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Abstract. This paper reports the performance of hyperspectral imaging
for detecting the adulteration in red-meat species. Line-scanning images
are acquired from muscles of lamb, beef, or pork. We consider the state
of fresh, frozen, and thawed meat. For each case, packing and unpack-
ing the sample with a transparent bag is considered and evaluated. Meat
muscles are defined either as a class of lamb, or as a class of beef or pork.
For visualization purposes, fat regions are also considered. We investigate
raw spectral features, normalized spectral features, and a combination of
spectral and spatial features by using texture properties. Results show
that adding texture features to normalized spectral features achieves the
best performance, with a 92.8% overall classification accuracy indepen-
dently of the state of the products. The resulting model provides a high
and balanced sensitivity for all classes at all meat stages. The resulting
model yields 94% and 90% average sensitivities for detecting lamb or
the other meat type, respectively. This paper shows that hyperspectral
imaging analysis provides a rapid, reliable, and non-destructive method
for detecting the adulteration in red-meat products.

Keywords: Hyperspectral imaging, spectral-spatial features, meat classifica-
tion, meat processing, adulteration detection

1 Introduction and Background

Adulteration of meat products is an important quality and safety factor of meat
(e.g. the addition of another type of meat which may have a lower price compared
to the original material).

Traditionally, meat quality and safety attributes are assessed using lab-based
methods. Recently, methods gain more attention that are based on spectro-
scopic measurements. Spectroscopic methods measure optical properties of a
single point on the sample surface and map those properties onto quality and
safety attributes. Such properties can be defined by reflectance or absorbance of
light at specific electromagnetic wavelengths [1,2]. The spectroscopic approach
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Fig. 1. Left: HSI image in spatial xy and spectral A coordinates. Upper right: Spectral
signatures of red-meat species. Lower middle: First five PCA-score images of an HSI
image. Lower right: Superpixel segments of an HSI image

has disadvantages regarding the non-availability of spatial information, the non-
inclusion of small-sized objects into the analysis, missing flexibility in measuring
particular spectral information, and inability to generate distributions of at-
tributes [3].

Conventional computer vision systems can be used to assess some meat at-
tributes; they can also deal with the spatial information problem not solvable
by single-point spectroscopy. Conventional computer vision systems do not pro-
vide multi-spectral information; a colour image provides only reflectance values
for three particular energy distributions in the visible light (VIS) wavelengths
range (identified as Blue, Green, and Red). The studies described in [4-6] show
applications of colour images for the assessment of food quality.

Hyperspectral imaging (HSI) systems aim at a combination of advantages of
spectroscopy (i.e. availability of spectral information) with benefits of conven-
tional colour images (i.e. availability of spatial information). Figure 1 illustrates
on the left an HSI image in spectral [wavelength A] and spatial [pixel locations
(z,y)] coordinates forming a hypercube in this xy\ space. Thus, a spectral imag-
ing system is able to provide quality attributes for spectral information as well
as spatial information for the localisation of those spectral data in the sample.
Spectral imaging systems facilitate the visualization of objects and the chemical
distribution of their components. In general, an HSI system collects information
about the external attributes (spatial information) and the internal attributes
(spectral information) as spectral signatures of materials. Figure 1, upper right,
shows spectral signatures for four types of materials, namely lamb, beef, and
pork muscles, and fat. Spatial and spectral information allows us to character-



ize physical and chemical features of objects shown in an image. In general,
HSI systems are more reliable than conventional imaging systems or just using
spectroscopy technology.

The rest of this paper is structured as follows. Section 2 provides an overview
on related techniques for HSI classification and analysis. Section 3 describes the
used data set and the used HSI system. Section 4 covers spectral analysis and
pattern visualization. Section 5 describes our framework for classifying the red-
meat species. After that, results and discussion are given in Section 6. Section 7
concludes.

2 Related Work

The classification of HSI data is the main task in many applications, such as
in medical applications, remote sensing imagery, or, as considered here, in meat
quality processing. In food and meat applications, HSI is considered as being
a powerful tool for classifying or predicting attributes related to food quality.
In [7], a linear model has been developed to classify the type of lamb muscles. The
average of spectra for each sample was used to build a model. The results showed
that HSI was able to define the type of muscles of lamb meat samples, while
conventional RGB image analysis failed in performing this characterization.

In [8], an HSI system was investigated for the discrimination between three
types of red-meat (lamb, pork, beef). Partial least-squares discriminant analysis
(PLS-DA) was used as a supervised learning model for solving the classification
problem. The results showed that PLS-DA performs well in cases of sample-based
evaluation, but it provided a misclassification of pixels in cases of pixel-based
evaluations. The misclassification of pixels resulted due to the model being built
using the average spectrum of each sample; spatial features were ignored in this
case. The system considered the spectral variation in the sample space only,
without taking into account the spatial variation in pixel space. In fact, pixels
of an HST image are affected by the source light (light scattering or illumination
effects).

In [9], PLS-DA was compared with soft independent modelling of class anal-
ogy (SIMCA) for the classification between lamb meat and other types (pork
or beef). It was found that PLS-DA performed better than SIMCA, but the
method’s performance varied depending on the way samples were presented (i.e.
vacuum packed or without packaging).

Understanding the balance between a variation of spectral information in
sample space and the effect of light in pixel space, is a real challenge in build-
ing any learning model for classifying meat samples. This challenge needs to
be addressed in the case of heterogeneous images. For example, detecting any
adulteration in pre-packed rolling meat products is of significant importance. In
this case, a pixel-wise (i.e. local) prediction is not only more practical but also
more reliable than a sample-wise (i.e. global) prediction.

Building the classification model by using the average spectrum of each sam-
ple is a common way for collecting the spectral information for each material



using an HSI system [7,8,11-13]. For reducing the effect of light scattering
within one image, there are methods commonly used, such as spectral deriva-
tives [8], standard normal variates (SNV) [12], or multiplicative scatter correction
(MSC) [12].

In HSI systems, each pixel contributes to the spectral signature of a material.
Thus, as a basic strategy, the use of a pixel as a sample of a material might
produce a model invariant to local changes within an image. This methodology is
commonly applied to hyperspectral imaging for remote sensing applications [10].
It is proposed due to a limitation in resources (i.e. in image data). Thus, taking
a pixel as a sample, while considering different samples of material, provides a
powerful model with the advantage of considering local changes within an image.

An HSI classification model that uses only spectral features may provide some
useful (but not yet fully satisfying) results; in this case, the spatial information is
ignored. Spatial features reflect the geometric or topologic structure of an objects
interior. In addition, they also provide information about the local variation in
spectral data for each pixel. Thus, also taking into account the spatial features
requires a conversion of image data from a pixel-oriented into an object-oriented
data structure, i.e. defined by image segments, where each segment is defined by
some kind of uniformity in spatial information [14].

A method for spectral-spatial feature extraction in HSI applications is given
by super-pixel identification. [15] uses simple linear iterative clustering (SLIC)
to generate super-pixels of HSI images; the mean of spectral values in each
super-pixel is used as an input for an SVM classification model. Then, a linear
conditional random-field model is used to compute the final classification map.

Following this method, an HSI image is converted into super-pixels based on
spectral-spatial information; pixels in each super-pixel have “similar” spectral
and spatial features. Advantages of using super-pixels for extracting stable spec-
tral features are given by (1) averaging over a super-pixel at each wavelength,
(2) the possibility of considering also spatial features (e.g. as known from texture
analysis), and (3) a potential reduction of computation time in the analysis and
prediction phases.

A combination between spectral and spatial features of HIS images are pro-
posed in [16] using a multi-kernel composition of an SVM-RBF. Three types
of features are used in this work: the spectrum for each pixel, the average of
all pixels inside a generated super-pixel, and a weighted average of eight neigh-
bours for each super-pixel. By using super-pixels (or any other image segmenta-
tion method) for defining spectral-spatial features, the performance of the fitted
model improves potentially. However, the use of super-pixels may also reduce
the performance if extracted segments are inaccurate. For this reason, the seg-
mentation is a critical step in HSI analysis. Ensemble classification rules, like the
methods used in [15,16], may be more logical and efficient; decisions in these
methods are a combination of spectral and spectral-spatial features.

In general, our study aims at exploring the robustness of hyperspectral imag-
ing systems to discriminate between different types of red-meat muscles. The
main contributions of this paper are as follows:



Investigate the effects of realistic conditions on spectral appearance of fresh
red-meat; studied conditions are (1) packing meat into a transparent bag,
(2) meat frozen for six hours, and (3) thawing meat after being frozen.
Develop a learning model to discriminate one type of meat muscle from
the others (e.g. in case of adulteration), for example, identify lamb meat
in difference to beef or pork with taking into consideration the conditions
mentioned above.

Develop a methodology to consider the local variation in both spectral and
spatial features by using a method for super-pixel segmentation.

Evaluate different types of spectral (e.g. normalization) and spatial (e.g.
texture) feature extraction methods.

3 Data Set and HSI System

A collection of three red-meat species were procured from local supermarkets
[9]. The total number of procured meat samples is 45, divided as follows: 17
samples of lamb muscle, 13 of beef, and 13 of pork. The samples were randomly
partitioned into a calibration set of 30 samples (12 from lamb, 9 from beef, and
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Fig. 2. Ground-truth and false-color images for frames 1 to 4 (top to bottom), where
FSUP is short for fresh red-meat unpacked, FSP for fresh packed, FRUP for frozen
unpacked, FRP for frozen packed, and THUP for frozen-thawed unpacked. In cells of
ground truth, F is for fat, L for lamb, B for beef, and P for pork



9 from pork). The remaining samples were used for evaluation. Pieces of each
muscle type were extracted and put into designed frames. Figure 2 shows four
of those frames, each having a specific muscle type in one of 4 x 4 cells.

Line-scanning HSI images were collected from these frames at five different
statuses; a set of 20 HSI images was acquired for model calibration when the meat
was (1) fresh, (2) freshly packed in a transparent bag, (3) frozen, (4) frozen and
packed in a transparent bag, and (5) thawed (after being frozen) and unpacked.
These statuses were investigated regarding their effect on the spectrum of red-
meat muscles.

The HSI system, which was used in this work, provides a high spectral reso-
lution of 4.9 nm, and it covers a wide range 547.8 — 1701.2 nm of wavelengths,
thus 235 bands across the electromagnetic spectrum. The HSI acquisition system
was set up, and the reflectance is calculated following [8, 17]. The reflectance is
computed as follows: D

0 —
W —D 1)
This calibrated image reflectance R is obtained from the raw image irradiance
Ry by using the dark reference image D and the white reference image W. After
reflectance calibration, the first and last five bands of the given 235 bands were
removed due to the high SNR in these bands.

R =

4 Spectral Data Analysis and Visualization

For simulating the adulteration in red-meat products, we defined the following
problem: Identify lamb muscles in difference to other muscles types (i.e. here beef
or pork). Thus, the spectral properties of lamb meat are labelled as being one
class (called LAMB), and we have another class spectral properties for both beef
and pork (called OTHER). In addition, we also use a class FAT for visualization
purposes.

A challenge when dealing with of HSI images is the dimensionality of the
image data (their large size). The high dimensionality reflects negatively on
data visualization and the analysis of this type of images. Agreeing with other
authors [7,8,13], we also consider principal component analysis (PCA) as an
appropriate model for dealing with the dimensionality of HSI images.

PCA can be used for proving and visualizing the separation between classes
of different materials. PCA is used for reducing the dimension of HSI data, thus
producing a limited number of images, called score images, sorted by eigenvalue
magnitudes from highest to lowest score image (Recall: The highest score images
represent the most important spectral information from the original spectral
information.) For example, in [16], the first three score images were used as
input for a segmentation model for segmenting an HSI image and for extracting
spatial features from the resulting segments.

We use the data set as introduced in Section 3. The calibration subset was
hand-labelled (ground truth) for manually defined image segments; the mean
spectrum of each segment was used to represent this segment, for each class
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Fig. 3. PCA analysis. Left: Mean spectrum of each of the three classes for each of the
five statuses; wavelengths between 547.8 nm and 1,701.2 nm versus reflectance values
between 0 and 1. Right: Scatter plot for the LAMB and OTHER classes, showing
97.67% of the total variances of the original data; PCA 1 (97.3%) between -20 and +5
versus PCA 4 (0.37%) between -2 and +4

of the previously described set of HSI images. Then, PCA was applied on the
extracted data set for two reasons: (1) for visualizing the patterns between the
pre-defined classes (LAMB and OTHER), and (2) as a pre-processing step for
extracting the spatial features from each image for each class.

Figure 3, left, shows the mean spectrum of each class at each status of meat.
Clearly, this figure shows that there are significant differences in the mean spec-
trum for each class. For visually investigating the class separations, Figure 3,
right, shows the distribution of the data in the PCA space where the classes
are subdivided into overlapping regions; “overlapping” comes from the data in
frozen statuses.

5 Classification Framework

In general, a manual selection of pixels as samples, from each class, is impractical
and inefficient for creating a robust learning model because no local changes are
considered in this case. For this reason, we propose a super-pixel segmentation to
convert the HSI image into a map of super-pixels. The pixels in each super-pixel
share “similar” local spectral features. Also, super-pixels reflect local spatial
features (e.g. similar texture) in the image.

Then, from each super-pixel we select a limited number of pixels to represent
this super-pixel. In this work, the SLIC-superpixel algorithm of [19] is used to
generate super-pixels of an HSI image. SLIC was originally proposed for colour
images; it is based on measuring the similarity (using the Euclidean distance) in
RGB or CIE-LAB space, combined with closeness of spatial coordinates.

Due to the high dimensionality of HSI images, we propose to use SLIC in
the PCA space; we use the first (i.e. highest) five score images as input for



SLIC; the Euclidean distance is used as similarity measure in the PCA space.
Figure 1, lower middle, shows an example of five score images and (lower right)
the resulting super-pixel segmentation of an HSI image. The resulting super-
pixels are accurate, i.e. without any overlapping between different types of meat.
As a classifier, an SVM-RBF algorithm was used for evaluating different types
of features; it is also used for obtaining the final classification maps.

Extraction of spectral features. The resulting segmentation map is used for
extracting samples (pixels) from each class. Considering all pixels in each seg-
ment requires high computing costs. For this reason, and for making the classes
balanced, we use the Kennard-Stone (KS) algorithm [20] to select a subset of
representative pixels. A challenge in HSI image data is the dependence of the
reflectance values from the source light (light scattering). Transforming pixel
values (a pixel value is a vector of reflectance values in the considered wave-
length range) into a normalized version emphasizes the patterns between the
spectral appearance of the classes, and also reduces the effect of the used light-
ing. By considering the pixel as a vector, there are two ways of normalization.
Let P(x,y) = [u1, ug, ..., u,]T be a pixel in an HSI image at location (z,y).

The first option is to simply convert the pixel-value vector into a unit vector
by dividing the values by the Lo-norm ||P(z,y)|l2 = Vui2 + ug? + .... + u,? of
the vector:

Py [ w s w7
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The second option for normalization is a standard normal variation (SNV).
In this case, the expected value of pixel values is centred at zero by subtracting
the mean p of the vector values, and then scaled into a unit standard deviation
by dividing by its standard deviation o:
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Practically, an HSI camera is very sensitive to the lighting; typically mea-
sured spectral values have many spiking points. These spiking points affect the
normalization transformation. The Savitzky-Golay (SG) algorithm [18] is used
to reduce the effect of spiking points. The SG method smooths the spectral val-
ues by estimating the shape of a group of bands (defined by a window size) by
multi-order polynomial fitting. Empirically, we set the window size to 9, with
a 2nd-order polynomial fitting to estimate the shape of each pixel before the
normalization transformation.

In general, HSI systems produce an enormous amount of spectral information.
These cameras are designed to cover a large area of applications such as fruit
sorting, medical applications, or, our case, meat processing. Practically, a lot of
this information is redundant and not required to accomplish a particular task.
Based on this fact, we use recursive feature elimination (RFE) [21,22] to select
a set of “most significant” wavelengths for making a distinction between the



lamb muscle and the other muscles. In the RFE procedure, we use a random
forest (RF) algorithm to estimate the importance of each wavelength in this
classification task. From our PCA analysis, we conclude that the reflectance
of each class is strongly affected by the status of the meat. These changes in
reflectance value affect the classification results and the importance of various
wavelengths. Thus, in this case, we apply an RFE procedure on the data for each
status individually (to estimate a set of the most significant wavelengths for each
status). Then, a union of all sets is taken with removing any duplication.

Extraction of spectral-spatial features. Texture properties of an image are
often used as spatial features in computer vision. A common model for extract-
ing texture features is the gray-level co-occurrence matriz (GLCM); the GLCM
supports a statistical methodology for analysing the spatial relationships of ad-
jacent pixels by calculating how often a pair of pixels with the same intensity
values occurs in an image; see, e.g., [14]. In [23], Haralick proposes a set of sta-
tistical features to represent spatial properties (texture properties) of an image.
These features were extracted from the CLCM matrix. We use the following
Haralick-features: homogeneity, contrast, inverse difference moment (IDM), en-
tropy, energy, and correlation.

In the case of HSI images, extracting these features is demanding due to
having many gray-level images (for wavelengths) inside the hypercube; it is hard
to decide which wavelengths represent the texture of objects shown in an image.
For dealing with this problem, we used the previous RFE analysis to select
six wavelengths that have the highest importance (rank) resulting from the RF
model. The selected wavelengths (all in nm) are as follows:

636.598, 646.456, 656.314, 932.338, 1134.43, and 1154.14

Figure 1(B), upper right, illustrates that these wavelengths are logical: at these
wavelengths we have a significant difference between signatures of the considered
different types of red-meat.

For computing the CLCM matrix, we use the SLIC segments by taking a
window of 20 x 20 pixels centred in a super-pixel. The center of a super-pixel
is defined as the first moment (centre of mass) of all pixels contained in this
super-pixel. The selected window is masked by using value 0 to remove any
pixel outside the segment border. For avoiding any effect caused by the masked
pixels (i.e. the zeros) inside the window, the first row and first column of the
CLCM are eliminated, and the selected wavelengths are normalized into the
range of 1 to 255. After that, texture features are computed for each super-pixel
at six wavelengths; the total number of the selected features is 36 features for
each super-pixel. Then, these sets of features are added to the selected spectral
features of pixels inside the considered super-pixel.

6 Experimental Results and Discussion

The data set, described in Section 3, is used to build the prediction model. First,
the PCA was applied to each image. After that, the first five score images were
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used as input for the SLIC algorithm. The initial region size of each super-pixel
was set to 100 pixels (i.e. 10 x 10). Then, the resulting segments are labelled by
one of the classes (i.e. LAMB, OTHER, or FAT). By using the KS algorithm,
from each super-pixel, we select a limited number of pixels (11 for lamb and 9
for the other cases) to represent the super-pixel. Then, a data set was built from
these pixels.

We investigated the following feature vectors: Raw spectral, normalized spec-
trum by Lo norm (Lg-norm), normalized spectrum by Lo norm with texture
(Lg-norm-texture), SNV normalization (SNV-norm), and SNV normalization
with texture (SNV-norm-tezture). In the case of raw spectral, raw reflectance
features were considered, where the total number of features is 225, while in
the normalization case, the raw spectral data were smoothed, then processed
by applying Eq. (1), and then normalised using either P° as in Eq. (2) for the
Lo-norm, or P as in Eq. (3) for the SNV-norm.

For reducing the dimensionality of the features, only optimal features (wave-
lengths) of the RF model were chosen (93 and 103 features for the Ly-norm and
the SNV-norm, respectively). As described above, we select a set of 36 spatial

False color image Ground-truth Raw spectral Lp-norm L2-norm-texture ~ SNV-norm  SNV-norm -texture

Fig. 4. Visualization results (classification maps) of the proposed feature vectors. The
colors Red, Green, and Blue represent classes LAMB, OTHER (beef or pork), and FAT,
respectively. Top to bottom: FSUP, FSP, FRUP, FRP; all four rows for HSI of fresh
and frozen (packed and unpacked) red-meat, and, in the row at the bottom, THUP for
HSI of fresh thawed unpacked red-meat
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Table 1. Performance evaluation of proposed features for different meat statuses

Sensitivit Precision

Status  Feature vector Tamb OtheryFat Tambl Other| Tat Overall accuracy
Raw spectral 89.8 | 91.6 |99.4| 86.7 | 95.4 |94.7 92.8
Lo-norm 96.2 | 87.9 [99.2] 80.2 | 97.9 |99.7 92.6
FSUP Ls-norm-texture 92.9 | 92.2 [98.9] 85.3 | 96.4 |99.4 93.9
SNV-norm 96.1 | 94.4 [99.8] 92.3 | 98.1 |96.2 96.1
SNV-norm-texture| 93.1 | 95.2 |98.2| 89.8 | 96.4 |99.5 95.3
Raw spectral 93.4 | 70.8 [99.8]| 62.4 | 97.4 |92.8 83.3
La-norm 95.1 | 67.2 [98.3] 58.1 | 96.2 |98.9 81.5
FSP Ls-norm-texture 94.1 | 80.7 |97.1| 69.9 | 95.7 |98.9 87.9
SNV-norm 96.9 | 71.2 [98.8] 62.6 | 98.6 |95.3 84.1
SNV-norm-texture| 96.1 | 84.9 |96.6| 74.8 | 97.2 [98.7 90.3
Raw spectral 96.1 | 75.3 |99.9] 66.4 | 97.9 |96.5 86.3
La-norm 97.4 | 78.2 [99.8| 70.8 | 98.5 |94.6 88.1
FRUP Ls-norm-texture 92.8 | 78.2 199.7| 69.1 | 95.8 |96.1 87.1
SNV-norm 95.9 | 90.1 [99.9] 84.4 | 97.9 |96.7 93.9
SNV-norm-texture| 93.6 | 88.6 |99.7| 81.2 | 96.8 |97.4 92.5
Raw spectral 91.5 | 79.2 [99.5| 71.4 | 95.8 |91.5 87.1
Lo-norm 92.5 | 83.7 [98.5] 76.1 | 96.1 |93.5 89.5
FRP Lo-norm-texture 86.8 | 85.5 [98.3| 76.7 | 93.1 |94.3 88.9
SNV-norm 91.3 | 89.1 [99.4| 82.6 | 96.1 |94.6 92.1
SNV-norm-texture| 90.8 | 85.8 [99.1| 77.1 | 95.5 |95.3 90.2
Raw spectral 95.1 | 77.4 199.2] 68.5 | 97.4 |93.6 86.8
La-norm 97.8 | 71.8 [98.5] 61.7 | 97.9 [99.3 84.4
THUP Lz-norm-texture 96.4 | 85.9 [98.5] 76.3 | 97.6 |98.9 91.4
SNV-norm 98.1 | 83.5 [99.1] 75.2 | 98.7 96.3 90.7
SNV-norm-texture| 96.6 | 93.6 |98.4| 87.7 | 97.9 |99.1 95.5

features to represent the texture of each super-pixel. Thus, all the pixels which
belong to the same super-pixel have the same spatial features. Then, these spatial
features were added to the feature vectors in the case of Ly-norm and SNV-norm.

We use the SVM-RBF algorithm for performing classification. For model
assessment, we use a 10-fold cross-validation with grid search [24] for hyper-
parameter® selection. For evaluating the resulting models, a new set of samples
(6 for lamb, 7 for beef, and 6 for pork) were evaluated and analyzed. In more
detail, these samples were prepared and put in a private frame for imaging and
simulating the situation of mixing different types of red-meat. Then, HSI images
were captured for the meat at the following stages: two images for fresh meat
(packed and unpacked), another two after having the meat frozen for six hours
(packed and unpacked), and one image after thawing the frozen samples. The
first column of Fig. 4 shows false color images of the HSI images which were used
to evaluate the proposed features. The second column shows the selected regions
for quantitative assessment (ground-truth). Some fat regions were eliminated

3 Hyper-parameters are parameters that are not directly learnt within estimators.
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from the assessment due to the fact that these regions are skinny fat, and this
kind of fat was not considered during the model calibration.

The evaluation results show that HSI systems are robust tools for detecting
the adulteration in red-meat products. Moreover, this robustness is invariant to
the state of the products (e.g. fresh, packed, frozen, or frozen-thawed).

In case of sample-wise evaluation, visually, the proposed feature vector (SNV-
norm-texture) provides a very accurate performance, where all samples of all
types of meat are classified successfully. But a main objective of this paper was
to evaluate the proposed features in a way of pixel-wise evaluation.

Table 1 shows pixel-wise quantitative performance results for each feature
vector. In all cases, the proposed spectral normalization methods enhance the
accuracy compared to a plain-spectral method.

The results show that raw spectral data are strongly affected by the state
of the meat. The best overall accuracy was achieved for the state of fresh meat.
However, the accuracy significantly decreased for the other statuses; this observa-
tion clearly appeared from our PCA analysis. The changes in accuracy document
the need that other features need to be used. Our goal is to provide a model
with a high stability between the sensitivity and precision of all classes.

Compared to raw spectral data, the enhancement given by the proposed
method is even more obvious for the other meat states. For example, in case
of FSP, the accuracy increased from 83.3% to 90.3%. In general, raw spectral
features produced a non-stable model; for example, the sensitivity of classes
(LAMB, and OTHER) significantly change from state to state. Also, there is a
gap in the sensitivity of the classes at all the statuses except the FSUP status
while normalizing the spectrum provides a more stable performance. The gap
between the sensitivity of the classes is significantly reduced.

Table 2 shows the results (sensitivity, precision, and overall accuracy) on
average for all meat statuses. On average, the SNV normalization outperforms
the Ly normalization where the mean overall accuracy of all meat statuses are
87.2% and 91.4% for Lo-norm and SNV-norm, respectively.

As expected, by adding spatial features (e.g. texture) we improve the accu-
racy and the stability of the proposed spectral normalization methods. In the
case of the Lo-norm, the spatial features increase mean accuracy from 87.2% to
89.8%:; in the case of SNV-norm, they increase mean accuracy from 91.3% to
92.8%.

Table 2. Performance evaluation on average of proposed features, independently of
the state of the meat (i.e. summarising FSUP, FSP, FRUP, FRP, and THUP)

Sensitivit Precision
Feature vector Tamb T O t}kller Tamb | Other Overall accuracy
Raw spectral 93.2 78.8 71.1 96.7 87.2
Ls-norm 95.8 77.8 69.4 97.3 87.3
Lo-norm-texture 92.6 84.6 75.5 95.7 89.8
SNV-norm 95.6 85.6 79.5 97.8 91.4
SNV-norm-texture 94.1 89.6 82.1 96.8 92.8
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By adding the spatial features we significantly improved the accuracy for
meat statuses FSP and THUP. For example, in THUP, the accuracy jumped
from 86.86% (raw spectral) to 95.5% (SNV-norm-texture), while there is no
significant enhancement in the accuracy of statuses FSUP, FRUP, and FRP.

Also, adding texture reflects on the stability of the model; the gap in sensi-
tivity and precision between the class LAMB and class OTHER decreases. This
suggests that the model resulting from SNV with texture is the best and most
efficient model in the set of considered models. Figure 4 shows the resulting clas-
sification map of each feature vector for each meat status. The last column shows
results for the best-achieved accuracy which occurred when texture properties
were added to the SNV-normalized spectral features.

7 Conclusions

Adulteration of red-meat products is a growing concern to the industry. This
study investigates the use of HSI to detect adulteration independently of the
state of the products (fresh, packed, frozen, or frozen and thawed). To achieve
this goal, we investigated different types of spectral and spatial features. The
quantitative performance analysis shows that SNV normalization with texture
features produces a stable model, fairly invariant to the red-meat status with
92.8% average overall accuracy. The results show that packing the sample into a
transparent bag did not affect the spectral response of that sample if it is packed
tightly. Lamb meat is detected successfully without any misclassification of pieces
with high sensitivity in the case of pixel-wise evaluation while the classification
results of beef or pork are affected by the status of the meat, especially in the
frozen status; here is space for improvements.
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