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Abstract 

 

The main goal of this research was the in vitro investigation of the stiffness response of 

contracted airway smooth muscles under different external oscillations. Living animal 

airway smooth muscle tissues were dissected from pig tracheas and stimulated by a 

chemical stimulus (acetylcholine). These tissues were then systematically excited with 

different external vibrations. The force change was recorded to reflect the muscle 

stiffness change under vibration. The static and dynamic stiffness of contracted airway 

smooth muscles in isometric contraction were determined before, during and after 

vibrations. A continuum cross-bridge dynamic model (the fading memory model) was 

modified to accommodate smooth muscle behaviour and dynamically describes the 

cross-bridge kinetics. A two-dimensional finite element model (FEM) was developed to 

simulate longitudinal and transverse vibrations of the tissue. An empirical equation, 

derived from the experiments, is incorporated into the FEM. 

 

The results indicate that the stiffness of active smooth muscles can be physically 

reduced using external vibrations. This reduction is caused by a certain physical 

position change between actin and myosin. The dynamic stiffness has the tendency of 

decreasing as the frequency and/or amplitude of external vibration increases. However, 

the static stiffness decreases with an increase in the frequency and amplitude of 

excitation until it reaches a critical value of frequency where no variation in stiffness is 

observed. It is postulated that the tissue elasticity and mass inertia are the main 
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contributors to the dynamic stiffness while the actin-myosin cross-bridge cycling is the 

main contributor to the static stiffness. 
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Chapter 1 

Introduction 

 

1.1 Lung Structure  

 

The main function of the human lung is to provide oxygen to body tissues for the 

metabolism of all living cells for growth and to remove carbon dioxide from the body. 

The respiratory system can be likened to an inverted tree-like structure with the trunk 

representing the trachea and the leaves representing the alveolar sacs and the alveoli. 

The trachea divides into two bronchi to supply the right and left lungs. The right lung 

has three lobes (right upper, right middle and right lower), while the left lung has two 

lobes (left upper and left lower).The remaining room on the left hand side is reserved 

for the heart (see Figure 1.1). Furthermore, each lobe consists of the bronchi, 

bronchioles, alveolar ducts, alveolar sacs and alveoli. 

 

The lung’s material properties play an essential role in determining the various 

biological and physiological functions of the lung and are important key parameters in 

lung biomechanical models. The gross structure of the lung tissue is a nonlinear elastic 

structure that will collapse like a balloon and expel all of its air through the trachea 

whenever there is no force to keep it inflated [1]. All of the airway walls contain smooth 

muscle, elastin and collagen fibres. While cartilage rings exist in the trachea to keep it 
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from collapsing under normal conditions. In the walls of the bronchi, less extensive 

cartilage plates also maintain the stiffness of the walls. These cartilage plates become 

progressively less extensive in later generations of bronchi and are not present in the 

bronchioles. In these airways, it is not the rigidity of the walls that prevent airway 

collapse but the expansion of the airways due to transpulmonary pressure [2]. 

Furthermore, a living lung tissue not only has a passive force which is due to the 

diaphragm movement but also an active force which is due to smooth muscle 

shortening. 

 

 

Figure 1.1 Structure of human lung [3]. 

 

1.2 Structure of Airway Tissue  

 

Airway tissue is the most important factor in determining the overall lung function. It is 

different from most other organ tissues in that it undergoes large amplitude deformation 

even during normal breathing. Consequently, this tissue must be highly compliant and 

capable of large amplitude changes in length and circumference [4]. Relative to most 

vessels in the circulatory system, the airways are highly dynamic and can actively 

contract (to almost total occlusion) when the smooth muscle is stimulated. Allergen 
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exposure can cause a rapid constriction of airway smooth muscle (as in the case of 

severe asthma) that can severely reduce normal ventilation within a period of minutes to 

hours [5]. 

 

A histological view, as shown in Figure 1.2, describes the airway wall structure and its 

variation with distance along the tree. In a cross-section, the membranous airway wall 

appears as shown in Figure 1.3. Airways are covered with the epithelium (EP), over the 

inner surface as its first defence from external intruders, similar to the lumens of other 

human organs. This lining of pseudo-stratified ciliated columnar cells sits on top of a 

basement membrane (BM) that separates smooth muscles (SM) of the lamina propria 

layer. Just behind the basement membrane is a subepithelial collagen layer.  

 

 

Figure 1.2 Schematic representation of the airway wall, in cross-section, from the 
large bronchi down to the small peripheral bronchioles, SM means the 
airway smooth muscle [5]. 
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Figure 1.3 Sketch of the membranous airway wall as viewed in cross-section along the 
airway axis [5].  

 
 

On top of the cilia is a sol and a gel layer that forms a mucous blanket for trapping 

particulates from further invasion into the alveoli where diffusion occurs. These 

collected particulate debris move toward the trachea, where it can be eliminated by 

coughing. Supporting the epithelium is a basement membrane that is composed of type-

IV collagen, laminin, entactin/nidogen, and heparin sulphate. The subepithelial collagen 

layer is more important from a structural viewpoint and is considerably thicker than the 

basement membrane. This layer is composed of type-III and type-V collagen, laminin, 

and elastin [5]. The main role of the smooth muscles layer is to cause to airway 

contraction (e.g. asthmatic attack). Beyond the smooth muscle is the adventitia, a layer 

that is dispersed and highly variable in thickness, whose outer margin is connected to 

the lung parenchyma. 
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1.3 What is Asthma?  

 

Asthma is one of the most common pulmonary diseases in the respiratory system. It 

mostly leads to a common result that causes extremely difficult breathing. Gas exchange 

is no longer effective as in normal lungs and cellular tissues are either starved of oxygen 

refreshment or killed completely. More than 25% of the New Zealand population [6] 

and 3% to 5% of the U. S. population [7] suffer from asthma-related syndromes. A 

definition of asthma from the Merriam-Webster Dictionary is given as “a condition 

often of allergic origin that is marked by continuous or paroxysmal laboured breathing 

accompanied by wheezing, by a sense of constriction in the chest, and often by attacks 

of coughing or gasping”[8], and bronchial asthma is defined as “asthma resulting from 

spasmodic constriction of bronchial muscle”.  

 

The main roleplayer in an asthmatic attack is the airway smooth muscle. Asthma is 

characterised by chronic inflammatory disorders of the airways associated with 

increased airway responsiveness (known as the airway hyperresponsiveness) to various 

stimuli [9]. Fredberg [10] suggested that this airway hyperresponsiveness may increase 

the cross-bridge cycling rates and shorten the airway smooth muscle. The shortening of 

the airway smooth muscles regulates the airway luminal diameter and narrows the 

airway. Since cartilage rings exist in the upper airways to keep them from collapsing, 

asthma mainly results from the occlusion or obstruction in the middle part of airways 

(lower bronchi and bronchioles). Airway smooth muscle area is pathologically 

increased when inflammatory conditions of the airway such as chronic pulmonary 

disease in relation to asthma, which increase heterogeneity of airway smooth muscle 

function [11 and 12]. Evidence shows that an increase in airway smooth muscle mass, 
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which is due to hyperplasia and hypertrophy, appears to occur in chronic severe asthma 

[13-15].  

 

Overall, the contraction of smooth muscle is the main driving mechanism during an 

asthmatic attack and mainly contributes to airway obstruction. Other factors of airway 

obstruction in asthma include edema of mucosa, increased mucous secretion, cellular 

(especially eosinophilic and lymphocytic) infiltration of the airway walls, and injury 

and desquamation of the airway epithelium.  

 

Asthma is usually linked to environmental or genetic factors, although these 

relationships are not well understood. Typically, all asthmatics with active disease have 

hyperresponsive (hyperreactive) airways which manifest as an exaggerated 

bronchoconstrictive response to many different stimuli. The trigger may be an allergen 

(allergic hypersensitivity) such as plant pollen, house dust mites, molds, or a particular 

food. Other common triggers of asthma attacks are nonallergenic types that include 

emotional upset, aspirin, sulfiting agents (used in wine, beer, and to keep greens fresh in 

salad bars), exercise, and breathing cold air or smog. In the early phase (acute) response, 

smooth muscle shortening (contraction) is accompanied by excessive secretion of 

mucus that may clog the bronchi and bronchioles and worsen the attack. The late phase 

(chronic response) is characterized by inflammation, fibrosis, edema, and necrosis of the 

epithelia cells [1, 7 and 16].  

 

Although asthma is not completely curable at this time, it can be controlled by 

controlling environmental factors and by using medical treatments. Controlling 

environmental factors aim to avoid or minimize the triggers of asthma attacks that 

precipitate symptoms or exacerbations. An acute attack is treated by using a medical 
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inhaler, such as a beta2-adrenergic agonist to help relax smooth muscle in the airways 

and reopen the airways. However, long-term therapy of asthma strives to suppress the 

underlying inflammation. Anti-inflammatory drugs such as inhaled corticosteroids, 

cromolyn sodium, nedocromil, and leukotriene blockers are frequently used for this 

purpose [17]. 

 

1.4 Airway Smooth Muscle  

 

There are three main kinds of muscles found in the body (shown in Figure 1.4): skeletal 

muscle, cardiac (heart) muscle and smooth muscle. Skeletal muscles produce movement 

by exerting force on tendons, which are around bones or other structures (e.g. skin). The 

principal tissue in the heart wall is called the cardiac muscle. Smooth muscles are found 

mainly in the walls of hollow organs (digestive and urinary tract organs, respiratory 

system, uterus, and blood vessels). Both skeletal and cardiac muscle exhibit striped 

patterns (visible bands) under a microscope, and hence are known as striated (striped) 

muscles. The other muscle has fibers with no externally visible striations and is known 

as smooth muscle. Skeletal muscle can be contracted under conscious control and is 

often called voluntary muscle. While cardiac and smooth muscles are called involuntary 

muscles as it can not be contracted under conscious control.  
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Figure 1.4 Skeletal muscles (a), cardiac muscle (b) and smooth muscle (c), notice the 
striations in skeletal and cardiac muscle [18]. 

 
 

The two main characteristics of smooth muscles are: 1) its contraction and relaxation 

periods are slower than skeletal and cardiac muscle and; 2) its action is rhythmical. 

Smooth muscle fibers (cells) are small (2 to 5 µm in diameter, and 100 to 300 µm in 

length), spindle-shaped and slender. Each fiber contains one centrally located nucleus 

(the dark-pink dots in Figure 1.4c). They are subdivided into two groups: single-unit 

(also called visceral muscle) and multiunit (see Figure 1.5). The single-unit smooth 

muscle cells are crowded together and behave somewhat like those of the cardiac 

muscle. Electrical stimulation of one cell is followed by stimulation of adjacent smooth 

muscle cells. These muscles are usually stimulated and act rhythmically as a unit. In 

contrast, multiunit smooth muscles, like skeletal muscle, consist of muscle fibers that 

are structurally independent of each other, often innervated by single nerve endings and 

respond to neural stimulation with graded contractions. The multiunit smooth muscles 

are in the large airways of the lung and in large arteries [4 and 19]. 
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Figure 1.5 Sketch of a single-unit and multiunit smooth muscle [19]. 
 
 

A muscle’s contractile elements provide its active force through the actin and myosin 

“ratcheting” mechanism. Actin and myosin are two different proteins, and actin is 

thinner than myosin. Actin is commonly referred to as “thin filaments” and myosin as 

“thick filaments”. Myosin is made up of a number of myosin molecules. Each myosin 

molecule consists of a long “tail” and a large “head”. Groups of myosin molecules 

arrange themselves such that the molecules in the longitudinal direction of the thick 

filament are tail to tail and the heads in the radial direction are in a helical pattern.  

 

Actin is more complicated than myosin in that it contains other proteins. The main 

protein is actin that forms a double stranded helix. Within the groove defined by the 

double stranded actin helix runs the second protein of the thin filament, called 

tropomyosin. A thin filament of skeletal and cardiac muscle has a third protein called 

troponin complex (or troponin). This complex is attached along the tropomyosin 

molecule at regular intervals. The difference with smooth muscle is that troponin is 

absent in the thin filaments. 
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The actin and myosin myofilaments within the myofibrils in skeletal and cardiac muscle 

cells are arranged in a regular fashion both longitudinally and radially throughout the 

myofibril, as seen in Figure 1.6. In the longitudinal direction these myofilaments 

overlap in a regular fashion, and viewed under a microscope this regular overlap 

generates a series of light and dark bands (see Figure 1.4 and 1.6). For smooth muscle, 

the actin and myosin myofilaments within the myofibrils are very thin and arranged 

more randomly than in skeletal and cardiac muscle cells. As a result, smooth muscle 

fibers lack striations. Figure 1.6 shows the difference in structure between smooth and 

skeletal muscle. In skeletal and cardiac muscle, there is an important length unit, called 

a sarcomere, which is defined as the length between two consecutive Z-lines. 

Obviously, there is no sarcomere in smooth muscle. The Z-line, in skeletal and cardiac 

muscle, is a coin-shaped protein sheet that anchors the actin filaments and also connects 

each myofibril to the next throughout the width of the muscle cell. However, in smooth 

muscle, the dense body, which acts as anchoring point for groups of actin filaments, 

corresponds to the Z-line of skeletal and cardiac muscle. Some of these dense bodies in 

turn are attached to the cell membrane whereas others are located throughout the cell 

but are held in place by a scaffold of structural protein cross-attachments from one 

dense body to another. 

 

When the heads of myosin attach to the thin filaments, the muscle generates an active 

force (see Figure 1.7). Muscle shortening occurs by allowing the relative sliding of the 

thick and thin filaments and the myofilaments (thin and thick filaments) are found not to 

shorten. This theory is generally known as the sliding filament theory [20].  
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Figure 1.6 Difference in structure between smooth muscle (A) and skeletal muscle (B). 
 
 

 

Figure 1.7 Muscle contraction as caused by cross-bridge attachment. 
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Although smooth muscles have a different structure when compared to skeletal and 

cardiac muscle, the fundamental mechanical processes of contraction in smooth muscle 

(force-length relationship, force-velocity relationship, etc.) have a qualitative similarity 

to those processes occurring in skeletal and cardiac muscle. Furthermore, the results of 

research on smooth muscles in the last three decades have revealed that the presence of 

all the components is apparently necessary for the function of a sliding-filament-

crossbridge contraction mechanism [21]. 

 

1.5 Research Plan 

 

Since the driving mechanism for any asthmatic attack is the shortening of airway 

smooth muscle, the main objective of this research is to determine whether airway 

smooth muscle contraction can be relaxed by vibrations. To achieve this, two types of 

vibration will be tested: longitudinal and transverse. The former has been attempted by 

other authors [6, 22-30] who proved that stiffness variation does exist with longitudinal 

oscillations. However, no attempts have been made using the latter method. It is 

believed if oscillation does relax contracted airway smooth muscle, it could be 

incorporated in a bronchodilation process to relief airway passages. Since any 

bronchodilation can be introduced as pressure waves, this will introduce transverse 

rather than longitudinal vibration. Therefore, the main objectives of this work are: 

 

1. Develop a test rig suitable for testing the effect of longitudinal and transverse 

oscillation on contracted airway smooth muscle. 

 
2. Test several live airway smooth muscle tissues extracted from the pig tracheas 

and subjected to longitudinal and transverse vibration and measured the 

resulting change in the stiffness of the airway smooth muscle.  
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3. Develop a distribution (fading memory model) and a finite element model for 

the above two tests for generalization as well as to extend the study on a further 

range of excitation. 

 

The specific objectives may be summarised in Figure 1.8. 
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Main Goal 
To determine whether airway 

smooth muscle contraction 
can be relaxed by vibrations. 

Mathematical models Experiment 
To represent these responses, two 
different math models are used. 

Systematically investigate animal 
airway smooth muscle tissue 

stiffness by oscillating tissues in two 
different directions. 

 

Fading Memory Model Finite Element Model Longitudinal Direction Transverse Direction 
A distribution model 

describes the cross-bridge 
kinetics. 

The model simulates the 
tissue oscillations in two 
different directions under 

mechanical driving. 

Mechanically drive 
oscillations in the 

longitudinal direction of the 
tissue with different 

amplitudes, frequencies, and 
time durations. 

Mechanically drive 
oscillations in the transverse
direction of the tissue with 

different amplitudes, 
frequencies. 

Compare

 

Figure 1.8 A follow chart for the research plan. 
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1.6 Structure of the Thesis 

 

This chapter has described the general background of airway smooth muscles as related 

to asthma. The chapter has also presented the research plan. Chapter 2 presents the 

fundamental knowledge for smooth muscle and the relevant results from other 

researchers. Chapter 3 details all the experiments performed during the research. 

Chapter 4 introduces the fading memory and FEM model. Chapter 5 lists all the results 

from the experiments and mathematical models. Chapter 6 rationally and physically 

discusses the behaviours observed in both experimental and theoretical investigations. 

Chapter 7 concludes this research and looks to the future. 
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Chapter 2 

Smooth Muscle Mechanics and Literature Survey 

 

2.1 Introduction  

 

The three main structural elements that exist in respiratory tissues are elastin, collagen 

and smooth muscles. The latter plays a major role in an asthmatic attack. The airway 

smooth muscle is different from other connective tissues in that it combines both active 

and passive forces. During the normal lung breath cycles, the airway smooth muscles 

display passive and viscoelastic properties in the resting state. Once the airway smooth 

muscles are contracted by some stimuli [9], as in an asthmatic attack, the contractile 

mechanism of these muscles will generate an active force which causes a shortening in 

the muscle length and dominate their properties. 

 

This work focuses on the active behaviour of airway smooth muscles. To understand the 

foundation of the research, a fundamental knowledge of smooth muscles contraction 

and related work from the literature are introduced in the following sections. 

 

First, the contracted smooth muscle properties will be discussed from a mechanical 

perspective in Section 2.2. Second, the physiological procedure of muscle contraction 

will be presented at a molecular level in Section 2.3. Third, available models related to 
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muscles contraction are summarized in Section 2.4. Finally, available literature on 

muscle vibrations are reviewed in Section 2.5. 

 

2.2 Mechanical Properties of Muscle Contraction  

 

Muscle tissues can contract and generate a force when it is stimulated. In most cases, 

two kinds of muscle contraction modes are considered. If the muscle is fixed in such a 

way so that the ends cannot move (at a constant length), this contraction is known as an 

isometric contraction. In contrast, another mode of contraction, called isotonic 

contraction, occurs when the muscle is allowed to contract or shorten against a constant 

loading.  

 

2.2.1 Isometric Contraction 

 

For an isometric contraction, the development of the generated force depends on the 

mode of stimulation (see Figure 2.1). A single stimulus generates a twitch, in which the 

force increases rapidly and then decreases. If a second stimulus is applied before the 

first twitch has fallen to zero, the peak force of the second twitch is higher than that of 

the first. If the stimulus is maintained at a certain frequency, the generated force rises 

smoothly and this muscle is said to be in tetanus. The plateau force is called the 

isometric force for the muscle length [19 and 31]. 

 

An isometric contraction experiment can be performed where the amount of isometric 

force generated by a muscle is measured for a number of different muscle lengths. The 

result of this experiment is called the isometric force-length relationship. The ideal 

result of such a relationship for skeletal muscles is shown in Figure 2.2. 
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Figure 2.1 Isometric force dependence for various modes of stimulation [31]. 

 

 

Figure 2.2 Isometric force-length relationship for skeletal muscle [31]. 

 

In terms of theory, a passive muscle (muscle which is not contracting) resists extension 

beyond its normal resting length (see the dashed line in Figure 2.2). It is possible to 

measure the passive force-length behaviour when the muscle is in the passive state. By 

subtracting the passive force from the total force, we can obtain the amount of active 

force generated in the muscle through contraction (see the thin solid line in Figure 2.2). 

As can be seen, this active force is maximal when the length is close to the resting 

length, and decreases if the muscle length is both increased or decreased. The parabolic 

behaviour of the isometric force-length relationship is determined by the contractile 

mechanism of the muscle, and can be explained by different degrees of interaction 
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between the actin and myosin. The following explanation comes from striated muscles 

and details the isometric force relationship to the sarcomere (the unit length of striated 

muscle). However, this explanation is also appropriate for the smooth muscle.   

 

 

 

Figure 2.3 Sarcomere force-length relationships [31]. 
 

 19



At point a (Figure 2.3), no force is generated in the sarcomere as there is no interaction 

between the actin and myosin. At point b there exists a maximum force as there is a 

maximum interaction between the actin and myosin. The maximum force continues up 

to point c when the actin filaments start to interfere. At point d, there is a steric 

interference of the actin filaments limiting the interaction between them and the myosin. 

At point e, there is interference between both the actin and myosin, resulting in no force 

production. Since no “sarcomere” (unit length) can be found in smooth muscles, some 

researchers [32-35] have suggested that the average distance between the successive 

dense bodies might represent an estimate of the contractile unit length in smooth 

muscles. An isometric force-length relationship for smooth muscle was measured by 

Seow [36] and is shown in Figure 2.4. 

 

Two facts can be noticed from Figure 2.4. Firstly, the history of muscle loading is an 

important factor in generating an active force. Different settling times are required to 

develop different isometric forces, see Figure 2.4 (A). Secondly, the passive force exists 

for the entire length range and not only when the tissue length is beyond the normal 

resting length (see Figure 2.4 (B)). This may be attributed to the random arrangement of 

actin and myosin and the lack of identifiable “sarcomere” in smooth muscles. From 

another point of view, the resting length (where there is no passive force) and the length 

that correlates with maximal force generation are not unique in smooth muscles. Bai et 

al. [37] suggested that the terminology in smooth muscle where the length that 

correlates with maximal force generation should be called the “reference length” (Lref) 

rather than “optimal length” as used in striated muscles (see Figure 2.4). An appropriate 

approach for adjusting the reference length will be introduced in Chapter 3. 
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Figure 2.4 Length-tension relationships of arterial smooth muscle A active and B 
passive: (○) determined for 2 min after length change; (●) determined for 
27 min after length change [36]. 

 
 

When a muscle in isometric contraction is suddenly shortened and clamped at a new 

fixed length (transient change in length), this is called an isometric quick release. These 

kinds of experiments have been conducted on smooth muscles [21 and 38]. Gunst et al. 

[38] tested dog airway smooth muscles, and the result is shown in Figure 2.5. The 

muscle tissue was initially stimulated at zero time by acetylcholine (ACh), and the 

isometric force then developed to a maximum value. After approximately 1 minute, a 

transient shortening in length occurred and the muscle tissue was clamped at a new 

fixed length (70% of L0). The results show that the force changes abruptly to an 
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extremely low level (lower than the force before stimulation), and the force 

subsequently recovers to a new plateau force through the time course (a slow recovery 

follows the initial recovery). The extent of shortening (length step) determines the 

extent of the extreme force (the initial fall in the force) and the new plateau force is 

determined by the isometric force-length relationship (see Figure 2.2 and 2.4). The 

experimental data also shows that the initial recovery time is typically less than 10 

seconds [38]. 

 

 

Figure 2.5 Response of isometric quick release for airway smooth muscle [38]. 
 
 

2.2.2 Isotonic Contraction 

 

In an isotonic contraction, the muscle is allowed to shorten against a constant loading. 

The experiment is normally performed with the muscle attached to one end of a lever 

with a fixed amount of weight. Initially, the muscle is contracted at a constant length 
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(i.e. initially isometric contraction) to generate a force. When the value of the generated 

force reaches that of the applied weight (known as the afterload), the muscle starts to 

shorten. It has been found that the velocity of the shortening is constant for a given 

afterload (see Figure 2.6). A higher loading gives a slower shortening velocity and a 

lower loading produces a higher shortening velocity. This is the reason our muscles are 

able to lift small loads quickly or large loads slowly. 

 

 

Figure 2.6 Isotonic force-length relationship [31]. 

 

If the experiment is designed such that the muscle first contracts isometrically and then 

is abruptly released to shorten against a constant afterload, this is known as an isotonic 

quick release. Once release occurs, the force falls rapidly to the level of the new 

afterload. Initially, there is an abrupt shortening that coincides with the transient change 

Force 
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Time

Time

Stimulation

Force generation  
without shortening

Afterload

High loading

Constant velocity Low loading
Of shortening 
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in force. Subsequently, a slower isotonic shortening occurs at a velocity that 

corresponds to the new afterload (see Figure 2.7). 

 

Force  

 

Figure 2.7 Response of isotonic quick release [31]. 

 

An isotonic contraction experiment can be performed by measuring the velocity of 

shortening by varying the amount of afterloads. The result of this experiment is called 

the isotonic force-velocity relationship which has a characteristic hyperbolic shape. 

Furthermore, different types of muscles have different velocity responses. Blanc et al. 

[9] measured airway smooth muscles from Fisher and Lewis rats (see Figure 2.8), and 

found that under the same afterload, the muscle shortening velocity of the Fisher rats 

was higher than the velocity of Lewis rats, (see Figure 2.8 (a)). Therefore, one can 

conclude that the airway smooth muscle of the Fisher rats is more active than the airway 

smooth muscle from Lewis rats. However, both curves are nearly identical after 

normalization (see Figure 2.8 (b)). Figure 2.8 (b) shows that the maximum force is 

generated when the muscle is contracting isometrically (at zero velocity). The maximum 

velocity occurs when there is no afterload (experimentally this is found from 

extrapolating the curve from low values of afterload). 

Force step

Length 

Shortening 
Transient

F0

F1

Time 

Time 
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Figure 2.8 Experiments of force-velocity data. Representative force per mm2 
(P)/velocity (V) curves for Fisher (the dashed line) and Lewis (the solid 
line) rat tracheal smooth muscle. a) Absolute P and V values. B) 
Normalised P and V values [9]. 

 

2.2.3 Hill’s E ment Model 

e in muscle mechanics. This 

quation can be written as: 

 

quation and Hill’s Three-Ele

 

Hill’s quation [39] is one of the most famous equation 

e

 

( )( ) ( )aFbaFbv +=++ 0           (2.1) 
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where F is the force in a muscle, v is the velocity of shortening, F0 is the maximum 

force at zero velocity (iso

        (2.2) 

where E is the 

te of work done (W = F⋅v), and H is the shortening heat. If the muscle is in an 

metric force), and a and b are constants. If the constants a and 

b are ignored on the left-hand side of the equation, then equation (2.1) shows that the 

energy of work done by the muscle is equivalent to the energy conversion from the 

chemical reaction in the muscle, and that this energy is conserved. Hill’s equation 

referred to the ability of a tetanized skeletal muscle and the empirical equations based 

on experimental data from frog sartorius muscle [39]. The original derivation of this 

equation was from a thermo-mechanical expression [39]. First of all, Hill proposed the 

equation for a balance of energy: 

 

WHAE ++=    

 

rate of energy release, A is the activation or maintenance heat, W is the 

ra

isometric condition (no shortening and no velocity), then equation (2.2) is reduced to: 

 

AE =              (2.3) 

Equati

hen the muscle shortens, an additional chemical reaction takes place. This amount of 

 

on (2.3) shows that the rate of energy release is equal to the activation energy. 

W

“extra energy” should be equal to the sum of the shortening heat and the work done (H 

+ W). From experimental data, Hill proposed two empirical equations as follows: 

 

( ) vaHFFbWH ⋅=−=+    and   0            (2.4) 
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From equation (2.4) one can obtain: 

 

( )FFbvFvaWH −=⋅+⋅=+ 0          (2.5) 

Rewriting equation (2.5), one ob

haracteristic hyperbolic curve of a force-velocity relationship. Many years later, Hill 

)

 

tains equation (2.1). This equation also represents the 

c

admitted that it is better to consider equation (2.1) directly from the force-velocity 

relationship [40]. Stephens et al. [41] modified the Hill’s equation as follows: 

 

( )
( )( FF

FF
v

−
=

β 0          
−+ γα

  (2.6) 

 

where γ is a new constant, α and β/γ  are approximations of a and b in the Hill’s 

quation (equation (2.1)), and γ > F0. When F0 approaches γ, the velocity v is calculated 

tch or the mechanical behavior of an 

nstimulated muscle (passive state). For these reasons, previous authors used 

e

as an infinite value from this modified equation, which suggests that γ can be interpreted 

as the maximum force a cross-bridge can bear. Stephens et al. used the modified 

equation to fit the experimental data from airway smooth muscle. The result is shown in 

Figure 2.9. A better fit was achieved by using the modified force-velocity equation, 

especially at the high loading end of the curve 

 

Hill’s equation cannot describe a single twi

u

mechanical elements to develop a better model known as the Hill’s three-element model 

which is shown in Figure 2.10. Two elements, namely the contractile component and 

the series elastic component, are arranged in series and another element called the 

parallel elastic component is arranged in parallel. 
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Figure 2.9 Comparison of Hill’s equation and Stephens’ modified equation to 
experimental data points [41]. 

 

 

 

Figure 2.10 Hill’s three-element model [19]. 
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The contractile component is designed as a “black-box” to lump all of the active 

atures of contraction. It is assumed that this component is freely extensible in its 

 spring, which accounts for 

e muscle elasticity in isometric conditions. Therefore, the length of this element is 

 potential energy stored in a relaxed muscle (the 

lasticity of the muscle at rest) when it is stretched beyond its resting length. It is 

e Stiffness-Length Relationship 

e. From this point 

f view, the muscle stiffness is a rough reflection of the number of active cross-bridge 

fe

resting state, and is capable of shortening when activated. Once fully activated, the force 

generated by this contractile component is assumed to be dependent only on its 

instantaneous length and velocity and independent of time.  

 

The series elastic component is represented by an undamped

th

dependent only on the force in the muscle and is independent of the kinetics of 

contraction. The series elasticity may be due to the intrinsic elasticity of the actin, 

myosin molecules and cross-bridges.  

 

The parallel component represents the

e

assumed that the element represents the passive elastic structures such as connective 

tissue and muscle cell membranes. 

 

2.2.4 Contracted Smooth Muscl

 

The stiffness of a contracted muscle is determined by the active forc

o

interactions [23]. Furthermore, the muscle length determines the number of active cross-

bridge interactions (see Figures 2.2 and 2.3). Thus, the stiffness-length relationship of 

contracted muscle is more closed related to the force-length relationship. However, in 

reality this conclusion is not completely valid as the number of active cross-bridges is 

not the only factor that determines the muscle stiffness at different muscle lengths. For 
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smooth muscle, the contractile mechanism in a cell is embedded in the tissue attached to 

the surrounding cells and connective tissue at numerous points via membrane-

associated dense bodies along its entire length, rather than just at its ends [42 and 43]. 

Meiss and Pidaparti [26, 27, 43 and 44] worked on airway smooth muscle from dogs 

and ovarian smooth muscle from rabbits for a variety of muscle lengths under isometric 

and isotonic contractions and proposed a “radial constraint hypothesis”. This hypothesis 

states that an activated smooth muscle tissue, under a very light (or zero) isotonic load, 

will shorten at constant volume until it reaches an equilibrium length. As the extremities 

of shortening are approached, the tissue must expand significantly in the radial direction 

to preserve the constant-volume condition. This expansion would be counter-acted by 

forces developed in connective tissue that are arranged in a radial direction. The strained 

connective tissue would serve as a load on the contractile apparatus (the force being 

transferred by the incompressible cells and extracellular matrix) and this would cause 

the shortening to be limited. It would also cause the axial stiffness of the muscle tissue 

to rise as more cross-bridges were recruited in response to the reduced internal 

shortening velocity [27]. Meiss [26] proposed a set of empirical equations as follows, 

and used this equation to fit the experimental data (Figure 2.11): 

 

( )
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        (2.7) 

 

where L is the length of tissue, V is the volume of the tissue, FA is axial force, α, Kc, KT 

nd S0 are constants. The resultant longitudinal stiffness (SL) is calculated by the axial 

V 2
1

2
1

2
3 ⎤⎡ ⎞⎛− π

a

stiffness (SA) and transverse stiffness (ST) in series. Equation (2.7) shows that the muscle 

stiffness is very high at extremely short lengths. The stiffness then declines with 
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increasing muscle lengths. Pidaparti et al. [45] developed a three-dimensional FEM 

model with viscoelastic material properties to stimulate this relationship. 

 

 

Figure 2.11 Stiffness-length relationship and fitted by equation (2.7) [26]. 
 
 

action and discusses 

e force-length and velocity-length relationships. In this section, the muscle contraction 

m the terminal of the nerve and along the muscle cell 

embrane to raise the potential of the membrane. The high membrane potential opens 

2.3 Physiological Procedure of Muscle Contraction 

 

Section 2.2 introduces the mechanical properties of muscle contr

th

will be explained from a physiological point of view. More physiological details are 

provided to show how muscle contracts in response to stimulation. The muscle shown 

in Figure 2.12 is skeletal muscle, but the principle of muscle contraction by stimuli is 

the same for all types of muscles. 

 

An action potential propagates fro

m

voltage dependent gates and allows a small amount of calcium ions (Ca2+) to enter the 

sarcoplasmic reticulum (RS) (see Figure 2.12). This event triggers a much greater 
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release of calcium ions into the cell. These calcium ions act as a trigger to interact with 

actin, and cause the actin to expose itself to cross-bridge attachment, which results in 

muscle contraction. When the potential of the membrane drops, the calcium ions drain 

from the cell and back into the sarcoplasmic reticulum. No interacted actin is blocked 

from the cross-bridges, and the muscle relaxes.  

 

 

Figure 2.12 Sequence of events in excitation-contraction coupling [4]. 
 
 

in to unblock or 

lock themselves to the cross-bridges. The next process presents cross-bridge 

attachment and detachment (cycling). 

Figure 2.12 describes the action of the calcium ions that trigger the act

b
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Once actin is exposed to the cross-bridges, the cross-bridges can attach and detach to 

the actin. Cross-bridge cycling occurs through a different mechanism. The energy 

causing cross-bridge cycling in the muscle cell is called adenosine tri-phosphate (ATP). 

here P is free phosphate and ADP is adenosine di-phosphate. The process of cross-

The chemical equation by which ATP generates energy is: 

 

ATP ↔ ADP + P + energy          (2.8) 

 

w

bridge cycle is shown in Figure 2.13, and explained as follows:  

 

1. Cross-bridge attachment: The activated myosin head is strongly attracted to the 

exposed binding site on actin and cross-bridge binding occurs. At this point the 

myosin head is in its high-energy configuration. 

2. The working stroke
 

: A myosin head binds to the actin to slide resulting in contraction 

of the muscle. As the myosin head rotates, the myosin tail is stretched thereby 

generating a force. ADP and P are released from the myosin head during this 

 
3. Cross-bridge detachment

process. The myosin molecule is now at its low-energy configuration. 

: As a new ATP molecule binds to the myosin head, 

myosin’s hold on actin loosens and the cross-bridge releases from the actin. 

 
. “Cocking” of the myosin head: ATP is split into ADP and P to provide the energy 

needed to return the myosin head to its high-energy configuration and to cock the 

myosin head. This provides the potential energy needed for its next sequence of 

4

attachment and working stroke. From the above process, the ratio between the 

duration of the working stroke phase and the total time of the cross-bridge cycle is 

called the duty ratio. 

 33



 

 

Figure 2.13 Cross-bridge energy cycle [4]. 

 

One phenomenon related with death is rigor mortis, where contracted muscle can not be 

 i  for this is that the dead body ceases the 

anufacture of ATP which is required for cross-bridge detachment and relaxation of the 

t. During skeletal muscle tetanus, the cross-bridges are continually 

nd dynamically attaching, detaching and then re-attaching (see Figure 2.13). This 

relaxed from ts contracted state. The reason

m

contacted muscle.  

 

The scenarios of the cross-bridge regulation for tetanised skeletal muscle and smooth 

muscle are differen

a

process was proposed using a two-state cross-bridge model by Huxley [20] and Murphy 

[46] (see Figure 2.14). In Figure 2.14, A is actin, M is myosin, Aoff means that the actin 
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is blocked to myosin when the calcium ions flow out the muscle cell, and Aon means 

that the actin is unblocked to myosin when the calcium ions flow into the cell. The loop 

on the right side in Figure 2.14 represents the cross-bridge cycling during continuous 

muscle contraction, ATP and ADP + P alternate to control cross-bridge attachment and 

detachment. Thus, the rate of ATP consumption is maintained at a high level in skeletal 

muscle contraction. Also, the rate of ATP consumption by cross-bridge cycling is 

proportional to the power output and can be extremely high in the contracting skeletal 

muscle. 

 

+ Ca2+

− Ca2+

Aoff + M 
(Relaxed) 

Aon + M

AM

ATP 
ADT + P 

(Free)

(Attached)
 

Figure 2.14 e cross-bridge model for  of skeletal muscle. 

 

The cross-bridge regulation for smooth muscl plicated than skeletal 

ss-bridge 

ycling begins and the number of cross-bridge interactions increases and approaches a 

A two-stat  regulation

e is more com

muscle. With the onset of smooth muscle isometric contraction (tetanus), cro

c

plateau, as previously shown in Figure 2.1. During this process, rapidly cycling cross-

bridges convert progressively to slow cycling latch bridges. This regulatory process 

finally approaches to a steady state, and dynamic cross-bridge cycling then can be said 

to have attained the latch state (or latch bridges). In the meanwhile, the rate of ATP 

consumption and the phosphorylation falls and is maintained at a low level [47]. 

Phosphorylation is the addition of the third phosphate group to a molecule. The 

phosphate bond that forms as a result contains the energy stored in this reaction [7]. In 

this latch state, the rate of cross-bridge cycling is decreased to its smallest value 
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attainable and the active force has increased to its maximum attainable value.  The low 

rate of ATP consumption causes almost no energy consumption for the body.  For this 

kind of cross-bridge regulation, Chi and Murphy [32 and 48] proposed a four-state 

model rather than a two-state model to compare skeletal muscle in 1988. A scheme of a 

four-state cross-bridge model is shown in Figure 2.15. 

 

A four-state cross-bridge model for regulation of smooth musFigure 2.15 

 

The four states of cross-bridges the model are: free unphosphorylated (M), 

p), and 

ttached cross-bridges under dephosphorylated (latch bridges, AM). The detached 

cle. 

in 

phosphorylated (Mp), attached cross-bridges under phosphorylated (AM

a

cross-bridges probably have bound ATP, whereas the attached cross-bridges may have 

bound ADP. In the regulation of smooth muscle, most of the cross-bridges occur in the 

latch state, and a small portion of the cross-bridges dynamically attaches and detaches 

under the fast cycling phosphorylated cross-bridges (the loop on the right side in Figure 

2.15). Additionally, a few cross-bridges are also relaxed. These four states can convert 

to each other, except that the conversion between free unphosphorylated (M) and latch 

bridges (AM) (see Figure 2.15) is not permitted. The latch bridges can be converted to 

free unphosphorylated bridges, but the free unphosphorylated bridges cannot directly 

convert to latch bridges. The seven rate constants (K) reflect the possibility of these 

conversions.  

(Relaxed) 
A + M 

AM 
(Latch bridges) 

(Free) 
A + Mp 

AMp 

K1

K2

K3 K4 K7 

K5

(Attached) 
K6
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K1 and K2 are the rate constants representing the phosphorylation of M to Mp and AM 

to AMp by the active myosin light-chain kinase (MLCK), -calmodulin complex. 

ted nics. Also with the limited 

xperimental facilities available for this research; it is very difficult to establish a new 

d that the light band diminishes 

uring contractions (see Figure 1.4 and 1.6). He proposed that this could be explained 

 +2
4Ca

K2 and K5 are the rate constants for the dephosphorylation of Mp to M and AMp to 

AM by myosin light-chain phosphatase (MLCP) [49-51]. K3 and K4 are the rate 

constants representing the attachment and detachment of the fast cycling phosphorylated 

cross-bridges. Hai et al. assumed that the ratio of K3/K4 is 4:1 [48]. K7 is the rate 

constant for latch-bridge detachment. This value is very small when compared to the 

other rate constants. An assumption for relaxed muscle is that all cross-bridge are in the 

detached unphosphorylated state (i.e., the initial conditions for a relaxed smooth muscle 

are [M] = 1.0, [Mp] = [AMp] = [AM] = 0 (K1 = K6 = 0)). 

 

2.4 Existing Models for Muscle Contraction 

 

Limi  models are available on smooth muscle mecha

e

postulation. Therefore, it is felt a quick review of available models on other types of 

muscles will give a good foundation for this research. 

 

Huxley [20] investigated striated muscles and observe

d

by allowing the relative sliding between the thick and thin filaments. The thin and thick 

filaments themselves were found not to shorten. This process also explains the 

sarcomere force-length relationship shown in Figure 2.3. This proposal is known as the 

sliding filament theory. A numerical model for the sliding filament theory was 

developed by Huxley for the striated muscle [20]. This model is based on the sarcomere 

(unit length) and idealized as elastic springs which form links between the thick and 
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thin filaments. The following equilibrium equation establishes the relation between the 

numbers of attached cross-bridges: 

  

( ) ( ) ( ) ( ) ( )ngff
x
nv

t
+−=xgnxfntxn

−⋅−−=
∂ or      1,

∂
∂

∂
      (2.9) 

 

where n is the number of attached cross-bridges, f is the rate param

ttaching (bonding), g the rate parameter of cross-bridge detaching (unbonding), and x 

es (n). 

uxley used the equation to simulate the variation of partial muscle activations and the 

le x in the equations (see equation (2.9)) 

hich introduces considerable difficultly in numerical computations. Zahalak [52] 

opment, growing cross-bridge traction transfers loading 

cally between both filaments (actin and myosin). This causes them to extend and slide 

locally relative to each other. Mijailovich et al. [54] considered that the effects of 

eter of cross-bridge 

a

is the displacement that is the distance from the stress-free configuration of the cross-

bridge to the nearest actin site. Also n, f and g are determined by the parameter x. 

 

The active force generated is proportional to the number of attached cross-bridg

H

unique quasi-hyperbolic relationship between shortening and force. This classical 

equation was modified by other researchers. 

 

Huxley’s model contains the internal variab

w

recognized the importance of eliminating x from the constitutive equations and 

proposed that the number of the attached cross-bridges, n, at any time is to 

approximately a Gaussian distribution. Tozeren [53] eliminated the internal variable x in 

the final equations by the method of integration described in the section entitled 

‘Mathematical Formulation’. 

 

During isometric force devel

lo
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filament extensibility of actin and myosin filaments on actin-myosin interaction which 

evolve from temporally and spatially distributed strains (filament strain). They 

suggested that these strains will affect the final results from Huxley’s model. After 

reformulating Huxley’s model [20], the result was a better fit to the experimental data 

for isometric force development. 

 

Later, Huxley and Simmons [55] proposed two states of attachment for a cross-bridge to 

explain the initial rapid change in muscle length. The time rate of attachment was 

ssumed to be slow as in Huxley’s original model, but the transition between attached 

ntinuous 

liding for shortening. Almost 200 different configurations have been simulated by 

The principle of force generation from the sliding 

echanism is that of a dielectric rod suspended in the electric field between the plates 

a

states was assumed to occur very rapidly. The rapid recovery of force observed in 

transient tension data is associated with the transients between attached states. 

 

Redaelli et al. [56] geometrically developed a three-dimensional model of the sliding 

mechanism, which was able to identify the architectures that accomplish the co

s

changing the cross-bridge binding range in this model. Redaelli et al. used the model to 

calculate the attached cross-bridges (in percentage), sliding velocity and duty ratio for 

different working stroke distances. 

 

Some researchers plausibly imagined the actin-myosin sliding mechanism as 

electrostatic mechanisms [57-59]. 

m

of a capacitor (Figure 2.16). The charge induced on the rod is asymmetrically 

distributed, and there is always an attractive force tending to draw the rod further into 

the field of the capacitor. The dielectric rod is assumed to represent an actin filament, 

and the capacitor field is assumed to represent the cross-bridges. The energy required to 
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sustain muscle contraction is supplied through the hydrolysis of ATP and has been 

shown to be of reasonable magnitude. However, this model can only model isometric 

force development.  

 

Figure 2.16  A scheme of an electrostatic mechanism to represent the contractile 
mechanism of muscle [58]. 

 
 

Shadmehr and Wise [60] developed a simple muscle model by using a viscous shock 

absorber (dam  the contractile element. They used the model 

 simulate muscle transient forces by a length stretch, a twitch mode, and an unfused 

hich was developed by Hunter et al. [61]. The benefit of the model is that it is 

ery simple and describes cross-bridge kinetics integrally rather than consider the detail 

per) element in parallel with

to

tetanus.  

 

Finally, we introduce a cross-bridge kinetic model known as the “fading memory 

model”, w

v

of the structure. It is also not designed for a specific type of muscle making it useful for 

this work. The model is not intended to accurately model the biophysical events 

underlying muscle contraction. The model can however be interpreted in terms of 

certain biophysical processes. The main advantage of the model is that it gives the 

dynamic force response with muscle length changes. The model was originally used to 

simulate cardiac muscle by using the experimental data from cardiac muscle. This 

model will be further discussed and modified to fit airway smooth muscle in this 

research. 
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The above models describe striated muscle, especially skeletal muscle. Since the 

structure of smooth muscle is slightly different from the structure of striated muscle, 

these models are not directly suited to smooth muscles. However, their postulations and 

l equations. The model 

ombines the four-state model with Huxley’s [20] model and uses the rate constants (K) 

w model was called the thin-filament-regulated latch-bridge model, which 

rovided better fits to the experimental data than the four-state model [48]. But the new 

’s model to airway smooth 

uscles to compare experimental data from rabbits, rats and humans.  

ideas are helpful in creating a new model for smooth muscle.  

 

An important model for smooth muscle is the four-state model of Hai and Murphy [48] 

which describes four kinetic states by four time differentia

c

instead of the internal variable x [32]. The average distance of dense bodies was used 

instead of a sarcomere. The model successfully predicts the isotonic force-velocity 

curves for smooth muscle. Yu et al. [62] used the same method as Hai and Murphy [48] 

to model the nonisometric contraction of smooth muscle. The calculation of the cross-

bridge length distribution was simplified by assuming a Gaussian distribution as first 

done by Zahalak [52] for skeletal muscle. The model is used to simulate transient 

changes in muscle length. Further, Mijailovich et al. [63] used a four-state model 

integrated with Huxley’s [20] model to simulate a length perturbation under isometric 

contraction.  

 

Hai and Kim [64] improved the four-state model by adding an ultra slow latch-bridge 

cycle. The ne

p

model provides more challenges for numerical computation. 

 

Some researchers have used other approaches to model smooth muscle contraction. 

Blanc and Lecarpentier [9 and 35] directly modified Huxley

m
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Anafi and Wilson [65] proposed an empirical model for the dynamic force-length 

behavior of airway smooth muscle. The model predicted the experimental data for 

force-length loops of airway smooth muscle under length oscillation. Similar work has 

ill’s three element model for smooth muscles. The contractile 

lement was described as a side-polar structure, where the cross-bridges are arranged on 

 has the disordered 

olecular state of a liquid and, at times, the rigidity of a solid. The factor that affects the 

been done by Bates and Lauzon [66], who improved Hill’s equation (equation (2.1)) by 

adding another nonlinear elastic term to account for tissue rheology. This is believed to 

play a significant role in the dynamics of the mechanical behaviours. This model 

represented the experimental data for force-length loops of airway smooth muscle under 

length oscillation.  

 

The principle of electrostatic mechanisms have also been used for smooth muscles. 

Lambert et al. [34] used H

e

both sides of a myosin filament to form two side-polar structures that interact with actin 

filaments, the polarities of both sides being opposite. The force generated in the muscle 

is proportional to the number of myosin filaments and the length of the overlap between 

actin and myosin filaments. This reference assumes that, under steady-state conditions, 

the geometric arrangement of the contractile units and filaments within these units 

determines the kinematic characteristics of smooth muscles. The model predicts the 

force-length relationship of the muscle under isometric contraction. 

 

At a cellular level, researchers recently hypothesized that the airway smooth muscle cell 

behaves as a glassy material [67 and 68]. A glass is a material that

m

molecular state of glassy material is the thermodynamic temperature. But instead of 

changing the thermodynamic temperature, the cell is proposed to modulate an effective 

temperature known as the “noise” temperature. The hypothesis is based on three 
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assumptions: 1) soft glassy materials are soft, 2) soft glassy materials are “scale-free”, 

meaning that when the matrix stiffness is measured over a wide range of frequencies, no 

resonant frequency stands out. In other words, the stiffness follows a weak power law, 

and 3) the dominant frictional stress in soft glassy materials is not of viscous origin or 

attributable to a viscous-like stress (proportional to the elastic stress). To confirm this 

hypothesis, Laudadio et al. [68] cultured rat airway smooth muscle cells, and then 

measured the elastic and frictional moduli. They found that the stiffness increased with 

frequency as a weak power law, and changes of friction paralleled those of stiffness 

until they approached a Newtonian viscous limit. These findings indicate that airway 

smooth muscle cells could act as a glassy material. However, this hypothesis has yet to 

be fully proved and researchers have not established any mathematical models for this 

hypothesis. 

 

2.5 Available Literature on Muscle Vibrations 

 

Many experiments have been performed on smooth muscles. These experiments 

echanical, biochemical or 

iomedical. But, only experimental data of interest will be given in this section, i.e. 

ngitudinal direction to find the 

hibition of the active force. Unfortunately, their apparatus was crude, which resulted 

investigated smooth muscles from different perspectives: biom

b

experiments that are based on biomechanical principles.  

 

Ljung and Sivertsson [24, 25 and 29] applied oscillation tests on smooth muscle tissues 

(veins from rats and thoracic aorta from rabbits) in the lo

in

in resonance within the setup. For this reason, their results were not completely accurate 

as they were unable to filter the effects of resonance. Also, only the dynamic force 

responses during the oscillations were investigated.  

 43



Sjoqvist and Ljung [30] oscillated vein smooth muscle from rats in the longitudinal 

direction at 40 Hz and the amplitude of oscillations was from 2.5% to 3.0% of the tissue 

length. The results showed the prompt and reversible reduction of the active force but 

es at a breathing frequency of 0.33 Hz. The amplitude of imposed tidal 

tretch was from 0.25% to 8% of the tissue length. Shen et al. [28] also conducted 

g. The response of an activated smooth muscle 

ssue to force length oscillations at 33 Hz for 1 second was obtained. The result showed 

ased 

uring the stretch, but that the active force decreased. They concluded that the 

that neither the pattern of the phasic contractions nor the electrical cell membrane 

discharge was altered. The degree of reduction also increased with increasing vibration 

amplitude. 

 

Fredberg et al. [23 and 69] conducted experiments on bovine trachea airway smooth 

muscle tissu

s

similar tests on airway smooth muscles from Mongrel dogs. Both groups investigated 

the response of muscle tissues resulting from the dynamic force and hysteresivity. All 

the results indicated both a degree of reduction of dynamic force and a hysteresivity 

increase with increasing amplitude.  

 

Dhanaraj et al. [22] applied longitudinal vibrations on canine tracheal smooth muscle 

tissues following isotonic shortenin

ti

that the decreasing force response to successive length cycles may be fitted by an 

exponential curve. The same result has been obtained by Meiss and Pidaparti [27]. 

 

Gunst and Russell [70] conducted experiments that applied a continuous stretch on 

canine tracheal smooth muscle tissues. The results showed that total force incre

d

contractile element length established during isometric contraction would affect the 

muscle force obtained during subsequent stretching of the muscle. 

 44



A micro-experiment was applied by Shue and Brozovich [71]. They conducted length 

perturbations on a smooth muscle cell. A length perturbation sequence that combines 

multiple sine waves with increasing frequency was developed. The results suggested 

myosin light-chain kinase (MLCK). This is postulated to be the 

rimary regulator of force development in smooth muscle. They found that the changes 

on isolated quiescent ureter and portal venous smooth 

uscle tissues from dogs. The results from their research showed that the 

 75]. Chest-wall 

that a fixed distribution of cross-bridge state was reached after 40 seconds of Ca2+ 

activation and that the cross-bridge cycling rate did not change during the period of 

force maintenance. 

 

Rembold and Murphy [72] investigated Ca2+ concentration Ca2+-dependent cross-bridge 

phosphorylation by 

p

in aequorin-estimated myoplasmic Ca2+ can reasonably predict the time course of 

phosphorylation and isometric force in agonist-stimulated pig carotid smooth muscle, if 

Ca2+ is not changing rapidly. The results suggested that Ca2+-dependent cross-bridge 

phosphorylation is the primary determinant of cross-bridge function. These results also 

support the latch-bridge hypothesis as an explanation for the economy of force 

maintenance in smooth muscle. 

 

Ohhashi et al. [73] investigated microvibrations (1 − 80 Hz and amplitudes less than 2% 

of the tissue length) imposed up

m

microvibrations increased the rate of spontaneous contractions after a latency of about 1 

minute. They also found that the stimulating action of microvibration increased the 

calcium ions (Ca2+) influx through the membranes of smooth muscles. 

 

Some researches have reported that chest-wall vibration can modify the drive to breathe 

and the sensation of dyspnoea, or treat an asthmatic attack [74 and
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vibrations can also be used to produce oscillations of the lung tissue. As the lung is 

nical behaviour of human muscle was done by Bosco’s research group [77]. The 

sults showed remarkable and statistical enhancement in average velocity, average 

way smooth muscle in high 

equencies range. In this research, a thorough and comprehensive experimental 

vibrated, it is conceivable that vibration stimulates intrapulmonary receptors and such 

afferent activity may contribute to the effects of vibration upon respiratory control and 

sensation [74]. The chest-wall vibration can restore the natural chest mobility as the 

main breathing mechanism in the respiratory function of the lung. The detail of the 

whole process for chest-wall vibration treatment is not clear. The prevalent hypothesis 

is based on the physiological mechanisms behind the effects of vibration on respiratory 

sensation and ventilatory control centered on the afferent activity from the chest-wall 

[76]. 

 

However, an in vivo study to investigate the effects of whole-body vibration on the 

mecha

re

force and average power in the leg skeletal muscle. Other in vivo experiments [78] 

investigated the effect of vibration on muscular contraction. The results showed that 

there was a significant improvement in muscular strength and activation for concentric 

isotonic contraction performed during an applied vibration.  

 

None of the above references however have successfully studied the effect of various 

oscillation parameters on the length and force response of air

fr

program is developed and designed to investigate the effects of oscillation duration 

time, amplitude and frequency on two types of experimental parameters proposed in this 

work, namely the static and dynamic stiffness. 
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Chapter 3 

Experimental Investigation 

 

3.1 Introduction  

 

Since there is only a limited theoretical understanding of airway smooth muscles, 

experimental investigations are the most common method for studying their biological 

behaviour. Normally, the property behaviours of various tissues are derived from 

experimentation. This lays the foundation for many of the available mathematical 

models, which are normally developed to extend our knowledge of tissue behaviour and 

properties. 

 

In this investigation, it is anticipated that experimentation will give insight into the 

contracted smooth muscle response under external excitations. The experimental results 

will also be used to validate the numerical model being developed in this work. Ideally 

in vivo tests would be used to give the exact response to excitation, but there are risks 

and ethical requirements involved in conducting such experiments. Thus, in vitro 

experimentation is used in this research. Samples of animal tissues are used as they are 

deemed to be sufficient for this stage of the investigation.  
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A sample of prior in vitro experiments conducted by other researchers [22-25, 27-30, 69 

and 70] was given in Chapter 2. These experiments investigated smooth muscle 

responses under muscle length changes and all indicated that the smooth muscle 

contractile mechanism was a function of muscle length. They also showed that 

oscillating length changes can reduce the active muscle force. However, all of the 

previous experiments did not systematically describe the relationship between the 

muscle responses and the characteristics of oscillations (such as the frequencies, 

amplitudes and time durations). This work focuses on these variables and on the 

relationships between them and the muscle response. 

 

The purpose of this study is to systematically determine the response of contracted 

airway smooth muscles under different external excitations. To achieve this, excitations 

were applied to active airway smooth muscles and the contracted forces were recorded. 

It is anticipated that the results will reflect changes in the muscle stiffness in response to 

excitation.  

 

Two testing scenarios are adopted in this work. Firstly, to understand the axial response 

of smooth muscle, longitudinal excitation was implemented. However, direct axial in 

vivo excitation does not occur naturally (since the orientation of airway smooth muscle 

is along the circumference of airways) and so transverse excitation by pressure waves is 

a more realistic excitation. Therefore, the second scenario determines the active muscle 

response to excitation perpendicular (transverse) to the tissue axis. 

 

Mechanical vibration was attempted to determine the vibration response in both 

directions. In all cases, static and dynamic forces were recorded, representing the 

dynamic and static stiffnesses for the muscle tissue during and after vibrations.  
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In real airways, the force generated statically by airway smooth muscle is taken to be in 

mechanical equilibrium with the passive reaction force developed by the elastic load 

against which the muscle has shortened. Since both forces depend upon muscle length, 

the airway is presumed to adjust itself to the muscle length at which these opposing 

forces are in a static equilibrate balance [23]. It is reasonable to regard this static force-

length characteristic of the activated muscle as an isometric contraction (see Figure 2.2). 

Thus, an isometric contraction mode was used in this work for all muscle tests. 

 

The experimental preparations for each experiment will be given individually in the 

following sections of this chapter. The stiffness calculations of the muscle for these 

experiments will be introduced at the end of the chapter. 

 

3.2 Experiment Preparations  

 

The experimental investigation in this research focuses on active smooth muscle cells. 

To keep the tissues alive after removal from an animal, they are kept in a special 

solution (Kreb’s solution) normally used for such investigations. The tissues used in this 

work are from pigs. 

 

During the experimentation, all the generated and recorded signals were processed by 

computer data-acquisition software using NI-DAQ7/LabVIEW6. The results observed 

during the experiments are presented and discussed in Chapter 5 and 6, respectively.  
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3.2.1 Solution Preparation 

 

A physiological solution is necessary for two reasons:  

 

1. To form an artificial environment that supports the prolonged life of the smooth 

muscle tissue after dissection. 

 
2. Act as a medium for the delivery of chemicals or electricity that activates the 

smooth muscle cells.  

 

A commonly used saline solution is Kreb’s solution [25, 27, 28, 70, 79-82], which was 

used for both the tissue bath and to preserve the pig lungs. It is prepared by mixing the 

following chemicals (in mM): 125.48 (NaCl), 4.99 (KCl), 1.82 (CaCl2·2H2O), 15.08 

(NaHCO3), 1.05 (MgCl2·6H2O), 0.98 (NaH2PO4), and 11.10 (glucose). 

 

Each experiment required at least 15 L of the solution, which was prepared one day 

before the experiment  to ensure that the solution reached the correct temperature (4 °C) 

[6 and 82]. Two containers were filled with 11.175 litres and 2.775 litres of distilled 

water. Another three containers were filled with solution 1, solution 2 and glucose 

solution as shown in Table 3.1. 

 

Kreb’s solution was prepared immediately before the experiment by pouring 11.175 L 

of distilled water in to a 20 L container. Then, 600 ml of solution 1, 300ml of solution 2, 

and 150 ml of glucose solution were added. After mixing, the rest of the 2.775 L of 

distilled water was used to wash these three containers (solution 1, solution 2 and 

glucose solution) and to make up 15 litres of the solution. 

 

 50



Table 3.1 Ingredients used in the preparation of Kreb’s solution 

Solution 1 

NaCl 110.0 g 

KCl 5.65 g 

CaCl2·2H2O 4.02 g 

MgCl2·6H2O 3.20 g 

Fill distilled water up to 600 ml 

Solution 2 

NaHCO3 19.0 g 

NaH2PO4 2.30 g 

Fill distilled water up to 300 ml 

Glucose solution 

Glucose 30.0 g 

Fill distilled water up to 150 ml 
 
 

3.2.2 Airway Smooth Muscle Tissue Preparation 

 

Pig tracheas were obtained from a local abattoir.  Whole pig lungs were removed from 

adult pigs (with an approximate weight of 60 − 70 kg) immediately after they were 

butchered. The pig lungs were then completely immersed in the chilled Kreb’s solution.  

 

A 20 − 25 mm long segment of trachea was dissected from the lung (see Figure 3.1) in 

the laboratory. The cartilaginous rings were cut along the longitudinal direction of the 

trachea, and the trachea was pinned in a dissecting wax dish. Figure 3.2 shows the 

pinned trachea, with the inner side of trachea facing upwards. The tip of the pin 

indicates the gap between two ends of cartilaginous rings where the airway smooth 

muscle exists. Under a magnifying glass, the smooth muscle area was cleaned of 

epithelial and adventitial tissue layers (Figure 3.3). Small strips of smooth muscle tissue 

(approx. 2.5 mm wide and 18 mm long) were gently cut from the muscle sheet. Special 
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care was taken to follow the natural division of the tissue in discrete fiber bundles [27 

and 44] (Figure 3.4). Two very small pieces of cartilaginous rings were left at the two 

ends of the tissue strip to protect the tissue sample from damage during the experiment 

when it was mounted on hooks. The tissue was submerged in a bath of Kerb’s solution 

held at 37 °C. The bath was constantly aerated with a 95% O2 and 5% CO2 mixture to 

maintain the pH at 7.4 to 7.6 [28, 35, 70, 79, 82 and 83]. The tissue was also allowed to 

accommodate for 45 min − 1 hour [24, 25 and 70] before the experiment was begun. 

 

 
Figure 3.1 A segment of pig trachea, approximately 20 ~ 25 mm in length. 
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Figure 3.2 Pig trachea cut open and pinned in dissecting wax dish. 
 
 

 
Figure 3.3 Epithelial and adventitial tissue were peeled off from the smooth muscle of 

the pig trachea.  
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Figure 3.4 A smooth muscle strip was dissected from the pig trachea. 

 

Before the start of each experiment, the length of the smooth muscle tissue was adjusted 

to a reference length (Lr), to ensure that the passive force in the muscle tissue was 

minimal. For reference length adjustment, the tissue was stretched slightly and placed 

on the hooks. The length of the tissue was adjusted (shortened) until minimal force was 

recorded. This reference length was considered to reflect the optimal length (where 

10 =LL ) correlating to maximal force generation. The smallest passive force was 

called the initial force (Fini). 

 

3.2.3 Muscle Tissue Contraction 

 

Three different stimulations can be used to contract muscle tissues when conducting in 

vitro experiments: electrical stimulation; chemical stimulation; or a combination of both 

electrical and chemical stimulations [21-23, 26, 27, 44 and 81]. 
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The process of muscle contraction was introduced in the previous chapter, and the 

scheme of the contraction is as shown in Figure 2.12. Electrical stimulation is normally 

induced by applying an electrical excitation to the muscle directly. This process 

generates an action potential that propagates along the cell membrane to raise the 

potential of the membrane. This causes changes in the membrane potential which opens 

voltage dependent gates and allows calcium ions (Ca2+) to enter the muscle cell to 

contract the muscle (as discussed in Chapter 2).  

 

Chemical stimulation is inducted due to the fact that chemical stimulus acts at the axon 

terminal of a motor neuron and releases acetylcholine (ACh) (see Figure 2.12). The 

latter diffuses across the synaptic cleft and attaches to ACh receptors on the 

sarcolemma. This creates an action potential and again allows calcium ions to enter the 

muscle cell to contract the muscle. It is important to note that irrespective of the 

mechanism that generates the contraction, the final contraction of the muscle is 

identical.  

 

In the present experiments, airway smooth muscle tissues were contracted chemically 

by adding acetylcholine chloride (ACh) [23, 28 and 81]. At a pharmacological level, the 

concentration of ACh used is from 10−5 to 10−2 M [28, 70, 79, 81, 84-86]. For this 

reason, a concentration of 10−3 M of ACh was used for all experiments.  

 

Due to chemical stimulation, an isometric force was developed and typically follows the 

behaviour shown in Figure 3.5. After the contracted force reaches a plateau (completely 

contracted), it is called the original contracted force (F0). External oscillations are then 

applied as detailed in the following section.  
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Figure 3.5 Typical force development of an airway smooth muscle tissue during 
isometric contraction. 10−3 M contraction agent (ACh) was added after 
approximately 15 seconds. Conditions: T = 37 °C and pH = 7.6. 

 
 

3.2.4 Replacement of Airway Smooth Muscle Tissue 

 

During experimentation, the airway smooth muscle tissues were constantly monitored 

for degradation. The condition used to determine whether the reuse of the muscle tissue 

was possible was whether the force (without any excitation) was within 10% of F0 (F0 ± 

10%). Between any two consecutive excitations, the muscle tissue was allowed to 

recover. If the muscle recovery force was lower than 90% of F0, the tissue was 

considered degraded and was replaced by a new piece of tissue [36]. 

 

3.2.5 Stiffness and Resonance of Setup 

 

To check the rigidity of the experimental setup, direct measurement of total system 

stiffness of the setups (including that of the force transducer, hooks and all other 

mechanical components), gave a value of more than 1.74×103 mN/mm. This is much 

larger than the stiffness of the muscle tissues, and so the stiffness of the setup can be 
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neglected during experimentation. The lowest resonant frequency of the system was 

predicted to be 132 Hz, which was above the frequency of oscillations being studied 

during the experiments, and therefore experimental resonances were not observed 

during the experiment 

 

3.3 Longitudinal Vibration 

 

For this type of experiment, contracted smooth muscle tissues were oscillated in the 

longitudinal direction. Oscillations were applied at different frequencies, amplitudes and 

time durations with data relating to the forces and amplitudes being acquired and 

processed by a computer. 

 

3.3.1 Setup 

 

The response of the smooth muscle to longitudinal vibrations was investigated using the 

experimental setup shown in Figure 3.6 and Figure 3.7. A strip of smooth muscle was 

mounted on two hooks. One was fixed to a force transducer (WPI, FORT100), while the 

other was connected to a speaker (Soundwel, HX1688) which was used to generate 

length oscillations for the airway smooth muscle tissue. The length adjuster was on the 

force transducer side for adjustment of tissue reference length. The force transducer was 

connected to a signal conditioner (WPI, TBM4M). This was recalibrated to the zero 

reading for the transducer before experimentation, and also pre-amplified the transducer 

output signals. The frequency and the amplitude of the oscillations were controlled by a 

computer through a power amplifier (LDS, PA25E).  
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Figure 3.6 A block diagram of the experimental setup for longitudinal vibration. 

 

 

Figure 3.7 A photo of the experimental setup for longitudinal vibration of airway 
smooth muscle. 
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3.3.2 Protocols 

 

Each set of experiments was started by stabilizing the original contracted force F0 

(Figure 3.5). In order to obtain an initial value for the original tissue stiffness, the 

original force exerted by the contracted smooth muscle was measured before the main 

experiment and then a very small oscillation was applied to the tissue (with an 

amplitude of < 1% of Lr, frequency 5 Hz and time duration of 1 second). This 

oscillation was kept small enough so that it had no observable effect on the contractile 

events. From the data captured during this measurement, the stiffness was calculated as 

the ratio of force change to the length change (K = ∆F/∆l). This value is considered to 

be the original stiffness correlating with the original force F0 of the contracted smooth 

muscle. These initial values are also used in the numerical model as an initial parameter. 

 

The main purpose of the experiments was to determine the variation of the active 

smooth muscle stiffness in response to oscillations of different frequencies and 

amplitudes. This investigation was conducted in two parts. First, for a constant time 

duration of oscillation, the frequencies and amplitudes of the longitudinal oscillation 

were changed. The frequencies were changed from 5 to 75 Hz in steps of 10 Hz, and the 

amplitudes were 1.2%, 2.5%, 3.8%, 4.5%, and 6.0% of Lr respectively. The time 

duration of the oscillations was restricted to 1 second in this part of the investigation.  

 

The second part of the investigation was to inspect the response of the active smooth 

muscle stiffness over different time durations with oscillations. The muscle tissues were 

oscillated at frequencies of 5 Hz, 35 Hz and 65 Hz, for a time duration of 1, 2, 3 and 5 

seconds respectively. The amplitude of these oscillations was maintained at 3.8% of Lr. 
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3.4 Transverse Vibration  

 

The experimental setup for the transverse vibration is similar to that used for 

longitudinal vibration. However, in this part of the experimentation, oscillations were 

applied in the transverse direction at different frequencies and amplitudes with the time 

duration limited to 1 − 2 seconds (the optimal time bases on the analysis of previous 

experiments).  

 

3.4.1 Setup 

 

The equipment setup used for this part of the experimentation is shown in Figure 3.8. A 

strip of smooth muscle was mounted on two hooks, with one fixed to a force transducer 

(WPI, FORT100), while the other was fixed to the setup. A length adjuster was placed 

on the force transducer side for the tissue reference length adjustment. The force 

transducer was connected to a signal conditioner (WPI, TBM4M) that was recalibrated 

to the zero reading of the force transducer, and also pre-amplified the transducer output 

signals. The centre of the tissue sample was held in position by a small transverse 

oscillator ⎯ a high-speed length controller (ASI, 322C). The length controller consisted 

of a high performance moving magnet rotary motor and a control panel. This transverse 

oscillator was connected to a sweep/function generator (TTI, TG230 2MHz) through a 

power amplifier (LDS, PA25E). 
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Figure 3.8 A block diagram of the experimental setup for transverse mechanical 
vibration. 

 
 

3.4.2 Protocols 

 

Each set of experimentation was initialized by stabilizing the original contracted force 

F0 (Figure 3.5). As before, the main purpose of the experiments was to determine the 

variation of the active smooth muscle stiffness by varying the frequencies and 

amplitudes of the oscillations. The extent of the tissue fluctuation is the same as the 

amplitude of oscillation and this extent can finally be converted to a length change ratio 

of the tissue (percent of Lr) as shown in Figure 3.9. The displacement OC is the same as 

the amplitude of oscillation. If the amplitude OC is much smaller than the initial length, 

AB (considered as the reference length, Lr), the arc AC can be approximated as a 

straight line, AC. Thus, the relationship between the amplitude and length change ratio 

is calculated using the geometrical relation: 
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where ∆l is the percent length change ratio, Aa is the amplitude of oscillation and Lr is 

the reference length.  

 

 

C

Figure 3.9 Tissue is vibrated in transverse direction. 

 

The frequencies were changed from 5 to 55 Hz at steps of 10 Hz, with length change 

ratios of 2.2%, 3.5% and 4.8% of Lr respectively. The time duration of the oscillations 

was maintained at levels between 1 − 2 seconds for this investigation. 

 

3.5 Stiffness Normalization  

 

To obtain a quantitative and normalized measurement of the effects of vibration, the 

ratio of stiffness changes was calculated during the experiments. In this work, both 

dynamic and static stiffnesses were normalized. 

 

If muscle tissue is excited with an oscillation, both the length and force changes are 

functions of time. The dynamic stiffness of this tissue is then defined as: 
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where F(t) is the tissue force and l(t) is the tissue length. Since both force and length are 

waveforms, the dynamic stiffness can be defined as the ratio of the change in peak force 

to the change in peak length [22 and 28]: 

 

l
FS
∆
∆

=                        (3.3) 

 

During vibrations, the amplitude of length is constant, and so the stiffness varies with 

the variation of force. 

 

In this research, the dynamic stiffness was normalized by dividing the stiffness at the 

end of vibration (Se) by the stiffness at the beginning of the vibration (Sb): 

 

b

e

b

e
d F

F
S
S

K
∆
∆

==                         (3.4) 

 

where ∆Fe and ∆Fb are the peak force excursion at the end and beginning of the 

vibration, respectively, and Kd is the dynamic stiffness. This stiffness describes the 

muscle tissue stiffness changes during the episode of the vibration. This value has to 

reflect the dynamic behavior of the muscle including active contraction, viscoelasticity 

and inertia of the tissue mass. 

 

The static stiffness was normalized as follows: a muscle tissue is at a certain length (l) 

with a certain force (F1), and has a stiffness in this state of S1. After a vibrational 

excitation, the force changes to F2, but the length of the tissue is kept constant. For this 

new state, the correlated stiffness is S2 (Figure 3.10).  
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ll

Before vibration After vibration 
(S1, F1) (S2, F2)  

Figure 3.10 Two different stiffness and forces before and after vibration. 
 
 
 
The relationship of the stiffness and forces is then given by: 
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where Ks is static stiffness [27]. For calculating the active stiffness only, all the forces 

(F1 and F2) are subtracted by the small passive initial force (Fini), and equation (3.4) 

becomes: 
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This passive initial force (Fini) can be neglected, if it is small compared to F1 and F2. In 

this case, the static stiffness change can be approximated by equation (3.4). 

 

The static stiffness does not deal with changes in the episode of vibration and only 

represents the effect of the episode, since the inertia of the tissue is only considered 

during vibration and the viscoelasticity of the tissue is unchanged before and after the 

vibration [88]. Therefore, the Ks is able to realistically reflect the muscle active stiffness 

change from vibration. 
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Chapter 4 

Numerical Models 

 

4.1 Introduction  

 

The mechanical behaviour of contracted smooth muscle is more complicated than other 

airway tissues due to the fact that both active and passive forces are involved. 

Furthermore, the regulation of cross-bridges in smooth muscle has four states, which is 

more complicated than the two-state model for skeletal muscle. This complexity will be 

reflected in the following mathematical model. Existing mathematical models for 

muscle contraction have already been surveyed in Chapter 2. The backbone of these 

models is the sliding filament theory and Huxley’s model [20].  

 

In brief, Huxley established a balance for cross-bridge regulation, where the time rate of 

activated cross-bridges is equal to the rate of forward attachment subtracted by the rate 

of forward detachment, see equation (2.9). All of the rates are described by the relative 

position of actin-myosin from static force-length or quasi-static force-velocity 

relationships [20, 52-54]. For smooth muscle, the balance for cross-bridge regulation is 

still important, but this balance is contributed by the four states of cross-bridge process, 

and the force-length and force-velocity relationships still need to determine the rates of 

state [32, 48, 62-64]. In summary, these numerical models can accurately predict the 
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muscle force development, and the shortcoming of these models is the difficultly in 

numerical computations and the reliance on static or quasi-static simulations.  

 

The fading memory model [61] is a model which does not consider the structure of 

muscle and describes cross-bridge kinetics integrally. It looks for the time response of 

the dynamic events and can not quantitatively simulate the biophysical events 

underlying muscle contraction, but can qualitatively interpret certain biophysical 

processes. The main advantage of this model is that it gives dynamic force responses 

with muscle length changes. Although this theory was developed for cardiac muscle 

[61], in this research the fading memory model will be modified to address the 

behaviour of airway smooth muscles. 

 

The fading memory model describes the cross-bridge kinetics for the muscle contractile 

mechanism only. However, for an entire muscle tissue under external excitations, the 

muscle response is not only determined by the contractile mechanism, but also by the 

tissue rheology (viscoelasticity). Furthermore, in this research we hypothesize that 

tissue mass inertia plays a significant role in the dynamic behaviour if the tissue strips 

are under high oscillating frequencies (compared to normal breathing frequencies). For 

this kind of dynamic simulation, the finite element method (FEM) is an efficient tool 

that can be used. It is worth mentioning that commercially available FEM software is 

good at determining the eigenvalues and eigenfunctions for a specific problem with 

predetermined mechanical and physical properties. In this research, however, the 

process is reversed. The eigenfrequencies are known and the properties, such as the 

stiffness modulus are needed to be determined. This is the main reason why it was felt 

that it would be easier to develop a new FEM code rather than use an available 

commercial package.  
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The following sections of this chapter will firstly introduce the fading memory model. 

Necessary modifications are then introduced to modify this model to address the 

behaviour of airway smooth muscle. Finally, a two-dimensional FEM model will be 

developed to simulate oscillating events of airway smooth muscle tissue. All the 

numerical results are presented and discussed in Chapter 5 and 6, respectively. 

 

4.2 Fading Memory Model  

 

As mentioned above, this is not an appropriate model to describe the dynamic behaviour 

of smooth muscle, however, it can be modified to accommodate smooth muscle 

behaviour. Initially, some details of this theory are presented to help the reader 

understand the basic principles as well as to understand the modifications presented in 

this work.  

 

4.2.1 Fading Memory of Muscle 

 

A continuum cross-bridge dynamic model was developed by Hunter et al. [61], and is 

usually called the fading memory model. This model is initially assumed to have a 

constant level of bound calcium and steady state tropomyosin kinetics. The model is 

based on a macroscopic viewpoint where the dynamic response of the model only 

considers the total population of the activated cross-bridges.  In the model, the input is 

the muscle length change and the output is the muscle force response. This model is 

established by an isometric quick release, accommodated by Hill’s equation, and the 

constant parameters determined by muscle properties from experimental data [31 and 

61].  
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First, a length ratio (λ) is defined as the actual muscle length divided by the resting 

length, (i.e. λ = l.0 is the muscle resting length that contributes to the maximum 

isometric force). The advantage of using λ to give a normalized dimension is the fact 

that the absolute size of the muscle tissue is disregarded. Also, the force is normalized 

as 0TT , where T is a responding force and T0 is an isometric force from the force-

length relationship (see Figure 2.2 and 2.4). The fading memory model considers an 

isometric quick release as a transient step change (shortening) in length of ∆l. See 

Figure 4.1.  

 

l0

l ∆l

 

Figure 4.1 A step change in length (transient response). 

 

Let an unspecified function, Q(T, T0) (this function will be determined later), be a 

nonlinear function of T and T0, and assume that this function is zero when T is equal to 

T0, i.e. Q(T0, T0) = 0 (this means that there is no response). Consider now the effect of a 

change in length (∆λ) at a time τ (τ < t) on the current response at time t. The change in 

Q(T, T0) (at time t) resulting from this length step change (at time τ) can be determined 

from: 

 

( ) ( ) ( ) ( ) τλττ
τ
τλτλτ dtd

d
dttQ &−Φ=−Φ=∆⋅−Φ=∆                             (4.1) 

 

where Φ(t) is the material response function, and Φ(t − τ) is the response at time t to a 

stimulus at time τ (τ < t). Integrating equation (4.1) one obtains: 
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( ) ( )∫
∞−

−Φ=
t

dttQ τλτ &                          (4.2) 

 

This type of integral is known as a hereditary integral. Equation (4.2) assumes that the 

overall response of the muscle depends more upon recent events than on earlier events 

as the material has a “fading memory”. Furthermore, the material response function 

( )τ−Φ t  can be assumed to be a superposition of these events. This gives: 

 

( ) ([ ]∑
=

−−=−Φ
N

i
ii tAt

1
exp τατ )                     (4.3) 

 

where Ai and αi are constant parameters for the material. These constants will be 

determined using experimental data. Substituting equation (4.3) into equation (4.2) 

gives: 

 

( )( ) ( )[ ] ( )∑ ∫
= ∞−

−−=
N

i

t

ii dtATtTQ
1

0 exp, ττλτα &                       (4.4) 

 

After an isometric quick release, the force falls abruptly and then rises to a new force 

level (Figure 4.2). 01 TT  is the initial fall in the force. In fact, the force recovery curve 

in Figure 4.2 shows evidence of three distinct physical processes: 

 

1. an initial fast recovery, 

2. a slight oscillation (critically damped) which is indicative of a second order 

process, 

3. a subsequent slow recovery phase (evidence of a first order process). 
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Time  
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Figure 4.2 Time response of force recovery following a length step (a length step of ∆λ 
in time ∆t). 

 
 

The force recovers to a new level that depends on the isometric force-length relationship 

(see Figure 2.2 and 2.4). Based on this, equation (4.4) is limited to three events of this 

superposition (i.e. N = 3) and can be written as: 

 

( )( ) ( )[ ] ( )∑ ∫
= ∞−

−−=
3

1
0 exp,

i

t

ii dtATtTQ ττλτα &                           (4.5) 

 

4.2.2 Incorporation into Hill’s Equation 

 

A parameterised form of the nonlinear function Q(T, T0) can be determined from 

constant velocity experiments (isotonic contraction). In these experiments, the muscle 

length is shortened at a constant rate (isotonic contraction) in response to a reduction in 

force to a constant value less than T0. A plot of the force versus velocity is called the 

isotonic force-velocity relationship, (Figure 2.8(b)). 

 

The curve is typically hyperbolic and the equation was first proposed by Hill [39] as: 
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where a and b are constants and V is the shortening velocity. This relationship shows 

that the maximum force generated occurs when the muscle is contracting isometrically 

(zero velocity) and that the maximum velocity occurs when there is no afterload. 

Experimentally, this is found by extrapolating the curve from very low values of 

afterload. From equation (4.6), the “no afterload” condition can be expressed as: 
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Substituting equation (4.7) in to equation (4.6) gives: 
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For a constant velocity, equation (4.5) can be considered to only have one constant (N = 

1) and can be written as: 
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Since the length has shortened by the time, and  is substituted with −V, equation (4.9) 

can then be written as: 

λ&
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Under the same conditions, equation (4.8) and (4.10) match exactly. Therefore: 
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From equation (4.11), Q is zero when T and T0 are equal. This agrees with the 

assumption at the beginning of section 4.2.1. Finally, equation (4.5) can be rewritten as: 
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4.2.3 Determination of the Constant Parameters from Isometric Quick Release 

 

Referring to equation (4.12), the constants, Ai, αi and a, are determined from muscle 

experimental data. A typical experiment is a transient step change in length. In this 

section, equation (4.12) will be derived for a transient step change in length, and then 

compared with the experimental results to determine the values of the constants. Before 

discussing a transient step change in length, two useful functions, the Heaviside and 

Dirac’s delta functions, will be introduced, (see Figure 4.3). 

 

 

Figure 4.3 Heaviside function (a) and Dirac’s delta function (b). 

 

The Heaviside function is a unit step function and defined as below, which has the unit 

step jump at an arbitrary positive value τ: 
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The use of the Heaviside function is apparent when it is convolved with a continuous 

time function f(t) [87]: 

 

t
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Phenomena of an impulsive nature, such as the action of very large values over very 

short intervals of time (for instance at instantaneous time τ), can be represented by the 

Dirac’s delta function: 
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The Dirac’s delta function also has an important characteristic for any continuous time 

function f(t) [87]. The convolution of f(t) with the Dirac’s delta function maps: 

 

( ) ( ) ( )∫
∞

∞−

=− ττδ fdtttf                    (4.16) 

 

The Heaviside and Dirac’s delta functions are related through the time derivative [87]: 

 

( ) ( τδτ −=− ttH
dt
d )                          (4.17) 

 

Consider a transient step change in length (isometric quick release as seen in Figure 

2.5). The length change (at time τ) and velocity can be expressed by using Heaviside 

and Dirac’s Delta functions as: 
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Substituting equation (4.18) into equation (4.12) gives: 
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Defining zero time as the instance of the length step, after using equation (4.16), 

equation (4.19) can be written as: 
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T1 is the initial fall in the force (see Figure 4.2), and represents the minimum force 

which can be obtained from equation (4.20) at t = 0 
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The constants Ai and αi are the material parameters that depend on muscle properties. 

The constants Ai are dimensionless. Equation (4.21) utilizes these three constants in 

determining the lowest force reached (labelled T1) immediately after a transient step. In 
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other words, these constants determine the degree of cross-bridge detachment that is 

disrupted by a transient step change in a length. The other constants (αi) have units of s-1 

to determine the muscle response time (recovery rate), which represents the time for 

reattachment of the disrupted cross-bridges.  The constant (a) is from Hill’s equation, 

which is determined from the isotonic force-velocity relationships (Figure 2.8(b)). All 

these constant parameters are determined from the muscle properties. The amount of 

superposition (number of rate constants, N) depends on the dynamic events of the 

muscle. Hunter et al. [61] used cardiac muscle experimental data in the model to 

address the behaviours of cardiac muscle. The details of their modification are presented 

as follows.  

 

 

Figure 4.4 Hancoke’s [92] data was fitted by the fading memory model [61].  
 
 

The constant parameter a, is from Hill’s equation, which is determined by the force-

vilocity relationship.  Experimental data for the isotonic force-velocity relationship from 

cardiac muscle [89-91] gives a relative velocity ( 0VV ) of approximately 25% at a 
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relative force ( 0TT ) of 50%. Setting 5.00 =TT  and 25.00 =VV  in equation (4.8) 

gives . 5.0=a

 

The transient step change in length experiments required to evaluate the rate constants 

from equation (4.20) have been performed for ferret cardiac muscle at 27 °C by 

Hancoke et al. [92]. In these experiments, the force response followed a 2% length step 

accomplished in 2 ms. Hunter et al. [61] fitted the experimental result using equation 

(4.20) (Figure 4.4) and got good agreement. The solid line in Figure 4.4 is from 

equation (4.20) with one rate constant (N = 1) and parameters a = 0.5, α1 = 75 s−1 and A1 

= 50. The broken line in the figure is from equation (4.20) with all three rate constants 

(N = 3, α2 = α3 = 2850 s−1, and A2 = A3 = 175). The horizontal broken line in the figure 

(at 18.00 =TT ) marks the immediate post-step force for the single rate constant 

relation, which is useful for determining the parameter A1. The figure shows that using 

the three rate constants (N = 3) provided better fits to the experimental data than using 

one rate constant. 

 

4.3 Modification of Fading Memory Model for Airway Smooth 
Muscle 

 
 

It is worth emphasizing here that the fading memory theory was originally developed 

for cardiac muscle only. However, in this work some modifications are introduced to 

make it suitable for airway smooth muscles. Recall from Chapter 3 that the fading 

memory model disregards muscle structure itself and only considers the time response 

after a biophysical event. Furthermore, the different constant parameters (αi) can 

determine different time responses in the model. Comparing Figure 2.5 for smooth 

muscle and 4.4 for cardiac muscles, it can be observed that isometric quick release is 
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identical irrespective of the type of muscle. The behavior is such that the force falls 

abruptly and subsequently rises to a new maximum level determined by the isometric 

force-length relationships. The only difference between the two types of muscle is the 

recovery time. From the both figures (Figure 2.5 and 4.4), we find that the time 

response of cardiac muscle is much faster than that for smooth muscle. This means that 

the cross-bridge cycling rate of cardiac muscle is much faster than the cycling rate of 

smooth muscle. Based on this, the fading memory model can be reasonably modified 

for smooth muscles. 

 

4.3.1 Determination of the Constant Parameters for Airway Smooth Muscle 

 

In equation (4.20), the parameter a, is a non-dimensional parameter. The experimental 

data from smooth muscle [41, 93 and 94] gives a relative velocity ( 0VV ) of 

approximately 16 − 19% at a relative tension ( 0TT ) of 50%. Setting 5.00 =TT  and 

0VV  = 0.16 − 0.19 in equation (4.8) gives a to be between 0.32 − 0.38. Therefore, in 

this work, the value of a is assumed to be 0.35 for airway smooth muscle. To compare 

both smooth and cardiac muscles, the force-velocity relationships are presented in 

Figure 4.5 by using equation (4.8). The figure shows that, under the same loading 

condition, the smooth muscle has a slower shorting velocity than cardiac muscle. This is 

in agreement with the fact that the cross-bridge cycling rate in smooth muscle is slower 

than in cardiac muscle. 
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Figure 4.5 Force-velocity relationships for smooth and cardiac muscle. 

 

 

Figure 4.6 Typical transient step change in length protocols and terminology, A and B 
show and length data played back from magnetic (analog) tape as function 
of time [21]. 
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The parameters αi and Ai, in equation (4.20) can be determined by experimental data 

from the transient step change in length. Similar experiments for transient step change 

(stretching and shortening) in length have been performed for ovarian ligament smooth 

muscle of female rabbits by Meiss [21]. The typical time responses of a transient step 

change in length are shown in Figure 4.6. The cross-bridges of smooth muscle initially 

rearranged to the new length of muscle tissue after a transient step change (20% of Lr 

shortening) in approximately 3 − 4 seconds (refer to the cyclic rings in Figure 4.6). The 

initial recovery time of airway smooth muscle (Figure 2.5) and ovarian ligament smooth 

muscle (Figure 4.6) is similar. In this work, Meiss’s data (Figure 4.6) will be used since 

the time scale reading is more accurate than Gunst’s data (Figure 2.5) [38]. When 

comparing smooth muscles (Figure 4.6) and cardiac muscle (Figure 4.4), the response 

time of smooth muscle is roughly 60 times slower than that of cardiac muscles. The 

transient length step experiments required to evaluate the constant parameters (αi and 

Ai) from equation (4.20) are fitted with Meiss’s data. Figure 4.7 shows that the response 

of equation (4.20) with a = 0.35, α 1 = 1.2 s−1, α 2 = 8 s−1, α 3 = 48 s−1, A1 = 2.5, A2 = 10 

and A3 = 40. After comparison with Figure 4.6, Figure 4.7 shows a good representation 

of Meiss’s data (Figure 4.6) [21]. These values of constant parameters are used to 

represent the airway smooth muscle in this work. More details about the constant 

parameter Ai will be discussed in Chapter 6.  
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Figure 4.7 Meiss’s data is simulated by the fading memory model after using equation 
(4.15), the force is recovery by a transient step shortening in length, with 
values of constant parameter a = 0.35, α 1 = 1.2 s−1, α 2 = 8 s−1, α 3 = 48 s−1, A1 
= 2.5, A2 = 10 and A3 = 40. 

 
 

4.3.2 Finite Duration Length Step 

 

Any real transient step change takes a finite time duration. Thus, the case is considered 

when the muscle tissue takes a finite time duration (∆t) for the length change (∆λ). The 

velocity of shortening is then given by: 
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Substituting equation (4.22) to equation (4.12) gives: 
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The initial response (
0

1

T
T

, the initial decrease in force) for different finite time durations 

(∆t) can be calculated by taking t = ∆t in equation (4.23): 
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4.3.3 Development of a Modified Fading Memory Model for Longitudinal 
Oscillation 

 

The fading memory model for a length oscillation can simulate the longitudinal 

vibration experiments conducted in this research. A contracted muscle is placed under 

an isometric condition and a mechanical length sinusoidal perturbation is imposed 

without calcium level change. Consider a perturbation of length ratio λ that has an 

amplitude, ∆λ, about a mean length of λ = 1 and frequency ω. This can be written: 

 

( )tj ⋅⋅∆+= ωλλ exp1                    (4.25) 

 

where 1−=j .The velocity of the length change is: 
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Substituting equation (4.26) to equation (4.12) to gives: 
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Rewriting equation (4.27) one obtains: 
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Integrating equation (4.28) gives: 
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Simplifying equation (4.29) gives: 
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Finally, the equation that describes the response of the muscle tissue to longitudinal 

oscillations is given by: 
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4.4 Finite Element Model 

 

The fading memory model only describes the cross-bridge mechanics of muscles. This 

model does not consider the entire properties and behaviours of muscles. However 

elasticity also plays an important role in muscle behaviours and need to be considered. 

Furthermore, muscle tissue inertia should be considered when the muscle tissue is 

excited by an external vibration. For this kind of combined behaviour, FEM is an 

efficient simulation method. 

 

FEM divides a problem domain into many subdomains, each of which is called a finite 

element. The interconnected points between these elements are called nodes. After 

computation, FEM gives a solution for each node. The overall solution is the sum of the 

nodal solutions. In this section, the FEM model considers a strip of airway smooth 

muscle tissue under two-dimensional plane stress. Cauchy’s first law [95 and 96] is 

invoked to describe the motion of the two-dimensional plate. The governing equations 

are then developed by applying Galerkin’s method [96-98].  

 

4.4.1 Physical Laws for the FEM 

 

The basic FEM model is built on a two-dimensional plane, which is assumed to be 

homogeneous and isotropic. This plane also obeys Hook’s law within the elastic limit. 

First, the basic theoretical equations for motion are derived. Consider the free body 
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diagram of the infinitesimal element shown in Figure 4.8. Applying Newton’s second 

law to the element, the summation of forces in the horizontal and vertical axes become: 
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Figure 4.8 Free body diagram of two-dimensional plane element. 

 

where fx and fy are body forces per unit volume (assuming unit thickness perpendicular 

to the plane) in the x and y axes and are assumed to be positive when acted along the 

positive axes. u and v are displacements in the horizontal (x axes) and vertical (y axes) 

directions, respectively, and ρ is the density of the plane (assuming unit thickness 

perpendicular to the plane). All of the stress components in Figure 4.8 are shown as 

positive. Simplifying equation (4.32) yields the equations of equilibrium as: 
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Equation (4.33) is known as Cauchy’s first law of motion [95 and 96].  

 

4.4.2 Development of Finite Element Formulae 

 

In order to develop a computing code for the FEM, the following derivation is 

presented, and more details of the FEM basic principles are introduced in Appendix A. 

After applying the weighted residual and integration by parts, equation (4.33) becomes: 
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In this work, the problem domain (Ω) is divided using linear triangular elements with 

the following weighting functions: 
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where A is the area of the triangular element, and xi and yi are the ith node of each 

triangular element. Each element has three nodes (i = 1, 2, 3), and each node has two 

degrees of freedom (DOF). Gallerkin’s method uses the weighting functions as basis 

functions in an FEM formulation. 
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The first integral on the left-hand-side in equation (4.34) describes the mass inertia, and 

the accelerations  and  can be interpolated using the weighting functions: u&& v&&
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                              (4.36) 

 

where  and  (i = 1, 2, 3) are the nodal accelerations in the x and y directions, 

respectively. In matrix form, these accelerations can also be expressed as: 

iu&& iv&&
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for each element, where  is the nodal acceleration vector for an element. Integrating 

the first integral on the left hand side of equation (4.34) over that element domain gives: 
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where Ωe denotes the element domain and [Me] is known as the mass matrix for each 

element. Since the total DOF for each element is six, the size of the mass matrix [ ]eM  is 

6 × 6 elements. Equation (4.38) is known as the consistent matrix and for linear 

triangular elements becomes: 
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A technique known as “mass lumping” is sometimes used, in which the mass matrix 

 is replaced by a diagonal matrix having diagonal terms equal to the row sums. 

This is more convenient for computational purposes [96 and 97]. After using mass 

lumping, equation (4.39) becomes: 
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where  is a 6 × 6 identity matrix. Finally, the first integral on the left-hand-side of 

equation (4.27) becomes: 
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The second integral on the left-hand-side of equation (4.27) describes the elasticity of 

the material and can be written as: 
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To calculate the constitutive equation, the stress–strain relationship must be examined. 

In this model, the plane stress condition is considered to be valid such that the stress is 

related to strain through (see Appendix B): 
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Note that in equation (4.43) γ11 = γx, γ22 = γy and 2γ12 = γxy. Here γ12 is the tensor shear 

strain component, whereas γxy refers to the engineering (or total) shear strain. 

 

Both displacements u and v are interpolated using the weighting functions: 
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where and vi (i = 1, 2, 3) are the nodal displacements in the x and y directions, 

respectively. In matrix form, these displacements can be expressed as: 
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where  is the nodal displacement vector for each element. Use of this expression 

for the strains yields: 
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Integrating the second integral on the left hand side of equation (4.34) over the element 

domain gives: 
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where [Ke] is known as the stiffness matrix for each element. Evaluation of the linear 

shape function of the triangular element provides 

 

[ ]
( ) ( ) ( )

( ) ( ) (
( ) ( ) ( ) ( ) ( ) ( ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−−−
−−−

−−−
=

211213313223

123123

211332

000
000

2
1

yyxxyyxxyyxx
xxxxxx

yyyyyy

A
B )

)
  (4.48) 

 90



Since both [B] and [D] are constant matrices independent of x and y, [Ke] can also be 

written as: 
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The size of the matrix [Ke] is the same as the number of DOF for the element (in this 

case, 6 × 6 elements). A unit thickness is assumed for the plane stress condition, so the 

solution is independent of the direction of the thickness. 

 

The two right-hand-side terms in equation (4.34) are force vectors. The first term is due 

to body forces (f) and the second term is due to tractions (Φ). The body force term is a 

domain integral, and so the same computations that were performed on the stiffness 

matrix [Ke] can be performed on this term. In the element domain this term yields: 
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where the body force is constrained on each node on the x and y directions. The traction 

term in equation (4.34) is a boundary integral (Figure 4.9), and this traction can weight 

on nodal values in an element as follows: 

 

 91



{ } ∫∫
⎭
⎬
⎫

⎩
⎨
⎧
Φ
Φ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−

−
−

−

=Γ
⎭
⎬
⎫

⎩
⎨
⎧
Φ
Φ

⎥
⎦

⎤
⎢
⎣

⎡
=Φ

Γ

j

ie

s

s y

x

ij

i

ij

i

ij

j

ij

j

e
y

x
e ds

ss
ss

ss
ss

ss
ss

ss
ss

d
w

w

0

0

0

0

0
0

2

1                (4.51) 

 

where si and sj are the coordinate values along the temporary boundary axis s and i and j 

are the two nodes on the element boundary where the traction is described. For free 

standing boundary conditions, there is no traction (i.e. 0=Φ=Φ yx ).  

 

 

Figure 4.9  Boundary traction in an element. 
 
 

Combining equation (4.38), (4.47), (4.50) and (4.51) gives the final equation for each 

element in the domain: 
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4.4.3 Assembly of Finite Element Equations 

 

To calculate the overall deformation, each element stiffness matrix must be assembled 

into a global stiffness matrix. Each element has the same element stiffness matrix as that 

given in equation (4.40), (4.49), (4.50) and (4.51), since each element is the same unit 

size, and is interpolated by the same basis functions. After assembly, the global matrix 

is symmetric and will be sparse if there are a large number of elements. If the solution at 

global node i, is known, the ith equation can be removed and can be replaced with a 

known value of ui. This equation is then uncoupled from other equations and can be 

removed from the computation. The size of the system is then reduced. The system that 

needs to be solved is only as big as the number of unknown values of u. The global 

system can then be expressed as: 

 

[ ]{ } [ ]{ } { }FdKdM =+&&                     (4.53) 

 

where [M] is the system mass matrix, [K] is the system stiffness matrix, {F} is the total 

force on the system boundary (which includes the body force and the boundary traction) 

and  and { }d&& { }d  are the system acceleration and displacement vectors, respectively. 

 

In this work, the mass of muscle tissue is constant during the excitation, but the stiffness 

[K] of the muscle tissue varies with both time and oscillating frequency. Thus, equation 

(4.53) will be modified as: 

 

[ ]{ } ( )[ ]{ } { }FdftKdM =+ ,&&                    (4.54) 
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In general, the form of [K(t, f)] is nonlinear and cannot be calculated analytically. To 

determine [K(t, f)], experimentally obtained data (from Chapter 3) needs to be used, as 

will be discussed in Chapter 6. 

 

4.4.4 Longitudinal Vibration 

 

A strip of smooth muscle tissue excited in the longitudinal direction is showed in Figure 

4.10. There are total of 80 elements and 63 nodes in the FEM. One end of the tissue is 

fixed, but the other end of tissue is oscillated in the longitudinal direction by a sine 

wave with amplitude Aa and frequency ω: 

 

( )tAd a ⋅= ωsin                     (4.55) 

 

 

Figure 4.10 A strip of smooth muscle tissue is excited with a vibration in the 
longitudinal direction. 

 
 

The FEM model is programmed using the central difference scheme for the time 

integration [96]. The central difference technique is conditionally stable and so the time 

step size should be less than the critical time step size [97] defined as: 

 

max2
1  
λ

=∆<∆ crittt          (4.56) 

 

where λmax is the largest eigenvalue (oscillatory noise) in the matrix [A]: 
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[ ] [ ] [ ]KMA 1−=           (4.57) 

 

4.4.5 Transverse Vibration 

 

A strip of smooth muscle tissue is simulated using the FEM for excitations in the 

transverse direction shown in Figure 4.11. There are total 80 elements and 63 nodes in 

the FEM. Both ends of the tissue are fixed boundaries, the middle of tissue is oscillated 

in the transverse direction by a sine wave with amplitude Aa and frequency ω. 

 

Figure 4.11 A strip of smooth muscle tissue is excited with a vibration in the transverse 
direction 

 

As same as the longitudinal vibration, the FEM model is programmed using the central 

difference scheme for the time integration. The time step size can be determined by 

equation (4.56). 

 

The results from both these FEM simulation will be given in the next chapter alongside 

the equivalent experimental results for comparison. 
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Chapter 5 

Experimental & Numerical Results  

 

5.1 Introduction  

 

The conceptual idea of this work is to systematically determine the response of 

contracted airway smooth muscle to different external dynamic excitations. These 

excitations are specified in terms of frequencies, amplitudes and time durations. The 

muscle stiffness in considered to be the main parameter which reflects the degree of 

relaxation for the contracted muscle.  To achieve this goal, this work is split into an 

experimental (see Chapter 3) and numerical part (see Chapter 4). The main results from 

these two chapters will be presented in this chapter. 

 

5.2 Airway Smooth Muscle Tissue Properties  

 

Relaxed muscles and contracted muscles have different stiffnesses. For contracted 

muscles, the stiffness varies at different levels of contraction.  In this research, the 

original stiffness is defined to reflect the fully contracted airway smooth muscle 

property without any external excitation (see section 3.3.2 in Chapter 3). This value will 

be used for an initial estimate in the numerical model. For the eleven smooth muscle 
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tissues tested in Chapter 3, an average value of the original stiffness is determined. The 

original Young’s modulus of elasticity, E, is then calculated from: 

 

A
KlE ⋅

=             (5.1) 

 

where E is the original Young’s modulus of muscle, l is the muscle tissue length, K is 

the muscle original stiffness (the ratio of force change to the length change from the 

measurements, K = ∆F/∆l), and A is the cross-sectional area of muscle tissue obtained 

from the following  equation: 

 

l
mA
⋅

=
ρ

            (5.2) 

 

where m is the mass and ρ is the mass density of the muscle tissue. In this work, ρ is 

taken to be 0.001 g/mm3 [22, 99 and 100], and the physical parameters for the eleven 

tissue elements tested in Chapter 3 are summarized in Table 5.1. 
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Table 5.1 Measure properties of original tissue 
 

 
Tissue 
mass m 

(g) 

Tissue 
length l 
(mm) 

Tissue cross-
sectional area A 

(mm2) 

Tissue 
stiffness K 
(mN/mm) 

Tissue 
modulus E 

(MPa) 

1 0.042 18.9 2.228 120.686 1.024 

2 0.050 18.9 2.661 138.983 0.987 

3 0.050 16.7 2.982 179.101 1.003 

4 0.046 18.8 2.452 129.258 0.991 

5 0.039 16.5 2.346 119.689 0.842 

6 0.042 18.9 2.238 105.747 0.893 

7 0.049 16.3 3.031 189.836 1.021 

8 0.051 18.1 2.829 154.252 0.987 

9 0.045 15.7 2.834 158.690 0.879 

10 0.047 18.5 2.551 153.081 1.110 

11 0.040 16.1 2.503 153.451 0.987 

Average 
value  0.046 17.6 2.605 145.707 0.975 

Standard  
deviation 0.004 1.3 0.285 25.757 0.076 

95% 
confidence 

interval 
±0.002  ±0.8  ±0.168  ±15.221  ±0.045 

 
 

5.3 Experimental Results 

 

The results from both longitudinal and transverse vibrations are presented in this 

section. The data relating to the stiffness was acquired and converted using the 

equations in section 3.5 of Chapter 3. 
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5.3.1 Longitudinal Vibration 

 

In this part of the investigation, contracted airway smooth muscle tissues were excited 

in the longitudinal direction. First, oscillations were introduced at various frequencies 

and amplitudes, while the duration of vibration was kept at 1 second. The range of 

vibration frequencies was from 5 to 75 Hz and the amplitudes of vibration were from 

1.2% to 6.0% of the reference length (Appendix C). The variation in stiffness as a 

function of amplitude and frequency was then calculated. For statistical analysis, the 

measurements of the eleven pig’s airway smooth muscle tissues were averaged for each 

frequency and amplitude response and are summarized in Table 5.2 (dynamic stiffness, 

Kd) and 5.3 (static stiffness, Ks).  

 

Table 5.2 Average of eleven tissues dynamic stiffness (Kd) with 95% confidence 
interval to different frequencies and amplitudes. 

 
Kd for Different Amplitudes of Vibration Frequency 

(Hz) 1.2% of Lr 2.5% of Lr 3.8% of Lr 4.5% of Lr 6.0% of Lr

5 0.928±0.015 0.915±0.015 0.905±0.015 0.896±0.018 0.872±0.022 
15 0.909±0.019 0.894±0.021 0.881±0.023 0.870±0.019 0.839±0.035 
25 0.891±0.015 0.868±0.014 0.858±0.019 0.847±0.026 0.821±0.032 
35 0.883±0.020 0.847±0.013 0.835±0.022 0.817±0.023 0.805±0.028 
45 0.865±0.025 0.820±0.026 0.796±0.030 0.782±0.025 0.768±0.021 
55 0.855±0.022 0.813±0.021 0.789±0.028 0.764±0.020 0.727±0.022 
65 0.840±0.018 0.805±0.020 0.776±0.028 0.748±0.038 0.706±0.030 
75 0.834±0.016 0.787±0.027 0.761±0.028 0.735±0.033 0.667±0.038 
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Table 5.3 Average of eleven tissues static stiffness (Ks) with 95% confidence interval 
to different frequencies and amplitudes. 

 
Ks for Different Amplitudes of Vibration Frequency 

(Hz) 1.2% of Lr 2.5% of Lr 3.8% of Lr 4.5% of Lr 6.0% of Lr

5 0.907±0.014 0.851±0.016 0.788±0.029 0.738±0.044 0.681±0.033 
15 0.885±0.016 0.825±0.022 0.744±0.031 0.679±0.036 0.603±0.027 
25 0.877±0.023 0.803±0.025 0.725±0.019 0.655±0.034 0.582±0.021 
35 0.865±0.022 0.800±0.020 0.708±0.034 0.653±0.040 0.575±0.049 
45 0.867±0.015 0.802±0.033 0.705±0.028 0.650±0.036 0.578±0.034 
55 0.864±0.016 0.801±0.027 0.699±0.029 0.645±0.029 0.576±0.040 
65 0.869±0.014 0.794±0.018 0.704±0.030 0.642±0.031 0.569±0.031 
75 0.866±0.015 0.785±0.027 0.694±0.031 0.631±0.032 0.549±0.027 

 
 
 
In second part of this set of experimental investigation, oscillations were introduced at 

various time durations. The muscle tissues were oscillated the frequencies of 5 Hz, 35 

Hz and 65 Hz, for a time duration of 1, 2, 3 and 5 seconds respectively, while, the 

amplitude of these oscillations was maintained at 3.8% of Lr. Six measurements were 

taken for each frequency and duration, and the average response is given in Table 5.4 

for dynamic stiffness (Kd) and Table 5.5 for static stiffness (Ks). As with the previous 

experimental data is listed in Appendix C. 

 

Table 5.4 Average of six tissues dynamic stiffness (Kd) with 95% confidence interval 
to different frequencies and time durations. 

 
Kd for Different Time Durations of Vibration Frequency 

(Hz) 1 sec 2 sec 3 sec 5 sec 
5 0.917±0.014 0.868±0.014 0.843±0.015 0.832±0.012 
35 0.820±0.021 0.823±0.018 0.823±0.017 0.812±0.012 
65 0.768±0.020 0.765±0.023 0.758±0.020 0.740±0.022 

 

Table 5.5 Average of six tissues static stiffness (Ks) with 95% confidence interval to 
different frequencies and time durations. 

 
Ks for Different Time Durations of Vibration Frequency 

(Hz) 1 sec 2 sec 3 sec 5 sec 
5 0.842±0.026 0.773±0.017 0.730±0.019 0.705±0.017 
35 0.713±0.026 0.708±0.031 0.702±0.026 0.643±0.024 
65 0.700±0.024 0.703±0.021 0.702±0.023 0.627±0.025 
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5.3.2 Transverse Vibration 

 

This is a new type of experimentation, and to the best of our knowledge has never been 

reported in the open literature. For these experiments, the contracted smooth muscle 

tissues were excited in the transverse direction by an oscillator. Experiments were 

conducted at various frequencies and amplitudes of excitation. The extent of the tissue 

transverse fluctuation is the same as the amplitude of oscillation and can be converted to 

a length change ratio of the tissue (see section 3.4.2 in Chapter 3). 

 

 Oscillations were introduced at various frequencies and length change ratios, while the 

duration of vibration was maintained at between 1 − 2 seconds. The frequencies were 

changed from 5 to 55 Hz at steps of 10 Hz, with length change ratios of 2.2%, 3.5% and 

4.8% of Lr, respectively (Appendix C). The variation in stiffness as a function of length 

change ratio and frequency was acquired. For statistical analysis, the measurements of 

the six pig’s airway smooth muscle tissues were averaged for each frequency and length 

change ratio response and are given in Table 5.6 (dynamic stiffness, Kd) and 5.7 (static 

stiffness, Ks).  

 

Table 5.6 Average of six tissues dynamic stiffness (Kd) with 95% confidence interval 
to different frequencies and length change ratios. 

 
Kd for Different Length Change Ratios of Vibration Frequency 

(Hz) 2.2% of Lr 3.5% of Lr 4.8% of Lr

5 0.853±0.014 0.806±0.017 0.725±0.015 
15 0.815±0.017 0.758±0.021 0.693±0.024 
25 0.796±0.023 0.743±0.021 0.673±0.027 
35 0.775±0.022 0.727±0.017 0.642±0.030 
45 0.783±0.026 0.702±0.019 0.627±0.032 
55 0.790±0.024 0.710±0.024 0.624±0.026 

 
 
 
 
 

 101



 
Table 5.7 Average of six tissues static stiffness (Ks) with 95% confidence interval to 

different frequencies and length change ratios. 
 

Ks for Different Length Change Ratios of Vibration Frequency 
(Hz) 2.2% of Lr 3.5% of Lr 4.8% of Lr

5 0.837±0.014 0.762±0.017 0.715±0.018 
15 0.813±0.016 0.730±0.021 0.666±0.020 
25 0.815±0.021 0.721±0.022 0.670±0.024 
35 0.811±0.018 0.720±0.021 0.656±0.023 
45 0.808±0.023 0.717±0.025 0.660±0.020 
55 0.809±0.018 0.717±0.023 0.647±0.026 

 
 

5.4 Numerical Results  

 

The numerical results presented in this section include the fading memory model and 

the FEM developed in this work. All the computations in this section were performed 

by using MATLAB 7.0, and the computer code is listed in Appendix D. 

 

5.4.1 Fading Memory Model 

 

Equation (4.24) describes the initial force response of airway smooth muscle for 

different finite time durations (∆t) of shortening. The results of force response (T1/T0) 

varied with different finite time durations (∆t) and length shortening ratio (∆l/l0) are 

given in Table 5.8. 
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Table 5.8 Results of the initial force response (T1/T0) to different finite time durations 
(∆t) and length shortening ratios (∆l/l0) 

 
T1/T0 for Different Finite Time Durations of Shortening Length shorten 

ratio (∆l/l0) ∆t = 1 ms ∆t = 20 ms ∆t = 50 ms 
0.0010 0.934 0.951 0.966 
0.0025 0.846 0.885 0.918 
0.0050 0.724 0.787 0.846 
0.0075 0.624 0.704 0.782 
0.0100 0.541 0.632 0.723 
0.0125 0.471 0.570 0.671 
0.0150 0.412 0.515 0.623 
0.0175 0.360 0.466 0.580 
0.0200 0.315 0.422 0.540 
0.0225 0.275 0.383 0.504 
0.0250 0.240 0.348 0.470 
0.0275 0.209 0.315 0.439 
0.0300 0.180 0.286 0.411 
0.0325 0.155 0.259 0.384 
0.0350 0.132 0.235 0.359 
0.0375 0.111 0.212 0.336 
0.0400 0.091 0.191 0.314 
0.0425 - 0.171 0.294 
0.0450 - 0.153 0.274 
0.0475 - 0.136 0.256 
0.0500 - 0.120 0.239 
0.0525 - 0.105 0.223 
0.0550 - 0.091 0.208 
0.0575 - - 0.193 
0.0600 - - 0.180 
0.0625 - - 0.167 
0.0650 - - 0.154 
0.0675 - - 0.142 
0.0700 - - 0.131 
0.0725 - - 0.120 
0.0750 - - 0.110 
0.0775 - - 0.100 
0.0800 - - 0.090 
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The force responses of longitudinal vibration can be simulated by using equation (4.31). 

The result of the force response (T/T0) varied with different frequencies (5 to 75 Hz) and 

amplitudes (1% to 3% of Lr) and is given in Table 5.9. The phase degree from equation 

(4.31) varied with different frequencies (5 to 75 Hz) and amplitudes (1% to 3% of Lr) 

and is given in Table 5.10. 

 

Table 5.9 Results of the force response (T1/T0) to different frequencies and 
amplitudes. 

 
T/T0 for Different Amplitudes of Vibration Frequency 

(Hz) 1.0% of Lr 2% of Lr 3% of Lr
5 0.732 0.551 0.427 
15 0.584 0.366 0.237 
25 0.555 0.332 0.200 
35 0.546 0.321 0.188 
45 0.542 0.316 0.183 
55 0.540 0.314 0.180 
65 0.538 0.312 0.179 
75 0.538 0.311 0.177 

 
 
Table 5.10 Results of the phase degree to different frequencies and amplitudes. 
 

Phase Degree for Different Amplitudes of Vibration Frequency 
(Hz) 1.0% of Lr 2% of Lr 3% of Lr

5 -14.083 -15.658 -36.254 
15 -10.782 -20.065 30.874 
25 -7.322 -13.854 22.311 
35 -5.431 -10.343 -16.979 
45 -4.293 -8.200 -13.584 
55 -3.541 -6.775 -11.280 
65 -3.011 -5.766 -9.629 
75 -2.617 -5.015 -8.391 

 
 

5.4.2 Finite Element Model 

 

The parameters used in the FEM model are tissue density ρ of 0.001 g/mm3, length of 

tissue is 17.6 mm (from Table 5.1), width of tissue is 2.6 mm (from Table 5.1), 

Poisson’s ratio is 0.45 [22] and original elastic modulus E is 0.975 MPa (from Table 
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5.1). The time step size (∆t) is 2 × 10−5 seconds for both longitudinal and transverse 

vibrations. The governing equation of the FEM is equation (4.54). The FEM can be 

used to simulate airway smooth muscle tissue is excitation under longitudinal and 

transverse vibrations. Both dynamic and static stiffness were calculated to allow 

comparison with the experimental data. 

 

The variation in stiffness as a function of amplitude and frequency was acquired for the 

longitudinal vibrations to give in Table 5.10 for dynamic stiffness (Kd) and 5.11 for 

static stiffness (Ks). The duration of the vibration was kept at 1 second during the 

computation, and the range of vibration frequencies was from 5 to 75 Hz with 

amplitudes of vibration from 1.2% to 6.0% of the reference length during the 

computation. 

 

Table 5.11 Results of dynamic stiffness (Kd) for the longitudinal vibration to different 
frequencies and amplitudes. 

 
Kd for Different Amplitudes of Vibration Frequency 

(Hz) 1.2% of Lr 2.5% of Lr 3.8% of Lr 4.5% of Lr 6.0% of Lr
5 0.957 0.922 0.892 0.884 0.838 
15 0.931 0.897 0.861 0.840 0.759 
25 0.921 0.878 0.840 0.808 0.730 
35 0.909 0.863 0.819 0.791 0.715 
45 0.885 0.849 0.787 0.760 0.702 
55 0.867 0.832 0.781 0.751 0.696 
65 0.855 0.819 0.769 0.735 0.702 
75 0.835 0.815 0.754 0.734 0.685 
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Table 5.12 Results of static stiffness (Ks) for the longitudinal vibration to different 
frequencies and amplitudes. 

 
Ks for Different Amplitudes of Vibration Frequency 

(Hz) 1.2% of Lr 2.5% of Lr 3.8% of Lr 4.5% of Lr 6.0% of Lr
5 0.905 0.848 0.791 0.760 0.694 
15 0.882 0.811 0.740 0.701 0.619 
25 0.875 0.800 0.724 0.683 0.596 
35 0.872 0.794 0.717 0.675 0.585 
45 0.870 0.791 0.713 0.670 0.580 
55 0.869 0.790 0.711 0.668 0.576 
65 0.868 0.789 0.709 0.666 0.574 
75 0.868 0.788 0.708 0.665 0.573 

 
 

The FEM results for different durations of longitudinal vibration are given in Table 5.12 

(dynamic stiffness, Kd) and 5.13 (static stiffness, Ks). The muscle tissues were simulated 

under at frequencies of 5, 35 and 65 Hz for a time duration of 1, 2, 3 and 5 seconds 

(same as with the experiments). The amplitude of vibration was kept at 3.8% of the 

tissue length during the computation. 

 

Table 5.13 Results of dynamic stiffness (Kd) for the longitudinal vibration to different 
frequencies and time durations. 

 
Kd for Different Time Durations of Vibration Frequency 

(Hz) 1 sec 2 sec 3 sec 5 sec 
5 0.891 0.847 0.834 0.826 
35 0.801 0.786 0.779 0.770 
65 0.753 0.731 0.720 0.719 

 

 

Table 5.14 Results of static stiffness (Ks) for the longitudinal vibration to different 
frequencies and time durations. 

 
Ks for Different Time Durations of Vibration Frequency 

(Hz) 1 sec 2 sec 3 sec 5 sec 
5 0.790 0.731 0.712 0.706 
35 0.717 0.706 0.706 0.705 
65 0.709 0.706 0.706 0.706 
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The FEM results for different frequencies and length change ratios of transverse 

vibration are given in Table 5.14 for dynamic stiffness (Kd) and 5.15 for static stiffness 

(Ks). Similar to the experimentation, muscle tissues were simulated under the oscillated 

frequencies from 5 to 55 Hz in steps of 10 Hz, with length change ratios of 2.2%, 3.5% 

and 4.8% of Lr respectively. The time duration of vibration was kept at 1 second during 

the computation. 

 

Table 5.15 Results of dynamic stiffness (Kd) for the transverse vibration to different 
frequencies and length change ratios. 

 
Kd for Different Length Change Ratios of Vibration Frequency 

(Hz) 2.2% of Lr 3.5% of Lr 4.8% of Lr
5 0.865 0.788 0.728 
15 0.815 0.745 0.672 
25 0.812 0.732 0.658 
35 0.817 0.733 0.653 
45 0.815 0.742 0.660 
55 0.827 0.754 0.654 

 
 
 
Table 5.16 Results of static stiffness (Ks) for the transverse vibration to different 

frequencies and length change ratios. 
 

Ks for Different Length Change Ratios of Vibration Frequency 
(Hz) 2.2% of Lr 3.5% of Lr 4.8% of Lr

5 0.839 0.772 0.705 
15 0.814 0.737 0.661 
25 0.809 0.730 0.651 
35 0.807 0.727 0.647 
45 0.806 0.726 0.646 
55 0.806 0.725 0.645 
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Chapter 6 

Discussion  

 

6.1 Introduction  

 

All the results on this work are given in the previous chapter; however, this chapter will 

give some rational and physical explanations to the behaviours observed in both 

experimental and theoretical investigations. 

 

Although there are several postulations on the mechanics of airway smooth muscles, 

none of them gives full description of why airway smooth muscle reacts to vibration. 

This research is an attempt to determine (1) whether airway smooth muscle can be 

relaxed by vibration and (2) the main variation which affects such a relaxation. 

 

The main contributions from this research are: 

 

1. The introduction of the dynamic and static stiffness parameters to explain the 

dynamic and static behaviours of airway smooth muscle. 

 
2. Demonstrate that airway smooth muscle can be relaxed by vibration. 
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3. Determine the specific vibration parameters such as the time duration, amplitude 

and frequency of oscillation on the amount of muscle relaxation. 

 
4. Develop an FEM model to generalize the effect of vibration to determine the 

stiffness variation. 

 

Although the objectives of the first three points above are clear, the fourth one needs 

some clarifications. In normal FEM, an attempt is made to determine the eigenvalues 

and eigenfunctions of a well defined system. However, in the present work the 

eigenvalues and eigenfunctions are not available and we are more interested in 

determining the system stiffness.  

 

6.2 Longitudinal Vibration Experiments 

 

In this set of experimental investigations, two parts of experimentation were conducted. 

First for a constant time duration of oscillation (1 second), the frequencies and 

amplitudes of the longitudinal oscillation were varied. The second part of the 

experiments was to inspect the response of the active smooth muscle stiffness over 

different time durations with oscillations. In this case, the amplitude of oscillation was 

kept at 3.8% of reference length Lr. Two samples of the experimental results for both 

scenarios are presented in Figure 6.1 (constant time duration) and 6.2 for (different time 

durations). 
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Figure 6.1 Longitudinal vibrations reduce force and stiffness during isometric 
contraction. Forces (A and B) and amplitudes of length (C and D) were 
recorded during isometric contraction. The smooth muscle tissue excited 
with 15 Hz is shown on the left hand side (A and C), the tissue excited with 
65 Hz is shown on the right hand side (B and D). The amplitude of both 
excitations was 3.8% of the reference length Lr. Conditions: T = 37 °C and 
pH = 7.7 
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Figure 6.2 Longitudinal vibrations reduce force during isometric contraction under 
different durations of vibration: 1 second (A), 2 seconds (B), 3 seconds (C) 
and 5 seconds (D). All of the vibrations are at a frequency of 35 Hz and 
with amplitude of the vibration of 3.8% of Lr. 

 
 

6.2.1 Constant Time Duration of Vibration 

 

In Figure 6.1 with the amplitude of vibration at 3.8% of the reference length Lr, the 

muscle tissues were excited at 15 and 65 Hz respectively. After vibration, the measured 

force (post force, Fpost) was lower than the force before the vibration was applied (prior 

force, Fprior). The effect of this force reduction indicates that the muscle is relaxed. This 

may be attributed to that the external vibration that change the physical position 

between and myosin filaments and this position change could physically disrupt the 

attachment of cross-bridges.  
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On the vibration time scale, the decreasing force response to successive length cycles is 

seen to be an exponential decline (i.e. the peaks of the sinusoidal wave could be fitted 

by a single exponential function). The force reduction occurs only temporary and then 

the lower force (Fpost) gradually returns to the original level force (Fprior) when the 

vibration is stopped. This could be explained by the fact that the stimulation of smooth 

muscle contraction is unaltered during the experiment. The dynamic stiffness (Kd) 

varies with different frequencies for various amplitudes (in percentage of the reference 

length Lr) and the results are shown in Figure 6.3 using data from Table 5.2. Similarly, 

Figure 6.4 displays the static stiffness (Ks) as it varies with different frequencies and 

amplitudes using data from Table 5.3.  

 

In general, from Figure 6.3 and 6.4, it can be seen that the applied vibrations reduce the 

stiffness of contracted airway smooth muscle. Figure 6.3 shows that as the frequency 

increases the dynamic stiffness (Kd) continuously decreases, while as the frequency 

increases the static stiffness (Ks) (Figure 6.4) decreases exponentially to about 25 Hz, 

when it becomes constant. Both Figure 6.3 and 6.4 indicate that increasing the 

amplitude of vibration results in a decrease in the muscle stiffness. Furthermore, it can 

be seen that the muscle dynamic stiffness can be reduced to approximately one third and 

the static stiffness to three fifths of the relaxed state.  
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Figure 6.3 Dynamic stiffness versus vibration frequencies, mean values ± 95% 
confidence interval (n = 11) 
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Figure 6.4 Static stiffness versus vibration frequencies, mean values ± 95% confidence 
interval (n = 11) 
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The dynamic stiffness describes the instantaneous effect of muscle stiffness during the 

episode of the oscillation. This dynamic behaviour reflects the active contractile 

mechanism, viscoelastic properties and inertia of tissue mass. However, the static 

stiffness does not deal with changes that occur in the episode of oscillation, and only 

represents the consequent effects of the episode. Therefore, the static stiffness is natural 

to reflect the net variation in muscle contractile mechanism after vibration has been 

applied. Figure 6.4 shows the static stiffness for oscillations, which indicates that the 

amplitude is the main factor in determining the stiffness change. While the static 

stiffness is also dependent on the frequency of vibration, this dependence is only at 

lower frequencies. The reason for these results is determined by the cross-bridge 

dynamic property, a hypothetical expansion which is discussed in following section.   

 

If a smooth muscle tissue is stimulated in isometric contraction, the myosin-actin 

cycling begins and the number of interactive cross-bridges increases. Meanwhile, the 

phosphorylation and the rate of ATP consumption increase abruptly [32 and 48]. The 

cross-bridges then approach a steady state level called the latch state. In the latch state, 

the rate of cross-bridge cycling has decreased to its smallest value, and the active force 

has increased to its maximum attainable value. This value of the active force is 

depended on the force-length characteristic of the muscle (see Figure 2.2 and 2.4). 

Comparing the active force development, the phosphorylation and rate of ATP 

consumption decrease and are maintained at a lower level in the latch state. When 

oscillating the length of the tissue, the latch state is broken and the myosin-actin cycling 

increases again. This oscillation does not affect the phosphorylation level. However, the 

attached dephosphorylation cross-bridge (latch bridge AM) and the attached 

phosphorylation cross-bride (AMp) numbers reduce, and the detached 

dephosphorylation cross-bridge (M) and the detached phosphorylation cross-bridge 
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(Mp) numbers increase [63 and 101] (see Figure 2.15). This means that the total 

number of cross-bridge attachments is decreasing. This decrease depends on the 

amplitude of the oscillation. The larger amplitude causes a greater decrease in cross-

bridge attachment.  At the same time, the rate of ATP consumption is increasing, which 

indicates that the cross-bridges are more active (increase in cross-bride cycling rate) in 

adapting to a new length. This myosin-actin cycling rate can be regarded as the recovery 

time, for which higher cycling rate results in a shorter recovery. This cycling rate is 

determined by the muscle shortening velocity and length. The amplitude of oscillation 

determines the number of disrupted cross-bridges, and if the frequency is less than the 

cycling rate, the disrupted cross-bridges receive some time to recover. However, if the 

frequency is beyond the myosin-actin cycling rate, these disrupted cross-bridges never 

recover. This is why, for given amplitudes, the force changes are almost the same at 

higher frequency ranges (above 25 Hz, see Figure 6.4). In this case, the reduction of 

stiffness (or force) is only determined by the amplitude of vibration. Mijailovich [63] 

used the four-state latch-bridge model integrated with Huxley’s sliding filament model 

[20] to simulate the smooth muscle tissue as subjected to an external oscillation within 

the frequency range of 0.01 to 10 Hz. The results show that the contracted force 

decreases with both increasing amplitude and frequency of oscillation, but the force 

decrease is diminished when the frequency is greater than 5 Hz. They explained that the 

AMp and AM cross-bridges have enough time to adapt to a new length at low 

frequencies but not at higher frequencies. Our data confirm their simulation.  

 

Figure 6.5 and 6.6 show the effect of the amplitude of external excitations on the 

dynamic and stiffness respectively. It is clearly indicated that the amplitude of vibration 

has significant influence on both static and dynamic stiffness. Both figures show a 

decrease in muscle stiffness with increasing amplitude of vibrations. They  also indicate 
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that this relationship is almost linear. For the dynamic stiffness (Figure 6.5), the 

gradient becomes steeper for higher frequencies. However, for the static stiffness 

(Figure 6.6), the result can be approximated by three different straight line segments 

(upper, middle and lower line) for 5, 15 and 25 Hz and above, respectively. As indicated 

by the lower line, there is insignificant effect for frequencies above 25 Hz. Also, it can 

be seen that the gradient of the lower line also is steeper than the other two lines. 
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Figure 6.5 Dynamic stiffness versus amplitude of vibration. 
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Figure 6.6 Static stiffness versus amplitude of vibration. 
 
 

6.2.2 Different Time Durations of Vibration 

 

Figure 6.2 shows four different time durations: 1 second (A), 2 seconds (B), 3 seconds 

(C) and 5 seconds (D); the frequency of vibrations was 35 Hz, and the amplitude was 

3.8% of the reference length. It is clearly indicated that the force changes are most 

significant in the first second. After this initial rapid decrease in force, the forces remain 

almost constant except for a duration of 5 seconds. Where, there is a slight reduction in 

the force after the initial rapid change.  

 

The dynamic stiffness (Kd) varies with different time durations for various frequencies 

and are shown in Figure 6.7 using data from Table 5.4. The static stiffness (Ks) varies 

with different time durations and frequencies and is shown in Figure 6.8 using data from 

Table 5.5.  Generally, both stiffness (excluding 5 Hz) seem to remain constant for 

vibration times of up to 3 seconds, showing only a slight decrease at 5 seconds. For the 
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latter, the stiffness decreases with increasing vibration times, but this decrease is at a 

diminishing rate. For dynamic stiffness calculation, the stiffness reductions are also 

dependent on the frequency. The reduction increases with increasing frequency (Figure 

6.7). However, for the static stiffness calculation, the reductions are almost the same for 

35 and 65 Hz, and the smaller reduction is for 5 Hz (Figure 6.8). These results are 

similar to the results given in Figure 6.3 and 6.4. 
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Figure 6.7 Dynamic stiffness versus durations of vibration, mean values ± 95% 
confidence interval (n = 6), the amplitude is 3.8% of Lr 
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Figure 6.8 Static stiffness versus durations of vibration, mean values ± 95% 
confidence interval (n = 6), the amplitude is 3.8% of Lr 

 

 

6.3 Oscillation Cycles Affect Cross-Bridges 

 

One oscillation cycle can be divided into two phases: a stretching phase to lengthen the 

muscle tissue and shortening phase to shorten the tissue. Figure 6.1 and 6.2 show that 

the exponential decline in peak force during a vibration episode only occurs in the 

stretching phase (top part). The peak forces in the shortening phase remain at a constant 

level (bottom part). This phenomenon may be explained on the basis of cross-bridge 

mechanisms which are discussed briefly below. 

 

During the stretching cycle oscillations, the individual cross-bridges detach when the 

stretching forces were larger than the cross-bridge attaching forces. These stretching 

forces also partly act against the elasticity of actin, myosin and cross-bridges, cell 

membranes and connective tissues. The population of attached cross-bridges therefore 
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became smaller. This lesser population of attached cross-bridges results in a reduction 

in force and stiffness. In the mean time, the detached cross-bridges reattach to the actin 

again, but this reattachment was not complete since the oscillation was continued. The 

lesser population of attached cross-bridges was evident in the next stretching cycle. 

Thus, it was less able to cause individual cross-bridges to become overstressed and 

fewer cross-bridges were broken during this cycle. The number of broken cross-bridges 

still increases in the following cycles. However, each subsequent cycle becomes less 

effective in breaking cross-bridges until a steady state is reached. As the result, the top 

peak forces display an exponential decline. Obviously, the rate of reattachment is 

inversely proportional to the frequency of oscillation in a lower range, but is not 

affected at high frequencies. The process time from the beginning to a reached steady 

state is also inversely related to the frequency of oscillation; lower frequencies lead to a 

longer process time. One second of process time is shown in Figure 6.2 for 35 Hz. This 

why in this work, the results show no effect at higher frequencies but a notable effect at 

lower frequencies (e.g. 5 Hz) for different time durations of vibration (see Figure 6.7 

and 6.8). Increasing the vibration amplitude at this point would lead to a higher rate of 

detachment and a lower steady-state force response (see Figure 6.4).  

 

Each shortening cycle is regarded as a quick release with a length step (see Figure 2.5), 

and the muscle force fell abruptly to very low levels (at times with negative values) 

during the shortening cycles. This low level force was determined by the amplitudes 

and frequencies of vibration. The amplitude is the extent of the shortening needed to 

determine the extent of the initial fall in the force. However, the frequency reflects the 

time of shortening needed to determine the inertial force of tissue mass and the rate of 

cross-bridge reattachment. Higher frequencies create greater inertial forces on the tissue, 

and the rate of cross-bridge reattachment is inversely proportional to the frequency of 
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oscillation. The negative peak forces indicated the very high inertia and lower rate of 

reattachment during the experiments. These cases mostly occurred at very high 

frequencies. Thus, for a given amplitude and frequency, the bottom peak forces in the 

shortening phase were almost at the same level.  

 

The fading memory model enhances the above explanation for the shortening phase. 

Figure 6.9 shows the results from Table 5.8 during which the muscle tissue initial force 

response varies for different shortening lengths and times (see section 4.3.2 in Chapter 

4). The muscle length is suddenly changed to a new fixed length and a part of the 

attached cross-bridges are disrupted. These disrupted cross-bridges immediately start to 

reattach to the actin. The rate of reattachment is dependent on the rate of cross-bridge 

cycling and time. In contrast, the rate of cross-bridge cycling is dependent on the 

biophysical event, such as the shortening velocity and length. Figure 6.9 could be 

explained in that under the same length shortening, the shortening time causes a higher 

shortening velocity. This higher shortening velocity results in a faster cross-bridge 

cycling rate which causes a higher rate of reattachment. However, short shortening time 

does not give a sufficient time for the cross-bridge reattachment. The inverse process is 

performed at a longer shortening time. Based on this, the rate of cross-bridge cycling 

and duration of time are contradictory. Figure 6.9 indicates that the time duration of 

shortening is a more important fact of in determining the force reduction rather than the 

rate of cross-bridge cycling. As a result, a short time duration causes a larger degree of 

force reduction.  
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Figure 6.9 Effects of the initial force response (T1/T0) to different shortening times (∆t) 
and length shortening ratios (∆λ). 

 
 

The cross-bridge contractile mechanism plays an important role in the oscillation cycles. 

However, non-cross-bridge mechanisms (connective tissues, cell membranes etc.) also 

play a role in regulating the effects of length oscillations on smooth muscle 

contractility. Mijailovich et al. [88] uniaxially oscillated lung tissue in the passive state 

and found that the elastance of fibrous networks slightly increases with an increasing 

frequency of oscillation and decreases with an increasing amplitude of oscillation. In 

contrast, the hysteresivity of fibrous networks decreases with an increasing frequency of 

oscillation and increases with an increasing amplitude of oscillation. Therefore, 

contractile and non-contractile components of smooth muscles also possess viscoelastic 

characteristics which may affect the mechanical response of airway smooth muscle to 

length oscillations. 
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6.4 Empirical Equation of the Stiffness for the Finite Element Model 

 

The governing equation of the FEM is derived in Chapter 4 (see equation (4.54)) and 

the stiffness [K(t, f)] can be experimentally determined from the experimental data. 

After summarizing section 6.2 and 6.3, the stiffness [K(t, f)] in equation (4.54) can be 

proposed as: 
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where f  is the frequency of oscillation, t is the time duration of oscillation, a is a 

constant (a = 1.8), [K] is original contracted stiffness (before vibration, see Table 5.1) 

and k1 and k2 are coefficients determined by: 
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We assume the coefficient k2 is linear with the amplitude of vibration (Aa, in percent) 

from the lower slope line in Figure 6.6. The first term on the right side of equation (6.1) 

represents the reduction in stiffness causing by the external oscillation. This term 

involves both frequency (f) and time (t) variables. The second term at the right side of 

equation (6.1) expresses the remaining stiffness caused by the vibration. Equation (6.1) 

reflects the muscle active stiffness as a function of frequency and duration time. 

Equation (6.1) also shows that the airway smooth muscle material is nonlinear, and such 

as closed form-solutions (e.g. beam model) were disregarded in this research. 
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As discussed in section 6.3, the cross-bridge mechanism has different working 

behaviours in the stretching and shortening phase. To match these different behaviours, 

two different methods for computation were used in the FEM model. For each 

stretching phase, the computation uses the same equation as equation (6.1). However, 

the equation used for each shortening phase is: 

 

[ ]{ } [ ]{ } { }FdKkdM =+ 2
&&           (6.3) 

 

 

Figure 6.10 FEM model simulates the longitudinal vibration with frequency 45 Hz and 
amplitude 3.8%. 

 
 

We assume that the muscle force falls abruptly to the minimum force (T1) during each 

shortening phase. Thus, the stiffness for each shortening phase can be approximately 

considered as the remaining stiffness, which is more closely related the real event. The 

result of the FEM model for a tissue oscillated at a frequency 45 Hz, amplitude 3.8% of 

the length and the time duration is 1 second is shown in Figure 6.10. Compared to 
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Figure 6.1, the FEM model provides a good simulation for airway smooth muscle tissue 

excited under external vibrations. 

 
 
6.5 Comparison of Experimental and Numerical Results for the 

Longitudinal Vibration 
 
 

Figure 6.11 show dynamic stiffness (Kd) for both experimental (top) and FEM (bottom) 

results, with various frequencies and amplitudes. The general tendencies of both results 

are same. As the frequency increases the dynamic stiffness continuously decreases. 

Clearly, the data for an amplitude of 1.2% and 3.8 % is more closed matched between 

the experiment and FEM compared to the amplitude of 6.0%. This may be attributed to 

two factors: the uncertainty and viscoelasticity of tissue may have more affect for larger 

amplitudes of oscillation. Figure 6.12 show static stiffness for both experimental (top) 

and FEM (bottom) results. Since the static stiffness only reflects the net variation in 

muscle contractile mechanism, both the experimental and FEM data is close. 
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Figure 6.11 Experimental (top) and FEM (bottom) dynamic stiffness versus 
frequencies for the longitudinal vibration. 
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Figure 6.12 Experimental (top) and FEM (bottom) static stiffness versus frequencies 
for the longitudinal vibration. 
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Figure 6.13 Stiffness from the fading memory model versus frequencies for the 
longitudinal vibration. 

 
 

The fading memory model can simulate the experiment of longitudinal vibration in this 

research (see section 4.3.3 in Chapter 4) and the results were given in Table 5.9 

(Chapter 5). Since the fading memory only considers the cross-bridge kinetics and does 

not involve the tissue inertia and viscoelasticity, the force response (T/T0) can be 

regarded as the static stiffness. The results of this model are shown in Figure 6.13. The 

general tendency of the results indicates that the stiffness decreases exponentially with 

increasing frequency until 25 Hz where almost no variation is obtained after that. Figure 

6.13 also shows that the stiffness decreases as the amplitude of vibration increase. These 

characteristics are identical to those of Figure 6.12. As mentioned before, the fading 

memory model can not quantitatively simulate biophysical events, but can still 

qualitatively interpret certain biophysical processes. 

 

 128



The comparison of different time durations between the experiments and FEM are 

shown in Figure 6.14 (dynamic stiffness) and 6.15 (static stiffness). Both figures 

indicate good agreement between the experimental and FEM data.  
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Figure 6.14 Experimental (top) and FEM (bottom) dynamic stiffness versus durations 
for the longitudinal vibration. 
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Figure 6.15 Experimental (top) and FEM (bottom) static stiffness versus durations for 

the longitudinal vibration. 
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6.6 Compare Experimental and FEM Results for the Transverse 
Vibration 

 
 

Typical results of experiments for the transverse vibration are shown in Figure 6.16. 

This figure shows the experimental results when the length change ratio of vibration 

was 4.8% of the reference length (Lr). The left hand side of the figure (A and C) shows 

that muscle tissue excited at 5 Hz, and the right hand side of the figure (B and D) shows 

that the muscle tissue excited at 25 Hz, for a duration of between 1 − 2 seconds.  From 

Figure 6.16, it is clearly indicated that the muscle tissue force after vibration (post force 

Fpost) was lower than the force before vibration (prior force Fprior). This force reduction 

indicates that the disrupted cross-bridge linkage during the vibration is the same as for 

the longitudinal vibration.  

 

The difference between the longitudinal and mechanical transverse vibration is that, for 

the former vibration, the frequency and amplitude exactly reflect the tissue length 

change frequency and ratio, and for the latter, the muscle tissue is lengthened twice 

during one frequency cycle (see Figure 3.9 in Chapter 3). This means that the tissue 

length change frequency was twice that of the vibration frequency. This phenomenon is 

shown in Figure 6.16A and 6.16C. Also, the frequency f in equation (6.1) is double the 

frequency of the oscillation in the FEM computation for the transverse vibration. 
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Figure 6.16 Mechanical transverse vibrations reduce force and stiffness during 
isometric contraction. Forces (A and B) and amplitudes of oscillation (C 
and D) were recorded duration isometric contraction. The smooth muscle 
tissue excited with 5 Hz is shown on the left hand side (A and C), the tissue 
excited with 25 Hz is shown on the right hand side (B and D). The length 
change ratio of both excitations was 4.8% of the reference length Lr. 

 
 

On the time scale, the decreasing force response to successive length cycles is seen to be 

an exponential decline in the peaks of oscillation. This decline could be fitted by a 

single exponential function, to give a similar result to the longitudinal vibration. It is 

believed that the disrupted actin-myosin linkage was also temporary disrupted during 

the experiments, and the lower force (Fpost) gradually returned to the original level force 

(Fprior) after the vibration was stopped. This is attributed to the fact that the 

concentration of stimulus was kept constant during the experiment. 
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Figure 6.17 Experimental dynamic stiffness versus vibration frequencies, mean values 
± 95% confidence interval (n = 6). 

 
 

The experimental dynamic stiffness (Kd) variations with frequency and length change 

ratio (in percentage of the reference length Lr) are shown in Figure 6.17. From the 

figure, the general tendency of the dynamic stiffness (Kd) is a pronounced decrease in 

stiffness with increasing frequency at less than 40 Hz. However, for frequencies above 

40 Hz, the stiffness increases with increasing frequency. This trend is slightly different 

from the longitudinal vibration (see Figure 6.3), where the stiffness decreases with 

increasing frequency for all measured frequencies. This may be attributed to the fact 

that the vibration in two different directions (longitudinal and transverse) causes 

different inertial responses, an explanation verified by the FEM model. The dynamic 

stiffness of FEM is shown Figure 6.18, and can be seen to match the experimental data 

quite well. This confirms that the two different oscillating directions (longitudinal and 

transverse) cause different inertial responses at different frequencies for the dynamic 

stiffness calculation. 
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Figure 6.18 FEM dynamic stiffness versus vibration frequencies. 

 

The experimental static stiffness variations with frequency and length change ratio (in 

percentage of the reference length Lr) are shown in Figure 6.19. The stiffness (Ks) 

almost maintains the same values for different frequencies except at a frequency of 5 

Hz; the latter has smaller reduction than the others. This is slightly different from the 

longitudinal vibration (see Figure 6.4), and may be attributed to the fact that the tissue is 

lengthened twice during one frequency cycle. The static stiffness of FEM for the 

transverse vibration is shown Figure 6.20. Both Figure 6.19 and 6.20 indicate that the 

experimental and FEM data are identical. 

 

 

 135



0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60

Vibration Frequency (Hz)

S
ta

tic
 S

tif
fn

es
s 

(K
s)

2.2%
3.5%
4.8%

 

Figure 6.19 Experimental static stiffness versus vibration frequencies, mean values ± 
95% confidence interval (n = 6). 

 
 

 

Figure 6.20 FEM static stiffness versus vibration frequencies. 
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For experiments of the transverse vibration, both the dynamic and static stiffness versus 

the tissue length change ratios are shown in Figure 6.21 (dynamic stiffness) and Figure 

6.22 (static stiffness). Both figures show a decrease in muscle stiffness with increasing 

tissue length change ratio, and this relationship is almost linear. These results are in a 

good agreement with the results of the longitudinal vibration (comparing Figure 6.21, 

6.5 and Figure 6.22, 6.6). 
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Figure 6.21 Experimental dynamic stiffness versus tissue length change ratio. 
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Figure 6.22 Experimental static stiffness versus tissue length change ratio. 

 

Figure 6.21 shows that the dynamic stiffness (Kd) change has a linear relation with an 

increasing gradient for higher frequencies. However, for the static stiffness (Ks) changes 

(Figure 6.22), the figure can be approximated with two straight lines of different slopes. 

The upper line displays the stiffness reduction at 5 Hz, while the lower line represents 

the stiffness reduction for all other frequencies, which shows that the stiffness changes 

only relate to the amplitude of vibration and not to the frequency. The gradient of the 

lower slope line is also steeper that that of the upper slope line. 

 

6.7 Hysteresivity and Cross-Bridge Cycling Rates 

 

The muscle force during the length oscillation at the longest and shortest lengths of the 

oscillation cycles were computed in terms of the length-force loops as shown in Figure 

6.23. The experimental data is from the transverse vibration with 5 Hz and length 

change ratio of 2.2%. The area formed by the loop is called the hysteresivity [28], and 

 138



has a different physical meaning with regards to viscoelastic tissues. Fredberg [23] 

defined the hysteresivity (η) to reflect the rate of turnover of cross-bridges or the cross-

bridge cycling rate. This cross-bridge cycling rate is attributable in part to a direct 

mechanical effect at the level of the cyclic interaction of myosin and actin [20]. Figure 

6.23 indicates that the rate of interaction of myosin-actin at the beginning of the cycle is 

greater than at the end of the cycle during the oscillation. This means that the cross-

bridge cycling rate is higher at the beginning of oscillation and then decreases with the 

oscillation. Fredberg [102] described hysteresivity (η) as follows: 

 

( lFA ∆∆== −  4sinφ  and   φtanη 1 )         (6.4) 

 

where A is the area of the loop, ∆F is the peak-to-peak force excursion, ∆l is the peak-

to-peak length excursion, and ϕ is the phase lag between the length and force. Here, 

equation (4.31) is used to calculate the phase-frequency relationship. This phase can be 

considered as the hysteresivity (η) of the muscle, and the results are shown in Figure 

6.24. 

 

 

Figure 6.23 Length-force loops during the oscillation for 5 Hz and 2.2% of Lr. 
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Generally, the tendency of the phase-frequency relationship is to decrease in phase with 

increasing frequency (negative values of phase mean that the phase is time lagging). 

The phase also increases with an increase in the amplitude of oscillation. This means 

that the hysteresivity increases with increasing amplitudes of oscillation. This result is 

identical to the results obtained by Shen [28] and Fredberg [23]. 

 

 

Figure 6.24 Phase-frequency relationship for the fading memory model.  

 

6.8 Constants Ai for the Fading Memory Model 

 

The fading memory model simulates a transient step change in length, and the results 

are shown in Figure 4.4. The force immediately after the step is called T1 (see Figure 

4.4), which is the minimum force that can be reached at t = 0. The equation used to 

calculate this minimum force is equation (4.21), which is repeated here for convenience: 
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The force T1 is regarded as the active force and is determined by the number of cross-

bridge attachments. The three dimensionless constants (Ai) in equation (6.5) are 

determined from experimental results. From equation (6.5), larger Ai values determine a 

lower minimum force (T1). 

 

As mentioned in section 4.3.2, any real transient step change takes a finite time duration 

and creates inertial forces. This inertial force is dependent on the finite time, and a short 

finite time creates a greater inertial force. However, long finite times can not be 

considered transient. Thus, the real value of T1 is very difficult to obtain from 

experiments. The experimental T1 value is combined with the inertial force and may be 

the viscoelastic force of the connective tissue. The second contributing factor to the 

inaccuracies in T1 is the smooth muscle uncertainties. The experimental results could be 

different even for the same muscle tissue at different testing times. Summarily, the 

values of these three constants (Ai) are determined qualitatively rather than 

quantitatively.  

 

6.9 Uncertainties of Airway Smooth Muscle Tissue 

 

An important characteristic of airway smooth muscle is the lack of structurally 

identifiable “sarcomere” (i.e. the actin and myosin filaments within the smooth muscle 

myofibrils are randomly distributed unlike its uniform distribution within skeletal and 

cardiac muscle fibres). On the other hand, the orientation of myofibrils in airway 
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smooth muscle determines the direction of contraction in the airways, which may 

contribute to the degree of airway narrowing and function. It has long been known that 

the arrangement of airway smooth muscle bundles varies according to location within 

the airway tree. In the trachea, smooth muscle is arranged transversely at right angles to 

the long axis of the airway. In the periphery of the lung, smooth muscle is said to be 

arranged in a helical fashion [103]. Ebina et al. [104] reported that airway smooth 

muscle bundles are arranged at an angle of 30° to the long axis of the bronchi by using 

three-dimensional reconstruction of intraparenchymal airways. Lei et al. [105], 

however, found that the orientation of myofibrils in airway smooth muscle varied in all 

airway generations from −20° to 20° relative to the transverse axis (Figure 6.25).  

 

 

Figure 6.25 Illustration of method used to calculate angle of orientation of airway 
smooth muscle (θ). Specimen was aligned with long axis of (ASM) airway 
vertical, and θ was measured relative to transverse axis [105]. 

 
 

During the experiments in this research, airway smooth muscle tissues were cut in two 

different directions: along the long axis; and along the transverse axis (see Figure 6.26). 

After the same stimulation, it was found that the long axial cutting approach produced 
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less or no generated force, but the transverse axial cutting approach did produce a 

generated force. This generated force, however, varied even if samples were taken from 

the same trachea and of the same size. This finding proves that smooth muscle is 

arranged transversely rather than longitudinally. Also this transverse arrangement is not 

uniform as the result is identical to Lei’s findings [105]. The above characteristics of 

airway smooth muscles determine that the capacities of generated force and shortening 

are not a unique function of tissue size and location. The experiments showed that the 

degree of stiffness reduction was proportionally related to the level of generated force. 

This finding could be explained by an increase in stiffness at high force levels of 

compliant structures in series with the contractile elements. This would cause a larger 

portion of the imposed length oscillations to be transmitted to the contractile machinery 

and thus result in a greater detachment of cross-bridges. 

 

Some authors [36, 38, 106-112] have reported that the uncertainties of smooth muscle 

depend on the histories of muscle loading, length and activation. These variations can 

occur over the course of days, hours, and even seconds. As a result, the length-force 

relationship of airway smooth muscle is highly unstable. In contrast, striated muscle 

possesses a structurally stable and well-defined contractile apparatus, which represents a 

stable length-force relationship that was elicited by the classical methods [113]. 

Although shifting of the length-force curve is known to occur in striated muscle, this 

occurs only under unphysiological conditions and takes long period of time (hours or 

days) [114 and 115]. The shifting of the length-force curve in smooth muscle can occur 

over a much shorter period of time (minutes or seconds) [37] (see Figure 6.27). This 

phenomenon occurred in the experiments, conducted in this work as the isometric force 

varied at different times within the same tissue and length. 
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Figure 6.26 Cutting the tissue along the long axis and transverse axis. 

 

 

Figure 6.27 Schematic illustrations of muscle adaptation and resulting shifts in both 
the active and passive length-force curve. This indicates the reference 
length for smooth muscle is very unstable [37]. 
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All these uncertainties could be attributed to the history of loading and the state of 

activation [36, 38, 106-112], as well as the orientation of myofibrils within the tissue 

[103-105], and stress time relaxation of the viscoelastic elements within the tissue [41 

and 116]. The effect of these uncertainties can affect the experimental results, which 

results in the confidence intervals overlapping in Figure 6.3 and 6.4. 

 

6.10 Other Conditions Affecting the Muscle Response 

 

The temperature is one of the factors that affects the muscle response. To avoid this 

factor influencing the experimental data, the temperature of the tissue bath was 

controlled at 37 °C during the experiments. The reduced forces in the smooth muscle 

during vibrations were temporary and gradually recovered after the vibration was 

stopped and the time rate of this recovery was found to be temperature dependent [25]. 

Ljung [25] reported that the time required to reach half the original force level after 

cessation of vibrations was approximately 3 seconds at 25 °C compared with 

approximately 30 seconds at 5 °C. Lower temperatures affect ionic fluxes in the airway 

smooth muscle membrane, mainly reducing the activity of the sodium (Na+) and 

potassium (K+) pumps and the membrane potential of airway smooth muscle cells [117-

120]. As a result, the lower temperatures reduce the ability of the smooth muscle to 

contract. 

 

Potassium (K+) is the other factor that influences a smooth muscle’s contraction ability, 

as evidenced by different researchers using different ingredients of saline solution (i.e. 

different concentrations of potassium chloride (KCl)). Some experiments [94 and 121] 

have proved that a saline solution with a high concentration of KCl can produce 

transient rises in cytoplasmic free calcium (Ca2+) concentration and therefore boost 
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muscle contracted force. The reason is that KCl plays a significant role in intracellular 

Ca2+ release in smooth muscle [83 and 122]. High concentrations of KCl increase the 

membrane potential of smooth muscle cells as a function of K+ depolarization, which 

triggers a greater release of Ca2+ into the cells to increase contraction. This K+ 

depolarization also affects the response of vibration. High KCl concentrations inhibited 

the effect of vibrations, as found by Ljung and Sivertsson [25]. However, this factor is 

not considered in this research since the concentration of the saline solution was 

constant. 

 

During the experiments, some muscle tissue showed a significant reduction in the force, 

especially for a 5 second duration at 65 Hz. After excitation, these tissues did not fully 

recover to the original force level (F0 ± 10%), and were considered to be degraded. 

These data was then excluded from the results. The findings in the experiments also 

showed that the time rate of recovery for 5 seconds of excitation was more than other 

excitation times (sometimes > 30 seconds). The fatigue level of tissue is dependent on 

the duration, frequency and amplitude of vibrations and this is why the peak force 

slightly continues to decline after the initial rapid change for 5 seconds of excitation 

(Figure 6.2). There is also a slightly greater reduction in the stiffness for 5 seconds of 

excitation in Figure 6.7 and 6.8. The reason for this is that when in vitro muscle tissue is 

isolated from its matrix, its metabolic environment is different from the living organism. 

This isolated smooth muscle tissue is very fragile in the artificial environment. From 

this point of view, it does not necessarily mean that greater a reduction in stiffness (or 

force) is caused by the prolonged vibration time. The greater reduction in stiffness (or 

force) could be caused by the declined tissue reactivity. In this in vitro test, we can only 

conclude that the active force is temporarily reduced during the vibration. Whether a 

specific period of vibration can permanently sustain a relaxation of contracted smooth 
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muscle? Can not be answered by this work and requires in vitro testing. This is left as a 

future investigation. 
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Chapter 7 

Conclusions & Future Applications 

 

7.1 Conclusions  

 

The results of this research are considered as the foundation for future airway smooth 

muscle research. These results could contribute to the study of relieving asthma by 

alternative means other than the traditional medical medications. The experiments in 

this work have been designed to investigate the responses of smooth muscle under 

external vibration and the developed FEM model can simulate these external 

excitations. The fading memory model also qualitatively describes the cross-bridge 

kinetics. The results obtained from this work leads to the following conclusions: 

 

1. The stiffness of active airway smooth muscle can be physically reduced using 

external vibrations.  

 
2. The two proposed stiffness parameters are believed to better describe the 

behaviour of tissues due to external excitations. The dynamic stiffness reflects the 

instantaneous effect of various dynamic components such as the viscoelastic and 

inertia forces, while the static stiffness reflects the effects of the vibration. 
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3. It is clearly indicated that the amplitude of oscillation is the main contributor to 

the stiffness reductions. 

 
4. The effects of longitudinal and transverse vibration are same for the static 

stiffness and only slightly different for the dynamic stiffness. This may be 

attributed to the fact that the vibration in two different directions (longitudinal and 

transverse) causes different inertial responses for the dynamic stiffness.  

 
5. The frequency of vibration affects the cross-bridge cycling rate, which is reflected 

at frequencies lower than 25 Hz. This effect is present in the static stiffness. 

 

7.2 Future Applications 

 

Some researchers report that the pressure waves can easily conduct into the lung system 

and provide the system resonant response [123-126]. Other researchers have suggested 

that pressure waves can improve lung function [127-130]. Airway smooth muscle 

tissues could be excited using acoustic (sound) waves, which avoids any contact with 

the excitation point and reflects a possible type of in vivo excitation. In principle, direct 

contact excitation to smooth muscle is impossible to apply in vivo. However, pressure 

wave oscillation is a feasible and more acceptable method, and for this reason it could 

be hypothesized that acoustic oscillation may produce the same result as mechanical 

vibrations.  

 

A possible acoustic vibration setup proposed for future application is shown in Figure 

7.1. An acoustic pressure chamber is constructed which consists of a speaker, a Perspex 

tube and a base. A tissue bath can be set in the chamber. The speaker and Perspex tube 

are then joined to become a top part, which can be easily removed for muscle tissue 
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loading. The speaker can generate acoustic waves, which are controlled by a computer. 

To maintain a certain pressure in the chamber, there is a rubber sealing ring between the 

top part and the base, which is coated silicon sealant. All of the transducer cables and 

the aerating tube can be inserted into the base of the apparatus through a rubber wire 

seal. A pressure transducer sensor can be placed in the chamber to measure the acoustic 

pressure. A strip of smooth muscle could then be mounted on two hooks, one of which 

is fixed, while the other is connected to a force transducer. The length adjuster can be 

set on the force transducer side for the tissue reference length adjustment. This setup 

could be used to investigate the response of airway smooth muscle tissue under acoustic 

wave excitation.  

 

To provide more accurate FEM results, the properties of muscle will be extended to 

viscoelasticity in future. The FEM can also be developed to simulate a circular tube to 

model the contracted airway behaviours under external vibrations.  

 

 
 

Figure 7.1 A proposal of acoustic vibration setup for future application. 
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