑣𝑢,𝑣

(4.20) 

According to the principle of reverse propagation, we can calculate the gradient of all 

the weights of the kernel in the same way as the method of the biased term:  

𝜕𝐸

𝜕𝐾𝑗𝑖
𝑙 = ∑ (𝛿𝑗

𝑙)
𝑢𝑣

(𝑃𝑖
𝑙−1)

𝑢𝜈𝑢,𝑣
(4.21) 
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wherein, (P) indicates that the kernel K is multiplied from one area in the convolution 

process of the feature map xj. 

 

4.4.5 The gradient calculation of the sub-sampling 

layer 

After the feature is obtained by convolution, a classifier is chosen to use these 

characteristics to classify. Although, theoretically, we can use all the extracted features 

to train the classifier, such as the Softmax classifier used in this Project, this poses a 

computational challenge. For example, for an image of a 100x100 pixel, assuming we 

have 400 features defined on the 10x10 input, then each feature an image that will be 

convolution with one (100-10+1) x (100-10+1) = 8281-dimensional convolution 

feature, and we have 400 features, so each sample gets a convolution eigenvector of the 

8281x400 dimension. Training a classifier for such a large feature consumes a lot of 

resources and is likely to have an overfit. 

  

To solve this problem, we need a way to use a small number to represent so much data. 

Considering that we use convolution features to represent an image because the image 

has a ‘static’ property, this means that features that are useful in one image area are still 

useful in another area of the image. To describe larger images, it is common to 

aggregate the characteristics of different locations. The most common method is to 

describe the area using the average or maximum value of a feature in the image area. 

These summary statistics features not only have a much lower dimension but also 

improve the results and can effectively avoid the case of overfitting. This kind of 

operation is called ‘pooling’. Depending on the method used, it can be divided into 

average pooling and maximum pooling.  

 

The usual use of convolutional neural networks is the maximum pooling, which is a 

nonlinear down-sampling. The basic idea of max-pooling is to divide the image into 

rectangular regions that have no intersection with each other and output the maximum 
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value for each region. The max-pooling has two advantages which ensure that it is an 

excellent next sampling method: (1) reduces the complexity of upper layer computation; 

and (2) provides translation invariance.  

The sub-sampling layer is the result of sampling under the input image. If there are ‘n’ 

input feature graphs, it will produce ‘n’ output feature graph; the output feature will be 

much smaller than the input feature graph (Bouvrie, 2006):  

 𝑥𝑗
𝑙 = 𝑓(𝛽𝑗

𝑙𝑑𝑜𝑤𝑛(𝑥𝑖
𝑙−1) + 𝑏𝑗

𝑙) (4.22) 

 

where down (.) represents the sampling layer. If it is divided into a few n x n areas, the 

sample of the image size in different dimensions is the original 1/n. Also, each output 

layer will have a bias β and an additional bias b that can be multiplied. 

The difficulty of the gradient calculation of the sub-sampling graph is to calculate the 

sensitive graph because there are only β and b parameters that can be learned here. It is 

assumed that the upper and lower layers of the sampling layer are convolutional layers. 

If the next sampling layer is an all-connected layer, then this sensitive graph can be 

obtained by the inverse propagation algorithm. When we calculate the gradient of the 

nucleus, we need to indicate which area of the input image corresponds to the specified 

pixel of the next layer. The weights that are multiplied by the input and output are the 

weights of the convolution kernels, so it is also possible to use formulas (4.23) (Bouvrie, 

2006): 

 𝛿𝑗
𝑙 = 𝑓′(𝑢𝑗

𝑙)0𝑐𝑜𝑛𝑣2(𝛿𝑗
𝑙+1, 𝑟𝑜𝑡180(𝑘𝑗

𝑙+1), ′𝑓𝑢𝑙𝑙′) (4.23)  

 

in the process of calculating β and b, the gradient of the additional bias still uses the 

formula 4.24 to calculate the sum of all the elements of the sensitive legend:  

 
𝜕𝐸

𝜕𝑏𝑗
= ∑ (𝛿𝑗

𝑙)
𝑢𝑣𝑢,𝑣

 (4.24) 

 

Multiplied by the bias β and the original bottom-sampled graph of the current layer in 

the forward propagation (no additional biased lower-sample plots) means that saving 
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the map during forwarding propagation can be easier to calculate. We define a 𝑑𝑗
𝑙 to 

represent the original sampling layer:  

 𝑑𝑗
𝑙 = 𝑑𝑜𝑤𝑛(𝑥𝑗

𝑙−1) (4.25) 

 

then, the biased β can be calculated by the formula: 

 
𝜕𝐸

𝜕𝛽𝑗
= ∑ (𝛿𝑗

𝑙𝑜𝑑𝑗
𝑙)

𝑢𝑣𝑢,𝑣
 (4.26) 

 

4.4.6 Combination of feature graphs 

Sometimes, when generating a feature map, the feature map is composed of different 

input layers according to a certain set of rules, which is very advantageous to the effect 

of generating graphs. In most cases, however, most of the input graphs used to produce 

the output diagram are manually selected. During training, how is the fusion method 

learned?. Following Bourvie (2006), here the 𝑎𝑖𝑗 is used to represent the weight of the 

input graph i when generating the output graph j, then the generation of the generated 

graph J can be expressed as (Bouvrie, 2006):  

 𝑥𝑗
′ = 𝑓

(∑ 𝑎𝑖𝑗(𝑥𝐿−1∗𝑘𝑖
1)

𝑁𝑖𝑛

𝑖=1
+𝑏𝑗

𝑙),𝑆⋅𝑡⋅
∑ 𝑎𝑖𝑗

𝑖
= 1, 𝑎𝑛𝑑0 ≤ 𝑎𝑖𝑗 ≤ 1 (4.27) 

 

where the constraints can make 𝑎𝑖𝑗 equal to a set of related weights 𝑐𝑖𝑗 to Softmax 

function of the demerit, thus the formula is established: 

 𝑎𝑖𝑗 =
𝑒𝑥𝑝(𝑐𝑖𝑗)

𝛴𝑘 𝑒𝑥𝑝(𝑐𝑘𝑗)
 (4.28) 

 

Because the weight set 𝑐𝑖𝑗 of the constituent diagram J is independent of similar sets 

in other layers, we can say subscript j when considering a single feature map. Each 

diagram is updated in this way unless the index of j is different. Bouvrie (2006) instructs 

that the partial derivative of the Softmax function can be expressed as:  

 
𝜕𝑎𝑘

𝜕𝑐𝑖
= 𝛿𝑘𝑖

𝑎𝑖 − 𝑎𝑖𝑎𝑘 (4.29) 
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where 𝛿  is usually represented by the Kronecker increment, in the layer l, the 

derivative of 𝑎𝑖 is shown in the formula 4.30:  

 
𝜕𝐸

𝜕𝑎𝑖
=

𝜕𝐸

𝜕𝑢𝑙

𝜕𝑢𝑙

𝜕𝑎𝑖
= ∑ (𝛿𝑙𝑜(𝑥𝑖

𝑙−1 ∗ 𝑘𝑖
𝑙))

𝑢𝑣𝑢,𝑣
 (4.30) 

 

where  𝛿 represents the sensitive graph corresponding to the input layer u. According 

to the chain rule, we take the final error calculation to the derivation of all weights to 

get the sensitivity of unit: 

 
𝜕𝐸

𝜕𝑐𝑖
= ∑

𝜕𝐸

𝜕𝑎𝑘

𝜕𝑎𝑘

𝜕𝑐𝑖𝑘
= 𝑎𝑖(

𝜕𝐸

𝜕𝑎𝑖
− ∑

𝜕𝐸

𝜕𝑎𝑘
𝑎𝑘)

𝑘
 (4.31) 
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5. Experiment Design and Experiment

5.1 Dataset 

The dataset used in this experiment is in two parts. The first one was obtained by the 

researcher through an internet search. The dataset contains a total of 40 pairs of images, 

including the image of the shoe print and 20 images that do not contain a shoe print. 

The shoe print has been manually cropped to 50x110,70x176,90x227 - three sizes to 

produce three datasets to test the efficiency of each method. The design of three sizes 

is mainly due to the different size of the data set which will greatly affect the operation 

speed of the neural network. In particular, in the artificial neural networks and support 

vector machines that will be introduced later, different sample sizes produce completely 

different results. Also, this dataset will be used to verify the accuracy of convolutional 

neural networks.  

For the second dataset, when training deep neural networks, we used FID-300 datasets 

from the University of Basel Switzerland (provided by Adam Kortylewski and Thomas 

Vetter). This dataset was originally used to train compositional Active Basis Model to 

identify shoe print images in complex background images. The dataset contains a total 

of 1,175 images for model training. The image is a high-precision shoe print image. 

There is only shoe print in the image, and the image size is about 200x700. The image 

is manually labelled as a ‘shoeprint’. Also, the shoe print labelled ‘nonshoeprint’ was 

collected by researchers from the internet, with a total of 801 samples labelled 

‘nonshoeprint’. Therefore, the total number of dataset samples using FID-300 is 1,976. 

5.2 Artificial Neural Network 

5.2.1 Experimental Design Principles 

The main pretreatment process of the artificial neural network involves several image 

processing steps. This is because all the neurons in the neural network belong to the 

fully connected structure. As the number of neurons increases, the computational 

capacity of neural networks increases greatly. It requires a variety of image processing 
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methods to reduce image size and computational capacity. In the MATLAB pattern 

identification toolbox, there are too few parameters to adjust, only the number of 

neurons can be adjusted. The main means to simplify the neural network is to simplify 

the input values. The original image is an RGB three-channel image. When judging 

whether the image is a shoe print, black and white images can also produce outstanding 

results. We tried to convert the original image into a grayscale image, and then convert 

it to a two-value image after median filtering. The image leaves only one channel, and 

the image occupies approximately 70% less space. The complexity of the image was 

greatly reduced.  

 

The change in image size is also a means to greatly reduce the complexity of neural 

networks. The original image is approximately 100KB, and the original image size in 

the dataset is not the same. Such datasets cannot be used as input data.  

Each data set will contain 40 images, half of which are marked with a shoe print, and 

20 are images that do not contain a shoe print. The original image is resized into 

different sizes to detect the performance of the neural network.  

5.2.2 Experimental Design 

Image preprocessing: 

Step one: Convert original image to grayscale.  

The original image is a colour picture; on the RGB three channels, each has value, each 

pixel on three channels has the values of 0-255. Convert the colour image to grayscale, 

sum the values on the three channels with a coefficient to get the grayscale value for 

each pixel (Formula 5.1).  

 𝑔𝑟𝑎𝑦() = (𝑟 × 0.299)  + (𝑔 × 0.587)  + (𝑏 × 0.114)  (5.1) 

 

Step two: Convert grayscale images into black and white images. 

To further reduce the image size and reduce the computational amount of the neural 

network, convert the grayscale image into the black and white image. The grayscale 

value of the pixel in the grayscale image uses a threshold value of 127 for two. Pixels 
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greater than 127 are represented by one, and values less than 127 are replaced with 0, 

so there are only two values, 0, or 1 for each pixel in the image. The black and white 

image is written to a new file after median filtering, creating a training set.  

Step three: Convert the training set into a table that can be entered into a neural network. 

  

The artificial neural network cannot directly accept the two-dimensional image. It is 

necessary to re-convert the two-dimensional image into a one-dimensional sequence to 

be a sample input neural network.  

Image training  

This experiment used the pattern identification toolbox, which can be modified in the 

toolbox with only the number of neurons and the size of the dataset. So we designed 

three datasets to monitor the efficiency of the neural network, resulting in a best-in-use 

result. 

  

The experiment was designed to train three neural networks in the same set of 

parameters, record the accuracy, and finally calculate the average value - 75% in a 

dataset as a training dataset, 20% as a validation set, and 5% as a test set.  

Modifiable parameters are the number of neurons in a neural network. We designed the 

different number of neurons in several groups and obtained the approximate accuracy 

interval by a few tests. When a more precise range was obtained, the specific number 

of neurons was then selected.  

 

First group: the dataset used is 50x110, the number of neurons used is 50,80,100;  

Second group: the dataset used is 50x100, the number of neurons used is 200,300,400;  

Third group: the dataset used is 50x100, the number of neurons used is 3300,3500,4000;  

Fourth group: the data set used is 70x176, the number of neurons used is 

6200,7000,7500;  

Fifth group: the dataset used is 90x227, the number of neurons used is 10000;  

Sixth group: the dataset used is 90x227, the number of neurons used is 

5000,5500,6000,7000,8000. 
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In the first two groups of experiments, we found that when the neurons are too few, the 

exact value of the neural network is too low, or even lower than the random value 

(because it is only a binary classification, to determine whether the image is a shoe print, 

random value of 50%). We changed the original neuron increase strategy so that the 

number of neurons increased significantly.  

 

Specific results pertaining to these experiments will be discussed in Chapter 6. 

 

5.3 Support Vector Machine 

In this experiment, the purpose of SVM was mainly to put forward a benchmark, which 

was then used to judge the merits and demerits of convolutional neural networks.  

 

The data we use is 90x227. We used the classification learner toolbox in MATLAB as 

an instrument for this experiment. The test set used was a dataset with a picture size of 

90x227. Because SVM and ANN have the same requirements for image preprocessing, 

it was necessary to reduce the information contained in the image as much as possible. 

So, we directly passed the processed data in the ANN into SVM. Moreover, 5-part 

cross-validation was used. 

 

In this experiment, we tried a variety of SVM methods: Linear SVM, quadratic SVM, 

Cubic SVM, Fine Gaussian SVM, Medium Gaussian SVM and Coarse Gaussian SVM. 

A variety of functions represent different classification methods. The experiment was 

repeated several times to determine the correct rate for each classifier. 
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5.4 Convolutional Neural Network Experimental 

Design 

Through the means of both the previous artificial neural network and support vector 

machine, we obtained the following accuracy: the artificial neural network has 89% of 

the correct rate; and the support vector machine classification accuracy reached 95%. 

We first need to verify whether the accuracy of CNN can reach or exceed 95%. A total 

of 40 datasets used in previous artificial neural networks and support vector machines 

were used to verify that the neural network works correctly. The second step uses the 

FID-300 dataset, which contains a total of 1,976 samples, and is employed to test the 

learning ability of neural networks.  

 

We now select the neural network that consists of two convolutional layers, two pooled 

layers, and two fully connected layers. However, the existing neural network structure 

is based on past studies, and it cannot be concluded that this structure is the best. After 

the CNN classifies accuracy that exceeds the artificial neural network and the support 

vector machine, we will try to improve the existing CNN in terms of training accuracy 

and learning efficiency.  

 

During the first training of CNN, the setting of different hyper-parameters will be the 

main direction of adjustment. The learning rate, batch size, and maximum training 

times will be the main adjusted hyper-parameters. Moreover, in the further adjustment, 

the optimisation model is the primary experimental target, at this time the number of 

neurons in the whole connected layer and the number of fully connected layers will also 

be adjusted parameters.  

 

Our existing structure consists of two fully connected layers. Of these, there are 128 

neurons at each fully connected layer. The main experimental direction of the current 

experiment is to change the structure of two full connection layers and the number of 

neurons. According to previous studies, full-attached layer computing would consume 
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much computational time and computer resources. Simplifying the full-connection 

layer can effectively increase the computational efficiency of the entire neural network; 

the number of neurons decreased from 128 to 64,32,16,8 and 4. The idea is to select 

one or two for the number of fully connected layers. In this way, the model needs to run 

12 times altogether. 

 

 

We have been able to use the artificial neural network to get 90% classification accuracy, 

and the support vector machine to get 95% of the classification accuracy.  

As per Figure 5-1: 

b) In the convolutional neural network model, our base is the correct rate of more than 

95%, which need to be higher than two baseline approaches. In this experiment, we use 

the convolutional neural network to identify and classify the success rate of more than 

95%. We first use the image size of 90x227,40 and a map of the data set – used to verify 

the neural network model – can be run.  

d) Otherwise, we would need to fix the code constantly.  

c) After successful verification, we use FID-300, which contains 1,976 images of the 

data set. A better result can be achieved with multiple workouts.  

f) If the accuracy is less than 95%, we would need to do some image preprocessing on 

the samples in the FID-300 data set. The images in this dataset are all original colour 

images; they are not black and white images as they were previously processed. Image 

preprocessing can simplify the difficulty of image classification. Images preprocessing 

methods includ but not limited to use grayscale image, black white image, image 

enhancement methods.  

e) When the experimental success rate exceeds 95%, we can try to keep the existing 

precision in the case by simplifying CNN models. If the accuracy after simplification 

can be improved, the new model is a more optimal solution.  

h) If the result does not reach the original correct rate after simplification, we can try to 

use a more complex model to observe the change in accuracy. Such an experimental 

process can ensure that we can get a more appropriate neural network model. 
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6. Result and Discussion

ANN and SVM have been used to provide benchmarks because they are available in 

open source toolboxes, with clear experiment steps and mathematical theory, and, as 

reported here, good identification accuracy. ANN is fundamental in image classification. 

SVMs are useful for dealing for overfitting problems. They provide two well 

established pattern recognition technologies for baseline results. 

We did not compare against SIFT/RANSAC, because the paper which used SIFT-

RANSAC does not provide the whole dataset and does not describe the methods 

adopted to obtain the results. There were only basic mathematical formulae and results, 

and so this approach does not have the condition of reproducibility. In addition, our 

ANN accuracy reached 90% and SVM reached 95%, which is not much worse than 

SIFT-RANSAC (91%-96%). 

6.1 Artificial Neural Network (ANN) 

We tested six sets of data altogether. Each group of data was tested three times 

separately. There is recording the training set and testing set accuracy after each training. 

As shown in Table 6-1, when trained in the first and second group, the number of 

neurons was below 500. The results were poor. For first group result, the accuracy was 

only about 25%. For the second group setting, the accuracy was about 30%. This result 

was even lower than the random selection (50%). 

In the third group of tests, the number of nodes in the neural network was increased 

from less than 500 to about 3,000. The accuracy of the training set was improved 

dramatically. It can be noticed that with the number of neurons increasing from 3,300 

to 4000, the accuracy of the training set increased from less than 50% to about 70%, 

which is a very substantial improvement. Using the 70x176 dataset in the fourth set of 

tests, we tried 6,200, to 7,500 of neurons. The test results were slightly better than 

random selection, which is 50% accuracy, but this number is not enough for machine 

learning images classification. In the fifth group tests, we used the 90x227 data set. 

Moreover, the number of neurons selected for the toolbox can be supported to the 

maximum value, 10,000. After being trained twice, the accuracy of the training set was 
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above 70%, which is better than most of the previous tests. The above five groups of 

tests, all for the pre-test, were designed to get a more appropriate combination of 

dataset-neurons. 

 

 

Based on the previous five group tests, a general experience can be obtained. That is, 

the number of neurons is about one-third in all parameters, which will get a higher 

accuracy of results.  

 

For the sixth group tests, we used the data set containing the most significant size 

images of the three datasets, 90x227 pixels. This dataset contains a total of 20,430 

variables per sample. Each variable has only two values, 1 or 0. It takes the total variable 

number of 1/3 values, from 5,000 to 8,000; we designed five sets of tests, each set of 

configuration training was run three times and counted the average value. The results 

obtained are set out in Table 6-3.  

 

 

With the 5,000 neurons setting, the accuracy increased gradually. After exceeding 6,000 

neurons, the accuracy of the artificial network started to reduce. When the neural 

network had 5,500 neurons, we got the best results of all artificial neural networks. The 

accuracy of classification in the training set is 90%, and in the testing set is 83%.   

 

5,500 neurons are roughly in line with our previous assumptions. That is, in the binary 

classification of shoe prints, the number of neurons is about one-third of the total 

number of variables. 

 

 

 

However, the disadvantages of artificial neural networks are apparent. First, the 

computational time is extended due to large-scale computing. In the sixth group 
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experiment, the running time of each training was about 30 minutes. This time is much 

more than the CNN spent. Second, because the learning rate is not adjustable, artificial 

neural networks usually appear as ‘reached the minimum gradient’, even if they spend 

only one or two epochs. When the number of neurons is few, the neural network would 

have a considerable iteration time; for example, with the number of neurons at 200, the 

neural network will run 2,700 times before it stops. However, the accuracy is not 

optimal. Third, the artificial neural network is prone to overfit or falling into the ‘local 

optimal solution’. It will result in a low accuracy result after a long period of 

computation. 

 

 

6.2 Support Vector Machine (SVM) 

We used a variety of support vector machines, but the accuracy was all 95%. We used 

cross-validation methods to improve the correctness of the classification, similar to 

artificial neural networks. In a support vector machine, each sample in the dataset will 

use all the pixels in the image as the categorical variable. The picture size is 90x227; 

that is, for the image there will be 20,430 categorical variables.  

 

95% accuracy means there is the total number of 40 samples of the classification, 38 

are correctly categorized.  There are several main reasons for this. First, the different 

algorithm of support vector machines is essentially different forms of the same binary 

classification. Therefore, the same dataset classification results will not produce too 

much deviation. Second, the different SVM classifications are mainly between ‘false 

positive’ and ‘true negative’. In other words, there may be two, ‘true negative’ or two 

‘false positive’, or a ‘true negative’ and a ‘false positive’ (see Figure 6-4). However, the 

classification of ‘true positive’ is the same. Third, the result of image classification is 

similar because of multiple images preprocessing. If grayscale images are used, then 

the calculation cost will be greatly increased. That is what we do not want to see. 95% 

is a relatively high classification accuracy – exceeding the artificial neural network’s 
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highest value – thus it provides a new benchmark for the subsequent CNN model.  

 

However, support vector machines still have relative weaknesses compared to neural 

networks. For example, support vector machines are only good at binary classification. 

They are weak at handling the complexity output model, not even as good as artificial 

neural networks. This is detrimental to our subsequent research. Another knotty 

problem is the traditional machine learning structure is simple, resulting in a very long 

computational time when dealing with complex image classifications. And, traditional 

machine learning methods rely heavily on excellent image preprocessing. The result of 

image preprocessing will affect the result of image classification. Moreover, the method 

of image preprocessing contains too much uncertainty. For example, in this experiment, 

we could only prove that using black and white images reduces the computational 

capacity of machine learning. However, it is not possible to prove that the result of 

using grayscale images is better or worse than using black and white images. We were 

not able to extract a standard process of image preprocessing, which is one of the 

reasons why traditional machine learning methods are very unstable. 

 

 

6.3 Convolutional Neural Network (CNN) 

6.3.1 Experimental discussion  

2.Use of convolutional neural network. 

The advantages of classification are clear (see Figure 6-5). After a thousand iterations, 

the accuracy of neural network classification reached 97.48%. Dealing with the daily 

binary classification problem produced relatively excellent results. The success rate of 

classified shoe prints and non-shoe prints was compared with the previous two machine 

learning methods. There was much progress made.  

 

Figures 6-6 to 6-11 provide some visual examples to illustrate the performance of CNN 

in shoe print classification.  
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In Figure 6-6, it is evident that most images could be classified correctly, and the 

accuracy of classification is very high, at least 95%. However, a few images could not 

be correctly categorised. This is not to say that the image prediction rate fluctuated 

around 50%, but that the image was completely defined for another category. Figure 6-

7, for example, was not a shoe print at all but was considered a shoe print with a chance 

of more than 95%. In Figure 6-8 it was a shoe print, but the model inferred that there 

was 87% probability that was not a shoe print. The probability of such a situation was 

very low; in the verification of 40 images, only two images had a classification anomaly. 

This may have been due to activated convolution kernel over-learning. We also verified 

that the partial shoe print images could be correctly categorised. As shown in Figure 6-

9, the prediction accuracy of the testing image was about 97%. However, when the 

image left only the sole part, the correct rate of prediction decreased to 73%. When the 

sample retained only the heel portion, the prediction accuracy was only 60% (Figures 

6-10 & 6-11). This can be explained by the fact that the sole part contains more

information and activates more convolution cores. Correspondingly, the heel does not 

have that much information. 
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2. CNN optimization

From Table 6-4, Figure 6-12a and Figure 6-12b, neural networks with two full 

connection layers (Model A) were more complex than the single full connection layer 

model (Model B), but the results did not improve. Model A reduced the identification 

accuracy of the neural network. When neurons were 128, the neural network 

identification accuracy of one single fully-connected layer reached 99.91%. The CNN 

with two layers of full-connection layers (Model A) had a identification accuracy of 

only 97.48%. If the accuracy difference between the two neural networks is 2% then 

that is insufficient to reflect the advantages of Model B. The model B still had a lower 

data loss rate. In terms of the above two parameters, data loss and accuracy, Model B 

performed better than model A (see Figure 6-13). 

With the neurons decreasing, the identification and classification of the two neural 

networks - accuracy and data loss rate - became worse. In model A, the identification 

accuracy was reduced from 97.48% to 62.76%. This result is not even as effective as 

artificial neural networks or support vector machines. The data loss rate also increased 

from the previous 0.11 to 0.64. In Model B, with the decrease in the number of neurons, 

the accuracy of the neural network classification also declined. However, the decrease 

was tiny compared to the previous neural network. Similarly, the increase in data loss 

was also small, from 0.03 to 0.27. 

From the two graphs in Figure 6-13, Model B had a faster function convergence 

efficiency than Model A. The number of training iterations increased to about 200 times. 

The accuracy of the classification in Model B exceeded 95%, whereas Model A's 

classification accuracy was only about 75%. Although at the end of the training, the 

accuracy and data loss of the two neural networks were similar. 
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Through graphs and tables (see Table 6-4, Figure 6-12, 6-13), we can see some of the 

following problems. First, complex neural networks do not necessarily provide better 

results or classification accuracy. It is also not possible to allow neural networks to 

reduce data loss. Second, complex neural networks consume more computational 

resources. This also means that they consume more computing time. However, the 

computational efficiency of the whole neural network decreased. Third, more complex 

neural networks will lose more data when the number of neurons encountered decreases, 

the accuracy of the decline will be more serious.  

Table 6-4, Figure 6-12, 6-13 also showed the neurons in full connection layer, which 

before the Classified layer of the neural network, will be very important. 

 

The researcher tried to use 512 neurons in Model B. The results of the experiment are 

illustrated by the graphs in Figure 6-14:  

 

First, it can be seen that increasing neurons will significantly improve the convergence 

speed of neural network training. Compared with the convergence scale, where the 

neurons numbered only 128, when the neural network training is around 100 steps, the 

classify accuracy with 512 neurons exceeded 85%. However, for the Model B with 128 

neurons accuracy is less than 80%. Second, these two neural networks, in terms of the 

result, are similar. Both the classification accuracy and data loss are very similar. 

Thirdly, while in neural network training, the function had faster convergence speed, in 

some situations, was not always better. When the accuracy scale quickly converges to 

a value, after this point, the training is very likely overfitting. The neural network needs 

to be reduced the learning rate. In this training, we found that a neural network with 

512 neurons was overfitted more than once. When training 700 steps, the accuracy of 

classification was close to 100%. However, in 750 times, there was an over-fitting 

situation, the accuracy had a significant decline, and then re-ascension. At the last 

recording point, the value appeared as a sign of decrease. 

Compared to Model B with 128 neurons, 512 neurons were overfitted more often. The 

final result was no better than Model B.   
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Based on our previous research result and discussions, CNN model B, which contains 

one layer of fully connected layer and 128 neurons, has obtained the best identification 

performance. Model B can achieve the goals set at the beginning of the project. When 

the shoe printing image is identified, the identification accuracy can be achieved by 

99.91%. 

 

6.3.2 Neural Network Visualization 

Layers visualization 

We tried to visualise the neural network and expected to get the analysis and discussion 

of the neural network from different angles. Neural network visualisation is a very 

effective method for understanding neural networks, especially deep neural networks. 

In the deep neural network, because the model is too complicated, the actual means are 

not enough to let us understand what the machine learns at every step. We are trying to 

output each layer data in the neural network. Associated with these outputs, it allows 

us to understand the functions of various layers, filters, and convolution kernel in a 

neural network. We need to understand how the designed model works and how it 

functions. 

 

We used the Keras tool to visualise existing neural networks (see Figures 6-15 to 6-18). 

we visualised in the neural network, what characteristics are extracted are, what is 

filtered out, and what the output is. 

The first image (Figure 6-15) shows the convolution neural network. For different 

convolution layers, for one picture, the information collected was different. Some 

convolution kernels were responsible for collecting image colour information; some 

focused on extracting edge information from images.  

At conv1 layer, activation preserved almost all the information from the original image. 

As the neural network goes deep, activation became more and more abstract, and 

visually tricky to understand. We cannot see visually that this is a shoe print. The 

machine began to have a more complex extraction of the shoe print in the image, heel 
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or toe. The machine had a higher level of concept to learn. Higher levels of activation 

mean learning less information from the visual content, but the image category related 

to more and more information. The absorption of activation increased as the depth of 

the neural network increased. In very deep layers, more kernels were not activated, 

which also meant that in the input image, there was no pattern that the filter could 

represent. 

 

Though these visualisations (Figure 6-15 to 6-18), we can understand the deep neural 

network and that the learning process has an important feature. The features that can be 

extracted from each layer became more and more abstract as the layers went deeper. 

For a particular input image, as the layer got darker and deeper the activation output 

contained less information. However, information is more relevant to the goal. A deep 

neural network is like a pipeline of information. The raw image data was then filtered 

repeatedly, filtering out irrelevant information, such as a specific background and visual 

appearance, from useful information that is magnified and refined. This is similar to the 

way humans and animals perceive the world. Observing a scene, a few seconds later 

humans can only remember which abstract object it is, for example, is this a bicycle or 

a tree? The human does not retain the exact appearance of this object. The brain has 

learned to completely abstract the visual input of this information and translate it into 

more advanced visual concepts, while filtering out irrelevant visual details. In this way, 

human memory always finds it difficult to remember surrounding subject matter or 

other background information. Machine learning is also similar, the weight of the 

subject features are steadily strengthened, filtering out the unimportant features. 

 

Kernel visualisation  

We visualised the filters in the neural network (see Figures 6-19 and 6-20). The process 

of convolution is the process of extracting features. Each convolution kernel, or 

multiple convolution kernels, represents a feature. If an area in an image is more similar 

to a convolution kernel, the region is closer to the convolution kernel. So, we need to 

find in an image - the largest output of the convolution kernel. The specific 
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implementation method is: 

Input A noise image (64x64 pixels) image, to find a convolution kernel kernel_filters 

to the image gradient:  

𝑔𝑟𝑎𝑑𝑖ⅇ𝑛𝑡𝑠 =
∂(𝑘𝑒𝑟𝑛𝑒𝑙_𝑓𝑖𝑙𝑡𝑒𝑟𝑠)

∂(𝑖𝑚𝑎𝑔𝑒)
(6.1) 

Then: 

𝑖𝑚𝑎𝑔ⅇ = 𝑖𝑚𝑎𝑔ⅇ + 𝑙ⅇ𝑎𝑟𝑛_𝑟𝑎𝑡ⅇ ∗  𝑔𝑟𝑎𝑑𝑖ⅇ𝑛𝑡𝑠 (6.2) 

Outputs: 

We can see from Figure 6-19 and 6-20 that in this neural network, the two convolution 

layers have different layers of filters so represent different meanings. In the first layer, 

filters are more like an edge-to-colour extractor. The different edge and colour 

characteristics from the image were extracted. In the second layer, the filter is more 

focused on the relationship between the line and the pixel point. The different lines in 

the image are convoluted and extracted.  

Both figures also show that in different layers, the division of the convolution kernel is 

different. If we try a more complex neural network, the theoretical convolution kernel 

will extract more abstract information. 

Heat map 

The heat map can be reflected in CNN (see Figure 6-21a, 6-21b, 6-22, 6-23) with 

different weights of different convolution kernels. The figures shows how the model 

made the decision; The model relied the activating feature from feature map set. The 

more reddish-coloured areas show where the filter region was activated. Moreover, it 

has larger weight. The features extracted from the convolution kernel of this area are 

also more critical for classification. 
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In the dataset that does not contain a shoe print, the filters in the upper right-hand corner 

of the image were activated, which is also the essential feature source for the image to 

be classified as ‘nonshoeprint’.  

 

 

 

6.4 Summary 

 

Table 6-5 summarises the differences in terms of accuracy, specificity, and sensitivity 

of three machine learning methods. The value of accuracy increased in the four models 

established by three different methods. In other words, the classification ability of the 

model increased. The accuracy rate for ANN was 90%, SVM accuracy was 95%, CNN 

Model A’s accuracy was 97.48%, CNN Model B’s was 99.91%.  

 

Sensitivity represents the proportion of the true result in all positive samples that were 

classified, measuring the ability of the classifier to recognize positive samples. 

Specificity represents the proportional true result of all negative samples, measuring 

the classifier ability of the classifier for negative samples. Precision, sensitivity and 

specificity were also constantly increasing. The sensitivity of CNN-Model B reached 

100%, and all the positive samples were correctly classified. But this is also because 

the classification accuracy of Model B reached 99.91%, that is, only two of the total 

1,976 samples were incorrectly classified as ‘false negative’. There was no false 

positive. In all, these models had higher sensitivity and specificity with the optimization 

of the model. Also, in the two models of CNN, the sensitivity results were all higher 

than the specificity, and the identification ability of positive examples was better than 

the negative examples. This suggests a research direction that could be usefully 

followed up in future studies. 
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7. Conclusion 

7.1 Summary of the Thesis  

This chapter summarises the work carried out to achieve the research objectives 

described in Chapter 3. This chapter also presents recommendations for future work in 

this field. 

  

The aim of this thesis was to classify shoe print images using convolutional neural 

networks. From the results of the experiments carried out herein, it can be seen that 

there was excellent identification efficiency and precision.  

 

This thesis introduced a new method for the classification of shoe print images. 

Specifically, a convolution neural network was used to classify images that contain a 

shoe print. This method (CNN) belongs to a model of image classification in machine 

learning. The contributions and highlights of this study are outlined below.  

 

First, chapter 2 introduced the fields of shoe print identification and face identification, 

and surveyed TensorFlow. The identification of shoe prints has a very long tradition, 

mainly used in crime scene investigation and research. The shoe print picture is 

accepted as significant evidence. The public security sector has long been committed 

to creating a shoe print database to improve the efficiency of classifying such evidence. 

Previously, the classification and identification of shoe printing depended mainly on 

artificial methods (e.g. human eyes). The use of machine learning to classify shoe print 

images is also a new area of research that has emerged in recent years and has not yet 

been used in neural networks. We investigated the use of CNN in the research on facial 

identification in the field of image identification because, to date, neural networks have 

not been central to research into shoe print identification. We also studied the 

development and status of TensorFlow.  

Second, chapter three identified the problems that we needed to address in this study. 

The plan was to use artificial neural networks, support vector machines, and CNN on 
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the shoe print image classification. 

Third, chapter 4 summarised the different machine learning models, learning 

algorithms, and algorithmic theories. Then, the experimental method of the CNN model 

used in this thesis was analysed critically. 

Forth, briefly introduced the theoretical knowledge and operational method of the 

artificial neural network, and employed ANN to classify shoe print image datasets. The 

obtained results were used as the precision benchmark for CNN. This contribution 

corresponds to the first study question.  

Fifth, the support vector machine’s theory and function were briefly documented. A 

variety of support vector machines were introduced, and images were classified using 

multiple SVM. The classification results became another benchmark for CNN. This 

contribution corresponds to the second study question.  

Sixth, in Chapter 5, a CNN was proposed to deal with the binary classification of shoe 

print images. The experimental results and analysis were discussed in Chapter 6. This 

contribution answered the study of question three.  In addition, this chapter explored 

the multi-classification of shoe print images, the extraction of shoe prints from complex 

images, and the identification of the position of shoes printed in complex images. These 

are promising methods that merit further investigation in future research. 

7.2 Concluding Remarks 

This thesis explored the possibility of realising the application of the convolutional 

neural network to a new field. Shoe print images can be compared with the human facial 

images and fingerprint images. However, while there are many similarities, there are 

also many differences. In contrast to other images, the shoe print pattern does not have 

a regular, definite shape. Points, lines, circles, and polygons do not have a specific 
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position or distribution. This is detrimental to machine learning. 

  

It was determined through the experimentation in this thesis that CNN, which are 

extracted from facial recognition technology, still have a high performance when 

classifying shoe print images. The local receptive field of convolutional neural 

networks provides an excellent learning ability. The work of different convolution 

kernels is different.. They are activated when different images are processed. This can 

be very clearly expressed in the heat map. The different neural network models bring 

significant changes to the accuracy of the classification. A complex model is not 

necessarily better than a small classification of simple models. CNN is a powerful 

classification model. In this experiment, the classification success rate reached 99.91%. 

This is a good result, but it can also prove that the potential of CNN is not entirely 

realised. We can use it to classify more complex datasets, for example, the multi-

classification of shoe print images. The result may suggest a limitation to the research 

insofar as the objective of the experiment was too simple. If we were to start over again, 

it would be more effective if more complex classification requirements were 

established. Moreover, in terms of the data used in this experiment, it should be noted 

that there was only one shoe print in the image.  

In sum, it can be argued that CNN is suitable for the classification of shoe prints. In the 

previous survey in chapter 2, we also found that in machine learning, the use of other 

machine learning methods for image classification also has outstanding results. If the 

experiment were to be repeated, we would try to use other machine learning methods 

as benchmarks for CNN. We also recognise that merely changing the number of nodes 

in one layer of CNN is not enough to judge CNN’s merits and demerits. Using different 

CNN should focus more on the use of entirely different structures. For example, 

residual neural networks (RNN) or the Inception V3 model could be used in order to 

reflect the different CNN in dealing with complex problems of different performance. 

 

7.3 Recommendations for Future Research 
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We have also briefly mentioned the direction of development in this area. The main 

points are as follows.  

• This experiment has only two outputs - a shoe print or not a shoe print.

Subsequent studies could focus on classifying more complex data, for

example, different brands or different shoe types.

• The dataset used in this image is very concise, the shoe print is very

prominent, and there is only one shoe print in the image. Future studies

could try to use more complex images involving, say, a shoe print that is

extracted from a complex site or an image that contains multiple shoe prints.

An example here could be some shoe prints in a piece of sand.

• The CNN used in this experiment is relatively simple. Subsequent

experiments could attempt to use more layers or more efficient

convolutional neural network models.

• The experiment did not verify the rotation, distortion, and deformation of

the image. We can learn from other studies (such as facial recognition) that

CNN has a good performance in dealing with such problems. However, in

the field of shoe printing identification, we still need to do experiments to

prove the performance of neural networks.

After the several above goals have been achieved, we can establish the relationship 

between the shoe print and the person's posture, behaviour and personal information. 

This information could be obtained through setting up a shoe printing analysis system. 

In this way, shoe printing identification may enable the shoe print owner to be 

established. This would represent a huge step forward. 
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8. Appendix  

8.1 train.py  

1. #!/usr/bin/env python   

2. ## input files   

3. import os   

4. import numpy as np   

5. import tensorflow as tf   

6. import input_data   

7. import model   

8.    

9. # variables declare   

10. N_CLASSES = 2  # 2 classes   

11. IMG_W = 64  # resize images   

12. IMG_H = 64   

13. BATCH_SIZE = 10   

14. CAPACITY = 200   

15. MAX_STEP = 1000     

16. learning_rate = 0.00001  # usually less than 0.0001   

17.    

18. # get batch   

19. train_dir = 'C:/Users/ChengranLi/Desktop/world-

master_test/input_data'  # load dir   

20. logs_train_dir = 'C:/Users/ChengranLi/Desktop/world-

master_test/save'  # logs dir   

21.    

22. # train, train_label = input_data.get_files(train_dir)   

23. train, train_label, val, val_label = input_data.get_files(train_dir, 0.3)   

24. # training data & label   

25. train_batch, train_label_batch = input_data.get_batch(train, train_label, IM

G_W, IMG_H, BATCH_SIZE, CAPACITY)   

26. # testing data & label   

27. val_batch, val_label_batch = input_data.get_batch(val, val_label, IMG_W, IMG

_H, BATCH_SIZE, CAPACITY)   

28.    

29. # training operation define   

30. train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)   

31. train_loss = model.losses(train_logits, train_label_batch)   

32. train_op = model.trainning(train_loss, learning_rate)   

33. train_acc = model.evaluation(train_logits, train_label_batch)   

34.    

35. # testing operation define   

36. test_logits = model.inference(val_batch, BATCH_SIZE, N_CLASSES)   
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37. test_loss = model.losses(test_logits, val_label_batch)   

38. test_acc = model.evaluation(test_logits, val_label_batch)   

39.    

40. # summary logs   

41. summary_op = tf.summary.merge_all()   

42.    

43. # start a session   

44. sess = tf.Session()   

45. # define a writer to write log files   

46. train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)   

47.    

48. # define a saver to save model after training   

49. saver = tf.train.Saver()   

50. # Initialization   

51. sess.run(tf.global_variables_initializer())   

52. # queue coordinator   

53. coord = tf.train.Coordinator()   

54. threads = tf.train.start_queue_runners(sess=sess, coord=coord)   

55.    

56. # start to training   

57. try:   

58.     # operating traning as MAX_STEP    

59.     for step in np.arange(MAX_STEP):   

60.         if coord.should_stop():   

61.             break   

62.         _, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])   

63.    

64.         # every 50 step print current data loss and acc. save log and write 

to writer   

65.         if step % 10 == 0:   

66.             print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (s

tep, tra_loss, tra_acc * 100.0))   

67.             summary_str = sess.run(summary_op)   

68.             train_writer.add_summary(summary_str, step)   

69.         # save model every after 100 steps   

70.         if (step + 1) == MAX_STEP:   

71.             checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')   

72.             saver.save(sess, checkpoint_path, global_step=step)   

73.    

74. except tf.errors.OutOfRangeError:   

75.     print('Done training -- epoch limit reached')   

76.    

77. finally:   

78.     coord.request_stop()   
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8.2 model.py 

1. # =========================================================================

2. import tensorflow as tf

3. 

4. 

5. # =========================================================================

6. # CNN definiton

7. # input parameters：images，image batch、4D tensor、tf.float32、

[batch_size, width, height, channels]

8. # return parameters：logits, float、 [batch_size, n_classes]

9. def inference(images, batch_size, n_classes):

10. # CNN with (conv+pooling) x2, full_connection x2, dropout x1, softmax x1

11. # conv1

12. # 64 3x3 fillters（3channel），

padding=’SAME’， conv_image size is same as ori_image size after padding, ac

t_Func_relu() 

13. with tf.variable_scope('conv1') as scope:

14. weights = tf.Variable(tf.truncated_normal(shape=[3, 3, 3, 64], stdde

v=1.0, dtype=tf.float32), 

15.  name='weights', dtype=tf.float32) 

16. 

17. biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=

[64]), 

18.  name='biases', dtype=tf.float32) 

19. 

20. conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='

SAME') 

21. pre_activation = tf.nn.bias_add(conv, biases)

22. conv1 = tf.nn.relu(pre_activation, name=scope.name)

23. 

24. # maxpool1

25. # 3x3 max pooling，strides=2

26. with tf.variable_scope('pooling1_lrn') as scope:

27. pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2,

1], padding='SAME', name='pooling1') 

28. norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0

, beta=0.75, name='norm1') 

29. 

30. # conv2
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31.     # 16 3x3 fillters（3channel），

padding=’SAME’， conv_image size is same as ori_image size after padding, ac

t_Func_relu()   

32.     with tf.variable_scope('conv2') as scope:   

33.         weights = tf.Variable(tf.truncated_normal(shape=[3, 3, 64, 16], stdd

ev=0.1, dtype=tf.float32),   

34.                               name='weights', dtype=tf.float32)   

35.    

36.         biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=

[16]),   

37.                              name='biases', dtype=tf.float32)   

38.    

39.         conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='S

AME')   

40.         pre_activation = tf.nn.bias_add(conv, biases)   

41.         conv2 = tf.nn.relu(pre_activation, name='conv2')   

42.    

43.     # maxpool2   

44.     # 3x3 max pooling，strides=2   

45.     # pool2 and norm2   

46.     with tf.variable_scope('pooling2_lrn') as scope:   

47.         norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0

, beta=0.75, name='norm2')   

48.         pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 

1], padding='SAME', name='pooling2')   

49.    

50.     # Fc3   

51.     # 128 neurons ，reshape maxpool2 output to liner，act func relu()   

52.     with tf.variable_scope('local3') as scope:   

53.         reshape = tf.reshape(pool2, shape=[batch_size, -1])   

54.         dim = reshape.get_shape()[1].value   

55.         weights = tf.Variable(tf.truncated_normal(shape=[dim, 128], stddev=0

.005, dtype=tf.float32),   

56.                               name='weights', dtype=tf.float32)   

57.    

58.         biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=

[128]),   

59.                              name='biases', dtype=tf.float32)   

60.    

61.         local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope

.name)   

62.        

63.     # Fc4   

64.     # 128 neurons act func relu()   
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65.     with tf.variable_scope('local4') as scope:   

66.         weights = tf.Variable(tf.truncated_normal(shape=[128, 128], stddev=0

.005, dtype=tf.float32),   

67.                               name='weights', dtype=tf.float32)   

68.    

69.         biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=

[128]),   

70.                              name='biases', dtype=tf.float32)   

71.    

72.         local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local

4')   

73.        

74.     # dropout layer   

75.     with tf.variable_scope('dropout') as scope:   

76.         drop_out = tf.nn.dropout(local4, 0.8)   

77.    

78.     # Softmax regression   

79.     with tf.variable_scope('softmax_linear') as scope:   

80.         weights = tf.Variable(tf.truncated_normal(shape=[128, n_classes], st

ddev=0.005, dtype=tf.float32),   

81.                               name='softmax_linear', dtype=tf.float32)   

82.    

83.         biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=

[n_classes]),   

84.                              name='biases', dtype=tf.float32)   

85.    

86.         softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='so

ftmax_linear')   

87.    

88.     return softmax_linear   

89.    

90.    

91. # --------------------------------------------------------------------------

---   

92. # loss:   

93. # trans in parameters：logits,labels(0 or 1)   

94. # return：loss   

95. def losses(logits, labels):   

96.     with tf.variable_scope('loss') as scope:   

97.         cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logit

s=logits, labels=labels,   

98.                                                                        name=

'xentropy_per_example')   

99.         loss = tf.reduce_mean(cross_entropy, name='loss')   
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100.         tf.summary.scalar(scope.name + '/loss', loss)   

101.     return loss   

102.    

103.    

104. # ------------------------------------------------------------------------

--   

105. # loss optimal   

106. # trans in parameters：loss,learning_rate   

107. # return：train_op, trans it into sess.run for training   

108. def trainning(loss, learning_rate):   

109.     with tf.name_scope('optimizer'):   

110.         optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)   

111.         global_step = tf.Variable(0, name='global_step', trainable=False) 

  

112.         train_op = optimizer.minimize(loss, global_step=global_step)   

113.     return train_op   

114.    

115.    

116. # ----------------------------------------------------------------------

-   

117. # Accuracy   

118. # trans in parameters：logits labels(1 or 0)   

119. # return：accuracy   

120. def evaluation(logits, labels):   

121.     with tf.variable_scope('accuracy') as scope:   

122.         correct = tf.nn.in_top_k(logits, labels, 1)   

123.         correct = tf.cast(correct, tf.float16)   

124.         accuracy = tf.reduce_mean(correct)   

125.         tf.summary.scalar(scope.name + '/accuracy', accuracy)   

126.     return accuracy   
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8.3 Figures 

 

 

Figure 2-0 
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Figure 2-1 
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Figure 2-2 
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Figure 2-3 An example of a fully connected feed-forward neural network with two 

hidden layers 
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Figure 2-4 The structure of DaDianNao 
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Figure 2-5 Dark blue represents the activation of zero values that can be skipped, and 

light blue represents the process of calculating thresholds while maintaining accuracy. 
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Figure 3-1 Research Methodology 
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Figure 4-0 
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Figure 4-1a 
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Figure 4-1b 
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Figure 4-2 and See Table 4-1 for further details. 
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Figure 4-3 

 

Figure 4-4 ReLu 

 

 

Figure 4-5 
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Figure 5-1 
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Figure 6-1 
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Figure 6-2 
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Figure 6-3 

Figure 6-4 
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Figure 6-5 Loss and accuracy scale with TWO hidden layers and 128 neurons 

 

Figure 6-6 

 

 

Figure 6-7 

 

Figure 6-8 
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Figure 6-9 

 

Figure 6-10 

 

Figure 6-11 
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Figure 6-12a 
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Figure 6-12b 

Figure 6-13 Loss and accuracy with one hidden layer with 128 neurons 

Figure 6-14 Loss and accuracy scale with one hidden layer and 512 neurons 
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Figure 6-15 
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Figure 6-16 
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Figure 6-17 
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Figure 6-18 
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Figure 6-19 Conv1 Filter 
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Figure 6-20 
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Figure 6-21a 
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Figure 6-21b 
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Figure 6-22 

 

 

 

 

Figure 6-23 
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8.4 Tables 

 

 

Table 2-1 Network configuration. 
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2 

Table 2-2 Accuracy of Approaches 
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Table 4-1 Structure of CNN and See Figure 4-2 for further details. 
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Datasets 50 x 110

Nodes Accuracy(%) Accuracy (Average)

50 23.5 20 30.5 24.66666667

80 22.67 N.A N.A 22.67

100 23 25 40 29.33333333

200 34.5 30 60 41.5

300 33.5 30.67 37.5 33.89

400 34.5 20 30.75 28.41666667

Group one

Group two

Table 6-1 

Dataset 50 x 100

Nodes Training Testing Training Testing Training Testing Training Testing

3300 33.3 100 50 0 41.7 0 41.6666667 33.3333333

3500 88.9 100 50 0 33.3 100 57.4 66.6666667

4000 66.7 100 88.9 100 63.9 50 73.1666667 83.3333333

Dataset 70 x 176

Nodes Training Testing Training Testing Training Testing Training Testing

6200 36.11 0 80.6 100 64.4 100 60.37 66.6666667

7000 63.9 0 58.3 100 47.3 0 56.5 33.3333333

7500 47.3 100 75 0 52.8 100 58.3666667 66.6666667

Group Five

Dataset 90 x 227

Nodes Training Testing Training Testing Training Testing Training Testing

10000 66.7 100 77.8 100 N.A. N.A 72.25 100

Accuracy in 3 times(%) Accurancy(AVG)

Group Four

Group Three

Accuracy in 3 times(%) Accurancy(AVG)

Accuracy in 3 times(%) Accurancy(AVG)

Table 6-2 

Dataset 90 x 227

Nodes Training Testing Training Testing Training Testing Training Testing

5000 90 50 43.3 50 63.3 50 65.5333333 50

5500 90 100 83.3 50 96.7 100 90 83.3333333

6000 96.7 0 76.7 100 90 100 87.8 66.6666667

7000 53.3 0 46.7 100 90 50 63.3333333 50

8000 63.3 100 93.7 50 90 10 82.3333333 53.3333333

Group Six

Accuracy in 3 times(%) Accurancy(AVG)

Table 6-3 
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Table 6-4 

Table 6-5 


