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Abstract

Optimization of large-scale industrial systems requires not only state-of-the-art nu-

merical algorithms, but also accurate tailor-made underlying models to ensure the

solution is both sensible and useful. The combination of setting up a rigorous op-

timization solver together with building a high-fidelity model can cause the typical

industrial user to become overwhelmed with formulating one or both of these steps,

resulting in poor performance and/or a suboptimal solution. This work addresses the

problem by developing a high-level framework for modelling and solving industrially

significant optimization problems. The framework allows the user to concentrate on

their domain specialization, while the framework automatically tailors the optimiza-

tion problem by exploiting structural features within the user’s model. To illustrate

the benefit of this approach, two widely varying industrial optimization problems

are investigated: Online optimization within an embedded predictive controller and

large-scale steam utility system operational optimization.

Within the first chosen example, an embedded model predictive controller, an

optimal control problem must be solved at each sample in order to calculate the next

control move(s). In a traditional linear predictive controller, this requires solving

online a quadratic programming problem which, even for modest problems with rel-

atively short prediction horizons, can involve tens of decision variables and hundreds

of linear constraints. On an embedded platform, such as a microcontroller, solving a

problem of this size online requires substantial computational power together with

a large amount of dynamic memory, both of which are highly constrained on typical

hardware. To overcome the hurdle, this work introduces the jMPC Toolbox, a high-

level MATLAB framework for describing, tuning, simulating and generating em-

bedded predictive controllers. Furthermore, the quad wright and quad mehrotra

interior-point quadratic programming solvers have been developed, which are specif-

ically tailored to solve modestly-sized online optimization problems within a model

predictive controller on embedded hardware. Together, these two contributions al-

low an embedded predictive controller with an online optimization solver capable of

over 10kHz sampling rates to be built, verified and deployed to modest embedded

hardware in less than ten seconds. A case study demonstrates the effectiveness of the
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approach applied to an unstable, nonlinear laboratory-scale helicopter, while bench-

marks against literature show for the problems of interest that the quad mehrotra

solver is the best in class.

The second chosen example, steam utility systems, are designed to supply the

heating, mechanical and electrical demands of an on-site process system, such as an

oil refinery, paper mill, chemical process plant or a variety of other energy intensive

industries. Steam is used as the working fluid within the utility system, and is

generated by boilers or recovered from waste heat, which is then used to supply

the heating requirements of the process, or used to drive steam turbines to supply

mechanical and electrical loads. In addition, gas turbines provide modern utility

systems with co-generation potential, allowing the system to export excess electricity

if economically viable. However, due to the discrete nature of a utility system where

equipment can be switched in and out of service, steam flows redistributed, and

where zero-flow conditions are normal, optimizing the operation of a utility system

requires a rigorous model based on thermodynamics and state-of-the-art numerical

algorithms. To address this problem, a second MATLAB framework, the OPTI

Toolbox, has been developed which provides a suite of state-of-the-art open-source

optimization algorithms suitable for solving the discrete optimization problems that

arise from operational optimization. Furthermore, to tailor the utility system model

to the optimizer, a symbolic mixed integer nonlinear modelling strategy is developed

to approximate a rigorous simulator model, combining regressions from literature,

industrial experience and process specific knowledge, resulting in an efficient model

for optimization. Multiple case studies are presented to demonstrate the efficiency of

the approach, including the operational optimization of an industrial petrochemical

utility system. Each of the case studies encompass a range of operating conditions

and superstructures, noting the framework correctly solves for the global optimum

for all problems in less than 5 seconds, matches the solution from an equivalent

rigorous thermodynamic model and provides industrially significant CAPEX-free

economic savings.

While the jMPC and OPTI Toolboxes target substantially different ends of the

industrial optimization spectrum in terms of physical size and dynamic response, this

work shows that the common approach of abstracting the optimization problem via

a higher-level framework, together with exploiting problem specific characteristics,

allows high-speed and robust solutions to be obtained to industrially significant

problems. Moreover, in both examples the complexities of the model and the inter-

face to the optimizer are hidden, allowing the user to focus directly on the problem

at hand, yet still obtain best-in-class performance.
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Nomenclature

This work considers two quite varied industrial problems and therefore domain spe-

cific nomenclature is adopted for each problem.

Table 1: Model predictive control nomenclature (Chapters 3-4)

Symbol Description
x,x State Vector
∆x State Increment Vector
u,u Control Input(s)
∆u,∆u Control Input Increment(s)
y,y Plant Output(s)
y∗,y∗ Reference/Setpoint(s)
A,B,C,D State Space Model Matrices
Np Prediction Horizon Length (samples)
Nc Control Horizon Length (samples)
k Current sample/iteration
Φ,F Prediction Matrices
H Quadratic Program Hessian Matrix
f Quadratic Program Gradient Vector
M Linear Inequality Constraint Matrix
b Linear Inequality Constraint Right Hand Side
lb,ub Rectangular Bound Vectors
Q Setpoint Deviation Weighting Matrix
R Input Increment Weighting Matrix
J Objective Function Result
z Primal Variable Vector
λ, l,u Dual Variable Vector
t, g, s Slack Variable Vector
α Step-Size Scaling Factor
µ Complementarity Gap
σ Centering Parameter
φ Feasibility Parameter
ǫr, ǫc Convergence Tolerances
r1 Dual Residual Vector
r2 Primal Residual Vector
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In addition to the above symbols, the model predictive control chapters will use

the following notation for mathematical equations.

Table 2: Model predictive control notation.

Notation Description
X Matrix (bold and capitalized)
x Column vector (bold, lower case)
x Scalar (italic, lower case)

For the steam utility modelling and optimization chapters, the nomenclature is

modified to match that from literature.

Table 3: Steam utility system modelling nomenclature (Chapters 5-7)

Symbol Property Unit
Q Heat Duty kW
W Mechanical Work/Electrical Power kW
M Mass Flow Rate 1 kg/s
H Specific Enthalpy 1 kJ/kg
S Specific Entropy 1 kJ/(kg K)
Cp Heat Capacity at Constant Pressure 1 kJ/(kg K)
T Temperature ◦C
P Pressure bar
X Quality -
η Efficiency -
F Fraction -
R Gas Constant (8.3145) J/(mol K)
Z Compressibility Factor -
C Cost $
b Binary Variable
α, β, γ Model Specific Regression Parameters

1 A mass basis (kg) is used for water and steam thermodynamic calculations,
while a molar basis (kmol) is used for fuel-gas thermodynamic calculations.

xxvi



Chapter 1

Introduction

1.1 Optimization in Industrial Applications

Mathematical optimization, also known as Operations Research, is becoming in-

creasingly ubiquitous in today’s world of narrow commercial margins and competi-

tive markets. Whether applied by economists to portfolio optimization, engineers to

power flow or managers to employee scheduling, the focus remains the same: Min-

imize cost or risk while maximizing efficiency or performance, given the resources

currently available and specified operational constraints. When applied to real-world

practical optimizations problems, the term industrial optimization is used, however

this term also carries a certain amount of baggage. This is because real-world prob-

lems are often large and unwieldy due to the complex physical relationships between

elements within the system. It is for this reason that optimization of real systems

is more difficult than textbook mathematical problems, and as such requires state-

of-the-art optimization solvers tailored for the particular problem to obtain robust

solutions within an acceptable time frame.

In our experience within an academic-based industrial consulting group, (I2C2,

i2c2.aut.ac.nz), we see a strong reluctance by industrial engineers to use opti-

mization on a regular and routine basis. The interesting observation is that this

reluctance still persists even when the client is competent using the basics of op-

timization, and is confident with the underlying process models. We believe that

the expense of robust high-quality optimization code, coupled with the difficulty

in setting up the problem (GAMS (General Algebraic Modeling System)/AMPL

(A Mathematical Programming Language) etc notwithstanding) explains much of

this reluctance. What has changed recently in our dealings with industrial clients,

primarily in the process, oil and gas and utility industries, is their comfort and

familiarity with software tools, so that they are now prepared to rely on software
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such as MATLAB. While there could well be more sophisticated prototyping envi-

ronments from a computer science perspective (such as Python or Ruby), or even

environments more cost effective (such as Scilab or Octave), or environments that

have garnered domain specific loyalty (such as R amongst statisticians), nothing

approaches the market presence or commercial support of MATLAB for such a wide

diverse group comprised of scientists and engineers.

We regularly talk to competent engineers and technologists whose primary in-

terest and expertise is their own domain. They are not optimization specialists, nor

particularly comfortable in sophisticated coding environments, but they do want to

solve their particular optimization problem, and typically in a hurry. We term this

group the ‘industrial MATLAB user’, who are using MATLAB on a Windows PC

to solve industrial modelling and optimization problems. We recognised that this

group was substantially under-utilizing the enormous potential in the open-source

optimization community, which for the industrial user was either too hard to com-

pile, too hard to use, or too time consuming to set it up. We also realised that a

framework was required that could provide the ‘glue’ between the problem in MAT-

LAB and the optimization solver, automatically converting the high-level problem

into a low-level format suitable for the solver algorithm to understand, and also

exploiting structure in the problem to speed up solving it.

To illustrate the optimization framework developed, this work investigates two

apparently distinct industrial optimization problems: Firstly the solving of a quadratic

program within a high-speed embedded controller for dynamic systems, and sec-

ondly, the operational optimization of large combined heat and power systems.

These two areas are deliberately chosen to emphasize physical differences, such

as process speed and plant size, and they therefore represent a large spectrum of

problems that could be encountered in an industrial environment. However we say

“apparently distinct” because as will be shown in this work, they are actually quite

similar when viewed from an optimization point of view. For each problem, this

work will aim to exploit both the structure of the problem, as well as how to formu-

late the optimization problem, which when a solver is tailored to solve, can result

in substantial performance improvements.

A contribution of this work is to provide a framework within which the op-

timization problem can be described, using a high level description such as that

within MATLAB, while still exploiting the structure of the problem. This allows

the user to focus on modelling their particular system, without worrying about the

implementation details within a particular optimization solver. To achieve this aim

requires the development of a framework which can pre-process an optimization

problem into a form suitable for the targeted solver, as well as applying problem
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specific simplifications such as the identification of redundant expressions, automatic

derivative generation and generating an efficient formulation. Using this framework,

problems from physical size extremes of the industrial optimization spectrum can

be described using a common format, then solved using vastly differing techniques

which are tailored for each particular problem.

In the case of the predictive control algorithm, this work focuses on the quadratic

program solver, simultaneously accelerating the solution speed of the algorithm,

while reducing the memory requirement. To achieve this, we must bound the prob-

lems of interest with respect to size, density, and structure, as well as investigate

the numerical conditioning of the problem matrices. This thesis aims to develop

both algorithmic modifications to the established primal-dual solver, as well as de-

veloping problem conditioning and warm-starting heuristics which will enable the

algorithm to be deployed on modest embedded hardware. Furthermore, in order to

keep the implementation as high-level as possible, an auto-code generator will take

a high level control description and generate a tailored solver based on the problem

properties, which is suitable for compilation with any standard ANSI C compiler.

With respect to the second problem, this work focuses on both developing a

succinct symbolic modelling language for describing industrial utility systems, as

well as a suite of optimizer-ready part-load models suitable for predicting off-design

performance, based on literature regressions and rigorous thermodynamic models.

The modelling language will allow algebraic models to be described natively within

MATLAB, allowing for problem identification, simplification and compilation into

a format tailored to the selected optimizer, thereby increasing the performance and

robustness of the optimizer. This technique again combines a high-level problem

description with a common intermediate format which is then tailored depending

on the problem entered and the solver chosen.

In both cases substantial performance improvements are observed over standard

generic optimization routines, with no low-level modifications required by the user.

This approach ‘lowers-the-bar’ to the design and implementation of an optimization

model, and allows non-optimization specialists access to obtaining economically sig-

nificant results for real-world optimization problems [68].

1.2 The Spectrum of Industrial Optimization

As stated by Patrick Bangert in his bookOptimization for Industrial Problems, [243],

“Industrial optimization lies on the crossroads between mathematics, computer sci-

ence, engineering and management”. This renders the subject multi-disciplinary,

3



requiring knowledge of a range of specialist areas to be able to generate an opti-

mization problem that not only encapsulates the key problem properties but also

when solved, provides a practically feasible solution and not just a mathematically

feasible one. Moreover, the design and setup of the optimization problem must be

able to be completed in a succinct manner, without obtuse constructs or exhaustive

manual data entry, to ensure the problem is maintained to current operating con-

ditions. Furthermore, for an optimized solution to be meaningful, it must also be

relevant, and therefore capable of being solved within an acceptable time frame on

hardware common in an industrial plant.

For this work we will investigate two significant industrial optimization problems,

which as stated in the previous section, encompass a wide spectrum of problems that

can be expected within a typical industrial environment.

1.2.1 Embedded Model Predictive Control

Model Predictive Control, or MPC, is an advanced control strategy suitable for

constrained control of multivariable systems [105, 223, 271]. MPC is an acronym

used to describe several similar control strategies such as Receding Horizon Con-

trol, Generalized Predictive Control (GPC) [75], the related Predictive Functional

Control (PFC) and Identification and Command (IDCOM) [276, 275], and the orig-

inal Dynamic Matrix Control (DMC), developed by Shell Oil engineers Cutler and

Ramakar [74].

Given that the MPC algorithm can not only handle multivariable systems natu-

rally, but also that operating constraints can be placed on inputs, outputs or states,

the MPC algorithm has proved to be highly successful in industrial applications

across the world, with more than 4600 implementations reported in the early survey

by Qin and Badgewell [263]. As described by this paper, MPC was originally de-

veloped to fulfill the specialized control needs of petroleum refineries, however this

technology is now found in other areas such as chemical, food processing and has

recently moved into the automotive and aerospace industries. This success places

MPC as one of the most successful advanced control algorithms in common use

today [9, 334], however this success rests almost exclusively on a robust internal

optimization solver.

In all traditional MPC algorithms (which excludes explicit MPC, described later

in Section 2.2.2), an optimization problem must be solved online, at each sample, in

order to calculate the next control move(s). This optimization problem is a result

of the control move formulation (see Chapter 3) as well as the system constraints

included in the controller, and due to both this constrained property and the problem
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size, must be solved numerically. This presents a significant challenge for the MPC

controller: It must solve the optimization problem within the sample time allowed

in order to apply the next control move(s) in time, and therefore the sample rate of

the controller is often limited by the speed of solving the optimization problem. It is

for this reason that MPC has been typically applied to petrochemical refineries and

chemical plants, where the slower time constants of the systems to control permit

slower sample rates, giving the optimizer time to converge.

The upside to this extra computational load is that the MPC controller is op-

timal, and, given the inherent prediction within its formulation, can out-perform

most other industrial controllers in terms of minimizing reference deviation, con-

straint violation, and overall variability. This excellent control performance has not

gone unnoticed, with multiple other industrial and commercial users recently inves-

tigating the applicability of the algorithm to high-speed processes such as unmanned

vehicles, medical device control, and other small agile systems, as reviewed later in

Section 2.2.4.1. The challenge of their applications has been two-fold: Firstly a num-

ber of these application areas require low-power, small and lightweight electronics,

excluding the computing power of the desktop PC, and secondly, as the physical

size of system to control decreases, sampling rates often have to increase to match

faster time constants and thus maintain control. The result is that we are applying

memory and computationally intensive MPC to small high-speed systems, which

is then implemented on embedded hardware limited by available power, size and

weight.

Existing research into this area of ‘embedded MPC’ has primarily focused on

two distinct areas. The first area retains the online optimization step, but uses ei-

ther advanced hardware or novel algorithms to accelerate the optimization solver,

and thus the achievable sampling rate. Advanced hardware implementations include

embedded MPC on Field Programmable Gate Arrays (FPGAs) which allow parts

of the solver to be parallelized, such as common mathematical operations [186]. Al-

ternative hardware implementations include using Digital Signal Processors (DSPs)

targeted with an assembler level implementation to fully exploit the hardware re-

sources available [331]. From an algorithm perspective, recent work has explored

existing mathematical algorithms applied to MPC, such as the fast-gradient method

[348], as well as exploring opportunities within existing MPC solvers [338].

The second area of existing research aims to reduce or remove the online op-

timization step altogether by applying a parametric step which precalculates all

possible control moves [8], known as explicit MPC. Each of these areas is described

in more detail later in Chapter 2, including a review of current literature.

What has been overlooked we believe, is that an efficient, hand-coded imple-
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mentation in C of an online quadratic programming solver tailored for both MPC

problems, and traditional embedded hardware (such as microcontrollers) can be

just as effective, if not more practical, for real implementations of MPC on embed-

ded hardware. In this way the optimization solver is not limited to one hardware

target (assembler is target specific), or specialty hardware (FPGAs are inherently

difficult to program, as described in Section A.4.1); nor is it limited to a highly

memory intensive explicit formulation, but remains suitably general for practical

implementation, whilst at the same time achieving sampling rates exceeding 10kHz

on modest embedded hardware. In order to bound the problems of interest for this

work, we consider problems with an upper limit of 40 decision variables and 320

constraints, with the nominal problem size consisting of 20 decision variables and

160 constraints. This problem size encompasses a significant proportion of the pos-

sible embedded control problems in literature, as reviewed in Section 2.2.4, as well

as opens the door for larger control problems with more inputs or outputs, or longer

horizons for increased stability.

This targeted application of industrial optimization will cover the small, high-

speed section of the spectrum, and will include the development of a new imple-

mentation of two quadratic programming solvers, together with a framework which

can deploy high-speed, memory efficient MPC controllers to a range of common

embedded hardware.

1.2.2 Large-Scale Energy Optimization

In contrast to the small high-speed controllers from the last section, the second in-

vestigation into industrial optimization will target the opposite end of the spectrum,

physically large and slow-reacting energy systems. For this work the energy system

is defined as a plant designed to supply the heating, mechanical and electrical de-

mands of an on-site process plant, also known as a utility system. These systems use

steam as the working fluid which is generated using boilers or heat recovery steam

generators, then used to drive steam turbines (whether back pressure or condensing)

to supply mechanical or electrical loads, or simply the steam itself is used to supply

heat to process users. In addition, gas turbines are often used for on-site cogenera-

tion, also known as Combined Heat and Power (CHP) systems, allowing the utility

system the ability to export electricity when economically sensible to generate more

than the site requirement. A simple hypothetical steam utility system is shown in

Figure 1.1, indicating the major pieces of equipment present in a typical system.

Note the utility system considered in this work is nonlinear, discrete (contains in-

teger/binary variables) and algebraic (i.e. steady-state optimization only) and thus

represents a very different problem from the previous section.
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Figure 1.1: An example steam utility system with steam and water material streams
shown, along with common utility equipment such as boilers, turbines, headers, users
and condensate recovery

The operation of a utility system represents the largest managed operating cost

for the hydrocarbon industry [92], yet most interesting, from both a control and op-

erational point of view, it typically takes a back seat to production [89]. Historically,

with flat energy prices and constant production policies, many sites probably found a

reasonable operating point eventually, even if only by trial and error. However, with

the development of the smart grid and subsequent possibilities for online electricity

trading, and the move to flexible production policies means that the efficient use of

energy is now crucial, complex, multi-faceted [3] and with substantial potential for

operational savings [90, 80].

Given the opportunities to export electricity, together with varying process de-

mands, the optimal operation of a utility system is a non-intuitive decision of which

equipment to run, how to generate the required steam, how much power to gener-

ate, and how to meet the required energy demands. Most industrial utility systems

are built with electrical back-ups of key mechanical drivers (i.e. steam turbines),

therefore exploiting this redundancy provides extra degrees of freedom to optimize

the operational expenditure (OPEX), and thus reduce operating costs. However de-

ciding what equipment to run introduces binary variables, which when coupled with

the discrete nature of a utility system and nonlinear (and non-convex) energy bal-

ances, results in a Mixed Integer Nonlinear Optimization Program (MINLP). This

problem is non-deterministically polynomial (NP-complete or NP-hard, depending

on the problem), meaning there is no known algorithm that can deterministically

solve it in polynomial time [52].

With recent developments in both convex MINLP solvers (convex in the sense

the relaxed nonlinear program is convex) such as BONMIN [42], as well as non-
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convex deterministically global MINLP solvers, such as BARON [304], it is now

reasonable to expect to solve the utility system operational optimization problem

not only quickly, but also robustly. However building a utility system model within

a process simulator (as done in [71] or described in [89]) and wrapping it in one of

these optimizers is either unlikely to work, or as shown in Section 6.3.2, is slow and

typically converges to a suboptimal point. Therefore a more advanced formulation is

required in order to leverage the structure of the problem, and enable the optimizer

to take advantage of mathematical characteristics present in the model.

A common utility system formulation in literature is the reduction of the opti-

mization problem to a set of linear constraints with a linear objective which is then

solved as a mixed integer linear program [5, 134, 149, 197, 213]. While existing lit-

erature has predominantly focused on the synthesis optimization problem, whereby

the complete design of a utility system is being considered, those mentioned all

linearize the optimization problem by breaking energy balances across the system,

resulting in fixed header temperatures. When considering operational optimization

where the available OPEX savings are limited (typically 1 to 5% [92]), this inac-

curacy will lead to either an unrealistic savings or an unimplementable operating

point, and possibly a damaging condition known as ‘steam hammer’ [311]. Therefore

to describe modelling a utility system using linear expressions alone is not adequate

for the operational optimization task.

To enable optimization of these large industrial systems, a formulation which

retains the nonlinearities is required. It must however also describe the model in a

way the optimizer can exploit, for example via analytical derivatives. Furthermore,

by identifying features such as linear, bilinear and quadratic expressions, the prob-

lem can be reduced to a form which a tailored optimizer (e.g. quadratic program or

second-order cone solver) can solve much more efficiently than via a general nonlin-

ear optimizer. To achieve this aim, this work develops two new tools for describing

and solving optimization problems: SymBuilder for generating algebraic formula-

tions of general nonlinear models, and OPTI, which provides a suite of open-source

optimization solvers for solving the resulting problem. These two tools enable large

industrial utility systems to be modelled, validated and optimized within a few

seconds, and provide economically significant results.
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1.3 Research Questions and The Thesis Contri-

bution

This work aims to both lower the barrier for the application of optimization to

general industrial problems, and improve the results achievable by tailoring the

optimization solvers to exploit structure within the problems. Two industrial op-

timization problems that superficially look very different are used to show that

common tools and methods can be used to improve the performance of solving both

problems, regardless of differences in scale or system speed. To complete this aim,

the following questions are posed, then critiqued later in Chapter 8:

1. Can we fabricate a linear embedded MPC controller that costs less than

US$200, is capable of sampling rates exceeding 5kHz, fits entirely within on-

chip memory and robustly solves the optimal control moves in reduced preci-

sion hardware?

2. What is a suitable high-level framework that can describe, tune and simu-

late a model predictive controller, and can also generate a hand-optimized,

high-speed ANSI C controller suitable for embedding into a range of low-cost

hardware?

3. By using a rapid-prototyping language such as MATLAB, what is a framework

design that can simplify the structure of a system of equations and generate

an efficient, optimizer-friendly representation? In addition, what is the de-

sign of this representation so that a common problem format can be defined,

regardless of the optimization solver being used?

4. Can we formulate an operational steam utility model that is thermodynam-

ically rigorous, yet still remain tailored for an optimization solver, so as to

robustly solve industrially significant problems in less than a second, and re-

turn physically realisable results?

We believe the framework-based approach to be a significant contribution of

this work, whereby a user of our framework is able to complete an entire design,

beginning to end, within a single environment. This framework concept allows a

common methodology, a common way of thinking and a common set of tools and

functions, allowing the user to focus on the design, rather than the intricacies of the

optimization/control problem. The significance of this initiative is demonstrated by

the suite of new tools developed, one of which is now used internationally by several

thousand researchers and industrialists. The most successful is the OPTI Toolbox

[64], a MATLAB toolbox collecting together a library of open source optimization
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solvers, as described in Section 6.2. The toolbox provides a common problem defi-

nition object which allows linear, quadratic or nonlinear problems, including mixed

integer variants, to be described within the same object and then solved with any

compatible optimization solver. The toolbox automatically handles all low-level

tasks such as identifying the problem entered, conversions required to match the

specified solver, approximating derivatives and options tuning, as well as the final

collection and processing of results.

In addition, the SymBuilder algebraic framework is supplied as part of the OPTI

Toolbox, which extends the symbolic capabilities of MATLAB to succinctly model

optimization problems, including generation of full analytical first and second deriva-

tives, sparsity patterns and structure identification. Furthermore, two interfaces

have been developed to deterministic global optimization solvers, providing MAT-

LAB users with the first opportunity to prove global optimality to general nonlin-

ear problems. Together, these tools are in use by over 4000 registered individual

users worldwide, which demonstrates that providing this high-level framework within

MATLAB is of significance to the operations research community.

A further package developed was the JSteam modelling library [62], as described

in Section 5.3. The library contains two robust thermodynamic engines, together

with a suite of utility system unit operation models. JSteam is used to construct util-

ity system unit operation model approximations, by providing a rigorous thermody-

namic platform from which regressed models can be generated for later optimization.

Together with the Excel interface, JSteam has been successfully commercialized by a

company spawned from this research, and is now sold to companies and universities

around the world, further reinforcing the significance of this work.

The final package written is the jMPC Toolbox [63], described in Section 3.5.2,

which encompasses the solvers and algorithms developed within model predictive

control research within this work. Predominantly open source, the toolbox has been

downloaded by over 250 users internationally and is used for teaching at a number

of leading universities. The quadratic programming solvers developed are currently

the best in class for the problems they are designed to solve, and the helicopter case

study (Section 4.6) has been profiled by Quanser, the manufacturer of the laboratory

equipment used [266].

Together, these three software packages encapsulate the academic contributions

of this work. This includes the formulation of a high-speed quadratic programming

solver for embedded MPC and an extension to existing literature utility system

unit operation models. In addition, a framework for describing symbolic optimiza-

tion problems within MATLAB has been developed, which automatically exploits

structure when solving and allows generation of global optimization solver algebraic

10



descriptions. Finally a modelling methodology for exploiting the structure present

in utility system models has been described, allowing high-speed optimization of

industrially significant systems. In all contributions of this work, metrics such as

cost, sampling rate, problem size and solution speed are reported to give the reader

a sense of scale, as well as provide a benchmark for future comparisons. We also

believe these metrics are important to bound the scope of this research.

1.4 Thesis Outline

This chapter has introduced the two industrial optimization problems that will be

considered within this work: The development of a quadratic programming solver

suitable for high-speed embedded model predictive control, and secondly the mixed

integer modelling and optimization of steam utility systems. The reasons why these

areas are significant has been explained, and the research questions detailed.

Chapter 2 reviews existing studies into both model predictive control and utility

system optimization, as well as general industrial optimization. Alternate algorithms

and formulations are discussed, reasons are given as to why these are not applicable

to this work, and gaps identified which this work aims to fill.

Chapter 3 introduces the model predictive algorithm and the formulation of the

quadratic program. A path-following primal-dual quadratic programming solver

is developed, including algorithmic modifications to improve the efficiency of the

algorithm for solving problems that result from the MPC control law.

Chapter 4 describes the embedded MPC implementation, and includes the devel-

opment of an auto-coding framework used for generating a highly efficient quadratic

programming solver and MPC controller. Two case studies are presented to vali-

date the algorithms, the first a processor in the loop implementation and the second

embedded MPC control of a laboratory helicopter.

Chapter 5 develops a library of thermodynamic routines together with a suite of

utility system unit operations models suitable for rigorously describing all common

equipment. Regressions from literature are adapted and incorporated to formulate

a set of optimization ready part-load unit operation models.

Chapter 6 introduces the OPTI Toolbox and SymBuilder framework for mod-

elling utility systems. An optimization methodology is described, and several case

studies from both literature and industry are presented.

Chapter 7 describes whitebox optimization and the development of interfaces for
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two deterministically global optimization solvers. Case studies from Chapter 6 are

re-run and a comparison of global and local solutions given.

Chapter 8 critiques the research questions, gives conclusions from this work, and

suggests recommendations for future development opportunities.
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Chapter 2

Literature Review

2.1 Industrial Optimization

Applying mathematical optimization techniques to increase the efficiency/produc-

tion of industrial systems is an established discipline, generally referred to as Op-

erations Research (OR) or from a business perspective, Management Science (MS).

The origin of operations research can be traced back to England during World War

II, where A. P. Rowe formed teams to carry out “operational researches” on the

communication system within a British radar station [270]. The technique was soon

adopted by English physicist P. Blackett, who succeeded in convincing management

at the time that a scientific approach to managing complex operations was not only

worthwhile, but could also save lives during the war. Examples of his studies in-

cluded improving the survival odds of naval convoys, which were constantly being

sunk by Nazi German U-boats, as well as minimizing the armour plating of bombers

in order to reduce weight (and thus increase payload), and still have a high success

rate of returning to base [47].

The Americans also recognised the benefit of this scientific approach to warfare,

initially implementing it within the US Navy’s Mine Warfare Operations Research

Group. It made its biggest impact however in the Antisubmarine Warfare Opera-

tions Group. Led by American physicist Philip Morse, the group was tasked with

addressing the problem of Nazi German U-boats attacking transatlantic shipping

[270, 296]. Significantly, many regard the contribution Morse and his team made

to the American war effort as an important factor in winning the war [49], earning

Morse the title of the Founder of Operations Research in the USA.

Post World War II it was soon realised that OR was equally applicable to civil-

ian problems, and specifically problems within the manufacturing industry such as
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scheduling, inventory control and resource allocation [270]. A major contribution to

the field of OR at the time was the Simplex algorithm, which could efficiently solve

linear programs [26, 77]. As stated by Rajopal with respect to OR, “George Dantzig,

who in 1947 developed the simplex algorithm for Linear Programming (LP), pro-

vided the single most important impetus for this growth”, indicating the impact

that rigorous mathematical methods had on solving OR problems [270].

With the advent of digital computers, solving large industrial optimization prob-

lems using OR techniques became possible. This not only enabled large linear

optimization problems to be solved, but allowed other mathematical techniques de-

veloped years earlier to be applied to industrially significant problems. An example

is the multivariable Newton-Rhapson method for nonlinear equations, which forms

the basis for many modern optimization algorithms. Furthermore, new industrially

significant applications allowed researchers to revisit well-known problems such as

the travelling salesman problem and realise it could be solved as an integer linear

programming problem. This prompted researchers such as Ralph Gomory to de-

velop methods to simplify integer programming problems by using cutting planes,

which successively refine an optimization problem using linear inequalities [114].

To optimize an industrial system, Figure 2.1 illustrates the 7-step OR process as

described by Rajopal in [270]. The process begins with an orientation step where

Figure 2.1: The Operations Research approach (Figure 1 in [270])

typically a multidisciplinary team is formed. The requirement of a multidisciplinary

team is a key feature of operations research, which combines the domain specialty

knowledge from a range of specialists, as described in Section 1.2. The second step

is recognised as the most difficult, whereby the objective function is defined, based
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on identifying goals for the process targeted (such as minimizing resources and/or

maximizing profit). The third step requires the collection of historical process data,

so that informed decisions can be made on future requirements. The fourth step

combines all information collected so far into a model suitable for optimization.

The fifth and sixth steps solve the resulting optimization problem, then validate

the results to ensure they are both physically realisable and sensible. If problems

are identified in this step, then typically the model from step four will need to be

revisited. The final step implements the study findings within the process, and

monitors them to ensure the expected outcomes are realised.

This approach to industrial optimization is now well known and appreciated,

with a multitude of case studies reported in the literature. Examples include air-

crew scheduling for an international airline [288, 289], supply chain planning in the

paper industry [251], crude oil blending problems in the petrochemical industry [282]

and manufacturing under tooling constraints [95].

In order to formulate and solve the optimization problem in steps 4 and 5 of

Figure 2.1, most users will opt for a modelling and optimization framework on a

desktop computer or high-performance cluster. This allows the process model to be

described in a language designed for optimization problems, and then solved with

powerful optimization solvers that can exploit the large amount of memory and pro-

cessing power of a modern computer. Within the commercial realm of modelling

and optimization packages, the five main contenders are GAMS [286], AIMMS [284],

AMPL [101], IBM ILOG CPLEX Optimization Studio [145] and FICO’s Xpress Op-

timization Suite [93]. CPLEX and Xpress both provide the modelling environment

and their own solver, while the remaining packages rely on third party external op-

timization solvers for solving the model. All of these tools are designed purely for

solving mathematical optimization problems that result from operational, schedul-

ing and planning studies. More general commercial tools that also include the ability

to solve optimization problems, but are generally regarded as modelling platforms,

include MATLAB [205], Mathematica [335] and MAPLE [196]. In addition, Mi-

crosoft Excel is often as a modelling package as it contains a range of optimization

solvers via the Solver add-in.

Within the open-source/free community a number of packages exist which can

model and solve problems from the industrial optimization field. These include

Modelica [20], Python and the associated NumPy/SciPy modules [158, 236], Octave

[91], Scilab [292], Julia [34] and open-source addons to commercial platforms such as

OpenSolver [202] for Excel and YALMIP [189] and OPTI Toolbox [68] for MATLAB.

This summary concludes a brief review of the literature leading to the formation

of the definition of industrial optimization, and the techniques and tools used to
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solve problems that arise when undertaking such a study. The following sections

will review the literature within the two detailed areas of industrial optimization

targeted within this work: Embedded model predictive control and the optimal

operation of utility systems.

2.2 Model Predictive Control

Model Predictive Control, or MPC, is perhaps the most successful advanced control

strategy in use today [9], with thousands of industrial applications across a range of

process industries [263]. It is, however, an anomaly in that unlike most other control

algorithms, such as the Linear Quadratic Regulator (LQR) or Gaussian (LQG)

[160], MPC is the result of original development in industry, rather than academia.

This is a result of control theory not fulfilling the needs of control practice at the

time, together with a considerable gap between the academic and industrial control

engineers.

As described by Qin and Badgwell in [263], the predecessor to MPC was LQG

[159], first described by Rudolf Kalman, an electrical engineering academic. The

algorithm had many interesting properties, including the handling of multivariable

systems implicitly, optimal state estimation and being self stabilizing due to its infi-

nite prediction horizon. Interestingly however, it ultimately failed to have a strong

impact on the industrial process control community. The reasons were twofold: The

controller was unable to handle constraints [105, 276], and the reluctance from con-

trol engineers to adopt the technology, due to the culture at the time [263]. It was

to be nearly 15 years before the next major control technology was to appear, and

this time two technologies would be independently developed in industry.

The first MPC-type application was described by Richalet et al. in [276], which

they later called Model Predictive Heuristic Control (MPHC) [277]. Jacques Richalet

was a French engineer who specialized in applied mathematics, regarded by many as

the ‘grandfather of predictive control’. He formed the process engineering consult-

ing company ADERSA in 1968, and commercialized an MPC-type product called

IDCOM, Identification and Command. As with traditional MPC, detailed in the

next section, IDCOM used an internal dynamic model, implemented a quadratic

performance objective over a finite prediction horizon and allowed constraints on

both inputs and outputs, although solved via a heuristic iterative algorithm. The

concept of a finite prediction horizon meant the control problem could be solved it-

eratively at each time step, by only considering a finite number of future time steps

(i.e. the prediction horizon) to control over. This technique allows the controller

to take into account the transient behaviour of the system, as well limit the size of

16



the control problem to solve at each sample. This idea is also known as receding

horizon control, as the finite prediction horizon would shift one step into the future

at each sample. The concept of a finite prediction horizon underpins most practical

predictive control algorithms, and thus was a significant feature within IDCOM.

However within IDCOM there are several differences compared to traditional MPC,

including that it used a finite impulse response (FIR) model, so that system inputs

immediately effected system outputs, together with the heuristic solution strategy.

IDCOM still exists today as Predictive Functional Control (PFC), and as the under-

lying algorithm in Honeywell’s Profit controller, known as Robust Model Predictive

Control Technology (RMPCT) [131].

Independently of Richalet, two Shell Oil engineers, Cutler and Ramakar, devel-

oped their own MPC-type technology which they called Dynamic Matrix Control

(DMC) [74]. An initial application is reported in 1973, but because a description of

the algorithm was not published until 1979 [73], Richalet earned the honour of the

first MPC description. However it is DMC (and its successors) which has had the

most significant impact on industry [223], due to its huge adoption by the oil and

gas industry [262]. The fundamental DMC algorithm uses a step response model

together with a quadratic objective over a finite prediction horizon. However, unlike

QDMC (described next), it was an unconstrained controller which solved the con-

trol moves using a least squares methods. Despite this difference it was an optimal

controller, and provided the platform for rapid developments in the area of predic-

tive control. In a companion paper to the Cutler and Ramakar paper, Prett and

Gillette [254] described a modified version of the DMC algorithm applied to a Fluid

Catalytic Cracking Unit (FCCU), which included the ability to handle nonlinearities

and constraints via a technique known as ‘time variant constraints’.

As stated by Qin and Badgwell in [263], “The original IDCOM and DMC al-

gorithms provided excellent control of unconstrained multivariable processes. Con-

straint handling, however, was still somewhat ad hoc.” This comment referred to the

heuristic method used by IDCOM to solve its constrained optimal control problem,

as well as to the time variant constraints within the modified DMC method. These

were added as required when the process came close to a constraint and therefore

were not rigorous in their application. The solution was proposed by Cutler, Mor-

shedi and Haydel in [72], where the DMC problem could be posed as a quadratic

program which included the quadratic performance as the objective, and the input

and output constraints as linear constraints. The controller was termed Quadratic

DMC (QDMC), and was described in detail by a later paper by Garc̀ıa [104] in

which an application to a 3× 3 multivariable pyrolysis furnace was described.

A further technology that evolved out of the finite prediction horizon concept
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was that of Generalized Predictive Control (GPC), [75], or long range predictive

control. As summarized by Morari and Lee in [223], GPC was designed as an

extension to adaptive control and disturbance modelling played a key role in its

algorithm. This was opposed to the design of DMC which was purely deterministic

in its formulation. As stated by Morari and Lee themselves, GPC has failed to

establish itself in the industrial world, due in part to difficulty applying the algorithm

to multivariable problems, although it is still the subject of academic research. The

lines are however now blurred between GPC and MPC, with many authors using

the terms interchangeably and in recent times, generally referred to the same class

of controller [287].

The QDMC algorithm forms the underlying algorithm for what is termed the

‘traditional MPC controller’ within the remainder of this work, and is generally re-

garded as the predecessor to modern MPC. The following subsections will detail the

traditional MPC algorithm, the problems associated with the traditional algorithm,

and lastly expand into the area of embedded MPC and its challenges.

2.2.1 Traditional MPC

Traditional MPC is defined within this work as a discrete model predictive controller

which utilizes a linear state-space (or transfer function) model of the process to be

controlled. The model is used to predict the future response of the process over

what is known as the prediction horizon (a finite set of future samples), in order

to be able to optimize the control moves. At each sample the controller optimizes

online a sequence of current and future control moves over the control horizon, in

order to bring the model’s predicted output(s) to follow a reference (setpoint). It

then implements just the first control move. The algorithm repeats at each sample,

where both the prediction and control horizons move one step into the future, hence

the name receding horizon control.

Figure 2.2: The standard form of the MPC algorithm.

The general structure of the MPC algorithm is illustrated in Figure 2.2, while it
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is described in more detail in Section 3.2.1. Further algorithm details can be found

in the review paper by Manfred Morari [221], as well as the early survey paper by

Garc̀ıa et al. [105].

Given that MPC has seen both a huge surge in research (as any journal search

of ‘predictive control’ will show), and a large uptake in industrial applications as

reported by Qin and Badgwell, it is therefore surprising to note that until recently

it has not been utilized outside the process control community [86]. This can be

explained by the computational expense of the algorithm, because solving the opti-

mization problem online (such as done with QDMC) requires significant computation

resources. This therefore limits the applicability of the algorithm to processes with

relatively slow time constants, as is typical in process control applications [66].

To apply the control benefits of model predictive control to smaller, faster pro-

cesses such as those within the automotive, medical and aerospace industries, two

changes need to occur. Firstly, optimization algorithm improvements are required

to solve the online optimization faster, and secondly MPC has to be implemented

on small, low-power embedded hardware suitable for deploying to mobile platforms.

It is worth noting that these two requirements do not complement each other; Low-

power embedded hardware is often severely restrained in computational power and

memory, and this then lowers the peak achievable performance of algorithms imple-

mented on the hardware.

2.2.2 Explicit MPC

Explicit MPC retains the same underlying principles of MPC, however it aims to

remove the online optimization step. It does this by explicitly calculating all possible

future control moves, as a function of the current state and reference vectors, by

posing the MPC problem as a multiparametric programming problem. This reduces

the online optimization step to a table lookup, of the form

u(x) =







F1x+ g1, if H1x ≤ k1
...

...

FMx+ gM , if HMx ≤ kM

(2.1)

which is significantly faster to solve than a full quadratic program online. The full

algorithm details, including formulation of the multiparametric MPC problem, are

detailed in the survey paper of explicit MPC by Alessio and Bemporad [8].

Given that explicit MPC reduces the computational cost of MPC, it could easily

be thought of as a solution to this industrial optimization problem. However, as
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with most strategies there is a downside and for explicit MPC this is the memory

requirement. Within the explicit MPC formulation, every possible combination of

constraints active at the solution (problem partitions) must be formulated and in-

cluded in Equation 2.1, which for a multiparametric quadratic program, is 2q, where

q is the number of constraints [8]. For the problems of interest within this work,

the number of constraints is typically greater than 50 even for small problems with

modest horizons, and therefore the memory requirement is important. An example

of explicit MPC is given in [156], where for an MPC problem with a control horizon

of 2 and 4 decision variables, 62MB is required to store the explicit formulation.

This amount of memory would be unrealistic on the embedded hardware looked at

for this work (see Section 4.2, noting typical embedded memory of the low-power,

portable embedded systems considered is less than 256KB), and together with such

a short horizon, is unlikely to offer the required control performance.

It is for this reason that recent research has focused on suboptimal explicit MPC,

whereby suboptimal solutions can be obtained by relaxing the KKT constraints

[31], offline searching for the most common partitions [239] or even simply merging

areas where the affine gain is the same [110]. Each of these methods attempts to

minimize the number of partitions stored in order to reduce memory requirements,

at a cost of optimality. Whether this suboptimal solution severely affects the control

performance will depend on both the control problem and the approximations made.

However the fact remains that in order for explicit MPC to be deployed on modest

embedded hardware with reasonable horizons, it is no longer a strictly optimal

controller.

2.2.3 First-Order Methods

A recent important re-discovery within the control community is that of first-order

methods, also known as gradient methods, for solving the online quadratic opti-

mization problem resulting from a linear MPC controller [280]. Traditional gradient

methods solve strongly convex optimization problems of the form

minx f(x) (2.2)

subject to: x ∈ C (2.3)

where f is a real convex function and C is a closed convex set (further requirements,

including Lipschitz Continuity are described in [280]). A traditional gradient method

solves this minimization problem by stepping along the anti-gradient

xk+1 = xk − hi∇f(xk) (2.4)
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where hi is the step-size and is chosen so that it satisfies the relaxation sequence

f(xk+1) ≤ f(xk), ∀k ≥ 0 (2.5)

which for traditional strategies is typically implemented as a constant. An interest-

ing property of the algorithm allows it to be applied to constrained problems as well,

by replacing the gradient ∇f with a gradient mapping. This is defined in Equations

10a-10c in [280].

While the algorithm described so far is suitable for solving the convex quadratic

programs within an MPC controller, a modification by Yurii Nesterov in [234] trans-

forms the algorithm into the fast gradient method. The modification relaxes the re-

quirement in Equation 2.5, and instead replaces it with an estimate sequence. Using

this strategy allows the algorithm to be proved to be globally linearly converging,

as well as the ability to calculate a-priori the number of solver iterations required

to meet a specified tolerance. In practice, as long as the condition number of the

quadratic program Hessian is sufficiently small, then tens of iterations are sufficient

to find a suitable solution [280].

The fast-gradient method was further explored in [170] with respect to embedded

model predictive control. The authors exploited the structure of the optimization

problem to efficiently determine the gradient, which was then used to determine

the memory and computational effort of the algorithm. An interesting conclusion

by the authors was that if the model state-space matrix A were unstable (any

eigenvalue falls outside the unit circle), then the computational effort to solve the

optimization problem using the fast-gradient method would increase exponentially

with the prediction horizon.

The fast-gradient method is only applicable to input-constrained systems, so

its practical use is limited. To solve this, the Alternating Direction Method of

Multipliers (ADMM) uses an augmented Lagrangian approach to solve both input

and state constrained MPC problems [171]. The method solves the optimization

problem by iterating over two sub-problems: An outer augmented problem and

an inner problem solved via the fast-gradient method. The authors prove that for

asymptotically stable systems the computational effort required to solve the modified

method increases only with O(N0.5), where N is the control horizon. However

this attractive property does not hold with unstable systems which still increase

exponentially with the horizon. Further work has also been carried out parallelizing

the ADMM algorithm in [172], providing an additional speed-up to this algorithm.

For stable control problems, the fast-gradient method is particularly attractive

because it is not only fast but also certifiable for critical control applications. This

21



is based on the deterministic upper bound on time required by the algorithm to

converge to a specified tolerance, which allows implementation of a controller in

time-critical systems, as described in [112, 279, 281]. However given that the speed

advantage inherent in its algorithm is only applicable to stable, well conditioned

systems, the fast-gradient method is, like explicit MPC, only suitable for a class of

control problems.

2.2.4 Embedded Model Predictive Control

Embedded MPC aims to implement an MPC-type algorithm on embedded hard-

ware, such as a Digital Signal Processor (DSP), Microcontroller/Microprocessor Unit

(MCU) or Field Programmable Gate Array (FPGA). This implementation enables

the controller to be applied to low-power, low-cost and mobile systems where a

large, power-intensive and expensive desktop computer would not be suitable. The

complication here is that the systems where an embedded controller are required are

often high-speed, due in part to being smaller in physical size and therefore smaller

time constants can be expected.

2.2.4.1 High-Speed Applications

To illustrate the current state-of-the-art embedded MPC, consider the slide in Figure

2.3 taken from [222]. This slide is from a 2013 presentation by Manfred Morari on

fast model predictive control, which reports applications from his research centre.

The times reported are the implemented sampling rates of various embedded MPC

controllers, indicating sampling rates from 2Hz up to 50MHz.

It is worth mentioning that the majority of these applications utilize some form

of explicit MPC, which are common in literature and can achieve impressive sam-

pling rates. However, as mentioned, applications of explicit MPC are highly memory

intensive, and therefore limited to application on specialized hardware, which is not

the intention of this work. In addition to the applications mentioned above, fur-

ther applications of high-speed MPC include those from Unmanned Aerial Vehicles

(UAVs) [238], aerospace [125], spacecraft [195], insulin delivery [320] and a multitude

of other applications. A brief survey of embedded MPC technologies is presented

below, comparing the main technologies used.
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Figure 2.3: Embedded MPC applications reported by the Automatic Control Lab-
oratory, ETH Zürich (Presentation slide in [222]).

2.2.4.2 Field Programmable Gate Arrays

A field programmable gate array is an Integrated Circuit (IC) which allows the user

to program and configure the digital hardware inside the device. The FPGA is

an evolution of the family of Programmable Logic Devices (PLD), and nowadays

contain millions of programmable discrete logic elements, such as Look Up Tables

(LUT), flip flops and electronic gates [176]. Being a hardware circuit rather than

software executed instruction by instruction, an FPGA is inherently parallel and this

enables it to execute multiple calculation paths simultaneously. Furthermore, most

modern FPGAs include a significant amount of block RAM, as well as a number of

hardware multipliers, allowing numerical algorithms to be implemented and run.

Traditional applications of FPGAs are within the digital signal processing realm,

where a constant supply of information is processed by the device, such as audio or

video. This feature of the data allows an FPGA designer to pipeline their algorithm,

accelerating execution by providing parallel execution routes. Common applications

of FPGAs include medical image processing, computer vision, speech recognition

and radio astronomy, all of which have a large set of data available for processing

in parallel, as well as algorithms that facilitate the use of parallel programming.

However, the use of FPGAs for sequential tasks, such as optimization algorithms

is limited, due in part to clocking rates of FPGAs being insignificant, and limited

scope for parallelization within the algorithm itself.

A successful implementation of traditional MPC on a modest FPGA was de-
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scribed by Ling et al. in [187], where the authors used the commercial (and expen-

sive) Handel-C compiler to automatically convert a C based MPC algorithm into a

Hardware Description Language (HDL) controller. Using their implementation and

processor in the loop implementation showed their controller had a sampling interval

of 10ms, using a sequential algorithm. The same authors explored parallelization

of a Multiply-Accumulate (MAC) function in [186], where two multipliers were run

in parallel. Using this implementation, together with a more powerful FPGA, the

implementation achieved a sampling interval of 3ms. The authors also went on to

compare two quadratic programming methods implemented on an FPGA in [182],

noting that the interior point method was reported as superior.

Another implementation of traditional MPC on an FPGA was described by Wills

et al. in [333], where a hand-coded VHDL implementation of MPC was reported.

This implementation was not only hand-tuned, but also highly parallelized, and re-

sulted in a minimum sampling interval of 30µs when applied to control of a damped

resonant system. The authors used an interior-point method implemented com-

pletely within an Altera Stratix III, which was clocked at 70MHz and used a custom

23bit floating point number format.

In a further implementation, Jerez et al. implemented a parallelized sparse

quadratic programming solver on a Xilinx Virtex 6 FPGA in [155]. The algorithm

was hand-coded in VHDL, and utilized a deeply pipelined implementation in order

to minimize latency and therefore maximize performance. Using this approach, the

paper reports a maximum throughput for a rotating antenna MPC problem of 2.5µs,

with a latency of 85µs.

In addition to traditional MPC, explicit MPC has been implemented very suc-

cessfully on FPGAs, due in part to easy parallelization of the binary tree-search for

implementing the control action. An application which targeted an Application Spe-

cific Integrated Circuit (ASIC), effectively a high-speed non-reprogrammable FPGA,

was described by Johansen et al in [156]. In this work they described a small ex-

plicit MPC controller which achieved a 1µs sample interval with a 200MHz clock,

representing one of the first 1MHz MPC applications. Since then many authors

have adopted FPGAs for implementing explicit MPC controllers, with [6, 298] as

two examples.

With respect to first-order methods, FPGAs have also been exploited to imple-

ment MHz sampling rates, as described in [153, 154]. In this work, a fixed-point

number system is used together with auto-coded parallelized implementations of the

fast-gradient and ADMM algorithms.
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2.2.4.3 Co-Processor Designs

An alternative approach to the purely digital hardware approach is to split the

computational load and utilize a co-processor to accelerate computationally inten-

sive sections, while a traditional sequential processor handles control logic. This

approach is taken in [320], where the authors propose a System-on-a-Chip (SOC)

MPC controller, which utilizes an application specific matrix-coprocessor and lim-

ited resource host controller. The matrix-processor is designed with a 16bit loga-

rithmic number system Arithmetic Logic Unit (ALU), which is tailored for solving

the matrix problems which arise when solving the online optimization problem.

Koh applied an FPGA soft-processor design in his Master’s work [173], imple-

menting both the soft-processor and co-processor within the FPGA logic. This

strategy is quite powerful because both the design of the host processor, and the

co-processor can be completely customized. It is however much more resource in-

tensive, as the soft-processor typically consumes a large number of logic elements

and available block RAM.

2.2.4.4 Microprocessor Implementations

The final area reviewed is MPC implemented directly on a traditional microcon-

troller/microprocessor or Digital Signal Processor (DSP). This approach has several

advantages, the most significant being that the control algorithm requires little mod-

ification from the development algorithm on a desktop computer. This is opposed

to hardware designs, such as FPGAs or co-processors, which require substantial

redevelopment into a hardware description language.

As described later in Section 4.2.1, microcontrollers, microprocessors and DSPs

are all primarily sequential devices, processing software instructions one-by-one. A

microcontroller is the simplest device of the three, because it typically includes all

peripherals (timers, interface logic, memory controllers) on-chip, while a micropro-

cessor, such as the one in a desktop PC, requires external components such as RAM,

a hard disk drive (HDD), external BIOS IC and so forth. This allows the micro-

processor to pack more computing power into its integrated circuit, at the cost of

requiring multiple external components. The advantage is however that modern

microprocessors may contain 2 or more computing cores, and thus allow parallelized

execution.

The DSP is in a different category again, because it is designed for high-throughput

numerical calculations, such as those now targeted by FPGAs. It is however pri-

marily a sequential device, although many common numerical calculations such as

25



multiply-accumulate may be pipelined and therefore parallelized. It remains as

a specialized device that requires substantial algorithm redevelopment in order to

leverage the benefits of its architecture, although not to the same degree as an FPGA

(unless written in assembler).

An early implementation of MPC which utilized a modified Newton’s method

for solving the online optimization problem was described by Bleris and Kothare in

[38]. In this work they used a phyCORE development board which included a 32bit

Motorola MPC555 microcontroller, and also, significantly, a built-in hardware 64bit

floating point unit. This platform allowed the authors to implement their controller

in a processor-in-the-loop environment that would leverage the full precision typical

on a PC. Numerical roundoff was therefore not significant within this implementa-

tion. This work resulted in a sampling rate that approached 1Hz once the control

horizon exceeded 5 samples.

A DSP implementation of traditional MPC is described in [332], where the au-

thors apply MPC to an active noise and vibration control system. In this work the

controller is implemented on an Analog Devices ADSP-21262 200MHz 32bit floating

point DSP, noting the algorithm is completely written in assembler. This is a signif-

icant undertaking and limits the implementation to only a small family of hardware,

however the performance payoff is that the sampling interval ranges from 30µs to

140µs for horizons from 4 to 12.

In later work Zometa et al. [348] applied linear MPC using the fast gradient

method to control a two-wheeled robot using the LEGO-NXT hardware. The con-

troller is implemented on the NXT controller, which utilizes a 48MHz 32bit Atmel

AT91SAM microcontroller, noting however this processor does not have a hardware

floating point unit. The authors implemented their controller with a control horizon

of 20 to an 8 state, 2 input and 3 output model of the robot and achieved a sampling

interval of 4ms.

A recent implementation from ETH Zürich is the FORCES framework [83] which,

as described in the next subsection and profiled later in Section 4.4.5, is an auto-code

generator for efficient interior-point methods, including second-order cone problems.

Targeted primarily at MPC problems, such as in [84], the framework can also gen-

erate solvers for general optimization problems. In [84] the authors describe two

embedded implementations of MPC, the first on a 1.6GHz Intel ATOM Z530 and

the second on a 500MHz ARM Cortex A8, noting both are at the high end of em-

bedded processor technology. Using the FORCES framework, an MPC controller

was designed to solve the chain of masses problem [327] with varying numbers of

masses. On the Intel processor, solution times ranged from 2ms to 90ms while on

the ARM processor the same problems solved in 60ms to 3210ms.
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2.2.4.5 Auto-Coded MPC

When deploying an MPC controller to an embedded target some authors have opted

to develop an automatic coding framework which reduces the otherwise substantial

manual implementation work required. The framework is tasked with converting a

high-level description of the MPC controller into a low-level form, typically ANSI

C, suitable for implementation within common embedded hardware. The benefits

of automatic coding of MPC controllers include rapid re-tuning, less coding errors

(once the framework is proven) and typically faster code, because techniques such

as loop-unrolling are much easier implemented when automated.

An early implementation of auto-coded MPC is described by Richards et al. in

[278], where the authors used Simulink to implement the complete controller, in-

cluding an interior point solver. The advantage of using Simulink over MATLAB

was that by using the MathWork’s Real-Time Workshop, the Simulink model could

be automatically converted to embedded C-code, including code optimizations tar-

geted at specific processor architecture. The focus in this work was on flight control

where a verifiable control solution is required. By utilizing Simulink together with

the rigorous code generation technology provided by the MathWorks, steps were

made towards this goal.

For the generation of explicit MPC controllers the MATLAB Multiparametric

(MPT) Toolbox from ETH Zürich is the most comprehensive [127]. Now in its third

major release, the Toolbox has been in development for over a decade and includes

functionality for describing, tuning and simulating explicit MPC controllers, to-

gether with automatic code generation when using the MATLAB Embedded Coder.

Further developments of the MPT Toolbox for natively generating C explicit con-

trollers, as well as Programmable Logic Controller (PLC) forms are described in

[178].

One of the first tools for automatically generating convex optimization solvers

was CVXGEN, a code generator for convex optimization [210], based on the CVX

framework described in [116]. While this tool was not designed directly for MPC,

the MPC optimization problem can be succinctly described in the CVXGEN code

generator, and therefore suitable solvers can be generated. The tool is predominantly

web-based, however the generated code also comes with a MATLAB interface which

allows the resulting solver to be called directly from MATLAB. The authors report

speedups of up to 10,000 times over traditional solvers when using automatically

generated solvers, which is achieved by fully unrolling the algorithm, i.e. there are

no loops and the code is completely ‘flat’. The downside to this approach, however,

is that the resulting code is very large, and scales poorly with problem size [84].
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To automatically generate first-order solvers for parametric convex programs,

FiOrdOs is a MATLAB Toolbox developed by Fabian Ullmann at ETH Zürich [312].

As with CVXGEN, the tool is not targeted at MPC controllers directly, rather its

primary design focus is on generating code for embedded platforms. The toolbox

allows generation of both the gradient and fast-gradient solvers, as well as Lagrange

relaxation solvers for inequality or equality constrained problems.

For generating MPC controllers which utilize a first-order solver, Zometa et al.

described the Python framework µAO-MPC in [349]. The tool is designed to gen-

erate embedded MPC controllers using either Nesterov’s method or an augmented

Lagrangian approach for solving the online optimization problem, and targets mem-

ory and performance constrained embedded systems. Using their framework when

applied to the classic Cessna Citation MPC problem [192], the authors report a

required sample interval of 9ms to achieve a relatively low accuracy (≈ 0.1) on a

168MHz ARM Cortex-M4 with floating point unit.

As described in the previous section, the FORCES framework also allows the

generation of embedded MPC controllers that retain the traditional interior-point

solver [82]. For a comparison of performance between FORCES and the method

proposed in this work, see Section 4.4.5.

Within the field of nonlinear MPC (NMPC), as described in the next section,

the auto-code generator ACADO [132] is a MATLAB and C++ framework for gen-

erating embeddable nonlinear optimal controllers, including MPC controllers. The

authors report on an implementation of an NMPC controller using ACADO to a

continuously stirred reactor model on a desktop PC in [133], indicating that sam-

pling rates of less than 1ms are possible. The framework utilizes either CVXGEN,

or qpOASES for solving the online optimization problem, which is used within a

sequential quadratic program approach to solve the resulting NLP.

2.2.5 Nonlinear MPC

The field of nonlinear MPC is beyond the scope of this work, however a brief survey

is presented for completeness. Nonlinear MPC allows a nonlinear process model to

be used within the controller which more accurately represents process dynamics.

This is opposed to a linear dynamic model which has been used by all methods

described so far within this review. The issues with using a nonlinear model are

twofold; Firstly, forming the process prediction requires the use of an integrator

(whether fixed or variable step), and secondly, the resulting online optimization

problem is a general nonlinear problem, meaning a full NLP solver is required. Both

of these problems typically restrict NMPC applications to slow chemical processes,
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as described in [261].

As described by Allgöwer et al. in [11], many process systems are inherently

nonlinear and when coupled with tighter operating constraints, linear models with

linear controllers are not sufficient for adequate control performance. To overcome

this problem, several approaches to implement efficient nonlinear MPC have been

proposed, such as described in [10, 36, 215, 223, 272]. Typical methods discretize

the ordinary differential equations (or differential algebraic equations) describing

the process model via direct collocation or collocation based on a polynomial form.

This process generates an algebraic representation suitable for solving directly with

a nonlinear equation solver. Alternative methods use single or multiple shooting

to solve the dynamic optimization problem, or recently, Real-Time Iteration (RTI),

such as within the ACADO Toolkit, which is a Newton-type framework that reduces

the problem to a single quadratic program [133].

The inherent complexity of solving a large dynamic optimization problems ren-

ders NMPC beyond the scope of implementation on the modest embedded hardware

we are considering in this work, however techniques such as RTI may provide a suit-

able platform for future work.

2.2.6 MPC Summary

Within the embedded MPC field it is clear that there has been a surge in recent

activity, as demonstrated by the multitude of auto-coding frameworks developed and

papers published in the past two years. Three methods of solving the optimization

problem resulting from a linear MPC controller have been identified as offline, via

explicit MPC, online, via first-order methods and thirdly a traditional quadratic

programming solver.

It is now commonly accepted that the explicit MPC method is limited to small-

scale systems based on its memory demand, which may grow exponentially in the

number of states, inputs or prediction horizon [84, 171, 280]. As the embedded

systems targeted for this work will be memory constrained (an upper limit of 256KB,

see Section 4.2), and also that the systems of interest will require horizons greater

than 3 or 4 samples, explicit MPC will not be pursued within this work, because the

controllers simply will not fit for the problems of interest. It is however acknowledged

that impressive sampling rates exceeding 1MHz are achievable using this approach,

but it is also noted that sample rate alone is not the only measure of an efficient

controller.

With regard to first-order methods, while attractive because they are very simple
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and therefore computationally efficient, as described in [170], it is noted that the

approach does not lend itself well to unstable systems, and requires a large increase

in computational complexity as the horizons are increased. As this research is delib-

erately not focused on any particular class of system (so long as they are linear), the

optimization solver must be efficient and implementable regardless of the stability

of the system to be controlled.

For this reason the traditional approach of implementing a quadratic program-

ming solver to solve the online optimization problem will be pursued. This is iden-

tified as the most computationally expensive method, but also as the most general,

allowing application to a range of control problems both large and small. Our belief

is that optimality does not have to be sacrificed in order to still achieve high-speed

MPC, nor for it to be implemented on an embedded platform. Therefore this work

will retain the online optimization step using a quadratic program, as was done

within QDMC, but as stated in the introduction, tailor the solver for the problems

of interest. This approach is reinforced by two recent competitive frameworks for

generating high-speed interior-point quadratic programming solvers, CVXGEN and

FORCES, both of which have garnered significant industrial and academic interest.

Furthermore, as shown in Section 4.4.5, there is still room for improvement on the

techniques described in both of these packages, and especially for the problems of

interest within this work.

A comparison of active-set versus interior-point algorithms for solving quadratic

programs is presented later in Sections 3.3.1 and 3.4.

The next section will survey the literature around the second industrial optimiza-

tion problem investigated within this work, namely the optimization of large-scale

industrial steam utility systems.

2.3 Utility System Optimization

Industrial utility systems such as steam or electricity form an integral and econom-

ically important part of most processing plants, supplying the demands for heat

and power of the process undertaken [314]. Utility energy is the largest managed

operating cost for the hydrocarbon process industry [92], yet from both a control

and operational point of view, it typically takes a back seat to production [89].

Within the utility system, cogeneration is a typical modern feature where steam

turbines and/or gas turbines can be used to provide both mechanical and electrical

power, either for the plant itself or if economically viable, to sell energy back to the
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electrical grid. However the cost of fuel to generate steam or run a gas turbine can

be significant (hundreds of millions of dollars per year as in our recent industrial

work), as can be purchasing power from the local supplier [69, 315].

Searching for the most efficient way to operate a utility system given varying

electricity and fuel prices, changes in process demands and equipment availability

is a complex problem [80, 90], and the optimal selection of equipment is not always

directly obvious. This provides an excellent opportunity for a rigorous utility system

model to be built which can not only provide run time information but also forms

the basis for optimization.

Optimization with a cost function including real economics (power and fuel tar-

iffs, power and fuel costs, etc) allows an advanced solver to find the operating point

which can reduce running costs of the utility system by millions of dollars per year.

Examples are detailed in [80, 89, 90, 92, 94] which show industrial applications of a

steam utility optimization package which typically result in savings of 1-5% of the

total annual utility cost.

2.3.1 Pinch Technology

Utility system modelling and optimization has been explored by a number of au-

thors with perhaps the most well known being Pinch Technology by Linhoff [188].

Still in use today as the core technology of KBC’s SuperTarget software [163], Pinch

Technology was one of the first commercially viable technologies to focus primarily

on process utility systems and the optimization of these systems. This strategy al-

lows an engineer to graphically optimize a heat exchanger network using two curves,

representing the hot and cold sides of the network. Where the curves touch is known

as the ‘Pinch’ point, and represents the optimum matching of heat exchanger steam

and process flows. Although Pinch is still a valid technology, its use as a tool for

optimizing an entire process utility system (i.e. not just the heat exchangers) may

not determine the true optimum because it will not take into account constraints or

variable efficiencies [94].

2.3.2 Total Site Analysis

Total Site Analysis (TSA) was an extension to Pinch developed by Dhole and Linhoff

[79]. By superimposing the steam levels (HP, MP, LP, etc) onto curves of the

total site energy sources and sinks (referred to as Total Site Profiles), the optimum

selection of flows between each pressure level and therefore throughout the steam
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turbine network could be established. This algorithm was further developed in

[212] where Mavromatis introduced the challenge of the optimal selection of steam

turbines (multiple small, one large, dual stage, etc) to meet the design requirement

from the TSA. This work introduced the varying efficiency problem inherent in steam

turbines: the efficiency of a steam turbine varies nonlinearly with power production,

so that the calculation of the optimum flows must take this problem into account.

However, as discussed below, this approach does not include all the basic elements of

an industrial process utility system, thus does not represent a complete optimization

of a utility system.

2.3.3 R Curve

An alternative method from the early 1980s is the R-Curve proposed by Kenney

[166]. This was another graphical technique but which looked at the ‘Cogeneration

Efficiency’ of a process utility system. The resulting curve is known as the ‘fuel

utilization curve’ and was a plot of cogeneration efficiency versus the process utility

system power-to-heat ratio. Although the results of the analysis are obvious (instal-

lation of gas turbines and heat recovery steam generators improve fuel efficiency),

the graph provided a quantitative measure of the varying efficiency.

The R-Curve was further explored in [169] incorporating the TSA to develop an

‘ideal power generation R-Curve’. This used TSA to develop the optimum selection

of steam level flows and turbine sizes, and the R-Curve to maximise the fuel efficiency

given these flow and shaft work requirements. However, as reviewed in [314], this

research did not include basic elements of an industrial process utility system, such

as process steam generation or power import/export.

2.3.4 The Chemical Process Simulator

With respect to optimization, most modern process simulators now include the

facility to optimize the model which provides an opportunity to be built on for this

work. The process simulator has been an industrial technology tool for modelling

chemical processes for over fifty years [283, 302, 303]. Benefits include better process

insight and scenario modelling for retrofit projects [291], as well as forming the basis

for optimal operation via optimization.

The use of chemical process simulators for the modelling of process utility sys-

tems allows the use of rigorous thermodynamics to be applied to the unit operation

models, reducing the error between actual plant and model results. Several authors
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have published work on modelling process utility systems within a process simula-

tor [85, 237], however as detailed in our work [71], as well as in [89], utility models

do not combine naturally with process simulators. This is due primarily to two

reasons: Zero flows can cause the thermodynamic engine to fail to solve and sec-

ondly the typical PFD structure of the simulator is too restrictive for the flexibly

operated process utility system. A utility system often contains numerous logical

operations for the direction of steam flows based on operating conditions (maximum

and minimum flows and current demand), which do not have a typical equivalent in

a chemical process model, because this is often designed for a single process flow.

Within the process simulators there are two main types: Steady-state and dy-

namic. Steady-state simulators do not model changes with respect to time, where

typically all models are algebraic relationships and represent the final settled value

(steady-state value) for a given set of operating conditions. Dynamic simulators in

contrast contain ordinary differential equations (ODEs) and differential algebraic

equations (DAEs), and can thus model the dynamic response of a plant with re-

spect to time. Dynamic simulators are typically used for the design of process con-

trol systems [12], operating training [53] and process start up studies and retrofit

investigation [180, 228] which are all considerably more complex.

This research will consider steady-state models due to the focus on optimiza-

tion of plant economics where the steady-state values represent the most significant

cost, versus the ‘getting there’ cost. This also significantly simplifies the underlying

computation and modelling and therefore forms a realistic framework for real-time

optimization. A number of steady-state modelling packages exist using different

solvers and algorithms and these are detailed in the following subsections.

2.3.4.1 Sequential Modular

One of the earliest approaches to solving process flowsheets was a sequential ap-

proach [35, 285], in which the solve order of the unit operations is fixed by the

natural flow of the process material, i.e. from the feed streams into the final prod-

uct out. This strategy was favoured by industry [35] because it was widely accepted

to solve the system in the direction of the actual chemical or product flow, with a

single flow direction standard in most chemical processes.

The term modular reflects the method in which the equations of the system are

solved whereby each unit operation is treated as a standalone module and solved

individually in the designated sequence. This reduces the number of initialization

variables required for each unit operation, enabling the strategy to be quite robust.

The modular strategy also lends itself better to PFD based design.
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In order for this system to work one must specify the parameters of the input

streams, so that the information can propagate across the flowsheet to the end

product. Recycles, or loops, are handled by successively iterating the solving of the

unit operations in the loop until the convergence criteria is met. A common term

used was to ’tear a break’ in a particular stream, so that one part of the feedback

loop would be broken and used as the testing / convergence point.

Examples of commercial sequential solver packages include Aspen Plus [18] and

COCO [152].

2.3.4.2 Non-Sequential Modular

A later strategy which formed the algorithm of the highly successful HYSYS process

simulation was the non-sequential algorithm [33-35]. This has the advantage of being

able to propagate information both backwards and forwards, so that specifications

in the middle of the system can cause unit operations to solve both before and after

the specification.

With respect to process utility systems, the non-sequential algorithm allows boil-

ers, heat exchangers and turbines to be specified based on incoming flows, outgoing

flows, duties or temperatures, and still solve. This enables the user to enter the

specifications of their system based on their process measurements, without be-

ing restricted to preset solve orders such as in the sequential system. This further

increases the robustness of the modular solver and enables an interactive process

simulation approach, as detailed in [226].

As this solver is still a modular solver, recycles are solved using a stream tear

and then iterated until it converges, in a similar manner to the sequential solver.

Examples include HYSYS [19] and VMGSim [318].

2.3.4.3 Equation Based / Global Approach

In direct competition with the sequential methods of the late 1970s and early 1980s,

the equation based solvers approached solving the flowsheet as a collection of linear,

bilinear and nonlinear equations [293]. Interestingly, this strategy was typically

restricted to the academic domain at this time [35], which explains the dominant

equation based literature versus the sparse sequential literature.

This strategy, as described later by Barton [28], allows the use of analytical

gradients and equation substitution to simplify and speed up the solution of a group
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of unit operations. Advanced numerical linear algebra algorithms were applied to the

sparse gradient and incident matrices in order to solve these systems much faster.

These notably also included recycle as part of the system of equations so that it

could reduce or even remove the need to iterate the system to converge.

A number of early software packages include Quasilin [135] developed by the

University of Cambridge, as well as SPEEDUP [240, 247], developed at the Imperial

College. These packages were originally text only and required specialised mainframe

computers in order to run, which limited their use. This was in part due to the large

memory requirement in order to solve these problems, but also to the architectures

for which the source code was written [226].

However, by the 1990s and with the advent of the personal computer, industrial

and commercial users now had the processing power and memory to solve these

problems [227, 303], and software would be developed that was suitable for a process

engineer. Equation based process simulators that resulted from this early work

include Chemasim [124].

As a side note, equation based solvers were not limited to chemical processes,

and several institutions went on to write general model equation solvers. These ad-

vanced packages could also model and solve electrical, mechanical and other physical

systems. Three of the main software packages in this area are ASCEND [252] and

Modelica [211], as well as the well known Simulink from the Mathworks [208].

2.3.5 Commercial Utility System Tools

Several commercial packages exist for specifically modelling process utility systems

(as opposed to chemical/petrochemical processes) which are built on a range of

solver algorithms and user interface strategies. In order to identify a research area

that has not been covered commercially, the four main utility simulation packages

are reviewed in the following subsections.

2.3.5.1 ProSteam

ProSteam [89, 162] is a commercial utility modelling package by KBC, which is

effectively an add-in for Microsoft Excel. It utilizes the built in Excel Solver for

converging the utility model, which iterates across the sheet using the built in root

solver.

Functions are inserted with the assistance of a function wizard, and calculation
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results connected via cell references. Consequently, the main issue with this arrange-

ment is the amount of manual work required by the user. Not only must the user

maintain their own mass and energy balances, but manual recycle points must be

identified and inserted. This cell based approach can therefore allow for many errors

to go unnoticed within the model.

2.3.5.2 Ariane

Ariane [258, 259] is a utility modelling and optimization package by ProSim, which

is a stand alone application. Targeted specifically at power plants which gener-

ate steam, electricity and heat, it allows the user to create a graphical model of

their system, enter the specifications and constraints, and then subject it to global

optimization procedure [29]. From limited information on the product available

and from the examples given it does not appear that the system can model closed

loop (condensate recovery) process utility systems, which would require a more ad-

vanced recycle solver. This can allow for an energy balance to be broken around the

deaerator which is in contrast to basic modelling fundamentals, and may result in

unrealistic ‘optimal’ operating points.

2.3.5.3 iCON Utility Optimizer

iCON Utility Optimizer (iUO) was the add on package developed by myself and

our research team for PETRONAS [71]. Built on VMGSim [318] a chemical process

simulator, it enables a user to create a graphical model of their system, enter the

specifications and solve it for a range of operating conditions. The flowsheet is

created using a Visio API interface with the unit operations added as Visio shapes.

As of 2010 the software did not provide a reasonable optimization framework, but

formed the basis of the modelling for this work.

2.3.5.4 Aspen Plus, CHEMCAD, PetroSIM, HYSYS and Other Process

Simulators

As with all mature process simulators, process utility systems can be built from

fundamental unit operations (mixers, expanders, flash vessels, etc). This is based

on our experience constructing iUO for VMGSim, which is specifically a process

simulator. There are however a number of problems when building utility models

in a process simulator, as listed below and described later in Section 5.2.3:

• Discrete flows can cause convergence issues within the sheet solver.
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• Steam header balancing requires external logic to calculate feed and vent mass

flows.

• Maximum and minimum flows on equipment are effectively saturation con-

straints.

• Multi-flow direction of steam is decided by current operating conditions which

vary widely.

• Fuel balance and power balance affect gas turbine, boiler and turbo generator

operation.

Most importantly however, from our experience in observing process engineers

build utility models in process simulators the models are designed for one particular

operating point only. This means they are heavily over specified or are solved for

known plant operating conditions using numerical solvers. This results in these mod-

els not being suitable for optimization because there are not enough free variables

to realistically move the operating point of the system. This is discussed further in

our paper [71].

2.3.5.5 Commercial Package Summary

Table 2.1 summarizes the features within the packages reviewed above. The features

highlighted are as follows:

Live PFD Graphics connect directly to unit operations allowing simple entry of

data.

Steam Unit Operations Dedicated unit operations for steam utility modelling.

Recycle Solver Ability to model closed loop steam systems.

Model Constraints Constraints are included as part of the optimization and solver

process.

Integer Optimization Ability to optimize equipment on and off.

2.3.6 Design versus Operational Optimization

Optimization of process utility systems is split into two categories, synthesis (or

design) and operational. The focus of this research is on operational optimization
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Table 2.1: Characteristics of commercially available utility modelling software.

Package Live PFD Steam Unit Ops Recycle Solver Constraints Integer
ProSteam

√ √
Ariane

√ √ √
iUO

√ √ √
Process Sim

√ √

because we believe this is a more industrially significant problem, especially for

our industrial clients, and one which is applicable to the majority of process plant

operators around the world. However a brief review of synthesis optimization is

presented for completion.

2.3.6.1 Unit Operations of Key Equipment

A common theme in all process utility system optimization papers is the discussion

of building models for the three main utility operations: Boilers, gas turbines and

steam turbines. While conventional models exist for these operations, as described

by Aguilar in [4], they are too simple and as a result, calculate performance either

as a function of load (fixed unit size) or size (full load only). Several authors have

addressed this problem proposing nonlinear models based on regressions of plant

measurements, such as in [197, 255, 256, 294, 295, 315]. Although this provides a

more accurate estimation of the physical plant equipment performance, modelling

of the system becomes a specialist’s job in order to generate the regressions, or risk

using regressions from other authors’ versions of plant equipment.

A problem introduced by using nonlinear models is that the problem now requires

a full nonlinear program (versus a much simpler linear program) to solve. This adds

complexity to the optimizer resulting in less robust and longer computation time

solving. Aguilar [4] addressed this issue in a recent paper proposing linear models

for all three unit operations by using an input / output approach, rather than

modelling the internal thermodynamics and physical structure of the unit operations.

Regressions were performed on various sizes and types of plant equipment in order

to generate linear relationships between, for example, fuel duty and electric power

output for a gas turbine. As described later in Section 6.3.5, a linear approximation

fixes the header enthalpies which breaks the energy balance of the model and results

in a poor approximation for part-load modelling.
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2.3.6.2 Synthesis Optimization

Synthesis refers to the design stage or ‘green fields’ whereby the process utility

system is not yet built and the optimization refers to the optimal design of a new

steam process utility system. This is typically the decision of where to place the

steam turbines between pressure levels in order to maximise shaft work, or the

inclusion of cogeneration and its effect on the overall efficiency of the system, such

as the R-Curve method discussed earlier.

Notable early work by Grossman [117, 242] described the selection and placement

of equipment as a mixed integer linear programming (MILP) problem, although this

assumed all equipment ran at full load and one operating scenario was evaluated.

This work was further refined by Bruno and Grossman in [46] to include nonlinear

models and therefore posed the problem as an MINLP problem, based on work with

optimization based synthesis in [118] and [119].

While the work by Grossman resulted in substantial economic improvements, it

was noted by other researchers that the effect of multiple operating scenarios could

influence the resulting optimal configuration of plant equipment, and this formed an

important step in the optimization of a process utility system. Two early papers,

one using an MILP [134] and the other using simulated annealing [193] explored

varying operating conditions and operating demands, respectively, to determine a

flexible optimum.

Later work by Marechal [198, 199] introduced a multi-period MILP formulation

which allowed the different operating scenarios to be assigned different time lengths,

thereby reflecting the actual variation of operation more accurately. Recent work on

multi-period optimization of process utility systems is in part two of Aguilar’s work

[5] and describes a framework for synthesis, retrofit and operational optimization.

2.3.6.3 Operational Optimization

In contrast to synthesis, operational optimization is the optimization of an existing

plant whereby pressure levels, flows and temperatures, as well as equipment power

output and operating state can be varied in order to obtain the optimum operating

parameters. The operational optimization problem is well established with early

work by Nath [231] specifically optimizing process utility systems in the mid 1980s.

Several authors around this time including Nath developed specific Utility Opti-

mizers such as STEAMPOP [232], UPLAN [241] and others [313] based on linear

and mixed integer linear programs. Variations on the standard degrees of freedom

included modelling transition costs due to bringing equipment online and shutting
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it down were investigated in [149]. This required penalty functions associated with

the change of a binary variable and discouraged the optimizer switching on a boiler

or turbine unless it was actually economically sensible to do so.

Operational optimization was also explored by Varbanov in [315] using a suc-

cessive MILP approach. A simplified, linear model was iteratively subjected to

an MILP optimizer with each solution being tested for accuracy within a rigor-

ous second stage nonlinear simulation. When the solutions of the two simulations

converged, the function would exit with the resulting nonlinear optimum.

When considering retrofit optimization, current research requires the user to

determine a ‘superstructure’ for the addition or upgrading of plant equipment. The

superstructure is a predefined selection of available investment equipment which

could be added to the process utility system, and its size or loads may also be

predetermined. The optimizer must now not only decide to add which equipment

and where to place it, such as in [17, 123], but if allowed, must also determine the

optimum size of this equipment, as in [5]. This adds many more variables to the

optimization problem, a number of which are binary. As detailed in [5], a retrofit

optimization can take four orders of magnitude longer to solve than an operational

optimization, even with a state-of-the-art solver.

2.3.6.4 Scheduling Optimization

A final area of operational optimization is that of planning and scheduling utility

operations based on the process, the maintenance and the time requirements. This

will not be covered here because it is considered a separate field of research and

would increase the scope of the research beyond that achievable within this time

frame. For the reader’s reference [3, 149, 168, 299, 300, 301] provide a summary of

recent work in process utility system scheduling.

2.3.7 Utility System Optimization Summary

The review of the utility system optimization literature has detailed the industrial

significance of this optimization problem, given the wide ranging scope for applica-

tion from the process and manufacturing industry to power generation. As detailed

by Fernandez-Polanco et al. in [92], the utility system represents the largest man-

aged cost for a typical petrochemical refinery, yet when operational optimization is

applied, requires little to no capital investment and savings of 1-5% are common

[90].
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Several techniques have been reviewed for optimizing both the operational and

design of a utility system, including early graphical techniques such as Pinch Tech-

nology and the R-Curve. While Pinch technology is still widely in use today within

KBC’s supertarget software (as well as within other packages), its application is typ-

ically limited to heat-exchanger design and layout, matching hot and cold streams,

or when designing distillation columns. For this reason, it is not suitable as a tech-

nology for optimizing an entire utility system. Similarly, the R-Curve concept is a

simple approximation of the operation of a utility system, and does not take into

account sufficient detail to be used.

The application of a chemical process simulator for modelling and optimizing

utility systems was investigated, however based on our industrial experience, this

was found to be problematic (see Section 5.2.3 for more details). However the design

of the simulator, including techniques such as sequential modular, non-sequential

modular and equation based provide a basis for the methods to approach modelling

a utility system within this work. As will be demonstrated later in Section 6.3.3,

both a sequential modular approach and an equation based strategy will be used

within this work, where the sequential modular strategy is used to initialize an

equation based model, based on findings within this review.

A review of commercially available tools was undertaken to see what technology

was available for modelling and optimizing utility systems. From this survey, it was

clear that the ability to apply mixed integer optimization was a major gap within

commercial tools, thus limiting the benefit of operational optimization.

Within academic optimization studies, operational and synthesis optimization is

typically posed as a large-scale mixed integer linear program, which as shown later

in Section 6.3.5, can result in unrealistic header enthalpies and possible damage to

the utility system, if the solution were to be implemented in practice. Therefore

authors had either opted for a successive MILP approach, such as in [315], or the

full mixed integer nonlinear model as in [46], but this required implementation on

a high-performance server.

What we believe is overlooked, is considerable speed and robustness improve-

ments can be realised from improved equipment models, together with a novel for-

mulation of the complete system. By approximating thermodynamically rigorous

unit operation models with linear or bilinear expressions, the models are both faster

and more suitable for optimization. Furthermore, the models can be developed to

capture the response of the model over the expected operational area, thus increas-

ing the accuracy of the approximation. This approach is made possible because

we are focusing on operational optimization which allows us to define offline the

typical operating region, based on base-case data. Furthermore, by tailoring the
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construction of the model to a form that is most compatible with the optimizer,

robust solutions should be obtained in just a few seconds, even when optimizing

large industrial-scale utility systems. This builds on the approach taken by Bruno

et al, further developing the unit operation models and creating a more flexible

method of describing and optimizing these systems, which provides more accurate

and physically realisable solutions faster.

2.4 A Review of Shortcomings in the Literature

This chapter has provided an overview of industrial optimization, together with a

brief summary of major historical events which lead to the formation of the disci-

pline of operations research. Building on this overview, a review of the literature

surrounding the two core areas of this research has been undertaken, embedded

model predictive control and steam utility system optimization.

Within the field of embedded MPC, the two core areas of research have been iden-

tified as offline optimization via explicit MPC, and online optimization via hardware

and/or algorithmic enhancements. As stated in the literature, the main issue with

explicit MPC is the large memory requirement to store the parametric representa-

tion of the controller, thus limiting the algorithm to small problems not of interest

within this work. Within hardware enhancements, FPGAs have been identified as

the preferred implementation candidate given their inherent parallelism. However as

noted further on in Section A.4.1, there are a number of drawbacks to FPGAs, most

significantly of which is the extended compilation time required for re-tuning, but

also the much longer development time. For these reasons a hybrid DSP/MCU has

been chosen as the hardware target within this work, as described later in Section

4.2.1. With regards to algorithm advances, both interior-point and the fast-gradient

method are identified as the main variants, with both algorithm being deployed

within MCUs, DSPs and FPGAs. As stated in the literature, the fast-gradient

method is more efficient than a standard interior-point solver, but suffers an expo-

nential increase in computational load with unstable or poorly conditioned problems.

Based on this, the decision to pursue an interior-point solver has been made, with

a mixed hand-optimized/auto-coded implementation tailored to solve the problems

resulting from an MPC formulation.

The second area considered is the field of steam utility system optimization,

specifically looking at operational optimization. As identified within the existing

literature, existing research has focused predominately on the synthesis optimization

problem, and therefore with much larger and more complex systems, the optimiza-

tion problem is often approximated using linear relationships. Alternatively, early
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work considered graphical techniques such as Pinch and the R-Curve, which aimed

to optimize sections of a utility system, such as heat exchanger or steam turbine

networks. Within this work we will consider the operational optimization problem

of an entire utility system, which allows us to define the operating region of interest

for our system, and build purpose-built nonlinear models tailored for the optimizer.

This overcomes the pitfalls of linear approximations seen in literature, ensuring en-

ergy balances around steam headers and preserved, and resulting in a model which

solves for a sensible and implementable optimum. Furthermore, by building on in-

dustrial modelling experience detailed in Section 5.2, new unit operation models

which take into account typical operating parameters will be developed, leveraging

regressions within modelling literature to develop part-load expressions.

Within both areas, the literature has shown that predominantly existing indus-

trial optimization problems have been posed and solved in isolation, without the

use of a global framework or common methodology. This feature limits the appli-

cability of the research to the academics who posed the problem, and therefore the

industrial significance. This work aims to provide both academic and industrially

significant results by providing a high level framework for posing real industrial

problems, while tailoring the model and optimizer for robust, high speed solutions,

using ideas developed within the academic contribution of this work.
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Chapter 3

Quadratic Programming for

Model Predictive Control

At the core of a standard, linear constrained MPC controller is a Quadratic Program-

ming (QP) solver. The QP solver is tasked with solving the constrained optimization

problem that results at each sample, in order to calculate the control move(s) for the

next sample. This chapter shows that solving the quadratic program at each sample

forms the bulk of the computation required by the control algorithm, and therefore

it targets the QP solver as an opportunity to improve existing work, both in terms of

sample rate, and in terms of memory usage. By tailoring the QP solver for the class

of quadratic programs that result from a linear MPC controller, a suite of heuris-

tics and algorithm modifications are proposed which accelerate convergence, reduce

memory requirements and provide an opportunity to embed the solver within an

embedded platform. A comprehensive analysis of new and existing algorithm mod-

ifications is presented which shows the benefits of the proposed strategy against

traditional QP solvers, as well as industry standard QP solvers, for the optimization

problems of interest in this work. Results presented show that the quad mehrotra

algorithm presented obtains best in class performance against two literature MPC

case studies.

This chapter begins with an introduction to the model predictive control al-

gorithm used within this work, namely the finite-horizon algorithm, including the

derivation of the resulting quadratic cost function with linear constraints. A survey

illustrates issues with existing quadratic programming solvers for both the problems

of interest, as well as deployment to an embedded computing platform, before intro-

ducing the infeasible interior point method. The algorithm is detailed, including a

range of modifications for accelerating convergence and reducing memory consump-

tion, before being benchmarked against two existing literature studies. Finally, the
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jMPC Toolbox is introduced, which provides a framework for the design, tuning,

simulating and testing of linear MPC controllers with the new quadratic program-

ming solvers developed in this chapter.

3.1 Introduction

The standard formulation of the linear MPC control law involves minimizing a

quadratic cost function of the form

J =

Np∑

j=1

‖γj
(
ŷj − y⋆

j

)
‖2 +

Nc∑

j=1

‖λj∆uj‖2 (3.1)

where the decision variables, ∆u, are the control inputs over an immediate fu-

ture control horizon, Nc, and are chosen so that the weighted sum of the squared

deviations between the predicted output, ŷ and setpoint y⋆ and control moves is

minimized over the prediction horizon, Np. In addition, the system may be con-

strained so that the control inputs, ∆u, u, and plant output, ŷ, must satisfy some

predetermined system limits.

Given the problem definition above, the MPC problem can be constructed and

solved as a quadratic program, a superset of Linear Programming (LP) and a sub-

set of Nonlinear Programming (NLP), where the objective function may contain

quadratic, bilinear and linear operations only, and which is subject to linear con-

straints. The term ‘linear MPC’ refers to the fact that the dynamic model used

to predict the system’s response is linear, such as a transfer function or state-space

model.

3.2 Linear Model Predictive Control

As detailed in Section 2.2, the traditional linear MPC algorithm utilizes a Linear

Time Invariant (LTI) system model, such as a transfer-function, zero-pole-gain or

state-space description of the plant to be controlled. Using this linear model, coupled

with a discrete implementation, allows the linear MPC algorithm to avoid using a

generic numerical integration scheme intended for Ordinary Differential Equations

(ODEs), and provides a much simpler mechanism for predicting the system response.
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3.2.1 Algorithm Overview

A distinguishing feature of MPC is the principle of a receding horizon. At each

sampling instant the MPC controller solves a finite horizon control problem for a

sequence of optimal control inputs, of which only the first input is applied. This

procedure is repeated at every subsequent sample, and the prediction horizon shifted

one step further into the future. This constantly receding prediction horizon is where

MPC gets the well known name of receding horizon control, and is quite unique from

most of the other control strategies (such as traditional PID/LQR). An example of

calculation procedure at one sample is shown in Figure 3.1.

setp

ymax

ymin

Past Future

Prediction Horizon, Np

Measured

Predicted

umax

umin

Control 
Horizon

Past Inputs

Planned Inputs

  -4    -3     -2     -1     k     +1   +2    +3   +4    +5    +6   +7   +8    +9  +10    

Nc

Sample

�umax

Figure 3.1: A graphical description of the MPC algorithm at k=0.

In order to solve the finite horizon control problem MPC utilizes a system model

to predict the system response, based on a sequence of calculated future control

moves. This is where two significant advantages of MPC are realised; the system

model can be Single Input Single Output (SISO) or Multiple Input Multiple Output

(MIMO), or any combination within, meaning multivariable systems can be just as

easily controlled as single variable problems. Secondly, by being able to predict the

system’s response, we can apply constraints to the system outputs, as well as the

system inputs, by solving a constrained optimization problem at each time step.
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The downside to this powerful control strategy is high computational cost, whereby

solving the constrained optimization problem at each time step can consume up to

95% of the computation time at each sample (see Figure 3.3 in Section 3.2.2.6).

This therefore limits the applicability of the algorithm to typically large and slow

dynamic systems. This work focuses on accelerating the MPC algorithm and re-

sulting constrained optimization problem in order to make the algorithm suitable

for implementation on small, low-cost embedded systems controlling fast dynamic

systems.

3.2.1.1 Infinite Horizon MPC

At this point it is worth noting that only the finite-horizon MPC algorithm will be

considered within this work. This is opposed to the infinite-horizon (or dual-mode)

MPC that is now common in recent MPC literature. The reason for this is based

on the focus of this work which is taking the optimization algorithm and tailoring

it to the control problem, rather than the controller algorithm itself. Moreover, the

modification to achieve infinite-horizon MPC for an unconstrained system is simply

replacing the final weight (also known as the terminal weight) in the control hori-

zon within the objective function (Equation 3.17) with the solution to the discrete

algebraic Riccati equation [214, 287] (via dare) in MATLAB, a modification that is

considered trivial.

For infinite-horizon MPC of constrained systems (which are the focus of this

work), and excepting the computationally unimplementable solution of an infinite

horizon (i.e. Nc = ∞), the established technique [214, 273, 287] is the addition of

terminal constraints, which provide the necessary conditions for an unconstrained

infinite-horizon MPC controller to converge to a feasible solution. This follows

the unconstrained control law within mode 2 of a dual-mode controller (i.e. from

k = N → ∞). The selection of these constraints is independent of control horizon

and initial state, however the number of terminal constraints required is based on the

controller constraints, model and control law [54]. The issue is more about ensuring

the control horizon is ‘long enough’ so that the terminal state can be reached from

any operating point. However, this problem again diverges from the focus on the

optimizer, which apart from the addition of a few (typically small in comparison

to the prediction horizon) extra linear inequality constraints, is the same quadratic

optimization problem.

As stated by Rossiter in [287], “In practice the DMC/GPC algorithm is good

enough to handle most industrial problems. Recent advances have given a better

understanding of why this is so”. This indicates the finite-horizon algorithm of
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DMC/GPC works sufficiently well, while the advances within infinite-horizon MPC

have aided the theoretical reasoning as to why this is so. With the focus on this

work concerning the optimization, only the finite-horizon MPC controller will be

considered henceforth. The reader is reminded that a simple implementation of dual-

mode MPC only requires minor modifications to the weighting matrix and constraint

set, both of which can be handled using optimization techniques developed in this

work.

3.2.1.2 System Model

The core requirement of MPC is the availability of a linear system model. This

can be obtained by a variety of means, such as first principles modelling, system

identification or previous work, but ultimately a linear state space model must be

derived. As this work focuses on an implementation of discrete MPC, the model

of the system to control takes the following discrete state-space form for a SISO

system:

x̂k+1 = Âx̂k + B̂uk (3.2)

ŷk = Ĉx̂k (3.3)

and similarly for a MIMO system

x̂k+1 = Âx̂k + B̂uk (3.4)

ŷk = Ĉx̂k (3.5)

where x̂ ∈ ℜn×1, Â ∈ ℜn×n, B̂ ∈ ℜn×m and Ĉ ∈ ℜp×n. The hat (ˆ) is used to

designate a variable which is part of the estimated system model. In addition, the

state-space feedforward D̂ matrix is not used, as is common in predictive control

implementations. For the remainder of this chapter, the system model is assumed

to represent a SISO system, in order to simplify the algorithm description. For

modifications required to control MIMO systems, the reader can refer to Section 1.5

in [326], noting that only minor modifications are required.

3.2.1.3 Augmenting an Integrator

In order to design a tracking (i.e. able to follow a constant reference non-zero

setpoint, or setpoint with step changes only) MPC controller using this model, we

must augment an integrator to the system model. This can be achieved by either

augmenting the past control input(s) to the state vector, or, as done in [326] and

illustrated below, augmenting the output(s) to the state vector.
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To augment the model output to the state vector, first define two new delta

(difference) variables

∆uk
def
= uk − uk−1 (3.6)

∆x̂k
def
= x̂k − x̂k−1 (3.7)

Given these difference variables, the difference of the state-space model state update

equation can be rewritten as

∆x̂k+1 = Â∆x̂k + B̂∆uk (3.8)

and the output difference equation as:

ŷk+1 − ŷk = ĈÂ∆x̂k + ĈB̂∆uk (3.9)

To connect the state variable increment ∆x̂k with the output ŷk, we define a

new state variable vector

xk
def
=
[

∆x̂k
T ŷk

]T

(3.10)

and by using equations 3.8 and 3.9, we now form the new augmented model

[

∆x̂k+1

ŷk+1

]

︸ ︷︷ ︸

xk+1

=

[

Â 0T

ĈÂ 1

]

︸ ︷︷ ︸

A

[

∆x̂k

ŷk

]

︸ ︷︷ ︸

xk

+

[

B̂

ĈB̂

]

︸ ︷︷ ︸

B

∆uk (3.11)

ŷk =
[

0 1
]

︸ ︷︷ ︸

C

[

∆x̂k

ŷk

]

(3.12)

where 0 ∈ ℜ(p×n). Equations 3.11 and 3.12 now form the basis for the model used

for building the remainder of the MPC controller.

3.2.1.4 Generating the Prediction Matrices

The key idea in Model Predictive Control is the predictive component, which uses the

augmented model defined in equations 3.11 and 3.12 to predict the future outputs of

the system (ŷ), given the control inputs (∆u). However the first question that arises

is: how far forward do we predict the plant output? This is known as the Prediction

Horizon (Np), and is defined as the number of samples into the future we will use the

model to predict. In addition, we also have the ability to calculate multiple future

control moves, where the number we will optimize is defined by the Control Horizon
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(Nc). Figure 3.1 shows a graphical definition of both of these horizons, with respect

to the current sampling instant.

At the current sampling instant, k, together with a series of present and future

control moves

∆uk, ∆uk+1, · · · , ∆uk+Nc−1 (3.13)

and the current state vector, xk, the augmented model can be used to predict the

system state variables over the prediction horizon

xk+1|k, xk+2|k, · · · , xk+Np|k

In order to predict the future states, Equation 3.2 is rolled forward, as shown in

Equation 3.14

xk+1|k = Axk +B∆uk

xk+2|k = Axk+1|k +B∆uk+1

= A2xk +AB∆uk +B∆uk+1

...

xk+Np|k = ANpxk +ANp−1B∆uk +ANp−2B∆uk+1 + · · ·+ANp−NcB∆uk+Nc−1

(3.14)

noting that when Np = Nc, the final A term goes to I and the final term reduces to

B∆uk+Nc−1. For controllers where Np > Nc, the controller input is maintained at

the last calculated control input, as ∆u is set as 0.

To predict the system output, the predicted states are substituted into Equation

3.12

ŷk+1|k = CAxk +CB∆uk

ŷk+2|k = CAxk+1|k +CB∆uk+1

= CA2xk +CAB∆uk +CB∆uk+1

...

ŷk+Np|k = CANpxk +CANp−1B∆uk +CANp−2B∆uk+1 + · · ·+CANp−NcB∆uk+Nc−1

(3.15)

which together with the future calculated control inputs, ∆uk and the current state,

xk, allows a prediction of how the system under control will react.

Equation 3.15 is typically implemented in Matrix-Vector form, by stacking the
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following two vectors

Y
def
=
[

ŷk+1|k ŷk+2|k ŷk+3|k · · · ŷk+Np|k

]T

∆U
def
=
[

∆uk ∆uk+1 ∆uk+2 · · · ∆uk+Nc−1

]T

and then rewriting as a matrix expression

Y = Fxk +Φ∆U (3.16)

where the two matrices in Equation 3.16 are formed as

F =












CA

CA2

CA3

...

CANp












, Φ =












CB 0 0 · · · 0

CAB CB 0 · · · 0

CA2B CAB CB · · · 0
...

...
...

. . .
...

CANp−1B CANp−2B CANp−3B · · · CANp−NcB












.

3.2.2 Quadratic Program Formulation

To calculate the future control actions the controller will implement, a cost function

is used to define the operational objective of the controller. As described in Section

3.1, the standard MPC cost function is to minimize the squared difference between

predicted plant output (using Equation 3.16) and the future setpoint (which pro-

vides the reference tracking ability), together with the squared control increments

(to minimize aggressive control action). To be able to solve this cost function for

the optimal control increments, subject to operational constraints, we must solve a

quadratic optimization problem.

3.2.2.1 Cost Function

We define a setpoint expansion matrix which expands the current setpoint, y∗k, across

the entire prediction horizon

Y∗ def
=
[

1 1 · · · 1
]T

︸ ︷︷ ︸

ℜNp×1

y∗k

noting that in the above formulation we do not leverage future setpoint information.

This can however be done if desired. The setpoint expansion is then used within
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the following quadratic cost function

J = (Y∗ −Y)T Q (Y∗ −Y) +∆UTR∆U (3.17)

where Q ∈ ℜ(Np×Np),a symmetric positive-semidefinite tuning matrix for penalizing

setpoint deviations, and R ∈ ℜ(Nc×Nc), a symmetric positive-semidefinite matrix

for penalizing control input movements. For the classic MPC formulation, both Q

and R are diagonal (containing the tuning weights expanded along the diagonal),

however off-diagonal terms can be included for stability reasons or alternative cost

functions. Note Equation 3.17 is the matrix-vector form of Equation 3.1, declared

at the beginning of this chapter.

With Equation 3.16 substituted into Equation 3.17 and terms collected about

∆U, we have the following quadratic matrix expression, noting it is a function of

∆U only (we assume we can measure or estimate xk)

J = ∆UT
(
ΦTQΦ +R

)

︸ ︷︷ ︸

H

∆U−2ΦTQ (Y∗ − Fxk)
︸ ︷︷ ︸

2f

∆U + (Y∗ − Fxk)
T Q (Y∗ − Fxk)

︸ ︷︷ ︸

bias

(3.18)

where H and f are the standard quadratic program objective matrix and vector,

and the bias is simply a constant which can be dropped from the optimizer (it only

affects the objective value, J , not the decision variables, ∆U). The expression

for H has a special property in which it is convex, and therefore this cost function

results in a global minimum when solved correctly. This feature will be exploited

heavily later in this chapter (see Section 3.4.5.7).

Equation 3.18 is the standard linear MPC cost function which when uncon-

strained, can be solved using a standard linear equation solver (-H\f in MATLAB).

However with the addition of operational constraints, as described in following sub-

sections, the problem becomes a constrained optimization problem which will be

solved in this work as a quadratic programming problem.

3.2.2.2 Input Rate of Change Constraints

An input rate constraint is used to constrain the maximum rate of change of an

input variable. This could be used to implement a constraint on the slew rate of an

amplifier, or the change in a pump speed. The input rate constraint is the simplest

to implement, and is simply added as bounds on the decision variables, ∆U

∆Umin ≤ ∆U ≤ ∆Umax (3.19)
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To implement the above constraint in a quadratic problem subject only to linear

inequality constraints, the following inequalities can be defined












1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1























∆uk

∆uk+1

∆uk+2

...

∆uk+Nc−1












≤ ∆Umax (3.20)












−1 0 0 · · · 0

0 −1 0 · · · 0

0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1























∆uk

∆uk+1

∆uk+2

...

∆uk+Nc−1












≤ −∆Umin (3.21)

or in matrix-vector form

I∆U ≤ ∆Umax (3.22)

−I∆U ≤ −∆Umin (3.23)

3.2.2.3 Input Constraints

An input constraint is used to constrain the input actually applied to the plant,

rather than the discrete increment, as above. These are used for example to constrain

the minimum or maximum input voltage, or minimum or maximum valve position.

Input constraints are written as the following two inequalities

Umin ≤ U ≤ Umax (3.24)

where the input constraints are applied across the entire control horizon.

Constraints on the control input itself must be formulated as a function of the

control increments, meaning we must define an equation which relates the previous
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control input and planned control increments to the future control inputs












uk

uk+1

uk+2

...

uk+Nc−1












=












1

1

1
...

1












uk−1 +












1 0 0 · · · 0

1 1 0 · · · 0

1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 1 1























∆uk

∆uk+1

∆uk+2

...

∆uk+Nc−1












= Uk−1 +T∆U

(3.25)

where T is a lower triangular ones matrix in ℜNc×Nc .

To implement Equation 3.25 as a set of standard linear inequalities, it is substi-

tuted into 3.24 which results in the following inequalities












1 0 0 · · · 0

1 1 0 · · · 0

1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 1 1























∆uk

∆uk+1

∆uk+2

...

∆uk+Nc−1












≤ Umax −












1

1

1
...

1












uk−1 (3.26)












−1 0 0 · · · 0

−1 −1 0 · · · 0

−1 −1 −1 · · · 0
...

...
...

. . .
...

−1 −1 −1 −1 −1























∆uk

∆uk+1

∆uk+2

...

∆uk+Nc−1












≤ −Umin +












1

1

1
...

1












uk−1. (3.27)

3.2.2.4 Output Constraints

An output constraint is used to constrain the plant output, based on the predicted

outputs of the plant. These are used for example to constrain the minimum or

maximum angle, or minimum or maximum flow rate. Output constraints are written

as the following two inequalities

Ymin ≤ Y ≤ Ymax (3.28)

where the output constraints are applied across the entire prediction horizon.

Substituting Equation 3.16 into Equation 3.28 we can write the following in-
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equalities to constrain the plant output

Φ∆U ≤ Ymax − Fxk (3.29)

−Φ∆U ≤ −Ymin + Fxk (3.30)

Note that with the current formulation state constraints are not implemented

explicitly. However by placing a 1 in the corresponding element within the state

space C matrix, the state can be constrained. Furthermore, as detailed in Section

A.2.7, the output can be identified as uncontrolled, thereby removing the need for a

setpoint and thus removing it from the reference tracking penalty (Equation 3.17)

within the cost function, and rendering it purely a state constraint.

3.2.2.5 Hard versus Soft Constraints

All three constraints described so far are hard constraints, meaning the solutionmust

lie within the interior of these constraints, if a feasible solution exists. This choice

of constraint is common for input constraints (both rate-of-change and absolute),

as they reflect hard physical limits such as actuator limits. Output constraints, in

contrast, are subject to the accuracy of the internal linear model for predicting the

future output, as well as any unknown external disturbances, both of which make

using hard output constraints a risk to controller feasibility [287]. The solution is

to make all output constraints soft, meaning they may be temporary violated, but

the controller will be penalized via a term in the objective function, which actively

discourages violating these constraints.

Within this work, soft constraints are added when the user specifies a penalty

weight on an output constraint. Mathematically, soft constraints are added as extra

decision variables, one per constraint pair (i.e. upper and lower). The penalty

weight is augmented to the quadratic program H matrix as

[

H 0

0 diag(λ)

]

(3.31)

where λ
T is defined as

[

λ1 λ2 · · · λn

]

and λi is the associated penalty for constraint pair i. In addition, the output con-
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straint equation is modified as follows

[

Φ −1
]
[

∆U

∆Usoft

]

≤ Ymax − Fxk

[

−Φ −1
]
[

∆U

∆Usoft

]

≤ −Ymin + Fxk

where 1 ∈ ℜNp×1 and ∆Usoft are the decision variable(s) associated with the penalty

terms (the last element in∆U for a SISO system). For a MIMO system, 1 is replaced

with the identity matrix, dimensions q×q, repeated for each sample in the prediction

horizon.

As stated by Rossiter in [287], violations of soft constraints does not effect nom-

inal stability results, meaning that by using soft output constraints, we can ensure

feasibility of the control problem. For the remainder of this work, all constraints

will be treated as hard by default, unless specified otherwise. This is done to keep

the problem definition simpler.

3.2.2.6 Resulting Quadratic Program

In order to solve the resulting quadratic optimization problem described so far, it

must be posed in the standard quadratic programming form. This is done below

using standard nomenclature

minx

1

2
xTHx+ fTx

subject to: Ax ≤ b
(3.32)

where for this work we assume that the quadratic programming solver only solves

problems with inequality constraints. This is possible as the formulation used in-

cludes the linear model state space equation within the generation of the prediction

matrices, as opposed to a series of linear equality constraints in alternate formu-

lations. This alternate format has been avoided due to additional complexity of

handling equality constraints as well as inequality constraints, given this would re-

quire additional steps to formulate the problem within the QP solver.

Following the above definition, the optimization problem to solve at each sam-

pling instant is written as follows

min∆u

1

2
∆uTH∆u+ fT∆u

subject to: M∆u ≤ b
(3.33)
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where

H = ΦTQΦ+R, f = −ΦTQ (Y∗ − Fxk)

M =














I

−I

T

−T

Φ

−Φ














, b =














∆Umax

−∆Umin

Umax −Uk−1

−Umin +Uk−1

Ymax − Fxk

−Ymin + Fxk














and assuming all constraints are imposed in the optimization problem, as well as

modelling a SISO system. All constraints are assumed present in order to represent

the worst case scenario, i.e. the maximum number of constraints. This provides the

most challenging optimization problem with respect to both computational demand

and memory requirements, and therefore will be used throughout the remainder of

this work. In practice however, it is noted not all constraints would be used, but

this design approach does allow greater flexibility.

Note extensions to the MIMO case simply expand the optimization problem

dimensions, but the same structure and sets of equations remain.

For a fully constrained (i.e. constraints on ∆U,U and Y) SISO system with

Np = 8, Nc = 3 the MT matrix has the structure shown in Figure 3.2. Note that M
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Figure 3.2: Linear inequality constraint MT matrix structure.

is particularly dense at greater than 70% non-zero terms, which is typical for these

problems. Given this particularly dense structure, sparse routines are unlikely to

offer any advantage in computational speed.

Equation 3.33 completes the constrained control law calculation required at each

sample step. This forms the bulk of the computation time required at each sample,

as shown in Figure 3.3 for a 2 input, 3 output, 6 state system with Np = 15, Nc = 10

on a desktop computer. Note in the jMPC implementation (described later on in

Section 3.5.2) the QP only requires solving when the global unconstrained minimum

of Equation 3.33 does not satisfy the constraints. When the QP solver is called, it

averages 94% of the required computation time, meaning the focus for high-speed

MPC should definitely target this step.
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Figure 3.3: Timing breakdown of the MPC computation at each sample.

3.3 Review of Existing Quadratic Programming

Solvers

3.3.1 Quadratic Programming Algorithms

Using dedicated custom code to solve quadratic programming problems is an estab-

lished discipline which aims to solve a linearly constrained nonlinear optimization

problem which involves only bilinear and quadratic terms. By leveraging this fea-

ture of the objective, the Hessian of the nonlinear problem reduces to a constant

matrix. We can thus describe the entire problem with respect to constant matrices

and vectors as shown in Equation 3.32. The main advantage of this class of nonlin-

ear problem is based on the problem description requiring only constant matrices

(as opposed to black-box functions), and similar to a constrained linear program, a

solver can be tailored to exploit all problem information.

The quadratic programs that result from the MPC formulation described so

far are always convex (as proved in Section 3.4.2), and thus global optimality can

be ensured using a suitable algorithm, provided the problem is of course feasible.

The methods for solving a quadratic problem vary, based on factors such as the

types of constraints, whether similar QP problems will be solved iteratively, and

availability within a modelling framework. The two most common algorithm classes

are described below and are based on the overviews described in [235, 336].
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Figure 3.4: Quadratic program optimization surface and constraints resulting from
a fully constrained SISO system with Np = 10, Nc = 2. Box constraints result
from constraints on ∆U, while the other linear constraints are the upper and lower
output constraints. The red dot indicates the constrained optimum.

3.3.1.1 Active-Set

Active-set methods are best suited to small to medium sized-problems and are one of

the oldest techniques for solving QPs, having been widely used since the 1970s. The

fundamental idea of the active-set method is to find the set of constraints (bounds,

equality and inequality) which is active at the solution. With this information it is

possible to solve an equality-only constrained sub-problem to determine the optimal

value of the objective and decision variables.

The active-set method is typically regarded as a two-phase process, where the

first phase finds a feasible starting point (which can be found by solving a linear

program, the white central area within Figure 3.4), while the second phase aims to

find the optimal solution given this starting point and a guess of the current active

constraints (known as the working set) by solving an equality constrained QP sub-

problem. The advantage of this approach is that not all constraints are considered

and thus solving the QP sub-problem in phase two can be quite small, depending

on the size of the working set. As shown in Figure 3.4, it is typical for an MPC

problem to only have one or two active constraints at the solution, given for example

the output constraints should be at quite different operating points.

The efficiency of the active-set method is realised by clever updates of the fac-
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torization of the QP sub-problem at each iteration, which assuming only one con-

straint is ever added or deleted, only one row is ever changed within the Karush-

Kuhn-Tucker (KKT) matrix. By utilizing an initital QR factorization together with

a transformation matrix for each iteration, addition of new constraints does not

require the entire KKT matrix to be re-factorized. Similarly, when dropping con-

straints, applying a sequence of plane rotations allows the factors to be updated.

Active-set methods are also well suited to iterative problems where similar QPs

will be solved sequentially, such as in the MPC case. By providing the previous final

active-set to the solver at the next QP to solve, this can substantially reduce the

algorithm searching for the correct working set [27]. The downside of the active-set

algorithm, however, is that in the worst case scenario, where it must check every

combination of constraints, the algorithm is non-polynomial in time (also called

NP-hard), and thus can scale very poorly. Referencing again back to Figure 3.4,

this situation can occur when a setpoint changes the output from close to upper

output constraints (top of the figure), to now close to the lower output constraints

(bottom of the figure). The previous active-set guess will be completely wrong, and

the solver must now identify a completely new set of active constraints.

3.3.1.2 Interior-Point

The interior-point method originally gets its name from the characteristic that re-

quired all iterates to satisfy all constraints, and thus must always lie in the interior of

the problem subspace. These methods were typical of formulations used for nonlin-

ear programming, but it was revealed in the 1980s that they could also solve linear

(and associated quadratic) programs efficiently, i.e. with polynomial complexity.

One of the seminal works on interior-point methods was Karmarkar’s projective

algorithm [161], which as described by Nocedal and Wright in [235], also showed

good practical performance. This was opposed to earlier work such as the ellipsoid

method proposed by Khachiyan [167], which although exhibited at worst polynomial

complexity, it was in practical terms always at this lower performance limit.

Interior-point methods typically fall into one of three categories. The potential

reduction algorithm (similar to Karmarkar’s algorithm), the affine scaling algorithm

and the path following algorithm. Within the path following category, the primal-

dual approach has become the method of choice for large-scale implementations,

given that it exhibits excellent practical performance (much better than the worst

case polynomial complexity). The term primal-dual refers to the fact the algorithm

simultaneously solves the primal and corresponding dual problem, iteratively up-

dating the primal and dual iterates until convergence has been obtained, typically
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by checking primal and dual feasibility, together with the complementarity (or du-

ality) gap. Moreover by ensuring the KKT conditions are satisfied at each step,

together with ensuring the problem is convex, this method will guarantee the global

optimum.

Modern (dual) path-following interior-point methods (1990s) no longer require

the initial iterates to lie within the feasible region (although the solution must, if

the problem is feasible), so that an initial feasibility phase such as required by the

active-set algorithm is not required. At each iteration the algorithm solves a system

of linear equations that contains all constraints, which can be quite computationally

expensive. However the result of this expensive calculation is that the algorithm can

make significant progress towards the solution, and thus the number of iterations

required is reduced. This is in contrast with the simplex method for LPs (see Chapter

13 in [235]), which requires a large number of iterations, but little work is done at

each iteration to compute the simplex pivot.

The most important (modern) contribution to interior-point methods was the

predictor-corrector modification proposed by Mehortra [217] which advocated the

use of a second-order term to correct for the linearization of the system of nonlinear

equations solved by the path-following algorithm. A later modification was proposed

by Gondzio [115] which included higher-order correction terms to further reduce this

linearization error, and maintain the iterates closer to the central path. One or both

modifications are typical in most practical implementations of primal-dual interior-

point methods today.

Warm starting path-following interior-point methods has received considerable

attention, such as in [345] which proposes several techniques for warm starting based

on a perturbed linear program, however it is generally accepted that they do not

benefit from warm-starting to the same degree as the active-set method (see Section

16.6 in [235]). This is related to the path-following aspect of the algorithm, which

requires the iterates to lie within the central-path in order for large and accurate

steps towards the optimum to be made.

3.3.2 Existing Quadratic Programming Solvers

Given the abundance of work within the quadratic programming field there is also

a multitude of high-speed QP solver implementations available to use. A small

selection of the solvers used for performance comparisons is briefly described in the

following sub-sections, and was chosen based on availability for this work. Table 3.1

summarises the availability and functionality of each solver.
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Table 3.1: Surveyed quadratic programming solver availability and problem solving
functionality.

Solver Availability Solver Functionality
CLP Open source LP, QP
CPLEX Commercial LP, MILP, QP, MIQP, QCQP, MIQCQP
CVXGEN Open source1 LP, QP, QCQP
IPOPT Open source QP, NLP
MATLAB - quadprog Commercial QP
OOQP Open source LP, QP
QPC - qpip,qpas Closed source QP
SCIP Open source LP, MILP, QP, MIQP, QCQP, MIQCQP

1 Code generation source is closed, but the resulting solver is open source.

3.3.2.1 CLP

Written and maintained by John Forrest (IBM, retired), Clp [100] is an open-source

solver primarily focused on solving linear programming problems using either a

primal or dual simplex algorithm. However it also contains a barrier (interior-point)

algorithm for solving quadratic problems, using a Cholesky factorization algorithm

supplied with the solver. As noted by John himself, the sparse Cholesky factorization

code is quite basic, and thus substantial performance improvements can be found

using third party solvers such as MUMPs [13] or the Watson Sparse Matrix Package

(WSMP) [121]. For this work the original supplied Cholesky factorization code

has been utilized because the interface to MUMPs would intermittently crash, and

WSMP was only available under Cygwin.

3.3.2.2 CPLEX

Now owned by IBM, Cplex [144] is a commercial linear and quadratic solver with

support for both integer variables, and quadratic constraints. Together with Gurobi,

Cplex is one the fastest mixed integer linear programming solvers available using a

simplex solver for relaxed linear problems and an advanced branch and cut frame-

work for mixed integer problems. In addition it contains a very efficient parallelized

barrier (interior-point) algorithm for solving quadratic problems, as well as a Second

Order Cone (SOC) solver for quadratically constrained problems.

3.3.2.3 CVXGEN

CVXGEN [210] is a C code solver generator based on the CVX framework [116]. It

generates a fully unrolled implementation of a fixed-size LP or QP problem, i.e. all

63



matrix and linear algebra routines are fully written out as per a symbolic expression.

The advantage is that when compiled with full optimization settings enabled, the

resulting solver is typically 20 times faster than the original implementation. The

downside to this approach is that it requires a large amount of memory in order to

store the compiled solver, and can take a considerable amount of time to compile.

3.3.2.4 IPOPT

IPOPT [323] is an open-source large-scale convex nonlinear programming solver

which can also efficiently solve quadratic problems using an implementation of

Mehrotra’s predictor corrector method [217]. IPOPT stands for Interior Point Opti-

mizer, and thus is an interior point solver. It was originally written in Fortran by An-

dreas Wächter under the supervision of L. Biegler. Carl Laird later re-implemented

IPOPT in C++, which is its current form.

3.3.2.5 MATLAB - quadprog

MATLAB’s Optimization Toolbox [207] provides a number of quadratic program-

ming solver algorithms via the function quadprog. As well as an active-set method,

an advanced interior-point (convex only) method is supplied which has been used

for benchmarking and validation in this work.

3.3.2.6 OOQP

Object Orientated Quadratic Programming (OOQP) [108] is an open-source software

package written by Stephen Wright and Michael Gertz. It provides two interior point

algorithms based on current state of the art primal-dual techniques: A Gondzio

version [115] and a Mehrotra version [217]. It also provides interfaces and linear

solver connections for both sparse and dense systems.

3.3.2.7 QPC

Quadratic Programing in C (QPC) [330] is a free, closed-source package written by

Adrian Wills. It provides both an active-set (qpas) and an interior-point algorithm

(qpip), with modifications for handling bounded problems only. The interior point

algorithm is based on the Mehrotra predictor corrector algorithm [217], using mul-

tiple corrections as proposed by Gondzio [115]. The active-set algorithm is based
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on an algorithm proposed by Goldfarb and Idnani [113], including modifications

proposed later by Powell [253]. Both algorithms are suited for dense systems only.

3.3.2.8 SCIP

Reported as the fastest non-commercial mixed integer linear programming solver

available [220], SCIP [2] is a constraint integer programming framework which can

solve linear, quadratic and nonlinear problems to proven global optimality. It does

this using a spatial branch and bound technique, using under and over estimators to

reduce nonlinear problems to relaxed linear subproblems, and then solving them to

narrow the problem bounds. SCIP uses its own LP solver, SoPlex, for solving relaxed

linear problems, and IPOPT for solving relaxed nonlinear (including quadratic)

problems.

3.3.2.9 Comparison of Existing Quadratic Programming Solvers for MPC

Problems

In order to get a baseline of existing QP solver performance all the above solvers

were run over 500 random quadratic programs, each of which were generated from

a constrained (constraints on ∆U,U and Y) MPC controller with Np = 10, Nc =

8, m = 2, n = 5, p = 2. This setup results in a QP with 16 decision variables and

104 linear inequality constraints, which is typical of the sizes targeted in this work.

Each model is generated using the MATLAB command drmodel which generates a

random stable discrete model with m inputs, n states and p outputs, as shown in

the code listing in Section A.3. Figure 3.5 shows the timing results of each of the

solvers, excluding SCIP (due to larger solve times), and run on a 64bit Intel Core

i7 laptop at 2.8GHz.

It is worth noting that solvers such as CPLEX, OOQP, IPOPT and SCIP are

designed for large-scale and sparse optimization problems and thus this is not a

strictly fair comparison. Figure 3.6 shows the relative performance for the solvers

which can leverage the problem density.

In addition to comparing solver performance results, Table 3.2 also shows the

accuracy and compiled algorithm size of each of the solvers. All solvers were run

with a relative tolerance of 10−7 and quadprog was taken as the reference solution.

What is clear from Table 3.2 is that several high performance QP solvers do exist

and are suitable for robustly solving the optimization problems that result from an

MPC formulation. Yet as it will be shown in the next subsection, there is still room
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Figure 3.5: Timing comparison of 500 QPs on selected QP solvers (see also Figure
3.6).
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Figure 3.6: Detailed timing comparison of the 4 fastest QP solvers (detail from
Figure 3.5).
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Table 3.2: Timing and Solver Size comparison for 500 QPs.

Solver Total Average Relative File Size
Time [s] Time [ms] Error1 [KB]

qpas 0.171 0.341 0.000% 95.74
CVXGEN 0.232 0.463 0.000% 1194.5
qpip 0.330 0.660 0.005% 114.18
CLP 0.399 0.798 0.000% 2083.84
CPLEX 1.5622 3.1232 0.000% 16800.963

quadprog 2.674 5.348 0.000% 1431.314

OOQP 3.082 6.163 0.000% 26167.813

IPOPT 4.332 8.665 0.000% 11404.83

SCIP 16.087 32.175 0.000% 16063.493

1 The quadprog solution is used as the reference solution.
2 CPLEX timing includes the getting started parallelization cost.
3 These solvers are compiled against BLAS, LAPACK and optionally a sparse linear
solver (such as PARDISO), increasing the solver size, but also increasing speed.
4 quadprog has been compiled using MATLAB’s mcc to generate an executable for
comparison.

for improvement.

3.4 Development of a New Quadratic Program-

ming Solver

One of the primary motivations to develop a new quadratic programming solver is

that the algorithm source code must be available in order to implement it on an

embedded system. This is required as target specific libraries, given the multitude

of embedded systems and compilers available are virtually impossible to request.

Therefore for solvers such as QPIP and QPAS, without purchasing the source (or

licensing it in some way), there is no way they can be used for this work.

For solvers where the source is available, such as CVXGEN and CLP, the com-

piled code size is simply too large to implement on an embedded processor with

say, less than 256KB of Flash memory (and/or RAM). This is not to say complex

modifications could be made to the existing code in order to get it to fit in mem-

ory, but it is also possible that a QP solver specifically tailored to MPC problems

could improve on the performance of all solvers surveyed so far, and still require less

memory.

For the remainder of this section we will detail the algorithm and development

of an Interior-Point (IP) quadratic programming solver that will be tailored for
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use specifically with MPC problems. While the existing solver survey has shown

that an active-set method is actually the fastest, the reasons we have pursued an

interior-point method are as follows:

Infeasibility Given the quadratic programs result from an optimal control prob-

lem, it is not uncommon that external disturbances may push the system into

an infeasible state. This happens when the linear constraints become overly

stringent, meaning no control move is possible that will bring the predicted

system response back to a feasible operating point. Standard active-set algo-

rithms require that the initial solution guess is feasible before the algorithm

can begin to solve for a solution, thus an active-set algorithm will not be

able to improve the solution (towards hopefully a less infeasible point) if the

problem is infeasible. In contrast, modern interior-point algorithms allow an

infeasible initial point, and will work towards the optimal (or less infeasible)

point during the normal course of solving. Soft constraints can be used to

ensure the system remains feasible, however they increase the problem dimen-

sion, add to numerical problems (due to large penalty values) and may not

always guarantee a feasible solution in limited precision systems.

Determinism One of the disadvantages of the interior-point algorithm is that all

constraints are considered at every iteration. This increases the size of the

linear system to be solved at each iteration, meaning the algorithm is quite

computationally intensive. An active-set solver, on the other hand, only has

to solve for systems that include the active-set of constraints, which for MPC

problems, is often only a small percentage of the constraints. The problem is

determining which constraints are active, and an active-set solver may have

to (theoretically) check every constraint at each iteration before finding a so-

lution, a problem which is NP-hard in the worst case scenario [27] (versus

polynomial for modern interior-point methods). The effect is that although

slower in general, interior-point methods give a reliable upper-bound on the

execution time of the solver, and therefore make them more attractive for

real-time control algorithms where worst-case execution time for a specified

number of iterations must be known a-priori.

Numerical Stability Previous authors such as in [182] have shown that an active-

set algorithm may be more numerically sensitive in single precision that an

equivalent interior-point algorithm. Their results indicated a 3.65% failure

rate for the active-set algorithm due to numerical issues, versus 0.15% for

their interior-point implementation. Given the target implementation of this

work will be a 32bit microcontroller with a single precision floating point unit,

algorithms that have a good numerical stability is an important consideration

for the algorithm choice.
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3.4.1 Infeasible-Interior-Point Methods

Amodern variant of the interior-point algorithm is the Infeasible-Interior-Point (IIP)

method. It is based on the Mixed Monotone Linear Complementarity Problem

(mLCP), which is a paradigm for describing convex linear and quadratic problems

and their optimality conditions. This algorithm and its theoretical underpinning is

described by Stephen Wright in [337], and is summarised below in order to detail

the algorithm requirements.

An mLCP is defined in terms of a square, positive semidefinite matrix N ∈ ℜn×n

and a vector q ∈ ℜn where the objective is to find vectors z, λ and t such that

[

N11 N12

N21 N22

][

z

λ

]

+

[

q1

q2

]

=

[

0

t

]

(3.34)

λ ≥ 0, t ≥ 0,λT t = 0 (3.35)

where N11 and N22 are square submatrices of N, q is partitioned accordingly and

λ and t are the lagrange multipliers and slack variables (introduced to convert

inequality constraints to equalities) respectively.

In order to maintain algorithm stability while ensuring the iterates stay positive,

the complementarity condition λ
T t = 0 is replaced with

ΛTe = µe (3.36)

where

Λ = diag (λ1, λ2, ..., λmc
) , T = diag (t1, t2, ..., tmc

) , e = [1, 1, ..., 1]T .

and µ is the complementarity gap, which for iteration k, is defined as

µk =

(
λ

k
)T

tk

mc

(3.37)

Note mc in Equation 3.37 is the length of λ (and thus the length of t), the number

of constraints in the problem.

With this modification, given λ, t ≥ 0, the problem is then to find z,λ, t such

that

Fµ =






N11z+N12λ+ q1

N21z+N22λ− t+ q2

ΛTe− µe




 = 0 (3.38)
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which is a system of nonlinear equations. In order to solve this system the typical

interior-point strategy is to use Newton’s method where µ is gradually reduced to

0 (or some pre-defined tolerance) at each iteration. The modified (based on the

addition of µ) Newton step is then to find a search direction that satisfies

∂Fµ

∂p
∆p = −Fµ (3.39)

where

p =






z

λ

t




 , ∆p =






∆z

∆λ

∆t






The infeasible-interior-point method starts with iterates z0,λ0, t0 where λ
0 >

0, t0 > 0, but unlike a traditional interior-point solver, the initial iterates may be

infeasible with respect to Equation 3.34. As discussed, this means the algorithm

does not need to search for an initial feasible point, and any initial condition can

be used. For each subsequent iteration of the algorithm the iterates λ, t remain

positive, but the primal and dual infeasibilities, together with the complementarity

gap, are gradually reduced to zero. Substituting Equation 3.38 into Equation 3.39

results in the system of linear equations to solve at each iteration






N11 N12 0

N21 N22 −I

0 Tk Λk











∆zk

∆λk

∆tk




 =






−rk1

−rk2
−ΛkTke+ σkµke




 (3.40)

where

σk ∈ (0, 1]

rk1 = N11z
k +N12λ

k + q1

rk2 = N21z
k +N22λ

k − tk + q2

To obtain the iterates for the next iteration the increments solved in Equation 3.40

are multiplied by a scalar, then added to the previous iterates

(
zk+1,λk+1, tk+1

)
=
(
zk,λk, tk

)
+ αk

(
∆zk,∆λk,∆tk

)
. (3.41)
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The scaling factor, α, is chosen such that

αk ∈ (0, 1]
(
λ

k+1, tk+1
)
> 0.

(3.42)

For a proof of global convergence, together with additional conditions required

to ensure convergence is obtained, see [337, 339].

3.4.2 Solving Quadratic Programs using the IIP Framework

In order to solve the QP presented in Equation 3.33 using the IIP framework it is

easiest to write out the problem again, relating the variables in mLCP problem to

the standard QP form

minz
1

2
zTHz+ fTz

subject to: Mz ≤ b.
(3.43)

To convert Equation 3.43 into an IIP, we can write the Karush-Kuhn-Tucker (KKT)

conditions for the problem. These ensure that for convex problems the feasible

solution is also the optimal solution, however they only hold for convex problems.

Recalling Equation 3.18, H is defined as

H
def
= ΦTQΦ+R

where both Q and R are positive-semidefinite matrices, and Φ is one of the predic-

tion matrices, defined in Equation 3.16. Given Φ is defined as ℜNp×Nc and has a

rank of Nc, due to its construction, then following [250]

ΦTQΦ � 0 (3.44)

where the expression � 0 means positive-semidefinite. The addition of two positive-

semidefinite matrices also results in a positive-semidefinite matrix, following the

standard definition of a positive-semidefinite expression

xT
(
ΦTQΦ

)
x ≥ 0, ∀x

xTRx ≥ 0, ∀x
∴

xT
(
ΦTQΦ+R

)
x ≥ 0, ∀x

(3.45)
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Therefore having proved H is positive-semidefinite, the KKT conditions are as fol-

lows

Hz+MT
λ+ f = 0

Mz+ t− b = 0

t ≥ 0, λ ≥ 0, tTλ = 0

(3.46)

Equation 3.46 can be substituted into the mLCP problem, Equation 3.40, by

using the following identities

N11 = H, N12 = MT , N21 = M

q1 = f , q2 = −b

resulting in the following equation






H MT 0

M 0 I

0 Tk Λk











∆zk

∆λk

∆tk




 = −






Hzk +MT
λ
k + f

Mzk + tk − b

ΛkTke− σkµke




 (3.47)

As the diagonal elements in Λk are positive, we can simplify the problem to a two

step solution

[

H MT

M −
(
Tk
)−1

Λk

][

∆zk

∆λk

]

= −
[

Hzk +MT
λ

k + f

Mzk − b+ σkµk
(
Λk
)−1

e

]

∆tk = −tk +
(
Λk
)−1 (

σkµke−Tk∆λk

)

(3.48)

A further simplification can be made to reduce the linear system size, but increase

it to a 3-step solution

(

H+MT
(
Tk
)−1

ΛkM
)

∆zk =

−Hzk −MT
λ

k − f −MT
(
Tk
)−1 (

Λk
(
Mzk − b

)
+ σkµke

)

∆λk =
(
Tk
)−1 (

Λk (M∆z +Mz− b) + σkµke
)

∆tk = −tk +
(
Λk
)−1 (

σkµke−Tk∆λk
)

(3.49)

Given forming and solving Equation 3.49 is the most computationally intensive step,

particular focus will be spent on its implementation further on in this chapter.
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3.4.3 Exploiting Rectangular Constraints

A common modification of the IIP algorithm is to separately treat decision variable

rectangular bounds (lb ≤ x ≤ ub) from the general linear inequality constraints. The

advantage is that the number of inequality constraints is reduced, thus computations

involving M require less operations, and convergence may be improved. Given the

MPC formulation presented earlier in this chapter, bounds exist when constraints

on the rate of change of the input (∆u) are imposed. If bounds are to be considered

separately, then the QP problem is now

minz
1

2
zTHz+ fTz

subject to: Mz ≤ b

lb ≤ z ≤ ub

(3.50)

where lb and ub are the lower and upper bounds (−∆Umax and ∆Umax in the MPC

case) respectively. The KKT conditions for this problem are

Hz+MT
λ+ f + u− l = 0

Mz+ t− b = 0

z+ g − ub = 0

z− s− lb = 0

t ≥ 0, λ ≥ 0, tTλ = 0

u ≥ 0, g ≥ 0, uTg = 0

l ≥ 0, s ≥ 0, lT s = 0

(3.51)

where we have introduced four new variables, u, l are the Lagrange multipliers and

g, s are the slack variables for upper and lower bounds. The complementarity gap

for this system is now defined as

µk =

(
λ

k
)T

tk +
(
uk
)T

gk +
(
lk
)T

sk

2n+mc

(3.52)

Following the steps in Section 3.4.1 the linear system involving inequalities and
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bounds to be solved at each iteration is now
















H MT I −I 0 0 0

M 0 0 0 I 0 0

I 0 0 0 0 I 0

I 0 0 0 0 0 −I

0 Tk 0 0 Λk 0 0

0 0 Gk 0 0 Uk 0

0 0 0 Sk 0 0 Lk































∆zk

∆λk

∆uk

∆lk

∆tk

∆gk

∆sk
















= −
















Hzk +MT
λ

k + f + uk − lk

Mzk + tk − b

zk + gk − ub

zk − sk − lb

ΛkTke− σkµke

UkGke− σkµke

LkSke− σkµke
















(3.53)

where

Uk = diag
(
uk
1, u

k
2, ..., u

k
n

)
, Gk = diag

(
gk1 , g

k
2 , ..., g

k
n

)

Lk = diag
(
lk1 , l

k
2 , ..., l

k
n

)
, Sk = diag

(
sk1, s

k
2, ..., s

k
n

)
.

The most noticeable difference with Equation 3.53 and Equation 3.47 (inequali-

ties only) is the size; adding bounds has more than doubled the linear system size.

By substituting out the lagrange and slack variables as was done in Equation 3.49,

we can reduce the system of equations to a seven step process

(

H+
(
Gk
)−1

Uk +
(
Sk
)−1

Lk +MT
(
Tk
)−1

ΛkM
)

∆zk = −yk

∆λk =
(
Tk
)−1 (

Λk (M∆z +Mz− b) + σkµke
)

∆uk =
(
Gk
)−1 (

Uk (∆z + z− ub) + σkµke
)

∆lk =
(
Sk
)−1 (

Lk (−∆z− z+ lb) + σkµke
)

∆tk = −tk +
(
Λk
)−1 (

σkµke−Tk∆λk
)

∆gk = −gk +
(
Uk
)−1 (

σkµke−Gk∆uk
)

∆sk = −sk +
(
Lk
)−1 (

σkµke− Sk∆lk
)

(3.54)

where

yk = Hzk +MT
λ+ f + uk − lk +MT

(
Tk
)−1 (

Λk
(
Mzk − b

)
+ σkµke

)
+ gk

r − skr

gk
r =

(
Gk
)−1 (

Uk
(
zk − ub

)
σkµke

)

skr =
(
Sk
)−1 (

Lk
(
−zk + lb

)
σkµke

)

Having admittedly made solving the problem larger and more complicated, the

question then is: Have we improved the solution speed of the algorithm? The hy-

pothesis is that there will be a payoff point; once the number of decision variables

increase sufficiently then a speed improvement will be seen. By increasing the num-
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ber of decision variables, the effective number of bounds constraints increase in M,

and therefore we can conclude the matrix-vector calculations will take longer. By

substituting out the bounds and treating them separately, we will reap rewards

despite the increase in computation steps.

To test this we have compared the performance of two solvers; quad wright,

our implementation of the IIP algorithm, and qpip, tested both with and without

bounds. The result is four comparative runs across two interior-point solvers, using

a set of random QPs generated from random MPC controllers. Each MPC controller

was generated using a random stable discrete model with two inputs, two outputs

and five states, using the MATLAB command drmodel. In addition, each controller

was fully constrained (∆u,u,y all bounded), and setup with identity tuning weights.

The prediction and control horizons are then varied between Np = 2, Nc = 1 in steps

of 2 (where Np = 2Nc) toNp = 98, Nc = 49, resulting in a series of 25 test controllers,

each run 20 times and the results averaged.
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Figure 3.7: Log-Log bound exploitation comparison.

Figure 3.7 shows the results obtained using both quad wright and qpip, in-

cluding the ratio of speedup for exploiting (treating separately) the bounds. As

expected, the quad wright algorithm that did not treat bounds separately was

faster for small problems (1-40 decision variables). In addition, the quad wright

algorithm that treated bounds separately was shown to be faster for larger prob-

lems (40+ decision variables). However the qpip algorithm did not show the same
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result, with treating the bounds separately always being faster than lumping them

with the inequalities. Closer inspection of the qpip algorithm reveals that at each

iteration it factorizes and solves a system of linear equations that includes H and

M (i.e. similar to Equation 3.48) using a symmetric indefinite solver. Given the

factorization and linear solver are the most expensive operations, and by removing

a number of constraints from this system, thus reducing the size, the results shown

for qpip in Figure 3.7 are expected.

Because the purpose of this work is to develop a QP solver for implementation on

an embedded platform, the size of problems we will attempt to solve is limited. The

vertical dashed red lines in Figure 3.7 show the upper bound of problems of interest,

i.e. with less than 40 decision variables. Normally problems will be limited to sizes

much less than this, say 10-20 decision variables, memory and speed permitting.

Therefore it is clear the benefit of treating bounds separately with the quad wright

algorithm is not significant for the problems of interest, and thus modifications listed

in this subsection will not be incorporated in the final algorithm.

In addition, the practical use of rate-of-change constraints (∆Umax) is considered

limited for the high-speed systems we are interested in controlling, where typically

voltage is the control input and time constants of the implementation circuits far

exceed that which is achievable by the proposed control algorithm.

3.4.4 Mehrotra’s Predictor-Corrector Modification

One of the most significant contributions to interior-point methods in recent years

was the predictor-corrector modification proposed by Sanjay Mehrotra [217]. This

method forms the basis for most practical implementations of interior-point solvers,

and thus investigation of its applicability to the proposed algorithm has been un-

dertaken.

The core idea of the predictor-corrector algorithm is that the linear system factor-

ization is the most expensive step, and thus if it can be reused, then potential com-

putational savings can be realized. Moreover, by exploiting a higher order derivative

of the Newton (affine-scaling) step, the prediction step length can be corrected by

performing a second solve operation which utilizes this higher order information.

The practical result is that the predictor-corrector algorithm requires more work

per iteration, but less iterations are required to solve the problem. Therefore a bal-

ance again exists between the payoff of reduced iterations versus extra operations

per iteration.

Before exploring this balance, the modifications to the IIP algorithm are pre-
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sented to illustrate the extra work required. To begin with, Equation 3.47 is modi-

fied such that the complementarity gap µ and centering parameter σ are removed.

This step is known as the prediction step:






H MT 0

M 0 I

0 Tk Λk











∆zk

∆λk

∆tk




 = −






Hzk +MT
λ

k + f

Mzk + tk − b

ΛkTke




 (3.55)

Next, as with the original algorithm, the step-length α is chosen as the largest

value within (0,1] that maintains the Lagrange multipliers and slack variables as pos-

itive. The next step uses a heuristic proposed by Sanjay for choosing the centering

parameter σ

σk =

((
λ

k + αk∆λk
)T (

tk + αk∆t
)

(
λ
k
)T

tk

)3

(3.56)

which is used to keep the iterates on the central path (i.e. the path-following char-

acteristic). The final modification is the real trick of Sanjay’s work, the correction

step






H MT 0

M 0 I

0 Tk Λk











∆zk

∆λk

∆tk




 = −






Hzk +MT
λ

k + f

Mzk + tk − b

ΛkTke+∆Λk∆Tke− µkσke




 (3.57)

What is obvious when comparing Equations 3.55 and 3.57 is that the left hand

side matrix is identical. This means the Cholesky factorization performed in the

prediction step can be reused in the correction step, and only a triangular substi-

tution solver is required to solve the second linear system. Once the second system

is solved, α is once again solved for, given the same requirements and Equation

3.41 used to update the iterates. Note modifications to the selection of the final

step-length have been proposed (such as in [107]) however for this work it has not

been found to noticeably affect algorithm performance.

Returning to the hypothesis of a payoff balance between reducing iterations and

extra work per iteration, the two algorithms proposed so far have been compared

over the same range of MPC problem sizes as detailed in Section 3.4.3. Figure 3.8

shows a Log-Log comparison of the two algorithms.

What is interesting about Figure 3.8 is the difference in payoff observed between

a MATLAB implementation and a C-code implementation of both algorithms. Both

quad wright and quad mehrotra have been implemented in both MATLAB and
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Figure 3.8: Log-Log quad wright vs quad mehrotra comparison.

C, and both obtain virtually identical results (down to eps), yet due to the differing

linear algebra libraries we see a different crossover point. In MATLAB it’s built in

linear algebra libraries (BLAS/LAPACK) are utilized, while in C a custom library

is used. The result of these two different libraries is that in MATLAB the crossover

point exists at around 40 decision variables, while in C it is at 2 decision variables.

The gradient differences between the two upper graphs show the effect of advanced

linear algebra libraries which exploit parallelism, and the MATLAB code will scale

much better with increasing problem size, but has an increased start-up cost in order

to create and run the threaded calculations.

Given these results it is clear that Mehrotra’s predictor-corrector modification is

an advantageous addition to the IIP algorithm, as the average reduction in iterations

is approximately 4. However for benchmarking purposes, both quad wright and

quad mehrotra algorithms will be described throughout the rest of this work.

One final modification typical of practical implementations of the primal-dual

interior-point algorithm is the use of multiple centrality corrections as proposed by

Gondzio in [115]. Once again the aim is to reduce the number of iterations by

utilizing higher-order corrections to improve the accuracy of each step. Currently

this technique has not been investigated, but a small comparative study contrast-

ing QPIP (which implements the IIP algorithm with Gondzio’s modification) versus

quad mehrotra has been performed and the results shown in Figure 3.9. These

indicate the performance gain of the modification is only appreciable at larger prob-

lem sizes, outside the range of interest for this work. Note the version of qpip used
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in Figure 3.9 was compiled against sequential BLAS/LAPACK, thus there is no

threading overhead and the difference is assumed to be a result of the difference in

algorithm (and perhaps to a lesser degree, implementation).
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Figure 3.9: Log-Log quad mehrotra vs qpip comparison.

3.4.5 Complete IIP QP Algorithm

Given the IIP algorithm and modifications present so far, the two QP algorithms

developed in this work are described by the following steps.

3.4.5.1 quad wright Algorithm

Step 1: Choose an initial set of iterates
(
z0,λ0, t0

)
where

(
λ

0 > 0, t0 > 0
)
.

Step 2: At the k-th iteration solve for the iterate increments using Equation 3.48/3.49.

Step 3: Solve for the step length α using Equation 3.42 then increment the iterates

using Equation 3.41.

Step 4: Update the complementarity gap µ and centering parameter σ.

Step 5: Judge the convergence by comparing the complementarity gap µ and fea-

sibility φ to 0. If it is within a specified tolerance, stop, otherwise continue.

Step 6: Check for infeasibility by checking for stalling iterates or if the feasibility

φ is growing. If deemed infeasible stop, otherwise repeat from Step 2.
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3.4.5.2 quad mehrotra Algorithm

Step 1: Choose an initial set of iterates
(
z0,λ0, t0

)
where

(
λ
0 > 0, t0 > 0

)
.

Step 2: At the k-th iteration solve for the prediction iterate increments using Equa-

tion 3.55.

Step 3: Solve for the step length α using Equation 3.42.

Step 4: Update the centering parameter term using Equation 3.56, which is then

used to update the right hand side of the linear system to solve.

Step 5: Solve for the correction iterate increments using Equation 3.57.

Step 6: Solve for the step length α using Equation 3.42 then increment the iterates

using Equation 3.41.

Step 7: Update the complementarity gap µ.

Step 8: Judge the convergence by comparing the complementarity gap µ and fea-

sibility φ to 0. If it is within a specified tolerance, stop, otherwise continue.

Step 9: Check for infeasibility by checking for stalling iterates or if the feasibility

φ is growing. If deemed infeasible stop, otherwise repeat from Step 2.

3.4.5.3 Algorithm Summary

It is evident the algorithm is remarkably simple, which infers the implementation of

the algorithm could also be quite simple. This is advantageous in that the program

space required for the algorithm should also be relatively small. However, in order to

be fast enough for the sampling rates required by MPC, the algorithm will require a

novel implementation with a number of ‘sneaky tricks’ to exploit the structure of the

problem being solved. The following subsections will detail these tricks and heuris-

tics which have been used to accelerate the performance of both algorithms. The

complete code listings for both the quad wright and quad mehrotra algorithms

are presented in Appendix Section A.1.

For the remainder of this section only the quad mehrotra algorithm will be

described, as the implementation heuristics are near identical for the quad wright

solver.
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3.4.5.4 Choice of Initial Iterates

The choice of initial iterates (z,λ and t) can drastically effect the operation of the

solver, and thus care should be taken when selecting these vectors. It is also pointed

out in [338] that the IIP algorithm has polynomial complexity when the starting

iterates,(λ0, t0), are sufficiently large with respect to the initial residuals (given in

Equation 3.40). A common heuristic modified for this work for warm starting these

algorithms is to use the maximum absolute value in the problem data as follows

pmax = ‖H, f,M, b‖∞ (3.58)

where the infinity norm nomenclature is in this case used to represent the maximum

absolute value for both matrices and vectors. The iterates are then initialized as

follows

z0 = [0, 0, ..., 0]T

λ
0 = t0 =







[√
pmax,

√
pmax, ...,

√
pmax

]T
, if pmax > 1

[0.5, 0.5, ..., 0.5]T , otherwise

Given the QP to be solved has been scaled (see Section 3.4.5.5) so the maximum

element in each problem matrix/vector is 1.0, this results in the following initial

iterates

z0 = [0, 0, ..., 0]T

λ
0 = [0.5, 0.5, ..., 0.5]T

t0 = [0.5, 0.5, ..., 0.5]T

The reasons for the above values are as follows:

• The primal variables (z) are chosen such that the default change in control

action (∆u) is zero. For a system operating at or close to steady state this

will be the standard solution.

• The dual and slack variables are chosen such that they are relative to the size

of problem data, with a minimum lower bound enforced. The lower bound

is required so that particularly poorly scaled problems are not worsened by

poor initial iterates, as described below. For typical problems the square root

aims to bring the iterates closer to not active (0 for λ) and active (a positive

number relative in size to pmax), providing a robust compromise between fewer

iterations and numerical stability.
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The above heuristic has been successfully implemented in a range of MPC stud-

ies, however this simple method is known as cold starting as it does not take into

account our knowledge of the solution from the previous control input. In the case of

optimal control problems it is common that the control input solution of each sam-

ple is similar (or even identical) to the previous sample’s control input. Therefore

by utilizing the solution of the previous sample as the initial solution guess for the

current sample, it is possible to see a reduction in solver iterations. This is known as

warm starting (or in some literature, hot starting) and is the process of providing a

solution guess (in our case, z0,λ0, t0) from a previous solution run to the solver. In

most circumstances this can reduce the number of iterations required by the solver

to converge to the new solution.

As stated in [338], as well as in private communication with John Forrest (author

of Clp) [98], warm starting interior-point solvers with the previous primal solution

does not show a large improvement on convergence time. To illustrate this a series

of 2D QPs were solved using different warm starting techniques, shown in Figure

3.10. It is acknowledged a larger system should be used for this comparison, however

this would limit the ability to plot the solution path, which is of interest. What is

Figure 3.10: Comparison of warm starting methods. The red dot indicates the
solution, the green dot the initial primal guess, and blue dots (and connecting lines)
the trajectory taken by the primal iterates.

observed is that even when supplying the exact primal and dual solution (z and λ),

as shown in the plot (a), the solver still requires 3 iterations in order to ascertain

optimality. This is attributed the need to solve the slack variables, t, in order to

validate the complementarity gap has reduced sufficiently.
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The other plots show that for this small system, a range of solution trajectories

are used by the solver depending on the initial starting conditions. The solution is

found in the best case of 3 iterations, while in the worst case of 4 iterations. This

result is similar to that of larger systems, albeit with larger numbers of iterations

required for larger systems.

By critically looking at Figure 3.10, a representative plot of typical MPC quadratic

programs with output constraints, we can make the following observations:

• Even supplying the exact primal solution does not guarantee the solution will

be found in less iterations. Looking at the bottom left plot where we have

used a heuristic to choose the dual variables, the exact primal solution does

not help the solver isolate the solution in less iterations than a purely heuristic

based approach (plot (f)). This result is typical across a range of problems

and problem sizes.

• Utilizing the exact dual solution is often the best way to obtain reduced it-

erations, noting all three warm starting techniques that use the dual solution

result in 3 iterations to a solution, regardless of the primal starting point.

However it is often very difficult to determine the active constraints (and thus

λ, t) for a given problem, and simply using the previous solution unmodified

can lead to numerical problems (discussed below).

• Utilizing a global primal solution for warm starting does not add any noticeable

benefit to the problem. In fact it is preferable that the previous primal solution

is used which (it is hoped) is feasible. Additionally if the solver were to stop

prematurely (say, due to exceeding maximum iterations), the current iterate

should be feasible.

Given these observations, a natural conclusion might be to simply always warm

start both the primal and dual (or perhaps even the slack as well) variables. Theoret-

ically this may be adequate (with infinite precision), but in practice this can result

in substantial numerical errors with a simple implementation. Recalling Equation

3.49 is used to solve for the current iterate increments, the following two operations

show why these numerical errors can result

−
(
Tk
)−1

Λk

−tk +
(
Λk
)−1(

σkµke−Tk∆λk
)

As is typical in the optimal solution of an MPC QP, only a small number of the

constraints will be active, which infers a large proportion of the elements in λ at

the solution will be very close to 0 (and conversely the active constraints will have a
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slack variable of close to 0). As shown above, both the Lagrange and slack variable

diagonal matrices are inverted as part of solving for the iterate increments, which

can result in very large elements both within the matrix required to be factored, as

well as in the right hand side for the triangular substitution solver. Simply supplying

these previous dual and slack solution vectors as is (with values close to 0) can lead

to substantial numerical errors in finite precision systems, and from our testing is

attributed to the main source of numerical error of this algorithm.

A simple solution implemented within this work is to slightly bias the dual and

slack variables if warm starting is enabled. After each solution, values within λ and t

that are below a predefined tolerance are incremented by a fixed value to ensure nu-

merical stability. For a scaled MPC problem (Section 3.4.5.5), variables that are less

than 0.1 in value are incremented by 0.15, chosen based on numerical testing of the

algorithms. Figure 3.11 shows the typical result of warm starting the quad mehrotra

solver with primal, dual and slack variables using this heuristic on a system with rate

and output constraints. Commonly, the total number of iterations drops by around

15-20%, and the maximum iterations reduces by typically 2 or 3. Note however that
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Figure 3.11: Cold start versus warm start MPC control. The setpoint is designated
by the dashed grey line, while the upper output constraint is indicated by the dotted
red line.

this result is not guaranteed, and depending on the tolerance and bias terms, warm

starting can decrease performance by increasing the number of iterations required.

A final point on this subject is what to do when an extended number of controller

samples have been run when the global, unconstrained minimum has satisfied the
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constrained minimum. As shown in 3.11 there are a large sections of the controller

simulation where the QP is not required (due to example being at steady state),

and therefore it is unlikely the previous QP solution is still valid. At the next step

change or disturbance, the same constraints from the last QP solution will most

likely not be active, and thus warm starting from this solution often degrades the

solver solution. In this case the solver is simply cold started once one or more

samples where the global solution has been used occurs.

3.4.5.5 System Scaling

The MPC formulation of the prediction matrices, as detailed in Equation 3.16, re-

quires element-wise raising the state-space A matrix to increasing integer powers.

Each time A is squared, cubed, etc, precision is lost in floating point, as the magni-

tude of the elements within the matrix increases, such as described in Section 4.2.2

of [326]. This problem is exacerbated in single precision, where there are less bits

to represent the numbers, and can result in substantial numerical roundoff errors.

A particularly ill posed problem where this issue is quite obvious is a linearized

Cessna model, presented by J. Maciejowski in [192] (this model is described in more

detail later in Section 4.5.3.1). The continuous A matrix is as follows

Â =









−1.2822 0 0.98 0

0 0 1 0

−5.4293 0 −1.8366 0

−128.2 128.2 0 0









Note the two larger elements in red, which are two orders of magnitude larger

than the remainder of the elements. This has the effect of losing the precision of

some rows, because the dynamic range required to store this matrix is very large.

Using Maciejowski’s tuning recommendations of Np = 10, Nc = 3, together with the

weighting and constraints indicated in the original reference, the QP H matrix is

calculated as

H =






29131758 22041268 16002114

22041268 16762968 12239335

16002114 12239335 8995198






where the numbers involved are huge relative to the calculated solution (which is in

the range of -0.2 to 0.2). Disabling warm-starting in order to generate a side-by-side

comparison, Figure 3.12 shows the result of appropriately scaling the problem (left

hand side) versus a raw implementation (right hand side) in single precision.
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Figure 3.12: Single precision control of the Cessna altitude rate with and without
scaling (crosses indicate QP failures).

While the controlled response of the altitude rate is similar between the simu-

lations (due largely to the selection of sensible initial iterates described previously,

together with modifications described in the next subsection), the amount of work

required by the QP solver varies significantly. For the scaled system (with elements

ranging from -10 to 10 in all problem matrices/vectors), the quad wright algorithm

has no issue, and solves the problem in a maximum of 16 iterations. This is in con-

trast to the unscaled simulation, where the solver fails on 9 iterations (23% failure

rate, caused by numerical issues such as a negative α) and requires a maximum of

27 iterations. Not only does scaling nearly double the achievable sampling rate, but

it has also significantly increased the robustness of the solver. The simple scaling

step is implemented as

scaleH =
scalefac
‖H‖∞

, scaleM =
scalefac
‖M‖∞

(3.59)

where the infinity norm refers (in this work) to the maximum absolute value within

the matrix and scalefac is a normalizing factor, typically in the range of 1 to 10,

and the individual scaling factors are calculated for the objective and constraint

matrices. These scaling factors are then element-wise multiplied to each respective

problem matrix and vector, including modifications to these vectors as the algorithm

progresses.

It is acknowledged a more advanced scaling algorithm would be preferable, such

as an algorithm that would examine the conditioning of the original model state-
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space matrices and correctly scale them prior to formulating the quadratic program,

rather than afterwards, such as done here. An example of two strategies include

one by Liuping Wang where she describes an exponentially weighted cost function

modification in [326], while Rossiter et al proposed an inner-loop state feedback sta-

bilization strategy in [150]. In addition, using the current heuristic, the selection of

scalefac does impact the robustness of the algorithm and thus should be investigated

further. This work is currently being undertaken by a Master’s student based on

work presented in this chapter, and is discussed within future work in Section 8.3.1.

3.4.5.6 Exploiting Matrix Properties in the QP Algorithm

To calculate intermediate terms such as

−
(
Λk
)−1

Tk

where we require a matrix inverse multiplied by another matrix can be expensive

to evaluate. While there are several factorizations we could use to speed this up,

we are much better off analyzing the creation of these matrices. For example, recall

both Λ and T are defined as

Λ = diag (λ1, λ2, ..., λmc
) , T = diag (t1, t2, ..., tmc

)

so they are both strictly diagonal. This means when calculating the inverse of Λ

it is simply the inverse of each element along the diagonal, a substantial computa-

tional saving (and improvement in numerical conditioning) over a general full matrix

inverse. In addition, multiplying two diagonal matrices together is very inefficient

using a standard matrix-multiply routine. Therefore both Λ and T are treated as

vectors for most of the computations, meaning this product is simply an element-

wise multiplication (Hadamard product). Particular attention has also been paid to

intermediate variables which are saved and then used further on in the code. This

avoids unnecessary recalculation of these elements, and a cost of higher memory

usage.

Further substantial computational savings can be made when evaluating the

term

(

−
(
Λk
)−1

Tk
)−1

M

by again identifying the matrices inside the left hand term as diagonal. This reduces
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the equation to

−λ

t
M

which when implemented using a banded matrix multiplier, again substantially re-

duces the computational time as typically the matrixM is very large. This technique

is used in the MATLAB implementation of both quad wright and quad mehrotra.

Going one step further, we can examine the complete expression required to

generate the linear system left hand side in Equation 3.49

H+MT
(
Tk
)−1

ΛkM (3.60)

Benchmarking has shown that formulating this matrix can be the most expensive

step of the algorithm, depending on the size of M and its implementation. Using

the Intel V-Tune Amplifier to profile quad mehrotra solving a large QP revealed

just how expensive this step is, as shown in Figure 3.13.

Figure 3.13: Profile results of the quad mehrotra solver on a large QP. The hor-
izontal bars indicate the amount of time required by each subfunction within the
algorithm (see Section A.1 for directions to the code listing), indicating formulating
the linear system is the most expensive step.

The equation has a particular structure we can exploit, whereby not only are

Λ and T diagonal, but we actually only require the lower triangle of the resulting

matrix, given the factorization we will use to solve the system (described in the

next subsection). Explicitly writing out this matrix-vector equation, assuming H ∈
ℜ2×2 and M ∈ ℜ3×2 and

γ =
λ

t

results in the following expression

[

h11 + γ1m
2
11 + γ2m

2
21 + γ3m

2
31 h12 + γ1m11m12 + γ2m21m22 + γ3m31m32

h21 + γ1m11m12 + γ2m21m22 + γ3m31m32 h22 + γ1m
2
12 + γ2m

2
22 + γ3m

2
32

]
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As expected this matrix is symmetric (noting H is symmetric as well), therefore only

the lower triangular elements need to be calculated and can be copied up if required.

However in order to maintain the correct expression order, a symmetric matrix

multiplier cannot be explicitly used, only the banded modification as already shown.

Therefore a custom linear algebra routine has been written (formLinSys) which

efficiently calculates this expression, by exploiting not only the symmetric property

but also properties of all matrices involved. formLinSys is described further in

Section A.4.2.1.

3.4.5.7 Linear Equation Solver

Once the linear system has formulated given the techniques described in the last

subsection, calculating the solution of this system of linear equations forms the next

largest portion of the computation time of each iteration of the algorithm. In order

to maximise the efficiency of this step of the algorithm, we need to examine and

exploit the properties of the linear system being solved.

By inspecting the linear system matrix in Equation 3.48, it is obvious this is a

symmetric indefinite matrix. Even this simple property can result in noticeable im-

provements in the speed of the algorithm when using a factorization algorithm suited

to symmetric indefinite matrices (such as an LU with partial pivoting). However it

is possible to further simplify the matrix to restrict it to be positive-semidefinite,

meaning we can use a basic Cholesky factorization and a simple triangular solver to

solve the system of equations. The simplification converts the problem into a three

step process, where not only are the linear system dimensions substantially reduced,

but the remaining iterate increments can be solved directly without factorization

from the proceeding steps, as detailed in Equation 3.49.

A standard Cholesky factorization is approximately twice as fast as a standard

LU factorization, and has the added advantage of factorization stability without the

need of pivoting [321]. Note the simplification in Equation 3.49 is made in [186],

however the author chose to implement Gaussian elimination in order to solve the

linear system, which is less efficient than solving via a Cholesky factorization. The

matrix

H+MT
(
Tk
)−1

ΛkM

will remain positive-definite as H is restricted to be positive-definite (as discussed

in Section 3.4.2), as well
(
Tk
)−1

Λk will also be positive-definite (based on all the

elements of λk, tk being > 0). As discussed in [250] and shown in Equation 3.45,

the resulting matrix will also be positive-definite, meaning a Cholesky decomposition
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can be used.

One major disadvantage of using a Cholesky decomposition is the requirement

that the matrix is positive-definite, which while theoretically correct, in practice

implementations in single precision have shown this does not necessarily always

hold. While correctly scaling the system (and/or model) can normally correct this

issue, on the odd occasion, during one of the many QP solver iterations during

a simulation, a non-positive definite matrix can result from Equation 3.60. The

problem is then what to do for the solution to the QP and whether precision can be

restored.

This issue has been addressed by multiple practical methods, summarized in

[340], however the two basic strategies are pivot skipping (ignore negative or zero

eigenvalues), or replacing negative pivots with a large number as the algorithm

progresses. While more advanced strategies exist (as described in further in [340]),

these typically focus on sparse Cholesky algorithms and require reordering which is

not as efficient or applicable for dense systems. For this work, both pivot skipping

and replacing negative values with a large positive number were tested, however it

was found pivot skipping typically resulted in the most robust compromise between

increased solver iterations, and finding the correct solution.

To illustrate this point, the following output iteration snippet results from solv-

ing one of the unscaled single precision QPs using quad wright from the Cessna

problem in Section 3.4.5.5.

iter phi mu sigma alpha max(r1) max(r2)
22 2.1092e-07 0.12248 0.18375 0.9735 1 2.3134e-06
23 4.9677e-07 0.070755 0.00866 0.42607 11.5 9.177e-07 (C Fail)
24 0.0057104 0.040334 0.19276 0.52181 1.663e+05 7.975e-07
25 0.002158 0.019714 0.18524 0.62214 62866 1.8093e-06
26 0.0015617 0.014838 0.11676 0.27601 45494 1.2946e-06

At iteration 23 the QP solver detected the Cholesky Factorization failed (a neg-

ative pivot was encountered) and the corresponding pivot was skipped. The C code

snippet below shows how the Cholesky Factorization identifies this problem, and

how the value is skipped while letting the main algorithm know a problem was

encountered.

if(s <= 0.0)
status = -1; //not positive definite, pivot skipped

else
A_jn[j] = sqrt(s);

Looking back at the iteration print out, the algorithm appears to stumble directly
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after the failed Cholesky (as indicated by looking at the maximum dual residual, r1),

however it continues to converge and finds the correct solution by iteration 29. It is

suspected the error in this example occurs with a loss of precision due to φ and µ

not converging at the same rate. For problems where repeated Cholesky failures are

encountered, the QP algorithm allows a maximum of 2 failures before exiting with a

suitable numerical error flag. In addition, the algorithm reduces the maximum step

size (α) once a Cholesky failure has been encountered, to ensure slower, hopefully

more robust steps towards the solution. This problem has only been observed in

single precision when the problem is close to infeasible, or on deliberately poorly

scaled QPs in double precision. It is also much less likely to occur if the problem

has been correctly scaled.

It is also worth noting that given this formulation the linear system matrix is

also 100% dense, meaning there is no advantage to applying sparse techniques to

this step.

3.4.5.8 Checking for Infeasibility

Without soft constraints (and even sometimes with these, depending on precision),

the QP resulting from an MPC input calculation may become infeasible. This can

be due to events such as excessive disturbances, poor tuning, or even the setpoint

moving inadvertently outside the system constraints (see Figure 3.14 for an exam-

ple). Once the QP problem becomes infeasible it is critical that this is identified by

the algorithm so that either corrective action can be taken externally or the system

can be shutdown. To correctly identify an infeasible problem, techniques described

in [107] have been implemented and modified, specifically if

iter > 6 and
‖r2k‖∞
pmax

> ǫr and
|r2k − r2

k−1|
|r2k|

< ǫc and
|r2k−1 − r2

k−2|
|r2k−1| < ǫc (3.61)

where

r2
k = Mzk − b+ t

which is the primal residual, and ǫr and ǫc are predefined tolerances typically relative

to the square root of the precision of the implementation, then the quad wright

algorithm determines the problem to be infeasible. Equation 3.61 requires that

the algorithm has completed at least 6 iterations in order to avoid falsely identifying

early infeasibility, as well as the primal residual is still significantly large with respect

to the maximum problem element. The final condition checks to see if the primal

residual has stalled, and if so, then infeasibility is declared.
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For the quad mehrotra algorithm a further condition was implemented which

checked to see if the relative feasibility gap φ (also known as the duality gap) began

to grow, which was found to be a good indication that the problem was infeasible.

The relative feasibility gap is defined as

φk =
‖r1k, r2k‖∞ +

(
λ

k
)T

tk

‖H, f ,M,b‖∞
(3.62)

where r1 is the dual residual defined as

r1
k = −Hzk −MT

λ
k − f (3.63)

This is implemented using the same rules as Equation 3.61 but with two modifi-

cations: The required iterations is reduced to 4 (due to decreased iterations required

by the algorithm) and the following extra conditions added

φk > φk−1 and φk−1 > φk−2 (3.64)

which were found to correctly identify typical infeasible problems. Most practical

implementations of an interior point algorithm will also consider the dual residual

r1
k, which can indicate if the problem is unbounded below. However as the QP

results from an MPC formulation and can be tested under a variety of operating

conditions before implementation, it is highly unlikely that the practical real-life

problem will be unbounded.

An advantage described earlier in Section 3.4.1 of using an Infeasible Interior-

Point method is that it can still attempt to solve problems, even if infeasible. This

is opposed to active-set methods which typically require an initial feasible solution,

or a standard interior-point method. Figure 3.14 shows the controlled response of a

3-DOF Helicopter (simulation only) as described in [7], subjected to a large setpoint

change with tight pitch axis constraints. The result is an infeasible QP during the

middle of the manoeuvre for approximately 22 samples. In this example no external

corrective action is taken, and the controller and solver are left to try to rectify

the broken constraint. As shown in the comparison plot, the quad wright solver

appears to handle the infeasibility quite well, minimizing the infeasibility and thus

the amount of time the constraint is violated. This is in direct contrast to CLP

(also an interior-point solver, but using a different formulation), which completely

loses control of the system, and alternates between hitting the maximum iterations

(1500) and detecting infeasibility.

While this example is rather academic, as the natural motion of the helicopter

corrects for the infeasibility and brings the system back under stable control, it
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Figure 3.14: Control comparison of an infeasible 3-DOF Helicopter simulation
(quad wright vs clp), including solver status codes.

does show that under infeasible conditions the infeasible part of this algorithm is

advantageous to maintaining partial control. The example also shows the algorithm

correctly identifies infeasibility, and exits before numerical errors are encountered.

In practice, using single precision, an infeasible problem is more likely to be identi-

fied as multiple Cholesky factorization failures, but generally the controller retains

reasonable control, as shown in Figure 3.15. Note the single precision solver has over

double the failure rate as the double precision solver, but most of these are status

code -3, indicating numerical errors were encountered. This is typically due to a

loss of precision and the solver cannot find a better solution without a numerical

error such as α tending negative, or a NaN encountered. Both of these conditions

are caught early on to avoid numerical errors propagating from the solver. In prac-

tice the solution found is sufficiently accurate to retain adequate control even when

constraints are active.

It is acknowledged a more rigorous treatment of the infeasible constraints should

be considered, such as removing the infeasible rows and re-solving the quadratic pro-

gram in order to retain control, however the point of this example is to demonstrate

the behaviour of the proposed algorithm when presented with an infeasible problem.

As shown, the performance (in this example) is far superior to alternative solvers,

which is attributed to the inherent infeasible component of the IIP algorithm.
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Figure 3.15: Control comparison of an infeasible 3-DOF Helicopter simulation (dou-
ble versus single using quad wright).

3.4.5.9 Termination Conditions

The successful termination condition of the algorithm relies on comparing two key

calculated variables, µ, the complementarity gap (Equation 3.37), and φ, the rela-

tive feasibility gap (Equation 3.62) to a predefined tolerance, ǫr (both variables are

compared to the same tolerance). As the algorithm converges to a feasible optimal

solution, both µ and φ will approach 0 as the primal and dual infeasibilities are

also reduced to 0. Therefore a simple comparison of µ and φ with a pre-specified

tolerance is all that is required to judge the completion of the algorithm. For typical

MPC applications this can be set as

µfinal = φfinal = ǫr =
√
ǫ (3.65)

where ǫ is the floating point precision (eps in MATLAB) of the system on which

the solver is implemented. Simply testing µ in isolation does not give a sufficient

metric of solution optimality because it is an absolute term, and as the problems

are typically scaled, a relative tolerance term is also required. A point to note is

that relaxing of the tolerance (i.e. µfinal = φfinal = 10−3) often has little effect on

the overall control performance of the system, given the approximation of the model

in the first place and quantization present with typical data acquisition and control

systems.
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3.4.6 Performance Results

In order to validate the performance of the algorithm a series of tests have been

run to benchmark the quad wright and quad mehrotra algorithms against two

reference implementations of the interior-point predictor-corrector QP algorithm,

the commercial solver quadprog [207] and the free, closed source solver qpip [330].

For each test, where possible, comparisons will be drawn across the following three

areas, all with respect to problem size:

Speed The amount of time taken to solve each problem, run over 25 different

problem sizes and averaged over 20 problems at each size. This is the most

important attribute of the solver, given the focus on high-speed control. It

is also important to see the relationship between average solution time and

problem size, so we can predict whether the solver can calculate the required

control move(s) within the sampling time available.

Memory Dynamic memory, especially RAM, is very limited within typical small

microcontrollers (the target of this algorithm), thus the algorithm must be as

memory efficient as possible. It is not possible to easily compare the memory

requirements of the other solvers, however the memory requirements for the

algorithms developed in this work will be reported. As a reference value, the

target microcontroller for this work (described later in Section 4.2.1.3) has

only 256KB of RAM.

Accuracy How accurate the solution is, again averaged over 20 problems from 25

sizes. While not required to be highly accurate (such as would be required

for parameter estimation or economic calculations), reasonable accuracy (ap-

proximately 10−3) is required to ensure the QP solver itself converges and the

resulting control moves are still near-optimal. Also note the control moves will

be subject to quantization via a Digital to Analog Converter (DAC), so only

one or two decimal points of accuracy are realistic.

In addition, rather than use general benchmarking QPs such as those used in

the Hans Mittelmann benchmarks [219], we have used a series of randomly gener-

ated QPs resulting from the creation of arbitrary MPC controllers, as described in

Section 3.4.3. These will stress the quad wright and quad mehrotra algorithms

on problems they are designed to solve providing a better indication of their perfor-

mance.

Shown in Figure 3.16 is a log-log plot of the timing results comparing the four

solvers. This figure provides an insight into the expected algorithm performance

as the problem size increases. As shown, the timing measurements for all solvers
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form approximately a straight line on a log-log plot as the problem size increases,

indicating they can be expected to have a monomial (or power) relationship between

execution time and Nc. Table 3.3 shows the expected execution time power factor

with respect to Nc for each solver.

Table 3.3: Power relationship for each IP solver (the gradient of Figure 3.16).

Solver Power Term
quad mehrotra 2.23
quad wright 2.29
quadprog 1.13
qpip 1.42

For the solvers developed in this work, quad wright and quad mehrotra, the

power term is approximately a quadratic, while for quadprog is approximately linear,

and qpip is in the middle. This indicates the two reference solvers would be expected

to scale better as the problem gets larger, which reflects their use of multithreaded

linear algebra libraries (BLAS/LAPACK) as well as a more advanced algorithm.

However the focus of this work is not on large-scale problems and as noted on the

plot, the maximum Nc is expected to be around 20 (corresponding in this example

to 40 decision variables and 320 inequality constraints), therefore for most of the

region of interest, quad mehrotra is superior in terms of speed.
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Figure 3.16: Algorithm timing comparison for the surveyed interior point implemen-
tations.
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With regards to accuracy, Figure 3.17 shows the relative accuracy of the quad wright

algorithm as a function of Nc, taking Cplex as the reference solution (quadprog was

found to give remarkably different results from all other solvers, even with the same

tolerance of 10−7). Both quad wright and quad mehrotra were set up with an
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Figure 3.17: Algorithm accuracy comparison.

identical tolerance of 10−7, and as can be seen, achieved a relative error on average

of 0.00002%, and a maximum relative error of 0.00007% (average for both solvers).

These results shows that both of the algorithms developed in this work are reliably

calculating the correct solution across a range of typical MPC problems, and for

most of the test problems, more accurately than both quadprog and qpip.

In addition to speed and accuracy, memory usage has also been measured of

the quad wright and quad mehrotra solvers within C-code implementations. This

was not directly possible with any of the other solvers, thus no comparison could

be made. However embedded systems typically have very limited on-chip RAM

(16KB-256KB for a basic 32bit microcontroller) thus if the algorithm and associ-

ated problem data does not fit in memory, control performance must be sacrificed by

reducing Np and/or Nc in order to reduce the algorithm memory footprint. Alterna-

tively off-chip RAM can be used, however typically a time penalty will be incurred,

decreasing the achievable sampling rate, as well as complicating the embedded sys-

tem. Given the current increment in problem size, as described in the timing results,

the memory requirement is approximately a quadratic function of Nc for storing the

problem data and all required intermediate variables in single precision, as shown

in Figure 3.18.
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Figure 3.18: quad wright and quad mehrotra algorithm memory requirements.

More information on how the memory requirements of the algorithm are calcu-

lated is presented in Section 4.3.

3.4.7 QP Solver Development Summary

To briefly summarize the contribution so far, we have successfully developed two

QP solvers based on the Infeasible-Interior-Point framework introduced by Stephen

Wright, with one incorporating the predictor-corrector modification proposed by

Sanjay Mehrotra. In addition, several implementation heuristics have been proposed

which result in a high-speed, low memory-footprint and highly accurate QP solver,

suitable for implementation on a range of embedded systems in both single and

double floating point.

To briefly demonstrate the performance achievable using the algorithms pre-

sented, two MPC case studies are presented from literature.

3.4.7.1 Control of a Linearized Cessna

The complete simulation results of the linear Cessna model presented in Section

3.4.5.5 from [192] are shown in Figure 3.19. The maximum achievable sample rate

(including all MPC calculations) on a Windows i7 2.8GHz Laptop is over 30kHz

using the ANSI C implementation, when solved with the quad mehrotra solver in
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double precision and a termination tolerance of ǫr = 10−6. The complete con-

troller implementation requires 11.2KB to store all problem data and intermediate

variables, with only 3.8KB required for the QP solver. The QP at each iteration

consists of 3 decision variables and 42 constraints.
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Figure 3.19: Cessna model MPC simulation. The three outputs (in red) are pitch
angle of the aircraft, rate of altitude ascent/descent, and actual altitude. The input
is the elevator angle (blue), while the number of QP iterations and execution time are
shown in brown and pink respectively. The dotted lines indicate output constraints,
while the dashed grey line is the setpoint.

When solved via MATLAB as the control engine (the MPC controller is imple-

mented in MATLAB, the QP solver in compiled C, thus allowing QP solvers to be

benchmarked), a comparison of the maximum achievable sample rate is shown in

Table 3.4. Note that as the simulation is solved via MATLAB and not compiled C

code, the times recorded are significantly slower than in Figure 3.19. In order to

remove the effect of varying processor speed, each run was repeated 20 times and

the results shown below are the average.
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Table 3.4: Cessna simulation maximum sample rate comparison in MATLAB.

Solver Maximum
Sample Rate (Hz)

quad mehrotra 956
quad wright 923
qpip 797
quadprog 130

3.4.7.2 Control of a 3-DOF Helicopter

The complete simulation results of the 3-DOF Helicopter model presented in Section

3.4.5.8 from [7] are shown in Figure 3.20. The maximum achievable rate in C for this

example is over 3kHz, when solved using quad mehrotra and the same tolerance as

described in the above example. The complete controller implementation requires

46.4KB to store the QP with 21 decision variables and 90 constraints, including all

problem data for both the MPC and QP algorithms.
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Figure 3.20: 3-DOF helicopter model MPC simulation.

A comparison of the maximum sample rates is shown in Table 3.5, once again

showing the two solvers developed in this work are superior in terms of speed. Note
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clp was also compared but failed completely on this problem, as did qpip at two

difficult control samples (hence the slow sample rate).

Table 3.5: Helicopter simulation maximum sample rate comparison in MATLAB.

Solver Maximum
Sample Rate (Hz)

quad mehrotra 687
quad wright 602
qpip1 372
quadprog 80

1 Failed on 2 samples

3.5 MATLAB Based MPC Simulation Tools

In order to automate the generation of the MPC and resulting QP problem, together

with providing a simulation and testing environment, MATLAB [205] was chosen as

the development environment. This is based on powerful dynamic simulation and

control functionality built into the software (Simulink, Control Systems Toolbox),

as well as its ability to easily generate and manipulate the required matrices of the

MPC problem.

Several packages for MPC simulation within MATLAB already exist, however for

reasons described next, these were not suitable for the remainder of this work. Each

of the packages are briefly reviewed below, before the jMPC Toolbox is introduced

in Section 3.5.2, the software tool developed to implement the high-speed MPC

algorithm.

3.5.1 Existing MATLAB Linear MPC Tools

MATLAB MPC Toolbox The MATLAB MPC Toolbox [206] is a commercial

software tool for building, simulating and deploying linear MPC controllers.

It was written primarily by Alberto Bemporad and Manfred Morari (ETH),

with contributions from N. Lawrence Ricker who wrote the QP solver. The

toolbox is a flexible implementation of MPC, allowing customization and im-

plementation of a range of constraints, tuning weights and advanced parameter

such as state estimation. Being a commercial package it was difficult to modify

for the research purposes of this work, and thus was only used as a validation

tool to ensure our algorithm was correct.
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MPCtools One of the best free packages for linear MPC is MPCtools [7], a software

package written by Johan Åkesson (Lund). While now quite dated (2006) and

never subsequently updated, it supported many of the features required for

this work including state estimation, customizable QP solvers and a reference

tracking algorithm. Solely written in MATLAB, it did not support code-

generation for deployment, but did provide an S-Function for Simulink MPC

control. MPCtools was used and referenced frequently when developing the

jMPC Toolbox, in order to customize our desired implementation.

YALMIP Written by Johan Löfberg (formerly ETH Zürich, now Linköping), YALMIP

(Yet Another Linear Matrix Inequality Program) [189] is an open source mod-

elling language and software tool for the modelling and solution of convex

(and more recently, nonconvex) optimization problems. In addition, using the

YALMIP modelling language, MPC controllers with arbitrary objective func-

tions and constraints can be built and simulated in MATLAB using a range of

competitive open source and commercial QP solvers. The fundamental reason

YALMIP was not used was because the modelling language YALMIP sup-

ported abstracted the problem too far from an implementable form, given the

low-level (C code) goal the project required.

Multi-Parametric Toolbox (MPT) MPT [177, 127] is the result of over 18 peo-

ple’s work, predominately from ETH Zürich. Its focus is on the design and

analysis of optimal controllers for linear, nonlinear and hybrid systems. Par-

ticular attention is paid to parameterizing systems into polytopes, allowing

efficient binary tree searches for calculating the optimal control input (as de-

scribed in Section 2.2.2). This method of solving control problems includes

Explicit MPC, which was not part of this work, primarily because of the high

memory requirement as described in the literature review. MPT also uses

YALMIP extensively for MPC problems, and thus was not used for the same

reason as given above.

fast mpc A free set of code that accompanies [327] is fast mpc, which was written

by Stephen Boyd (Stanford) and a graduate student, Yang Wang. Its main

focus is on accelerating the solution speed of linear MPC, as is the thrust of

this work. However there were a number of short-comings associated with the

package which made it unsuitable for this work. Most notable was that the

control performance was worse than equivalent software packages (e.g. jMPC

Toolbox), even with an identical problem setup. In addition, the flexibility

of the package was quite limited in terms model/plant mismatch, reference

tracking, blocking, state estimation and other features we wanted to investi-

gate. The package was however very fast, solving the package supplied large

random system MPC example four times faster than the jMPC implementa-

102



tion (described next). It was worth noting that this example problem had 90

decision variables and 900 constraints, which is much larger than this work is

targeting. When reduced to a problem with 20 decision variables and 80 con-

straints, the jMPC implementation with quad mehrotra is four times faster

than fast mpc.

3.5.2 jMPC Toolbox

As identified in the previous subsection, the existing MPC tools available for MAT-

LAB were unsuitable for use within this work. This was primarily due to their

limited flexibility to accommodate the problems of interest, but also to their target-

ing of different MPC formulations such as explicit MPC and alternative objective

functions. To overcome the limitations of the existing tools, a new high-level frame-

work for linear MPC in MATLAB was developed, the jMPC Toolbox.

The jMPC Toolbox provides a high-level framework for describing, building,

tuning, simulating and then deploying linear model predictive controllers within

MATLAB. One of the primary aims of the toolbox is to tailor the QP solver to the

type of problem solved, in order to exploit structure within the problem and speed up

convergence. When this approach is used together with a performance orientated

MPC implementation, also developed within this work, this leads to high-speed

controllers which can achieve over 1MHz sampling rates on a standard desktop PC,

allowing rapid simulation and validation. Section A.2 describes the toolbox and

its functionality in detail, including a step-by-step example of MPC control of a

nonlinear CSTR in Section A.2.8. To see case-studies of MPC applications using

jMPC, please refer to the Case Studies Section of the jMPC User’s Guide [61],

supplied in the jMPC Toolbox/Help directory on the Appendix DVD.

3.6 Summary

This chapter has introduced the finite-horizon MPC algorithm and the formulation

of the quadratic programming problem that results from the quadratic cost function,

together with the construction of the linear constraints. Based on a survey of existing

quadratic programming solvers, the decision was made to develop a new infeasible

interior point quadratic solver. This algorithm was chosen based on its applicability

to smaller quadratic programming problems, such as those found in finite-horizon

MPC problems, as well as benefits including not requiring an initial feasible point,

together with an inherent worst-case execution time. This is opposed to an active-set
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algorithm, which as reviewed, may exhibit worst-case non-polynomial complexity,

and therefore provides a severe worst-case execution limit, together with literature

examples of poor numerical stability in reduced precision.

Several modifications to the traditional IIP algorithm were proposed, and each

was tested with respect to the quadratic programs that result from a linear model

predictive controller. A detailed analysis showed that Mehrotra’s modification pro-

vided a significant converge speed-up, while treating the problem bounds separately

had no benefit for the problems of interest. Heuristics were proposed to warm-

start the algorithm at each consecutive optimization problem, as well as scaling the

optimization problem, and both were written with a reduced numerical precision

implementation in mind. In addition, algorithm modifications were proposed to ef-

ficiently calculate the system of linear equation at each iteration of the quadratic

programming solver, as well as a set of infeasibility and termination tests which were

shown to accurately determine when the solver should exit.

The main contribution of this chapter is the development of two new quadratic

programming solvers, quad wright and quad mehrotra, both of which incorporate

the suite of modifications and heuristics presented. Each solver was benchmarked

against a range of standard quadratic programming problems, including model pre-

dictive control quadratic problems, for the problem sizes of interest (2-40 decision

variables, 16-320 constraints). From this benchmark study it was shown both solvers

achieved comparable accuracy to an industry standard solver (CPLEX), as well as

outperforming all other surveyed solvers with respect to computational speed. Fur-

thermore, both new solvers were shown to be highly memory efficient, with the

maximum problem size of interest easily able to fit into less than 100KB of memory,

indicating both solvers were suitable for deployment on an embedded system.
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Chapter 4

Embedded Model Predictive

Control

Continuing with the focus on model predictive control, this chapter extends both the

model predictive control algorithm, and the quadratic programming solvers devel-

oped in the last chapter, and tailors them for deployment on an embedded platform.

For this work an embedded platform is defined as a small (could fit in the palm of

your hand), lightweight (weight of a modern smart-phone) and low-power (less than

2W) platform that contains an embedded processor and required circuitry to power

and interface to the processor. These specifications allow model predictive control

to be expanded to a range of mobile and lightweight systems, however they also

severely constrain the achievable performance of the algorithm, given resource lim-

its that are inherent in an embedded system. This chapter will show that embedded

controller performance metrics such as sampling rate, memory requirement and ac-

curacy do not need to be sacrificed due to the resource constraints of an embedded

system, and that competitive results can be obtained by tailoring the algorithm for

a specific problem dimension and deployment hardware.

The chapter begins with an introduction to the problem with embedded model

predictive control, before a survey of suitable hardware targets has been undertaken

in order to identify the best compromise of computational power and cost. Using

this platform, a new auto-coding framework is described which extends the jMPC

Toolbox to generate efficient, verified, embedded model predictive controllers, lever-

aging the quadratic programming solver developed in the last chapter, together with

a new linear algebra library developed specifically for embedded MPC. The chapter

concludes with a number of case studies comparing the proposed approach with

both results from literature, as well as control of a real, unstable, nonlinear and

multivariable, helicopter platform.
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4.1 Introduction

It is no surprise that MPC is in fact well suited to the chemical process world,

given the relatively slow dynamics (seconds to minutes), which mean the algorithm

has plenty of time to converge and deliver the next control input(s). However with

faster and smaller processors, together with advancements in numerical algorithms

for solving quadratic programs, it is now realistic to achieve high speed MPC on

modest hardware, with low power and limited memory requirements. This means

MPC can be applied to a large range of smaller, faster and more varied applications.

As discussed in the literature review, MPC has seen a recent surge in research

interest by fields other than its traditional application to large, slow chemical pro-

cesses. This is because MPC has a number of attractive features which are equally

applicable to control problems in electrical, mechanical, aerospace and other dy-

namic systems. These include the native handling of multivariable systems, intuitive

tuning and optimal control inputs even with predefined operating limits.

The challenge with bringing these features to a high speed application is the

significant computational load solving a quadratic program online adds. Given a

modest control problem with horizons of Np = 15 and Nc = 5, 3 inputs and outputs,

and 6 states, results in a quadratic problem with 15 decision variables and 150

constraints, and a memory footprint of over 20KB (stored in double precision),

it starts to become obvious why so much research has been done to reduce the

complexity of embedded MPC implementations.

However, as stated in the introduction, we believe what has been overlooked is

that an efficient, hand-coded implementation which retains the online optimization

step, can be just as effective, if not more practical, for real implementations of MPC

on embedded hardware. The remainder of this chapter will detail the development

of a high speed embedded MPC implementation, and benchmark it against appli-

cations reported in the literature, as well as a real implementation of a challenging

nonlinear system. This will validate that a memory and processor efficient imple-

mentation of MPC, using techniques developed in this research, whilst retaining

online optimization is just as competitive, if not more so, than other methods for

our problems of interest.

4.2 Alternative Embedded Hardware Targets

The MPC and QP algorithms described so far have been able to leverage the virtually

limitless (with respect to MPC problems) memory and GHz clock speeds common on
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desktop computers. In addition, high speed linear algebra packages such as the Intel

Math Kernel Library [148] can be utilized to provide parallelized matrix routines on

multi-core processors with dedicated vectorized double precision instructions [147].

In order to deploy the algorithms on an embedded device, none of the above can be

effectively used, meaning problem sizes are severely limited.

The core design of an embedded model predictive controller is related to algo-

rithm modifications and implementation changes, required in order to achieve both a

useful sampling rate, as well as fit the controller within memory limits. In addition,

due to the large dynamic range required by the quadratic solver, which commonly

must deal with numbers ranging from 106 to 10−6, floating point representation of

the algorithm is essential. This was determined using AccelDSP [343], a high-level

synthesis tool for generating FPGA designs from MATLAB, which also includes an

automated floating point to fixed point conversion tool. Examining an early (2009)

version of quad wright using AccelDSP revealed that for even a simple controller,

a fixed-point version of quad wright would not reliably converge, even with up to

54bit word lengths. Therefore the requirement for a floating point unit alone (rather

than memory or clock speed) has substantially influenced the selection of suitable

target devices.

4.2.1 Candidate Hardware Targets

Traditionally (5-10 years ago) applications that required high-speed arithmetic, es-

pecially in fixed or floating point, was the domain of the Digital Signal Processor

(DSP). This was based on the architecture of a DSP being optimized for high-

speed, high-throughput continuous numeric calculations such as in audio, radar and

even video processing. Moreover, DSPs often had larger, more advanced multiply,

Multiply-Accumulate (MAC), and division hardware, providing increased numerical

calculation performance [297]. The downside however was that due to specific ar-

chitecture optimization (such as memory layout, clever auto-increment registers and

looping without branching) these were often quite difficult to program, even with

advanced compilers.

In contrast, the Microcontroller Unit (MCU) was traditionally an integer proces-

sor with only an 8 or 16bit integer multiplier, and intended for supervisory control

with minimal calculations. While floating point was available via vendor specific

software libraries, it was often also a vendor specific implementation and therefore

did not align with the IEEE 754 [146] standard on floating point. In addition, using

only a 8bit integer multiplier to multiply a 32bit floating point number was very

expensive, with division and other standard operations even more computationally
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expensive.

In the last 5 years the separation between a DSP and an MCU has blurred,

with many MCUs now including DSP-like functionality. This brings the benefit of

simpler programs, interrupt driven processing, and high-speed arithmetic to a single

unit. The two MCUs surveyed in this work were based on this hybrid MCU/DSP

architecture. A further option emerged with the introduction of smartphones, that

is of the high-specification microprocessors such as the ARM which are now cheaper

and more powerful than ever, and often include a Floating Point Unit (FPU, a

hardware floating point arithmetic logic unit) which makes them a candidate for

this work.

The final option considered is a Field-Programmable-Gate-Array (FPGA), which

allows a custom hardware architecture to be developed, similar to an Application-

Specific-Integrated-Circuit (ASIC), but which also remains reprogrammable. An

inherent advantage of the FPGA is that being hardware, parallel algorithms can be

developed and thus they see widespread use in video and signal processing. Moreover

because the hardware is customizable, floating point units with a user specified

precision can be implemented in hardware.

The following subsections summarize the functionality about each of the candi-

date targets with respect to the important considerations of this work (FPU, RAM,

Flash, clock speed and price), with the findings listed in Table 4.1.

4.2.1.1 Atmel AVR UC3 Series [24]

A candidate MCU target from Atmel was based on their 32bit AVR range, the UC3

series of which the ‘C’ range features a single precision floating point unit (IEEE

754 compatible). The top model within this range, the AT32UC3C0512C features

512KB of on-chip Flash, 64KB on-chip RAM and clock rates up to 66MHz. The

FPU features a fused single-cycle MAC unit that conforms to IEEE 754, as well as

typical add, subtract and conversion instructions [21].

A further consideration for this work was the availability of a development kit

so that the target processor could be evaluated without a purpose built PCB being

designed. The UC3 MCU mentioned was available on a suitable development kit,

shown in Figure 4.1 for US$299.00 (in 2013).

The UC3 can be programmed with the free Atmel Studio Integrated Development

Environment (IDE), which sits on top of Microsoft’s Visual Studio. This provides

a compiler, debugger and integrated circuit programmer and based on previous

108



Figure 4.1: Atmel AT32UC3C-EK board [22].

experience, works very well.

4.2.1.2 Atmel AT91SAM

An Atmel IC also used by colleagues within our school was the ARM-based AT91SAM,

featuring 256KB of RAM and running at 266MHz. The IC does not feature a

floating-point unit, but was the fastest IC available within our department and thus

we investigated its applicability within this work. Note this preliminary work was

undertaken in late 2009, and this IC is now obsolete.

When developing software to run on the AT91SAM it was immediately discovered

this was not a simple task, and required a range of compilation tools, programmers

and significant setup. In addition, as our school did not have a commercial compiler

for the IC (such as IAR), and there was no funding available, we were using a range

of 3rd-party tools which were poorly documented and heavily reliant on the correct

version of dependencies. In addition, creating a simple C program to run on the

IC required a complex setup function, much of which was written in assembler and

thus was a non-trivial task. It was quickly determined this was not going to be a

suitable target, based on large investment in time required for most likely a modest

to poor result.

Modern ARM-based processors are today almost as cheap as a high-spec MCU,

and feature hardware floating point units, significant clock speeds (typically over

500MHz) and high-speed memory interfaces. Together with a colleague we investi-

gated a dual core ARM Cortex A9 on the PandaBoard platform in late 2012 within

[65], which is a low-cost (US$174), high performance (1GHz, 1GB off-chip RAM)

development kit, as shown in Figure 4.2. Not surprisingly the performance obtained
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using this platform far surpassed the benchmark Delfino system (described below),

however its applicability to real-time control was limited. This is based on the MPC

algorithm running as an application of the operating system (Linux), which meant

deterministic sampling could not be reliably achieved.

Figure 4.2: PandaBoard with dual core ARM Cortex A9 [344].

For real-time control systems a real-time Linux kernel can be built and down-

loaded to most modern ARM based development kits. While this was considered, it

was determined that this was not worth pursuing given the large amount of auxiliary

work required to get even a simple deterministic PID controller running. Alterna-

tively ARM based processors can be programmed in C/C++ without an operating

system, however this would be an even larger task than implementing a real-time

Linux kernel.

4.2.1.3 Texas Instruments C28x Delfino Series [309]

The TI C28x Delfino series is a high performance hybrid 32bit MCU/DSP based on

technology from the C6000 series of TI DSPs. The top-spec model (C28346) fea-

tures a clock speed of 300MHz with 512KB on-chip RAM and IEEE 754 compatible

single precision FPU. The Delfino is equipped with a set of ‘parallel’ floating point

instructions for MAC, multiply, addition and subtraction, allowing both a arithmetic

operation and memory copy to be done in the same pipeline cycle. TI also supplies

free of charge the fastRTS library [306] which provides high-speed, assembler opti-

mized implementations of common floating point functions such as division, square

root, and trigonometric functions.

For this work the lower-spec C28343 was chosen as a candidate target based on

availability. This IC ran at 200MHz and has 256KB of on-chip RAM, with the rest

of the features relevant for this work the same as the C28346. An evaluation kit with

the C28343 is available from TI for US$159 and features a small ‘controlCARD’ with
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a DIM100 connector, allowing it to be placed as-is in a user design, and is shown in

Figure 4.3.

Figure 4.3: TI Delfino C28343 evaluation kit [305].

The C28343 is programmed using Code Composer Studio, a proprietary IDE

with optimizing compiler, debugger, and programmer and is based on the Eclipse

platform. Licences start from US$450 for a node-locked licence, about the same cost

as the required JTAG emulator.

4.2.1.4 Xilinx Spartan-3E FPGA [342]

The Xilinx Spartan-3E XC3S500E is a small (500k gates) FPGA with 20 dedicated

18×18 multipliers and 45KB of on-chip block RAM. Using Xilinx terminology, this

equates to 4656 slices or 10476 equivalent logic cells, both of which are alternative

methods of describing the available resources of the FPGA. The Spartan-3E was cho-

sen as this was the most advanced Xilinx FPGA accessible within our department,

and we had a number of the starter-kits, shown in Figure 4.4.

Figure 4.4: Xilinx Spartan 3E starter board [341].
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The Spartan-3E is developed using Xilinx’s free version of ISE, an IDE for devel-

oping Hardware Description Language (HDL) ‘programs’ using Verilog, VHDL, or

graphical connections. Being a FPGA it was possible to implement as many floating

point functions as required, with the upper limit set by the available resources (both

hardware multipliers and gates) on the FPGA. It is also possible to implement arbi-

trary precision FPUs, meaning we are not constrained to only 32bit or 64bit units.

In reality however this particular FPGA did not support more than 50bit floating

point operations.

4.2.1.5 Target Summary

A comparison of the targets surveyed for the embedded MPC implementation is

shown in Table 4.1. Note all four of these targets were surveyed in 2009 and thus

no longer are a representative view of available hardware.

Table 4.1: Candidate hardware target summary.

Device Clock Flash RAM Hardware FPU Eval. Kit
Speed Price

Atmel UC3 66MHz 512KB 64KB Yes US$299.00
Atmel AT91SAM 266MHz - 256KB No -
TI Delfino 200MHz 0KB 256KB Yes US$159.00
Xilinx Spartan 50MHz 45KB1 Optional US$199.00

1 Available as 18-Kbit dual-port blocks.

Given that the initial focus of this work was to accelerate MPC, and with papers

at the time (2009) focusing on the FPGA route (e.g. [186, 187]), it was decided

that we would pursue the Xilinx Spartan-3E for our embedded MPC development.

However due to issues described later in Section A.4.1, this was later abandoned in

favour of the TI Delfino. The TI was chosen over the Atmel UC3 for the following

reasons (noted in order of importance):

RAM Given the large memory footprint required by MPC, the Delfino has 4x the

RAM available of the UC3.

Clock Speed At 200MHz, the Delfino was over 3x as fast as the UC3.

Parallelized Instructions Leveraging a parallelized pipeline meant the Delfino

FPU was much more attractive than the simple UC3 FPU.

fastRTS Library Optimized library functions allow division and square root to be

performed in 24 and 28 cycles respectively, greatly accelerating the calculation

of for example the Cholesky factorization.
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Form Factor The tiny controlCARD form meant the evaluation kit could be re-

used for deployment on a real system.

For the remainder of this chapter all embedded MPC results presented were

obtained using the TI Delfino C28343 Evaluation Kit running at 200MHz.

4.3 Auto-Coding Framework

One of the contributions of this work is an auto-coding framework specifically devel-

oped for generating high-speed embeddable C-code MPC controllers from a MAT-

LAB jMPC object. The framework allows a complete MPC controller, QP solver,

and associated linear algebra functions to be generated in ANSI C in as little as

50ms, allowing rapid-prototyping and quick re-tuning of a real MPC controller. In

addition, the framework can automatically verify the generated code using auto-

generated test benches, thus ensuring the code generated is bit accurate when com-

pared to an equivalent computer implementation. The following subsections will

describe the auto-coding framework, noting this forms an integral tool for the re-

mainder of this chapter.

4.3.1 Code Templates

In order to maximize the performance of auto-coder while keeping it as easy to

manage as possible, a series of code templates are used for the code generation

process. These are generalized hand-coded implementations of the MPC algorithm,

QP algorithms, and linear algebra libraries, as discussed further on in Section 4.4.1.

The key is they contain a series of ‘preprocessor directives’, some of which are

standard C compiler directives (e.g. #ifdef), as well as framework specific directives

and data type definitions, to control the generation and later compilation of required

functionality. In this way we have a series of easy to read and modify .c files

which can be easily updated as required, yet which form the basis of the auto-coded

algorithm.

This technique avoids a more complex framework which could, for example, at-

tempt to convert the existing MATLAB jMPC and QP algorithms directly into

C/C++. There are existing tools that perform this transformation, such as [203],

however using these sorts of tools is unlikely to result in scalable, memory effi-

cient and high performance solver that fully exploits the benefits of the proposed

algorithms. This conclusion is based on these tools typically hard-coding problem
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dimensions in order to allow for code generation optimizations such as for-loop un-

rolling. As described in Section 4.4.2 this has been deliberately avoided for this

implementation, simply to preserve available data memory for larger controllers,

given memory is expected to be an implementation constraint. This can be seen in

Table 3.2 when looking in the File Size column for CVXGEN, noting the fully un-

rolled implementation requires over 1MB to store and does not utilize any threaded

libraries (which would artificially further increase the code size for this sort of com-

parison).

A further workflow investigated used Simulink to auto-code the model/controller

into embeddable C-code, as was done in [278]. This required the MPC controller and

QP solver to be implemented as Simulink models, which while possible, was found

to be quite cumbersome. This was primarily due to the complex indexing required

by the MPC controller which was not succinctly expressed as Simulink blocks. Our

early experimental QP and MPC Simulink blocks aare retained as part of the jMPC

package, available on the Appendix DVD.

Given the motivation to use hand-coded C code versions of the MATLAB algo-

rithms, the framework utilizes up to 7 template files, as described below. The tem-

plate files can found be on the Appendix DVD, under jMPC Toolbox/Source/Em-

bedded.

4.3.1.1 Common Header File (jMPCEmbed.h)

A common header file template is used that contains function prototypes for all

available routines, regardless of whether they are included in source or not. This is

done as the target compiler will ignore functions not used within the source, and thus

enables minimal preprocessing. In reality, most of the routines are used, regardless

of whether a Processor-In-the-Loop (PIL) implementation or a real embedded MPC

is generated. In addition, four general timing and transmission routines are defined

which are required for the user to implement, two for providing a 1µs timer to

measure execution time, and two for sending and receiving a single byte via a user

nominated serial port. Apart from these four simple routines, the remainder of the

code is automatically generated and thus should be very simple to implement on

any microcontroller.

4.3.1.2 Linear Algebra Source (jMathEmbed.c)

The linear algebra functions, described in detail in Section 4.4.2, form the key math-

ematical routines used by both the QP solver and the MPC algorithm. All routines
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are required by all code-generation options, apart from unconstrained controllers

(which do not require the QP solver linear algebra functions). This file is typically

used verbatim.

4.3.1.3 QP Solver (QPWrightEmbed.c or QPMehrotraEmbed.c)

Two QP solvers have been developed within this work, and either can be imple-

mented as the QP solver for the MPC controller. Each solver has been hand-coded

and hand-optimized in C, and undergone substantial testing as described in Chapter

3. Furthermore, each solver has then undergone minor modifications to allow them

to be better implemented within an embedded target. These changes include:

• All memory is allocated by the auto-code generator, so that when the em-

bedded algorithm is compiled, the problem data, intermediate variables and

solution data is all allocated and initialized. This avoids the need to dynam-

ically allocate memory for the solution, as well as providing the compiler the

best opportunity to optimize the implementation based on the size of the

problem generated.

• Solution memory is common between the MPC algorithm and the QP algo-

rithm. This cannot be done with the MATLAB MEX implementation of the

QP solvers as it is considered bad practice to modify MATLAB workspace

memory within a MEX file, as would happen if common solution memory was

used. Therefore the primal, dual and slack vectors do need to be doubled up

(reducing memory), and warm starting is automatically available if required,

as one set of common memory is used.

• Given both H and M are constant they have been removed from the function

argument list and are compiled as external constants.

• Following the above point, it is possible to pre-calculate the maximum absolute

value in H and M during the auto-coding process, reducing online computa-

tion. Therefore only f and b are analyzed at the beginning of each QP function

call.

• Algorithm control parameters such as the maximum iterations and convergence

tolerance are hard-coded into the implementation. Note these are read from

the MATLAB jMPC object, and thus remain user controllable until the code

is generated.

As with the control parameters, the QP solver algorithm selection is set up via the

MATLAB jMPC object. Based on this setting either quad wright or quad mehrotra
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will be selected by the auto-code generator and become the respective code template

used for the final MPC controller.

4.3.1.4 MPC Engine (jMPCEmbed.c)

The MPC Engine refers to the main MPC control algorithm, excluding the QP

solver, and forms one function. As with the QP solvers this template has been

hand-coded and hand-optimized, and thus implements a high-speed embedded al-

gorithm. This main MPC function, EmbedMPCSolve, accepts the current plant out-

put(s), setpoint(s), and measured disturbance(s), and returns the calculated control

input(s), together with the model output(s) and states(s) and QP solver statistics.

Within the function it also completes all calculations required within one sample of

the control algorithm, including state estimation, measured disturbance prediction,

augmenting unmeasured outputs and control move calculation.

To further increase speed in the embedded algorithm, preprocessor and code-

generator directives have been used extensively throughout EmbedMPCSolve to en-

able optional features based on the controller setup. These are summarized below

(note all features are disabled by default in order to reduce code size and complex-

ity):

• Measured disturbance prediction calculation for including the disturbance in

the control move calculation.

• Unmeasured output augmentation to recover unmeasured (but modelled) out-

puts via the state estimator.

• Uncontrolled output handling which removes outputs from the QP and aug-

mented state vector the user does not want to control, but still wants to keep

within constraints. This reduces the problem size, and can speed up some

of the intensive MPC calculations. It also removes the need for a ‘dummy’

setpoint, which would otherwise be required.

• Constraint updates for ∆u,u and y are treated individually, allowing calcula-

tions to be skipped if the relevant constraint(s) are not present in the controller

specification.

• For controllers where there are no constraints, the MPC control law is imple-

mented as ∆u = −H−1f where H is pre-factorized using a Cholesky factor-

ization, so that only a triangular substitution solver is required to solve the

control input(s).
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4.3.1.5 PIL Utilities (PILEmbed.c)

One of the most useful features of the auto-code generator, apart from generating real

MPC controllers, is the ability to set up a Processor-In-the-Loop (PIL) validation

of the generated MPC controller. This technique is described in detail further on

in Section 4.5, however the basic idea is that the generated MPC controller runs

on the embedded target, and a development computer pretends to be the system

plant. The two devices communicate via a two-way communication channel, which

in this case is a simple USB-serial link. This allows the generated code and the

MPC algorithm to be validated on the target using any system to be simulated and

controlled on the PC.

To facilitate this functionality the auto-code generator will by default copy a

series of functions to run the controller, ‘measure’ the plant output from the PC, and

apply the ‘control inputs’ to the PC. In reality measuring the plant output is done

by querying the PC for the current plant output, and applying the control inputs

is done by sending the values to the PC, therefore we require both transmit and

receive functionality. As described in the generated header file, the user is required

to implement two functions for serial communications, one for receiving a single byte,

and one for sending a single byte. These will be processor and compiler specific,

thus cannot be automatically generated (but should be trivial to implement). These

are then used by higher level routines which are copied from the code template, and

facilitate sending and receiving both single and double precision arrays, as well as

larger integer variables. In addition, when receiving floating point arrays, a basic

state machine is used in order to receive the correct number of bytes and have them

shifted into the correct bit locations correctly.

The main PIL function, PILSim, is a basic while(1) loop which reads the current

plant output(s) and desired setpoint(s), executes and times the MPC controller

calculation, then sends back the calculated control move(s), as well as sample and

QP statistics. This repeats indefinitely until the processor is restarted or a new

controller is downloaded.

4.3.1.6 MEX Test Benches (TestQP.c and TestMPC.c)

In order to verify the embedded controller and QP solver are functionally correct,

two test bench files can be optionally created to verify them on the development

computer. Both of these templates provide a MATLAB MEX interface wrapper

over the respective generated functions which can be automatically compiled and

run during the code-generation process. This provides a simple and automated
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method for quickly checking the algorithm during development, before moving to

the target.

4.3.2 Code Generation and Memory Estimation

In order to generate a complete MPC controller, the auto-code framework requires

both the algorithm, supplied via the code templates above, as well as the tuning

and specification specific problem data. This data is constructed via the MATLAB

jMPC object, and is saved within it for use during MATLAB, MEX or Simulink

MPC simulations. Using the object-orientated extensions of MATLAB, generating a

complete embedded implementation of a jMPC controller is as simple as the following

line of code:

embed(jMPCobj)

where jMPCobj is a jMPC object containing the complete controller specification.

However the jMPC object is typically used in conjunction with a jSIM object, which

provides the simulation environment settings such as the system plant model, set-

point over the simulation, etc. Supplying both objects to the embed method enables

both the controller to be generated, as well as a series of code verification tests for

validating the controller within the supplied simulation environment. These verifi-

cation tests are described in detail in the next section.

When embed is called several steps occur to generate the required controller. A

standard call will consist of the following steps:

0. Basic error checking is performed to check the controller is valid for coding

and default options are set up.

1. jMPC embed.h - The embedded header file is copied from the header file tem-

plate and data types defined. Compiler defines are added to enable options

specified in the controller such as unmeasured outputs, uncontrolled outputs,

etc.

2. jMPC constants.c - A constants source file is created from scratch which

includes constants for both the QP algorithm and MPC algorithm. This is

described in more detail below.

3. jMPC math.c - The linear algebra source file is copied from the custom math

template.
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4. jMPC qp.c - The quadratic programming solver source file is copied from the

specified template (based on quad wright or quad mehrotra). Global vari-

able definitions are added based on the problem size and user settings.

5. jMPC engine.c - The MPC algorithm source file is copied from the MPC

engine template. Global variable definitions are added based on the problem

size, user settings, and initialization requirements.

6. jMPC pil.c - If the simulation options are supplied then a PIL implementation

can be run, and the required communication routines are copied from the PIL

template file.

An example output from embed is shown below for a small MPC controller as

described in [320]:

jMPC Auto Code Generator for Embedded MPC [v1.5]
Architecture: c2000, Precision: float [%1.10g]
------------------------------------------------
1) Creating Embedded Header File "jMPC_embed.h" ... Done
2) Creating Embedded Constants File "jMPC_constants.c" ... Done
3) Creating jMATH Source File "jMPC_math.c" ... Done
4) Creating QP Source File "jMPC_qp.c" [Mehrotra] ... Done
5) Creating MPC Source File "jMPC_engine.c" ... Done
6) Creating PIL MPC Source File "jMPC_pil.c" ... Done
------------------------------------------------
Data Memory Summary:
TOTAL: 1.736 KB
FLASH: 0.850 KB QP: 0.688 KB
RAM: 0.886 KB MPC: 1.048 KB

The entire code generation process takes around 50-100ms, depending on the

size of the controller. Large controllers with problem matrices exceeding several

thousand variables may take up to 1 second to generate, however the entire process

is typically very quick. As shown in the above code output, the controller has been

generated in single precision (float), and numerical values have been printed with

up to ten decimal places, in order to retain repeatable results. Even though a single

precision number only has around 7 decimal places of accuracy, it has been observed

that up to 10 are required to match the conversions done by the compiler when type

casting from double precision to single.

4.3.2.1 Data Type Definitions

Within the code templates the default floating point data type is realT. A similar

set of names is used for other common data types such as intT (integer) uintT

(unsigned integer), etc. These are non-standard data types and they allow a set of
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custom type definitions to be created based on the architecture of the processor for

which the code is targeted.

A good example of why this might be required is demonstrated by the data type

double when used on the TI C28343. For a computer user this would be expected to

result in a 64bit IEEE 754 double precision implementation, the maximum typical

accuracy achievable using native hardware support. On the TI C28343 however, a

double is implemented as a 32bit IEEE 754 float, when using the hardware floating

point unit. In order to activate a 64bit floating point, the data type must be defined

as a long double, which then uses a non IEEE 754 software implementation (and

does not leverage the floating point unit).

Given these architecture specific configurations, the auto-code generator is set

up to define a series of type definitions within the common header file, based on the

architecture of the processor of being targeted. The code snippet below shows a few

lines for a single precision controller on the TI C28343:

typedef float realT;
typedef int intT;
typedef unsigned int uintT;

Using type definitions in this way provides the simplest mechanism to provide a

global set of types that can be customized to the specific architecture of the target.

In addition to data types, single precision variations of functions are automatically

used (for example sqrt vs sqrtf) and the suffix F is added onto initialized variables

to prevent unnecessary compilation warnings. This is done using a simple regular

expression find-and-replace based on a set of common rules. A further consideration

is that bit operations are avoided so that endianness (MSB or LSB) of the processor

does not affect the algorithm (but are used for PIL routines).

The result of the data type definitions and auto-code rules is a generic MPC

controller than can be tailored to most standard architectures.

4.3.2.2 Constants File

The only file that is generated entirely programmatically is the constants file in

Step 2. It contains all the constants required by both the QP solver and the MPC

algorithm declared in one place for easy inspection. Due to being constant data, it

also represents all data that would be stored in Flash. An example output of the

QP objective and constraint matrices contained within this file is shown below:

// QP CONSTANTS
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const realT H[9] = {
1,0.5017130181,0.3786669325,
0.5017130181,0.7558895555,0.3004893826,
0.3786669325,0.3004893826,0.5900181133};

const realT A[36] = {
1,0,0,-1,0,0,-1,-1,-1,1,1,1,
0,1,0,0,-1,0,0,-1,-1,0,1,1,
0,0,1,0,0,-1,0,0,-1,0,0,1};

Note the constraint M matrix (called A within the code) has been transposed

as memory is stored column major in MATLAB (based on its Fortran origin), and

C is a row major language. 2D indexing has also been avoided as this would require

increased code changes within the MPC, QP and linear algebra routines based on

the C requirement of the leading dimension to be specified.

In addition to problem data, such as the QP matrices above, the constants also

include a number of scalars which dictate the number of inputs, outputs, states,

unmeasured outputs, etc. Other helper variables for indexing are also generated,

which although increasing memory requirements, do keep the MPC code cleaner

and easier to maintain.

4.3.2.3 Memory Estimation

Following on from the generation of the constants file is the estimation of data

memory required by the controller. This is an important consideration when de-

veloping an embedded MPC controller as larger controllers will exceed the memory

requirements of most small microcontrollers. Therefore to judge the upper limit on

prediction and control horizons (which primarily dictate the problem size for a given

model) it has proved very useful to provide this memory estimation.

Given the auto-code generator is responsible for writing every global variable

and global constant, estimating the memory use for data is a simple task. For each

variable or constant, a routine determines the number of bytes used by the respective

data type, then multiplies it by the number of elements in the array. The total

is then either summed to the RAM requirement (variables) or Flash requirement

(constants). It is possible to simply precalculate these values based on a known

controller configuration, however because the code generator has been in a state of

flux during development, it was found to be more reliable to calculate these totals

during code generation. This also provides a simple mechanism for dealing with the

multitude of setup and algorithmic options available via the jMPC and jSIM objects.

Note the estimation of memory also takes into account initialized global variables,

which require both Flash memory for the initialized values, as well as RAM for the

121



variable memory.

4.3.3 Code Verification

Being able to automatically generate an embedded MPC controller is only useful

if you can be confident the generated code (and algorithm) is functionally correct.

Early implementations of the auto-code generator did not verify the resulting code,

and as a result too many hours were spent debugging issues on the target, rather

than addressing the errors within the faster, easier to use, development environ-

ment. Therefore substantial code verification functionality has been built into the

auto-code generator, ensuring the generated controller and QP solver is either bit-

accurate, or within numerical precision.

Two modes of verification are available to the user, one on the development

computer and one on the target itself. This enables a staged implementation process

to ensure that before the final controller is configured, the code has been rigorously

verified. Each mode of verification is set up to either test the QP solver, or the

complete MPC algorithm.

4.3.3.1 Development PC Verification

As part of the embed method two options are available for verification on the devel-

opment computer:

verify qp Compile a MEX wrapper around the specified QP solver and solve the

first sample of a MPC simulation.

verify mpc Compile a MEX wrapper around the MPC engine and run a complete

MPC simulation.

Both verification routines use code templates described in Section 4.3.1.6, which

are simply copied and modified based on the controller specifications. They are then

automatically compiled and run and the verification results printed as part of the

code generation process. This enables both the generation and verification to be

completed with a single command, and typically takes no longer than 2-3 seconds.

To verify the QP solver three metrics are used; the accuracy of the solution,

the number of iterations taken and the exit status. If the 2-norm of the difference

between the generated solution and the reference solution meets a specified tolerance,

and the status and iterations are identical to the reference results, then the QP solver
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is deemed correct. For the MPC engine two metrics are used; the accuracy of the

plant outputs and the accuracy of the control inputs. As with the QP solver, the

2-norm of the difference between the generated solution and reference solution is

used to check for errors.

When verifying the generated code the equivalent precision routine is run to

generate the reference results. In addition, the high-speed C-code implementation

of the QP solver / MPC algorithm is used, and given these are what the code

templates are based on, the result is a bit-accurate verification result. This is only

possible due to both algorithms being functionally identical, compiled with the same

compiler, using the same precision and not using any non-deterministic functions

(such as threaded libraries).

The typical output of a code-verification run on the development computer is

shown below:

Auto Generated Embedded MPC Verification:
Compiling MEX QP Testbench... Done
Compiling MEX MPC Testbench... Done

MEX QP Verification PASSED
- Successfully Solved
- z_norm: 0

MEX MPC Verification PASSED
- y_norm: 0
- u_norm: 0

Note that the results are bit identical. In addition, a comparative figure is generated

which compares the plant output, control input, the number of QP iterations taken

and the QP status at each sample. Figure 4.5 shows the typical verification com-

parison of an mildly oscillatory SISO system in single precision, where the top plots

show the generated code and reference outputs, and the bottom plots the difference

between them. As can be seen the results are bit identical, and thus we can be

certain the generated code is correct.

Differences between the generated code and the reference solution can be demon-

strated when comparing simulations using different precision. Figure 4.6 shows the

verification comparison of a single precision control simulation versus a double pre-

cision reference simulation. In this case the generated controller is accurate to

around the numerical precision of the generated code (approximately 10−6). Larger,

more complex controllers have demonstrated higher inaccuracies between single and

double simulations, but this is to be expected given the reduced precision. Larger

controllers (20+ decision variables and 150+ constraints) return results typically

accurate to 10−2 when comparing single and double precision implementations.
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Figure 4.5: Code verification of a SISO MPC controller on the development com-
puter (both in single precision).
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puter (single precision code versus double precision reference).
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Another possibility for differences is when the data types of the generated code

do not correspond to equivalent types on the development computer. This particular

issue has not been encountered during this work, but could exist, for example, due

to the way the data type double is handled on the TI C23843 (as noted in Section

4.3.2.1).

4.3.3.2 Target Verification

The next important step once the code has been verified on the development com-

puter is to verify the code on the target microcontroller/microprocessor. Even

though we know from the development computer verification the code is functionally

correct, it is very unlikely to produce the same result as the reference simulation.

As described later in Section 4.4.4.2, this is based on different compilers performing

different optimizations, so that the operation order of the floating point calculations

will likely vary. Therefore the target is expected to give different results from the

development computer, but most likely only down to numerical precision.

In order to verify the algorithms on the target, two Processor-In-the-Loop rou-

tines are automatically generated by the auto-code generator, one for verifying the

QP solver and one for the MPC engine. As described in Section 4.3.1.5, these rou-

tines use the development computer as the system plant (or for the QP solver, to

supply the initial iterates), and leverage a simple USB serial link to communicate

between the target and development computer.

Verifying the QP solver on the target is quite possibly the most important part of

the code verification process, given it not only forms the bulk of the MPC controller,

but also is the most sensitive to numerical errors. Therefore to effectively verify the

QP solver it must be rigorously tested across a range of MPC QPs. A simple method

of doing this is to substitute the QP solver on the development computer with the

target QP solver, thus utilizing the target to solve the constrained optimization

problem at each sample. This can be compared with the result of a MPC simulation

run purely on the development PC, and errors identified at specific samples. Figure

4.7 shows the PIL setup used to verify the QP solver on the TI C28343 within a

development computer based MPC simulation.

Using the same SISO MPC control example from the previous section, Figure

4.8 shows the result of solving the QP resulting from each sample of the MPC sim-

ulation on the TI C28343, compared with the result on the development computer.

As expected there are small differences between the two implementations, but the

errors are consistent with the numerical precision of both systems. In addition,

within this example the number of QP iterations recorded matches between both
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Figure 4.7: TI C28343 embedded QP verification using PIL.

implementations, however this is not always the case. It has been observed in larger

systems that due to implementation differences between the target and development

computer, the QP solver may require a different number of iterations in order to

converge. This is typically within one or two iterations and the control performance

is not obviously degraded.

The MPC PIL verification is described in detail later in Section 4.5, however

for comparison, the entire MPC controller from the QP verification above is shown

verified on the TI C28343 in single precision in Figure 4.9. Once again there are

small differences between the two implementations, but the errors are consistent

with the numerical precision of both systems.

4.3.4 Framework Summary

The auto-code framework presented so far is summarized below in terms of its design

advantages.

4.3.4.1 Design Advantages:

High Level Control Design Using the jMPC Toolbox to design and simulate

MPC controllers in MATLAB means a high level language can be used to

succinctly describe the controller specifications and simulation environment.

This allows rapid prototyping and validation of the design before implemen-

tation in a lower level language, such as C.
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Figure 4.8: Code verification of quad mehrotra on the TI C28343, called from a
MPC simulation on the development computer (both in single precision).
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Algorithm Speed By utilizing a combination of auto-generated code and hand-

coded templates, the resulting MPC controller leverages both the advantage of

optimized hand-coded algorithms, together with the tuning dependent prob-

lem data being automatically inserted. This not only greatly aids code main-

tainability (based on being able to visually inspect the code templates), but

allows for finer control of the generated code.

Memory Footprint As demonstrated, the memory footprint of the controller data

memory is estimated as the code is generated, thus allowing a user to judge

whether the algorithm will fit before undertaking compilation. The memory

required for the QP and MPC algorithm is compiler dependent, but typically

requires around 8KB including program code.

Code Generation Speed Generating a small MPC controller and QP solver can

be performed in as little as 50ms, meaning re-tuning a controller or devel-

oping a new controller is not an onerous task. When developing using Code

Composer Studio and the TI C28343, a controller can be tuned, generated,

compiled and deployed in as little as 10 seconds, allowing rapid development

of an optimal control implementation.

No 3rd Party Dependencies The framework does not rely on external tools such

as the MATLAB or Simulink Compiler in order to generate C-Code. Apart

from MATLAB itself, the jMPC toolbox and code-generation functionality is

completely stand alone. The exception is the Control Systems Toolbox, which

can be used to increase functionality, if required.

4.4 Quadratic Program Solver Implementation

The core requirement of a successful embedded MPC algorithm is an efficient quadratic

programming solver, given that it is responsible for up to 95% of the computational

effort at each sample and is responsible for the calculation of control moves. Chapter

3 described the highly efficient QP solvers we have developed in this work, together

with performance results for a MATLAB implementation. This section describes

the implementation of the quad wright and quad mehrotra algorithms in C-code

to maximize efficiency and reduce code-size, and demonstrates the implementation

within the custom auto-code generation environment.
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4.4.1 ANSI C quad wright and quad mehrotra

The quad wright and quad mehrotra algorithms have been implemented in ANSI

C-code which makes it suitable for a range of embedded hardware targets. More-

over, implementing the algorithm in a lower level language has enabled increased

code optimization to be performed, using both advanced compiler optimizations and

hand-optimized routines. In addition, full control of the memory allocation and re-

lease is available in languages such as a C or C++, meaning the code can leverage

pointer-arithmetic and avoid dynamic memory allocation where possible.

It may be argued that a true hand-coded implementation should be done in

assembler, such as in [331] (which achieves a very high sampling rate), in order

to fully utilize the system resources. This however limits the implementation to a

particular instruction set and as this work has considered multiple hardware targets,

becomes a limitation and thus C will be the lowest level language used.

Complementing the efficient algorithm implementation is a custom library of lin-

ear algebra routines and a simple memory management scheme, which are described

in the following subsections.

4.4.2 Linear Algebra Library

As with typical optimization solvers quad wright and quad mehrotra are described

using a series of matrix, vector and linear algebra operations and functions. On a

typical PC these functions can be implemented via BLAS[183]/LAPACK[14] rou-

tines such as dgemm (double precision, general matrix×matrix) and dpotrf (dou-

ble precision Cholesky factorization). Implementations of BLAS/LAPACK include

those available via Netlib, as well as tuned implementations such as ATLAS [329]

and Intel’s MKL [148]. The tuned implementations leverage multithreaded compu-

tations to parallelize the repetitive calculations involved and thus scale well with

problem size. In addition they often also take advantage of architecture specific

instructions, such as the Intel AVX/AVX2 [147] instructions for Single Instruction,

Multiple Data (SIMD) for further vectorization, as well as implementations tuned

for specific processor cache sizes.

In contrast with the multi-core PC is the embedded microcontroller which is often

severely limited in terms of memory, clock speed, cache-size (if any) and restricted

to a single-core. Therefore dedicated PC linear algebra and matrix routines will

not transfer to an embedded platform without substantial re-writing, and often may

be impossible to transfer without the original source for compilation to the target

129



architecture. Libraries such as BLAS are available as Fortran source, but even after

being run through f2c (Fortran to C converter) so that the target compiler may

compile them, the library will be difficult to read and may not function correctly

under high optimization settings.

To alleviate the issues surrounding what is effectively PC code for a microcon-

troller, a dedicated set of linear algebra and matrix/vector routines has been written

in C which is used both for the QP solver and the MPC algorithm. These routines

are listed in Table 4.2 together with their mathematical implementation. All rou-

tines are once again hand-optimized in order to maximize code efficiency, as well

as reduce the overall code size. An example is presented in Section A.4.2 of the

implementation of jtmv together with details of the techniques used to optimize it.

Table 4.2: Custom linear algebra routines.

Routine Equation Description
jdot y = aTb Dot Product
jmv y = αAb+ βy Scaled Matrix × Vector + Vector
jtmv y = αATb+ βy Scaled MatrixT× Vector + Vector

jfsub y =
(
AT
)−1

b Forward Substitution Solver

jbsub y = (A)−1 b Backward Substitution Solver

jtris y = A−1
((

AT
)−1

b
)

Triangular Solver

jchol A = RTR Cholesky Factorization

formLinSys H = ATdiag
(
λ
t

)

A Form Linear System LHS

vecmax γ = ‖t‖∞ Max Absolute Value in a Vector
vecmmax γ = ‖λ− t‖∞ Max Absolute Value in (Vector-Vector)

4.4.3 Memory Management

Dynamically allocating and releasing memory on a PC using malloc and free (or

new and delete) is often done without much thought of performance penalties.

For example, the original (pre 2013a) MATLAB MPC Toolbox [206] C-code engine

block would dynamically allocate and release QP memory at every sample, rather

than maintaining a set of data memory between calls. This approach to memory

management on a embedded platform is actively discouraged for multiple reasons.

Primarily this is due to limited dynamic memory (RAM) available, and as memory is

allocated and released, fragmentation can occur. While this can also occur on a PC,

the processor speed and sheer size of available memory means performance penalties

are not normally noticed when memory compacting (defragmentation) is run. This is

not the case on an embedded processor, and can lead to non-deterministic runtime

performance. Given this algorithm is to result in a real-time controller, dynamic
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memory allocation is not an option.

Given a defined controller specification it is however possible to completely pre-

calculate the required Flash (constants) and RAM (variables) memory when the

controller is created using the jMPC Toolbox. This means all memory require-

ments are known before implementation, and variables can be preallocated, such as

below.

realT RQP[25] = {
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0};

Using this preallocation strategy has two advantages; first, all variables are ini-

tialized to a known value (non-standard for a C compiler) and secondly, when the

program is compiled the compiler is able to make better code optimization choices

knowing the size and dimensions of all variables. The downside is that generating

these preallocated constants and variables can be extremely tedious, which is where

the auto-coding framework described earlier allows true rapid-prototyping.

4.4.3.1 Constants vs Variables

A point worth mentioning in this section is the difference between declaring problem

data as const and normal (modifiable) variables. Depending on the architecture of

the processor being used, together with compilation settings, variables declared as

const are typically stored in Flash rather than RAM. This is normally advanta-

geous as a processor will have much more Flash memory than RAM. For example,

take a common 8-bit microcontroller used in our undergraduate classes, the Atmel

ATmega128 [23] which has 128KB of Flash and 4KB of RAM. This reflects the

normal distribution of memory of small microcontrollers, where the program and

constants are significantly larger than the required dynamic variables. For the 3-

DOF Helicopter example in this work, constants alone take up 80% of the memory

requirement of the MPC controller, without taking into account the program itself.

An issue arises when examining the access speed of the two memory types. While

reading Flash memory is fast, it is not (typically) as fast as accessing RAM [307].

Again looking at the Atmel ATmega128 data sheet, instructions which load data

from Flash (LPM, ELPM) take 3 clock cycles, versus typical load instructions (from

CPU registers or RAM, e.g. LDI, LD) requiring 1-2 clock cycles. When up to

80% of the memory requires an extra one or two clock cycles to access every time
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it is accessed, a heavy performance penalty can be experienced. Therefore if the

processor has available RAM resources (such as the TI Delfino), it is advantageous

not to declare constants as const, in order to avoid this time penalty. Alternatively,

as described in the next subsection, the linker can be setup to place constants within

RAM, overriding the default allocation to Flash.

4.4.3.2 Memory Block Size, Location and Wait-States

As described in Section 4.2 the TI C28343 microcontroller is equipped with 260KB

of on-chip RAM. It might be expected then that apart from program space (noting

this particular IC has no onboard Flash) and memory dedicated to the peripherals,

that most of this RAM is available for use, and is basically identical regardless

which address data is stored at. This does not turn out to be the case, and as

shown in Figure 4.10 only approximately 100KB is 0 wait-state memory, meaning

the remainder of the memory requires 1 or more wasted clock cycles in order to read

or write.

Figure 4.10: TI C28343 on-chip memory characteristics (Figure 3-3 and Table 3-1
in [309]).
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In addition, following the linking information on the TI Wiki [307], we see further

complications of variable block sizes, and constraints such as program and data must

be located in separate blocks (typical in embedded systems, but as the TI uses a

‘unified’ memory architecture, overlaps can occur). Therefore the optimal allocation

of the number of blocks, the size of each block, and which data maps to which block

all become an interesting problem, the solution to which is also dependent on the

tuning characteristics of the MPC controller. For this work a compromise was found

which allowed large tuning horizons to be implemented, while retaining efficient use

of 0 wait-state SARAM blocks. The linker command file for this work is listed in

Section A.4.3, and summarized in Table 4.3.

Table 4.3: TI C28343 custom linker command file summary.

Name Length Used1 Page Wait-States Function
RAML0 1KB 1% Program 0 Switch Case Tables, ramfuncs
RAML1 16KB 60% Program 0 Program code, IQmath code
RAML2 24KB 92% Data 0 Global and Static Variables
RAML3 90KB 99% Data 0/12 Constant Data
RAMM1 2KB 0% Data 0 Stack
RAMH0 130KB 16% Data 1 Initialized Global Variables

13-DOF Helicopter MPC Controller with 35 decision variables and 308 constraints
21 wait-state for addresses 0x14000 and above

By examining the generated .map file after an MPC controller has been compiled

it is possible to determine how much memory is placed into each section. Also

shown in the third column of Table 4.3 is the percentage used by a very large MPC

controller implemented with long horizons (Np = 60, Nc = 17) and constraints on

all inputs, and two of three outputs. The resulting controller has an estimated

memory footprint of 110KB, which matches the actual memory requirements quite

closely. Differences occur due to the Code Composer Compiler allocating global

arrays of lengths that may vary from that specified in code, in order to optimize

page boundary access (see the discussion on the TI Forum [310]).

A further observation of Table 4.3 is the use of RAMH0 and its allocation of

initialized global variables. In a normal embedded system with Flash memory, these

would be the initialized values of the global variable arrays, and thus are written into

Flash, in addition to the memory being allocated in RAM. Part of the boot process

would be then to copy these values into RAM, thus enabling their use. However it

appears this particular IC still separates the values from the variables, even when

the program is written directly into RAM. Therefore we effectively ‘double up’ the

required memory for initialized global variables using my configuration. In addition,

RAMH0 has not been used for any other data, specifically because of the 1 wait-state

penalty when using it. Given the example presented, the maximum sampling rate
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is already limited to around 6Hz, thus larger controllers are not expected to be

implemented using this platform and RAMH0. There is therefore around 100KB free

memory on this platform if required for other purposes.

4.4.4 Performance Testing on the TI C28343

Using the auto-coding framework described in Section 4.3, both the quad wright

and quad mehrotra solvers have been implemented on the TI C28343 microcon-

troller and their performance, accuracy and memory consumption benchmarked

across a range of QPs resulting from MPC problems. In order to benchmark the

solvers, the C28343 microcontroller has been interfaced to MATLAB using a Pro-

cessor In The Loop (PIL) implementation as shown in Figure 4.11.
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Figure 4.11: TI C28343 embedded QP PIL setup.

The QP solver is compiled using maximum optimization settings in Code Com-

poser Studio then downloaded to the target microcontroller via JTAG, which then

waits for a synchronization byte from MATLAB. Once initiated, the QP solver on

the C28343 solves the compiled problem and transmits back the primal solution, the

solver status, the number of iterations taken and the length of time taken, measured

using a 1µs timer interrupt.

The problem chosen to benchmark the QP solvers is based on solving the QP

that results from the first sample of a tightly constrained SISO system. The system

model is as follows

G(s) =
2

0.7s2 + 0.2s+ 1
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and is discretized at a sampling rate of 0.1s.

The controller is designed using Q = (52) INp
and R = (0.52) INc

, and is con-

strained within the following regions

−2.0 ≤ u ≤ 4.5

0.49 ≤ y ≤ 1.01

In order to test the QP performance, the initial systems states are set as (2.5, 2.5)T

and the setpoint is set as 1. Given the large weight on output deviation, together

with the tight constraint (setpoint of 1, upper output constraint of 1.01), a large

proportion of the upper output constraints are expected to be active at the solution.

To vary the size of the QP being solved, Np and Nc will be varied, thus testing the

performance of the solver over a range of decision variable and constraint sizes.

For the reader’s reference, a sample solution run of the MPC controller with

Np = 20, Nc = 8 can be viewed in Figure 4.12. The QP being solved for this

benchmarking study is the QP that results at sample 1, using single precision and

a tolerance of 5 × 10−4. Given the tuning constants shown, 17/20 upper output

constraints are active at the solution, resulting in a challenging QP to be solved. The

relationship between prediction horizons and problem dimensions for this problem

is as follows

#Variables = Nc

#Constraints = 2Np + 2Nc

The following subsections detail each of the metrics used to validate the QP

solver performance.

4.4.4.1 Speed

To demonstrate the achievable speed of both algorithms, a range of QPs with varying

sizes have been compiled and tested on the TI C28343. Two distinct ranges have

been tested, small problems with 2-8 decision variables and 12-48 constraints, and

medium to large problems (scale relative to typical embedded implementations) with

10-40 decision variables and 60-320 constraints. Gaps within the respective ranges

are due to the formulation constraint that Np ≥ Nc (lower bound in each Figure),

and the range of horizons chosen (upper bound in each Figure).

Figure 4.13 shows the solution times of each algorithm with respect to increasing

Np and Nc, while Tables 4.5 and 4.4 detail the timing results. An interesting result
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Figure 4.12: Reference MPC solution used for QP performance testing.
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is observed in Table 4.5 where for a few particular tuning configurations (e.g. Np =

20, Nc = 8), a larger problem is solved in less time than an adjacent smaller problem.

This is a result of the solver requiring less iterations to solve this particular problem

than the equivalent smaller problem. For all results presented, both algorithms

required the same number of iterations to solve all problems when compared to the

same algorithm on the PC.
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Figure 4.13: Embedded QP solver timing results (times reported in ms).

Table 4.4: Embedded quad wright timing summary (times reported in ms).

Nc 2 4 6 8 10 20 30 40
Np

4 0.163 0.387
8 0.425 0.840 1.347 2.025
12 0.572 0.944 1.659 2.440 3.443
16 0.720 1.150 1.973 2.850 3.959
20 0.747 1.355 2.285 3.253 4.475 15.149
30 1.076 2.136 3.079 4.292 5.788 16.051 36.646
60 2.022 3.455 5.513 7.433 8.574 24.335 52.036 107.637
90 4.541 5.762 7.901 10.531 13.673 32.592 76.916 123.515
120 7.275 10.258 10.291 13.388 17.296 42.032 97.664 147.638

4.4.4.2 Accuracy

To determine the accuracy of the embedded versions of the quad wright and quad mehrotra

algorithms, the embedded results can be compared directly to the results obtained

via the development computer (also in single precision). This is possible as the the

accuracy of both the quad wright and quad mehrotra algorithms has been ver-

ified in Section 3.4.6, meaning we can be confident one set of results is correct.

Unlike the auto-coded verification step (discussed in Section 4.3) which returns bit-

accurate solutions, the embedded version is expected to return solutions accurate to
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Table 4.5: Embedded quad mehrotra timing summary (times reported in ms).

Nc 2 4 6 8 10 20 30 40
Np

4 0.238 0.435
8 0.447 0.753 1.606 2.987
12 0.604 1.147 1.992 2.041 2.801
16 0.762 1.398 2.034 3.768 3.848
20 0.742 1.378 2.350 3.255 4.350 14.018
30 1.312 1.897 2.653 3.596 4.721 16.961 37.199
60 2.470 4.225 4.747 6.224 7.958 21.625 53.027 78.399
90 4.437 6.099 6.798 8.821 11.165 29.040 68.888 114.766
120 6.815 10.594 8.867 11.481 14.523 35.480 82.121 138.936

a fraction of percent. The reason for a difference is due to the non-associative and

non-distributive properties of floating point (exaggerated in single precision), which

will be caused by the different compiler optimizations present, and thus operation

order, between TI Code Composer and Microsoft Visual C++.

As with the speed measurements, accuracy has been evaluated over two ranges:

Small problems and medium to large problems. Figure 4.14 shows the absolute error

of the embedded algorithm against the respective algorithm on the PC, when com-

paring the calculated objective values. The comparison is done in double precision

to provide a better estimate of error. For complete accuracy details see Tables 4.6

and 4.7.
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Figure 4.14: Embedded QP solver timing results [%]. Note the right hand figure
exhibits no contour colours as compared to the left hand plot (sharing the same
scale), very little error exists.
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Table 4.6: Embedded quad wright accuracy summary (absolute error).

Nc 2 4 6 8 10 20 30 40
Np

4 < 10−6 < 10−7

8 < 10−6 < 10−6 < 10−7 < 10−6

12 < 10−6 < 10−6 < 10−6 < 10−7 < 10−6

16 < 10−6 < 10−6 < 10−6 < 10−6 < 10−7

20 < 10−6 < 10−6 < 10−6 < 10−7 < 10−7 < 10−7

30 < 10−7 < 10−6 < 10−6 < 10−6 < 10−6 < 10−7 < 10−6

60 < 10−7 < 10−6 < 10−5 < 10−6 < 10−5 < 10−5 0.0001 < 10−5

90 < 10−7 < 10−5 < 10−7 < 10−6 < 10−7 < 10−6 < 10−6 0.0005
120 < 10−5 < 10−5 < 10−6 < 10−7 < 10−6 < 10−5 < 10−4 0.0006

Table 4.7: Embedded quad mehrotra accuracy summary (absolute error).

Nc 2 4 6 8 10 20 30 40
Np

4 < 10−6 < 10−7

8 < 10−7 < 10−7 < 10−7 < 10−6

12 < 10−7 < 10−6 < 10−7 < 10−7 < 10−7

16 < 10−6 < 10−7 < 10−6 < 10−5 < 10−6

20 < 10−7 < 10−6 < 10−7 < 10−6 < 10−7 < 10−7

30 < 10−7 < 10−6 < 10−6 < 10−6 < 10−6 < 10−8 < 10−7

60 < 10−8 < 10−6 < 10−5 < 10−4 < 10−5 < 10−7 < 10−7 < 10−5

90 < 10−7 < 10−6 < 10−5 < 10−5 < 10−5 < 10−6 < 10−5 < 10−4

120 < 10−7 < 10−5 < 10−6 < 10−4 < 10−6 < 10−6 < 10−4 < 10−5
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4.4.4.3 Memory Consumption

As described in Section 4.4.3.2 the Code Composer Studio compiler may allocate

arrays with a larger number of elements than specified in order to optimize page

boundary access. Therefore in order to accurately benchmark the memory consump-

tion of the solver, the compiler generated .map file is parsed to determine the number

of bytes required for the switch-case tables, the compiled algorithm, variables, con-

stants, and initialized variables (RAM blocks L0, L1, L2, L3 and H0 respectively).

Note that as no dynamic memory is allocated, this calculated figure should give an

accurate estimation of memory required. The compiled algorithm requires 6.5KB,

with the remainder of memory required by the problem data.

As with both speed and accuracy, memory has been evaluated over two ranges:

Small problems and medium to large problems. Figure 4.15 illustrates the memory

requirements for both the quad wright and quad mehrotra algorithms, noting that

the quad mehrotra algorithm only requires two extra vectors, one of the number

of decision variables long, and one of the number of constraints long. For memory

requirement details consult Tables 4.8 and 4.9.
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Figure 4.15: Embedded QP solver memory use [KB].

4.4.4.4 Performance Summary

The benchmark results so far have demonstrated the three key requirements of

a successful embedded quadratic programming solver, namely fast solution times,

repeatable results between compilers and processors, and lastly a modest memory

footprint, even for large problems. Tables 4.10 and 4.11 summarize the performance

metrics and results for small and medium-large problems respectively.

A key observation that can be drawn from these results is that for small problems,

quad wright is faster than quad mehrotra . This was hypothesized and demon-
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Table 4.8: Embedded quad wright memory summary (memory reported in KB).

Nc 2 4 6 8 10 20 30 40
Np

4 7.90 8.76
8 8.76 9.67 10.62 11.45
12 9.32 10.23 12.15 13.05 14.20
16 10.80 11.64 12.67 13.63 14.84
20 11.18 12.09 13.20 14.22 15.48 25.36
30 12.21 14.25 15.49 16.61 18.12 28.78 42.19
60 17.14 18.76 21.45 23.05 25.04 37.01 53.84 75.09
90 22.16 24.17 26.38 29.42 31.88 46.26 65.49 89.19
120 27.02 29.60 32.27 34.85 38.79 55.56 77.19 102.22

Table 4.9: Embedded quad mehrotra memory summary (memory reported in KB).

Nc 2 4 6 8 10 20 30 40
Np

4 8.59 9.41
8 9.49 10.42 11.39 12.25
12 10.08 11.01 13.08 14.01 15.18
16 11.71 12.58 13.63 14.62 15.86
20 12.13 13.06 14.19 15.24 16.53 26.78
30 13.24 15.43 16.70 17.84 19.37 30.41 43.94
60 18.67 20.32 23.15 24.78 26.78 39.01 56.09 77.71
90 24.18 26.22 28.45 31.64 34.13 48.75 68.23 92.32
120 29.54 32.14 34.83 37.43 41.54 58.56 80.44 105.71
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strated in Section 3.4.4 in MATLAB, but was not reproduced in C. However for the

TI C28343, this is quite obvious, and hence why both algorithms have been developed

and tested within this framework. The intention is then that for small MPC con-

trollers, quad wright will be used, while for larger MPC controllers, quad mehrotra

will be used, thus allowing an adaptive solution. The reason quad wright is faster

on the TI C28343 will be partly based on the earlier hypothesis (it does less work

per iteration), but will also be due to a different compiler optimized implementation

than the Microsoft VC++ compiler.

In addition, it is evident that on the TI C28343 the accuracy of the quad wright

degrades as performance increases. By comparing the infeasibility and value of the

objective, it was determined the computer solution was ‘more’ optimal, and thus

the TI processor solution was deviating from the ‘correct’ solution. This result was

observed within the quad mehrotra algorithm as well, but not to the same degree

of error as with the quad wright algorithm.

With regards to memory consumption, as stated there is only a difference of

two vectors between the two solvers, and thus their memory requirements are very

similar. However it is worth pointing out that both algorithms are very memory

efficient, requiring on average 11KB and 50KB for small and medium-large problems

respectively. This puts these algorithms within reach of a number of small micro-

controllers, where the limiting factor will now be the clock speed for achievable

sampling rates. A further observation is that seeing the average memory footprint

for a small MPC QP is so small, it is conceivable the algorithm could fit on a simple

8-bit microcontroller. This is based on the RAM requirement being approximately

2KB and that most microcontrollers will have greater than 16KB of Flash available

for the code and constants.

In summary, it has been shown that both quad wright and quad mehrotra are

competitive solvers for solving the QPs that result from a range of MPC tuning

parameters on the TI C28343 floating point microcontroller. Sampling rates up

to and exceeding 6000Hz are realistic for small control problems, with the average

sampling rate expected to be between 200-2000Hz depending on the system model

and tuning parameters used.

4.4.5 Benchmarking Against FORCES

A recent significant contribution to the field of embedded MPC is the Fast Opti-

mization for Real-time Control on Embedded Systems (FORCES) framework [84],

which is a MATLAB package for generating embedded model predictive controllers,

as well as general linear and quadratic (including second order cone) optimization
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Table 4.10: Embedded QP solver performance results - small problems (2-8 decision
variables, 12-48 constraints).

Metric Statistic quad wright quad mehrotra

Solution Time mean 1.25ms (800.23Hz) 1.44ms (692.66Hz)
max 2.85ms (350.88Hz) 3.77ms (265.39Hz)
min 0.16ms (6134.97Hz) 0.24ms (4201.68Hz)

|Objective Error| mean < 10−6 < 10−6

max < 10−6 < 10−5

min < 10−7 < 10−7

Memory mean 10.8KB 11.6KB
max 13.6KB 14.6KB
min 7.9KB 8.59KB

Table 4.11: Embedded QP solver performance results - medium to large problems
(10-40 decision variables, 60-320 constraints).

Metric Statistic quad wright quad mehrotra

Solution Time mean 48.35ms (20.68Hz) 43.13ms (23.19Hz)
max 147.64ms (6.77Hz) 138.94ms (7.2Hz)
min 4.47ms (223.46Hz) 4.35ms (229.46Hz)

|Objective Error| mean < 10−4 < 10−5

max 0.00577 < 10−4

min < 10−7 < 10−7

Memory mean 48.7KB 51.0KB
max 102.0KB 106.0KB
min 15.5KB 16.5KB
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solvers. The package is written by Alexander Domahidi of ETH Zürich, and in-

cludes a web-based automatic code generator [82], very similar in concept to that

proposed by this work. For this reason a comparison with the framework of this

work is presented, together with a performance comparison.

One of the main advantages of the FORCES package is the ability to solve

Quadratically Constrained Quadratic Programs (QCQP), also known as Second Or-

der Cone Problems (SOCP). It is acknowledged that this is not possible within the

jMPC framework, however it was also not the design intention, as the problems of

interest do not contain quadratic constraints. Otherwise the two packages are quite

similar in philosophy and design: they both utilize interior-point methods for solv-

ing the online optimization problems (reinforcing our argument that interior-point

methods are suited for MPC problems), they are both MATLAB based, and they

both generate ANSI C code targeted at embedded controllers. However the high-

level language is vastly different between the two packages, with FORCES designed

for time varying MPC formulations, requiring manual entry of the objective, con-

straints and dimensions at each stage (i.e. time within the horizon), while jMPC is

designed for a constant formulation, based on its simplicity.

The code-generator included in the FORCES package utilizes a web-server to

generate the embedded code, which is then transmitted back to your PC. The code-

generation process is remarkably quick, taking only a few seconds for a small prob-

lem. This is opposed to CVXGEN [210], which can take several minutes to generate

the C code implementation. Furthermore, FORCES adopts a similar strategy to

this work, whereby the solver is not completely unrolled (as in CVXGEN), so as to

limit the resulting code-size. The code is however generated for a particular problem

size, and thus would require regeneration to re-tune.

To compare the performance of FORCES with the proposed approach, the

FORCES simple MPC example (http://forces.ethz.ch/doku.php?id=examples:

simplempc) is used as benchmark. This example applies MPC to control of a un-

stable double integrator, which results in a quadratic program with 10 variables and

60 constraints, thus falls within the problem size range of this work. The FORCES

package formulates the MPC problem in a slightly different fashion (no reference

tracking and adds additional terminal weights and constraints for stability), thus

the controlled responses are slightly different. However as shown in Figure 4.16, the

controlled responses are very similar. Table 4.12 compares the execution times of

the samples for which the jMPC controlled solved a QP (at the beginning of the

simulation), and the same samples within the FORCES simulation, to provide a fair

comparison. In addition, the file memory (not RAM requirement, just the file size)

is reported, together with the amount of time required to generate and compile the
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solver.

Table 4.12: Performance comparison between jMPC and FORCES - timing and
memory results. Note the jMPC results were obtained using the quad mehrotra

solver.

Metric Statistic jMPC FORCES
Solution Time mean 0.069ms 0.166ms

max 0.1ms 0.203ms
min 0.047ms 0.143ms

Code Generation Time 1.72s 68s
File Memory 37KB 67KB
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Figure 4.16: Performance comparison between jMPC and FORCES.

As shown in Table 4.12, the jMPC implementation outperforms FORCES on

all metrics. It is not only on average 2.4× faster, but requires 45% less memory

(in terms of file size), and was 40× faster to generate. While the FORCES solver

may be able to solve more complex (and larger) MPC problems, for the problems

of interest within this work, the jMPC algorithm together with the quad mehrotra

solver is the preferred implementation. Note the solution times are recorded on a

2.8GHz i7 laptop using the operating system’s high performance timer, which allows

timing approximately accurate to one microsecond.
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4.5 Processor-In-The-Loop Embedded MPC

With two efficient QP solvers now developed and the MPC algorithm proven against

the FORCES framework, the next task required is to add the complete model pre-

dictive control algorithm to the embedded target implementation. With efficient

preprocessing and problem generation within MATLAB, together with the auto-

code framework described in Section 4.3, a complete MPC controller with QP algo-

rithm can be deployed in as little as 10 seconds. This section will detail verifying

the embedded MPC implementation on the target microcontroller via an automated

Processor-In-the-Loop (PIL) testing method.

4.5.1 A Processor-In-the-Loop (PIL) Implementation

A PIL implementation places the target processor within the testing loop so that

the algorithm under test is run on the final implementation hardware. The key

difference though between a final implementation and a PIL implementation is that

the development computer retains some control over the target hardware. This

allows the algorithm to be verified on the final production hardware, whilst retaining

an easy to use, monitor, and control testing environment.

For this work a PIL implementation has been extensively used for verifying the

functionality and accuracy of the QP solver (described in Section 4.4.4), however

the core focus of the development of the PIL system was for validating the MPC

algorithm. Figure 4.17 shows the intended verification system. Within the PIL

system used the development computer acts in a dual role, both as the system plant

and a supervisory controller. In its role as the system plant, its job is to simulate

the dynamic system that is being controlled, whether this be linear or nonlinear. In

its role as a supervisory controller, it supplies the current setpoint, providing the

reference trajectory for the controller to follow. The embedded MPC controller is

run on the target hardware, and communicates with the development computer via

a two-way communication channel. For this work, a simple USB serial link is run at

1.25MBaud, with a custom packet system written for communication between the

two devices.

The initialization and subsequent operation of a typical PIL verification run is

as follows:

1. (PC) An embedded MPC controller is generated from a specified jMPC object

within MATLAB.

2. (PC) The generated controller is compiled and downloaded to the target.
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Figure 4.17: Embedded MPC verification using PIL and jMPC with the TI C28343.

3. (TARGET) The controller, now running on the target, completes its setup

routines and enters the PIL simulation mode. It now waits for the first set of

measurements from the development computer.

4. (PC) A PIL simulation is invoked on the development computer, using the

same jMPC syntax for normal (PC based) simulations, except with PIL speci-

fied as the simulation environment.

5. (PC) The current plant output(s) and desired setpoint(s) are transmitted from

the development computer to the target via the serial link.

6. (TARGET) Using the transmitted measurements and setpoint the target com-

pletes a full MPC control move calculation.

7. (TARGET) The calculated control move, together with solution statistics and

model values are transmitted back to the development computer.

8. (PC) The development computer reads and stores the transmitted data, ap-

plies the control move(s) to the simulated plant, and the time step is incre-

mented one sample. The PIL verification run repeats from step 5 and continues

until no further data is received from the development computer.

As described in the above list, steps 1-4 are the setup and initialization of the

PIL loop, while steps 5-8 are the iterative loop. A detailed example of how a
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PIL implementation is run under the jMPC Toolbox is described in Section A.4.4,

including timing and accuracy results.

4.5.2 Nonlinear Verification using a PIL Embedded MPC

A further advantage of using the jMPC Toolbox and a PIL simulation is the ability

to verify the controller on the target within a nonlinear simulation environment.

By utilizing the development PC as the system plant, we are free to use an ODE

integrator (such as ode45) to simulate the nonlinear system dynamics, and thus

provide a more robust verification of our linear controller’s performance.

To illustrate this process we are going to control a nonlinear model of an inverted

pendulum on a motorized cart, based on the physical system sold by Quanser [267].

This is a traditional nonlinear control problem that exhibits fast dynamics and thus

requires high-speed control. Figure 4.18 shows the physical system.

Figure 4.18: Quanser IP02 inverted pendulum control challenge [267].

As this is a traditional system the nonlinear Equations Of Motion (EOM) are

well known. These are repeated below from [264]

ÿ =
u+ml (sin θ) θ̇2 −mg cos θ sin θ

M +m−m cos2 θ

θ̈ =
u cos θ − (M +m) g sin θ +ml (cos θ sin θ) θ̇2

ml cos2 θ − (M +m) l

(4.1)

and are used for both the system plant, as well as generating a linearized control

model. The parameters for this system are listed in Table 4.13 for the example

Quanser system.
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Table 4.13: Quanser IP02 inputs, outputs and system parameters.

u N Force applied to the cart

θ rad Angle of pendulum from vertical
y m Position of cart

M 0.455kg Mass of the cart
m 0.21kg Mass of the pendulum
l 0.305m Distance to the centre of mass
g 9.81m/s2 Gravitational constant

The system differential equations are entered into a MATLAB function in Cauchy

form, and saved as the function nl pend. To generate a linear approximation of the

pendulum the jNL class is used together with the nl pend function as follows:

% Nonlinear Plant Model
Plant = jNL(@nl_pend,C,{M,m,l,g});

% Linearize about u = 0N
Model = linearize(Plant,0)

This results in the following linear state-space system:









ẏ
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0 0 −4.528 0

0 0 0 1

0 0 47.01 0
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ẏ

θ

θ̇









+









0

2.198

0

−7.206
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u
]

Note the derived linear system is identical to that described in the original reference

[264]. In addition, the linearize method has automatically solved for the steady

state of the system, found to be [0,0,0,0] (centred, vertical, not moving). The output

matrix, C, simply picks off y and θ as the system outputs.

At this point an MPC controller can be designed using the linearized model.

The tuning weights are set as ywt = [1.5, 0] (do not control pendulum angle, only

constrain it) and uwt = 2, and predictions of Np = 30 and Nc = 5. In addition the

following constraints are used

−10N ≤ u ≤ 10N

−2m ≤ y ≤ 2m

−0.785rad ≤ θ ≤ 0.785rad
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The model is discretized at a sampling rate of 20Hz and an embedded MPC controller

is generated.

When the PIL implementation is run, rather than using a simple discrete state-

space update of the plant state, MATLAB’s ode45 is used to integrate the system

ODEs across each sample on the development computer. The plant model can now

predict the system behaviour much more accurately, including the nonlinear effects

as the pendulum moves further from the linearization point (in this case, verti-

cally upright). Figure 4.19 shows the result of the PIL implementation, utilizing

quad mehrotra as the QP solver and implemented in single precision. As shown
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Figure 4.19: Embedded linear MPC control of a nonlinear inverted pendulum model.
The pendulum model is simulated on the development computer, and control actions
obtained via a PIL implementation of the TI C28343. The top red trace is the cart
position in metres (controlled) and green trace is the pendulum angle from vertical
in radians (uncontrolled).

the embedded MPC controller achieves a maximum sampling rate of around 290Hz,

indicating the controller could be pushed much faster. However the control perfor-

mance of the system is satisfactory given the desired tuning and thus there is no

further reason to increase the sampling rate. A more aggressive controller on the

other hand may require a faster sampling rate. Inspecting the compiler .map file

the controller required 28.3KB to store all problem data and the algorithm, which
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includes data for solving the QP at each sample with 5 decision variables and 130

constraints.

To verify the control performance is as expected, compare is used to validate the

PIL results against a simulation run within MATLAB. Note increased differences

are to be expected due to the MATLAB MPC and QP algorithms varying slightly

from the embedded MPC algorithm, based on leveraging different linear algebra

libraries and a substantially different operation order (due to different compilers).

The comparison results are shown in Figure 4.20.

−1.5

−1

−0.5

0

0.5

1

1.5
Plant Output: yp(k)

A
m

pl
itu

de

−3

−2

−1

0

1

2

3
Input: u(k)

0 100 200 300 400

−0.02

0

0.02

Output Difference

yM
L 

−
 y

P
IL

Sample (k)
0 100 200 300 400

−0.4

−0.2

0

0.2

0.4

0.6
Input Difference

uM
L 

−
 u

P
IL

Sample (k)

Figure 4.20: Embedded linear MPC control of a nonlinear inverted pendulum model
comparison: MATLAB vs TI C28343.

This example has demonstrated one of the powerful code verification and tuning

validation features of this work: The ability to run the generated MPC controller

on the target hardware while controlling a detailed nonlinear plant via a PIL simu-

lation. In addition, the linear model is automatically derived about a user specified

operating point, allowing the user to concentrate on tuning and verification. The

result is that effort and re-tuning required when transferring the embedded MPC

controller from a PIL implementation to a real implementation on the physical plant

should be substantially reduced, provided the nonlinear model is correctly identified.
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4.5.3 Comparison with Literature

To compare the performance of the proposed algorithm with that reported in the

literature, two PIL case-studies are presented.

4.5.3.1 Cessna Citation 500 Model [186]

One of the de-facto models used for validating MPC performance is the Cessna

Citation 500 model used by J. Maciejowski in his book, ”Predictive Control with

Constraints” [192]. The linearized, continuous time model is shown in Equation 4.2

and models the aeroplane pitch angle (y1, rad), altitude (y2, m) and altitude rate

(y3, m/s) as a function of the control input, elevator angle (u, rad) and current state.

Â =









−1.2822 0 0.98 0

0 0 1 0

−5.4293 0 −1.8366 0

−128.2 128.2 0 0









, B̂ =









−0.3

0

−17

0









Ĉ =






0 1 0 0

0 0 0 1

−128.2 128.2 0 0




 , D̂ =






0

0

0






(4.2)

The performance comparison will be made against an embedded MPC FPGA

implementation of this system as described in [186]. The model is discretized with a

sampling rate of 0.5 seconds and an MPC controller is designed withNp = 10, Nc = 3

and tuning weights of 1 for the input and all outputs.

Two case studies are presented in the paper which vary only by the constraints

imposed on the system. The first case study applies the following constant con-

straints

−0.524 ≤ ∆u ≤ 0.524

−0.262 rad ≤ u ≤ 0.262 rad

−0.349 rad ≤ y1 ≤ 0.349 rad

where y1 is the pitch angle of the Cessna. From this description a jMPC controller

is created in MATLAB, a single precision controller is automatically generated in C

and a PIL simulation run which mimics the control specification within the paper.

Figure 4.21 shows the PIL implementation result and Table 4.14 compares the results

from the paper.
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Figure 4.21: Embedded MPC control on the TI C28343 of a Cessna Citation 500
model, case study 2 in [186]. Note the 30m/s altitude rate constraint is not active.

Table 4.14: Cessna Citation 500 case study 2 results comparison.

Implementation Scheme Average MPC Average Number
Sampling Interval of QP Iterations

Ling et al. [186] Sequential (25MHz) 5.2ms 12.3
Ling et al. [186] Parallel (25MHz) 2.9ms 12.3
jMPC Sequential (200MHz) 0.64ms1 5.41

jMPC Sequential (200MHz) 0.32ms2 2.32

1 Calculated over the active QP samples only (for direct comparison).
2 Calculated over all samples.
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One important metric missing from the original reference was the maximum sam-

pling interval, which directly corresponds to the maximum achievable sampling rate.

However by inspecting Figure 5(b) within the reference it is possible to estimate the

maximum number of QP iterations is 17. This can then be used to estimate the

maximum sampling rate using Table 3 (within the reference) as 7.19ms (139Hz)

for the sequential algorithm, 4ms (250Hz) for the parallel algorithm, versus 0.93ms

(1075Hz) for the jMPC sequential implementation. In addition, the memory con-

sumption of the reference algorithm is not specified (e.g. block RAM usage), thus

no direct comparison can be made. For the reader’s reference, the jMPC controller

required 18.7KB to store the entire controller and data memory.

The final case study presented by Ling et al. includes an extra constraint on the

altitude rate of change

−30m/s ≤ y3 ≤ 30m/s

which replaces the pitch constraint as the active constraint for the majority of the

simulation. Figure 4.22 shows the result for this case on the TI C28343 and Table

4.15 compares the results to the paper.
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Figure 4.22: Embedded MPC control on the TI C28343 of a Cessna Citation 500
model, case study 3 in [186].
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Table 4.15: Cessna Citation 500 case study 3 results comparison.

Implementation Scheme Average MPC Average Number
Sampling Interval of QP Iterations

Ling et al. [186] Sequential (25MHz) 9.1ms 14.8
Ling et al. [186] Parallel (25MHz) 4.9ms 14.7
jMPC Sequential (200MHz) 0.62ms1 3.251

jMPC Sequential (200MHz) 0.42ms2 2.12

1 Calculated over the active QP samples only (for direct comparison).
2 Calculated over all samples.

Comparing Tables 4.14 and 4.15 it is evident why simply analyzing the average

MPC sample interval can give misleading results. The larger QP of Case 3 averages

at 0.62ms (active QP samples), while the smaller QP of Case 2 averages at 0.64ms.

This is a result of both QP warm starting, as well as the effect of the different

constraints on the control problem. Comparing the maximum sample interval, Case

3 requires 1.23ms, versus 0.93ms for the smaller Case 2, the expected result of a

faster time for a smaller problem.

One conclusion that could be drawn from this comparison is that it is unfair in

terms of raw clock speed, given the jMPC TI C28343 is running at 8x the speed of

the Ling et al. Xilinx FPGA. However there are a number of points that need to be

considered when comparing these two embedded implementations:

FPGAs vs Microcontrollers As described in Section A.4.1, it is very hard to

compare the same algorithm implemented in an FPGA, to that implemented

in a microcontroller. This is due to the inherent parallelized data paths avail-

able within an FPGA as well as the substantially different architecture (cus-

tomizable vs fixed). The typical clock speed of a small and inexpensive mod-

ern FPGA is still around 50MHz, which although can be multiplied using a

Phase-Locked-Loop (PLL), is still typically limited by memory (internal Block

RAM) access speeds to around 200MHz. Obviously higher performance FP-

GAs are available, but so too are higher performance microcontrollers (such

as the common ARM architecture at circa 1GHz). It is not the focus of this

work to target high performance ICs, but rather low-cost, low-power, easy to

use processors.

Maximum Clock Speed Given the aim of both this work, and Ling et al. was to

develop the fastest embedded MPC implementation, there would be no reason

why a lower clock rate than the maximum achievable were to be used. For the

TI C28343 the maximum (safe) clock rate is 200MHz, so this was used. It is

assumed that the maximum clock rate available for the Xilinx FPGA that still

allows the MPC algorithm to be implemented was 25MHz. Therefore using
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this Xilinx FPGA, simply increasing the clock rate is most likely not possible,

and a different (more powerful) embedded target would be required.

Development Tools Handel-C was used by Ling et al. to generate the Hardware

Description Language (HDL) from a C-code representation of the algorithm,

which is required to generate the FPGA design. This was part of Celoxica

DK2, a software package that cost over US$7000.00 (based on information that

can be found online - the package is now obsolete). In addition, MATLAB

and Simulink were used as part of the PIL testing environment, leading to

an expensive proposition to develop low-cost controllers. For the jMPC auto-

coding framework, only MATLAB and TI Code Composer Studio (CCS) are

required, and CCS can be obtained free for academics, or from only US$450.00

for a single user license.

Compilation Time FPGA compilation is notoriously time consuming as the de-

sign tool must actually synthesize a real hardware layout, then place it within

the available FPGA resources. It is not uncommon for this process to take

minutes to hours in time, even for modest designs. In contrast, compiling

a C program is a routine exercise, and only takes a few seconds using CCS.

Depending on how the FPGA design is implemented, recompilation might be

required for every tuning adjustment (for example if Np is increased, the prob-

lem dimensions all also increase), thus limiting the ability to re-tune ‘on the

fly’.

Hardware Cost The complete TI C28343 development kit is available from US$159.00

[308], whereas the (now obsolete) Ceroxica RC203 sold for around US$1500.00.

While it is true for modern FPGA systems that development kit prices have

also rapidly decreased, the Ceroxica (now Mentor Graphics) boards are still

comparatively more expensive than the equivalent TI development kit.

Based on the above points a direct comparison of clock speed using a constant

factor should not be performed, but rather the entire design system and the final

timing results viewed as published. However a quick calculation shows the jMPC

implementation on the TI C28343 is still faster, achieving a sampling rate of 814Hz

for Case 3 at 200MHz, and (hypothetically) the RC203 achieving an estimated

sampling rate of 730Hz for the parallel implementation if run at 200MHz.

With respect to accuracy, the results presented in the original paper appear

to correlate well with Figures 4.21 and 4.22, indicating the control algorithm is

performing as expected.
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4.5.3.2 Rotating Antenna Assembly [320]

The next case study which will be investigated is the control of a small SISO rotat-

ing antenna model used by M.Kothare in [174] for investigating robust MPC, which

was also used in [38] for an embedded MPC implementation on a Motorola MPC555

processor. For this case-study we will be looking at recent work in [320] where

the authors implemented an ADCUS EISC processor together with a patented (by

the authors) matrix coprocessor in a Xilinx Virtex-IV FPGA. This setup is a com-

plex, non-standard implementation requiring specialist knowledge, compilers, and

hardware and thus provides an effective benchmark.

It is worth pointing out that the MPC cost function used in [320] is nonlinear,

and is solved using a modified Newton’s method. However the case-study presented

utilizes a linear model, and thus the resulting cost-function reduces to a QP. For the

purposes of a fair(er) comparison, the time penalty associated with approximating

the gradient and Hessian online has been removed, with only the algorithm and

solver time being compared.

The linearized, discrete time model of the rotating antenna is shown in Equation

4.3 and models the dynamics of an electric motor driven antenna. The control

problem is to rotate the antenna so that it is always facing the desired target. As

with the original reference, it is assumed both the antenna angular position (rad)

and angular velocity (rad/sec) are measurable.

Â =

[

1 0.1

0 0.9

]

, B̂ =

[

0

0.0787

]

Ĉ =
[

1 0
]

, D̂ =
[

0
]

(4.3)

The model has been discretized with a sampling rate of 0.1 seconds and an MPC

controller designed with Np = 10 and Nc ranging from 3 to 10. The tuning weights

are specified as uwt = 1 and ywt = 3. In addition the voltage supplied to drive the

antenna is constrained to

−2V ≤ u ≤ 2V

As with the previous case-study, a jMPC controller is created in MATLAB, a single

precision controller is automatically generated in C and a PIL simulation is run

which mimics the control specification within the paper. Figure 4.21 shows the PIL

implementation result and Table 4.16 compares the results from the paper.

Viewable in the results comparison table we see that the TI implementation
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Figure 4.23: Embedded MPC control on the TI C28343 of a rotating antenna as-
sembly model, case study 1 in [320] with Nc = 2.
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achieves sampling rates exceeding 10kHz with a modest memory footprint for the

entire controller (as measured from the compiler .map file). Comparing the per-

formance to the reference results, which should be viewed with sensible judgement

given the TI is solving a QP, and the Vouzis controller solving an unconstrained non-

linear program, we see a substantial performance improvement of up to 50 times.

Even when clock rates are hypothetically aligned at 200MHz (the reference work

is at 50MHz), the TI with the jMPC controller and quad mehrotra solver is still

substantially faster.

Table 4.16: Rotating antenna assembly results comparison.

Metric TI Max TI Total TI C28343 Max Vouzis [320] Max
Nc QP Iter Memory [KB] Time [ms] Time1 [ms]
2 4 9.14 0.098 5.69
3 4 9.86 0.153 8.4
4 4 10.1 0.212 11.9
5 4 10.7 0.288 16
6 5 11.3 0.456 20.9
7 5 12.1 0.580 26.6
8 5 12.5 0.714 33.3
9 5 13.9 0.882 40.6
10 6 14.5 1.25 48.7

1 This data is not reported in the original reference and thus has been estimated
from the data in Table 3 and from the single piece of timing information where it
is stated 10952 clock cycles required 0.45ms to execute (reported in Section A of
[320]). In addition, a maximum of 30 iterations has been estimated as required by

the Newton solver, based on the same algorithm in Figure 7 in [38] (a very
conservative number). Finally, as mentioned, only the Newton solver and GJ
inversion cycles have been used to provide a comparative estimate between the

nonlinear and quadratic cost functions (a rough approximation).

A few final thoughts on this comparison is that while the Vouzis controller is

solving an unconstrained nonlinear program at each sample, there is no need for this

type of formulation given the system is linear (as reported in the original paper) and

thus a QP formulation will suffice. In addition, the time unit reported in Figure 5

in [320] is in minutes, which indicates the real system is very slow. If this is the case

(and not a typographic error), then this system does not provide a representative

example of where high speed control would be required. To therefore test the jMPC

controller on a high-speed system, we now move from an PIL implementation to a

real MPC implementation controlling a real nonlinear system with fast dynamics.
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4.6 Embedded MPC Case-Study

One of the themes of this work is a strong practical focus and therefore this chapter

would not be complete without an actual implementation of MPC on a real system.

A challenging piece of experimental equipment we had access to was a 3 Degree-

Of-Freedom (3DOF) Helicopter from Quanser [268], pictured in Figure 4.24. The

Figure 4.24: Quanser 3DOF Helicopter plant [268].

system is equipped with 3 quadrature encoders mounted on each of the three rota-

tion axes, as well as two powerful DC motors which provide thrust via each of the

propellers. Electrical signals are transmitted via slip rings mounted on the central

shaft, allowing full 360 degree rotation.

The system is supplied with a USB based data acquisition card (Q8-USB, to

read the encoder values), linear voltage amplifier (VoltPAQ-X2 to drive the motors)

and modelling software (QuaRC) to control the system via Simulink and MATLAB.

Typically the system is controlled via a Quanser-supplied LQR controller that runs

at 1kHz on a development computer, which achieves reasonably good control per-

formance. However, for this work only the linear voltage amplifier will be retained

(in order to supply the required motor current), and custom hardware and software

will replace the LQR controller within QuaRC and Simulink.

4.6.1 3DOF Helicopter Model

A dynamic model for the system was developed by Quanser and is illustrated in

Figure 4.25. Each of the three axes is modelled in terms of the thrust acting upon

it due to the voltage supplied to the motors, the mass of each component as well as

system inertia and gravity. The result is the set of second-order nonlinear differential
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equations shown in Equation 4.4 with parameters given in Table 4.17.

ǫ̈ =

(
Kf la
Je

)

(Vf + Vb) cos(p)−
Tg

Je

p̈ =

(
Kf lh
Jp

)

(Vf − Vb)

λ̈ = −
(
Fgla
Jt

)

sin(p)

(4.4)

Figure 4.25: 3DOF Helicopter free-body diagram [265].

Table 4.17: Quanser 3DOF helicopter inputs, outputs and system parameters.

Vf = u1 V Front motor Voltage
Vb = u2 V Back motor Voltage

ǫ = y1 rad Elevation angle
p = y2 rad Pitch angle
λ = y3 rad Travel (rotation) angle

Kf 0.1188 N/V Propeller force-thrust constant
mh 1.15 kg Mass of the helicopter body
mw 1.87 kg Mass of the counter-weight
la 0.6604 m Distance from elevation pivot to helicopter body
lh 0.1778 m Distance from elevation pivot to counter-weight
Je 0.91 kg·m2 Moment of inertia about elevation axis
Jp 0.0364 kg·m2 Moment of inertia about pitch axis
Jt 0.9508 kg·m2 Moment of inertia about travel(rotation) axis
Fg 1.7715 N Mass differential about elevation axis
Tg 1.1699 Nm Effective differential gravitational torque due to Fg

g 9.81m/s2 Gravitational constant
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As with the inverted pendulum example, the differential equations are entered

into a MATLAB function in Cauchy form, but this time saved as nl heli. The re-

sulting function contains six coupled first-order ordinary differential equations suit-

able for use with the toolbox. A linear approximation is found about the following

input operating point

Vop =
g (lwmw − lamh)

2laKf

(4.5)

which is the voltage required to both the front and back motors in order for the heli-

copter to be level (elevation and pitch axis = 0 rad, travel assumed = 0 rad as well).

Using the jMPC linearize method results in the following linear approximation

about this point
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which closely matches the symbolic solution obtained in [265]. Small variations are

expected as this model is obtained via finite difference, while the original model was

developed symbolically using Maple.

4.6.2 Nonlinear PIL Validation

Using the PIL framework together with the nonlinear model we can design and test

an MPC controller on the target and verify its performance before implementation

on the real system. Given the real system is quite nonlinear, very unstable, and

rather expensive, this is an effective means of developing baseline controller tuning

parameters without damaging the real system.

The outputs of the system we will control are the elevation and rotation angles,

while the pitch angle is left implicitly controlled via the rotation setpoint. The

system is constrained as follows

−20V ≤ Vf ≤ 20V

−20V ≤ Vb ≤ 20V

−30◦ ≤ p∗ ≤ 30◦

where the input voltage limits are set by the motor and amplifier specifications, and
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the pitch constraint is implemented to reduce unmodelled nonlinear effects about the

pitch axis (as well as providing a visible indication of correct constraint handling).

The pitch constraint is implemented as a soft constraint (dictated by the asterisk)

with a penalty weight of 350 so that the QP remains feasible at each sample. Tuning

weights of uwt = [1,1] and ywt = [12,0,8] are used to design the controller so that

it will attempt to rapidly minimize setpoint deviations.

The remaining tuning parameters are the sampling rate and prediction and con-

trol horizons. These cannot be determined independently as the prediction and

control horizons are specified in samples, and thus the faster the sampling rate, the

shorter the horizons in real time. This conundrum means a balance needs to be

found between fast sampling rates (for faster disturbance rejection, better dynamic

handling) and the required prediction and control horizon lengths. Typically, in-

creasing the sampling rate requires the horizons to be also increased (in terms of

samples), which then requires a larger QP to be solved, leading to longer computa-

tion times. As the problem size grows and computation times increase, eventually

the controller will not be able to keep up with the requested sample rate, or a mem-

ory limit will be hit. As described in later in Section 4.6.4, a sampling rate of 33.3Hz

was found to provide adequate control performance, and Np and Nc are set as 80

and [5,5,70] (blocking moves) respectively.

The sampling rate was chosen based on that achievable by the current imple-

mentation, which as shown in Figure 4.26, was limited to approximately 100Hz. To

provide a buffer if further iterations were required, this sample rate was reduced to

one third of the maximum achievable. The horizons were chosen with consideration

of the required number of decision variables (hence the use of blocking moves), as

well as the desire for a long prediction to reduce rotation axis overshoot, which would

increase the number of constraints. All three metrics were tuned subsequently when

implemented on the real system, described in Section 4.6.4. Note a faster sampling

rate was found to make little difference to the controller performance, provided it

was greater than 10Hz.

Figure 4.26 illustrates the control performance of the MPC controller imple-

mented on the TI C28343, and connected via a PIL implementation to the nonlinear

model. The system is subjected to a simple elevation setpoint change (15 degrees

for ‘lift off’) and two rotation axis setpoint changes, one of 90 degrees and one of

150 degrees, providing a challenging control problem. These large rotation setpoint

changes will stress the pitch constraints, as well as test whether the prediction hori-

zon is long enough to avoid significant overshoot. Given the current tuning, the

controller averages around a maximum 100Hz sampling rate and requires 56KB to

store the algorithm and problem data, which includes the large QP with 7 decision
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variables (2 inputs × 3 blocking moves + 1 variable for the soft constrain penalty

term) and 172 constraints.
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Figure 4.26: Embedded MPC control of a nonlinear 3DOF Helicopter model using a
PIL implementation. In the top plot the blue trace is the elevation angle, the green
the pitch angle and the red the rotation (travel) angle. For the control inputs, the
blue is the front motor and the green the back motor. Note the nonlinear helicopter
model is run as a simulation on the development computer.

The validation of the generated controller is shown in Figure 4.27 and shows

the TI C28343 implementation matches the MATLAB results within an acceptable

tolerance. Based on this result we can be confident the controller will adequately

control the real system, provided the nonlinear model has been correctly identified.

4.6.3 Custom DAQ Development

In order to interface the TI C28343 to the Quanser 3DOF Helicopter, a custom

hardware data acquisition board had to be developed. The specifications of this

board were as follows:
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Figure 4.27: Embedded linear MPC control of a nonlinear 3DOF Helicopter model
comparison: MATLAB versus TI C28343. Small differences are expected due to the
different compilers used for each MPC implementation.

• Be able to read three 512 count quadrature encoders at high-speed simultane-

ously (for reading each axis encoder)

• Have at least two output Digital to Analog Convertor (DAC) channels at

±10V (for supplying control signals to the linear amplifier, which then drive

the motors)

• Have at least two input Analog to Digital Convertor (ADC) channels at 0-10V

(future-proofing)

• High-speed serial port of at least 500k baud (for communication with the TI

C28343)

While some of this functionality was available via the C28343 Control Card (e.g.

input capture, ADC), it was decided to develop a custom hardware solution which

contained all required functionality. Being most familiar with the Atmel series of

microcontrollers, the decision was made to use a 8/16bit XMEGA 128A3AU which

had the required peripheral functionality built-in and ran at a respectable 32MHz.

Together with two operational amplifiers and a handful of passive components, the

first prototype was designed and built, and is shown in Figure 4.28.

As with most initial prototypes there were some ‘teething problems’ (the switch

mode power supply proved to be too noisy for the quadrature encoders, as well
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Figure 4.28: Custom DAQ developed to interface to the Quanser 3DOF Helicopter.
Each quadrature encoder connects to the bottom right DIN sockets, motor voltages
are supplied via the bottom left RCA connectors, and communication with the TI
C28343 is via a serial port on the right hand side pin header.

as a bi-directional level shifter would get ‘hung up’ on the quadrature channels),

however with some minor fixes (as noted in the figure) the board is functional. A

revised board was designed but has never been built because the initial prototype

has proved reliable, albeit requiring an external power supply.

A data acquisition program was developed in C using CodeVision and pro-

grammed to the XMEGA 128A3AU’s Flash memory. Substantial programmatic

calibration of the ADC and DAC channels was required in order for accurate mea-

surements/control outputs and thus we would not recommend this IC for future

DAQ development. The hardware based event system handled the quadrature de-

coding without processor involvement, and this worked remarkably well.

Communication between the XMEGA and TI C28343 (or any other serial capable

device) is provided via a hardware serial port operating at 625k baud. The XMEGA

operates as a slave and responds to requests for measurements or applies control

updates as it receives them. This functionality is implemented via a simple state-

machine based decoding system. A small level of error handling is implemented, but

it was not required because the communication channel proved to be quite robust.

The complete 3DOF Helicopter hardware setup is shown in Figure 4.29. The TI

C28343 is mounted on its breakout board at the bottom right, and communicates

to the custom DAQ via the green, red, and black twisted cable. Both boards are

mounted on top of the Quanser VoltPAQ-X2 linear voltage amplifier, which con-
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nects to the base of the helicopter. The Quanser Q8-USB DAQ can be seen in the

background, and is only required to provide the safety override to enable the ampli-

fier output. During normal operation the TI C28343 and custom DAQ (including

encoders) required approximately 450mA at 5V to operate, with the remainder of

the current supplied by the amplifier.

Figure 4.29: 3DOF Helicopter complete hardware setup including the TI C28343,
custom DAQ, Quanser amplifier, benchtop powersupply and 3DOF helicopter.

4.6.4 Embedded MPC Implementation

With the acquisition hardware built and calibrated, and a jMPC controller designed

and validated on the TI C28343, the last step is to implement it and compare the

actual performance to that expected. To begin with, an initialization routine was

written within the controller to perform the following steps:

1. Initialize the DAQ via the serial port. This included resetting the quadrature

encoder timers to 0 within the XMEGA (to set the initial states) and output

motor voltages to 0 (off).

2. Initialize derivative filters and discrete integrators, if used (typically disabled).

Once initialization is complete, the controller waits for a start byte from a con-

nected serial device (typically the development computer) to synchronize the collec-

tion of run-time data. Once the start byte is received, a hardware interrupt is used

to initiate the following steps:
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1. The position of the 3DOF Helicopter is requested from the DAQ via the serial

port. The angles of each of the axes are returned as integers and then converted

to radians.

2. The MPC control law is calculated using the same function as used within the

PIL implementations.

3. The calculated control inputs (motor Voltages) are sent to the DAQ, again via

the serial port. The conversion from floating point to integers is performed on

the TI C28343, including scaling and calibration, because the DAQ microcon-

troller was not fast enough for floating point calculations.

4. Runtime information and statistics are sent back to the development computer

for logging.

5. Wait for the remainder of the sample time, then repeat from step (1) at the

next timer interrupt.

The above steps repeat each time the hardware interrupt fires, which is set at

the desired sampling rate of the controller. Currently the setpoint is hardcoded into

the program, but it would be simple to request this from the development computer.

The reader is reminded that the control and acquisition board plus interface

software above is a standard requirement of any control system, and thus could be

expected to normally be supplied. Furthermore, the work flow designed within this

section is independent of this acquisition hardware, and therefore remains sufficiently

general for application to other plants and hardware. The only requirement is there

must be some form of serial communication (whether RS232, SPI, I2C, etc) between

the acquisition hardware and the proposed TI control board.

The next complication on the real controller is that we do not have full state

feedback, i.e. we only have measurements of ǫ, p, and λ via the encoders and not

their derivatives. With the supplied Quanser system, derivative filters are imple-

mented to obtain estimates of the velocities about each axis; however using the

jMPC Toolbox it is simple to add a Kalman filter to estimate the derivative states.

Using the Control Systems Toolbox dlqe function to design a discrete linear ob-

server, the gain matrix is automatically used by the jMPC controller to estimate the

missing states. For this case-study the following tuning matrices were used when
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designing the observer

Q =














2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1














, R =






0.1 0 0

0 0.1 0

0 0 0.1






where R is chosen to contain small elements relative to Q as the measurements

within the Quanser system are quite accurate (the encoder resolution is high and

noise is minimal). Conversely the model uncertainty is assumed to be large, hence

the larger elements in Q.

Using the tuning constants specified in the nonlinear PIL section, together with

the same setpoints, Figure 4.30 shows the result of a real jMPC implementation on

the Quanser 3 DOF Helicopter. It is obvious the result differs from the PIL imple-

mentation, which is to be expected as the nonlinear model used is very simple, and

the jMPC controller uses only a linear approximation. In addition, the current im-

plementation does not factor in computational delay (due to the controller typically

being much faster than the required sample rate) but this is possible to add via the

Control Systems Toolbox delay2z function.

Figure 4.31 provides a side-by-side comparison of the responses achieved via the

real implementation and the PIL implementation. One obvious difference is that

the pitch angle violates the upper soft constraint by a much larger degree in the real

system. This is attributed to model/plant mismatch whereby the motor dynamics

and system parameters most likely need (re)identification.

In order to address the large constraint violations on the pitch axis the constraint

penalty is increased from 350 to 1000, and the rotation penalty weight decreased

from 8 to 5. Figure 4.32 illustrates the result of this simple re-tuning whereby the

pitch angle is now much more tightly constrained, with minimal control performance

degradation around the rotation axis setpoint.

As this is only a case-study on the MPC implementation, optimal tuning of this

system for a particular application is not the focus, but rather to prove the controller

is robust and flexible. Based on this goal, additional operational scenarios have been

set up to examine the control performance under various conditions. Figure 4.33

compares the control system response based on varying the pitch constraint from 30◦

to 50◦, while Figure 4.34 introduces a challenging semi-hard (penalty of 50000) lower

constraint on the rotation angle. In each case the controller exploits the available
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Figure 4.30: Embedded MPC control of the real Quanser 3DOF Helicopter using
the TI C28343. Note the pitch constraints are soft and thus drawn lightly.
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pitch control on the real 3DOF Helicopter.
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control space, such as violating the soft pitch constraint in order to maintain the

higher penalty rotation constraint, as demonstrated in right-hand column plots in

Figure 4.34.
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Figure 4.33: A comparison of the system response based on relaxing the pitch con-
straint from 30◦ to 50◦.

A video of the performance of the embedded jMPC controller with the 3DOF Heli-

copter is available on YouTube at http://www.youtube.com/watch?v=IReEJy0p3Oc.

4.6.5 Summary

In this chapter we have introduced the embedded model predictive control prob-

lem where the control algorithm must now be solved within limited precision, lim-

ited memory and with limited computational power. As identified in Section 1.2.1,

new application opportunities are opening up as MPC can be applied to smaller,

mobile systems, but these systems inherently need an embedded platform (due to

power/weight/size), and thus severely limit the available computing power when

contrasted with a standard desktop computer.

This work surveyed the current range of embedded processor technology available

in 2009, based on the requirement of a floating point unit, as well as fitting within

budget constraints of this research. A Texas Instruments C2000 hybrid MCU/DSP

was chosen based on its (comparatively) high clock rate (200MHz), ample memory

(256KB) and single precision floating point processor. This is 6% of the clock rate,

0.006% of the memory, and half the floating point precision compared to a typical
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Figure 4.34: A comparison of the system response when introducing a tight lower
constraint on the rotation angle. Notice the pitch constraint is temporarily violated
in order to minimize the rotation angle constraint violation, given it has a much
higher penalty term.

desktop computer. These limits have focused the research to better tailor the MPC

algorithm and associated QP solver so as to best exploit these limited resources.

One of the methods used in this chapter to tailor the problem was a new auto-

coding tool developed within this work. It provided the ability to automatically

generate a full linear MPC controller while retaining benefits of hand-optimized

code, using a series of code-templates. Furthermore, by utilizing both compiler

directives and functionality of the code generator, the controller could be tailored for

the resulting hardware and controller implementation. Moreover, built into the code

generator was the ability to automatically validate the generated code within the

development environment, as well as within a processor-in-the-loop setup. Combined

with the jMPC Toolbox, the two packages allow an embedded MPC controller to be

designed, simulated, tuned, deployed and validated all within the one framework,

allowing true beginning to end design, and we believe a significant contribution to

this field of research.

To validate this claim, two case-studies illustrated the effectiveness of both the

framework and its implementation. A processor-in-the-loop implementation of the

control of a simulated nonlinear inverted pendulum showed that robustness and

speed of the proposed approach, while a real implementation with a nonlinear, multi-

variate, unstable helicopter proved the approach was also both practically significant
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and viable.

This chapter concludes our research into the optimization algorithm within an

embedded model predictive controller. The following chapter will introduce the next

optimization case study, namely the operational optimization of industrial steam

utility systems.
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Chapter 5

Utility System Model

Development

This chapter begins the investigation into the optimization of large industrial utility

systems, representing the opposite end of the industrial optimization spectrum from

the high-speed controllers presented in the proceeding chapters. On the surface, the

difference between these systems is obvious: Embedded MPC looked at small, linear,

dynamic models, while now the focus is on large steady-state, nonlinear, non-convex

and discrete models. However a common modelling methodology will tie these two

contrasting problems together, and the significance of the framework approach will

show that common design and construction techniques can be used for optimizing

both systems.

The chapter begins with a description of the industrial project which initi-

ated this research, namely iCON Utility Optimizer, conducted in partnership with

PETRONAS, and was concerned with the modelling of a steam utility system. From

this industrial experience, the decision to pursue our own utility system modelling

environment is detailed, which leads into the development of our own library of ther-

modynamic functions and steady-state, full-load equipment models. The chapter

concludes with an overview of the existing literature in utility equipment models,

which when combined with the knowledge from our library models, and together

with our industrial experience, presents four new detailed models to predict the off-

design (part-load) performance of common utility equipment. The significance of

these models will be realised in the next chapter, where they be exploited within a

new optimization framework.
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5.1 Introduction

A steam utility system is a large industrial plant which supplies the heating, me-

chanical and electrical power to an associated process plant, such as chemical plant

or petrochemical facility. For the systems of interest for this work, the working

fluid is steam, which is generated by gas fired boilers, recovered from process waste

heat via waste heat boilers, or generated by heat recovery steam generators. The

steam is used by process drivers such as steam turbines (mechanical demands), pro-

cess users (heating demands) or steam turbo generators (electrical demands), before

being collected, condensed and then pumped back to begin the cycle again.

In order to accurately predict the operation (the first step in any optimiza-

tion study) of these large, complex, nonlinear systems, three major components are

required: First, a thermodynamic library which can accurately predict the state

properties of the working fluid, Second, a set of ideal (i.e. design) relationships

that relate the thermodynamic properties to the mechanical utility equipment, and

Third, regressions that provide an estimate of the off-design performance of this util-

ity system equipment. This chapter will address all three requirements, beginning

with the background to this research.

5.2 iCON Utility Optimizer (iUO)

At the beginning of 2010 an opportunity arose to shift to Kuala Lumpur to work

on a consulting project with PETRONAS, a large multi-national oil and gas com-

pany. Together with a post-doctoral fellow from the University of Auckland, Dr.

Nick Depree, we were to develop a steam utility modelling framework on top of

PETRONAS’s existing process simulator, iCON. The key idea was to be able to

model both the utility and process systems within the one simulator, allowing for

changes on each side to be automatically propagated and accounted.

The platform we were to build on, iCON, is a mature chemical process simulator

developed by Virtual Materials Group (VMG), based almost entirely on their flag-

ship product, VMGSim [318]. As shown in Figure 5.1, VMGSim/iCON is a Visio

based modelling platform that includes a suite of common chemical and process

unit operations, which are dragged and dropped onto the Process Flow Diagram

(PFD) and connected like normal Visio elements. The difference is underneath: a

Python based simulator engine based on Sim42 [60] is monitoring connections of

each unit and forming a detailed simulation model. In addition, VMGThermo [319],

a C++ based thermodynamic engine is used for the calculation of thermodynamic
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properties, which when combined with the unit operation models, a non-sequential

flowsheet solver and optional dynamics engine, forms a complete simulation package.

Figure 5.1: Screenshot of iCON Process Simulator.

PETRONAS bought the source for VMGSim in 2003 and requested that it be

customized to suit their specific needs, which formed iCON. While virtually identi-

cal in functionality, iCON contains several PETRONAS only customizations which

include new unit operations and thermodynamics tuned for their use.

5.2.1 Project Overview

At the time the project began, PETRONAS was using ProSteam [162], an Ex-

cel based modelling package developed by KBC. While adequate for their needs,

PETRONAS strategy dictated that they should rely less on external software ven-

dors, and instead develop their own modelling packages where applicable. Therefore

our project was to build a complete steady-state utility modelling system within

iCON, that would not only match (or exceed) the existing vendor’s functionality,

but also accurately model PETRONAS’s utility systems by validating these against

plant data.

An assumption made when the project was proposed was that adding new unit

operations to iCON (or VMGSim) would be relatively simple, and thus once a

suitable analytical model had been derived, implementation within the simulator
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would be easy. This did not turn out to be the case, and is described further on in

Section 5.2.3. However, aside from this technical issue, Dr. Depree and I developed

a suite of common utility system models, as shown in utility modelling Visio palette

in Figure 5.2.

Figure 5.2: iUO function palette.

Each unit operation model was initially derived from a relatively simple mass

and energy balance, and then customized based on a known configuration of the real

unit. For example, for the steam side of a boiler we assume that the blowdown was at

saturated conditions and specified as a continuous fraction of the steam production,

thus we could complete the required degrees of freedom. Every unit operation model

underwent extensive validation by PETRONAS staff, including comparisons against

their own models, ProSteam models, and plant data, where available. The result

was by the time we were modelling complete (and very large) utility systems, such

as the LNG model in Figure 5.3, we obtained an average accuracy of around 2-3%

across the entire system, even on systems producing over 2,500 metric tonnes per

hour of steam and containing over 80 individual units.

178



Figure 5.3: Industrial LNG utility system modelled with iUO [71].
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5.2.2 Project Summary

The utility modelling package for iCON (officially known as iCON Utility Optimizer

(iUO), although no official optimization was performed) was officially completed

in July of 2010, having undergone extensive internal review by PETRONAS and

validation against existing utility system models. The project met or exceeded

virtually all requirements and was generally well received by the process simulation

and optimization team.

The only major criticism from PETRONAS users of the iUO framework was the

simulation speed; it was simply too slow to converge large utility system models.

This was primarily caused by the thermodynamic package being used, Steam95,

which implemented the scientific formulation from IAPWS [142]. This required a

complex formulation of Hemholtz energy for each state property calculation, and as

model sizes increased, became quite a bottleneck. A new version of the thermody-

namic engine, Steam97, was released later in 2010 and was built into iUO as the

default property package. Steam 97 utilized the industrial formulation from IAPWS,

which as described further on in Section 5.3.1, is optimized for speed rather than

accuracy [140].

5.2.3 Limitations of a Petrochemical Process Simulator for

Utility Modelling

The initial thinking when the PETRONAS project was proposed was that utility

system modelling within a chemical process simulator should be relatively simple,

given there is only a single component (H2O) and its thermodynamics are well

known; as well the unit operations are all relatively simple, especially when compared

to the thermodynamics in catalytic crackers and multi-distillation columns. This did

not prove to be the case, as described in a joint paper with PETRONAS [71] and

detailed below.

Typical problems encountered included issues with properties propagating through

models, such as the mixer shown in Figure 5.4. Being a single pure component sys-

tem, and having both inputs as water, one would assume water would also exit

the mixer. However, as shown in the figure, this assumption was not made by

the thermodynamic engine inside iCON and had to be automatically added by the

framework in order to converge these models.

Another issue was the very common occurrence within utility systems of a zero-

flow, i.e. a pipe or unit with no steam in it, which is rare in a chemical process
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Figure 5.4: Single component convergence issue in iCON. The annotated box indi-
cates missing properties that would normally be calculated.

model. Utility systems commonly switch steam flow between units as process and

generation demands change, and thus the framework must be able to cope with no

mass (or mole) flow within a connection. This problem alone proved one of the most

difficult to overcome, as shown by Figure 5.5 where a mixer would solve correctly

even when calculated properties were missing. This was due to the way iCON would

calculate an energy balance, such as shown in Equation 5.1 where the denominator

is the outlet mass flow.

Hout =
HIn1MIn1 +HIn2MIn2

Mout
(5.1)

When the outlet approaches zero, the output enthalpy approaches infinity, and this

causes a numerical exception and the unit fails to display the results. A rudimen-

tary solution to this problem was to bias the flows so that at least 10−10 tonne/hr of

steam would always flow, small enough for iCON to think it was zero (and change

stream connector colours to show so), but large enough for the calculations to work

as required. This solution has not proved problematic for the 3 years the soft-

ware has been deployed, but it is acknowledged a more suitable solution should be

implemented.

Together with a number of other issues as described in [71], it was decided that

if we were to continue research within the utility modelling and optimization field, a

process simulator was not the correct base platform. These reasons are summarized

below:
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Figure 5.5: Zero flow convergence issue in iCON.

1. VMGSim had no supported method for building custom unit operations, and

this process is actively discouraged by the developers.

2. Rigorous first principle modelling which calculates many more parameters than

strictly required, and takes significantly longer to solve.

3. The thermodynamic engine for calculating water and steam properties was too

slow for large systems.

4. The flowsheet solver was unable to handle zero-flows without bias flows being

added.

5. Optimization had only recently been introduced into VMGSim, and there was

little opportunity to customize it further.

Therefore, to continue research into utility system optimization we would need

to develop our own utility modelling software, using the knowledge gained during

the PETRONAS project. The remaining sections within this chapter detail the

development of our own thermodynamic engine, together with a new suite of utility

system models.
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5.3 Development of the JSteam Utility Modelling

Platform

Given the limitations of the process simulator, especially with respect to optimiza-

tion, it was decided to develop our own utility system modelling platform based

on what we had learned from developing iUO. While this would basically require

reinventing a number of standard components, ultimately it would provide the flex-

ibility and performance required to create a platform for optimization of these sys-

tems. This decision is also based on our early literature review (Section 2.3.5) which

indicated commercial tools would not be suitable for this work.

This section will introduce the reader to the thermodynamic engine developed as

part of this work, before leading into a description of the steady-state models used.

These models are presented to illustrate the underlying equations and relations

within this problem field, which will then be exploited both at the end of this

chapter, with the presentation of new, detailed utility equipment models, and also

in Chapter 6, where these equations form the basis of the steam utility optimization

model. Note that the remainder of this Chapter was undertaken independently of

the iUO project.

5.3.1 Water and Steam Thermodynamic Engine

The engine of any process modelling package is the thermodynamic package and

for utility modelling is the steam and water thermodynamic package. There are

three basic methods of obtaining the thermodynamic properties (enthalpy, entropy,

quality, etc) of water/steam:

Steam Tables Steams tables are arguably one of the simplest thermodynamic

tools, and require a simple grid search and possible (but unlikely) interpola-

tion to find the required property given the known state properties. However,

given the modelling package is destined to be a computer package, it is worth-

while to exploit the regressions used to build these tables, rather than enter

the tables as they are.

Equation Of State General Equations of State (EOS) (such as described later in

the next subsection) are well used for predicting the properties of hydrocar-

bons, inerts and other components, as well as mixtures. Standard EOS include

the Peng-Robinson [245], the earlier Redlich-Kwong [274], and others includ-

ing modifications for increased accuracies of certain components and mixtures.

183



However, by design they are deliberately targeted at approximating the prop-

erties of a range of components, and thus cause inaccuracies when observing a

single component system such as steam. For steam and water this can be ex-

acerbated closer to the saturation line, and because many unit operations will

be operating close to this line, it was decided to pursue a dedicated regression

for steam.

Dedicated Regression To obtain the most accurate estimate of thermodynamic

properties, a dedicated set of regressions can be used. There are two main sets

of regressions used in commercial applications: the International Association

for the Properties of Water and Steam (IAPWS) 1995 standard targeted at

general and scientific use [325, 142], and the IAPWS-IF97 standard targeted at

the steam power industry [324, 140]. The industrial formulation is slightly less

accurate than the scientific formulation, but it is designed for computational

speed.

For this work the IAPWS-IF97 standard has been adopted, including supplemen-

tary and revised releases [136, 137, 138, 139, 141, 143]. This choice was based on the

focus on optimization of these systems, and thus computational speed features as

the predominant selection factor [140]. For a complete list of functionality included

in the JSteam package, which includes symbols and functions used throughout the

remainder of this Chapter, see Section B.1.2.

5.3.1.1 Implementation

Following the theme of this work, the development environment originally chosen

for the thermodynamic engine was MATLAB, given its rapid-prototyping ability.

However given that MATLAB is an interpreted language, and the required regressed

calculations were quite basic, in order to maximize speed the engine was written in

native C++. This avoided the compilation step that MATLAB would be required

to perform at each invocation, as well as scalar algorithms being typically faster in

compiled code (from our experience) than MATLAB. An example of the calculation

of specific enthalpy of steam from pressure and temperature in Region 1 is shown

in Equation 5.2

h (π, τ)

RT
= τγτ

=
1386

T

34∑

i=1

ni

(

7.1− p

16.53

)Ii
Ji

(
1386

T
− 1.222

)Ji−1 (5.2)
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where h is the specific enthalpy in kJ/kg, T is the temperature in K, p is the pressure

in MPa and the regressed coefficients are contained in n, I and J . This equation is

coded in C++ and detailed in Section B.1.1.

In order to benchmark the performance of the JSteam implementation, the pack-

age was compared against three other software implementations of IAPWS-IF97.

These are briefly covered below:

freeSteam [260] Released under the GNUGeneral Public License (GPL), freeSteam

is an open-source C (based) implementation of Regions 1-4 (specified pressure

and temperature ranges) of the IAPWS-IF97 standard. It includes routines

for most common property pairings, and utilizes the GNU Scientific Library

(GSL) for nonlinear root solving problems. The package appears to be in ac-

tive development, although an official release has not been announced since

January 2010. Note also the underlying code does not conform to modern

C/C++ standards and thus recompiling from source has proved impossible

using Windows based compilers.

X Steam [129] Released under the BSD license, X Steam is an open-source MAT-

LAB implementation of the complete IAPWS-IF97 standard, including addi-

tional supplementary standards. It forms part of the author’s ‘xeng’ suite,

which includes steam tables for Excel, Open-Office and a general DLL. The

package has not been updated since August 2007, and the author’s home-

page appears to have been removed. Requests for bug-fixes have also gone

unanswered, thus the project appears to have been disbanded.

IAPWS IF97 [200] Also released under the BSD license, IAPWS IF97 is another

open-source MATLAB implementation of the IAPWS-IF97 standard, however

with a particular focus on vectorization to allow for parallel calculations. The

implementation is quite limited in terms of property pairings, and misses key

property calculations such as entropy and quality. The last package update

was in March 2012, with the Github package over 2 years old.

To benchmark the packages the calculation of specific enthalpy (from this point

referred to as just enthalpy) over Regions 1-3 (see Figure 5.6) is run by utilizing test

points within T ∈ (1, 800◦C), p ∈ (1, 1000bar). Note that Region 4 (along the satu-

ration line) is not covered within this benchmark because when specifying pressure

and temperature, it is not possible to define the quality fraction. In addition, Region

3 is specified as a function of density (ρ) and temperature and thus the volume must

first be calculated and then used to calculate enthalpy. Each of the three packages

surveyed uses a different method for determining the volume/density within Region

3, thus small calculation differences are expected.
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Figure 5.6: IAPWS-IF97 calculation regions (Figure 1 in [140]).

Figure 5.7 shows the sequential performance results of each of the solvers when

run on a 2.8GHz i7 Laptop in 32bit. As stated earlier the MATLAB code is not

competitive when used for these small scalar problems, and this is justified compar-

ing the two MATLAB implementations versus the two binary implementations. As

expected, the Log-Log plot shows that all four implementations scale the same with

the number of enthalpy calculations (the gradients are very similar), however the

fixed costs (vertical distance) show the performance tuning advantage of JSteam.

Comparing JSteam with freeSteam, JSteam is on average 2.1x faster for this exam-

ple.
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Figure 5.7: Speed comparison of sequential IF97 implementations.
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The two parallelized implementations are compared in Figure 5.8 where once

again JSteam is much faster, achieving 90,000 enthalpy calculations in less than

25ms. With respect to the sequential results, JSteam averaged a speedup of 16x

on a dual-core laptop (with hyperthreading thus 4 logical cores), with the extra

speedup (i.e. above 4x) related to the nested calculation for-loops not run within

MATLAB (a typical slow point), as well as fixed costs associated with calling the

JSteam MEX function.
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Figure 5.8: Speed comparison of parallelized IF97 implementations.

The parallelization of JSteam was achieved using the Microsoft Parallel Patterns

Library (PPL) [218] which executes the outer calculation for-loop in parallel, auto-

matically using the number of cores available. The JSteam library was deliberately

written with thread-safety in mind, meaning all routines can be called safely in

parallel. Parallelization of the core regression equations (such as Equation 5.2) was

initially investigated however these were found to evaluate too fast to overcome the

start-up penalty of generating threads for parallelization.

5.3.1.2 Verification

To ensure the implementation of IAPWS regressions are accurate requires a careful

choice of verification points across all properties and regression regions. For the

example presented in the last subsection, we can easily compare the error between

JSteam and any of the other packages at all tested points. Figure 5.9 shows the

absolute error between JSteam and the MATLAB implementation IAPWS IF97 for
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the enthalpy routine HPT. Observed in the surface plot is the accuracy for all 90,000

Figure 5.9: Accuracy comparison of HPT: JSteam vs IAPWS-IF97 [200].

test points across the three IF-97 Regions, with most results within the expected

numerical precision (double), and the slightly larger errors observed within Region

3. This is due to this region requiring density to be calculated before enthalpy, thus

larger numerical differences can be expected. In addition, Region 3 is divided into

26 sub-regions which further increases the differences between the implementations.

Comparing the results to freeSteam, we see a much larger variance within Re-

gion 3, however the solution found still has an absolute error averaging less than

10−4 within this Region. The larger difference is attributed to freeSteam utilizing

a nonlinear root solver to find the Density in Region 3, which is then used to find

the enthalpy. In contrast JSteam (and the MATLAB IAPWS IF97) utilize the sup-

plementary IAPWS release on Volume in Region 3 [139] which avoids the need to

iterate. This difference highlights that not all implementations of IAPWS-IF97 are

the same, with most not implementing the full set of revised and supplementary re-

leases as available from IAPWS. In addition, many do not include all functionality,

such as the MATLAB IAPWS IF97 missing the fairly important entropy calcula-

tions. This reinforces the decision to build our own steam and water thermodynamic

package in order to fully utilize the available standards and iteration-free backward

calculations.

For verification of the remaining functions, such as entropy, volume, heat capac-

ity, etc, the IAPWS-IF97 specification lists a series of test points and the calculated

solutions, such as Table 5 in [140] for Region 1. Each of these test points (around
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Figure 5.10: Accuracy comparison of HPT: JSteam versus freeSteam.

180 in all) is hard-coded into the JSteam package for automatic self-verification of

the package, which includes robustly testing the region identification routines as a

function of various property pairings. In addition, a further 320 points are tested

against the results from ProSteam over a combination of functions and regions, in-

cluding terms which must be iterated to solve. Together, these 500 test points are

used to automatically verify the accuracy of the JSteam water and steam package

using a relative tolerance of 0.05%, thus rebuilds and code changes can be quickly

validated.

5.3.2 Steady-Flow Modelling Assumption

Before detailing the unit operations developed in this work, the core modelling

assumption must be defined. This work assumes that all equipment within the

utility system is operating at steady-state, i.e. the transients due to the start-up

period or change in operating condition have completed, and thus can be represented

as a steady-flow process. This is defined from a thermodynamic point of view as a

process where fluid flows through a control volume steadily, and therefore does not

change with time. This assumption greatly simplifies the modelling of common unit

operations within a utility system, as the standard energy balance equation

Q−W = M

[

H2 −H1 +
V 2
2 − V 2

1

2
+ g (z2 − z1)

]

(5.3)
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reduces to

Q−W = M [H2 −H1] (5.4)

where Q is the rate of heat transfer, W is mechanical power, M is the mass flow

rate, H is specific enthalpy, V is velocity, g is the gravitational constant and z is

elevation. This approximation is possible because for common utility system unit

operations, the velocity change between inlet (1) and outlet (2) is negligible, as is the

change in elevation across the unit operation. Furthermore, turbines, compressors,

throttling valves, heat exchangers and mixing chambers are all typically regarded as

steady-flow devices, which are all common equipment found in a utility system [57].

For these reasons, both the kinetic and potential energy terms will be neglected for

the remainder of this work.

5.3.3 Steam Unit Operations

Utilizing the JSteam water and steam thermodynamic engine allowed the imple-

mentation of a suite of common water and steam unit operations. The underlying

equations are developed both from industrial experience building the iCON Util-

ity Optimizer, together with simple mass and energy balance equations. These are

written in C++ and form part of the JSteam modelling package.

Each unit operation is summarized briefly in the following subsections, with

detailed models developed later in this chapter. Variables are identified by colour

as described below in Table 5.1. Note for many unit operations the choice of inputs

Table 5.1: Unit operation equation colour codes.

Red Calculated Output
Blue User Specified Input
Black Intermediate Variable

and outputs is arbitrary, as long as the degrees of freedom are met to solve the mass

and energy balance equations, most inputs can be outputs, and vice-versa. For

this work inputs are chosen based on what is commonly measured within a utility

system, or is known based on a modelling approach. For modelling the reverse

problem, the JSteam package also provides a suite of reverse models, i.e. calculate

mass flow through a turbine for a given shaft work requirement, as well calculate

the shaft work for a given mass flow. For brevity, only the standard forward models

are described in the remainder of this work.
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5.3.3.1 Steam Boiler

The Steam Boiler unit operation models the steam side of a typical steam boiler.

The input Boiler Feed Water (BFW) is heated to saturated water at the specified

output pressure by a single exchanger (the economiser), and a fraction removed as

the BlowDown (BD), noting this model assumes a constant blowdown ratio with

respect to the amount of steam generated. The saturated water is then heated to

superheated steam via another single exchanger (representing both the evaporator

and superheater) and this results in the output steam.

Figure 5.11: Steam boiler unit operation.

It is acknowledged that in a real boiler there will be multiple exchangers with

multiple drums. However from a thermodynamic point of view, the model described

in Equation 5.5 is effectively equivalent as a first approximation, negating losses.

The power required by both exchangers divided by the boiler efficiency (typically

taken as a constant, but can be a user specified function, or varied as a function of

load such as in Section 5.5.1) determines the duty of the boiler. This will be used

later to determine the required mass flow of fuel gas.

The unit is typically specified in terms of input and output pressures and temper-

atures, and the JSteam HPT function is used to calculate the respective enthalpies.

In addition, HPX is used to calculate the enthalpy of the saturated blowdown, noting

this cannot be specified using pressure and temperature alone.

QBoiler =
QEconomiser +QSuperHeater

ηFir

QEconomiser = MBFW (HBD −HBFW)

QSuperHeater = MSteam (HSteam −HBD)

MBFW = MSteam +MBD

MBD = MSteamFBD

(5.5)

where
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Table 5.2: Steam boiler parameters.

QBoiler kW Boiler Duty
ηFir fraction Firing Efficiency
MSteam kg/s Mass Flow of Steam to Generate
MBD kg/s Mass Flow of Blow Down
MBFW kg/s Mass Flow of Boiler Feed Water
HSteam kJ/kg Steam Enthalpy
HBD kJ/kg Blow Down Enthalpy (Saturated Water)
HBFW kJ/kg Boiler Feed Water Enthalpy
FBD fraction Blow Down Fraction

5.3.3.2 Steam Compressor

The steam compressor is very similar to the steam turbine as described in Section

5.3.3.3 in which it models a single inlet, single extraction compressor. The unit is

specified in terms of an isentropic efficiency and this is used to calculate the required

input power to compress a given mass flow of steam to a specified pressure.

Figure 5.12: Steam compressor unit operation.

For multi-stage compressors the derivation is again very similar to the multi-stage

turbine, and is described in more detail in the next subsection.

Mout =
WCompressor

Hout −Hin

Hout =
Hsout −Hin

ηs
+Hin

(5.6)

where

Table 5.3: Steam compressor parameters.

WCompressor kW Required Compressor Power
ηs fraction Isentropic Efficiency
Mout kg/s Mass Flow of Steam
Hin kJ/kg Input Enthalpy
Hout kJ/kg Output Enthalpy
Hsout kJ/kg Isentropic Output Enthalpy
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5.3.3.3 Steam Turbine

Representing the most commonly used utility model, the steam turbine (or ex-

pander) unit operation models a single-stage, non-condensing, back-pressure turbine

with a single inlet and a single extraction. The unit is specified in terms of an isen-

tropic efficiency, which specifies the efficiency of the turbine with respect to pure

isentropic operation (i.e. vertical on the T-S diagram). By using this efficiency, to-

gether with the inlet and outlet conditions and mass flow, Equation 5.7 describes the

amount of power generated by the unit. Alternatively, if the mass flow is specified,

the equation can be rearranged to solve for the output power.

Figure 5.13: Steam turbine unit operation.

Mout =
WTurbine

Hin −Hout

Hout = (Hsout −Hin) ηs +Hin

(5.7)

where

Table 5.4: Steam turbine parameters.

WTurbine kW Generated Turbine Power
ηs fraction Isentropic Efficiency
Mout kg/s Mass Flow of Steam
Hin kJ/kg Input Enthalpy
Hout kJ/kg Output Enthalpy
Hsout kJ/kg Isentropic Output Enthalpy

For multi-stage turbines, such as dual and triple stage versions with a single inlet

and multiple extractions, Equation 5.7 is lumped to represent multiple turbines in

series, such as shown in Equation 5.8 for a dual stage set
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Figure 5.14: Dual stage steam turbine unit operation.

MOut2 =
WTurbine +MOut1 (HOut1 −Hin)

Hin −HOut2

HOut2 = (HIOut2 −HOut1) ηIsen2 +HOut1

HOut1 = (HIOut1 −Hin) ηIsen1 +Hin

(5.8)

where the subscripts 1 and 2 refer to the first stage and second (final) stage respec-

tively.

5.3.3.4 Deaerator

Within a typical utility system, a deaerator is used after the Low Pressure (LP)

header and before the Boiler Feed Water (BFW) pump to remove oxygen and other

dissolved gases to prevent corrosion and scaling. The deaerator model developed

takes a simple thermodynamic approach to this unit, modelling it using a simple

mass and energy balance around the two inputs and two outputs. The model as-

sumes the input LP steam and return condensate (collected from e.g. the liquid side

of flash drums, condensing turbines, etc) is mixed and dropped to the operating pres-

sure of the deaerator. This allows a small fraction of the input to be flashed off as

the ‘steam’ vent, representing a continuous vent ratio of non-condensables and other

unwanted gases (noting thermodynamically these are treated as steam only). The

remaining liquid then exits the deaerator to be pumped up to the desired pressure

by the BFW pump.

Figure 5.15: Deaerator unit operation.

The model’s core job is to calculate the required input LP steam in order to
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balance the mass and energy across the unit, given the condensate is fixed in terms

of mass flow and enthalpy, and the mass flow to the pump is fixed. Equation 5.9

describes the energy balance (top equation) and mass balance (other two equations)

of this simplified model.

MSteam =
MVentHVent +MPumpHPump −HCond (MPump +MVent)

HSteam −HCond

MCond = MPump +MVent −MSteam

MVent = MPumpFVent

(5.9)

where

Table 5.5: Deaerator parameters.

MSteam kg/s Mass Flow of Input Steam
MCond kg/s Mass Flow of Condensate
MPump kg/s Mass Flow of Output Pump Water
MVent kg/s Mass Flow of Vented Steam
HSteam kJ/kg Input Steam Enthalpy
HCond kJ/kg Condensate Return Enthalpy
HPump kJ/kg Output Pump Water Enthalpy (Saturated Water)
HVent kJ/kg Steam Vent Enthalpy (Saturated Steam)
FVent fraction Vent Fraction

5.3.3.5 Desuperheater

While its use is typically avoided in practical situations (due to wasted higher pres-

sure steam), the desuperheater forms a integral component of multi-header utility

systems. It provides a simple means to let-down steam between headers, when, for

example, parallel connecting equipment is shutdown (such as steam turbines), or a

larger mass flow of lower-pressure steam is required at a header below. The model

is a simple energy and mass balance, where the amount of cooling boiler feedwater

and input steam is calculated in order to satisfy the exit conditions. Alternatively,

the input steam mass flow can be calculated, and the equation rearranged to solve

for the output mass flow.

MSteamIn =
MSteamOutHSteamOut −MSteamOutHWater

HSteamIn −HWater

MWater = MSteamOut −MSteamIn

(5.10)
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Figure 5.16: Desuperheater unit operation.

where

Table 5.6: Desuperheater parameters.

MSteamIn kg/s Mass Flow of Input Steam
MSteamOut kg/s Mass Flow of Output Steam
MWater kg/s Mass Flow of Cooling Water
HSteamIn kJ/kg Input Steam Enthalpy
HSteamOut kJ/kg Output Steam Enthalpy
HWater kJ/kg Cooling Water Enthalpy

5.3.3.6 Flash Drum

The flash drum is a standard flash operation, but given that it only contains a single

component, it is a simple ratio calculation. The model uses the JSteam XPH function

to calculate the inlet quality at the specified drum pressure, then splits the vapour

and liquid fractions into the two outputs.

Figure 5.17: Flash drum unit operation.

MVapour = XDrumMIn

MLiquid = (1−XDrum)MIn

(5.11)

where
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Table 5.7: Flash drum parameters.

MVapour kg/s Mass Flow of Output Vapour
MLiquid kg/s Mass Flow of Output Liquid
MIn kg/s Mass Flow of Input Stream
XDrum fraction Quality of Input Stream at Specified Drum Pressure

5.3.3.7 Simplified Heat Exchanger

The heat exchanger unit operation has not been extensively modelled within the

JSteam package simply because it has not been extensively used within the iCON

modelling studies. Instead, the heat exchanger is typically modelled as a cooler and

heater with the duties required to be equal, thus representing a basic thermodynamic

energy balance of the system. This is opposed to more industry standard models

which use physical properties of the exchangers such as heat transfer coefficients and

surface area, or other specifications such as the Log Mean Temperature Difference

(LMTD) and heuristics based on the configuration (i.e. concurrent or counter-

current flow). Implementation of these standard industry heat exchanger equations

has been undertaken by a final year project student and is described briefly later in

Section 5.3.7.

Figure 5.18: Heat exchanger via cooler & heater unit operations.

As can be seen in Figure 5.18 the streams are treated independently and are

only connected by the duty of each heater/cooler. Equation 5.12 is the basic set of

equations for this system and can be rearranged as required to solve for the required

variables.

QExchanger = MOutH (HOutH −HInH )

= MOutC (HInC −HOutC )
(5.12)

where
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Table 5.8: Heat exchanger parameters.

QExchanger kW Heat Exchanger Duty
MOutH kg/s Mass Flow (Heater)
MOutC kg/s Mass Flow (Cooler)
HInH kJ/kg Heater Inlet Enthalpy
HOutH kJ/kg Heater Outlet Enthalpy
HInC kJ/kg Cooler Inlet Enthalpy
HOutC kJ/kg Cooler Outlet Enthalpy

5.3.3.8 Water Pump

The Boiler Feed Water (BFW) pump is modelled as a standard pump with specified

isentropic efficiency. Together with the outlet pressure and required mass flow, the

model calculates the required power to pump the input water (typically from the

deaerator) to the specified boiler pressure level (or slightly above depending on the

boiler pressure drop), as well as calculating the slight increase in output temperature

due to non-adiabatic operation.

Figure 5.19: Pump unit operation.

Hout = Hin −
Hin

ηs
+

Hsout

ηs

WPump = Mout (Hout −Hin)

(5.13)

where

Table 5.9: Water pump parameters.

WPump kW Required Pump Power
ηs fraction Isentropic Efficiency
Mout kg/s Mass Flow of Water Through Pump
Hin kJ/kg Input Enthalpy
Hout kJ/kg Output Enthalpy
Hsout kJ/kg Isentropic Output Enthalpy
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5.3.3.9 Valve

The simplest unit operation included in the JSteam suite is the throttling valve,

which models a typical isenthalpic (constant enthalpy) valve. The JSteam TPH

function is used to calculate the output temperature, given the pressure drop across

the valve and input conditions.

Figure 5.20: Valve unit operation.

5.3.4 Fuel Gas Thermodynamic Engine

To be able to calculate the thermodynamic properties of common components found

with both the fuel gas and combustion products, a new thermodynamic engine

was developed. The thermodynamics of these components is required to be able

to calculate common thermodynamic properties such as enthalpy and entropy for

energy balances, as well as to estimate the heating duty available by combusting a

fuel and air mixture. The complete list of components available within the JSteam

engine are listed in Table 5.10.

Table 5.10: JSteam supported components list.

CH4 Methane CO Carbon Monoxide
C2H4 Ethylene CO2 Carbon Dioxide
C2H6 Ethane N2 Nitrogen
C3H6 Propylene O2 Oxygen
C3H8 Propane H2O Water/Steam
iC4H8 IsoButene H2 Hydrogen
nC4H10 n-Butane H2S Hydrogen Sulfide
iC4H10 IsoButane SO2 Sulfur Dioxide
nC5H12 n-Pentane
C5H12 IsoPentane
nC6H14 n-Hexane

An important assumption was made during the development of the fuel gas

thermodynamic engine and this was that all components were assumed to be gas.

This meant that all calculations would be much simpler because a flash calculation

(a vapour-liquid equilibrium solver) would not be required, and thus no iteration

was necessary for basic properties such as enthalpy and entropy. This assumption
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is valid because the utility systems of interest are typically run on natural gas,

predominantly composed of methane and other short-chain hydrocarbons which are

in their vapour form at atmospheric pressure.

Two sets of equations are implemented for calculating state properties of the

fuel gas and combustion product streams, based on pressure of the stream. Each of

these are described in the following two subsections.

5.3.4.1 NASA Glenn Thermodynamic Database 9-Term Polynomials

For calculations of state properties at (or close to) atmospheric pressure (defined

as 1 atm or 1.01325 bar), the NASA Glenn Thermodynamic Database supplies a

set of simple-to-implement 9-term polynomials split over two temperature ranges:

200-1000K and 1000-6000K, together with coefficients for a huge number of common

components. The database is available via an online application, ThermoBuild [229],

which allows a user to select the species they are interested in, including compounds,

and then presents a set of coefficients in a computer readable form.

The 3 main thermodynamic properties used in this work can be calculated from

the equations as described in [48]

C◦
p

R
= a1T

−2 + a2T
−1 + a3 + a4T + a5T

2 + a6T
3 + a7T

4 (5.14)

H◦

RT
= −a1T

−2 +
a2 lnT

T
+ a3 +

a4T

2
+

a5T
2

3
+

a6T
3

4
+

a7T
4

5
+

a8
T

(5.15)

S◦

R
= −a1T

−2

2
− a2T

−1 + a3 lnT + a4T +
a5T

2

2
+

a6T
3

3
+

a7T
4

4
+ a9 (5.16)

where the respective coefficients are substituted in from the Glenn Database. Note

the enthalpy returned from these correlations is the “engineering enthalpy” which

is defined as

H◦ = ∆fH
◦
298.15 +

∫ T

298.15

C◦
p dT (5.17)

which includes the enthalpy of formation at a reference point of 298.15K. In addition,

T in each of the equations above is specified in K, Cp in kJ/(kmol K), S in kJ/(kmol

K), H in kJ/kmol and R is the gas constant 8.314472.

To verify the implementation, the ThermoBuild application was used to generate

15 test points across each component and each calculated state property, resulting

in 855 validation points. Using the JSteam implementation the same test points

were used, and the accuracy compared across all 855 points. The JSteam pack-

aged achieved a maximum absolute error of less than 0.005 kJ/kmol (or kJ/kmol K)
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across all components and properties, indicating a successful implementation. More-

over, the JSteam implementation is able to calculate 90,000 enthalpy calculations

of Methane in less than 9ms, noting this is around 70x faster than the Equation

of State engine described in the next subsection. For this reason, the NASA 9-

term polynomials are used for all thermodynamic calculations involving fuel and

combustion products, unless a compressed gas is specified.

5.3.4.2 Peng-Robinson Equation of State

For calculations of compressed fuel gas, such as within a gas turbine, the thermo-

dynamic engine requires functions which are specified in terms of both pressure and

temperature. While a simple implementation would use the ideal gas law, simply

PV = nRT (5.18)

it is well known this law does not hold well at higher pressures (or lower temper-

atures, however we are not concerned with this region within this work) nor with

strongly polar gases. It was therefore decided to implement an Equation of State

(EOS), the Peng-Robinson [245] cubic equation of state

Z3 + αZ2 + βZ + γ = 0 (5.19)

which is the standard compressibility form (Z is the compressibility factor) where

the constants α, β and γ depend on the pressure, temperature and physical charac-

teristics of the component.

In order to solve the required state properties such as enthalpy and entropy

using this EOS, the cubic expression must be solved based on the known properties,

in this work typically pressure and temperature. In JSteam the cubic expression is

solved analytically and, if more than one real root exists, the maximum value root is

used (this represents the vapour phase compressibility). From the compressibility,

a departure function (such as in [179]) is used to determine the difference of the

property from the ideal gas value.

For this work the Peng-Robinson values for each component (such as critical

temperature (Tc) and pressure (Pc), acentric factor (ω) and ideal gas correlations)

have been obtained from a variety of sources including Perry’s Chemical Engineering

Handbook (Table 2-164, Chapter 2 in [248]), Carl Yaw’s Thermophysical Properties

of Chemicals and Hydrocarbons [55] and Transport Properties of Chemicals and

Hydrocarbons [56], as well as reference data from VMGThermo [319], part of the

VMGSim process simulation software [318].
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A freely available Windows and MATLAB-compatible implementation of the

Peng-Robinson EOS that also included all required calculations was not found to

date thus a speed comparison was not made. However for the reader’s reference, the

JSteam implementation is able to sequentially calculate 90,000 enthalpy calculations

of Methane from across 1-30bar, 1-800◦C in less than 650ms, which is approximately

half the speed of the JSteam steam thermodynamic engine. For a parallelized imple-

mentation on the same PC as used in the steam results, the same 90,000 calculations

takes around 80ms. Note, because a flash calculation is not required and the result

is always assumed to be vapour, this calculation is relatively simple and thus can

be executed very quickly.

With respect to accuracy, the EOS is verified against results obtained via VMGSim

using a comparative Peng-Robinson thermodynamic package. A total of 950 points

is used to test both enthalpy and entropy calculations across each individual compo-

nent, as well as across varying pressures and temperatures. The accuracy achieved

obtains a maximum absolute error of less than 0.05 kJ/kmol (or kJ/kmol K for

entropy) for all calculations.

5.3.4.3 Composition Calculations

As is standard in industry, the fuel gas supplied to boilers, gas turbines, furnaces, and

other utility equipment is a mixture of hydrocarbon and inert gases, with typically

methane, carbon dioxide and nitrogen being the main components. In order to

calculate the physical and thermodynamic properties of a mixture of gases (from

this point on referred to as a composition) a C++ class (Comp) was created to

handle the required intermediate calculations. The Comp class allows the user to

create a composition based on any of the components listed in Table 5.10, and

specified either as molar or mass fractions. With the object created, Table B.2 in

Section B.1.3 lists the thermodynamic methods available for use with this object.

In addition, methods exist for mixing composition objects, shortcuts for setting as

air, as well as methods for returning common composition fractions such as Oxygen

and Carbon Dioxide.

To calculate the thermodynamic properties of mixtures the current implemen-

tation ignores the binary interaction parameters (Kij all assumed to be zero), and

returns the mole weighted sum of the thermodynamic property calculated across

each component. The only exception to this rule is the calculation of transport

properties, for which a mass weighted sum is used (this was found to better match

reference data from VMGThermo). Further development of the mixture calculations

has been carried out, including a full multi-component flash calculation using the
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analytical partial derivatives of the Peng-Robinson EOS. This has however yet to

be fine tuned and implemented within the JSteam package.

5.3.4.4 Combustion Calculations

In order to complete the fuel gas calculations, a set of combustion calculations has

been implemented. These do not attempt to model the complex reaction kinetics

present in combustion of natural gas, but rather to present a simple stoichiomet-

ric approach which assumes complete combustion at atmospheric pressure using

standard stoichiometric coefficients for each component. When working with the

engineering team at PETRONAS to develop iCON, this was also a similar approach

taken when modelling combustion, and we have therefore taken this to be industry

acceptable.

Table B.3 in Section B.1.3 lists the methods available within the JSteam Comp

object for combusting and calculating combustion properties of a specified fuel gas

and air stream. Note the final three solve methods are used to solve for a required

flow of air or fuel, in order to match common combustion limits such as minimum

inlet excess O2, or minimum stack O2. An example of the methods developed and

how they are applied within the next section is detailed in Section B.1.4.

5.3.5 Fuel Gas Unit Operations

The fuel requirements are where the real economic considerations come in when

optimizing the utility system, and thus modelling the consumption of fuel for various

unit operations is a major part of this chapter. The four units below are based on

similar models created for PETRONAS in the iCON project, however with multiple

functionality differences. In addition, given that these models are derived from an

industry project in which we were modelling against real equipment, they have all

been validated within a specified tolerance against real PETRONAS equipment.

Note all fuel gas unit operations are specified using a molar basis, as opposed to a

mass basis for the steam unit operations. This convention was adopted based on the

underlying thermodynamic engine units. In addition, equations for the fuel gas unit

operations will include functions from Table B.3. While this mixes mathematics

with code, we believe this allows us to describe the model operation in a clearer

manner than using pseudo-code, or detailing the tedious internal calculations. As

standard in this thesis, variables written in teletype are code objects or function

calls.
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5.3.5.1 Furnace

The Furnace is used to model the combustion of a fuel gas mixed with air and to

calculate the resulting combustion products, together with the output temperature

(adiabatic) or output duty (non-adiabatic). The model assumes that both fuel and

air enter at atmospheric pressure as well as that there is always sufficient oxygen to

ensure complete stoichiometric combustion.

Figure 5.21: Furnace unit operation.

The furnace can be specified as solving for a required fuel flow to generate a spec-

ified heat output, or vice-versa. For the example given below, as per Equation 5.20,

we are solving for the required fuel flow. Note that in the current implementation the

mole flow of fuel must be iteratively solved in order to converge the furnace’s output

duty to that specified. In practice the system is approximately linear with respect

to duty and fuel flow, and thus can be solved using two test points to establish the

linear relationship, given the current specifications

Stack = FuelAir->Combust(HIn, TStack,MIn, QFurnace)

FuelAir = Fuel->MixMole(Air,MFuel,MAir)

MAir = Fuel->SolveAirMoleF(Air, FO2
,MFuel)

ηFurnace =
QFurnace

QFuelMFuel

HIn =
MFuelHFuel +MAirHAir

MIn

MIn = MFuel +MAir

(5.20)

and where the parameters are listed in Table 5.11.

Section B.1.5.1 provides an example of the use of the Furnace model.

5.3.5.2 Fired Boiler

The Fired Boiler extends the Steam Boiler unit operation from Section 5.3.3.1 by

adding a Furnace model (from above) to model the combustion side. The duty
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Table 5.11: Furnace parameters and units.

QFurnace kW Furnace Duty
QFuel kJ/kmol Fuel NHV
ηFurnace fraction Furnace Efficiency
MFuel kmol/s Mole Flow of Input Fuel
MAir kmol/s Mole Flow of Input Air
MIn kmol/s Input Mole Flow
HFuel kJ/kmol Input Fuel Enthalpy
HAir kJ/kmol Input Air Enthalpy
TStack C Stack Temperature
HIn kJ/kmol Input Enthalpy
FO2 fraction Inlet Excess O2 or Stack O2

Fuel Fuel Gas Composition Object
Air Air Composition Object
Stack Combustion Products Composition Object
FuelAir Fuel + Air Combustion Mixture

required by the two exchangers to heat the boiler feed water to superheated steam

is used as a duty target for the furnace, which then solves for the required fuel and

air flow in order to balance the energy across the unit. For the purpose of simplicity,

the steam side is assumed 100% efficient (i.e. the firing efficiency used previously

is 1.0, this is typical as most boilers are > 85% efficient), with the unit efficiency

calculated as per the furnace efficiency.

Figure 5.22: Fired boiler unit operation.

The equations for the fired boiler are the Steam Boiler and Furnace equations,

run sequentially in this order. Section B.1.5.2 provides an example of the use of the

Fired Boiler model.

5.3.5.3 Gas Turbine

The gas turbine model is a mass and energy balance of a typical open cycle gas

turbine with optional steam injection. While the model is quite rudimentary, it

performs well in practice once the manufacturer’s efficiency relationships have been

entered from published or operational data. The model incorporates a standard
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compressor model to compress the incoming air, then mixes it with fuel and the

option of steam. The mixture is then combusted and expanded through a standard

turbine which generates the turbines output power.

Figure 5.23: Gas turbine unit operation.

As with the furnace, in order to solve the required air flow the system must

be iterated. However the system is approximately linear with respect to output

power versus air flow, and as per the furnace, a linear approximation can be made

across two test points to solve for the required air flow. Equation 5.21 illustrates the

calculation required for a GTG with no steam injection, noting the first equation is

the main energy balance across the unit. In addition, a fixed isentropic efficiency

across the compressor is assumed between 75% and 85%, a value which agrees with

validation done in the iCON project and in standard gas turbine analysis [230].

WGTG = MExhaust (HExpIn −HExhaust)−MAir (HCmpOut −HAir)

[Exhaust, HExpIn] = FuelAir->AdCombust(HCmpIn,MFuel +MAir)

FuelAir = Fuel->MixMole(Air,MFuel,MAir)

HCmpIn =
MFuelHFuel +MAirHAir

MFuel +MAir

MFuel =
WGTG

QFuelηGTG

HCmpOut =
HICmpOut −HAir

ηcomp
+HAir

(5.21)

The parameters are listed in Table 5.12.

Section B.1.5.3 provides an example of the use of the Gas Turbine model.

5.3.5.4 Heat Recovery Steam Generator (HRSG)

The HRSG unit models the heat recovery and steam generation of a base-load or

supplementary fired HRSG generating a single temperature and pressure level steam

output. Two heat exchangers are assumed to be within the boiler, an economiser

206



Table 5.12: Gas turbine parameters.

WGTG kW Gas Turbine Output Power
QFuel kJ/kmol Fuel NHV
ηGTG fraction GTG Efficiency
ηcomp fraction Compressor Isentropic Efficiency
MFuel kmol/s Mole Flow of Input Fuel
MAir kmol/s Mole Flow of Input Air
MExhaust kmol/s Mole Flow of Exhaust Gas
HFuel kJ/kmol Input Fuel Enthalpy
HAir kJ/kmol Input Air Enthalpy
HExhaust kJ/kmol Exhaust Enthalpy
HCmpIn kJ/kmol Compressor Input Enthalpy
HCmpOut kJ/kmol Compressor Output Enthalpy
HICmpOut kJ/kmol Isentropic Compressor Output Enthalpy
HExpIn kJ/kmol Expander Input Enthalpy
Fuel Fuel Gas Composition Object
Air Air Composition Object
Exhaust Exhaust Gas Composition Object
FuelAir Fuel + Air Combustion Mixture

and a lumped evaporator and superheater. In addition, the model has the facility

to calculate steam production as a function of 3 operating conditions:

Base Load No secondary firing is used and only the heat available in the incoming

exhaust gas is used to generate steam. The steam production is limited by the

available heat in this exhaust gas, as well as the minimum stack temperature

and approach temperatures of the HRSG exchangers.

Secondary Fired Secondary (supplementary) firing is used to meet the specified

steam demand. Steam production is limited by the available O2 and stack

temperature.

Maximum Firing Typically used for exploratory studies only, the unit is fired to

produce the maximum amount of steam, limited by the available O2 in the

incoming exhaust gas and stack temperature.

Figure 5.24: HRSG unit operation.
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For the base load operating condition, Equation 5.22 describes the operation of

the model

QStack = QIntStack −MSteam (1 + FBD) (HBD −HBFW)

QIntStack = QExhaust −MSteam (HSteam −HBD)

MSteam = min (MSteamST,MSteamEC)

MSteamST =
QMinStackT −QExhaust

HBFW −HSteam + FBD (HBFW −HBD)

MSteamEC =
QMinEconDT −QExhaust

HBD −HSteam

(5.22)

where the parameters are listed in Table 5.13.

Table 5.13: Base load HRSG parameters.

QExhaust kW Gas Turbine Exhaust Duty (Input to HRSG)
QStack kW HRSG Stack Duty
QIntStack kW Stack Duty Between Economizer and Superheater
QMinStackT kW Minimum Stack Duty at Minimum Stack Temperature
QMinEconDT kW Minimum Stack Duty Between Economizer and

Superheater at Minimum Economiser ∆T
MSteam kmol/s Mole Flow of Steam Generated
MSteamST kmol/s Max Steam Flow Based on Minimum Stack Temperature
MSteamEC kmol/s Max Steam Flow Based on Minimum Economiser ∆T
HSteam kJ/kmol Steam Enthalpy
HBD kJ/kmol Blow Down Enthalpy
HBFW kJ/kmol Boiler Feed Water Enthalpy
FBD fraction Blow Down Fraction

The base-load model automatically solves for the two maximum steam flows

possible, based on the two limiting operational constraints: the economiser approach

temperature (∆T, typically 20-30◦C) and the minimum stack temperature (typically

150-250◦C). The approach temperature constraint is used to prevent temperature

crossover within the heat exchangers, while the minimum stack temperature is used

to prevent condensation forming within the stack which causes corrosion. From

these two maximum steam flows, the minimum is chosen as this will always satisfy

both constraints (provided the incoming exhaust is hot enough). Section B.1.5.4

provides an example of the use of the base load HRSG model.

The maximum steam production is typically limited by the minimum O2 fraction

in the stack and thus this can be used to determine both the maximum steam flow,
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as well as the required secondary fuel flow, as shown in Equation 5.23.

MMaxSteam =
QMinStackT −QHRSGIn

HBFW −HSteam + FBD (HBFW −HBD)

QHRSGIn = HInMIn

[Stack, HIn,MIn] = FuelAir->AdCombust(HIn,MExhaust +MSecFuel)

FuelAir = SecFuel->MixMole(GTExhaust,MSecFuel,MExhaust)

MSecFuel = SecFuel->SolveFuelMoleF(GTExhaust, FO2 ,MExhaust)

HIn =
MSecFuelHSecFuel +MExhaustHExhaust

MExhaust +MSecFuel

(5.23)

The parameters for the secondary fired HRSG are listed in Table 5.14 (as well

as the earlier Table 5.13).

Table 5.14: Secondary fired HRSG parameters.

QHRSGIn kW Duty of Hot Gas (Combusted GT Exhaust + Fuel)
Entering HRSG

MExhaust kmol/s Mole Flow of GT Exhaust
MIn kmol/s Mole Flow of Hot Gas Entering HRSG
MMaxSteam kmol/s Maximum Mole Flow of Steam Generated
MSecFuel kmol/s Mole Flow of Secondary Fuel
HExhaust kJ/kmol Enthalpy of GT Exhaust
HIn kJ/kmol Enthalpy of Hot Gas Entering HRSG
FO2

fraction Stack O2

SecFuel Secondary Fuel Gas Composition Object
GTExhaust GTG Exhaust Composition Object
Stack Stack Composition Object
FuelAir Fuel + Air Combustion Mixture

The final operating mode is to solve for the required secondary fuel flow to

generate a specified amount of steam. As with the furnace and gas turbine, a linear

approximation can be found which relates the steam mass flow to the secondary fuel

mass flow. A set of similar equations to those in Equation 5.23 is then used to solve

for the required fuel flow. This method however does not constrain the model to

obey the approach temperatures across the exchangers, and if it results in a broken

approach constraint, the model is solved using bisection (it is now nonlinear) to find

a valid operating condition.

In addition to normal operation, there are a number of invalid operating points

that the model will automatically try to identify and report on. These include situ-

ations when the incoming exhaust is too cold to generate the required temperature

steam, when the unit is constrained so that the required amount of steam cannot
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be generated (such as limited by approach temperatures or minimum stack O2), or

when there are convergence errors due to internal simplifications. In general, when

correctly specified with a real operating point, the unit solves a realistic estimate of

the actual equipment operating values.

5.3.6 Excel Modelling Environment

To facilitate the building and tuning of utility system models an Excel front-end

was developed over the JSteam Engine in early 2010. The package, “JSteam Excel

Add-In” [62] was subsequently released as a commercial product in early 2012 after

a commercialization stage in 2011. The package has been sold to a number of

international users and is available from our spin-out commercialization company

that I, my supervisor and another Ph.D. student (Arrian Prince-Pike) formed in

October 2012, Inverse Problem Limited (www.inverseproblem.co.nz). Note that

neither my supervisor nor Arrian contributed in any way to the development of the

Excel Add-In, and it is a direct result of this work alone.

The JSteam Excel Add-In is not intended to provide a significant research contri-

bution, however it does provide a simple to use mechanism to visualize and validate

solutions obtained by the optimizer, as described in the next chapter. As detailed

in the remaining sections of this chapter, the models described so far will be used to

generate approximations suitable for use within an optimizer, and therefore JSteam

Excel will be used for visualization and validation of these approximated solutions.

Details of the JSteam Excel package are provided in Section B.1.6.

5.3.7 Case Study: Contact Energy Otahuhu B Power Sta-

tion

In addition to the validation undertaken during the initial modelling of the utility

unit operations, a final year electrical engineering student, Hanon Lim [185], used the

JSteam Excel Add-In to model a 400MW combined-cycle gas turbine power station

in Otahuhu, Auckland, New Zealand. The plant is owned by Contact Energy, one

of New Zealand’s largest energy generators and was commissioned in January 2000

[59]. Figure 5.25 shows the plant in October 2013.

This case-study is presented to illustrate that the thermodynamic functions,

steam utility unit operations and resulting Excel modelling environment presented

so far can accurately model real industrial problems. While the modelling work was

carried out by Hanon, his work was under direct supervision of this project as part
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of a final year undergraduate project.

Figure 5.25: Contact Otahuhu B power station.

The plant consists of a single Siemens SGT5-4000F gas turbine with a rated

output of 275MW and is connected to an unfired (base-load only) triple-pressure

HRSG with reheat. The boiler generates steam at 3 pressure levels; 113 bar (HP),

28 bar (MP) and 3.5 bar (LP), which are then supplied to a triple stage steam

turbine with a rated output of 125MW. The gas turbine is supplied with dry natural

gas from a national pipeline which is composed of predominately Methane (80%),

Ethane (7.5%), Carbon Dioxide (6%) and Propane (3.5%), as well as small amounts

of other components. The gas supply, as calculated by JSteam, has a Net Heating

Value of 42471 kJ/kg, which matches quite accurately to data published from the

gas supplier.

The PFD of the system is shown in Figure 5.26 and shows the model specified

to match a maximum load condition of the plant. This is achieved by entering rel-

evant model inputs from actual plant data (mass flows, temperatures, pressures),

supplied by Contact, as well as by using the JSteam functionality to estimate and

solve the remaining unknowns. In this early model version where there is no mea-

surements, several assumptions have been made, especially within the HRSG. These

were required to predict the temperatures between each of the coils and required

assumptions such as assuming saturated conditions after each economiser, as well

no pressure drops between the coils.

Using JSteam Excel Add-In with the functionality described so far in this chap-

ter, Hanon Lim was able to quite accurately model the entire system with several

operating points modelled and shown in Table 5.15. Considering this was performed

with simple models, minimal hand-tuning and little manufacturer’s data, this was

an impressive result. To correct for the assumptions within the HRSG, Hanon Lim

has taken this project further and built in several heat exchanger models based on

the physical configuration of the HRSG, and he is currently looking to complete this

work as part of a Master’s Thesis. The latest version of the model, including Hanon
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Figure 5.26: JSteam Excel Otahuhu B model at maximum load [185].
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Lim’s heat exchanger models, eliminates the need for assumptions and allows the

system to converge from plant data alone.

Table 5.15: Otahuhu B model validation results.

Load Measurement Plant Data Model Output Error
Maximum Steam Cycle Power Output 124.58 MW 125.2 MW 0.5%

HP Turbine Inlet Temperature 542.4◦C 543.2◦C 0.15%
MP Turbine Inlet Temperature 517.8◦C 515.9◦C 0.37%
LP Turbine Inlet Temperature 241.1◦C 240.1◦C 0.41%
HP Turbine Outlet Temperature 354.3◦C 356.8◦C 0.71%

Moderate Steam Cycle Power Output 103.38 MW 98.25 MW 4.9%
HP Turbine Inlet Temperature 543.6◦C 551.5◦C 1.45%
MP Turbine Inlet Temperature 521.0◦C 522.8◦C 0.35%
LP Turbine Inlet Temperature 229.2◦C 228.8◦C 0.17%
HP Turbine Outlet Temperature 354.0◦C 363.8◦C 2.77%

Minimum Steam Cycle Power Output 94.36 MW 89.15 MW 5.5%
HP Turbine Inlet Temperature 547.3◦C 555.5◦C 1.5%
MP Turbine Inlet Temperature 525.8◦C 525.0◦C 0.15%
LP Turbine Inlet Temperature 224.6◦C 224.4◦C 0.01%
HP Turbine Outlet Temperature 354.1◦C 366.1◦C 3.39%

The following sections build on the simple models presented so far by developing

detailed part-load models. These will provide models of key pieces of equipment

suitable for operational optimization, as will be detailed in the next Chapter. Each

model described builds on both the work presented so far, as well as models and

regressions from literature and industrial data.

5.4 Detailed Steam Turbine Model

As stated in Section 5.3.3.3, the steam turbine is the most common piece of equip-

ment in steam utility systems, and thus considerable attention has been paid to

developing a rigorous model. The model shown in Equation 5.7 represents a simple

mass and energy balance around the unit, using standard textbook equations for an

isentropic turbine. However, for optimization of a utility system a detailed model

which includes an efficiency regression is required, especially when investigating

part-load performance. This section implements a more detailed literature-based

turbine model, using industrial data to develop a set of regression coefficients to

predict turbine output characteristics.
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5.4.1 Maximum Efficiency Regression

The maximum isentropic efficiency of a back-pressure steam turbine is an important

design parameter when modelling real steam turbines, and even more so for steam

turbo-generators which have a large impact on the economic calculations.

A common reference used by modern work (such as [4, 212]) is the early ex-

perimental work by Peterson and Mann [249], which characterizes the relationship

between maximum isentropic efficiency and maximum turbine output power, as a

function of inlet pressure. Using this data, it is then possible to regress a series

of functions that represent each pressure level, as shown in Figure 5.27. Note a

surface fit was attempted, however a simple function could not be found to describe

the three problem dimensions as accurately as individual fits with a second stage

interpolation (described below).
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Figure 5.27: Power function fits to the Peterson and Mann turbine data, digitized
from [212].

The function fitted to the efficiency curves was a power function

η = αW β + γ (5.24)

where a function was fitted to each pressure level. The coefficients found are shown

in Table 5.16.

To solve the maximum efficiency for a turbine not included in the experimental

pressure levels, a shape-preserving piecewise cubic interpolation is used across all
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Table 5.16: Regressed power function coefficients from Equation 5.24 for the turbine
efficiency data.

Pressure α β γ
14 bar -0.1175 -0.5198 0.8406
28 bar -0.1569 -0.4538 0.8359
41 bar -0.1743 -0.454 0.8233
61 bar -0.1975 -0.4344 0.8219
82 bar -0.2314 -0.3755 0.8338
102 bar -0.2542 -0.3519 0.8392

fitted functions at the specified power output. In MATLAB, this is performed using

the interp1 function with ‘pchip’ selected as the interpolation method. The result

of this procedure is the maximum isentropic efficiency for an arbitrary sized steam

turbine, based on a specified inlet pressure level. This information can then be used

as the upper limit for the part-load modelling, described in the next subsection.

5.4.2 Part-Load Modelling

To be able to optimize the operation of utility systems one must be able to move

the operating point, which typically involves either switching steam flows between

equipment, or manipulating the amount of steam through individual pieces of equip-

ment. In the first case, which is typical of a back-pressure turbine, the turbine is

connected to a fixed mechanical load (i.e. a pump, fan or compressor), and therefore

it is assumed that the mass flow changes only a small amount with varying operating

points: it is either on (steam supplied) or off (an electric motor is used instead to

drive the load). In this case, a part-load model is not particularly useful.

However, steam turbines are also used as turbo-generators, in which the turbine is

connected to an electrical generator. The amount of electricity to generate can vary

depending on site power requirements, generation potential, and electricity prices

and thus the connected load can vary widely. In this case, a part-load model must be

used to predict the amount of power generated as a function of inlet conditions, mass

flow through the turbine and the rated power output. Typically this information

can be extracted from a manufacturer as a plot of isentropic efficiency versus output

power, or mass flow versus output power (a Willans Line [58]). However, for the

purposes of this work where this information may not be available, the following

heuristics are proposed.
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Equation 5.7 from Section 5.3.3.3 is the basic equation for a steam turbine is

Wshaftwork = M∆Hisenηs (5.25)

where ∆HIsen is the isentropic enthalpy drop across the steam turbine and ηIsen is

the isentropic efficiency of the turbine. For this section we will assume ∆HIsen is

constant and can be calculated offline using

∆Hisen = Hin − HPS(Pout, SPH(Pin, Hin)) (5.26)

This leaves the isentropic efficiency requiring calculation as a function of load, which

varies nonlinearly. Following early work by Mavromatis in [212] it is shown that the

Willans line can account for this nonlinear characteristic of turbine efficiency versus

load in a linear fashion, thus enabling simpler optimization-ready models. Figure

5.28 shows the typical relationship between the Willans line and turbine efficiency

for a 1MW steam turbine model running at 50 bar, 400◦C and an outlet pressure of

10 bar.
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Figure 5.28: Willans line versus isentropic efficiency curve. Note the Willans line
does not cross through the origin due to spinning losses (and other internal losses)
within the steam turbine.

In order to determine the Willans line (and thus a linear model) for an arbitrary

steam turbine (without measurement data), we can use the efficiency curves pre-

sented in 5.4.1 as the basis for the underlying power versus efficiency relationship.
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Following Appendix B in [212], it is shown that the linear relationship

∆HisenMmax =
Wmax

ηisen(max)

= αs + βsWmax (5.27)

can be built by replotting the efficiency curves as maximum output divided by

maximum efficiency versus maximum power, as shown in Figure 5.29.
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Figure 5.29: Linearization step of the Peterson and Mann data.

In the original reference (as well as in other later work, such as [315]), the

coefficients αs and βs are found as a function of the saturation temperature, e.g.

αs = a0 + a1TsatP(PIn)

βs = b0 + b1TsatP(PIn)
(5.28)

beacuse each line in Figure 5.29 represents a different pressure level. In order to

increase the accuracy of this linear approximation (noting the lines look straight,

but there are variations which lead to errors of up to 30% as noted in the original

reference), the range of turbine power outputs is split into two in order to account

for small (< 1.2MW) and larger turbines.

The advantage in this work is that since we are not designing a new utility sys-

tem, we can afford to calculate the constants αs and βs offline (before optimization).

In order to maximize the accuracy of the regressed coefficients, the calculation pro-

cedure starts from the power function fits presented in the last section. Using these

functions, a table is created over the power region of interest of the turbine, which
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can then be used with a gridded interpolation scheme to derive a new curve at the

specified inlet pressure. The table for the turbine shown in Figure 5.28 can be viewed

in Figure 5.30 showing the region of interest is from the maximum output power

(1MW in this case) down to 40% of maximum load, 0.4MW. The 50 bar efficiency

line is a result of a spline interpolated vertically across each of the power function

fitted efficiency lines, derived from the original data. Note the original data is not

used directly as this technique requires the data points to be aligned vertically.
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Figure 5.30: Efficiency interpolation table for a 1MW, 50 bar inlet turbine. Square
points are created from the power function fits, while circles are spline interpolated
points.

Using the fitted efficiency curve at the correct pressure, the linearization step

can be performed over just this curve, maximizing the accuracy of the fit to just

this turbine at this pressure level. From here, a simple straight line fit can be

performed to find the coefficients αs and βs from Equation 5.27, noting from Figure

5.31 that the sum of squared errors is very close to 0, which indicates a virtually

linear response.

Again following Appendix B in [212], a model for output power as a function of

the Willans line can be derived as

Wshaftwork = nM −Wloss (5.29)

where from early studies, and as described in this paper, the loss is typically char-
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Figure 5.31: Straight line fit of turbine shaft work over isentropic efficiency for a
1MW, 50 bar inlet turbine.

acterized as

Wloss = 0.2Wmax (5.30)

thus resulting in

Wmax =
5

6
nMmax (5.31)

where n is the slope of the Willans line. By substituting Equation 5.31 into Equation

5.27 and solving for the Willans line slope, we get the following expression

n =
6

5βs

(

∆Hisen −
αs

Mmax

)

(5.32)

and similarly the intercept (or turbine loss)

Wloss =
1

5βs

(∆HisenMmax − αs) (5.33)

By substituting Equations 5.32 and 5.33 into Equation 5.29, we can derive the final

expressions for power output as a function mass flow and isentropic enthalpy drop

Wshaftwork =
6

5βs

(

∆Hisen −
αs

Mmax

)(

M − 1

6
Mmax

)

(5.34)
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and isentropic efficiency

ηisen =
6

5βs

(

1− αs

∆HisenMmax

)(

1− Mmax

6M

)

(5.35)

To show the effect of both turbine size (related to Mmax) and inlet pressure

on isentropic efficiency, Figure 5.32 illustrates 6 models generated using the model

presented in this chapter. Note this figure is similar to Figure 14 in [212], however

it is recreated using the framework described so far. It is expected the curves in this

work would follow the original Peterson and Mann data more accurately due to the

extra interpolation step.
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Figure 5.32: Isentropic efficiency curves for a range of turbines.

For problems where the output enthalpy is also required, one can simply use

Equation 5.7 and substitute the derived expression for isentropic efficiency, Equation

5.35. Do note however that this function is no longer linear because the gradient

now has the form

∂Hout

∂M
=

γ

σM2
(5.36)

This is not an issue in this work because the resulting formulation is expected to be

nonlinear.
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5.4.3 Incorporating Varying Input Enthalpy

For optimization studies where the input enthalpy may vary, such as when the header

enthalpies are free to adjust based on an energy balance, it may be desirable not to

fix ∆HIsen to a constant, as performed in the last subsection.

The main effect of a varying input enthalpy is on the isentropic enthalpy drop

across the turbine, which features as ∆HIsen in both the output shaftwork calculation

and the isentropic efficiency calculation. Therefore modelling this variation can

assist with maintaining the accuracy of the model.

Using Equation 5.26, which incorporates the IAPWS thermodynamic routines

within the JSteam engine, it is possible to generate the curve for ∆HIsen for the area

around the nominal operating point. As shown in Figure 5.33, the curve is a weak

quadratic for typical operating regions; however we have chosen to model it as a

straight line, weighted about the nominal operating point. The reason a linear fit is
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Figure 5.33: Isentropic enthalpy drop linear regression.

chosen is based on the typical range of ∆HIsen, which as shown on the y-axis, varies

only around 15% of the range of the x-axis (inlet enthalpy). Therefore an accurate

fit would not gain significantly increased ∆HIsen accuracy.

For turbines operating close to the saturation point of the inlet header, the

minimum enthalpy is chosen as slightly above the saturation enthalpy of the inlet

pressure, to ensure the sharp change in enthalpy is not modelled.
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5.4.4 Complete Steam Turbine Model

To summarize the modelling presented within this section, the complete steam tur-

bine model is as follows

Wshaftwork =
6

5βs

(

∆Hisen −
αs

Mmax

)(

M − 1

6
Mmax

)

(5.37)

Hout = Hin −
6∆Hisen

5βs

(

1− αs

∆HisenMmax

)(

1− Mmax

6M

)

(5.38)

where

∆Hisen = αh + βhHin (5.39)

Mmax =
Wmax

∆Hisenηmax

(5.40)

and the remaining parameters are listed in Table 5.17. Note the expression for output

shaftwork is linear, while the output enthalpy expression is nonlinear. Maximum

mass flow is typically assumed as a constant using the value of ∆HIsen which is taken

at the nominal point (but could be substituted as a function of HIn, if required).

Table 5.17: Steam turbine model parameters.

Wshaftwork kW Output Shaftwork
Wmax kW Maximum Output Shaftwork (Manufacturer Specifcation)
ηmax fraction Maximum Isentropic Efficiency (from Peterson and Mann)
M kg/s Mass flow through turbine
Mmax kg/s Maximum mass flow through turbine
Hin kJ/kg Input Enthalpy
Hout kJ/kg Output Enthalpy
∆HIsen Isentropic Enthalpy drop across turbine
αs Willans Line regression intercept
βs Willans Line regression gradient
αh Isentropic Enthalpy drop regression intercept
βh Isentropic Enthalpy drop regression gradient

Section B.2.1 provides an example of the use of the detailed steam turbine model.

5.5 Detailed Steam Boiler Model

For a typical utility system where one or more steam boilers produce the bulk of

working steam, these boilers represent the largest managed cost of the system. For

two of the utility systems used for validation of iUO in Malaysia, boiler fuel gas made

up between 80 and 95% of the total operational expense of the system, eclipsing
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fuel-gas costs of multiple furnaces and gas turbines, and the relatively insignificant

demineralized water production. Therefore an accurate model of the steam boiler is

paramount to ensuring realistic optimized operating points. This section develops

a part-load model for the JSteam Fired Boiler and adds a variable efficiency from

operational data reported in literature.

5.5.1 Part-Load Modelling

Using the JSteam Fired Boiler model from Section 5.3.5.2, one of the assumptions

made is that the boiler efficiency is independent of load, and rather that it is a

function of losses due to characteristics such as input air requiring heating by the

boiler, as well as stack heat losses. These losses, while a function of the required

fuel energy, are directly proportional and thus result in a constant efficiency. An

example JSteam Fired Boiler fired with 100% methane is shown in Figure 5.34 with

input conditions shown in Table 5.18. Note the JSteam model is independent of

boiler size, and therefore the x-axis is absolute.
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Figure 5.34: JSteam Fired Boiler efficiency as a function of steam production.

In order to account for part-load performance of a specific boiler we must in-

troduce a load-dependent efficiency curve, as the JSteam model is effectively ideal.

Following recent papers in the modelling of utility systems, (such as [4, 315]) the

general efficiency model used for gas-fired boilers is based on earlier work by Shang

223



Table 5.18: JSteam Fired Boiler base case example input data.

HBFW 250 kJ/kg Boiler Feed Water Enthalpy
PSteam 40 bar Steam Pressure
TSteam 400◦C Steam Temperature
TAir 30◦C Air Temperature
TFuel 30◦C Fuel Temperature
TStack 200◦C Stack Temperature
FBD 1% Blowdown Ratio
FO2 1% Inlet Excess O2

and Kokossis [294] where they derive

Qloss

Qsteam

M

Mmax

= α + β
M

Mmax

, 10% ≤ M

Mmax

≤ 100% (5.41)

to describe the ratio of energy loss to the production of steam, as a function of the

ratio of mass flow of steam to the maximum mass flow. In order to fit the coefficients

(α, β) they used early work by Pattison & Sharma [244] which provided the data

reproduced in Figure 5.35. This data was collected by the British Gas Corporation

in the 1970s and 1980s and when linearized, as shown in the bottom plot, results

in the linear fit with coefficients α = 0.0126, β = 0.2156. Using these values it is

possible to estimate the loses that result from both boiler surface and flue gas losses

for the boilers originally surveyed.
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Figure 5.35: Boiler losses as a function of load (digitized from [294]).
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Rearranging Equation 5.41 we can solve the losses as

Qloss =
Qsteam

M
(αMmax + βM) (5.42)

which forms a linear expression for losses as a function of the ratio of mass flow of

steam to maximum mass flow. This can be further rearranged to solve for the boiler

efficiency

η =
Qsteam

Qfuel
=

M
Mmax

(1 + β) M
Mmax

+ α
(5.43)

Do note however this model is somewhat limited because it does not account for

blowdown losses, nor does it specifically take into account the operating condition

of the boiler (such as air and fuel temperature, O2 specifications, etc). Varbanov et

al [315] corrected for the blowdown loss in their model of fuel energy required as a

function of mass flow

Qfuel = ∆HBoiler [(1 + β)M + αMmax] + FBDM∆HEcon (5.44)

They did however still retain the same coefficients from the work of Shang and

Kokossis. Later work by Aguilar et al [4] proposed a slightly different boiler model

to account for multi-component fuels

M (∆HBoiler +∆HEconFBD) =

(
Qf1

Bf1
+

Qf2

Bf2
+ · · ·+ Qfm

Bfm

)

−Davg (5.45)

however they also reference back to the Shang and Kokossis paper as the underlying

relationship used when solving for the model coefficients.

Following a similar technique of Aguilar et al, the proposed part-load boiler

model will be based on the relationships derived by Shang and Kokossis, but the

coefficients α, β will be re-regressed based on the extra information present in the

JSteam model. This decision is based on the original coefficients being effectively in-

dependent of varying conditions such as boiler air-preheaters, varying excess oxygen

specifications, and other operational specifications included in the JSteam model.

Re-examining Equation 5.42, we can see that the α coefficient represents constant

losses associated with the size of the boiler, while the β term represents load de-

pendent losses. Currently the JSteam model assumes α is 0 (i.e. the intercept of

Figure 5.35) indicating there are no fixed losses (this results in a constant efficiency),

while the β term is specification dependent (this results in the maximum achievable

efficiency).

In order to find α, β for the JSteam model, Equation 5.41 is implemented and
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uses the results obtained from a series of model outputs and the following equations

Qloss = Qfuel −Qsteam (5.46)

Qsteam = − (HBFW −Hsteam − FBDHBD + FBDHBFW)Msteam (5.47)

Qfuel = MfuelNHVfuel (5.48)

where Mfuel is calculated from the JSteam model based on the fuel, air, O2 and other

operational specifications for the desired steam production. By evaluating this set

of equations and regressing a straight line (as done in Figure 5.35), we can find the

Shang and Kokossis model βJ coefficient (where the subscript J indicates the JSteam

fitted coefficient). As stated, it is not possible to find αJ using the JSteam model

so this must be estimated from the original coefficient. As a first approximation αJ

is calculated as

αJ = α
βJ

β
(5.49)

noting αJ is found as the ratio of difference between the new JSteam βJ and the

original Shang and Kokossis β. Where actual boiler plant data is available this

should obviously be used to regress αJ, βJ, however this approximation is sufficient

for the purposes of this work. Section B.2.2 provides an example of the use of the

detailed steam turbine model, including the modification in Equation 5.49.

5.5.2 Complete Steam Boiler Model

To summarize the modelling presented in this section, the complete steam boiler

model is as follows

Mfuel = λ+ γM (5.50)

η =
M

(1 + βJ)M + αJMmax

(5.51)

where

λ =
−αJMmax∆Hboiler

NHVfuel
(5.52)

γ =
− (1 + βJ)∆Hboiler

NHVfuel

(5.53)

∆Hboiler = HBFW −Hsteam − FBDHBD + FBDHBFW (5.54)

αJ = α
βJ

β
(5.55)
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and the remaining parameters are listed in Table 5.19. Note the expression for

required fuel mass flow versus steam production is linear, as is standard in literature.

Table 5.19: Boiler model parameters.

η fraction Boiler NHV Efficiency
NHVfuel kJ/kg Fuel Net Heating Value
M kg/s Steam Production Mass flow (Manufacturer Spec)
Mmax kg/s Maximum Steam Production
Mfuel kg/s Fuel Gas Mass Flow
HBFW kJ/kg Boiler Feed Water Enthalpy
Hsteam kJ/kg Steam Enthalpy
HBD kJ/kg Blowdown Enthalpy (saturated water)
FBD fraction Blowdown Fraction
∆Hboiler Enthalpy change across boiler (econ + superheater)
λ Boiler fuel prediction model intercept
γ Boiler fuel prediction model gradient
αJ JSteam regressed intercept
βJ JSteam regressed gradient
α Shang and Kokossis intercept: 0.0126
β Shang and Kokossis gradient: 0.2156

5.6 Detailed Gas Turbine Model

Common within newer utility systems is the ability to generate electricity on-site,

and for larger systems where more than a few MW is required, a Gas Turbine

Generator (GTG) is an efficient means of generating power. The JSteam GTGmodel

presented in Section 5.3.5.3 implements a very simple method of calculating fuel

consumption when the efficiency of the unit is known. However, as with the other

detailed models presented so far, this work assumes no efficiency data is given and

that we only know the unit size and fuel supplied. This section expands the simple

model by using two pieces of industrial gas turbine data to derive an expression

for maximum GTG efficiency as a function of size, and then to derive part-load

equations for variable efficiency as a function of load.

5.6.1 Maximum Efficiency Regression

The maximum open-cycle (i.e. no HRSG) efficiency of a gas turbine is primarily a

function of the turbine size, as well as of the manufacturer’s design. In the absence

of manufacturer specifications, two pieces of literature provide an estimate of the

maximum efficiency of an open-cycle gas turbine, based on two sets of operational
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data. For large gas turbines, (26MW ≤ Q ≤ 255MW) Varbanov et al [315] provide

a linear regression based on General Electric operational data. For small turbines,

(2MW ≤ Q ≤ 8MW) Aguilar et al [4] provide a ‘rated efficiency trend’ based on

surveyed gas turbines which has been digitized and regressed for this work.

The small turbine regression equation is as follows

ηmax = αs exp(βsWmax) + γs exp(δsWmax), 1.5MW ≤ Wmax ≤ 8.5MW (5.56)

where αs = 0.3308, βs = −0.00572, γs = −0.09133, and δs = −0.3098, noting the

subscript ‘s’ stands for small. For the larger turbines the regression equation is

ηmax =
Wmax

αl + βlWmax
, 26.1MW ≤ Wmax ≤ 255.6MW (5.57)

where αl = 21.9917, βl = 2.6683. In order to create a smooth curve which connects

both regressions, a power fit has been used to approximate the entire operational

region as follows

ηmax = αJW
βJ
max + γJ (5.58)

where αJ = 1.116, and βJ = 0.01389 and γJ = −0.8416, noting the subscript ‘J’

infers JSteam regressed coefficients, and W is specified in MW.

It is acknowledged that this complete fit, as shown in Figure 5.36, does not

follow the trend for the larger gas turbines below around 100MW. This has however

been sacrificed in order to match the smaller gas turbine curve, as well as a smooth

transition for the area between both sets of data. It is noted in multiple papers

such as [315] that “Coefficients differ between different gas turbine manufacturers

and even different gas turbine types from the same manufacturer”, therefore this

curve is simply an estimate, and manufacturer data should always be substituted if

available.

5.6.2 Part-Load Modelling

Similarly to the steam turbine, gas turbine part-load models are often based on a

Willans line approximation. As shown in [4] the gas turbine part load performance

is approximately linear when viewed as a relationship between fuel duty and electric

power output, and thus a Willans line is a reasonable approximation. Following the

derivation in [315], a part-load model based on the Willans line is described as

Wshaftwork = nMfuel −Wloss (5.59)
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Figure 5.36: Gas turbine maximum efficiency as a function of gas turbine power
output.

where n is the gradient of the Willans line, M is specified in kg/s and W is specified

in kW. The loss term is approximated as a function of the maximum gas turbine

output

Wloss = LWmax (5.60)

where L is a parameter which must be regressed for each turbine. For the purposes

of simplifying the design, L is assumed constant at 20%, as with steam turbines,

however it is noted for small gas turbines this value can be much larger.

When operating at full load Equation 5.59 is written as

Wmax = nMfuel(max) − 0.2Wmax (5.61)

=
5

6
nMfuel(max) (5.62)

which is the same as with the steam turbine, and substituting steam with fuel. In

order to relate the the mass flow of fuel to available duty, the Net Heating Value

(NHVfuel, specified in kJ/kg) is substituted for ∆Hisen in Equation 5.27 and solved

for the maximum shaftwork

Wmax =
1

βgt

(
Qfuel(max) − αgt

)
(5.63)
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where

Qfuel(max) = NHVfuelMfuel(max) (in kW) (5.64)

Mfuel(max) =
Wmax

ηmaxNHVfuel
(5.65)

noting αgt, βgt are regressed coefficients, described below, and ηmax is solved from

Equation 5.58. Following the same derivation as per the steam turbine, expressions

for the gradient and loss can be derived as

n =
6

5βgt

(

NHVfuel −
αgt

Mfuel(max)

)

(5.66)

Wloss =
1

5βgt

(
Qfuel(max) − αgt

)
(5.67)

which when substituted back into Equation 5.59 and solved for the mass flow of fuel

required, results in

Mfuel = −Mfuel(max)

(
Qfuel(max) − αgt + 5βgtWshaftwork

)

6αgt − 6Qfuel(max)

(5.68)

and similarly for the efficiency of the gas turbine

η = − Wshaftwork

(
6αgt − 6Qfuel(max)

)

Qfuel(max)

(
Qfuel(max) − αgt + 5βgtWshaftwork

) (5.69)

In order to derive the two constants, αgt, βgt, a similar approach as was done for

the steam turbine in Section 5.4.2 has been performed, whereby Equation 5.58 is

linearized over the operating region of interest. Typically this is between 10% and

100% of rated gas turbine output, and the linearization is performed by fitting a

straight line to W versus W/ηmax, as shown in Figure 5.37.

For an example of the part-load performance described by this model, Section

B.2.3 provides a comparison with literature as well as three hypothetical models.
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Figure 5.37: Straight line fit of gas turbine shaft work over efficiency for a 15MW
unit.

5.6.3 Complete Gas Turbine Model

To summarize the modelling presented in this section, the complete gas turbine

model is as follows

Mfuel = −Mfuel(max)

(
Qfuel(max) − αgt + 5βgtWshaftwork

)

6αgt − 6Qfuel(max)

(5.70)

η = − Wshaftwork

(
6αgt − 6Qfuel(max)

)

Qfuel(max)

(
Qfuel(max) − αgt + 5βgtWshaftwork

) (5.71)

(5.72)

where

Qfuel(max) = NHVfuelMfuel(max) (5.73)

Mfuel(max) =
Wmax

ηmaxNHVfuel

(5.74)

and the remaining parameters are listed in Table 5.20.
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Table 5.20: Gas turbine model parameters.

Wshaftwork kW Output Shaftwork
Wmax kW Maximum Output Shaftwork (Manufacturer Spec)
Qfuel(max) kW Fuel Duty at Maximum Output
NHVfuel kJ/kg Fuel Net Heating Value
ηmax fraction Maximum Open-Cycle Efficiency (from Equation 5.58)
η fraction Open-Cycle efficiency
Mfuel kg/s Mass Flow of Fuel
Mfuel(max) kg/s Maximum Mass Flow of Fuel
αgt Willans Line regression intercept
βgt Willans Line regression gradient

5.7 Approximate Heat Recovery Steam Genera-

tor (HRSG) Model

We have opted not to develop a detailed model based on industry data regressions,

simply due to the complexity of the unit for the HRSG. As the JSteam HRSG model

described in Section 5.3.5.4 already accounts for a multitude of operational specifi-

cations, it was decided to approximate this model and use it in conjunction with the

detailed gas turbine model from the last section. As shown below, the approximated

model performs as expected when constrained within sensible operating limits.

5.7.1 Base Load Model

For an unfired HRSG, (base load only) the steam production is a function of both

the gas turbine and HRSG boiler, including operating specifications for both units.

The main variable that controls the steam production potential is the available duty

in the gas turbine exhaust so this must be predicted by the gas turbine model.

Using the current JSteam Gas Turbine model, the exhaust temperature of the gas

turbine is specified, so that an energy balance across the unit can be calculated

to determine the exhaust mass flow, and therefore its duty. This is a reasonable

assumption because the exhaust temperature is one of the controlled variables by a

gas turbine control system, and thus expected to be fairly constant (at full load).

It is however acknowledged the exhaust temperature and mass flow will vary as

a function of part-load conditions, and as noted in [315], without manufacturer or

operating data, predicting the exhaust mass flow (or temperature) requires turbine

specific regressions, which is beyond the scope for this model. For the HRSG model

therefore, the gas turbine output temperature is assumed constant across part-load

conditions.
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The method used to develop an approximate HRSG model utilizes the JSteam

Gas Turbine and HRSG models, as well as a detailed gas turbine model from the

last section. Leveraging the fact we are targeting operational optimization, we can

generate an expression to relate steam production versus power output about the

current operating point, which turns out to be approximately linear. Model building

is completed as follows:

1. Using the rated GTG output (Wmax), together with the fuel gas duty and

the detailed gas turbine model, an expression which relates efficiency versus

part-load power output is derived.

2. The JSteam Gas Turbine and HRSG models are run over a series of interme-

diate points within the expected power output range of the GTG. The gas

turbine efficiency is specified from part (1), while the remaining specifications

are entered as per the current operating point. This enables the HRSG model

to estimate the output steam production as a function of HRSG specifications

such as minimum stack temperature, steam temperature and pressure, blow-

down ratio, as well as GTG specifications such as fuel composition, fuel and

air temperature and compressor pressure.

3. A straight line is regressed through the steam production versus gas turbine

output data from (2). This is then used to predict base load steam production

for this unit.

As long as the HRSG is operated away from operational constraints, such as

approach temperatures for each of the exchangers, the relationship between input

energy and output steam production is virtually linear, as found in Section 5.5. For

an example of a combined cycle gas turbine with unfired HRSG, see Section B.2.4.1.

5.7.2 Modelling Secondary Firing

When modelling an HRSG with secondary (or supplementary) firing, the model now

has an extra degree of freedom, which is the specified amount of steam to produce,

in addition to the gas turbine power output. This means our model to approximate

the required fuel flow must be a surface (2D) rather than a line (1D), as per all

other models in this work. In addition, the model must be able to predict the base

steam load (as above) as well as the maximum steam production, in order for the

optimizer to select a valid steam mass flow within the limits of the unit.

As with the base-load HRSG, the secondary fired HRSG surface of total fuel

flow (GTG fuel + HRSG supplementary fuel) with respect to gas turbine output
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and steam demand is approximately linear. However, due to operational constraints,

such as minimum stack temperature, minimum exchanger approach temperatures

and minimum stack O2, the operating region of the HRSG is also subject to two

further constraints. Looking at the surface of total fuel flow, viewed in Figure 5.38,

there are two effects within this example that demonstrate the constraints: The

top left of the surface is missing as the steam demand exceeds the maximum steam

production available given the GTG exhaust gas duty, and the bottom right of the

surface is missing due to the steam demand being less than the base load steam

production.
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Figure 5.38: Fuel flow surface using JSteam gas turbine and HRSG models.

As stated, this surface is approximately linear and can therefore be regressed

with a 2D surface

Mfuel(total) = αhrsg + βhrsgWgtg + γhrsgMsteam (5.75)

where Wgtg is in kW, and Msteam and Mfuel(total) are in kg/s. Using the same proce-

dure as for the unfired HRSG, the JSteam Gas Turbine and HRSG models are run

over a series of evaluation points to build up the required data to fit the surface to.

Points which fall outside the operating constraints are removed, leaving only the lin-

ear surface. As well as building up the expression for total fuel flow, expressions for

base steam production and maximum steam production are fitted to data reported

by the JSteam models, thus building up expressions for the constraints. This again

creates an accurate approximation of the GTG + HRSG at the current operating

point, however it now includes part load models for both the gas turbine power as
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well as the HRSG steam production.

Section B.2.4.2 provides an example of the use of the part-load fired HRSG

model, together with typical operational constraints.

5.8 Summary

This chapter has introduced the utility system as a large and complex system of in-

terconnected equipment models, and shown the level of modelling detail required to

begin to estimate the performance of such a plant. It includes an accurate library of

thermodynamic routines for both steam (the working fluid), as well as combustion

and fuel gas routines for calculating the economics of the operation of these sys-

tems. The JSteam library has been introduced, which provides a new, high-speed,

high-accuracy modelling engine for estimating the design performance of a suite of

common utility models, including turbines, boilers, gas turbines and other standard

equipment. It has been shown that while some of these models are well known ther-

modynamic relationships, incorporating knowledge of how these models are used in

industry has meant they are now more suited to predicting industrial conditions, as

well as suitable for use in optimization, given the emphasis on computational effi-

ciency. A case-study showing the use of the modelling package used for predicting

the response of a combined cycle power-plant showed a good approximation, within

5% across a range of equipment operating conditions.

In addition to the design models, four new part-load models of critical util-

ity system equipment have been developed. These include a back-pressure steam

turbine, steam boiler, gas turbine and heat recovery steam generator, all key com-

ponents when predicting the economic impact of varying the operating point of a

utility system. Each model combines knowledge from industry, insight from the

thermodynamics and regressed performance curves from literature, leading to a set

of flexible, wide-range models suitable for use in operational optimization of a util-

ity system. Together, these four models are a significant contribution to the field of

utility system modelling, specifically when looking at practical off-design analysis.

The following chapter will exploit the structure and underlying relationships of

both the full-load and part-load models developed here, and tailor an optimization

solver to best solve the operational optimization of steam utility systems.
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Chapter 6

Utility System Optimization

This chapter follows on from the modelling presented in the proceeding one, and

presents a practical framework for operational optimization of industrial utility sys-

tems. As identified in the introduction, a steam utility system is a large, intercon-

nected, multi-faceted optimization problem, and as will be shown in this chapter,

is nonlinear, non-convex and contains discrete constraints. This renders the opti-

mization problem as one of the hardest known to solve, a non-convex MINLP (the

relaxed problem is non-convex, not just due to the integer constraints), a problem

which is currently known to be NP-hard. However using the OPTI Toolbox, a new

framework developed in this work, globally optimal results to the operational opti-

mization of these systems will be shown to be achieved in less than 5 seconds for a

range of industrially significant case studies, all using a standard laptop computer.

The chapter begins by highlighting a deficiency in the optimization solvers cur-

rently available via MATLAB, namely the omission of a free rigorous mixed integer

nonlinear programming solver. This leads into the development of our own opti-

mization framework for MATLAB, OPTI, which combines a suite of optimization

solvers from the open-source community with the ‘glue’ via a library of MATLAB

MEX files and an object-orientated approach to building and solving optimization

problems. The OPTI framework not only enables MINLPs to be solved, but lin-

ear, quadratic and general nonlinear problems as well, automatically identifying the

problem entered and tailoring the problem for the selected solver. Using OPTI, it

is shown that simply wrapping a nonlinear optimizer around a simulation model

obtains poor results, while exploiting the structure of the model via an algebraic

description can result in significant performance enhancements. To exploit the struc-

ture of these models, SymBuilder, a new modelling package developed in this work,

is used to construct algebraic models of three utility system case studies, including

one real petrochemical system, which are then optimized using OPTI.
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6.1 Introduction

Following the core focus of practical industrial optimization in this thesis, this chap-

ter deals with the operational optimization of industrial utility systems. By em-

ploying the suite of models developed in the last chapter, together with the JSteam

package for thermodynamic calculations, it will be shown that a purpose-built utility

system optimization model can be built, validated against a rigorous thermodynamic

model, then optimized in less than five seconds to minimize operating costs.

In order to complete this aim, a suitable optimization environment was to be

chosen. One of the primary requirements was the ability to investigate mixed inte-

ger optimization, both linear and nonlinear, because the operational optimization

problem requires multiple binary variables. Given the rapid prototyping ability of

MATLAB, together with the suite of tools it provides built in, this was an obvious

first choice. It is however very limited in its mixed integer optimization options:

bintprog [207] solves BILPs, and the genetic algorithm solver [204] can solve in-

equality constrained MINLPs, however its performance is very problem dependent.

In addition, as we wanted to utilize JSteam for constructing approximated mod-

els, the environment had to support a method for interfacing to external code.

Comparing packages such as GAMS and AMPL, this requirement was clearly go-

ing to be difficult. It would also most likely require another software platform to be

used to interface to the code, then generate a GAMS/AMPL model for optimization

(such as done with the software STEAM [45] detailed in [46]).

Therefore to keep development within a single environment, MATLAB was re-

tained, but it was clear a lot of development would be required to robustly opti-

mize mixed integer utility systems. The next section of this chapter details the

development of the OPTI Toolbox, a framework we developed initially for solving

MINLPs resulting from this work, but soon grew to a toolbox used by several thou-

sand international users. Succeeding sections detail the modelling and optimization

methodology employed, including development of our own algebraic modelling sys-

tem, then concluding with 3 case studies to demonstrate the effectiveness of the

proposed approach.

6.2 OPTI Toolbox

The OPTimization Interface (OPTI) Toolbox (http://www.i2c2.aut.ac.nz/Wiki/

OPTI/) is a free, open source MATLAB Toolbox developed as part of this work. It

is currently used by several thousand people internationally (5000 as of January
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2014), ranging from academics and students, to engineers, scientists, economists

and a multitude of other users (we track downloads and maintain a full database

of users). In addition it has undergone substantial development over the course of

the past two years, and is still in active development. This section will detail its

development and functionality, and provides examples of how it is used within this

work.

6.2.1 Toolbox Conception

Midway through 2011 it was decided that MATLAB’s inability to handle integer

constraints within nonlinear optimization problems was becoming a hurdle to this

research, and we were going to either have to switch development environments, use

alternative 3rd party software, or develop something ourselves. Given the limited

budget for this work, most commercial platforms were out of range (such as GAMS

and AMPL) but we were able to evaluate software for fixed time periods.

A piece of software that appeared to meet all (initial) requirements was TOM-

LAB [130], a commercial optimization platform for MATLAB that provided a suite

of optimization solvers with interfaces to MATLAB. In addition, it provided an

advanced automatic differentiation tool that could automatically generate first and

second derivatives for simple to moderate complexity MATLAB functions, as well as

a suite of utility functions. The concept of the platform was quite attractive because

it provided a suite of C/C++/Fortran solvers already compiled and ready to use, we

did however find the interface somewhat difficult to use, especially when trying to

swap between linear, quadratic and nonlinear problems. This, coupled with a high

cost for the TOMLAB, and additional costs for each solver meant this tool was not

going to be possible to use. It however prompted thinking about what was freely

available in the open source community, which turned out to be highly active.

An initial survey of the open source optimization landscape showed there was

a large amount of activity, with key players such as COmputational INfrastructure

for Operations Research (COIN-OR) [15], a project to develop open source for the

operations research community, NonLinear Optimization (NLopt) [157], a suite of

C and C++ optimization solvers converted and coded by Steven Johnson, as well as

Python based frameworks such as OpenOpt [175] and pyOpt [246] just to name a few.

A key finding of this survey was that open source solvers were predominantly written

for Linux/Unix based compilation (i.e. using makefiles and auto-tools), with many

stating Windows compatibility was either untested, unavailable or not compatible

with 64bit Windows. Furthermore, solver interfaces to high-level languages such as

MATLAB were typically either immature or non-existent, with Python being the
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preferred high-level interface language (due most likely to its open source nature).

Given that we were using Windows and MATLAB and wanted to leverage the

large amount of work that existed within the open source OR community, it was

decided to start our own project. It was to be designed in a way to easily con-

vert between linear and nonlinear problems, as was common with the utility system

work we were doing, as well as supplying solvers from the open source community

with MATLAB interfaces. However this task would require compiling the solvers

from scratch, writing our own MATLAB interfaces (or fixing up existing ones, where

applicable) and integrating it all into a framework, much of which was very time

consuming with little to no research benefit. The upside was that the framework

would hopefully be useful to other researchers facing the same challenges as our-

selves, and we planned to release it for no cost once it reached maturity. After 2

months of development, OPTI Toolbox (typically referred to as OPTI) was released

via our research centre website in late August 2011.

6.2.2 Optimization Solvers

The original plan was to compile and interface solvers that were required as part

of this research. However the toolbox quickly grew and now includes 24 solvers

compiled and supplied with the toolbox. The author (or manager) of each solver

has been individually contacted and agreed to the distribution of their work in

binary form within OPTI, provided the licence terms were met. For a complete list

of solvers supplied with the toolbox, together with problem examples, see Section

C.1.1.

6.2.3 Problem Identification and Construction

As identified earlier, one of the main design ideas behind the toolbox was to be able

to easily create linear and nonlinear optimization problems , including the addition

of integer constraints, without having to rewrite the problem construction. The

concept was to create a single object that could automatically identify the problem

entered, and then choose the best solver available. This was a variation on the

GAMS / AMPL approach where an engine is instructed to solve the optimization

problem using a specific solver given the problem type, or the TOMLAB approach

where the problem is entered given a specific category.

To develop this functionality, an object orientated approach has been taken,

where the user creates their specific problem of interest using the OPTI class con-
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structor

OptProb = opti(‘obj’,my_objective,‘bounds’,lb,ub,‘x0’,x0)

The single line above creates a bounded nonlinear optimization problem, identified

only by the arguments supplied. In addition, it automatically checks all user argu-

ments for errors, as well as problem formulation problems, and then, based on the

information provided, decides on the best solver available to solve the problem. To

solve this problem, a user can simply call solve on the OPTI object

[x,fval,exitflag,info] = solve(OptProb)

noting the method returns the optimal decision variable vector (x), the objective

value at this optimum (fval), the reason why the solver exited (exitflag) and

information on the solver run (info).

To demonstrate the functionality of the object without listing every possible

option, a number of illustrative examples are presented below. For examples of

solving other problem types using OPTI, please see the Wiki, available at http:

//www.i2c2.aut.ac.nz/Wiki/OPTI/.

6.2.3.1 Linear Programming

Consider the following small linear program

minx − 6x1 − 5x2

subject to: x1 + 4x2 ≤ 16

6x1 + 4x2 ≤ 28

2x1 − 5x2 ≤ 6

0 ≤ x ≤ 10

The problem can be entered into a script file and an OPTI object created using

% Objective (min f’*x)
f = -[6 5]’;
% Linear Constraints (A*x <= b)
A = [1,4; 6,4; 2, -5];
b = [16;28;6];
% Bounds (lb <= x <= ub)
lb = [0;0]; ub = [10;10];

% Build OPTI Object
OptProb = opti(‘grad’,f,‘ineq’,A,b,‘bounds’,lb,ub)
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In as little as 6ms, the OPTI constructor has:

1. Based on the arguments supplied, determined we are solving an LP.

2. Ensured all arguments are valid, including checking for invalid numbers or

missing argument pairs.

3. Determined that CLP is the best available LP solver on this PC for this prob-

lem, and converted the user’s problem to suit CLP (note CLP uses row/range

constraints, as shown below).

4. Set up the problem and all required intermediate data for immediate calling

of CLP.

As we did not suppress command output, OPTI prints the problem description

to the command window, as shown below

Linear Program (LP) Optimization
min f’x
s.t. rl <= Ax <= ru

lb <= x <= ub
------------------------------------------------------

Problem Properties:
# Decision Variables: 2
# Constraints: 7

# Linear Inequality: 3
# Bounds: 4

------------------------------------------------------
Solver Parameters:

Solver: CLP

To solve the problem the solve method is called

>> [x,fval,exitflag,info] = solve(OptProb)

which CLP solves in less than 1ms for the correct optimum of -31.4. In addition

to solving the problem with OPTI, we can also plot the solution together with the

objective and constraints using the overloaded plot method

>> plot(OptProb)

where as shown in Figure 6.1, the linear objective is shown as the dashed plane, and

each linear inequality constraint and bound represents one of the shaded areas and
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lines. The optimum is shown as the red dot.

Figure 6.1: Example LP plot automatically generated by OPTI. The dashed lines
are the contours of the linear objective, while infeasible areas are shown highlighted
in yellow. Rectangular constraints are due to variable bounds, while the linear
inequality constraints are (in this problem) the slanted lines.

6.2.3.2 Quadratic Programming

Consider the following non-convex quadratically constrained quadratic program

minx 0.5x2
1 + 0.5x2

2 − 2x1 − 2x2

subject to: 3 ≤ x2
1 + x2

2 − 2x2 ≤ 5

x2
1 + x2

2 − 2x1 + 2x2 = 1

− x1 + x2 ≤ 2

x1 + 3x2 ≤ 5

0 ≤ x

This problem is particularly challenging because it contains both a non-convex

quadratic constraint, as well as a quadratic equality, which is also non-convex. This

is entered into MATLAB as following the code below:

% Objective (min 0.5*x’*H*x + f’*x)
H = eye(2);
f = -[2 2]’;
% Quadratic Constraints (qrl <= x’*Q*x + l’*x <= qru)
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Q = {[1 0; 0 1]
[1 0; 0 1]};

l = {[0;-2]; [-2;2]};
qrl = {3; 1}; %QC1 is double sided, QC2 is an equality
qru = {5; 1};
% Linear Constraints (A*x <= b)
A = [-1,1; 1,3];
b = [2;5];
% Bounds (lb <= x)
lb = [0;0];

% Build OPTI Object
OptProb = opti(‘qp’,H,f,‘qcrow’,Q,l,qrl,qru,‘ineq’,A,b,‘lb’,lb);

With the argument supplied, OPTI recognises this problem as a QCQP and will

inspect both the objective and quadratic constraints for convexity. If it detects a

non-convex term OPTI will automatically use a non-convex solver. In this case SCIP

is chosen because the problem is non-convex. Note this functionality only exists for

quadratic problems because detecting non-convexity of general nonlinear problems

is very computationally expensive. The solution found by SCIP is shown by the

OPTI generated plot in Figure 6.2, which looks optimal.

Figure 6.2: Example QCQP plot automatically generated by OPTI. As in the pre-
vious plot, the dashed curves indicate the objective function contours, in this case
the underlying quadratic function. The annulus is the result of the double sided
quadratic inequality constraint, with hatches indicating the infeasible side. The
blue circle is the quadratic equality constraint, noting the solution (red dot) lies on
this circle, within the annulus and linear constraints, and at the minimum.
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To illustrate the ability to switch to a general nonlinear solver, the user can

specify the solver as an option

% Set OPTI Options
opts = optiset(‘solver’,‘ipopt’);
% Rebuild OPTI Object
OptProb = opti(‘qp’,H,f,‘qcrow’,Q,l,qrl,qru,‘ineq’,A,b,‘lb’,lb,...

‘x0’,[2;0],‘options’,opts);
% Re-Solve
x = solve(OptProb)

noting the NLP solver IPOPT has been chosen by the user, and passed to the OPTI

constructor. The toolbox will then automatically convert the QCQP to a NLP,

including generating both first and second derivatives and their sparsity patterns,

and will set problem specific options within IPOPT if applicable to the problem

being solved. This functionality enables a user to enter the problem in a problem

specific format, yet solve the problem using a range of different solvers without

having to account for solver specific conversions.

6.2.3.3 Nonlinear Programming

Consider the following nonlinear program

minx log(1 + x2
1)− x2

subject to:
(
1 + x2

1

)2
+ x2

2 = 4

As this is a nonlinear problem, the problem is specified as a collection of MATLAB

functions

% Objective (min f(x))
fun = @(x) log(1 + x(1)^2) - x(2);
% Nonlinear Constraint
nlcon @(x) (1 + x(1)^2)^2 + x(2)^2;
nlrhs = 4;
nle = 0; % 0 indicates an equality

% Build OPTI Object
OptProb = opti(‘obj’,fun,‘nlmix’,nlcon,nlrhs,nle,‘x0’,[2;2])

If we inspect the resulting object

Nonlinear Program (NLP) Optimization
min f(x)
s.t. cl <= c(x) <= cu
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------------------------------------------------------
Problem Properties:

# Decision Variables: 2
# Constraints: 1

# Nonlinear Equality: 1
------------------------------------------------------

Solver Parameters:
Solver: IPOPT
Objective Gradient: @(x)mklJac(prob.fun,x,1) [numdiff]
Constraint Jacobian: @(x)mklJac(prob.nlcon,x,nnl) [numdiff]
Jacobian Structure: Not Supplied
Lagrangian Hessian: Not Supplied
Hessian Structure: Not Supplied

we see the OPTI has chosen to use IPOPT, and approximated the required deriva-

tives using a finite difference routine (mklJac). This allows the user to quickly

attempt to solve this problem. Note however that for larger problems, this will

most likely cause convergence issues. OPTI provides a suite of routines for calcu-

lating the derivatives, described further on in Section 6.2.4 which can be used to

overcome this issue, or alternatively the user can supply routines to calculate the

derivatives, or to specify a derivative-free solver. Note that even with approximated

derivatives IPOPT solves this problem in less than 8ms to the correct minimum of

-1.7321.
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Figure 6.3: Example NLP plot automatically generated by OPTI. The green dot
is the initial solution guess, while the blue closed curve is the nonlinear equality
constraint.

For solvers such as SCIP, OPTI will automatically convert the blackbox nonlinear

functions into an algebraic description of the problem. This functionality is described
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in Chapter 7.

6.2.4 Obtaining Accurate Derivatives

As identified, solving nonlinear optimization problems, which is the focus of this

work, requires generally at least first derivatives for both the objective and con-

straints, and for challenging problems, second derivatives. The accuracy of these

derivatives directly affects both the accuracy of the solution obtained, and also in

many cases, the solution time required. It therefore becomes obvious why restricted

algebraic modelling programs such as GAMS and AMPL are so attractive, given

their built-in functionality for generating both first and second derivatives using

tools such as automatic differentiation.

Given MATLAB is not an algebraic modelling language, one of its downfalls is

therefore the inability to provide robust derivatives of general MATLAB code. To

combat this, OPTI provides several tools for obtaining both accurate and estimates

of derivatives.

Centred Finite Difference (mklJac) Finite difference is one of the most com-

mon methods for obtaining derivatives and is the default method used with

OPTI. Its particular advantage is that it will work for any smooth function,

regardless of whether the function is purely MATLAB based or calls external

functions (such as thermodynamic routines in JSteam). The downside though

is that finite difference only provides an estimate of the derivatives, typically

only down to around 10−7 before the routine becomes too computationally ex-

pensive to run or runs into numerical issues (i.e. trying to find the difference

between two very big numbers, also known as subtractive roundoff). As this

value hovers around the convergence tolerance of most optimizers, it can cause

convergence issues. OPTI implements the Intel MKL routine djacobi [148]

which in turn implements centred finite difference, and this provides the most

accurate estimate of the finite difference algorithms. Calculating the Hessian

via finite difference is particularly inaccurate and is not supported in OPTI.

Automatic Differentiation (autoJac) Automatic differentiation is the standard

method for calculating derivatives among commercial software given it pro-

vides derivatives to numerical precision and can be quite efficient. In order to

do this, automatic differentiation uses the object-orientated principles of func-

tion and operator overloading (within this work, we are not using source-code

transformation) over the original function, and replaces each original numeri-

cal calculation with its corresponding derivative. The chain rule is then used
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to combine each calculation, resulting in required derivative(s), as described

in [233]. As with each technique, automatic differentiation has a downside

which is that only functions that have been overloaded with their respective

derivatives can be used. Therefore calling external functions, or even Simulink

simulations, means derivatives cannot be calculated. Within OPTI the open

source package adiff [216] is used to provide basic forward mode automatic

differentiation. It is however, quite limited with respect to both available

functions, as well as being reasonably slow.

Complex Step Differentiation (cstepJac,cstepHess) A surprisingly simple yet

incredibly powerful approach to obtaining first derivatives is by using complex

step differentiation [191], a technique which uses the step size from finite dif-

ference as a complex component of the evaluation point (the point at which

the derivative is calculated at). A remarkable feature of this method allows

the complex step method to obtain first derivatives to numerical precision,

virtually independently of the step size (once below around 10−8, function de-

pendent). The catch is that the language the complex step differentiation is

implemented in must support complex numbers natively. For MATLAB this

is simple, given its Fortran roots, however there are complications with any

simple functions such as abs and relationship operators, as well as the use

of complex conjugate (’ in MATLAB) and transpose (.’), noting most users

incorrectly use ’. In addition, the increased accuracy does not cross over to

second derivatives, although heuristics have been proposed. OPTI supplies

complex step routines for calculating both first and second derivatives, using

second derivative heuristics described in [181].

Symbolic Differentiation (symJac,symHess) The final method implemented by

OPTI utilizes the MATLAB Symbolic Toolbox [209] to symbolically differen-

tiate the user’s objective and constraints to generate both first and second

derivative expressions. The advantage is that this process is done once only

before the optimization begins, and then the expressions can be used for any

number of optimization studies, as opposed to calculating the derivatives at

each evaluation point. Once again, a downside exists, and in this case the Sym-

bolic Toolbox does not natively differentiate MATLAB functions; they must

be written using Symbolic variables instead. OPTI overcomes this issue by

providing a very simple parsing system for building Symbolic expressions from

simple MATLAB functions, provided a set of variable naming rules is used,

and without using vectorized code (a large drawback of this method). An-

other issue is that the analytical expressions for derivatives, especially second

derivatives, can be very complex and in some cases take longer to execute than

alternative approaches such as automatic differentiation. OPTI provides two

simple routines for symbolically differentiating MATLAB anonymous functions
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for both first and second derivatives.

6.2.5 Toolbox Summary

By utilizing the OPTI Toolbox together with JSteam, the operational optimization

of any typical utility system model can be performed. For linear and quadratic

problems, the toolbox will automatically handle all data manipulation to supply the

problem to a compatible solver, while for nonlinear problems, derivative generation

(if required) and option tuning is automatically performed. In addition, includ-

ing binary and integer constraints within the model is a single argument, allowing

both continuous and discrete optimization studies to be performed. Furthermore,

auxiliary solvers such as nonlinear root solvers can be used for converging utility

flowsheet models, as described in the next section.

The following sections will detail the methodology used for modelling and opti-

mizing utility systems using MATLAB, OPTI and JSteam.

6.3 Optimization Methodology

6.3.1 Optimization of Process Flow Diagrams

Once a model of a system to be optimized has been completed within a flowsheet-

based process simulator (such as HYSYS, JSteam, etc), it would be natural to

assume that this model would also be suitable for optimization. This could be

based on the process simulator model being of high fidelity, so that it represents

an accurate view of the real system. In addition, given that the user has already

invested considerable time modelling the system, it would make sense to exploit the

model for optimization studies. As shown in this section, optimizing a simulation

model is typically the slowest and least robust method, as opposed to a purpose

built optimization model [70].

To provide a benchmark, the test utility system shown in Figure 6.4 will be

used. The system includes three variable efficiency boilers of different sizes as well

as two variable efficiency turbo generators connected between different headers. In

addition, two back pressure turbines with fixed loads and redundant electric motors

are connected between headers, as well as a condensate collection system with LP

flash to recover useful steam. The three headers are at 40, 11 and 4 bar for the HP,

MP and LP headers respectively. Table 6.1 lists the operating specifications of each
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unit operation.

Table 6.1: Hypothetical 3 header model equipment operating conditions.

Boiler 1 (BLR1) 20-60 tonne/hr of 400◦C steam at 40 bar.
200◦C minimum stack temperature and 1%
minimum mole fraction of stack O2. Run on
100% 30◦C Methane with 30◦C ambient air.

Boiler 2 (BLR2) 10-40 tonne/hr, remainder of specifications
identical to Boiler 1.

Boiler 3 (BLR3) 5-20 tonne/hr, remainder of specifications
identical to Boiler 1.

Turbo Generator 1 (TG1) 2000kW maximum.
Turbo Generator 2 (TG2) 2000kW maximum.
Back Pressure Turbine 1 (BT1) 600kW rated, 60% isentropic efficiency, with

backup electric motor.
Back Pressure Turbine 2 (BT2) 200kW rated, 60% isentropic efficiency, with

backup electric motor.
BFW Pump (PMP) 47 bar outlet pressure, 70% isentropic effi-

ciency.
HP Steam User (HPU) 10MW duty based user, returns 80% of steam

as saturated condensate.
MP Steam User (MPU) 15MW duty based user, returns 60% of steam

as saturated condensate.
Deaerator 2 bar with 0.01 continuous vent ratio.
Make Up Water 4 bar, 40◦C.

In order to optimize this system, the utility model must be modelled again

within MATLAB. This is primarily due to the JSteam Excel Add-In not supporting

a second optimization layer over the nonlinear root-solver used to solve the system

recycle. However by using MATLAB we are also able to use OPTI and the solvers

supplied with it, so that a more detailed optimization study can be performed. An

example snippet of the resulting model in MATLAB is shown below

% MP-LP Desuperheater
LP_T = JStm.TPH(LP_P,LP_H);
[~,MPDsp_WM,MPDsp_SM,MPDsp_H] = JStm.UnitOp_DesuperheaterMout(MP_H,BFW_H,...

LP_P,LP_T,LP_Feed);
% Update LP H & Condensate H
LP_H = (MPDsp_H*LP_Feed+BT2_H*BT2_M+TG2_H*TG2_M+FVapH*FVapM)/(LP_Feed+...

BT2_M+TG2_M+FVapM);
Con_H = (FLiqH*FLiqM+(Drtr_CondM-FLiqM)*MU_H)/Drtr_CondM;
% MP Fixed Inputs
[~,BT1_M,BT1_H] = JStm.UnitOp_Turbine1Q(HP_H,HP_P,MP_P,BT1_Eff,BT1_Q*BT1);
[~,TG1_Q,TG1_H] = JStm.UnitOp_Turbine1M(HP_H,HP_P,MP_P,TG1_Eff(TG1_M),TG1_M);

noting that the model is not particularly legible nor easy to create. It is written in a

‘Sequential Modular’ form [35, 285] wherein the solving order of the unit operations
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Figure 6.4: Example 3 header utility system simulation model.
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is fixed by the sequential flow of process material. However once the model is created

and converged, it should return an identical solution to the JSteam Excel model,

given that they both rely on the same modelling strategy.

To converge a sequential modular model that includes recycle loops (of which

multiple loops are present in a utility system with a closed energy balance, as dis-

cussed in [71]), the model must be successively iterated until convergence criteria

has been met. This problem is posed mathematically as a system of nonlinear equa-

tions (or multivariable root solving), and is solved in Excel using the built-in Excel

Solver. However for the MATLAB model, a nonlinear root-solver must be imple-

mented deliberately by the user to solve each of the system recycles. For a typical

utility system the enthalpy of each header must be solved, as well as the enthalpy

of the condensate entering the deaerator and total mass flow of boiler feed water.

These variables were identified within our work constructing iUO and are described

further in [71]. For the example system, these 5 variables are solved in MATLAB

using either fsolve or an OPTI supplied nonlinear root solver, as detailed in Section

C.1.1.4.

An issue common to all sequential and non-sequential simulation packages with a

recycle solver (as opposed to equation based simulators such as gPROMS [257] and

others) is the availability of gradients, which, for a typical classical multi-variable

root solver, is a requirement. Most packages utilize finite-difference to obtain an

estimate of the derivatives, because the complex thermodynamics and interior model

iterations which would make deriving analytical derivatives virtually impossible.

However, while finite-difference is a simple method in practice, it can be an expensive

exercise.

To provide an example, converging the example 3 header utility system from Fig-

ure 6.4 using the Intel MKL nonlinear equation solver [148] requires just two solver

iterations, but this requires four function evaluations and two gradient evaluations.

Breaking these numbers down further, the model is actually called 24 times which

indicates each gradient evaluation requires 10 model calls. This can be very compu-

tationally expensive for larger models, especially considering we are only obtaining

an estimate of the actual derivatives.

6.3.1.1 Gradient-Based Optimizer Pitfalls

In practice, converging a simulation model with recycle is not an expensive exercise,

given the 3 header system only takes 30ms to solve on a standard laptop. The

problem is that solving the system recycle does not optimize the system, it only

converges the model to a physically realisable point. In order to find an operating
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point that improves the operational expenditure of the plant, the optimizer will need

to converge the recycle loops multiple times at each evaluation point, as chosen by

the optimizer. Furthermore, as we cannot obtain analytical gradients of either the

objective or constraints, we are once again left with finite difference approximations.

This last step is the source of the major disadvantage of using a gradient-based

optimizer with a simulation model that involves recycles; gradients of the optimizer

objective and constraints (i.e. the gradient and Jacobian functions) will use a finite

difference approxmation of the results of a multivariable root solver, which also uses

a finite-difference approximation for its solution. Figure 6.5 shows the situation in

a graphical form.

Figure 6.5: Gradient-based nonlinear optimization of a simulation model with re-
cycle. Dashed arrows indicate derivatives obtained via finite difference, while all
arrows indicate the calling hierarchy of each function.

Note that this situation requires the simulation model be evaluated for both the

optimization objective and constraints. This requirement is based on the implemen-

tation of equipment constraints such as maximum power output of a turbo-generator,

which requires the model to converge in order to determine the power output (due to
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for example, varying header enthalpies) and must therefore be modelled as general

nonlinear constraints.

The result of this formulation strategy is that not only does the simulation model

get called many more times and thus the optimization process takes longer, but also

due to inaccuracies within the method of obtaining derivatives, the optimizer is less

likely to converge to the optimal solution, or in some cases, to any solution at all.

6.3.2 Simulator Model Optimization Case-Study

To illustrate the issues described so far, this subsection will attempt to optimize the

base case of the utility model in Figure 6.4. The objective function we will minimize

is

J = Cfuel

3∑

n=1

Mfuel,Boilern + CwaterMwater − CelecWtotal (6.1)

where C represents a cost in dollars. The electricity cost is defined as

Celec =







Csell if Wtotal ≥ 0

Cbuy if Wtotal < 0
(6.2)

which models different electricity prices for buying and selling. The power balance

of the system is given by

Wtotal =
2∑

n=1

Wturbogenn
−

2∑

n=1

Wbptn (1− bn)−Wpump (6.3)

where Wturbogenn
is the output shaftwork of turbo generator n, Wbptn is the shaftwork

requirement of back pressure turbine n and where bn indicates whether the turbine

is connected (b = 1) or a redundant electric motor is used (b = 0).

In order to keep the system within operating limits, 6 nonlinear inequality con-

straints are implemented

Wturbogen1
≤ 2000kW

Wturbogen2
≤ 2000kW

Msteam,Boiler1 ≤ 60 tonne/hr

Msteam,Boiler2 ≤ 40 tonne/hr

Msteam,Boiler3 ≤ 20 tonne/hr

Msteam,HPvent ≥ 0 tonne/hr

(6.4)

254



where the only non-intuitive constraint is the HP vent constraint (the final con-

straint), which is required to ensure steam is not supplied via the vent to the header,

but rather supplied by the boilers. As discussed in the last subsection, both the ob-

jective function and the constraints require the simulator model to be evaluated in

order to obtain function outputs. By supplying a single mode argument to the sim-

ulator function, the function can be instructed to act as an objective and calculate

the cost, or constraints, and calculate the violations.

The final design choice for this optimization run is the selection of decision

variables. Table 6.2 lists the variables for this study together with their bounds

where the first two variables are the mass flows through the turbo generators, the

Table 6.2: Simulation model optimization variables.

Decision Variable Model Variable Lower Bound Upper Bound
Continuous x1 Mturbogen1

0 31.37 tonne/hr
x2 Mturbogen2

0 19.55 tonne/hr
x3 FBoiler1 0 1
x4 FBoiler2 0 1
x5 FBoiler3 0 1

Binary x6 bbpt1 0 1
x7 bbpt2 0 1

second three are the fraction of the steam demand supplied by each boiler and

the last two are binary variables which select whether the back pressure turbine is

connected. Given that this problem has only 7 decision variables (of which 5 will be

optimized as initially the binary variables will be fixed) and 6 constraints, it could

be expected to be quite simple. However, referencing back to the complexities in

Figure 6.5, the solution times will demonstrate this complexity.

Due to initially using a continuous optimizer, the binary variables associated

with the back pressure turbines will be fixed as bbpt1 = 1, bbpt2 = 0. Therefore the

optimization problem is to decide what is the optimal allocation of steam between

the boilers, and how much electricity should be generated from each turbogenerator,

in order to minimize operating cost. The initial condition for the optimization is

taken as the base-case operating point, as described in Figure 6.4. Solution times

for a range of solvers are shown below in Table 6.3. Details of the solvers used

can be found in Section C.1.1.6, except for fmincon which is a commercial general

nonlinear solver supplied with the MATLAB Optimization Toolbox.

Each solver obtained the same solution where turbo generator 1 was decreased

to 595.1kW, turbo generator 2 switched off and the boilers split with 21.7, 11.77 and

7.42 tonne/hr of steam generated for boilers 1, 2 and 3 respectively. However the
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Table 6.3: Continuous simulation model optimization results (gradient based
solvers).

Solver Cost ($/hr) Time Iters Obj Evals Grad Evals Sim Evals
IPOPT $1937.74 26.3s 29 109 30 29497
FILTERSD $1937.74 33.2s 2 82 43 37488
fmincon $1937.74 35.8s 15 36 - 39162

solution times between solvers varied, but more importantly were of a significant

magnitude given that this is a tiny nonlinear program. However due to the large

number of simulation evaluations, it is not surprising these times were recorded. As

reported by IPOPT, over 97% was spent within function evaluations, leaving the

small fraction remaining within the solver itself. It is results like these that validate

the considerable work that went into optimizing the speed of the underlying JSteam

thermodynamic routines, as described earlier in Section 5.3.1.1.

Taking an alternative approach and using a derivative-free solver, one can avoid

the need to calculate the derivatives of both the objective and constraints using

finite-difference. Using the OPTI Toolbox we are free to try one of the compatible

solvers without any changes to the optimization problem formulation. Results from

three derivative-free solvers are presented in Table 6.4, noting patternsearch is

another commercial algorithm but this time from the MATLAB Global Optimization

Toolbox.

Table 6.4: Continuous simulation model optimization results (derivative-free
solvers).

Solver Cost ($/hr) Time Iters Obj Evals Sim Evals
NOMAD $1896.34 33.1s 41 315 33248
NLOPT COBYLA $1937.74 12.2s - 123 12030
patternsearch $1937.74 44.0s 3 543 46266

Two interesting results are observed using derivative-free solvers: First that most

solvers so far have been falling into a local solution (as shown by NOMAD finding a

better solution), and second that a derivative-free solver can out-perform gradient

based solvers for these types of problems, in this case COBYLA which is supplied

with NLOPT. It is worth pointing out that the global solution to this problem is

$1866.34 (found using techniques in Section 7.3), which no solver, ‘global’ or local,

has yet found.

Pushing this problem further and enabling the back pressure turbine binary

variables, we can attempt to solve the problem as a MINLP. Now the nonlinear

optimizer in Figure 6.5 will be called multiple times as the branch and bound solver
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attempts to find the integer optimal solution. Table 6.5 shows the results when

solved with BONMIN, which as expected, finds a better solution than IPOPT’s

continuous solution by switching off both back pressure turbines.

Table 6.5: Integer simulation model optimization results.

Solver Cost ($/hr) Time Iters Obj Evals Grad Evals Sim Evals
BONMIN $1903.2 174s 0 - - 182059
NOMAD $1908.8 40.7s 33 356 - 40538

With respect to optimality of the MINLP solutions, we again find that neither

NOMAD nor BONMIN has found the global minimum of $1831.87. In fact NO-

MAD, which found the best solution in the continuous problem has now found a

worse solution in the discrete problem. This is an unfortunate result of the added

complexity that comes with mixed integer problems, together with the added de-

grees of freedom. In addition, BONMIN required tuning of multiple parameters in

order to solve this problem, many of which would be beyond a novice user’s abil-

ity to adequately set. Also note the computation times for all of these solvers are

substantial, which once again leads to the conclusion that straight optimizing of a

simulation model is neither efficient nor robust.

With regards to derivative-free solvers, these are not going to be pursued within

the remainder of this work because all the problems of interest will contain binary

constraints. The only derivative-free solvers that had a facility for binary constraints

(and were available for use) were NOMAD and a genetic algorithm solver supplied

with the MATLAB Global Optimization Toolbox, and both did not substantially

outperform the gradient based solvers. In addition, we were unlikely to improve on

these algorithms given that the underlying simulation model is already highly opti-

mized C++ code, so that other than using algorithmic heuristics, the optimization

process itself cannot be easily improved for the problems of interest. Furthermore,

as described in the next subsection, by exploiting the model structure we can obtain

exact derivatives and thus achieve much faster solution times using gradient based

solvers. Moreover, this technique results in a number of equality constraints of

which are not supported by either NOMAD or the genetic algorithm solver (typical

of derivative-free global optimization solvers).

6.3.3 Exploiting Model Structure

Two issues are evident given the optimization strategy used so far: The global opti-

mum has not been found, and secondly the time taken to solve for this suboptimal
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solution has taken far too long. Each of these issues will be tackled individually, with

Chapter 7 describing the method of proving a global optimum, and the remainder

of this chapter dealing with the speed problem.

As described in Section 6.3.1.1, the main issue with optimization of a simulation

model is that it is computationally expensive to find derivatives, and even then the

derivatives are likely only to be an approximation by finite-difference or similar. In

order to be able to obtain accurate derivatives quickly, the simulation model will need

to be ‘opened up’ and the underlying equations used to generate the derivatives via

one of the methods described in Section 6.2.4. The implication here is that JSteam

(and its thermodynamic engine) can no longer realistically be used, because it is

effectively a ‘black box’ with the internal model structure and equations ‘unknown’.

To open up a JSteam model involves re-implementing the basic model equations

from Section 5.3.3 within an environment that can then utilize (exploit) this extra

information to generate the derivatives. Furthermore, by writing out all model

equations for the system, it allows a range of solution techniques to be used to

either improve the solution, or aid finding it. To illustrate the process, consider the

desuperheater from Section 5.3.3.5 as shown in Figure 6.6.

Figure 6.6: Desuperheater with mass and enthalpy variables listed.

Writing out fundamental equations for the model results in two expressions: the

mass balance

m3 = m1 +m2 (6.5)

and the energy balance

m3h3 = m1h1 +m2h2 (6.6)

Writing both these equations as standard optimization constraints

m1 +m2 −m3 = 0 (6.7)

m1h1 +m2h2 −m3h3 = 0 (6.8)

we can begin to develop an equation based model (termed equation or optimizer

model from here on). This model of the desuperheater returns the same solution
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as the JSteam model. Now however we are not limited to supplying certain inputs

and calculating certain outputs, rather the model works for any set of arguments

provided the degrees of freedom are met.

To implement the above model and solve it with an optimizer, a fundamental

shift in modelling paradigm is required. First of all, the model above currently has

six decision variables, given that enthalpy and mass flow of each stream is allowed

to vary. Compared with the simulation model optimization problem in the last

section, which only had 7 decision variables for the entire MINLP formulation, the

desuperheater by itself already has 6 variables. Clearly this modelling strategy is

going to substantially increase both the number decision variables, and the number

of constraints. Generally this is ill-advised, as larger problems can take exponentially

longer to solve. However, as will be shown later in this chapter, this is actually the

key to obtaining an optimal solution much faster.

Looking at a larger modelling example, Figure 6.7 shows a section of a hypo-

thetical utility system. Within the Figure the model has been labelled as per the

Figure 6.7: Desuperheater with mass and enthalpy variables listed.

optimization variables that will exist in the equation based model. By intelligently

selecting the decision variables, it is possible to reduce the number required. Within

this model the following hand optimizations have been performed:

• Both turbo generators (TG1) and back pressure turbines (BT1) are assumed

to be lossless in terms of steam, thus only one mass flow variable is required

through the turbine.

• The boiler feed water is assumed to be of constant enthalpy, given that the

pump model within this work assumes a constant isentropic efficiency. This

reduces the enthalpy decision variables because it is replaced by a constant.

• The boiler steam temperature and pressure are assumed constant thus their

output enthalpy can also be modelled as a constant.
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While further optimizations could be performed, such as m1 being written as

a function of m10 (given we know the blowdown ratio of the boiler), or applying a

similar approach to the HP User, the remaining variables are chosen in order to keep

the model readable. Note in the above example h2 is the enthalpy of the HP header,

while h9 is the enthalpy of the MP header. In this example, the HP header enthalpy

will be fixed at the boiler output enthalpy, but it remains a variable because it is

common to have multiple inlets at different enthalpies in a real example.

Given the constants and variables identified, the mass and energy balance equa-

tions for the HP header can be written as

m1 −m2 −m3 −m4 −m5 −m6 = 0 (6.9)

m1hblr − h2 (m2 +m3 +m4 +m5 +m6) = 0 (6.10)

noting again the mass balance is linear, while the energy balance is bilinear. This

bilinear equation is particularly difficult in that it is non-convex, which can be shown

by examining the eigenvalues of the Hessian of the energy balance equation

eig
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(6.11)

which shows a saddle point because it is an indefinite matrix. This feature, combined

with being an equality constraint, infers that we are now solving a non-convex

problem which, depending on other constraints, will exhibit multiple minima.

With the added constraints resulting from the system mass and energy balances,

the optimizer now has two roles: To find a set of mass flows and enthalpies (the

decision variables) that satisfy the constraints (i.e. acting as a nonlinear root solver),

and working as a nonlinear optimizer, to select the available degrees of freedom

which minimizes a supplied cost function. In this way there does not have to be n

equations and n unknowns (i.e. a square system), because by being underdetermined

the optimizer has ‘room to move’ and thus optimize the operating point of the model.

The catch is that the model must still be suitably constrained so that the problem

is not unbounded, as well as requiring a good initial guess of all variables.
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6.3.3.1 Initial Solution Guess

A common problem with the equation based modelling approach is the requirement

of a feasible, or at least realistic, initial solution guess (optimizer starting point).

Given the equation model will contain many more decision variables, a number of

which are intermediate flows and duties, to start with a vector of 0 is unlikely to

converge, or at least it will take longer to solve. This problem was well known in

the early days of equation orientated simulators, as Westerberg said in [328] with

respect to variable initialization “we believe this step must be done with extreme

care, as doing it poorly can often lead to no chance to solve the problem even though

a solution exists”.

Modern equation based simulators such as gPROMS have a robust initialization

procedure, which as described during a plenary at FOCAPO 2012, can actually

take significantly longer than the solution itself. For this work a simple approach

is available, given that we already have a sequential simulator model. The initial

solution guess for the optimizer can be taken directly from the results of the simulator

model, which typically provides a point that is either feasible, or very nearly feasible

within the approximated equation model.

6.3.4 Integrating Purpose-Built Unit Operation Approxi-

mations

For simple unit operations such as a desuperheater or deaerator, the required mass

and energy balance constraints are easily obtained by inspection. Together with the

other required unit operations (headers, steam users), the fundamental equations

that describe the steam side of a utility system are relatively easy to derive. However

the relationships that describe the required fuel flow for a boiler or gas turbine cannot

be described as easily.

To illustrate, consider the steam boiler shown in Figure 6.8. While the mass

Figure 6.8: Steam boiler unit operation.

and energy balance of the steam side can be simply described by the steam boiler
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model equations in Section 5.3.3.1, the equations governing the combustion thus

consumption of fuel and air, together with stack constraints, are too complex if we

were to follow the furnace model in Section 5.3.5.1.

To overcome this, the detailed models developed at the end of Chapter 5 can

be substituted for the JSteam models within the optimizer model. In this way the

unit operation equations for the fuel-gas side are approximated by simple equations,

while the underlying regression coefficients are based on both literature, plant data

and JSteam models (for thermodynamic values and operational specifications). Fur-

thermore, as the energy balance of the fuel-gas side is only of interest in calculating

the required fuel consumption, it does not have to be explicitly calculated if we

approximate the solution using properties of the steam side and a regression which

implicitly takes into account this energy balance. This allows the unit operation

equations to be reduced to just a mass balance and relationship of duty/fuel to

mass flow, which in most cases is linear.

Taking for example the detailed steam boiler model in Section 5.5.2, the final

relationship between steam production and fuel gas consumption is linear, even

with a varying efficiency, so that optimization of this model is much simpler than a

detailed JSteam black box model. Note the JSteam unit operation model and the

approximation of the detailed unit operation will calculate the same result if both

use the same efficiency correlations and input data, therefore simplifying validation.

Completing the steam boiler example, the following two linear equations com-

pletely describe the unit operation for the purposes of optimization (ignoring steam

production limits for now)

Mfuel = λ+ γMsteam (6.12)

MBFW − (1 + FBD)Msteam = 0 (6.13)

where the first equation is used in the objective function (noting λ and γ are re-

gressed coefficients as detailed in 5.5.2) and the second equation is the mass balance

constraint for the unit.

Further details of the implementation of unit operations with regressed coeffi-

cients are described in Section 6.5.2.

6.3.5 Linear Approximations

A common approach amongst literature within the utility system optimization field

[5, 134, 149, 197, 213] is the reduction of the optimization problem to a set of
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linear constraints which are then solved as a mixed integer linear program. While

admittedly many of these papers are solving a synthesis problem (the design of a

new utility system or evaluating retrofit options), which may be much larger, they

all essentially take the same approach to linearization by fixing the steam header

enthalpy. Revisiting the energy balance equation from Section 6.3.3

m1hblr − h2 (m2 +m3 +m4 +m5 +m6) = 0 (6.14)

shows that by setting both hblr and h2 as constants, the energy balance equation

results in a linear expression. By applying a similar method across the energy

balance equations for the rest of the model, together with further approximations

(such as piecewise-linear), the entire model can be reduced to a MILP. While an

MILP is attractive for optimization purposes, it does not accurately represent header

temperature within the model, which an operator familiar with the ‘steam hammer’

effect (described well in [311]), knows that condensing steam within headers can

cause major problems and that it is important that header enthalpy should be

accurately modelled.

Varbanov et al [315] proposed a solution to this problem by successively solving

a series of MILPs and rigorous simulations. As shown in Figure 6.9, after each

MILP optimization a rigorous nonlinear simulation was run, and the change in

header and turbine enthalpies compared. The process was repeated until satisfactory

convergence was reached, which according to the author, was typically around 5

iterations.

Figure 6.9: Successive MILP method (Figure 21 in [315]).
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A point made in [315] was that “... the resulting optimization formulations would

be mixed integer non-linear programs (MINLPs). This usually leads to computation

problems, inherent to the currently available MINLP solution algorithms.”, so the

reasoning for applying the successive MILP approach. However it is now close to

10 years later, and the algorithms for solving MINLPs have matured to the point

where they are both fast, robust and can guarantee global optimum, if required. For

example, the solver BONMIN has been available in the open-source community for

over 7 years, and continues to be in active development by a range of world experts in

discrete optimization. Therefore by using today’s technology it is possible to avoid

this linearization step, or a successive approach, and solve the full MINLP directly,

and still obtain competitive, if not more accurate results. It is for this reason that

this work is concerned only with nonlinear optimization.

6.3.6 Discrete Nonlinear Optimization

When optimizing the operation of a utility system, whether this be a simulator model

or optimizer model, there are two methods of solving the problem. The first method

uses a standard nonlinear optimizer, such as IPOPT or MATLAB’s fmincon, which

solves the continuous optimization problem. For this problem, decisions such as

whether a unit should be turned on, or switched to a particular state, are not made

by the optimizer, but rather fixed by the user. An example of a decision is the

ability to select whether to use steam (via a back pressure turbine) or electricity to

drive fixed loads.

The second method employs state-of-the-art optimizers such as BONMIN to

solve a discrete optimization problem. A discrete optimizer can solve problems with

binary and integer constraints, and thus take control of back pressure turbines and

other units in order to find the optimum. This method provides a much more auto-

mated approach to optimization of a utility system, where, apart from operational

constraints and current prices and demands, the optimizer has full control over the

solution process. As shown in both Section 6.3.2 and our work in [70], the dis-

crete optimizer has a greater chance of finding the optimum solution given the extra

degrees of freedom, and is therefore the preferred approach.

In addition to better optimization potential, utilizing binary variables allows the

optimization model to include common operational constraints such as minimum

turn-downs, fixed costs and other simple logical constraints. These allow the model

to better represent actual operation and thus aid the optimizer to find physically re-

alisable results. The following section details common binary and logical constraints

that are used within this work.

264



A final note most likely obvious to the reader, is that a discrete optimization

solver is much more complex and computationally intensive, and thus can require a

longer time to solve. However by exploiting the model structure as described so far,

as well as avoiding binary variable ‘bad practices’ (e.g. unnecessarily multiplying

binary variables with continuous ones), the addition of binary and integer constraints

does not substantially impact solution time for our problems.

6.4 Discrete Constraints Common In Utility Sys-

tems

As already identified in Section 5.2.3, utility systems are discrete in nature and

therefore the optimization of a utility system inherently requires discrete variables.

Furthermore, to efficiently model logical operational constraints common in utility

systems, binary variables should be utilized. The techniques described in this section

have been derived from the informative AIMMS modelling guide [37], which provides

a clear tutorial for new users of integer programming.

6.4.1 Equipment Selection Problem

One of the most common opportunities for economic savings within a utility system

is to exploit the redundancy in many fixed mechanical loads. These loads include

equipment such as compressors, fans, pumps and other process requirements where

mechanical shaft work can be utilized. Part of the design of a utility system includes

both steam turbines sized to drive these loads, but also redundant electric motors

which can be switched in when starting the plant, if the turbine were to fail or if

economically attractive. This provides an opportunity to exploit a binary decision

on which driver to use, based on factors such as fuel and electricity prices, as shown

in Figure 6.10.

This situation can be modelled using a single binary variable, bbpt, and single

linear constraint

Wshaftworkbbpt − ηMsteam∆Hisen = 0 (6.15)

whereWshaftwork is the required mechanical shaftwork (in this example it is constant).

When bbpt is 1 (on), the steam turbine is connected, and when 0, the electric motor

is used. The utility model mass and energy balance will automatically take care of

the situation when the steam turbine is connected, but a modification to the power
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Figure 6.10: Equipment selection via binary variables.

balance is required to account for the use of the electric motor

Welec = Wshaftwork (1− bbpt) (6.16)

The above equation adds the shaft work to the electricity requirement of the site

when the steam turbine is disconnected, so this needs to be included in the objective

economic calculation.

Using this modelling strategy requires only one binary variable per steam turbine,

and within this work, only for back pressure turbines connected to a fixed load.

Turbo generators are modelled differently due to a varying load, however a similar

approach can be taken and is described in Section C.2.2.6.

6.4.2 Logical Operating Constraints

Logical constraints which involve situations such as either-or, conditional or fixed

cost are powerful methods which when implemented correctly, can add realistic op-

erating constraints to the optimizer model. Taking the steam boiler as an example,

there are two common constraints associated with its operation which can be de-

scribed as a piecewise function

Msteam =







0 if (Boiler is Shutdown)

Mmin ≤ Msteam ≤ Mmax if (Boiler is Running)
(6.17)

As described by this expression, when the boiler is operational it has both minimum

and maximum steam production limits, but when turned off it must produce no

steam. When viewed as a relationship between steam production and fuel consump-

tion, as shown graphically in Figure 6.11, a discontinuous function results.

In order to model this function without introducing ‘if’ statements, either-or
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Figure 6.11: Steam boiler discontinuous fuel flow function.

constraints from Section 7.3 of [37] can be used. By introducing a binary variable

to represent whether the boiler is running (1) or shutdown (0), the logical condition

of only one constraint being active is enforced. When the boiler is shutdown, the

first case in Equation 6.17 states the steam mass flow must equal 0. To implement

this, we replace it with an inequality of the form

a1x ≤ b1 +Mbigy (6.18)

where a1 and b1 are linear inequality coefficients, x is the continuous decision vari-

able, y is the binary variable and Mbig is a ‘big M’ constraint set so a1x is always less

than b1 +Mbig. Written with respect to the steam boiler, this constraint becomes

Msteam ≤ Mbigy (6.19)

where we have set a1 = 1 and b1 = 0. When the boiler is off (y = 0), this constraint

forces the steam production to less than or equal to 0 (a further lower bound on the

Msteam decision variable keeps it at 0), while when on, the constraint is non-binding

(has no effect) when Mbig is set as greater than Msteam(max).

When the boiler is running, a second constraint ensures that the steam produc-

tion is above the minimum turndown (noting the coefficient signs are flipped as this

is a ≥ constraint)

−a2x ≤ −b2 +Mbig (1− y) (6.20)
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Again written with respect to the boiler

−Msteam ≤ −Msteam(min) +Mbig (1− y) (6.21)

the coefficient a2 = 1 and b2 is set as the minimum turndown. With this constraint,

when the boiler is off, we see the constraint is non-binding due to the big M value.

However when the boiler is on, it enforces the minimum mass flow. Similar to the

first constraint, the maximum mass flow is set as a variable bound on Msteam.

This method of using either-or constraints is used within the turbo generator,

gas turbine, HRSG and boiler models, and therefore a binary variable is required

for each of these units.

6.4.3 Piecewise Linear Approximations

In our early work on the optimization of these systems, [70] we investigated the

opportunity of keeping the entire model formulation linear. In order to do this,

nonlinear expressions had to be converted to linear approximations. Taking the

output enthalpy of a steam turbine as an example, Figure 6.12 shows an ‘optimal’

piecewise linear approximation of the nonlinear response.

2 2.5 3 3.5 4 4.5 5 5.5 6
2930

2940

2950

2960

2970

2980

2990

3000

3010

3020

Mass Flow [kg/s]

O
ut

pu
t E

nt
ha

lp
y 

[k
J/

kg
]

Piecewise Linear Fit SSE: 29.671

Figure 6.12: Piecewise linear fit to output enthalpy of a variable efficiency steam
turbine.

Using a nonlinear least squares optimizer, each red dot indicates the start/end

of a linear segment chosen by the solution to an optimization problem setup to
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minimize the sum of squared errors. The number of segments is set by the user, and

once their location has been optimized, a custom routine automatically generates

the required Type 2 Special Ordered Set (SOS) (see Section 7.6 in [37]) and equality

constraints required to implement the approximation within a MILP.

It is worth noting that this approach can only be applied to separable nonlinear

functions (i.e. functions without products or ratios of variables), and that each dot

in Figure 6.12 effectively requires a binary variable. In practice however, modern

solvers have a facility for treating SOS separately so that an explicit binary for-

mulation by the user is not required. For the purposes of this work, the piecewise

linear approximation is not useful, beacuse most functions are not separable given

they involve the product of mass and enthalpy, and therefore cannot be modelled

without further linear approximations (such as described in Section 6.3.5). However

the functionality remains built-in for future work.

6.4.4 Modelling Power Usage

The final discrete constraint required for modelling utility systems is when calcu-

lating the cost of buying or selling electricity. As described further on in Section

C.2.2.10, it is expected that the prices for buying and selling electricity will be dif-

ferent, and so the objective function must be able to accommodate the price change

as a function of the power balance (i.e. whether we are importing or exporting

electricity).

To model this scenario a binary variable is introduced to describe whether the

power balance is positive (selling power, binary 0), or negative (buying power, binary

1). Using the big M strategy together with either-or constraints, as described in the

logical operating constraints section, the binary variable is used to modify the cost

constants in the objective. Further details, including implementation, are described

in Section C.2.2.10.

6.5 SymBuilder Framework

As detailed earlier in Section 6.3.1.1, the issue of obtaining accurate gradients of

a utility system simulation model is impossible using the normal method via fi-

nite difference. However by explicitly writing out the mass and energy balances,

as described in Section 6.3.3, it is much easier to obtain derivatives. To automate

the process of obtaining derivatives of these explicit models, we developed the Sym-

Builder framework, a MATLAB framework built on the Symbolic Toolbox which was
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added to OPTI in June 2012. As with OPTI, it is an object-orientated framework

which uses a single object to pose an optimization problem. Given the requirement

to use the Symbolic Toolbox, the optimization problem is entered into MATLAB as

a series of strings, whilst also using methods to indicate their functionality within

the problem description. Repeating the linear programming example from Section

6.2.3.1, one would build it in SymBuilder as

%Create a Blank SymBuilder Object
B = SymBuilder();
%Add Objective
B.AddObj(‘-6*x1 - 5*x2’);
%Add Constraints
B.AddCon(‘x1 + 4*x2 <= 16’);
B.AddCon(‘6*x1 + 4*x2 <= 28’);
B.AddCon(‘2*x1 - 5*x2 <= 6’);
B.AddBound(‘0 <= x <= 10’);

where at each declaration the object stores the string within a class property, keeping

note of whether it were an objective, constraint, bound or other declaration. Once

the problem definition has been entered, the object is then ‘built’ using

>> Build(B)

Generating Symbolic Representation of Equations...Done
Generating Symbolic Jacobian...Done
Generating Symbolic Hessian...Done

SymBuilder Object
BUILT in 0.024s with:
- 2 variables
- 1 objective

- 1 linear
- 0 quadratic
- 0 nonlinear

- 3 constraint(s)
- 3 linear
- 0 quadratic
- 0 nonlinear

- 4 bound(s)
- 0 integer variables(s)

which, as per the status messages printed, turns the user entered strings into a sys-

tem of symbolic equations, and generates the system derivatives. From the deriva-

tive information, the object can then determine whether each equation is linear,

quadratic or nonlinear, and thus what type of problem has been entered. To solve

the problem the Solve method is called

>> Solve(B)
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which internally generates an OPTI object, then solves it. For linear and quadratic

problems the process of turning a SymBuilder object into an OPTI problem is very

quick, because all problem information is stored as numeric data in matrices. For

nonlinear problems this process is quite different. Consider the Hock & Schittkowski

nonlinear test problem #71 [322]

minx x1x4 (x1 + x2 + x3) + x3

subject to: x1x2x3x4 ≥ 25

x2
1 + x2

2 + x2
3 + x2

4 = 40

1 ≤ x ≤ 5

which is then entered into SymBuilder using the following script

B = SymBuilder();
% Add Objective
B.AddObj(‘x1*x4*(x1 + x2 + x3) + x3’);
% Add Constraints
B.AddCon(‘x1*x2*x3*x4 >= 25’);
B.AddCon(‘x1^2 + x2^2 + x3^2 + x4^2 = 40’);
% Add Bounds
B.AddBound(‘1 <= x <= 5’);

When Build is called on the object, the output below is printed

SymBuilder Object
BUILT in 0.028s with:
- 4 variables
- 1 objective

- 0 linear
- 0 quadratic
- 1 nonlinear

- 2 constraint(s)
- 0 linear
- 1 quadratic
- 1 nonlinear

- 8 bound(s)
- 0 integer variables(s)

illustrating SymBuilder has correctly processed our problem with a nonlinear ob-

jective, single nonlinear constraint and single quadratic constraint. As this is a

nonlinear problem, numeric data cannot be used to describe it and functions must

therefore be generated. If we request to view the OPTI object, we can access the

object details

>> GetOPTI(B)
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Generating Objective & Gradient....Done
Generating Hessian....Done
Generating Constraints & Jacobian....Done

Nonlinear Program (NLP) Optimization
min f(x)
s.t. lb <= x <= ub

cl <= c(x) <= cu
------------------------------------------------------

Problem Properties:
# Decision Variables: 4
# Constraints: 10

# Bounds: 8
# Nonlinear Inequality: 1
# Nonlinear Equality: 1

------------------------------------------------------
Solver Parameters:

Solver: IPOPT
Objective Gradient: symb_grad
Constraint Jacobian: symb_nljac
Jacobian Structure: Supplied
Lagrangian Hessian: symb_hess
Hessian Structure: Supplied

and it can be seen that SymBuilder has constructed functions for not only the

objective and constraints, but also for the gradient, Jacobian and Hessian, as well

as both required sparsity patterns. As per design, SymBuilder writes MATLAB

function files containing the nonlinear function callbacks, as shown for the Hessian

of this problem below:

function H = symb_hess(x,sigma,lambda)
% SYMB_HESS
%
% Hessian of the Lagrangian Callback

% Symbolic Builder Auto-Generated Callback Function
% Generated 09-Nov-2013 22:44:10

% Preallocate
H = spalloc(4,4,10);

% Sparse Matrix:
H(1,1) = 2*lambda(2) + 2*sigma*x(4);
H(2,1) = sigma*x(4) + lambda(1)*x(3)*x(4);
H(3,1) = sigma*x(4) + lambda(1)*x(2)*x(4);
H(4,1) = sigma*(2*x(1) + x(2) + x(3)) + lambda(1)*x(2)*x(3);
H(2,2) = 2*lambda(2);
H(3,2) = lambda(1)*x(1)*x(4);
H(4,2) = sigma*x(1) + lambda(1)*x(1)*x(3);
H(3,3) = 2*lambda(2);
H(4,3) = sigma*x(1) + lambda(1)*x(1)*x(2);
H(4,4) = 2*lambda(2);
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The decision to auto-generate MATLAB functions is based on being able to exploit

efficient sparse descriptions within the language, as viewed above, as well as giving

MATLAB the opportunity to optimize the code further during its Just-In-Time

(JIT) compilation phase. In addition, it allows the user to view the derivative

functions and run them as a normal MATLAB function which could be useful, for

example, during sensitivity analysis or validation.

This technique is sufficient for problems up to a few hundred variables and con-

straints, which is common within this work, however larger problems quickly increase

in size. For larger problems we have experimented with auto-generating C files to

contain the function callbacks which are then compiled into a single callback func-

tion. While this technique requires a longer time initially, function execution times

can be substantially reduced, and there is scope for parallelizing the work. This is

currently a work in progress.

6.5.1 Comparison with Other Algebraic Modelling Packages

The reader at this point will have noticed that SymBuilder appears to have rein-

vented the wheel when compared to packages such as GAMS and AMPL. The rea-

sons why we have developed this functionality are detailed below, including major

differences in the design philosophy between these packages.

Single Package Design By developing SymBuilder within MATLAB the user has

the ability to build and define optimization problems using standard MAT-

LAB syntax, then generate the required expressions as strings using standard

MATLAB syntax (detailed in the next subsection). In addition, this allows

the full use of domain specific routines within the problem formulation, such as

the JSteam thermodynamic routines and curve fitting routines to generate the

required approximated models. This is opposed to a technique such as in [46]

whereby an external software package is used to describe the problem, which

then generates a GAMS model, and then extracts the results back. Leveraging

SymBuilder, OPTI and JSteam all within MATLAB means the problem can

be posed, solved and inspected all within MATLAB.

Symbolic Simplification Using a symbolic modelling engine allows the model to

be symbolically simplified once it is created, reducing unnecessary terms and

optimizing the code performance. For example, setting a variable to a constant

value of 0 will automatically remove any associated equations from the model

which are not required.

Code Optimization As detailed in the previous subsection, all nonlinear callback
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functions are auto-generated as MATLAB function files. The aim is that

the MATLAB JIT compiler will then optimize these files, leveraging threaded

linear algebra and element-wise routines for faster execution.

Derivative Complexity For the problems of interest in this work, the first and

second derivative analytical functions are not especially complex or dense, and

can therefore be described succinctly in MATLAB functions. It is acknowl-

edged that for complex and dense derivative functions, automatic differentia-

tion as used by alternative packages would be a better option.

Inspection and Validation of Results One of the major advantages of MAT-

LAB is the ability to inspect and visualize data easily, either by simply print-

ing it to the command window or by plotting it in an intelligent fashion.

As optimization problems often contain hundreds to thousands of variables,

inspecting the result by scrolling through each element one by one is time con-

suming and error-prone. On the other hand validation against a simulation

model also built in MATLAB is quick and easy. Furthermore, results can be

automatically propagated to a JSteam Excel model if required.

6.5.2 Modelling Utility Systems using SymBuilder

Building utility models with explicit mass and energy balance equations within

SymBuilder is simple, given the natural handling of variables and mathematical

equations. For example, consider the desuperheater example from Section 6.3.3

(Figure 6.6). From standard mass and energy balances, this model can be entered

into SymBuilder as

% Mass Balance
B.AddCon(‘m1 + m2 - m3 = 0’);
% Energy Balance
B.AddCon(‘m1*h1 + m2*h2 - m3*h3 = 0’);

noting the variable name convention m for mass flow and h for enthalpy. This allows

us to provide a set of global variable bounds (effectively vectorized) such as

B.AddBound(‘0 <= m <= 100’);
B.AddBound(‘0 <= h <= 800’);

which can then be further customized for each unit. These two lines provide a simple

mechanism to bound all optimizer variables within sensible limits (i.e. no negative

mass flows or enthalpies), without tediously assigning bounds to each variable.
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It is acknowledged that this method of entering the mass and energy balances

of a model is ‘slow-going’, however even an industrial utility model does not require

more than 50 simple linear or bilinear mass and energy balance equations, all of

which can be read directly from a PFD. These manual equations are predominantly

used to describe simple units such desuperheaters, steam header balances, mixers

and splitters. For more complex units which involve regressed models, a derived class

(SymUtility) has been written which extends the functionality of the SymBuilder

class to modelling steam turbines, boilers, gas turbines and other units. Each of the

methods implemented is described in Section C.2.2.

6.6 Utility System Case Studies

To illustrate the effectiveness of the proposed combined SymBuilder and JSteam ap-

proach to building and optimizing utility systems, three case studies are presented.

Each case study will present a base-case operating scenario, then examine opti-

mization opportunities over a range of hypothetical operating conditions. Where

possible, comparisons are made with literature, however this is not always possible,

given the multitude of specifications required (and often not listed in entirety within

Journal papers) and variations in modelling approach.

6.6.1 Three Header Hypothetical System

The hypothetical three header system is a simple utility system designed to demon-

strate the ease of optimization within the SymBuilder framework. This model is the

same as described in Section 6.3.1, but this time will be optimized by exploiting the

model structure within SymBuilder. The model, including optimization variables,

is shown in Figure 6.13.

The base-case operating point splits the steam demand equally between the three

boilers, as well as using both turbo generators to generate excess electricity to sell

back to the grid. As the LP header is already venting steam, BT2 is switched off.

Following the stream names as set out in Figure 6.13, the model is entered into

a SymBuilder object. For a listing of the model code, including mass and energy

equations, see Section C.3.1. Once built, SymBuilder reports the following model

statistics

SymBuilder Object
BUILT in 0.785s with:
- 46 variables
- 1 objective
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Figure 6.13: Hypothetical 3 header model with base case operating data
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- 0 linear
- 0 quadratic
- 1 nonlinear

- 45 constraint(s)
- 28 linear
- 13 quadratic
- 4 nonlinear

- 92 bound(s)
- 8 integer variables(s)

- 0 integer
- 8 binary

which as expected, results in a Mixed Integer Nonlinear Program (MINLP). The 46

variables consist of the 33 modelled mass flows, 5 mixer/header enthalpies, 7 binary

variables for each piece of equipment and 1 binary variable for the power balance

calculation. Linear constraints result from mass balances and linear model approxi-

mations, while quadratic constraints result from energy balances and bilinear model

approximations. The nonlinear constraints result from energy balances around the

lower two headers, as well as from the duty expressions for each of the steam users.

Finally, the nonlinear objective is a result of multilinear expressions which result

from calculating the power balance. It should be noted that further approximations

could be made to reduce the problem to a MIQCQP, however as shown below, the

results of this formulation are quite sufficient.

In addition to optimizing the base case, three further operational points are used

to validate the model and optimization results. In total, the four operational points

are shown in Table 6.6. The three cases explore opportunities where electricity pric-

ing becomes very attractive to export electricity, as well as when increased process

demands require more steam from the utility system. The final case combines both

higher electricity prices and increased demands to drive the system to its design

limit.

Table 6.6: Hypothetical 3 header model optimization cases.

Base Case Case 1 Case 2 Case 3
Electricity Price (Buy) $0.27 $1.50 $0.27 $1.50
Electricity Price (Sell) $0.20 $2.50 $0.20 $2.50
HP User Demand 10 MW 10 MW 20 MW 20MW
MP User Demand 15 MW 15 MW 25 MW 45MW

Each case is formulated in SymBuilder using SymUtility models, and the result-

ing optimization problems are minimzed using the free, open-source solver BONMIN

and the outer-approximation algorithm [88, 97]. Table 6.7 lists the results for each

of the cases together with key operating variables within the system. The build time

includes both the symbolic generation of the derivatives, as well as the generation
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of the MATLAB callback functions, while ‘nodes’ refers to the number of solving

nodes (not iterations) searched by the mixed integer solver.

Table 6.7: Hypothetical 3 header model optimization results.

Base Case Case 1 Case 2 Case 3
Starting Cost $2299.7 $-452.22 $3580.2 $2509.7
Optimized Cost $1831.9 $-5889.5 $3204.8 $-1982.6
Build Time 4.6s 4.6s 4.5s 4.6s
Solve Time 0.11s 0.1s 0.09s 0.1s
Nodes 0 0 0 0
TG1 W 1460.5 kW 2000 kW 1868.9 kW 2000 kW
TG2 W (Off) 2000 kW (Off) 1493.8 kW
BT1 M (Off) 10.9 T/h 10.9 T/h 10.9 T/h
BT2 M (Off) 5.4 T/h (Off) (Off)
BLR1 M (Off) 59.4 T/h 56.8 T/h 60 T/h
BLR2 M 30 T/h (Off) (Off) 40 T/h
BLR3 M 11.3 T/h 19.5 T/h 17.7 T/h 20 T/h

As can be seen, the key results viewable are the solution times for this model,

noting the average solve time is only 100ms, even for a MINLP with 45 constraints

and 46 variables, of which 8 are binary. This impressive solution time is common

across all cases, and when compared to the simulator model optimized in Section

6.3.2 (the same utility system), we see a speed up of over 1500x and an improved

optimized result. The large speed up is due primarily to the fact that now the non-

linear functions do not require a root solver, but rather are described using algebraic

relationships only. Moreover, by using an algebraic model, the derivatives are much

easier (and more accurate) to obtain, even if approximated by finite difference. Ta-

ble 6.8 shows a comparison of solution and model generation times with varying

degrees of analytical derivatives.

Table 6.8: Hypothetical 3 header model optimization results (derivative compari-
son).

Base Case Base Case1 Base Case2

Optimized Cost $1831.9 $1831.9 $1831.9
Build Time 4.6s 3.1s 2.9s
Solve Time 0.11s 0.13s 0.32s
Nodes 0 0 0

1 No Analytical Second Derivatives
2 No Analytical First or Second Derivatives

Another benefit of the algebraic model is the ability to determine a-priori the

sparsity structure of the model derivatives. As shown in Figure 6.14, these are
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significantly sparse with the Jacobian only 8.3% dense and the Hessian 1.6%. By

utilizing this information, the sparse linear solver (in this case the Harwell MA57

routine [87]) is not only more efficient in terms of memory, but is also faster due

to being able to factorize and solve exploiting the sparsity pattern. Note the Hes-

sian pattern, being symmetric, is displayed as lower triangular only (following the

IPOPT/BONMIN convention).
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Figure 6.14: Hypothetical 3 header model sparsity patterns.

Comparing the results of the optimized model with the simulator model for

Case 3, the optimizer model returns $-1982.58 while the simulator model returns

$-1982.55 for the same operating point. Similar differences in the range of a few

cents can been seen across the other cases, indicating the approximated equation-

based model matches very closely to the rigorous simulation model over a range

of operating points. To visualize the optimized solution, the results for Case 3 are

exported to the JSteam Excel model, and can be viewed in Figure 6.15. Comparing

the LP header temperature to the base case in Figure 6.13, we see the temperature

has dropped by over 30◦C. This demonstrates that an approximation which fixes

the header enthalpy would not be accurate.

6.6.2 Four-Header Hypothetical System

The hypothetical four header system is based on the superstructure described by

Bruno and Grossman in [46], noting that it was originally proposed in [242]. Both

articles are concerned with the optimal synthesis (i.e. grass-root design) of utility
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Figure 6.15: Hypothetical 3 header model with case 3 optimized data.
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systems for specific heating, mechanical and electrical loads, so the results cannot be

directly compared with this work. However the superstructure and resulting utility

models provide a realistic platform that can be compared for optimal operation.

The four headers of the system are at 45, 17, 4.5 and 0.2 bar for the HP, MP, LP

and VLP headers respectively.

To enable a comparative study, the system superstructure has been fixed to the

configuration shown in Figure 6.16. This configuration allows examples 1,1b,2 and

3 within [46] to be implemented and the optimal operation compared. For each

example, the heating, mechanical and electrical demands are changed, however a

common set of operating conditions are detailed in Table 6.9. Note that there are a

number of assumptions in these examples which are not realistic, but are modelled

for the sake of comparison with the original work. These include:

• 100% of the available duty within the steam consumed by a process user is

available for use, inferring condensate is returned at 0 kJ/kg. While this is

modelled in order to match the mass flow, the condenser header is set at 1.43

bar, 110◦C as per the original paper. Note however that this is a broken energy

balance.

• 100% of the steam consumed by a process user is returned as condensate,

which is unrealistic in practice for all steam users.

• 100% of the available waste heat duty can be used to generate steam.

There are also a number of differences that will not be modelled in the same

manner within this work, as described below:

• The cooling water circuit is not modelled explicitly, however the power required

by the cooling water pumps (as reported by the reference) is included in the

power balance.

• Fans for forcing air into the boilers are not modelled, however as above, the

power required is included in the power balance.

• Variable efficiency models (as described in Chapter 5) are used in place of

models such as turbo generators and boilers within the original reference.

This means these units will report different operating conditions, such as fuel

required by boilers.

In order to compare the solution from this work with the optimal solutions re-

ported in [46], four examples are set up and solved based on the superstructure in
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Figure 6.16. For each example, specifications in the SymUtility model are modified

to match the reference (such as turbine shaft work and efficiency), also units not con-

nected are disabled (such as turbines not required for the specified utility demands).

The resulting SymUtility model is then optimized using techniques described in this

chapter, and the resulting operating point compared against the optimal solution

within the original reference.

Table 6.9: Hypothetical 4 header model equipment operating conditions.

HP Boiler (BLRH) 15-150 tonne/hr of 369◦C steam at 45 bar.
180◦C minimum stack temperature and 1%
minimum mole fraction of stack O2. Run on
72.9% Methane, 25.9% Ethane and 1.2% Ni-
trogen at 30◦C with 30◦C ambient air, 3%
continuous blowdown.

MP Boiler (BLRM) 8-40 tonne/hr of 264◦C steam at 17 bar,
remainder of specifications identical to HP
Boiler.

Waste Heat MP Boiler (WHB) 264◦C, 17 bar steam with mass flow set by
available duty, 100% efficient.

Gas Turbine + HRSG 5-40MW gas turbine exhausting 500◦C gas
into an HRSG with secondary firing, gener-
ating 355◦C steam at 45 bar. Remainder of
specifications identical to HP Boiler.

Turbo Generator 1 (TG1) 6000kW maximum.
BFW Pump (PMP) 45 bar outlet pressure, 65% isentropic effi-

ciency.
Vacuum Pump (VACPMP) 1.4 bar outlet pressure, 65% isentropic effi-

ciency.
Deaerator 1.4 bar with 0.0015 continuous vent ratio.
Make Up Water 4.5 bar, 27◦C.

The utility system is entered into a SymBuilder object, following naming con-

ventions detailed in Figure 6.16. The complete model implementation is detailed in

Section C.3.2, and the resulting model shown below.

SymBuilder Object
BUILT in 1.742s with:
- 56 variables
- 1 objective

- 0 linear
- 0 quadratic
- 1 nonlinear

- 50 constraint(s)
- 32 linear
- 15 quadratic
- 3 nonlinear

- 112 bound(s)
- 11 integer variables(s)

- 0 integer
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Figure 6.16: Hypothetical 4 header model with base case operating data, adapted
from [46].
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- 11 binary

For this system, the 56 variables consist of the 40 modelled mass flows, 4 mixer/-

header enthalpies, the gas turbine output power, 10 binary variables for each piece

of equipment and 1 binary variable for the power balance calculation. As with the

first utility system, the model is quite sparse with 7.6% non-zero entries in the Jaco-

bian and 1.6% non-zero entries in the Hessian. The structure of this model remains

the same for each of the following examples, however the numerical constants and

available equipment are modified based on the example utility requirements.

Note also that the optimized cost of the model is not the point of this case study,

which is about whether the optimization model in this work converges to the same

operating point as in the original reference. To check this, key variables such as

shaft work, power balance, make up water flow, and mass flows through turbines

will be compared. In addition, installed equipment is still free to ‘switch off’, so

the optimizer must also choose to correctly switch on all equipment to match the

original reference. Finally, as the original work did not exploit electricity prices, the

price of selling electricity is reduced to zero, so the optimizer has no incentive to

generate extra electricity.

As well as comparing the two optimizer model solutions, each example is built in

JSteam and the SymUtility operating point inserted. This provides a rigorous simu-

lation (including full thermodynamic engine) to validate that the solution obtained

is in fact feasible.

All optimization examples are solved using BONMIN.

6.6.2.1 Example 1

The optimal solution for the first example in [46] is shown in Figure 6.17 with utility

demands listed in Table 6.10. Optimization results are shown in Table 6.11, noting

that a similar result is shown in the original reference. Observable differences include

an extra 3 tonne/hr drawn through the turbo generator, because the SymUtility

model calculates a lower efficiency (74% versus 77%). This has a flow on effect

throughout the model because the system requires more HP steam and demineralized

water than the reference system, however the optimal point is effectively the same.
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Table 6.10: Hypothetical 4 header model example 1 utility demands and resources.

HP User 0 kW
MP User 22000 kW
LP User 55000 kW
Electricity 5737 kW
Mechanical 1 1500 kW
Mechanical 2 1200 kW
WHB Duty 0 kW

Figure 6.17: Hypothetical 4 header model example 1 system (Figure 4 in [46]).

Table 6.11: Hypothetical 4 header model example 1 optimization results.

SymUtility JSteam Bruno et al
Build Time 8s - -
Solve Time 0.1s - -
Nodes 0 - -
HP Steam Demand 102 tonne/hr 102 tonne/hr 98.1 tonne/hr
Boiler Fuel 6.1 tonne/hr 6.1 tonne/hr 5.9 tonne/hr
Power Balance 0 kW 0 kW 0 kW
TG1 Shaft work 5944 kW 5944 kW 5946 kW
TG1 Mass Flow 58.1 tonne/hr 58.1 tonne/hr 55.1 tonne/hr
P1 Mass Flow 16.2 tonne/hr 16.2 tonne/hr 16 tonne/hr
P2 Mass Flow 27.7 tonne/hr 27.7 tonne/hr 27 tonne/hr
Water Mass Flow 8.1 tonne/hr 8.1 tonne/hr 3.5 tonne/hr
HP Header T 369◦C 369◦C 369◦C
MP Header T 274.3◦C 274.3◦C 274◦C
LP Header T 158.8◦C 158.9◦C 157◦C
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6.6.2.2 Example 1b

The optimal solution for example 1 with lower heating demands is shown in Figure

6.18, with utility demands listed in Table 6.12. Note that the mass flow for the LP

user reported in the original reference appears to be incorrect, because it does not

match process user models used within the remainder of the examples (i.e 100% of

available duty used). For this reason the return enthalpy of the LP user has been

set to 735 kJ/kg, in order to match the required mass flow.

In addition, the reference solution has the MP header temperature fed via a

letdown valve without cooling, thus raising the header temperature above the turbine

exhaust temperature. This is unusual in practice, and will be modelled within

this work as a desuperheater with cooling water. The result is that the header

temperature will be lower than the reference work, however this has only a small

impact on the final result.

Shown in Table 6.13 are the results for the optimization of this system, where

once again the SymUtility solution approximately matches the Bruno et al solution.

Table 6.12: Hypothetical 4 header model example 1b utility demands and resources.

HP User 0 kW
MP User 16000 kW
LP User 30000 kW
Electricity 5763 kW
Mechanical 1 1200 kW
Mechanical 2 1500 kW
WHB Duty 0 kW

6.6.2.3 Example 2

The optimal solution for the second example is shown in Figure 6.19 with utility

demands listed in Table 6.14. This example includes the gas turbine with secondary

fired HRSG for HP steam production, as well as a large waste heat boiler supplying

MP steam. In addition, two large process steam users draw over 150 tonne/hr of

steam from the lower two headers.

The optimization results for this example are shown in Table 6.15, illustrating

again that the SymUtility solution closely matches the reference solution.
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Figure 6.18: Hypothetical 4 header model example 1b system (Figure 5 in [46]).

Table 6.13: Hypothetical 4 header model example 1b optimization results.

SymUtility JSteam Bruno et al
Build Time 8s - -
Solve Time 0.1s - -
Nodes 0 - -
HP Steam Demand 87.7 tonne/hr 87.7 tonne/hr 84.7 tonne/hr
Boiler Fuel 5.3 tonne/hr 5.3 tonne/hr 5.1 tonne/hr
Power Balance 0 kW 0 kW 0 kW
TG1 Shaft work 5941.9 kW 5941.9 kW 5945 kW
TG1 Mass Flow 58 tonne/hr 58.1 tonne/hr 55.1 tonne/hr
P1 Mass Flow 27.7 tonne/hr 27.7 tonne/hr 27 tonne/hr
P2 Mass Flow 10.4 tonne/hr 10.4 tonne/hr 10.3 tonne/hr
Water Mass Flow 5.6 tonne/hr 5.6 tonne/hr 3.1 tonne/hr
HP Header T 369◦C 369◦C 369◦C
MP Header T 274.3◦C 274.3◦C 280◦C
LP Header T 155.5◦C 155.6◦C 149◦C

Table 6.14: Hypothetical 4 header model example 2 utility demands and resources.

HP User 0 kW
MP User 31500 kW
LP User 85500 kW
Electricity 36648 kW
Mechanical 1 1800 kW
Mechanical 2 4540 kW
Mechanical 3 3120 kW
WHB Duty 52000 kW
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Figure 6.19: Hypothetical 4 header model example 2 system (Figure 6 in [46]).

Table 6.15: Hypothetical 4 header model example 2 optimization results.

SymUtility JSteam Bruno et al
Build Time 8s - -
Solve Time 0.75s1 - -
Nodes 10 - -
HP Steam Demand 76.7 tonne/hr 76.8 tonne/hr 77.1 tonne/hr
GTG Shaft work 36956 kW 36956 kW 36869 kW
GTG + HRSG Fuel 8.76 tonne/hr 8.74 tonne/hr 8.1 tonne/hr
Power Balance 0 kW 0 kW 0 kW
P1 Mass Flow 54.1 tonne/hr 54.1 tonne/hr 54 tonne/hr
P2 S1 Mass Flow 17.5 tonne/hr 17.5 tonne/hr 14.8 tonne/hr
P2 S2 Mass Flow 11.2 tonne/hr 11.2 tonne/hr 12.7 tonne/hr
P5 Mass Flow 47.7 tonne/hr 47.7 tonne/hr 47 tonne/hr
Water Mass Flow 4.8 tonne/hr 4.8 tonne/hr 5.5 tonne/hr
HP Header T 355◦C 355◦C 355◦C
MP Header T 263.5◦C 263.5◦C 265◦C
LP Header T 149.9◦C 150◦C 150◦C

1 Solved with BONMIN’s Branch and Bound Algorithm
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6.6.2.4 Example 3

The optimal solution for the third example is shown in Figure 6.20 with utility

demands listed in Table 6.16. Note that the HRSG steam temperature is lower

than the other examples, so this has also been modified in the SymUtility model.

The optimization results for this example are shown in Figure 6.17 where again the

solutions match quite well.

The largest difference is the allocation of steam between the stages of dual stage

turbine P1, where the SymUtility model has chosen to extract the most steam from

the second stage. This operational point prevents the need for a letdown between

the MP and LP header, as included in the reference work, with the sacrifice of

less steam available in the MP header. However, because as the power production

potential from HP-LP is greater than HP-MP, extracting most of the steam via

stage 2 appears to be an optimal operating point.

Table 6.16: Hypothetical 4 header model example 3 utility demands and resources.

HP User 0 kW
MP User 15000 kW
LP User 40000 kW
Electricity 36903 kW
Mechanical 1 2200 kW
Mechanical 2 1600 kW
Mechanical 3 1200 kW
Mechanical 4 4000 kW
Mechanical 5 700 kW
WHB Duty 0 kW

6.6.2.5 Summary

The 4 examples contained within this case study have verified that the optimized

solutions returned by the SymUtility modelling framework, together with BONMIN

as the MINLP solver, approximately match solutions obtained in earlier literature.

In all cases the optimizer has chosen to enable the same set of equipment as per

the Bruno paper, and has matched the mass flows through key pieces of equipment,

within tolerances expected by the different modelling strategies. Furthermore, the

solution is obtained in an average of 400ms, indicating even semi-complex utility

models with multiple pieces of equipment can be solved robustly and within fractions

of a second.

289



Figure 6.20: Hypothetical 4 header model example 3 system (Figure 7 in [46]).

Table 6.17: Hypothetical 4 header model example 3 optimization results.

SymUtility JSteam Bruno et al
Build Time 8s - -
Solve Time 0.68s1 - -
Nodes 6 - -
HP Steam Demand 94.5 tonne/hr 94.5 tonne/hr 94.9 tonne/hr
GTG Shaft work 37096 kW 37096 kW 37106 kW
GTG + HRSG Fuel 9.73 tonne/hr 9.72 tonne/hr 9 tonne/hr
Power Balance 0 kW 0 kW 0 kW
P1 S1 Mass Flow 1.4 tonne/hr 1.4 tonne/hr 8.1 tonne/hr
P1 S2 Mass Flow 23 tonne/hr 23 tonne/hr 19.7 tonne/hr
P2 Mass Flow 17.6 tonne/hr 17.6 tonne/hr 17.5 tonne/hr
P3 Mass Flow 28.9 tonne/hr 28.9 tonne/hr 28.2 tonne/hr
P5 Mass Flow 14.4 tonne/hr 14.4 tonne/hr 14.2 tonne/hr
P6 Mass Flow 21.4 tonne/hr 21.4 tonne/hr 21.4 tonne/hr
Water Mass Flow 3 tonne/hr 3 tonne/hr 3.4 tonne/hr
HP Header T 350◦C 350◦C 350◦C
MP Header T 256.7◦C 256.7◦C 256◦C
LP Header T 151.2◦C 151.2◦C 156◦C

1 Solved with BONMIN’s Branch and Bound Algorithm
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6.6.3 Industrial Petrochemical Utility System

The final case study presented is an actual industrial utility system for a petrochem-

ical plant in Malaysia. This particular system was one of the validation systems used

within the iUO project [71] (Section 5.2), and its operation can be validated against

original PETRONAS engineering models.

As this is a commercial utility system, the exact specifications of the plant cannot

be published. However we were granted permission to publish a case study of this

system in our early work [69], which included a PFD, and specifications which can

be gleaned from that paper are listed in Table 6.18. The four system headers operate

at 43, 11.5, 4 and 2.65 bar for the HP, MP, LP, and VLP headers respectively, and

the system includes a comprehensive condensate collection with two flash drums to

recover useful steam for the lower headers, as shown in Figure 6.21.

Table 6.18: Industrial utility system specifications.

HP Boilers 3x identical small steam boilers (rated at
less than 50 tonne/hr) run on natural gas
composed of primarily Methane and Hydro-
gen. All three boilers generate 410◦C, 43 bar
steam with a 1% continuous blowdown ratio.

HP WHB Boiler Supplies 22 tonne/hr of 400◦C, 43 bar steam.
MP WHB Boiler Supplies 23 tonne/hr of 187◦C, 11.5 bar

steam.
HP Turbines 14x small (less than 500 kW) and 2x medium

(less than 3MW) back pressure turbines,
each with redundant electric motor.

MP Turbines 3x small (less than 20 kW) back pressure tur-
bines, each with redundant electric motor.

BFW Pump (PMP) 47 bar outlet pressure, 70% isentropic effi-
ciency.

HP Steam User (HPU) 3.5MW duty based user, returns 100% of
steam as saturated condensate.

MP Steam User (MPU) 20MW duty based user, returns 70% of steam
as saturated condensate.

LP Steam User (LPU) 60MW duty based user, returns 100% of
steam as saturated condensate.

Deaerator 2.65 bar with 0.01 continuous vent ratio.
Make Up Water 2.65 bar, 60◦C.

The optimization opportunity for this particular utility system is quite limited,

given that there is no cogeneration on site. This is typical of older systems which

are designed to supply heat and mechanical demands only. To realise economic sav-

ings with this particular system becomes predominantly a driver selection problem,

whereby given the current electricity price, a choice must be made between which
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Figure 6.21: Industrial utility system base case.
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mechanical loads to drive via electric motors, and which to drive via steam turbines,

as described in Section 6.4.1.

With the model entered into SymBuilder, the following statistics are reported

SymBuilder Object
BUILT in 4.357s with:
- 96 variables
- 1 objective

- 0 linear
- 0 quadratic
- 1 nonlinear

- 72 constraint(s)
- 35 linear
- 34 quadratic
- 3 nonlinear

- 192 bound(s)
- 23 integer variables(s)

- 0 integer
- 23 binary

noting that due to the large number of steam turbines, there is also a larger number

of binary variables required. The 96 variables are composed of 66 mass flow variables,

7 enthalpy variables, 19 steam turbine binary variables, 3 binary variables for the

boilers and the power balance binary variable (which could be left out because no

power will be exported, however it has been retained for future retrofit opportunity

testing).

Optimizing the SymBuilder model using BONMIN’s Branch and Bound solver

returns the results listed in Table 6.19. As expected, the small and inefficient steam

turbines (less than 50 kW) have been switched off by the optimizer, and two boilers

are now run closer to full load, with the third switched off in order to maximize

efficiency. The optimal point reduces the hourly operating cost by $82.90, which is

around 2%, in only a few seconds. This figure aligns with operational optimization

savings reported in literature (such as [80, 94]), where savings of 1-2% are common.

Table 6.19: Industrial utility system optimization results.

Base Case Optimized
Optimized Cost $4128 $4045.1
Build Time - 24.2s
Solve Time - 3.6s
Nodes - 114

It is worth commenting on the relatively long build time observed within this ex-

ample. By profiling the MATLAB code being executed, Figure 6.22 shows that over
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94% of the time is spent within the MATLAB Symbolic Toolbox (within MUPAD)

substituting variables required for building the MATLAB callback functions. This

result shows that further code optimization is required in order to make SymBuilder

competitive for generating callback functions for larger problems.

Figure 6.22: MATLAB profiler report for building the industrial utility system sym-
bolic model showing the symbolic engine takes the most time (mupadmex).

6.6.4 Case Study Summary

These three case studies have demonstrated the capability of the three software

packages developed for this work: JSteam for rigorous thermodynamics and util-

ity modelling in Excel, OPTI for supplying a suite of optimizers and the ‘glue’ to

convert from a standard problem description into solver specific formats, and lastly

SymBuilder for creating optimizer targeted algebraic models with analytical deriva-

tives. By using these tools rigorous models of three utility systems have been built,

optimized, and validated against results from both literature and industry.

Furthermore, optimization of all but one problem was completed within 1 sec-

ond, with the worst case taking 3.6s for the industrial utility system, all on a stan-

dard laptop computer. This result, combined with the fact we are using both an

open-source optimizer and an open-source optimization platform, both at no cost,

shows economically significant results can be achieved even with modest software

and hardware. Moreover, by utilizing the framework developed in this work to allow

accurate off-design models to be regressed, exploiting the structure of the resulting

utility system model, and then tailoring the resulting optimization problem to a

nonlinear solver, speedups of over 1500 times have been realised by ‘simply’ opti-

mizing a simulation model, as well as the ability to robustly find better solutions

using analytical derivatives.
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6.7 Summary

The framework-based approach described in Chapter 1 has been heavily utilized to

realise the results presented in this chapter, whereby OPTI has enabled significant

results to be obtained from complex, multi-faceted optimization problems. Prac-

tically significant results have been achieved with minimal computational time by

combining the power of MATLAB as a modelling environment, together with the

software developed in this work; JSteam for high-speed thermodynamics and de-

tailed off-design utility models, OPTI which provides a highly efficient interface to

3rd party optimization solvers as well as automating low-level optimization task

such as problem identification and solver setup, and finally SymBuilder for alge-

braic model generation with symbolic derivatives. Furthermore, while JSteam is

specifically focused on industrial utility systems, both OPTI and SymBuilder were

written with flexibility in mind, meaning they can be applied to most optimization

and modelling problems, with industrial models, detailed simulation models or even

real equipment connected for optimization. These are therefore a significant con-

tribution to the wider field of optimization and operations research, and not just

within the steam utility field.

A final question needs to be answered when analysing the results of the case

studies is: “Have we found the global optimum, or are we stuck in a local min-

imum?” Given that we know the problem is non-convex based on its formulation

(see Section 6.3.3), it is therefore quite possible that the solutions found so far are lo-

cal minima, and that better more economically interesting results may exist. These

however would need to be proved. Rather than approach this question using stan-

dard ‘global’ techniques such as genetic algorithms or evolutionary algorithms which

give no guarantee of a global optimum, the following chapter will detail white-box

optimization strategies that prove global optima.
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Chapter 7

Global Optimization of Energy

Systems

This chapter aims to prove deterministically that the optimums found in the pro-

ceeding chapter are indeed the global optimums. In order to achieve this aim, two

new OPTI interfaces are formulated to two advanced white-box global optimization

solvers, SCIP and BARON. Within each interface, an algebraic structure of the

optimization problem is collected from the MATLAB model and supplied to the

solver. By utilizing this algebraic description, a global white-box solver is able to

prove a global optimum to a deterministic, general nonlinear problem, and thus we

can confidently make the statement: “There is no better solution to this problem”.

The chapter details the development of each of the interfaces for SCIP and

BARON, and proves their accuracy via a series of benchmark tests against common

global optimization problems. It then concludes by repeating the utility system

optimization case studies from the previous chapter using each of the new solvers,

and compares the results achieved.

7.1 White-Box Optimization

General nonlinear optimization, such as that performed in the previous chapter, is

deemed black-box because as far as the optimizer is concerned, the internals of the

nonlinear objective and constraint functions are unable to be exploited. This black-

box simply accepts a decision variable vector and returns an objective value or vector

of constraint evaluations. The underlying equations, structure, and relationships

between the decision variables (inputs) and objective or constraints (outputs) are

effectively unknown, with the exception of the derivatives, which describe how a
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change in input produces a change in the output.

In contrast, linear and quadratic optimizers have a rigid mathematical format

which the solver is tailored to exploit and solve. Furthermore, because a linear

or quadratic program is described natively using numerical matrices and vectors,

the solver has a full problem description which includes all problem data. This

means that higher levels of pre-processing, such as scaling, redundant constraint

removal and bound tightening can be applied. In addition, the standard problem

definition of a linear or quadratic program requires the problem to be convex, further

assisting in tailoring the internals of the solver to exploit matrix properties (such as

positive-definite systems of linear equations). This all combines to make linear and

quadratic solvers typically much faster and more robust than their general nonlinear

counterparts, and they are therefore capable of solving much larger problems within

a reasonable time frame.

To be able to leverage the same level of problem information for a nonlinear prob-

lem requires an algebraic description of the problem supplied to the solver. This

effectively ‘opens-up’ the back-box so that the optimizer can see inside and thus

results in the term ‘white-box’. By exploiting the algebraic description, a white-box

solver is able to much more effectively pre-process the problem, which can vastly

reduce the search space required. In addition, a white-box solver may recognise

mathematical features of the supplied functions, such as identifying monomials or

polynomials, linear, bilinear and multilinear relationships or other common nonlin-

ear expressions such as log and exp. This enables the white-box solver to be able

to exploit problem relaxations and solution heuristics, such as outer approximations

[88], convex/concave envelopes [102], a Generalized Benders Decomposition (GBD)

[1] and/or search space cutting planes [122, 151]. Furthermore, by using a suite of

mathematical rules based on the structure of the problem, it can prove determinis-

tically a global optimum to general nonlinear problems, provided that the problem

meets certain formulation requirements.

Given the requirement of an algebraic description, both the objective and con-

straint functions must be deterministic, that is contain no stochastic terms or condi-

tional statements. Furthermore, the library of functions that can be used is typically

limited to only a handful, such as log, exp, abs and sign, noting the omission of

all trigonometric functions at present. This requirement rules out many problems,

and especially ones within MATLAB that utilize toolbox functionality such as in-

terpolation, integration, mixed data types, and problems calling external code such

as Simulink or JSteam.

With the restrictive space in which these solvers can be applied, especially within

an environment such as MATLAB which is much more flexible than a traditional
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optimization language such as GAMS, we were hesitant to pursue applying either of

these solvers to the utility system problems. Moreover, none of the available white-

box solvers had a MATLAB interface suitable for this work (the exception was the

LINDO Global solver with a rudimentary interface), meaning that once again sub-

stantial development work would be required. Note it is acknowledged YALMIP

[189] contains a white-box global optimization solver, however it is intended primar-

ily for bilinear problems which limits its use for the general nonlinear problems of

interest within this work.

A chance meeting with Nick Sahinidis of Carnegie Melon at FOCAPO 2012 in

Savannah, Georgia, provided the opportunity to develop a MATLAB interface to

BARON [304], a global MINLP solver being developed by his research team. Nick

had noticed our work developing OPTI and acknowledged that a MATLAB interface

would complement his current GAMS interface. I accepted the contract that night

after studying the documentation and a MATLAB interface was developed over the

succeeding months.

Figure 7.1: A comparison of 1599 global test problems solved with leading deter-
ministic global optimization solvers [290]. Only BARON and SCIP will be used for
this work.
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7.2 Generating an Algebraic Description fromMAT-

LAB

At the time of writing we are unaware of any packages that perform the required task

of generating an algebraic description of a problem written in native MATLAB code.

This is not to say it cannot be done with the MATLAB Symbolic Toolbox (which

SymBuilder attempted to do), however the task is to provide a high-speed toolbox

independent implementation that does not use an underlying symbolic engine. The

closest package that fits this requirement is YALIMP [189], which provides near-

native MATLAB syntax together with a custom class (sdpvar) to derive an algebraic

model description.

While modification of the sdpvar class was a possibility, YALMIP is not released

for commercial use. In addition, the sdpvar class was too flexible in its implemen-

tation and it supported functions not supported by a global optimizer. As a result

it was decided that it would be easier to create a new, custom class object.

It is worth noting that string parsing of raw MATLAB functions was investigated,

however it was deemed this approach would be more time consuming than writing

a custom class object, considering the multitude of ways a MATLAB program can

be written.

7.2.1 MATLAB – BARON Interface

Given that BARON is a commercially available solver, it already had a robust

parser for reading in optimization models described in BARON format. This meant

interfacing at the code level to the solver was not required, rather that the interface

was primarily a convertor from MATLAB code to BARON format, with the added

ability to call the solver and retrieve the results. To illustrate the differences between

formats, consider the nonlinear optimization problem from Section 6.2.3.3,

minx log(1 + x2
1)− x2

subject to:
(
1 + x2

1

)2
+ x2

2 = 4

This problem could be entered into MATLAB as two anonymous functions

% Objective
obj = @(x) log(1+x(1)^2) - x(2);

% Nonlinear Equality Constraint
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nlcon = @(x) (1+x(2)^2)^2 + x(2)^2;
cl = 4; cu = 4;

while the same problem entered in BARON format could look like (a simplified

GAMS language)

MODULE: NLP;

VARIABLES x1,x2;

EQUATIONS e1;

e1: (1 + x2^2)^2 + x2^2 == 4;

OBJ: minimize log(1 + x1^2) - x2;

The primary difference between the two formats is the method for declaring vari-

ables. In MATLAB a vector is used, and each variable indexed into the expression,

while in BARON each variable is a scalar, and each must be individually declared.

In addition, there are subtle model changes required for terms such as described in

Table 7.1.

Table 7.1: MATLAB/BARON format differences.

MATLAB BARON
xy exp(y log(x))

|x| (x2)
0.5

log10 x 0.434294482 logx

x̂ y ẑ = (x̂ y)̂ z x̂ y ẑ = x̂ (y ẑ)

In order to provide the required transformations in Table 7.1, as well as to

convert MATLAB vectors to BARON scalars, a MATLAB class was written. The

class overloads all common matlab operators, as well as all supported functions

for use with BARON. At each operation, the class converts the MATLAB operation

(whether matrix, vector or scalar) into an equivalent scalar operation and then saves

the result as a string (or vector/matrix of strings, operation dependent). This is best

illustrated using the BARON vector (barvec) class

x = barvec(1,1,‘x’);
y = barvec(1,1,‘y’);
z = barvec(2,2,‘z’);

e1 = x^y
e2 = abs(magic(2)*z)
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where e1 returns a scalar expression and e2 returns a matrix

>> e1
Scalar BARVEC Object
Eq : exp(y1*log(x1))

>> e2
Vectorized BARVEC Object: 2 x 2
Eq(1,1) : ((1*z1 + 3*z2)^2)^0.5
Eq(2,1) : ((4*z1 + 2*z2)^2)^0.5
Eq(1,2) : ((1*z3 + 3*z4)^2)^0.5
Eq(2,2) : ((4*z3 + 2*z4)^2)^0.5

To use the barvec class object for optimization problems, it is simply declared

as a vector with the same size as the numerical decision variable vector, and then

passed to the objective and constraint functions

% Declare BARVEC object
x = barvec(2,1);

% Pass To Earlier Nonlinear Optimization Problem
bobj = obj(x)
bnlcon = nlcon(x)

and returned as BARON compatible equation declarations

>> bobj
Scalar BARVEC Object
Eq : log(1 + x1^2) - x2

>> bnlcon
Scalar BARVEC Object
Eq : (1 + x2^2)^2 + x2^2

The barvec class effectively performs the conversion as each operator and func-

tion is called, automatically deciding where brackets are required and performing the

required transformations to ensure the problem is compatible with BARON. More-

over, as the class overloads most common MATLAB operators, the user is still free

to use vectorized constructs to describe their problem, and the class will generate a

scalarized implementation

n = 3; % Any length vector
x = barvec(n,1);

% Vectorized Rosenbrock Objective
j = sum((1-x).^2) + sum(100*(x(2:n) - x(1:n-1).^2).^2);

>> j
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Scalar BARVEC Object
Eq : (1 - x1)^2 + (1 - x2)^2 + (1 - x3)^2 + 100*((x2 - x1^2)^2) +

100*((x3 - x2^2)^2)

In addition, users are free to implement for-loops to describe their problem as long

as the termination of the loop is not dependent on a decision variable. Functions

can be declared as anonymous or general MATLAB functions, and can return a

scalar or vector and still be compatible, given the object-orientated approach used.

The complete list of supported functions is listed in Table C.1 in Section C.4.1,

noting that considerable attention has been paid to supporting matrix operations.

The object supports operations up to 2D, and replicates MATLAB functionality

(including optional second arguments) as closely as possible.

With the comprehensive list of functions available, the aim is that the user does

not have to modify their optimization functions in order to solve their problem using

BARON. The interface also self validates the generated BARON function against

the original MATLAB function, ensuring the representation passed to BARON is

correct.

It is acknowledged that this interface does not (by definition) generate an alge-

braic description of the MATLAB function, but, by converting to a format which

has an algebraic structure which can be parsed by BARON, it has achieved this aim.

The remainder of the MATLAB to BARON Interface developed simply writes the

generated expressions to a .bar file, including generating the required variable and

equation definitions, calls the BARON executable, then parses the BARON results

file to return the results to MATLAB. Considering the amount of overhead involved

in generating and concatenating equation strings, the process is remarkably quick,

as detailed in Section C.4.2.

Solving optimization problems using the MATLAB - BARON Interface is a sim-

ple single function call, similar in form to standard Optimization Toolbox functions

[x,fval,ef,info] = baron(fun,A,rl,ru,lb,ub,nlcon,cl,cu,xtype,x0,opts)

where fun is the MATLAB objective function, A,rl,ru are the linear constraints,

lb,ub are the decision variable bounds, nlcon,cl,cu are the nonlinear constraints,

xtype is the decision variable integrality, x0 is an optional initial solution guess and

opts are BARON options, available via baronset. The function uses the barvec

class to generate the BARON compatible functions internally, and then solves the

problem and returns the results via the output arguments. In addition, BARON

is interfaced via OPTI so any compatible OPTI problem can be solved to global
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optimality using BARON, as shown below.

% Non-convex Polynomial Objective
fun = @(x) x^6 - 2.08*x^5 + 0.4875*x^4 + 7.1*x^3 - 3.95*x^2 - x + 0.1;
% Bounds
lb = -1.5; ub = 1.5;
% Initial Solution
x0 = 0.5;
% Options
opts = optiset(‘solver’,‘baron’);

% Create OPTI Object
Opt = opti(‘fun’,fun,‘bounds’,lb,ub,‘options’,opts)
% Solve using BARON
[x,fval,exitflag,info] = solve(Opt,x0)
% Plot Solution within Problem Bounds
plot(Opt,[lb ub])

Figure 7.2: Non-convex polynomial solved with BARON using OPTI Toolbox.

Substantial verification of the MATLAB - BARON Interface was undertaken

by both Nick Sahinidis and myself, with well over 500 global nonlinear and mixed

integer nonlinear problems written in MATLAB (or parsed from existing models)

and then solved with the interface. Currently the interface is in use by a few users

dedicated to finding global optima, however it has not been officially released. This

is expected in early 2014.

If the reader is interested in trying out the MATLAB - BARON Interface a

demonstration BARON executable and MATLAB Interface can be obtained from

www.minlp.com/download. Instructions on the OPTI Wiki www.i2c2.aut.ac.nz/

Wiki/OPTI/index.php/Solvers/BARON detail how to install the solver and inter-
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face. Note that the demonstration executable utilizes IPOPT with MUMPS as the

linear solver, and CLP as the linear programming solver. This is the same version

as will be used for benchmarking global results later in this chapter (BARON can

also utilize CPLEX, SNOPT, MINOS and other commercial solvers if purchased).

7.2.2 MATLAB – SCIP Interface

The second global optimization solver used within this work is SCIP, which is an

open source solver framework for finding the global solutions to MINLPs. While the

original focus for this solver was on solving MIQCQPs, experimental support has

also been added for general nonlinear problems. The framework is maintained by a

large team of researchers at Zuse Institute Berlin (ZIB), as well as by contributors

from various other German universities. The project is released for at no cost under

an academic licence, and under a licensing agreement for commercial users.

Work on the interface for SCIP began after a request from Johan Löfberg (of

YALMIP [189]) to add the ability to solve MILPs in SCIP within MATLAB. A rudi-

mentary interface did exist but it appeared this was not a priority for the developers.

Interestingly enough, SCIP is perhaps best known as a MILP solver, and reportedly

the fastest non-commercial MILP solver when benchmarked by Hans Mittelmann

[220]. To be able to solve MILPs, SCIP includes its own LP solver, SoPlex, which

is an implementation of the revised simplex algorithm. To solve quadratic and non-

linear problems, SCIP leverages IPOPT for solving relaxed problems together with

CppAD for generating derivatives.

Beginning in January 2013, we began to investigate what would be required

to upgrade the MATLAB - SCIP Interface to solve NLPs and MINLPs, which at

the time was limited to MIQCQPs only. In order to supply a nonlinear model to

SCIP, the model must be described by an algebraic expression tree within C code.

This is in contrast to BARON, which provided a parser that automatically decoded

and created its own internal algebraic expression. This meant an interface from

MATLAB to SCIP would have to be able to generate a full algebraic description of

the MATLAB function, and then using this description, generate an SCIP expression

tree for each nonlinear function.

To illustrate the requirements of entering an expression tree into SCIP, consider

the following bilinear expression

2x0x1

which is entered within SCIP as (ignoring error catching constructs)
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//Declare SCIP Expressions and Variables
SCIP_EXPR *exp0, *exp1, *var0, *var1;

//Create Variables and assign indices
SCIPexprCreate(SCIPblkmem(scip), &var0, SCIP_EXPR_VARIDX, 0);
SCIPexprCreate(SCIPblkmem(scip), &var1, SCIP_EXPR_VARIDX, 1);

//Create ‘2*x0’ and store in exp0
SCIPexprCreateLinear(SCIPblkmem(scip), &exp0, 1, &var0, 2.0, 0.0);

//Create (2*x0)*x1 and store in exp1
SCIPexprCreate(SCIPblkmem(scip), &exp1, SCIP_EXPR_MUL, exp0, var1);

//Finalize Expression Tree
SCIPexprtreeCreate(SCIPblkmem(scip), &exprtree, exp1, 2, 0, NULL);

As can be seen, each variable is declared within SCIP and then a series of functions

are used to generate a series of intermediate expressions. Once the final expression

has been completed, it is saved into an expression tree and then later loaded as a

constraint within the SCIP framework. What is clear from this example is that a

very low level description of the nonlinear function is required, which includes every

numerical constant, operator, function, and the order in which they are all used.

Based on this requirement, I decided to develop what I termed an ‘instruction list’

based approach to describing MATLAB functions. By once again utilizing a MAT-

LAB class with overloaded operators and functions, the SCIP interface would build

up a list of instructions that described the function, instead of building up equation

strings (as per the BARON Interface). Incidentally after 6 weeks of development

my supervisor informed me that I had inadvertently (re)invented Reverse Polish

Notation (RPN) [50], an established method of entering functions into portable cal-

culators common in the 1970s and 1980s. Even though the method was not novel I

continued to develop the interface, including a C based interpreter for converting the

instruction list to an SCIP expression tree (in reality, an RPN/postfix interpreter).

The following code snippet demonstrates the functionality of the SCIP instruc-

tion list object, scipvar, for converting MATLAB code to an RPN-like instruction

list,

% Declare SCIP converter object
x = scipvar(5,1)
% Convert to instruction list (RPN)
obj = x(5) + ((x(1) + x(2)) * x(4)) - x(3)

Scalar SCIPVAR Object
VAR : 4
VAR : 0
VAR : 1
ADD : NaN
VAR : 3
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MUL : NaN
ADD : NaN
VAR : 2
SUB : NaN

noting that the order of instructions is exactly the same (coincidentally) as if de-

scribed in RPN. Variable indices are deliberately decremented because the index

will be used by the C interpreter directly, while NaN is simply a place holder for the

second column.

Within the object the instructions are stored as a column vector of numbers

[

1 4 1 0 . . . 1 2 6 NaN

]T

where the order is (instruction,value/index,instruction,value/index,...) and so forth.

Table 7.2: scipvar operation numbering scheme.

0 Constant
1 Variable
2 -
3 Multiplication
4 Division
5 Addition
6 Subtraction
7 Square ( 2 )
8 Square root
9 Power
10 Exponential
11 Natural Logarithm

A simple numbering scheme relates each instruction number to an instruction, as

detailed in Table 7.2. This single column vector contains a complete algebraic de-

scription of any compatible MATLAB function, albeit in a format hard to manually

convert to the original equation.

Complementing the scipvar object is a state-machine implemented in C which

interprets the instruction list vector, creates the required intermediate SCIP ex-

pressions, and then finally creates the complete expression tree. This interpreter,

scipnlmex.cpp, which is supplied with OPTI in Solvers/scip/Source, maintains

two stacks as it processes the instruction list, one for expressions and one variables,

resulting in a complex system of pushing and popping based on what was last saved.

To ensure the MATLAB function was correctly converted to an instruction list,

and then correctly converted to an SCIP expression tree, the resulting expression

307



tree is evaluated at a random (or user supplied) test point, and the result compared

to the same test point applied to the MATLAB function. This provides a simple

validation method which indicates the conversion process was successful, but it is

noted this method is not failsafe.

This conversion process is applied to each nonlinear function and an individual

expression tree is added for each constraint and objective. Because SCIP only solves

problems with a linear objective, a nonlinear objective is added as a constraint and

a connecting variable links it back to the objective.

The MATLAB - SCIP Interface described so far is still in beta, with no code

optimizations performed and no memory management within the MATLAB object.

Table C.2 in Section C.4.3 lists the functions currently available, with more to be

added as time allows.

7.2.3 Global Optimization Solver Interface Validation

To validate the interfaces developed to BARON and SCIP, 16 small test problems

have been taken from GLOBALLib [103], a collection of global optimization prob-

lems, and 16 from MINLPLib [51], a collection of mixed integer nonlinear problems.

These problems represent the types of problems (albeit smaller) that could be ex-

pected within the optimization of utility systems, and thus form a representative

set. Table C.3 in Section C.4.4 lists the results of the interface validation, indicating

all 32 problems for both solvers are correctly parsed and supplied to each solver.

7.3 Comparison of Global and Local Solutions of

Utility Optimization Case Studies

By utilizing the two global optimization solvers now available via MATLAB and

OPTI, the solutions to the utility optimization case studies in Section 6.6 can be

reviewed for global optimality. This step is required if we want to categorically

prove that the solutions obtained are indeed the global optimum, given that the

problems of interest are both non-convex and contain integer variables (which also

infer the problem is non-convex). Recalling that solutions obtained in the previous

chapter were obtained using BONMIN and IPOPT, both of which are designed for

convex problems only (BONMIN solves mixed integer problems where the underlying

nonlinear problem is convex), the results so far may be local minima only.
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7.3.1 The Three Header Hypothetical System Global Re-

sults

Repeating the three header example from Section 6.6.1, Table 7.3 lists the opti-

mization results when solved with BARON and SCIP. A notable observation when

comparing the optimized costs between BONMIN (local solutions, global if lucky)

and BARON (deterministically global) is that the global optimum has been achieved

in every case using a local optimizer. This result is discussed further in the sum-

mary (Section 7.4). Furthermore, solution times averaging 10 seconds are required

to solve this problem to global optimality using BARON, or around 1 second using

SCIP.

It is also noted that the time to build the SymBuilder problem for both SCIP and

BARON is reduced, because SymBuilder recognises that both these solvers do not

require derivatives (they are automatically solved internally), and therefore callback

functions do not need to be generated.

Table 7.3: Hypothetical 3 header model global optimization results.

Solver Base Case Case 1 Case 2 Case 3
BONMIN Optimized Cost $1831.9 $-5889.5 $3204.8 $-1982.6
(Local) Build Time 4.6s 4.6s 4.5s 4.6s

Solve Time 0.11s 0.1s 0.09s 0.1s
Nodes 0 0 0 0

SCIP Optimized Cost $1831.9 $-5889.5 $3204.81 $-1982.6
(Global) Build Time 3.2s 3.2s 3.2s 3.2s

Solve Time 1.1s 1.76s 0.99s 0.97s
Nodes 421 888 103 166

BARON Optimized Cost $1831.9 $-5889.5 $3204.8 $-1982.6
(Global) Build Time 3.2s 3.2s 3.2s 3.2s

Solve Time 9.9s 12.35s 10.7s 5.13s
Nodes 113 391 891 135

1 Obtained used SCIP + MATLAB 32bit with a solver tolerance of 1× 10−10

One result which took quite a bit of effort to obtain was the SCIP result for

the second case. All other results in this Chapter were obtained using 64bit SCIP

together with a linear program feasibility tolerance of 1 × 10−7 (a linear program

is used to solve the relaxed problems generated by SCIP), which for the majority

of problems works sufficiently well. However this problem would only solve with

the 32bit version, together with an increased tolerance. This problem of differing

results between architectures had been raised in the past with Stefan Vigerske, one

of the authors of the MINLP component of SCIP. His response was ”In the 32bit

version, the primal heuristics seem to have become more lucky, so it found a feasible

solution at node 181. It could be that the difference in platforms can lead to such a
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difference and there isn’t much I can do about it - it’s not a bug.” [317]. For now,

this discrepancy is left open for further investigation.

7.3.2 The Four Header Hypothetical System Global Results

The hypothetical model from Section 6.6.2 is re-optimized using both SCIP and

BARON and the results presented in Table 7.4. Once again, the solutions obtained

via BONMIN are globally optimal, however do recall this is not guaranteed. In

addition, SCIP has correctly solved all problems within this example using the

default settings, and done so much faster than BARON.

Table 7.4: Hypothetical 4 header model global optimization results.

Solver Example 1 Example 1b Example 2 Example 3
BONMIN Optimized Cost $1371.6 $1180.5 $1954.4 $2171.0

Build Time 8s 8s 8s 8s
Solve Time 0.1s 0.1s 0.75s 0.68s
Nodes 0 0 10 6

SCIP Optimized Cost $1371.6 $1180.5 $1954.4 $2171.0
Build Time 5s 5s 5s 5s
Solve Time 0.9s 0.98s 1.16s 4.19s
Nodes 201 274 180 2995

BARON Optimized Cost $1371.6 $1180.5 $1954.4 $2171.0
Build Time 5s 5s 5s 5s
Solve Time 31.3s 17.8s 16.2s 60.0s
Nodes 400 391 437 1027

7.3.3 The Industrial Utility System Global Results

The industrial petrochemical utility system model from Section 6.6.3 is also re-

optimized using both SCIP and BARON and the results presented in Table 7.5.

What is interesting is this time BARON is much faster than SCIP, a result that

has not been seen in any of the other problems. It is expected that BARON would

begin to out-perform SCIP as the problem sizes grow, such as in this problem, and

given that this is typically a feature observed when comparing commercial solvers

to open-source versions, as demonstrated in Figure 7.1. In addition, BONMIN has

once again found the global minimum, and as expected, in less time than the global

solvers.
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Table 7.5: Industrial utility model global optimization results.

Solver Base Case
BONMIN Optimized Cost $4045.1

Build Time 24.2s
Solve Time 3.6s
Nodes 114

SCIP Optimized Cost $4045.1
Build Time 11.8s
Solve Time 134.3s
Nodes 101879

BARON Optimized Cost $4045.1
Build Time 11.8s
Solve Time 40.1s
Nodes 827

7.4 Global Optimization Summary

This chapter has described two deterministic global optimization solvers that have

been interfaced to MATLAB via two purpose built interfaces. Each interface has

been developed to exploit the algebraic relationships within common MATLAB func-

tions, enabling a deterministic global minimum to be robustly obtained from arbi-

trary nonlinear functions. For robust global solutions BARON has proved it is the

best choice within the solvers surveyed. It is however the slower of the two for the

problems tested and requires a commercial license.1 However SCIP has also per-

formed very well, solving all problems to global optimality and on average 12.7x

faster than BARON. These results, combined with being freely available to aca-

demics, makes SCIP an attractive option that can be easily tried on any compatible

OPTI problem.

The most interesting result from this study was that BONMIN found the global

minimum in 9 out of 9 cases, and across 3 quite different utility models. This result

was not expected, given that we had already identified that these models consisted of

non-convex terms, as detailed in Section 6.3.3. The hypothesis is that predominantly

the non-convexities are saddle points in hyperspace (due to the indefinite Hessian),

and with the realistic starting guess provided by the JSteam model, BONMIN is

starting on the ‘right side of the saddle’ and converging to the global solution.

It is not the expectation of this work that SymUtility will always find the global

solution, but we can help the optimizer converge to the global solution by exploiting

the model structure and providing a sensible starting guess.

1Nick Sahinidis was kind enough to supply a license during development of the interface.
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Chapter 8

Conclusions and Further Work

8.1 Conclusion

This thesis has described a number of techniques to increase the performance of

industrial optimization algorithms. Two industrial problems are presented which

vary widely in physical size and dynamic speed, however by leveraging common

frameworks developed within this work, both problems can be described at a high-

level, yet retain the low-level performance improvements designed in this work. This

is achieved by efficiently formulating the problem in a manner best suited to the

solver, tailoring the solvers to the problems being solved, and lastly by utilizing

the frameworks developed to provide the ‘glue’ between the high-level problem de-

scription and complexities of the implementation. For each industrial problem of

interest, optimization performance using techniques developed in this work exceed

performance results reported in existing literature, and where possible, results have

been applied to real industrial systems to validate the solution.

In Section 1.3 we referred to four research questions within the field of industrial

optimization that formed the significance of this work. The following subsections

summarize the contribution of this thesis in addressing each of these questions, while

Section 8.2 presents a critique of the questions to validate they have been answered

successfully and reinforce the significance of this work.

8.1.1 Quadratic Programming Solver Results

Two primal-dual interior-point quadrating programming solvers have been devel-

oped, quad wright and quad mehrotra, which are based on algorithms and modifi-

cations described by Stephen Wright and Sanjay Mehrotra respectively. Both solvers

313



have been specifically developed to solve the quadratic programming problems that

result from a model predictive control formulation for small to medium constrained

multivariable control problems. With respect to the dimensions of the resulting

quadratic program, this bounds the problems of interest to an upper limit of 40

decision variables and 320 constraints, with the nominal problem size consisting of

20 decision variables and 160 constraints. These limits allow the model predictive

controller to be tuned with larger prediction horizons (Nc > 10, Np > 30) even for

multivariable problems, allowing for improved control performance which is after all,

the point of a controller. Moreover, based on the control formulation, the problem is

predominantly dense (typically greater than 70%), and therefore sparse techniques

are not useful.

Given the focus on developing an embedded model predictive controller, both

algorithms have been developed with an end goal of deployment on embedded hard-

ware, which for this work is a single precision hardware floating point microcon-

troller. This goal dramatically changes the design process for both algorithms be-

cause there are no longer multi-threaded linear algebra libraries, GHz clock speeds

or GBs of RAM available, but rather all resources are considerably limited. It is

for this reason a fully-unrolled implementation as is done in CVXGEN would not

be applicable, and furthermore an explicit MPC formulation would not fit for the

problems of interest.

Both solvers developed have been tailored to solve a series of consecutive (and

similar) small, dense, linear inequality constrained quadratic problems in single pre-

cision floating point, and as fast and accurately as possible whilst using as little

memory as possible. Techniques used have included benchmarking common algo-

rithmic modifications such as exploiting rectangular bounds, utilizing higher deriva-

tive information to reduce iterations, and simplifying the internal linear system to

determine the best combination of modifications that suit the problems of interest.

From this investigation it was found the added complexity of treating rectangular

bounds separately was less efficient for the problems of interest, however Mehrotra’s

predictor-corrector modification demonstrated reliable performance improvements.

Furthermore, given that the quadratic programs to be solved result from consecutive

optimal control problems, heuristics have been developed to warm-start the solver

to reliably reduce the number of iterations required by approximately 20%, thus

increasing the power efficiency of the algorithm.

Both solvers were profiled to identify potential hot-spots, and this identified the

formulation of the linear system as the most computationally intensive step. This

step was targeted with a symbolic engine to better understand the way the matrix of

equations was generated, and an algorithm was developed to accelerate the compu-
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tation by reducing the number of required operations. This modification increased

the performance of the solver by over 5 times the traditional (mathematical) imple-

mentation, with no loss in accuracy or extra memory required. This was achieved

by only calculating the lower triangular elements, as well targeting efficient code to

access and process the numeric data.

In addition, an investigation has been carried out into the behaviour of the solvers

when presented with an infeasible problem, which is not unreasonable to expect

within a constrained dynamic controller. Heuristics were developed to recognise both

typical infeasibility, as described in the literature, and numerical problems associated

with infeasibility, such as negative pivots within the Cholesky factorization routine.

One could therefore exit the routine before unrealistic control moves were calculated.

A case study showed that even when presented with consecutive infeasible problems,

the quad wright algorithm maintained partial control of the system, whereas a

traditional quadratic solver lost complete control.

To combat reduced precision on an embedded platform, a scaling heuristic was

developed which substantially improved the performance of both algorithms within

single precision. A case study demonstrated the heuristic reduced required solver

iterations by over 30%, as well as preventing most solver failures caused by numerical

errors. Furthermore, termination conditions were proposed that took into account

the reduced precision, to ensure the solver would not attempt to reduce iterates

below the native numerical precision of the embedded system.

Referring back to the first research question posed in Section 1.3, the techniques

described in this section have enabled the quad mehrotra solver to solve literature

model predictive control problems at sampling rates exceeding 10kHz on modest

embedded hardware. This required only 9.1KB to store the entire controller in mem-

ory, and achieved a solution accuracy within a fraction of a percent of Cplex (when

compared in double precision). For problems with the nominal size of 20 decision

variables and 160 constraints, both quad wright and quad mehrotra outperform

in terms of solution speed all surveyed interior-point quadratic programming solvers,

including those which utilize industry standard BLAS and LAPACK linear algebra

libraries. Furthermore, an implementation of this size requires less than 75KB of

memory to store, including the algorithm and all problem data, which allows for

deployment on a range of small hardware packages.

8.1.2 Embedded MPC Results

By utilizing the rapid-prototyping nature of MATLAB, together with the object-

orientated functionality, the jMPC Toolbox provides a framework for describing,
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tuning, simulating and then generating high-speed linear embedded model predictive

controllers. The framework enables an MPC controller to be described succinctly in

a high-level language, allowing the user to focus on the modelling and tuning, rather

than on the intricacies of how the controller is formulated. In addition, the frame-

work provides a simulation and validation platform which allows controllers to be

simulated within both linear and nonlinear environments, within code or Simulink,

and then validated against a reference controller to establish sensible tuning pa-

rameters. Furthermore, the framework provides the ability to quickly generate an

embedded controller, automatically optimized for the type of control problem en-

tered, which can then been validated on real hardware via a processor-in-the-loop

validation study.

In order to leverage the work developing the quadratic programming solvers

quad wright and quad mehrotra, the framework includes an automatic code gen-

erator which can automatically generate a deployable MPC controller in ANSI C,

including one of these solvers which have been tailored for the problem entered.

The code generator combines the best of the high-level MATLAB language, which

allows the user to complete the problem description using the jMPC object, with

high-speed hand-optimized C code templates used to implement both the quadratic

programming solver and controller engine. In this way the controller description

remains succinct, while the resulting implementation is still hand-optimized, and

allows a memory efficient and high performance solver to be generated with min-

imal code required. Furthermore, given the problems are in a standard format,

the code generator customizes both the solver and controller engine based on the

problem description. Examples include removing redundant constraint calculations,

precalculating the Cholesky factorization of the unconstrained system, and remov-

ing any unused functionality such as disturbance prediction modelling. In total, the

time required to build and then subsequently generate a embedded MPC controller

is typically less than 1 second. Using Texas Instrument’s Code Composer Studio,

the controller can then be compiled in approximately 8 seconds, which means that

a new controller can be built and tuned from scratch, then generated, compiled

and deployed in as little as 10 seconds, allowing rapid re-tuning iterations. This is

opposed to an FPGA development route, where re-tuning may require a complete

recompilation process that may take 100 times longer, severely limiting this rapid

re-tuning.

To validate the automatically generated controller, the framework includes two

methods: Automatic validation on the development PC and secondly, a processor-

in-the-loop (PIL) module. By default, when the controller is generated, both the C

code quadratic solver and the complete controller are automatically compiled into

MATLAB MEX functions, and the results of the functions compared against refer-
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ence implementations. Because the reference implementations are selected to match

the functionality within the generated controller and solver, compiled with the same

compiler and settings, and then run on the same development PC, bit accurate

results are obtained. This first method quickly indicates the generated code and

problem data is correct on a PC, however it does not guarantee the same perfor-

mance when run on an embedded target. To validate the controller on the target

hardware, the framework provides a second method whereby a PIL implementation

can be automatically run, where the controller and solver are both implemented on

the target hardware, and the development computer acts as the plant to control.

This enables any plant model, including a full nonlinear model, to be used in the

validation step and provides the most accurate estimate of the performance of the

generated controller before connecting it to a real plant. To illustrate this function-

ality, a simulated case study of the control of an inverted pendulum on a moving

cart was implemented, with the controller run on a Texas Instruments C28343, and

a nonlinear simulation of the pendulum run on the development computer. The

embedded controller obtained a sampling rate of close to 300Hz, while maintaining

nearly identical control performance to that run on the development computer alone.

Concluding the investigation into high-speed embedded controllers, an actual

hardware case study was presented which applied an automatically generated MPC

controller to a physical laboratory helicopter. This study encapsulated all of the

contributions of this work to high-speed embedded optimization. These included

utilizing the high-level jMPC Toolbox for automatically deriving a linear model

for the controller, automatic code generation of a quadratic programming solver

tailored for the resulting control problem, a PIL validation step to validate the

generated code, and finally proof that the system worked on an actual multivariable

system. The controller was implemented with a long prediction horizon of 80 samples

(which is significant for an embedded MPC implementation), achieved a sampling

rate exceeding 100Hz on hardware costing less than US$160, required just 56KB of

RAM to store, and achieved the expected control performance. This proved that

the combination of techniques and tools developed are a significant contribution to

this field of work.

8.1.3 Design of a Common Optimization Framework for MAT-

LAB

The concept for the OPTI Toolbox was born from recognising that the open-source

optimization community was substantially under-utilized by the majority of indus-

trial users. The toolbox aimed to bridge the gap between the ‘industrial MATLAB

user’, deemed a competent engineer or technologist whose primary interest and ex-
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pertise is in their own specific domain, and those users being able to solve real world

industrial optimization problems. To fulfill this aim, MATLAB had to be able to

solve optimization problems with binary and integer variables, common within typ-

ical industrial problems, which meant that new optimization solvers would have to

be made available within MATLAB. At the time of writing, the OPTI Toolbox adds

24 solvers from the open source community to MATLAB users, including 6 solvers

able to handle binary and integer constraints.

The majority of solvers added did not have an existing MATLAB interface, or

if they did, they were either very limited in functionality, or broken due to changes

in the MATLAB MEX API. One of the contributions of the toolbox was not only

to collect together and compile the solvers for Windows MATLAB users, but also

to develop MEX interfaces to access as much of the functionality of the solver as

possible. The problem with this approach was that every solver expected a different

problem format, which when further complicated by hundreds of unique configura-

tion options, would have rendered the toolbox complex and restricted to specialist

users.

The solution here was to define a common problem format which provided a

conversion layer between an easy to use, easy to describe optimization format, and

the configuration requirements of each solver. The framework developed introduced

the opti object, a MATLAB class that allowed any one of the 16 supported opti-

mization problems to be entered (such as linear, quadratic or nonlinear programs),

then automatically identify the problem entered, select the best solver available to

solve it, and configure the problem to match the requirements of the solver. This

approach is very similar to that used in the development of the jMPC Toolbox,

whereby a high-level problem description is entered, and the object automatically

configures itself to tailor the selected solver to best solve the problem, using low-level

code. Furthermore, the toolbox provides a suite of auxiliary tools for assisting in

the solution of common industrial optimization problems. These include solution

inspection via automatically generated plots, solution validation against the sup-

plied constraints, automatic derivative generation if not available, file reading and

writing routines and numerous other tools.

One issue identified when modelling problems natively in MATLAB was that

given its flexible language, it was very easy to poorly formulate optimization prob-

lems. Furthermore, given the language does not contain algebraic constructs, prob-

lem simplification and analysis is not easily achievable. This complicates solving

nonlinear problems because the generation of derivatives is limited to numerical ap-

proaches, which can affect the accuracy of the solution. This issue was addressed

within this work by creating an extension to the Symbolic Toolbox called Sym-
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Builder, which is a language extension to allow optimization problems to be posed

more succinctly. The advantage was that by utilizing a symbolic engine, the opti-

mization model could be symbolically simplified and analytical derivatives obtained,

which then allowed a full picture of the problem being solved to be found. Using

this information, an optimization solver can exploit much more information than

if posed as a MATLAB function ‘black-box’, such as constraint linearity, sparsity

patterns, and accurate derivatives. This technique was utilized to solve industrial

scale utility optimization problems in fractions of a second.

In addition to the solver framework and symbolic modelling extensions, the tool-

box provided MATLAB users with the ability to deterministically calculate a global

optimum to general non-convex (mixed integer) nonlinear problems. Two methods

of generating algebraic representations of MATLAB functions were developed, to-

gether with two interfaces to leading global optimization solvers, BARON and SCIP.

By utilizing the OPTI Toolbox a user can obtain global solutions to problems with-

out changing their problem description or format, thereby substantially reducing

the barrier to obtaining the best possible solution to an industrial problem.

8.1.4 Energy Optimization Results

The second industrial optimization problem focuses on the optimal operation of

combined heat and power utility systems. When considering optimizing the oper-

ation of a utility system, a key requirement is the availability of part-load models

of major unit operations, such as steam boilers, turbines, gas turbines and heat

recovery steam generators. All of these units exhibit both varying efficiencies as a

function of the rated output, and as a function of the unit size and manufacturer

specifications. Therefore manufacturer design data, rated outputs or even the cur-

rent state alone cannot be used to predict the operation of a piece of equipment over

a range of loads/outputs, which is critical to being able to move the operating point

within the optimizer.

To address this issue, this work has built on the work of Mavromatis, Shang,

Kokossis, Varbanov, Aguilar and others, re-regressing published data to models pro-

posed by these authors, and combining it with the JSteam rigorous thermodynamic

engine and a library of mass and energy balance models. Utilizing the JSteam mod-

els and thermodynamics, unit operations can be fitted to a specific operating region,

while industrial data can be used to determine the part load performance curves.

Furthermore, the JSteam fuel gas models have the facility to include operational

constraints such as minimum stack temperature, exchanger approach temperatures,

and minimum excess O2. It is therefore argued that combining the literature mod-
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els, industrial data, and combustion models developed in this work results in a more

accurate representation of the real equipment.

A derived class based on SymBuilder has been developed, SymUtility, which pro-

vides the same symbolic optimization modelling functionality but which is further

customized for modelling steam utility systems. Methods have been added to au-

tomatically add most common pieces of utility equipment, including the part-load

models which are automatically generated from supplied operational specifications,

which allows the user to concentrate on modelling the complete system. The result is

an industrial utility system can be described in as little as 50 lines of MATLAB code.

This includes a complete mass and energy balance of the system, detailed part-load

models of all equipment, and being based on SymBuilder, is automatically simpli-

fied, sparse first and second derivatives are generated, and a chosen solver tailored

to suit the problem entered (such as identifying mass balance equations as linear,

energy as bilinear, etc).

This once again comes back to the common framework approach, whereby a

high-level language is used to describe the problem, while the framework manages

the detail of the optimization problem and automatically exploits features present in

the problem to aid the optimizer solving it. Using SymUtility together with OPTI

and JSteam, utility systems from both literature and a real petrochemical system

are optimized, with significant economic savings obtained in typically a fraction

of a second. Recalling that the systems being optimized are nonlinear, non-convex,

contain binary variables in addition 50 or more continuous variables and 100 or more

constraints, solutions obtained on a standard 2.8GHz i7 laptop within 0.7 seconds

to these systems is a significant contribution, especially when the solutions are both

economically significant and feasible when validated in a rigorous nonlinear model.

Furthermore, when compared to the status-quo of optimizing a process simulation

model, speed-ups of over 1500 times are observed, indicating that considerable effort

has been made to tailoring the problem for the optimizer.

Further investigation into the optimality of the solutions obtained was carried

out, specifically looking at whether a local minima had been found. By utilizing the

global optimization framework developed as part of the OPTI Toolbox, the same

utility system models were re-optimized and the global optimum proven for each. In

all nine case studies undertaken, it was proved that the solution found by BONMIN

(a local solver) was indeed the global optimum, which was not expected, considering

the models had been identified as non-convex. However this result does add to the

argument that tailoring the problem to the optimizer, as has been done here, can

not only increase solver performance with respect to solution time, but also increase

the chance of the solver correctly finding the global minimum, which is an attractive
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benefit. It is not to say this will always be the case when using BONMIN with these

models, but it is more likely when a realistic starting guess is available from the

JSteam model, in conjunction with a tailored formulation.

8.2 A Critique of the Research Questions Origi-

nally Posed

To conclude the contributions resulting from this work, a review of the research

questions from Section 1.3 is presented below. Each research question is addressed

in the original order, and described within the context of the results of this work.

1. By using the quad mehrotra solver and MPC algorithm developed in this

work, together with the USD$159 Texas Instruments C28343 microcontroller,

Section 4.5.3.2 demonstrated a processor-in-the-loop implementation of em-

bedded MPC that achieved a sampling rate of over 10kHz, while requiring less

than 10KB of memory, all in single precision. Furthermore a case-study where

the predictive control was applied to a laboratory-scale helicopter was demon-

strated (Section 4.6), proving that both the software and hardware developed

in this work could robustly control real-world systems. This result exceeded

all aims of this research question.

2. Developed within the course of this research, the jMPC Toolbox (Section 3.5.2)

allows a high-level description of a linear model predictive controller to be for-

mulated in MATLAB. Using the jMPC object, the controller could be tuned,

simulated and validated within a rapid-prototyping development environment,

before being automatically-coded into an ANSI C controller. By utilizing a

combination of both hand-coded and hand-optimized code templates (Sec-

tion 4.3), together with automatically generated problem specific routines and

data structures, the performance and memory benefits of hand-optimized code

could be realised within a high-level controller description. In addition, the

framework designed is both easier to use and provides better performance for

the problems of interest, than recent overlapping research, as demonstrated in

Section 4.4.5.

3. The OPTI Toolbox, together with the packaged SymBuilder platform (Sec-

tions 6.2 and 6.5), allows complex optimization problems to be posed suc-

cinctly within MATLAB, yet be symbolically simplified and then solved with

state-of-the-art solvers. By extending the functionality of the MATLAB Sym-

bolic Toolbox to better handle optimization problems, together with a suite
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of routines for simplifying and generating optimization models, SymBuilder

allows industrially significant mixed integer nonlinear programs to be solved

in fractions of a second. Furthermore, by utilizing the common optimization

framework developed within OPTI Toolbox, an optimization problem can be

posed independently of the solver used, yet still exploit known structural prop-

erties of the problem when solved by a compatible solver.

4. Based on industrial experience, JSteam (Section 5.3) allows an industrial user

to rigorously model industrial-scale steam utility models using established

mass and energy balances, together with a powerful thermodynamic engine. To

then apply this technology to optimization, Sections 5.4-5.7 develop part-load

unit operation models based on industrial data and regressions from industry,

allowing operational optimization to be performed. Moreover, by including

the part-load models within SymUtility, a subclass of SymBuilder, large-scale

utility system models could be symbolically generated, then optimized using

freely available solvers to achieve economically significant results in less than

5 seconds. All optimizer solutions were validated against equivalent rigorous

JSteam thermodynamic results, indicating the optimizer was correctly solving

physically realisable operating points.

8.3 Recommended Further Work

There are several areas where further development could improve the performance

of both the optimization speed and robustness, as well as the functionality of the

frameworks developed. However, given the large scope of this work across two

significant optimization problems, it has not been possible to include every idea

within the scope of this research. Therefore the areas described below are left as

further work, and are intended to be completed as time allows.

8.3.1 QP Algorithm

Two quadratic programming algorithms have been developed within this work, how-

ever the decision when to use each algorithm has not been fully explored. As shown

in Section 4.4.4.1, it is clear that quad wright is faster for smaller problems, while

quad mehrotra is faster for larger problems. While a threshold could be developed

that decides which algorithm to implement based purely on size, it would be worth-

while to examine further properties such as problem numerical conditioning, poten-

tial for infeasibility, termination tolerances, and decision variables versus constraints
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ratio, in order to make the best possible decision. Furthermore, a quadratic pro-

gramming solver which implements Gondzio’s higher order correction steps should

be designed and added to the solver selection strategy. It is anticipated that for

larger problems, Gondzio’s modification would assist in the reduction of the num-

ber of iterations required, as demonstrated when comparing the qpip solver to the

quad mehrotra solver in Figure 3.16.

In addition, the active-set solution strategy has not been investigated at all

within this work, based on the reasons set out in Section 3.4. This decision was

made very early on in this research, and it is anticipated that recent advancements

in the active-set algorithm may make it quite competitive for this work, especially

given that it is better suited to solving consecutive similar quadratic programs, as

found in an MPC controller.

A more advanced scaling algorithm would examine the conditioning of the orig-

inal model state-space matrices and correctly scale the as the quadratic program

is formulated, rather than afterwards, such as done in this work. An example of

two strategies include one by Liuping Wang where she describes an exponentially

weighted cost function modification in [326], while Rossiter et al proposed an inner-

loop state feedback stabilization strategy in [150]. In addition, using the current

heuristic, the selection of scalefac does impact the robustness of the algorithm and

thus should be investigated further. This work is currently being undertaken by a

Master’s student based on this work.

A further idea yet to be investigated is what information can be utilized between

consecutive solver runs, given that only the objective linear term (f) and constraint

right hand side (b) change. This is a remarkable property that must be able to be

exploited to either aid finding a solution, or at least used in a heuristic for choosing

initial values to warm-start the solver.

8.3.2 Embedded MPC Implementation

A noticeably absent topic within this work is a focus on stability of the controller,

given that this is typically the focus of most control studies. It was decided early

on in this work that ensuring closed-loop stability of the resulting controller would

detract from the aim of the development of the associated optimization software,

and given both the MPC algorithm and descriptions of stability are well known

in literature [164, 214, 273], it would not be investigated. However, it would be

interesting to investigate the effect of reduced precision on the closed-loop stability

of an MPC controller, given that the target implementation will typically be in

single precision, at best. Furthermore, given that the controller communicates to
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the outside world via analog to digital and digital to analog convertors, what effect

varying levels of quantisation would have on ensuring stability, such as discussed in

[348].

While infeasibility of the control problem was ‘handled’ by the quadratic pro-

gramming solver, in reality the solver would simply exit with the last ‘least-infeasible’

solution found. A more robust strategy should be developed, such as automatically

applying soft constraints when an infeasible problem is detected, in order to retain

control of the system. There is also room for further work on developing techniques

to handle what happens when the quadratic solver runs out of time, based on the

sampling rate being faster than the solution rate.

There is also considerable recent research into nonlinear model predictive con-

trol [120] which given advances in nonlinear programming algorithms [323], is now

competitive for sub-minute sampling rates [76]. While implementing a full nonlinear

model predictive controller on the hardware used within this work may be unreason-

able, by utilizing modern ARM processors [346] such as those found within smart

phones (with GHz clock rates and ample off-chip memory), it is not unrealistic to

expect to implement a full nonlinear programming solver and collocation formulated

nonlinear program within an embedded controller. However, without requiring a full

nonlinear MPC, there may still be significant advantages in allowing bilinear models

[40], and solving via a linear matrix inequality strategy [39, 44], which is much more

realistic on the same embedded hardware used within this work.

Another area of recent research is the high-speed MPC control of motor driver

circuits [109], specifically those which use multiple FETs to generate poly-phase

currents. As each FET can only be on or off (it is a discrete electronic device), the

control problem is now an integer quadratic program where all decision variables are

binary (also known as a Hybrid MPC problem). This now becomes a combinatorial

problem which, as shown in the energy optimization work, is significantly harder to

solve. However, given that this work encompasses optimization of both continuous

and discrete systems, only simple modifications would be required to allow binary

variables within the MPC framework, which could then be solved via one of the

OPTI solvers. It is however much harder to implement a MIQP solver on embedded

hardware, because it is likely a branch-and-bound solver would need to be written,

and when implemented, would substantially limit the achievable sampling rate. This

is an active area of research [25], and could be assisted by the tools and algorithms

developed in this work.

A further idea is leveraging the now common dual-core hardware available in

modern microcontrollers. Rather than completely changing architecture to an FPGA,

parallelism is available in much easier to use and program microcontrollers and
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should be exploited within the MPC algorithm. While traditional approaches have

targeted the matrix multiplication and linear algebra routines for parallelism, we

investigated an alternative hybrid of PID and MPC which we called ‘interpolated

MPC’ in [67]. By utilizing a PID controller in parallel with the MPC controller,

the sampling rate of the combined controller could be accelerated. This is achieved

by using the PID controller to provide intermediate control moves, while the MPC

controller is calculating the next major control moves. Further work is required to

determine whether this is a feasible (and stable) strategy.

8.3.3 Optimization Framework

There are a range of topics identified for further work within the OPTI Toolbox,

especially in conjunction with other researchers. These are summarized in the file

OPTI ToDo.m, located in the OPTI Toolbox/Help directory supplied on the Ap-

pendix DVD. These include projects such as the the development of a new automatic

differentiation framework, the development of a new symbolic engine for SymBuilder

and the development of optimal control and dynamic optimization modules.

With respect to derivative generation with MATLAB, an additional method not

yet explored is to use a C++ automatic differentiation framework such as CppAD

[30] together with an algebraic representation of a MATLAB function. This follows

ideas presented in the package BLOM [165], which solves large-scale nonlinear pro-

grams resulting from Simulink models and uses IPOPT together with an automatic

sparse derivative representation.

A useful piece of functionality missing in the OPTI Toolbox is the ability to

automatically identify linear and quadratic models, when supplied as general non-

linear functions. While this functionality exists via the SymBuilder framework, it is

much harder to do with native MATLAB code. Further work could expand on the

algebraic transformations used for the global optimization solvers, to automatically

identify structure within the function being processed and allow improved decision

making on the type of problem entered.

8.3.4 Energy Optimization

The most important future improvement to the energy optimization work would be

to include multiple time periods into the optimization problem. This was intended to

be included in the original scope of this work, however due to time constraints, was

not able to be completed. By factoring in multiple time periods, the optimization
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problem could take into account costs of start-up and shut-down, as well as the

forecasting of both weather and electricity prices. This would result in a much more

accurate model and one which has real industrial opportunity.

In addition, the detailed unit operation models developed have been based on

industrial data presented by a range of authors, much was of which was collected

20 to 30 years ago. As the technology within plant equipment has improved, the

regressions used within this work will no longer accurately model modern utility

systems, and it is therefore recommended that a new set of regressions be developed.

Furthermore, the framework should include a facility for automatically generating

optimization ready models from plant data, based on a data-reconciliation approach.

This would allow the SymUtility models to be connected to a live distributed control

system or Process Integration (PI) historian with access to real-time data, which

would enable the user to conduct real-time optimization studies.

Further work investigating the combustion process is currently tasked for a mas-

ters or summer student, specifically looking at implementing the GRI-Mech [106]

reaction database. This would provide a means to calculate the production of Nitric

Oxide (NO), a combustion by-product which gas turbine operators are at pains to

minimize.

Finally, we suggest further work could be undertaken in reducing the MINLP

optimization model into a MIQCQP model. This would simplify the optimization

problem to a form where the algebraic description is implicit in the formulation and

aiding the solver finding a solution. The model would however remain non-convex,

so that applicable solvers from the OPTI Toolbox would still be limited to the same

SCIP and BARON solvers used in this work.
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Appendix A

Model Predictive Control

Algorithms and Software

This appendix chapter provides additional detail to expand on Chapters 3 and 4,

including the source for both quadratic programming solvers, as well as a summary

of the jMPC Toolbox and implementation details for embedded MPC.

A.1 Quadratic Programming Solvers

The MATLAB implementations of the quadratic programming solvers developed in

this work are listed below, while the C-code implementations are included on the

Appendix DVD under jMPC Toolbox/Source.

A.1.1 quad wright Solver

Solves a Quadratic Program (QP) of the form

minx

1

2
xTHx+ fTx

subject to: Ax ≤ b

based on an algorithm described by Stephen Wright in [338]. The algorithm imple-

ments a primal-dual infeasible-interior-point solver with optional warm-starting.

function [z,exitflag,iter,lam,t] = quad_wright(H,f,A,b,maxiter,tol,verbose,
z0,lam0,t0)
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% Solve quadratic programming problem using Wright’s (1997) Method
% Minimise 1/2x’Hx + f’x
% Subject to: Ax <= b

% Copyright (C) 2009-2013 Jonathan Currie (www.i2c2.aut.ac.nz)

%Length of constraint matrix
mc = length(b);
%Number of decision variables
ndec = length(f);

%Default Args
if(nargin < 10), t = []; else t = t0; end
if(nargin < 9), lam = []; else lam = lam0; end
if(nargin < 8), z = []; else z = z0; end;
if(nargin < 7 || isempty(verbose)), verbose = 0; end
if(nargin < 6 || isempty(tol)), tol = 1e-6; end
if(nargin < 5 || isempty(maxiter)), maxiter = 200; end
%Test for Warm Start
pmax = max(max(abs([H f; A b])));
if(pmax > 1)

WARMVAL = sqrt(pmax);
else

WARMVAL = 0.5;
end
if(isempty(z)) %cold

z = zeros(ndec,1);
lam = WARMVAL*ones(mc,1);
t = WARMVAL*ones(mc,1);
wmode = 0;

elseif(isempty(lam)) %just primal
lam = WARMVAL*ones(mc,1);
t = WARMVAL*ones(mc,1);
wmode = 1;

elseif(isempty(t)) %primal + dual
t = WARMVAL*ones(mc,1);
wmode = 2;

else %all
wmode = 3;

end

%Default Values
sigma = 0.1; ascale = 1; inftol = tol*10;
exitflag = 1; cholfail = 0;
mu = t’*lam / mc; At = A’;
mr2_1 = 100; mr2 = 10;
%Initial Residuals
r1 = -H*z - At*lam - f;
r2 = -A*z + b;
%Linsolve options
opU.UT = true; opUT.UT = true; opUT.TRANSA = true;

if(verbose)
fprintf(‘-----------------------------------------------\n’);
fprintf(‘QuadWright QP Solver [MATLAB Double Version]\n’);
switch(wmode)

case 3, fprintf(‘ Warm Start: Primal + Dual + Slack\n’);
case 2, fprintf(‘ Warm Start: Primal + Dual\n’);
case 1, fprintf(‘ Warm Start: Primal\n’);

end
fprintf(‘ %4d Decision Variables\n %4d Inequality Constraints\n’,ndec,mc);
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fprintf(‘-----------------------------------------------\n’);
fprintf(‘iter phi mu sigma

alpha max(r1) max(r2)\n’);
end

%Begin Searching
for iter = 1:maxiter

%Create common matrices
ilam = 1./lam;
ilamt = ilam.*t;
lamt = lam./t;
mesil = mu*sigma.*ilam;
IGA = bsxfun(@times,A,lamt); %matrix * diagonal matrix
igr2 = lamt.*(r2 - mesil);

%Solve
[R,p] = chol(H+At*IGA);
if(~p)

%exploit matrix properties for solving
del_z = linsolve (R, linsolve (R, (r1+At*igr2), opUT), opU);

else %Not Positive Definite
if(verbose), fprintf(2,‘\b (Cholesky Failed)\n’); end
del_z = (H+At*IGA)\(r1+At*igr2);
cholfail = cholfail + 1;
if(cholfail > 2)

exitflag = -2;
break;

end
%Pull back maximum step size
ascale = ascale - 0.1;

end
del_lam = -igr2 + IGA*del_z;
del_t = -t + mesil - ilamt.*del_lam;

%Decide on suitable affine step-length
duals = [lam;t];
delta = [del_lam;del_t];
index = delta < 0;
if(any(index))

%solves for min ratio (max value of alpha allowed)
alpha = 0.9995*min(-duals(index)./delta(index));

else
alpha = 0.999995;

end
%Check for numerical problems (alpha will go negative)
if(alpha < eps(1)), exitflag = -3; break; end
%Local Scaling
alpha = alpha*ascale;
%Increment
lam = lam + alpha*del_lam;
t = t + alpha*del_t;
z = z + alpha*del_z;

%Update residuals
r1 = (1-alpha)*r1; %equiv to r1 = -H*z - At*lam - f
r2 = -A*z + b;
%Complementarity Gap
muold = mu;
mu = t’*lam / mc;
%Infeasibility Phi
mr2_2 = mr2_1; mr2_1 = mr2;
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mr1 = max(abs(r1)); mr2 = max(abs(r2-t));
phi = (max([mr1,mr2]) + t’*lam)/pmax;
if(verbose)

fprintf(‘%3d %13.5g %13.5g %11.5g %11.5g %11.5g %11.5g\n’,
iter,phi,mu,sigma,alpha,mr1,mr2);

end
%Check for NaNs
if(isnan(mu) || isnan(phi)), exitflag = -3; break; end
%Check Convergence
if(mu <= tol && phi<=tol)

exitflag = 1;
if(verbose)

fprintf(‘-----------------------------------------------\n’);
fprintf(‘ Successfully solved in %d Iterations\n Final phi: %d,

mu %g [tol %g]\n’,iter,phi,mu,tol);
fprintf(‘-----------------------------------------------\n’);

end
return

end
%Check For Primal Infeasible
if(iter > 6 && mr2/pmax > tol/10)

if(abs(mr2-mr2_1)/mr2 < inftol && abs(mr2_1-mr2_2)/mr2_1 < inftol)
if(verbose)

fprintf(2,‘\b (Primal Infeasibility Detected)\n’);
end
exitflag = -4;
break;

end
end
%Solve centering parameter (Mehrotra’s Heuristic)
sigma = min((mu/muold)^3,0.99999);

end

%If here, either bailed on Cholesky or Iterations Expired
if(exitflag==1), exitflag = -1; end %expired iters
%Optional Output
if(verbose)

fprintf(‘-----------------------------------------------\n’);
switch(exitflag)

case -1, fprintf(‘ Maximum Iterations Exceeded\n’);
case -2, fprintf(2,‘ Failed - Cholesky Factorization Reported Errors\n’);
case -3, fprintf(2,‘ Failed - Numerical Errors Detected\n’);
case -4, fprintf(2,‘ Failed - Problem Looks Infeasible\n’);

end
fprintf(‘ Final phi: %g, mu %g [tol %g]\n’,phi,mu,tol);
fprintf(‘-----------------------------------------------\n’);

end
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A.1.2 quad mehrotra Solver

Solves a Quadratic Program (QP) of the form

minx

1

2
xTHx+ fTx

subject to: Ax ≤ b

based on an algorithm described by Stephen Wright in [338] and second order mod-

ification by Sanjay Mehrotra [217]. The algorithm implements a predictor-corrector

primal-dual infeasible-interior-point solver with optional warm-starting.

function [z,exitflag,iter,lam,t] = quad_mehrotra(H,f,A,b,maxiter,tol,verbose,
z0,lam0,t0)

% Solve quadratic programming problem using Wright’s Method & Mehrota’s
% Predictor - Corrector Method
% Minimise 1/2x’Hx + f’x
% Subject to: Ax <= b

% Copyright (C) 2011-2013 Jonathan Currie (www.i2c2.aut.ac.nz)

%Length of constraint matrix
mc = length(b);
%Number of decision variables
ndec = length(f);

%Default Args
if(nargin < 10), t = []; else t = t0; end
if(nargin < 9), lam = []; else lam = lam0; end
if(nargin < 8), z = []; else z = z0; end;
if(nargin < 7 || isempty(verbose)), verbose = 0; end
if(nargin < 6 || isempty(tol)), tol = 1e-6; end
if(nargin < 5 || isempty(maxiter)), maxiter = 200; end
%Test for Warm Start
pmax = max(max(abs([H f; A b])));
if(pmax > 1)

WARMVAL = sqrt(pmax);
else

WARMVAL = 0.5;
end
if(isempty(z)) %cold

z = zeros(ndec,1);
lam = WARMVAL*ones(mc,1);
t = WARMVAL*ones(mc,1);
wmode = 0;

elseif(isempty(lam)) %just primal
lam = WARMVAL*ones(mc,1);
t = WARMVAL*ones(mc,1);
wmode = 1;

elseif(isempty(t)) %primal + dual
t = WARMVAL*ones(mc,1);
wmode = 2;

else %all
wmode = 3;
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end

%Default Values
ascale = 1; inftol = tol*10;
exitflag = 1; cholfail = 0;
mu = t’*lam / mc; At = A’;
mr2_1 = 100; mr2 = 10; phi1 = -Inf; phi = -Inf;
%Initial Residuals
r1 = -H*z - At*lam - f;
r2 = -A*z + b;
%Linsolve options
opU.UT = true; opUT.UT = true; opUT.TRANSA = true;

if(verbose)
fprintf(‘-----------------------------------------------\n’);
fprintf(‘QuadMehrotra QP Solver [MATLAB Double Version]\n’);
switch(wmode)

case 3, fprintf(‘ Warm Start: Primal + Dual + Slack\n’);
case 2, fprintf(‘ Warm Start: Primal + Dual\n’);
case 1, fprintf(‘ Warm Start: Primal\n’);

end
fprintf(‘ %4d Decision Variables\n %4d Inequality Constraints\n’,ndec,mc);
fprintf(‘-----------------------------------------------\n’);
fprintf(‘iter phi mu sigma

alpha max(r1) max(r2)\n’);
end

for iter = 1:maxiter
%Create common matrices
ilam = 1./lam;
ilamt = ilam.*t;
lamt = lam./t;
IGA = bsxfun(@times,A,lamt); %matrix * diagonal matrix
igr2 = lamt.*r2;
RHS = r1+At*igr2;

%Solve Linear System
[R,p] = chol(H+At*IGA);
if(~p)

%exploit matrix properties for solving
del_z = linsolve (R, linsolve (R, RHS, opUT), opU);

else %Not Positive Definite
if(verbose), fprintf(2,‘\b (Cholesky Failed)\n’); end
del_z = (H+At*IGA)\RHS;
cholfail = cholfail + 1;
if(cholfail > 2)

exitflag = -2;
break;

end
%Pull back maximum step size
ascale = ascale - 0.1;

end
del_lam = -igr2+IGA*del_z;
del_t = -t - ilamt.*del_lam;

%Decide on suitable affine step-length
duals = [lam;t];
delta = [del_lam;del_t];
index = delta < 0;
if(any(index))

%solves for min ratio (max value of alpha allowed)
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alpha = 0.9995*min(-duals(index)./delta(index));
else

alpha = 0.999995;
end
%Check for numerical problems (alpha will go negative)
if(alpha < eps(1)), exitflag = -3; break; end
%Local Scaling
alpha = alpha*ascale;
%Solve for Centering Variable
mu1 = dot(lam+alpha*del_lam,t+alpha*del_t)/mc;
sigma = min((mu1/mu)^3,0.99999);

%Solve for Correction (2nd Derivative)
term = (sigma*mu - del_lam.*del_t)./t;
RHS = RHS - A’*term;
if(~p)

del_z = linsolve (R, linsolve (R, RHS, opUT), opU);
else

del_z = (H+At*IGA)\RHS;
end
del_lam = -igr2+IGA*del_z + term;
del_t = -A*del_z + r2 - t;

%Decide on suitable corrector step-length
duals = [lam;t];
delta = [del_lam;del_t];
index = delta < 0;
if(any(index))

%solves for min ratio (max value of alpha allowed)
alpha = 0.9995*min(-duals(index)./delta(index));

else
alpha = 0.999995;

end
%Check for numerical problems (alpha will go negative)
if(alpha < eps(1)), exitflag = -3; break; end
%Local Scaling
alpha = alpha*ascale;
%Sum Increments
z = z + alpha*del_z;
lam = lam + alpha*del_lam;
t = t + alpha*del_t;

%Update residuals
r1 = (1-alpha)*r1; %equiv to r1 = -H*z - At*lam - f;
r2 = -A*z + b;
%Complementarity Gap
mu = t’*lam / mc;
%Infeasibility Phi
mr2_2 = mr2_1; mr2_1 = mr2;
mr1 = max(abs(r1)); mr2 = max(abs(r2-t));
phi2 = phi1; phi1 = phi;
phi = (max([mr1,mr2]) + t’*lam)/pmax;
if(verbose)

fprintf(‘%3d %13.5g %13.5g %11.5g %11.5g %11.5g %11.5g\n’,
iter,phi,mu,sigma,alpha,mr1,mr2);

end
%Check for NaNs
if(isnan(mu) || isnan(phi)), exitflag = -3; break; end
%Check Convergence
if(mu <= tol && phi<=tol)

exitflag = 1;
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if(verbose)
fprintf(‘-----------------------------------------------\n’);
fprintf(‘ Successfully solved in %d Iterations\n Final phi: %d,

mu %g [tol %g]\n’,iter,phi,mu,tol);
fprintf(‘-----------------------------------------------\n’);

end
return

end
%Check For Primal Infeasible
if(iter > 4 && mr2/pmax > tol/10)

if((phi > phi1 && phi1 > phi2) || (abs(mr2-mr2_1)/mr2 < inftol &&
abs(mr2_1-mr2_2)/mr2_1 < inftol))
if(verbose), fprintf(2,‘\b (Primal Infeasibility Detected)\n’); end
exitflag = -4;
break;

end
end

end

%If here, either bailed on Cholesky or Iterations Expired
if(exitflag==1), exitflag = -1; end %expired iters
%Optional Output
if(verbose)

fprintf(‘-----------------------------------------------\n’);
switch(exitflag)

case -1, fprintf(‘ Maximum Iterations Exceeded\n’);
case -2, fprintf(2,‘ Failed - Cholesky Factorization Reported Errors\n’);
case -3, fprintf(2,‘ Failed - Numerical Errors Detected\n’);
case -4, fprintf(2,‘ Failed - Problem Looks Infeasible\n’);

end
fprintf(‘ Final phi: %g, mu %g [tol %g]\n’,phi,mu,tol);
fprintf(‘-----------------------------------------------\n’);

end

A.2 The jMPC Toolbox

The jMPC Toolbox [63] began as a collection of MATLAB m-files in mid 2009

and has been continuously updated through to 2013. While the existing packages

described in Section 3.5 had provided some of the functionality we were looking

for, they did not provide the full flexibility required to develop our own embedded

model predictive controller, nor test the development of our quadratic programming

algorithms.

jMPC was freely released under the BSD License in September 2009 and has

since been downloaded over 350 times by a range of international academic and

commercial users, for purposes ranging from control of vehicle suspension, UAVs

and distillation column control to research in nonlinear MPC and optimal control

and teaching in graduate courses. I maintain active support for the project, and

it is upgraded with new and improved functionality as time allows. The toolbox
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is available at http://www.i2c2.aut.ac.nz/Resources/Software/jMPCToolbox.

html, as well as supplied on the Appendix DVD.

A.2.1 Simulation Functionality

jMPC Toolbox provides the simulation environment shown in Figure A.1. A linear

MPC controller can be designed, built and simulated with either a linear or nonlinear

plant model, using MATLAB, Simulink or an accelerated jMPC engine in C. The

Figure A.1: jMPC Toolbox block diagram.

simulation can accommodate both measured and unmeasured disturbances, as well

as as measurement noise. All data (including the actual system and observed states)

are automatically saved for post processing and tuning validation. An overloaded

plot command allows the results to be viewed with a single method call on the jMPC

object.

A.2.2 Quadratic Programming Solvers

In addition to quadratic programming algorithms developed within this work (quad wright

and quad mehrotra), the toolbox also interfaces to a number of 3rd party QP solvers.

These are listed below:

1. quadprog – QP solver supplied as part of MATLAB’s Optimization Toolbox

[207].

2. qpip – Primal-dual interior point QP solver supplied with QPC [330].

3. qpas – Active-set QP solver supplied with QPC [330].

4. quad hildreth – QP solver described by Liuping Wang in [326].
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5. OOQP – Stephen Wright’s primal-dual interior point QP solver [108].

6. CLP – John Forrest’s barrier QP solver [100].

These are interfaced to allow a user to try alternative solution algorithms, or for

solving large-scale problems which the supplied solvers are not designed for.

A.2.3 Simulink Implementation

The toolbox includes a Simulink block set for implementing MPC control of Simulink

models, and real systems interfaced via an ADC/DAC to Simulink, as done in [66].

The block set includes blocks for MPC and QP solving using both raw Simulink

blocks, as well as accelerated blocks written as S Functions in C, again utilizing

high-performance linear algebra libraries.

Figure A.2: Example jMPC Simulink block diagram controlling a servo motor.

A.2.4 3D MPC Demo

Supplied with the toolbox are two demos utilizing the Simulink 3D Animation tool

for visualizing MPC on a simulated system. As shown in Figure A.3, a SolidWorks

model of the Quanser 3DOF Helicopter [265] has been converted to a VRML model,

and can be visualized using Simulink. By implementing the nonlinear Equations

Of Motion (EOM) together with the visualization, the user can realistically see the

result of their control tuning in the real-time animation.

A.2.5 MPC Graphical User Interface

For classroom teaching of MPC, a Graphical User Interface (GUI) provides a live

tuning and simulation environment. The GUI has been well received and is used in a

number of graduate control courses internationally. The GUI, shown in Figure A.4,

provides an easy to use mechanism to load transfer function or state-space models,
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Figure A.3: 3D visualization of the 3DOF Helicopter.

graphically setup the controller tuning parameters and enter system constraints.

Once ‘Start’ is clicked, the controller is built and then simulated against a selected

plant model (linear or nonlinear). The simulation is run in real-time, with the

process outputs and control inputs displayed on a scrolling figure, and the predicted

plant outputs and future control inputs shown to the right of the vertical dashed

line. These predicted outputs and future control inputs show what the MPC is

‘planning’, and aid understanding of the algorithm and its decision making process.

A.2.6 Auto-Code Generation

As detailed in Section 4.3, once the user has confirmed the tuning of their MPC

controller is satisfactory, they can then deploy it by automatically generating an

embeddable C-code implementation of the controller, in either single or double pre-

cision. In addition, a series of test-benches are automatically generated, for both

verifying the generated code on the user’s computer, as well as on their desired

target device.

A.2.7 Algorithm Performance Improvements

The MPC algorithm implemented within the jMPC Toolbox contains a number of

performance improvements to increase the achievable sampling rate, lower memory
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Figure A.4: MPC graphical user interface.

requirements and increase control performance of a deployed controller. These are

briefly described below, noting most of these are not novel and are described in

standard books or implementations of MPC, however the author cannot find another

framework which has collected all of the functionality below in a single package. This

makes the jMPC Toolbox unique in its implementation, which when combined with

the high-level approach to controller design and simulation, reinforces the valuable

contribution it makes to this field of work.

Control Move Blocking Blocking of control moves of arbitrary sized samples

blocks is built into the controller formulation, allowing a substantial decrease

in required future control moves (and thus decision variables), and still main-

tain a similar level of control performance.

Disturbance Prediction Modelling Model inputs can be identified as either un-

measured or measured disturbances, and if measured, a model can be used to

form a prediction estimation which is used when solving the optimal control

moves.

Removing Infinite Constraints As constraints may not exist on every input,

input increment or output, constraints which are not required are removed

from the control problem. This is also repeated at each sample, when the

constraint right hand side b vector is recalculated.

362



Removing Uncontrolled Outputs Outputs which are not controlled but still re-

quire constraints (i.e. states where the C matrix term is 1) can be treated

separately in the formulation and updating of the QP problem, speeding up

the solution process and reducing memory usage.

Unused Functionality Skipping Within low-level implementations of the con-

troller, functionality that is not required for a particular scenario, such as

disturbance prediction modelling or particular categories of constraints are

automatically skipped to avoid unnecessary calculation. Furthermore, for con-

trollers generated using the auto-code framework, unused functionality is not

built into the controller, further reducing code size.

Global Optimum Checking At every sample the controller checks the global un-

constrained minimum to see if it satisfies all constraints. If it does, solving

the full QP is skipped and the global solution is used. This approach substan-

tially reduces the number of QP iterations, increasing the power efficiency of

the algorithm. Furthermore, as the QP H matrix is constant throughout the

simulation, it can be factorized off-line and thus only a triangular substitution

is required at each sample.

Separate Dynamic Memory To reduce the number operations required, dynamic

QP variables (i.e. variables which change at each sample, f and b), are sep-

arated into constant components (elements which can be precalculated), and

dynamic components (elements which are dependent on the current state).

This reduces the number of computations required at each sample, as only the

dynamic elements require recalculation.

Soft Constraints In order to maintain feasibility it is generally recommended that

all output constraints be implemented as soft constraints, meaning they are

relaxed via a penalty term in the objective. This allows the constraints to be

broken, if say a large disturbance was to effect the system, but penalized so

as to minimize the constraint violation.

Warm Starting The warm starting heuristics described in Section 3.4.5.4 are used

to automatically initialize the primal, dual and slack variables at each sample.

State Estimation A linear observer is built into the controller algorithm, allowing

a Kalman filter to be designed using MATLAB’s dlqe routine and automat-

ically incorporated. This provides the ability to recover unmeasured states

and outputs (for observable systems), required for the implementation of the

controller in a real system.

Setpoint Look-ahead While typically academic in application, the controller can

utilize future setpoint information to begin moving the controlled outputs
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before a setpoint has changed.

Automatic Linearization The toolbox can accept a nonlinear model as a collec-

tion of first order Ordinary Differential Equations (ODEs) and automatically

linearize the system about an input operating point. The routine includes a

robust steady-state solution solver, allowing the user to specify only the sys-

tem inputs and it will automatically find the steady-state point and linearize

the model. This enables linear controllers to be developed from first-principle

models, simplifying the design flow, as described in Section 4.5.2.

Nonlinear Simulation Following from the above point, if a nonlinear model is

supplied to the jMPC constructor, then as well as being automatically lin-

earized, the nonlinear model can be used as the reference plant to control,

while the linearized model is used for controller design. This provides a much

more challenging simulation scenario for the controller, allowing a more robust

validation of tuning and implementation.

In addition to algorithmic improvements, the jMPC controller is implemented in

both single and double precision as C MEX functions, allowing high-speed limited

precision simulations on a development computer. Using the double precision con-

troller with a small MPC problem (2-3 decision variables, 10-15 constraints), it is

not unusual to see sampling rates exceed 1MHz on a standard desktop PC. To see

this first-hand, the reader is referred to the Oscillatory SISO MPC Example, located

in the jMPC Toolbox/Examples/Linear Examples.m set of examples. By complet-

ing MPC simulations at such a high speed, allows rapid tuning and validation of a

controller.

A.2.8 jMPC Code Example

To illustrate the functionality of the jMPC Toolbox, the design and implementation

of an MPC controller of a highly nonlinear Continuously Stirred Reactor (CSTR)

from [126] is presented. A schematic of the system is presented below in Figure A.5.

The control objective is to control the temperature of the reactor (Tr) by adjust-

ing the temperature of the cooling jacket (Tc). Both the concentration and temper-

ature of the feed (Caf , Tf) are measured disturbances, and cannot be modified by

the controller. The reactor concentration (Ca) is constrained but not controlled to

a setpoint.
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Figure A.5: CSTR example schematic.

The continuous time, ordinary differential equations of the CSTR model are:

∂Ca

∂t
=

q

V
(Caf − Ca)− σ

∂Tr

∂t
=

q

V
(Tf − Tr) +

H

Cpρ
σ +

UA

CpρV
(Tc − Tr)

where

σ = k0e
−E
RTr Ca

where the equations represent a continuously stirred tank reactor with a single re-

action from A→B, and a complete mass and energy balance.

We have defined the state vector, x, as:

x1 Concentration of A in reactor (Ca) [mol/m3]

x2 Temperature of reactor (Tr) [K]

and the output vector, y, as:

y1 Concentration of A in reactor (Ca) [mol/m3]

y2 Temperature of reactor (Tr) [K]

and input vector, u, as:

u1 Concentration of A in feed (Caf) (Measured Disturbance) [mol/m3]

u2 Temperature of feed (Tf ) (Measured Disturbance) [K]

u3 Temperature of cooling jacket (Tc) [K]

The jacket cooling temperature is limited as:

278.15 ≤ u3 ≤ 450 K

and the reactor is constrained to lie between:
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0 ≤ y1 ≤ 3 mol/m3

278.15 ≤ y2 ≤ 450 K

A.2.9 Linear MPC with Nonlinear CSTR Simulation

This example will demonstrate the functionality of the jMPC Toolbox for working

with nonlinear models. The nonlinear model above will be entered into MATLAB,

then converted to a linearized form. From the linearized model, a linear MPC

controller will be designed and tuned to control the system within a full nonlinear

simulation. The example includes algorithm functionality such as measured distur-

bance prediction modelling, state constraints and control move blocking, as well as

the option to run the simulation automatically within Simulink.

The complete code example is available on the Appendix DVD under jMPC

Toolbox/Examples/Documentation/CSTR Example.m.

A.2.9.1 Step 1 - Build Nonlinear ODE Callback Function

The first step is to write an m-file which contains the above expressions, suitable for

use with a MATLAB integrator:

function xdot = nl_cstr(t,x,u,param)
% Nonlinear CSTR model

% Assign Parameters
[q,V,k0,E,R,H,Cp,rho,UA] = param{:};

r = k0*exp(-E/(R*x(2)))*x(1);

xdot(1,1) = q/V*(u(1)-x(1)) - r;
xdot(2,1) = q/V*(u(2)-x(2)) + (H/(Cp*rho))*r + (UA)/(Cp*rho*V)*(u(3)-x(2));
end

The file, nl cstr.m, is saved in a suitable folder on the MATLAB path.

A.2.9.2 Step 2 - Build the jNL Object

The next step is to build a jNL object, which is a MATLAB class supplied with the

jMPC Toolbox for describing nonlinear models. The function above is passed as a

function handle to the jNL constructor:
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% Parameters
q = 100; % Volumetric flow rate [m^3/min]
V = 100; % Volume in reactor [m^3]
k0 = 7.2e10; % Pre-exponential nonthermal factor [1/min]
E = 7.2752e4;% Activation energy in the Arrhenius Equation [J/mol]
R = 8.31451; % Universal Gas Constant [J/mol-K]
H = 5e4; % Heat of Reaction [J/mol]
Cp = .239; % Heat capacity (J/g-K)
rho = 1000; % Density (g/m^3)
UA = 5e4; % Heat Transfer * Area [J/min-K]

% Output Matrix
C = eye(2);

% Nonlinear Plant
param = {q,V,k0,E,R,H,Cp,rho,UA}; %parameter cell array
Plant = jNL(@nl_cstr,C,param);

Note we have passed the parameters as a cell array, and also retained the linear

C output matrix for now. This could also be a function handle to a nonlinear output

function.

A.2.9.3 Step 3 - Linearize the jNL Object

In order to use the nonlinear plant with our linear MPC controller, we must linearize

the ODE function and generate the required linear state space model. The system is

linearized about an unsteady operating point as specified in the original reference:

% Initial U
CAf = 1; % Feed Concentration [mol/m^3]
Tf = 350; % Feed Temperature [K]
Tc = 300; % Coolant Temperature [K]

% Linearize Plant
u0 = [CAf Tf Tc]’;
xop = [0.5 350]’; %unstable operating point [Ca Tr]
Model = linearize(Plant,u0,xop,‘ode15s’)

Note in this instance we have specified to use ode15s for solving the ODE during

linearization. While this is not used in this particular scenario (we are not solving

for a steady state here), it will be used for all future simulations of this jNL plant

(instead of the default ode45). This is due to this particular ODE being quite stiff.

A.2.9.4 Step 4 - Create the Controller Model

Returned from the routine linearize is a MATLAB lti object containing the lin-

earized model of our system. This must be converted to a jSS object, and discretized
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to be used to build an MPC controller:

% Build jSS object & discretize @ Ts = 0.05s
Model = jSS(Model);
Ts = 0.05; %sample time
Model = c2d(Model,Ts)

In order to assign the measured disturbances in the model, we use the following

method:

% Set Measured Disturbances (Caf,Tf)
Model = SetMeasuredDist(Model,[1 2]); %Specified indices within B

A.2.9.5 Step 5 - Setup MPC Specifications and Options

The MPC Controller design components are specified below, including prediction

and control horizons, constraints, tuning and general options. Note the reactor

concentration has an output weighting of 0, indicating this output is not controlled to

a setpoint, but we still wish to place constraints on it (effectively a state constraint).

This modification reduces the size of the QP being solved, increasing the efficiency

of the controller.

% Horizons
Np = 30; %Prediction Horizon
Nc = [10 10 10]; %Blocking moves

% Constraints
con.u = [278.15 450 20]; %umin umax delumax
con.y = [0 3; %ymin1 ymax1

278.15 450]; %ymin2 ymax2

% Controller Weighting
uwt = 1;
ywt = [0 5]’;

% Discrete Observer with W,V = eye()
Kest = dlqe(Model);

% Set Options
opts = jMPCset(‘InitialU’,u0,... %Set initial control input at lin point

‘InputNames’,{‘Feed Con’,‘Feed Temp’,‘Jacket Temp’},...
‘InputUnits’,{‘mol/m^3’,‘K’,‘K’},...
‘OutputNames’,{‘Reactor Con’,‘Reactor Temp’},...
‘OutputUnits’,{‘mol/m^3’,‘K’})
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A.2.9.6 Step 6 - Setup Simulation Options

Next we must set up the simulation environment for the specified MPC controller:

% Simulation Length
T = 300;

% Setpoint (CA)
setp = zeros(T,1);
setp(:,1) = xop(2);
setp(50:end,1) = xop(2)+25;
setp(200:end,1) = xop(2)-25;

% Measured Disturbances (Caf Tf)
mdist = zeros(T,2); mdist(:,1) = CAf; mdist(:,2) = Tf;
mdist(130:140,1) = CAf+0.1; %Step disturbance of Caf
mdist(220:260,2) = Tf-linspace(0,20,41); %Slow cooling of Tf
mdist(261:end,2) = Tf-20; %Tf final

% Set Initial values at linearization point
Plant.x0 = xop;
Model.x0 = xop;

A.2.9.7 Step 7 - Build the MPC Controller and Simulation Options

Now we have specified all we need to build an MPC controller and simulation envi-

ronment, we call the two required constructor functions:

%-- Build MPC & Simulation --%
MPC1 = jMPC(Model,Np,Nc,uwt,ywt,con,Kest,opts);
simopts = jSIM(MPC1,Plant,T,setp,[],mdist);

MPC1 is created using the jMPC constructor, where the variables we have declared

previously are passed as initialization parameters. Simulation options simopts is

created similarly, except using the jSIM constructor.

A.2.9.8 Step 8 - Run the MPC Simulation and Plot Results

With the controller and environment built, we can run the simulation, and plot the

results. We use Simulink as the evaluation environment as it runs significantly

faster than raw MATLAB for nonlinear simulations:

%-- Simulate & Plot Result --%
simresult = sim(MPC1,simopts,‘Simulink’);
plot(MPC1,simresult,‘detail’);
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Figure A.7: CSTR simulation inputs (see also Figure A.6).
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As shown in Figures A.6 and A.7 the system shows good control with minimal

overshoot even for large step changes. This particular problem presents a consider-

able challenge to linear MPC based on the unstable operating point and significant

nonlinearities of the system. However correct tuning can give good results, even

when responding to disturbances.

A.3 Random MPC QP Generation

The following function creates an array of quadratic programs resulting from random

model predictive controllers, to enable testing of quadratic programming solvers with

real MPC optimization problems. Each controller is built with a random stable,

discrete model, using the Control Systems Toolbox function drmodel, with all inputs

and outputs tightly constrained. From the controller definition, a single simulation

step is taken, and the resulting quadratic program saved into an array. This allows

the function to create any number of arbitrarily sized quadratic programs, that all

result from a model predictive control formulation.

function [QP,MPC] = mpc_qps(Np,Nc,n_in,n_out,states,no,scale)
%MPC_QPS Create QP problems based on an MPC formulation

if(nargin < 7), scale = 1; end
if(nargin < 6 || isempty(no)), no = 10; end

%Static Constraints
con.u = [-1*ones(n_in,1) 1*ones(n_in,1) 0.1*ones(n_in,1)];
con.y = [0*ones(n_out,1) 1.01*ones(n_out,1)];
%Static Weighting
uwt = ones(n_in,1);
ywt = ones(n_out,1);
%Static Variables
yp = zeros(n_out,1);
setp = ones(1,n_out);
warningstate1 = warning(‘off’, ‘jMPCToolbox:SETP’);

%Preallocate Return Variable
QP.H = zeros(Nc*n_in,Nc*n_in,no);
QP.f = zeros(Nc*n_in,no);
QP.A = zeros(4*Nc*n_in+2*Np*n_out,Nc*n_in,no);
QP.b = zeros(size(QP.A,1),no);
MPC = cell(no,1);
opts = jMPCset(‘ScaleSystem’,scale);

for k = 1:no
%Create Random Model
[A,B,C,D] = drmodel(states,n_out,n_in);
Model = jSS(A,B,C,zeros(n_in,n_out),0.1);
Model.x0 = zeros(states,1);
%-- Build MPC --%
MPC1 = jMPC(Model,Np,Nc,uwt,ywt,con,[],opts);
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%Allocate initial values
sModel = MPC1.Model;
u = MPC1.initial.u;
del_xm = sModel.x0;

%State Estimator Update
del_xm = MPC1.state_est.IKC*del_xm + MPC1.state_est.Kest*yp;
%Update Dynamic RHS of QP Problem
[b,f] = MPC1.update_rhs(del_xm,u,setp,0,k);

%Save dynamic QP variables
QP.H(:,:,k) = MPC1.QP.H;
QP.f(:,k) = f;
QP.A(:,:,k) = MPC1.constraints.A;
QP.b(:,k) = b;
MPC{k} = MPC1;

end

%Restore warning state
warning(warningstate1)

A.4 Additional Embedded MPC Detail

The following sections expand on the material presented in Chapter 4, providing

additional detail on our initial investigation into FPGA based embedded MPC, as

well as specifics of the linear algebra library developed and how a processor-in-the-

loop implementation is run within the jMPC Toolbox.

A.4.1 Initial Xilinx FPGA Implementation

As described in 4.2.1.5 the initial target decision was to pursue an FPGA route,

motivated by a desire to parallelize the MPC algorithm. By exploiting the available

resources on the FPGA, specifically the multiple hardware multipliers, we intended

to develop a soft-processor with co-processor based architecture as shown in Figure

A.8. The soft-processor implemented was a MicroBlaze, a 32bit generic design that

is provided at no cost by Xilinx in ISE, and it communicated to a custom hardware

accelerator acting as a co-processor for linear algebra functions.

As shown in Figure A.8, the architecture leveraged parallelism in two ways;

firstly by effectively providing two co-processors in parallel, and secondly by utilizing

parallelized linear algebra routines for functions such as matrix × vector or element-

wise operations. By exploiting the fact that not all operations in the quad wright

algorithm were required to complete sequentially, it was possible to at least theorize

this two-level parallel architecture.
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Figure A.8: Initial embedded MPC FPGA architecture design.

In practice the implementation of this algorithm was extremely slow going, with

the hardware written manually in Verilog, a language similar to C. An appreciation

for the auto-coding tools such as Handel-C used in [186] was quickly gained. Af-

ter three months development we had completed a parallelized implementation of a

matrix × vector module, utilizing a pipelined multiply-accumulate stage and three

single precision multipliers and adders. In addition the Cholesky solver was imple-

mented in Verilog, the vectorized element-wise functions written and the memory

multiplexing and management auxiliary functions written. The entire system was

automatically verified against a MATLAB implementation, by utilizing Verilog test

bench files, binary files to provide test data and all automatically called from within

a MATLAB script.

In addition to the co-processor development we were also developing the Mi-

croBlaze processor and the Fast-Simplex-Link (FSL) bus which was to act as the

communication channel between the soft-processor and the co-processor in hardware.

This link was successfully tested and was able to transfer data from the processor at

50MHz to the co-processor memory, which was then operated on and transmitted

back to the processor.

A comment made by my supervisor during this development which ultimately

shaped the future of my thesis was “life is too short to be looking at simulations in
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picoseconds”, with reference to endless timing diagrams I was using for behavioural

simulation and verification (see Figure A.9). It was clear that this development was

too time consuming compared to the implementation in C (which took a day), and

I was already running out of resources on the Spartan-3E FPGA which meant I was

unable to exploit parallelism to the degree I had originally intended.

Figure A.9: FPGA behavioural simulation timing diagram for the memory multi-
plexer on the Spartan-3E.

Ultimately the reasons why the FPGA route was not pursued are summarised

as follows (listed in decreasing order of the size of the hurdle):

Development Time As identified the development time for writing an HDL imple-

mentation of MPC is significantly longer than that of a MCU. This is based not

only on the language, but also the constructs required. For example all memory

access must be handled manually, at low level, meaning a substantial amount

of my time was devoted to efficient memory multiplexing between floating

point operators. In addition, parallelization introduced race-conditions which

required time consuming verification by analyzing timing plots and ensuring

all operations were completed in the correct order. As noted below however,

without a timing simulation this was only an estimation, and problems could

be found later even if the behavioural simulation showed no errors.

FPGA Resources The Spartan-3E FPGA, even at the time, was a small, low-cost

FPGA. This meant the availability of resources such as gates / slices / logic

cells as well as block RAM and multipliers was very limited. In addition, the

maximum clock rate was limited to around 150MHz for memory access, and

50MHz for floating point calculations. While proposals were put forward for a
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larger, more powerful FGPA for this work, they never eventuated and we were

constrained to a simple, sequential design platform with limited scope for a

state-of-the-art implementation.

Compilation Time Compiling an HDL description of even the simple co-processor

we had designed began taking an increasing amount of time, where times

around 5-10 minutes were becoming standard. This was due to the complex

compilation process requiring synthesis, translation, map, place & route and

finally bitstream generation, all of which was (and still is) computationally

intensive. In addition, given the current architecture design, it was likely that

the design would require re-compilation each time the controller was re-tuned,

meaning fine-tuning could take hours on a real system.

Verification Simulation For accurate verification of an FPGA design a structural

and/or timing simulation must be run. These are both post-synthesis simu-

lations, as opposed to behavioural simulations which are prior to synthesis.

Xilinx ISE comes with the free HDL simulation tool ISim, which provides a

behavioural simulation tool, but not the more accurate post-synthesis simu-

lations. As mentioned above, given we did not have access to more powerful

hardware and we could not verify our algorithm on hypothetical hardware us-

ing ModelSim (or a similar post-synthesis verification package), we could not

realistically continue development.

Ease of Deployment FGPA Printed Circuit Board (PCB) designs are notoriously

complicated, requiring multi-layer (typically 6 or more) boards. In addition,

the passive electronics and track layout design require careful consideration of

noise and filtering which presents quite a challenge for the hardware designer.

In contrast an MCU is comparatively much easier to design for, typically only

requiring a dual-layer board and a handful of external passive components.

Note this factor was considered due to the intention to deploy the embedded

MPC controller on an autonomous vehicle, which meant a custom hardware

design would be required.

It is worth noting that the landscape has changed now, with tiny FPGA devel-

opment boards now available that contain considerable resources at very reasonable

prices. However the development obstacles still exist, meaning significant develop-

ment time is still required to develop an MPC solution in HDL. A possible solution

to this is the hybrid MCU/FPGA devices that are now available (such as the Xil-

inx Zynq), most of which contain an ARM processor and small FPGA, allowing a

custom co-processor to be developed in HDL along with an industry standard MCU

programmed in C.
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A.4.2 Linear Algebra Library

As described in Section 4.4.2, to deploy the MPC and QP algorithms to an embedded

microcontroller would require the development of a custom linear algebra library.

This task in itself is not novel, but the implementation of such a library requires an

efficient, hand-coded and hand-optimized set of routines, given that these functions

are the most computationally intensive of both algorithms. To illustrate the efficient,

hand-optimized features included in a typical custom routine, consider the jtmv

routine which performs the following operation

y = aATa+ by

where a and b are scalars, a and y are vectors and A is a matrix. The code below

implements this operation within C:

//JTMV Matrix (Transposed) * Vector [a*matA^T * vecA + b*y]
void jtmv(const intT rows, const intT cols, const realT a,

const realT *matA, const realT *vecA, const realT b,
realT *y)

{
intT i;
for(i = 0; i < rows; i++){

realT x = 0.0;
intT k = cols;
while(k--)

x += a * *matA++ * *vecA++;

y[i] = x + b*y[i];
vecA-=cols;

}
}

The hand-coded optimizations in the jtmv routine include:

• In-place transpose and scalar factors enable more powerful and succinct func-

tion calls than available via MATLAB.

• Pointer arithmetic for indexing through the matrix/vector arrays.

• The dot-product is done in-place rather than calling another function.

• Removal of unnecessary arguments from the original BLAS function (i.e. dgemv),

including LDA, INCX, INCY for simpler implementation.

• Separate routines for transposed arguments to allow faster internal iterations.

• Arguments identified as constant to allow the compiler to generate additional

optimizations.
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• Contiguous memory utilized where possible when calculating inner loops.

• Experimentation with skipping multiplication by zero during the inner loop

was found to actually increase execution time. This is most likely due to a

multiplication only requiring a single cycle, versus a comparison and possible

code branch. In addition, the problems being solved are predominately dense,

so that the benefit was always expected to be minimal.

In other implementations of QP solvers such as CVXGEN [210] and MATLAB’s

auto-coded implementations [203], matrix-matrix and matrix-vector routines will

typically be unrolled. This means all loops (or in some situations, just the inner

loop(s)) are written out explicitly, eliminating the need for a for loop. The result

is a much larger, but typically much faster numerical routine.

The decision to not unroll loops in numerical functions within this work has been

made based on the following points:

• Profiling of loop unrolling was not found to noticeably benefit the algorithm

when run on the embedded system, and in some cases performance actually

deteriorated. It appeared the embedded system compiler was already imple-

menting an efficient set of instructions and thus further optimizations were

not advantageous.

• Based on the little to no speed improvement recorded, increasing the memory

footprint of the controller by loop unrolling was deemed not worth pursuing

for the processors of interest.

• For a standalone controller implementation it is not feasible to recompile on-

chip the algorithm, thus when tuning the controller the algorithm must be able

to cope with larger or smaller systems without fundamental code changes. In

addition, generating unrolled implementations can be extremely time consum-

ing, such as the case for CVXGEN. For a system with 16 decision variables and

104 constraints, generating the solver took over 6 minutes to generate, down-

load and compile. It comparison it only takes seconds for the quad wright or

quad mehrotra algorithm to compile, it will always be significantly smaller,

it will work on any problem size, and it is generally faster for the problems of

interest.

A.4.2.1 formLinSys Function

Within the linear algebra library, the most computationally intensive operation was

forming the left hand side of the set of linear equations within each quadratic pro-
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gram iteration, as identified in Section 3.4.5.6. This step has been targeted with

a purpose-written routine, formLinSys, to exploit special characteristics of within

the matrices involved in this expression.

The function formLinSys performs an in-place calculation of the linear left hand

side (Equation 3.60 in Section 3.4.5.6) on top of H, and is on average 50% faster

than if Equation 3.60 were implemented using a banded matrix multiplier, and

300%-500% faster than if we were using a general matrix multiplier.

void formLinSys(const realT *A, const realT *lamt, const intT ndec,
const intT mc, realT *RQP)

{
uintT i, j;
realT *lt = (realT*)lamt;
realT *Ai = (realT*)A;
for(i = 0; i < ndec; i++) {

realT *Aj = Ai;
realT *Rj = &RQP[i+i*ndec];
for(j = i; j < ndec; j++) {

realT sum = *Rj;
intT k = mc;
while(k--)

sum += *Ai++ * *Aj++ * *lt++;

*Rj = sum;
Rj += ndec;
Ai -= mc;
lt -= mc;

}
Ai += mc;

}
}

Note we also experimented with precalculating some (or all) of the terms resulting

from MTM however it was determined the substantial increase in memory required

did not offset the gain in performance. In addition, numerical conditioning of the

resulting matrix became an issue when implemented in single precision.

A.4.3 TI C28343 Linker Command File

The linker file for implementing embedded MPC controllers on the TI C28343 is

listed below. The file is designed to allow larger controllers to be implemented

within the high-speed, 0-wait memory available on the IC, as described in Section

4.4.3.2.

MEMORY
{
PAGE 0 :

/* BEGIN is used for the "boot to SARAM" bootloader mode */
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/* Boot to M0 will go here */
BEGIN : origin = 0x000000, length = 0x000002
RAMM0 : origin = 0x000052, length = 0x0003AE
// Switch tables, ram funcs, hardly used
RAML0 : origin = 0x008000, length = 0x000200
// Program code (8KB is safe)
RAML1 : origin = 0x008200, length = 0x002000
/* XINTF zone 7 - program space */
ZONE7A : origin = 0x200000, length = 0x00FC00
/* Reserved - for compatibility to legacy C28x designs. */
CSM_RSVD : origin = 0x33FF80, length = 0x000076
/* 128-bit password locations */

CSM_PWL_PROG : origin = 0x33FFF8, length = 0x000008
IQTABLES : origin = 0x3FE000, length = 0x000b50
IQTABLES2 : origin = 0x3FEB50, length = 0x00008c
FPUTABLES : origin = 0x3FEBDC, length = 0x0006A0
BOOTROM : origin = 0x3FF27C, length = 0x000D44
RESET : origin = 0x3FFFC0, length = 0x000002

PAGE 1 :
/* Part of M0, BOOT rom will use this for stack */
BOOT_RSVD : origin = 0x000002, length = 0x000050
/* on-chip RAM block M1 */
RAMM1 : origin = 0x000400, length = 0x000400
// Global vars
RAML2 : origin = 0x00A200, length = 0x003000
// Constants (1 wait hit for 14000 and above)
RAML3 : origin = 0x00D200, length = 0x00AE00
// Initial values of global vars
RAMH0 : origin = 0x300000, length = 0x010000
/* XINTF zone 7 - data space */
ZONE7B : origin = 0x20FC00, length = 0x000400

}

SECTIONS
{

codestart : > BEGIN, PAGE = 0
ramfuncs : > RAML0, PAGE = 0
.text : > RAML1, PAGE = 0
.pinit : > RAML0, PAGE = 0
.switch : > RAML0, PAGE = 0
.stack : > RAMM1, PAGE = 1
.cinit : > RAMH0, PAGE = 1
.ebss : > RAML2, PAGE = 1
.econst : > RAML3, PAGE = 1
.esysmem : > RAMM1, PAGE = 1
IQmath : > RAML1, PAGE = 0
IQmathTables : > IQTABLES, PAGE = 0, TYPE = NOLOAD
FPUmathTables : > FPUTABLES, PAGE = 0, TYPE = NOLOAD

ZONE7DATA : > ZONE7B, PAGE = 1
.reset : > RESET, PAGE = 0, TYPE = DSECT /* not used */
csm_rsvd : > CSM_RSVD PAGE = 0, TYPE = DSECT
csmpasswds : > CSM_PWL_PROG PAGE = 0, TYPE = DSECT

}
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A.4.4 Processor-In-The-Loop EmbeddedMPC with the jMPC

Toolbox

One of the powerful validation features of the jMPC Toolbox and its auto-code

generation framework is the ability to run a PIL implementation, as described in

Section 4.5. This allows the generated controller to be automatically deployed to the

target hardware, and then run in a simulation loop with the development PC acting

as the plant to control. This provides a quick means to check the controller has

compiled correctly on the target hardware, as well as the performance achievable on

the target. The code example below shows the process for generating, deploying and

validating an MPC controller using the jMPC Toolbox and PIL implementation.

To begin, the jMPC controller is defined in MATLAB, as per a normal con-

troller, however rather than simulating it, the framework generates a C version of

the controller.

% Dynamic System to Control
Gs = tf(2,[0.7 0.2 1]);
Gd = c2d(Gs,0.1);
% Create jSS Objects (Model Format)
Plant = jSS(Gd);
Model = Plant; %No Model/Plant Mismatch

% Tuning
Np = 8; %Prediction Horizon
Nc = [4 2 2]; %Blocking Moves
uwt = 0.5; %DeltaU Weights
ywt = 0.5; %Y Weights
% Constraints
con = [];
con.u = [-inf inf 0.2]; %In1 [umin umax delumax]
con.y = [-inf 2]; %Out1 [ymin ymax]
% Estimator Gain
Kest = dlqe(Model); %Discrete Observer with W,V = eye()

% Simulation Setup
T = 200; %Length of Simulation
setp = ones(T,1); %Setpoint
setp(75:150) = 0.5;

% MPC Controller Options
opts = jMPCset(‘QPSolver’,‘Mehrotra’,‘Single’,1);

% Build MPC & Simulation
MPC1 = jMPC(Model,Np,Nc,uwt,ywt,con,Kest,opts);
simopts = jSIM(MPC1,Plant,T,setp);
% Assign Serial Device
simopts.opts.serialdevice = serial(‘COM6’,‘BaudRate’,1250000);
% Generated Embedded MPC Controller
eopts = jMPCeset(‘arch’,‘c2000’); %Set for TI C28343
embed(MPC1,simopts,eopts);
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At this point the jMPC controller has been built and code has been generated to

implement it. Other than a setup routine (to initialize the serial port, timers, etc),

and providing the four utility routines as described in Section 4.3.1.1, the target’s

main function can be as simple as shown in the code snippet below:

void main(void)
{

setup(); //Initialize GPIO, Serial Port, uS Timer
PILSim(); //Enter PIL MPC Simulation

}

All other required functions have been automatically generated, and correspond-

ing communication routines on the development PC are included with the jMPC

Toolbox. Once the code has been compiled and set to run on the target, the PIL

verification can be initiated with the following MATLAB command:

simpil = sim(MPC1,simopts,‘PIL’)

Once the PIL run has completed the entire simulation specified within the jSIM

object, the results are automatically returned via the results object simpil. To

verify these results against the same controller, but run instead as a MEX imple-

mentation on the same computer, the following commands can be used:

simdev = sim(MPC1,simopts,‘MEX’);
compare(MPC1,simdev,simpil)

The jMPC method compare will automatically generate the comparative plot shown

in Figure A.10. It will also optionally output the calculated numerical deviations

which can be used to quickly determine a pass or fail.

Using the auto-code generation and PIL framework included as part of the jMPC

Toolbox on the above example, the code generation process took 1.2 seconds. This

includes automatic verification of the QP solver on the development computer (which

can be optionally disabled). Compiling and downloading the controller onto the

target took approximately 5 seconds, and running the PIL verification run took

just over 4 seconds to simulate 200 samples. While this example is admittedly very

small, it shows this process is fast and simple enough to allow rapid development

and verification using the target itself.

For the reader’s reference, the controller implemented in this example required

9KB of Flash memory (obtained via the compiler .map file), 1.3KB of RAM and

achieved a maximum sampling rate of 2.7kHz. The bottleneck in the PIL simulation
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Figure A.10: Example PIL comparison plot: MEX vs TI C28343. Note that in
single precision that ǫ is approximately 1× 10−7.

is the communication channel between the development computer and the target,

where overhead on the PC side causes noticeable delays.
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Appendix B

Utility Modelling

Thermodynamics and Models

This appendix chapter provides additional detail to the thermodynamics and mod-

els developed in Chapter 5. Implementation details are provided, together with

examples of the performance of the models developed.

B.1 JSteam

JSteam is the name given to a steam utility modelling framework developed within

this work. It includes thermodynamic functions for water and steam, as well as

fuel gas and combusted product streams. In addition, it provides a suite of simple

models for estimating the performance of key utility system unit operations. The

library together with the associated JSteam MATLAB Toolbox is available at http:

//www.inverseproblem.co.nz/Software/JSteamDLL.html, as well as supplied on

the Appendix DVD.

B.1.1 JSteam C++ Implementation Example

The code example below illustrates the implementation of a typical IAPWS ther-

modynamic routine in C++. Note several hand-coded optimizations based on sub-

stantial profiling have been utilized to further increase the speed of the calculation.

These include loop-unrolling, precalculation of common terms (for example n× J),

and utilizing the integer power routines where applicable. The function implements

Equation 5.2 in Section 5.3.1.1.
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//Specific Enthalpy in Region 1 as a Function of P, T
double H = 0;
double tau = 1386.0/t;
double tau_g = tau-1.222;
double pi_g = 7.1-p/16.53;
int i = r1f_no;
while(i)
{

--i; H += r1f_nJ[i]*pow(pi_g,r1f_I[i])*pow(tau_g,r1f_J[i]-1);
if(i>3){

--i; H += r1f_nJ[i]*pow(pi_g,r1f_I[i])*pow(tau_g,r1f_J[i]-1);
--i; H += r1f_nJ[i]*pow(pi_g,r1f_I[i])*pow(tau_g,r1f_J[i]-1);
--i; H += r1f_nJ[i]*pow(pi_g,r1f_I[i])*pow(tau_g,r1f_J[i]-1);
--i; H += r1f_nJ[i]*pow(pi_g,r1f_I[i])*pow(tau_g,r1f_J[i]-1);}

if(i>2){
--i; H += r1f_nJ[i]*pow(pi_g,r1f_I[i])*pow(tau_g,r1f_J[i]-1);
--i; H += r1f_nJ[i]*pow(pi_g,r1f_I[i])*pow(tau_g,r1f_J[i]-1);
--i; H += r1f_nJ[i]*pow(pi_g,r1f_I[i])*pow(tau_g,r1f_J[i]-1);}

if(i>1){
--i; H += r1f_nJ[i]*pow(pi_g,r1f_I[i])*pow(tau_g,r1f_J[i]-1);
--i; H += r1f_nJ[i]*pow(pi_g,r1f_I[i])*pow(tau_g,r1f_J[i]-1);}

if(i>0){
--i; H += r1f_nJ[i]*pow(pi_g,r1f_I[i])*pow(tau_g,r1f_J[i]-1);}

}
H *= tau*0.461526*t;
break;

B.1.2 JSteam Water and Steam Functions

The complete JSteam water and steam thermodynamic package includes the routines

listed in Table B.1, where the function name format is Output Input1 Output2. For

example HPT calculates enthalpy (H), as a function of pressure (P) and temperature

(T). All of the functions listed are derived from regressions within the respective

IAPWS formulations.

Table B.1: JSteam water & steam thermodynamic functions. Note units are cus-
tomizable as per the implementation.

Property Symbol Functions
Isobaric Heat Capacity Cp CpPH, CpPS, CpPT, CpPX, CpTX

Isochroic Heat Capacity Cv CvPH, CvPS, CvPT, CvPX, CvTX

Specific Enthalpy H HPT, HPS, HTS, HPX, HTX

Specific Entropy S SPH, SPT, SPX, STX

Pressure P PHS, PTS, PsatT

Quality X XPH, XPS, XTS

Temperature T THS, TPH, TPS, TSX, TsatP

Thermal Conductivity K KPT

Dynamic Viscosity µ UPT

Volume V VPH, VPS, VPT, VPX, VTX
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B.1.3 JSteam Composition Functions

Table B.2 lists the thermodynamic methods available within the Composition object,

including where they are derived from. Table B.3 lists the combustion methods

included, allowing the object to predict the heat released during combustion of a

fuel gas stream, as well as the resulting combustion products.

Table B.2: JSteam composition class thermodynamic methods.

Function Unit Property Thermo Package
HcT kJ/kmol Enthalpy NASA Glenn [229]
ScT kJ/(kmol K) Entropy NASA Glenn [229]
CpcT kJ/(kmol K) Heat Capacity NASA Glenn [229]
TcH ◦C Temperature (Iterated) NASA Glenn [229]
HcPT kJ/kmol Enthalpy Peng-Robinson [245]
ScPT kJ/(kmol K) Entropy Peng-Robinson [245]
TcPH ◦C Temperature (Iterated) Peng-Robinson [245]
TcPS ◦C Temperature (Iterated) Peng-Robinson [245]
KcT W/(m K) Thermal Conductivity Carl Yaw [56]
UcT µPa s Viscosity Carl Yaw [56]
NHV kJ/kmol Net (Lower) Heating Value VMGThermo [319]
GHV kJ/kmol Gross (Higher) Heating Value VMGThermo [319]
MW g/mol Molecular Weight NASA Glenn [229]

Table B.3: JSteam composition class combustion methods.

Function Description
StoichCombust Stoichiometrically Combust Current Object

(Used for two methods below)
Combust Combust Object Given Inlet Enthalpy, Inlet Mole Flow

and Outlet Temperature and Calculate Duty
AdCombust Adiabatically Combust Object Given Inlet Enthalpy,

Inlet Mole Flow and Calculate Outlet Enthalpy
InExcessO2 Calculate Inlet (Before Combustion) Excess O2 Fraction

(Wet Basis)
StackO2 Calculate Stack (After Combustion) O2 Mole Fraction

(Wet Basis)
SolveAirMassF Solve Mass Flow of Air Required to Match Specified

Inlet Excess O2 or Stack O2 Fraction
SolveAirMoleF Solve Mole Flow of Air Required to Match Specified

Inlet Excess O2 or Stack O2 Fraction
SolveFuleMoleF Solve Mole Flow of Fuel Required to Match Specified

Stack O2 Fraction
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B.1.4 JSteam Composition Class Example

The code snippet below illustrates the use of the JSteam Comp object, including

thermodynamic and combustion methods. The example below is common to the

internal calculation procedure used within the fuel gas unit operations, as described

in Section 5.3.5.

//Create JSteam Object
JSteam *JStm = new JSteam();
//Create Composition Objects
Comp *Fuel = new Comp();
Comp *Air = new Comp();

//Fill In Fraction Details
vector<double> FuelFrac = Fuel->CreateFracVec();
FuelFrac[(int)JSteam::Methane] = 0.8;
FuelFrac[(int)JSteam::Ethane] = 0.15;
FuelFrac[(int)JSteam::Propane] = 0.05;
Fuel->SetMoleFrac(FuelFrac);
Air->SetAsAir(); //N2 0.79, O2 0.21

//Determine Air Mole Flow for combustion with 10% excess O2
double fuelM = 2, airM, duty;
airM = Fuel->SolveAirMoleF(Air,0.1,0,fuelM);

//Mix Compositions into Combustible Stream
Comp *FuelAir = Fuel->MixMole(Air,fuelM,airM);
double inH = FuelAir->HcT(30.0); //Fuel Temp of 30C

//Combust Composition and Calculate Duty
Comp *CompProd = FuelAir->Combust(inH,200,fuelM+airM,&duty);

B.1.5 Fuel Gas Unit Operation Examples

The following examples are intended to demonstrate that the models developed in

Section 5.3.5 provide realistic operating results.

B.1.5.1 Furnace

A typical output of the Furnace unit operation model is shown in Table B.4 for an

input fuel gas composition of 100% CH4.

B.1.5.2 Fired Boiler

A typical output of the Fired Boiler unit operation model is shown in Table B.5 for

an input fuel gas composition of 100% CH4.
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Table B.4: Example furnace model results.

Input Value Output Value
QFurnace 30 MW MFuel 0.65 kg/s
TAir 30◦C MAir 11.69 kg/s
TFuel 30◦C ηFurnace 92.69%
TStack 200◦C MStack CO2 1.12 kg/s
FStack O2 1% (Mole)

Table B.5: Example fired boiler model results.

Input Value Output Value
HBFW 250 kJ/kg HSteam 3214.4 kJ/kg
MSteam 10 kg/s HBD 1087.4 kJ/kg
TSteam 400◦C MBFW 10.1 kg/s
PSteam 40 bar MAir 11.59 kg/s
TAir 30◦C MFuel 0.64 kg/s
TFuel 30◦C QBoiler 32.07 MW
TStack 200◦C ηBoiler 92.69%
FBD 1% MStack CO2 1.11 kg/s
FStack O2

1% (Mole)

B.1.5.3 Gas Turbine

A typical output of the Gas Turbine unit operation model is shown in Table B.6 for

an input fuel gas composition of 100% CH4.

Table B.6: Example gas turbine model results.

Input Value Output Value
WGTG 15 MW MFuel 0.86 kg/s
ηGTG 35% MAir 53.71 kg/s
TAir 30◦C MExhaust 54.57 kg/s
TFuel 30◦C MStack CO2 1.52 kg/s
TExhaust 500◦C
PCompressor 20 bar

B.1.5.4 Heat Recovery Steam Generator

An example of the base load HRSG is shown in Table B.7. The unit is connected

to a 15MW 35% efficient GTG with an exhaust temperature of 500◦C running on

100% CH4.

When operated in maximum firing mode, the example listed in Table B.7 pro-
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Table B.7: Example base load HRSG model results.

Input Value Output Value
HBFW 250 kJ/kg MSteam 6.07 kg/s
TSteam 400◦C TStack 200◦C
TMinStack 200◦C ∆TEconomiser 37.14◦C
TMinDT 30◦C ∆TSuperheater 100◦C
PSteam 40 bar MStack CO2 1.52 kg/s
FBD 1%

duces a maximum steam mass flow of 41.3 kg/s which results in approach tempera-

tures of 452.8◦C and 1400◦C for the economiser and superheater respectively, as well

as a mass flow of 4.94 kg/s of CO2 exiting via the stack. In order to generate this

extra steam, 2.12 kg/s of Methane is required for supplementary firing, in addition

to the 0.86 kg/s required by the gas turbine.

B.1.6 JSteam Excel Add-In

The key design focus of the package is to utilize Excel is an existing front-end that

many engineers are familiar with, and can drive sufficiently well. In this way a

dedicated Graphical User Interface (GUI) did not have to be built, and the JSteam

package could slot in as a standard Excel Add-In, as shown in Figure B.1.

Figure B.1: JSteam Excel ribbon interface.

Using graphics supplied with the add-in, together with standard Excel drawing

functionality, a user can create a utility system Process Flow Diagram (PFD) in a

matter of minutes, as shown in Figure B.2.

To enter the underlying unit operation models, a function assistant was cre-

ated which provides a graphical method to insert complex functions automatically.

This interface is shown in Figure B.3. Alternatively the user can enter the JSteam

functions in the same fashion as standard Excel functions, as shown in Figure B.4.

Following the JSteam modelling guide, a user completes the system mass and

energy balance by entering known plant measurements and connecting the unit

operations using standard Excel cell references. To converge the model, the built-in
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Figure B.2: JSteam Tutorial #1 PFD [62].

Figure B.3: JSteam Excel Function Assistant.

Figure B.4: JSteam Excel function call.
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Excel nonlinear solver iterates to solve for a valid operating point, given typical

degrees of freedom such as boiler feed water mass flow and deaerator steam supply.

A completed PFD is shown in Figure B.5.

Figure B.5: JSteam Tutorial 1 model.

B.2 Detailed Part-Load Model Examples

The following subsections illustrate the use of the detailed part-load utility models

developed, including typical regressed parameters and part-load performance.

B.2.1 Steam Turbine

An example model output for a 1500kW back pressure steam turbine is shown in

Figure B.6. The turbine has a inlet of 400◦C, 50 bar steam, and an outlet of 10 bar.

As expected, the output shaftwork is proportional to the mass flow of steam through

the turbine, while the output enthalpy is approximately inversely proportional to

the isentropic efficiency. Fitted parameters for Equation 5.37 are shown in Table

B.8.

Table B.8: Turbine model example fitted parameters.

αs 202.23
βs 1.3666
αh -601.9
βh 0.3105
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Figure B.6: Example 1500kW turbine results.

B.2.2 Steam Boiler

The example from Figure 5.34 and Table 5.18 in Section 5.5.1 is shown in Figure

B.7. The curves presented follow the same trends as shown in the Aguilar et al

paper [4], and show a small increase in fuel consumption over the previous ideal

JSteam model, as expected. Table B.9 lists the coefficients for each operating case.

Table B.9: JSteam Fired Boiler with variable efficiency coefficients.

Case αJ βJ

Base 0.0044 0.0758
80◦C air 0.0033 0.0559
250◦C stack 0.0059 0.1009

B.2.3 Gas Turbine

To illustrate the effect of part-load performance described by this model, Figure B.8

shows a range of gas turbines and their respective efficiency curves, while Figure B.9

compares the model against published small GTG data in [4]. Note for the model

comparison, the loss coefficient (L) has been regressed from operating data, aiding

the model fit. However for a model that only requires the rated gas turbine output

and a single regressed parameter, the curves match remarkably well, even to the

point that they look regressed purely against the data (which is not the case). A
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Figure B.7: Boiler efficiency as a function of steam production, including variable
efficiency for a 100kg/s methane fired boiler. Dashed lines on the efficiency curve
indicate maximum theoretical efficiency.

reason why the Tornado model does not fit as well could be due to the maximum

efficiency of the turbine exceeding the fitted model (Equation 5.58), which can be

viewed in the original data. While the maximum efficiency could be read off the

data and used instead of the complete fit, this exercise is simply to show the model

functions reasonably correctly using this correlation.

Table B.10: Small gas turbine regressed parameters.

GTG αgt βgt L
Tempest 7.7MW 2417.59 20102.7 0.315
Tornado 6.5MW 2374.66 20706.0 0.366
Taurus 5.4MW 1962.32 20475.7 0.364
Typhoon 4.6MW 2014.42 21414.7 0.439
Typhoon 4.2MW 1347.52 19572.3 0.322

B.2.4 Heat Recovery Steam Generator (HRSG)

B.2.4.1 Unfired HRSG

Using the unfired HRSG model developed in Section 5.7.1, Figure B.10 shows the

predicted steam and power generation potential for a 50MW GTG connected to

a single-pressure unfired HRSG with no reheat. Table B.11 shows the parameters
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Figure B.8: Model generated GTG efficiency curves for a range of gas turbines.
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used to generate this example, while the efficiency is calculated as

Cycle Efficiency = ηthermal =
Wst +Wgt

NHVfuelMfuel
(B.1)

where Wst is steam turbine shaftwork and Wgt is the gas turbine shaftwork. As

is common for simple CCGTs, (i.e. single pressure, single stage) the predicted

maximum efficiency is approximately 50%, which closely matches that found in

[269] (noting this reference was used for the majority of the specifications).
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Figure B.10: Steam production and fuel consumption for a 50MW GTG and 535◦C,
120 bar unfired HRSG.

B.2.4.2 Secondary Fired HRSG

For a secondary fired HRSG, Figure B.11 shows the model fuel usage surface, in-

cluding the upper and lower constraints as ‘walls’ within the figure. The system

modelled is identical to that from the base load example, with the exception of the

addition of a lower limit of O2 in the stack (0.01 mole fraction), and the secondary

fuel being the same as the GTG fuel. Regressed coefficients for this example are

listed in Table B.12.
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Table B.11: Unfired HRSG example parameters.

Steam Turbine Rated Output 16MW
GTG Rated Output 50MW
GTG Exhaust Temperature 635◦C
GTG Fuel Composition 100% Methane
Air Temperature 15◦C
Fuel Temperature 15◦C
HRSG Minimum Stack Temperature 200◦C
Steam Temperature 535◦C
Boiler Feed Water Temperature 100◦C
Steam Pressure 120 bar
Condenser Pressure 0.07 bar
Blowdown Ratio 1%

Figure B.11: Fuel flow surface with operational constraints.

Table B.12: Secondary fired HRSG example regressed coefficients.

αhrsg Total Fuel Intercept 0.02326
βhrsg Total Fuel GTG Gradient 2.9525 ×10−5

γhrsg Total Fuel Steam Gradient 0.061113
αbs Base Load Constraint Intercept 0.98887
βbs Base Load Constraint Gradient 0.000409
αms Max Load Constraint Intercept 5.128
βms Max Load Constraint Gradient 0.0017338
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Appendix C

Optimization Framework Software

and Models

This appendix chapter provides additional detail to the optimization framework

developed in Chapters 6 and 7, including details of the OPTI Toolbox, the complete

steam utility optimization models and validation of the global solver interfaces.

C.1 OPTI Toolbox

As described in Section 6.2, the OPTI Toolbox is a free, open-source MATLAB

toolbox that collects together a suite of solvers and provides a common calling

structure to all of them. The following sections detail the solvers available within

the toolbox, together with extra functionality such as mathematical utilities and

viewing SymBuilder results. The OPTI Toolbox is available at http://www.i2c2.

aut.ac.nz/Wiki/OPTI/, as well as supplied on the Appendix DVD.

C.1.1 Optimization Solvers

Each of the solvers are briefly summarized in each of the subsections below, grouped

by problem solving type. Note many of these solvers will also solve problems from

other groups, but they are listed within their intended problem group.
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C.1.1.1 Linear Programming

Linear Programming (LP) solves problems of the form

minx fTx

subject to: Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub

and optionally mixed integer variants (MILP) with the following additional con-

straints on the decision variable

xi ∈ ℜ, xj ∈ Z, xk ∈ {0, 1}, i 6= j 6= k

OPTI includes a number of LP and MILP solvers, detailed below.

Coin-OR Linear Programming (CLP) [100] As detailed in Section 3.3.2.1 CLP

was written by John Forrest, and contains both primal and dual simplex

solvers, as well as a barrier solver. In addition to solving LPs, CLP can only

solve QPs via the dual simplex or barrier solvers. The code is written in C++

and utilizes a MATLAB developed within this work.

Coin-OR Branch and Cut (CBC) [99] Also developed by John Forrest, CBC

utilizes CLP as the relaxed problem solver, and Coin-OR Cut Generation

Library (CGL) to solve large-scale mixed integer linear problems. Also written

in C++, it utilizes a MATLAB interface developed within this work. CBC is

currently the second fastest open source MILP solver, falling just behind SCIP

(described below under nonlinear solvers), as reported by Hans Mittelmann in

[220].

GNU Linear Programming Kit (GLPK) [194] Developed by Andrew Makhorin

of the Moscow Aviation Institute, GLPK is a standard go-to MILP solver

that contains both simplex and primal-dual interior point solvers, as well as

utilizing Gomory cuts together with a branch and bound solver for solving

mixed-integer problems. Written in C, GLPK uses the GLPKMEX MATLAB

interface with minimal changes to work with OPTI.

LP Solve [33] LP Solve is another popular MILP solver originally developed by

Michel Berkelaar. Since version 1.5, it has been developed by a number of

other authors, and contains interfaces to a suite of high-level languages. The

solver utilizes the revised simplex algorithm with branch and bound a branch

and bound solver for mixed integer problems. Written in C, LP Solve utilizes
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the MATLAB interface supplied with the solver, with minor modifications to

work with OPTI.

QSOPT [16] Developed by several authors from IBM, the University of Waterloo,

plus AT&T Labs, QSOPT is currently the fastest LP solver for small problems.

While officially a closed source project, binaries are distributed freely by the

authors, who were kind enough to supply the source for OPTI. The project is

written in C, and we developed the MATLAB interface to call it.

C.1.1.2 Quadratic Programming

Quadratic Programming (QP) solves problems of the form

minx

1

2
xTHx+ fTx

subject to: Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub

where H is typically assumed to be symmetric positive-definite, which results in a

convex optimization problem. Optionally, quadratic constraints can be added to

form a Quadratically Constrained, Quadratic Program (QCQP)

xTQx+ lTx ≤ r

and/or integer or binary constraints to form a MIQP or MIQCQP

xi ∈ ℜ, xj ∈ Z, xk ∈ {0, 1}, i 6= j 6= k

OPTI supplies a single dedicated QP solver, however a number of other solvers

also solve QPs quite efficiently. For solving QCQPs, MIQPs or MIQCQPs, SCIP

is typically used, or alternatively OPTI can convert the problem into an (MI)NLP,

and solve it using IPOPT or BONMIN. It is worth pointing out that utility system

models, when written out in terms of a mass and energy balance, can be described

as an MIQCQP. This is therefore an important problem type within this work, and

a useful addition to the OPTI Toolbox. Furthermore, the most common search term

within the OPTI Wiki, as reported by Google Analytics, is “QCQP”, indicating this

is a very common and important industrial problem class.

Object Orientated Quadratic Programming (OOQP) [108] As described in

Section 3.3.2.6, OOQP provides two primal-dual interior point algorithms,
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both of which can also solve LPs quite efficiently. OOQP is written in C++

and utilizes a MATLAB interface we developed, although this is based on the

original interface developed by Michael Gertz.

C.1.1.3 Semidefinite Programming

While not actually used within this work, semidefinite programming is applied suc-

cessfully to optimal control problems, as well as solving relaxed problems within

many integer and global optimization problems. A Semi-Definite Program (SDP)

has the following form

minx fTx

subject to: Ax ≤ b

lb ≤ x ≤ ub

X =

n∑

i=1

xiFi − F0

X � 0 [Positive Semidefinite]

where each F is a symmetric matrix and the resulting expression describes a Linear

Matrix Inequality (LMI). OPTI contains two robust interior-point SDP solvers, as

described below.

a C library for SemiDefinite Programming (CSDP) [43] Developed in C by

Brian Borchers, CSDP is a predictor-corrector implementation of a SDP algo-

rithm proposed by Helmberg, Rendl, Vanderbei and Wolkowicz. The library

leverages sparsity and also includes OpenMP parallelized matrix routines. The

solver utilizes a MATLAB interface developed within this work, based on sug-

gestions by Johan Löfberg, developer of YALMIP [189].

Dual-scaling SemiDefinite Programming (DSDP) [32] Written by Steven Ben-

son and Yinyu Ye, DSDP is a dual-scaling interior-point solver for semidefinite

problems. As with CSDP, DSDP leverages sparsity but also contains algo-

rithms to exploit low-rank structure. DSDP comes with a detailed MATLAB

interface, however its approach to storing semidefinite constraints appeared

inefficient and therefore a new interface was written.
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C.1.1.4 Nonlinear Equation Solving

Nonlinear equation solving, commonly known as multivariable root solving, is solving

a general vector nonlinear problem of the following form

F (x) = 0

and optionally may include linear constraints, such as

Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub

however these are not supported by the solver mentioned below (HYBRJ). Typically

constrained nonlinear equations are solved using a general nonlinear solver, or a

nonlinear least squares solver with the fitting data set to 0. Nonlinear equation

solving is of particular importance within this work as it is required to converge

simulated utility system models with multiple recycle loops, where ‘stream-tearing’

is used to iteratively solve a steady state.

MINPACK Powell Hybrid (HYBRJ) [225] Together with LM DER, described

in the next subsection, HYBRJ is an algorithm from the MINPACK project

of the late 1970s to early 1980s. The project was run via Argonne National

Laboratory and the code survives today as a series of Fortran routines that

are virtually unchanged from 1980. The HBYRJ routine is designed to solve

a system of nonlinear equations by using a modification of the Powell-Hybrid

method and is remarkably efficient, given its age. A C MATLAB interface

was developed to interface to the Fortran routines, including both HYBRJ

(analytical Jacobian) and HYBRD (internal finite-difference).

C.1.1.5 Nonlinear Least Squares

An extension of nonlinear equation solving, Nonlinear Least Squares (NLS) (also

referred to as nonlinear curve fitting) solves a problem of the form

minx ‖F (x)− ydata‖22

which is basically attempting to minimize the sum of squared differences between

the fitting function and fitting/experimental data (ydata). Note the above norm is
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never actually formed by the user, only the fitting function (F (x)) and data vector

(ydata) are supplied and the solver constructs the above internally. Some solvers

are also able to solve both bounded and linearly constrained problems

Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub

however generally they are limited to bounded problems only (the only exception is

LEVMAR). Each of the solvers supplied with OPTI is described below:

Levenberg Marquardt in C/C++ (LEVMAR) [190] Written by Manolis Lourakis,

LEVMAR is an implementation of the Levenberg-Marquardt [184, 201] algo-

rithm with modifications to handle both bounded problems, as well as linearly

constrained problems. It is worth noting LEVMAR is the only NLS solver to

solve problems with linear constraints within the OPTI framework. It does

this using a variable elimination strategy based on a QR decomposition as de-

scribed in [235], as well as using an alternative algorithm for box-constrained

problems. While the solver supplies a MATLAB interface, we have opted to

write our own one because the version supplied did not interface naturally

with OPTI.

MINPACK Levenberg Marquardt (LM DER) [224] As with HYRBJ above,

LM DER is a MINPACK Fortran routine developed at Argonne National Lab-

oratory around 1980. It uses a modification of the Levenberg Marquardt algo-

rithm to solve unconstrained nonlinear least squares problems. A C MATLAB

interface was also developed for this solver, and includes routines that use an

analytical Jacobian (LM DER) and finite differences (LM DIF).

Intel MKL Trust Region Nonlinear Least Squares (MKLTRNLS) [148] One

of the few commercial solvers collected within OPTI, MKLTRNLS is Intel’s

implementation of a trust-region solver that is packaged with their Math Ker-

nel Library. As I have personally purchased this software, the royalty free

licence allows me to distribute it as part of the OPTI Toolbox. MKLTRNLS

solves bounded nonlinear least squares problems, using a MATLAB interface

developed within this work.

Adaptive Nonlinear Least Squares (NL2SOL) [78] Possibly the best perform-

ing nonlinear least squares solver in the OPTI collection, NL2SOL is another

early 1980s Fortran solver that is based on an adaptive local-model algorithm.

The latest release of NL2SOL is known as DN2GB, and is part of the PORT

library, a collection of Fortran mathematical routines hosted by Netlib. This
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version expanded NL2SOL to solve bounded nonlinear least squares problems

as well. A C MATLAB interface was developed to interface to NL2SOL, and

includes NL2SNO for use without the user needing to supply analytical gradi-

ent information.

C.1.1.6 Nonlinear Programming

Nonlinear Programming (NLP) solves problems of the form

minx f (x)

subject to: Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub

c (x) ≤ d

ceq (x) = deq

where f (x), c (x) and ceq (x) are generally expected to be smooth, convex, and

twice differentiable (however certain solvers, described below, do not enforce this).

Mixed integer problems add the following binary/integer constraints

xi ∈ ℜ, xj ∈ Z, xk ∈ {0, 1}, i 6= j 6= k

noting that MINLPs are typically regarded as the most computationally expensive

problems to solve. OPTI supplies a large number of NLP solvers, however they

vary in what constraints and problem types they can solve. Each solver is described

below:

Basic Open source Nonlinear Mixed INteger programming (BONMIN) [41]

Developed by a group of leading discrete optimization academics, BONMIN

is an experimental framework containing six algorithms for solving large-scale

MINLPs via standard branch and bound, as well as outer approximations and

other hybrid methods. It uses IPOPT for solving relaxed nonlinear problems,

as well as CBC as the branch and cut framework. At the original conception

of OPTI, BONMIN was the final implementation goal, given it could solve

the MINLP utility optimization problems within this work. The interface to

BONMIN is a modified version of the IPOPT interface, described below.

FILTERSD [96] Written in Fortran by Roger Fletcher (of BFGS fame), FilterSD

solves smooth nonlinear problems with both bounds and general nonlinear

constraints. In addition, it contains solvers for both dense and sparse problems.
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It will however only find local solutions. FilterSD is part of the Coin-OR

framework, although is not in active development. A C MATLAB interface

was developed to interface to both versions of the solver.

Interior Point OPtimizer (IPOPT) [323] Possibly the most well-known open

source optimization solver available, IPOPT is a large-scale convex nonlinear

optimization solver that supports bounds, linear constraints and nonlinear

constraints. Given the design focus on large-scale problems, IPOPT leverages

sparsity information for both the first and second derivatives, and also within

solving the resulting KKT systems by using solvers such as MUMPS to solve

the large sparse system of equations that result. Originally written in Fortran,

IPOPT is now written in C++ and contains an advanced MATLAB interface

developed by Peter Carbonetto.

Limited-memory BFGS Bounded optimization (L-BFGS-B) [347] Implementing

the de-factor limited-memory Broyden-Fletcher-Goldfarb-Shanno Hessian up-

date, L-BFGS-B also adds the ability to solve smooth, bounded general non-

linear optimization problems. The solver is implemented in Fortran, however

Peter Carbonetto had also written a C interface to L-BFGS-B which was mod-

ified to suit the OPTI toolbox.

M1QN3 [111] Developed by Jean-Charles Gilbert, M1QN3 is a large-scale uncon-

strained nonlinear solver, reportedly used for weather forecasting optimization

in France on problems with up to 108 variables. As above, it is written in

Fortran and also uses a limited-memory BFGS update together with a glob-

alization line search. A C MATLAB interface was developed to interface with

the solver.

NonLinear OPTimization (NLOPT) [157] As detailed earlier in Section 6.2.1

NLOPT follows a similar concept as OPTI, by supplying 20 solvers collected

together as a single package. Its focus is solely on nonlinear optimization,

however it contains algorithms for local and global optimization, as well as

derivative and derivative-free options. In addition, it contains an augmented

Lagrangian solver for adding general nonlinear constraints to a solver which

would otherwise not support them. The package comes with a basic MATLAB

interface, however it has been substantially upgraded in order to allow natural

interfacing with the OPTI toolbox.

Nonlinear Optimization using Mesh Adaptive Direct search (NOMAD) [81]

One of the most popular solvers within the OPTI framework, NOMAD solves

non-differentiable nonlinear problems, including problems with nonlinear in-

equality constraints and integer constraints. It is written in C++ by an aca-

demic and industrial group, primarily from Montreal. The MATLAB interface
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was developed in collaboration with the authors and two versions now exist,

one for their team, and one for OPTI users (modified to better suit the frame-

work).

Particle and pattern Swarm (PSWARM) [316] Another derivative-free solver,

PSWARM solves non-differentiable nonlinear problems that may be subject

to both bounds and linear inequality constraints. It implements both pattern

search and particle swarm algorithms, and has a useful feature where that

all evaluation points are always feasible (very unusual among optimization

solvers). Written in both C and MATLAB, we developed a C interface to the

C version to maximize the speed of the algorithm.

Solving Constraint Integer Problems (SCIP) [2] As described earlier in Sec-

tion 3.3.2.8, SCIP is arguably the most powerful solver in the OPTI collection.

SCIP solves linear, quadratic and nonlinear problems to proven global opti-

mality, including non-convex problems that may include integer constraints.

Targeted primarily at mixed integer linear and quadratic problems, it is cur-

rently the fastest open-source MILP solver available, as well as the only solver

in OPTI that can prove a global optimum for an integer, quadratic or nonlin-

ear problem. It is limited to solving problems with only a subset of MATLAB

functions. For more details of the interface developed, see Section 7.2.2.

C.1.2 Mathematical Utilities

In addition to supplying a suite of solvers and routines for creating, solving and

plotting optimization problems, OPTI provides a library of utility functions and

algorithms.

C.1.2.1 File Input/Output

To aid users of existing optimization software to read their optimization problems

into MATLAB/OPTI, several File I/O routines have been built into the object. As

of the latest version of OPTI, users can read in MPS, LP, GMPL, AMPL, SPDA

and SeDuMi models directly into the object

>> OptProb = opti(‘afiro.mps’)

which will read the afiro MPS model into MATLAB then convert it to an OPTI

problem, ready for solving. In addition, a user can write any compatible OPTI

problem to a MPS, LP, SDPA, SeDuMi or GAMS model using the write method,
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>> write(OptProb,‘myOptProb.mps’)

Currently nonlinear models can only be written to GAMS files, and only if SCIP

is installed (it is only supplied with the academic version of OPTI). However this

does allow a user to test their problem using the NEOS server (www.neos-server.

org/neos/) should they want to attempt to solve their problem using a commercial

solver.

C.1.2.2 Dynamic System Parameter Estimation

Written to assist with a consulting project of our research group, the dynamic system

parameter estimator implements the standard forward-sensitivity equation [128] to

derive the gradient of a dynamic system with respect to its parameters. This enables

a nonlinear least squares solver to converge faster and more robustly to the true

parameter values. The functionality is built directly into the OPTI object

>> OptDynProb = opti(‘ode’,ode,‘data’,tm,zm,‘x0’,x0,‘z0’,z0)

where ‘ode’ is a function handle to the dynamic system (standard MATLAB Cauchy

format), ‘data’ is the experimental data to fit to, ‘x0’ is the initial parameter guess

and ‘z0’ is the initial states of the ODE. The types of problems and data that can

be entered are quite versatile, and the full functionality of OPTI including all NLS

solvers is available. A set of detailed examples is presented on the OPTI Wiki at

http://www.i2c2.aut.ac.nz/Wiki/OPTI/index.php/Dynamic/DNLS.

C.1.2.3 Multi-Start Solver

For optimization problems where the solution is particularly sensitive to the initial

solution guess (x0), it can be advantageous to search around other initial points to

see if a better solution can be found. To automate this process the OPTI method

multisolve automatically applies a very simple multi-start algorithm to solving the

problem. The algorithm divides the problem into hyper-cubes (thus only works for

low-dimensional problems) and automatically samples the objective and constraints.

For areas meeting certain selection criteria, the optimizer is run within the bounds

of the hyper-cube, in an effort to find the true global optimum.
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C.2 SymBuilder

SymBuilder is used to develop algebraic models within MATLAB, including symbolic

simplification and automatic generation of symbolic derivatives. The framework

is described in Section 6.5, with the following subsections detailing the methods

available for viewing the solution of a SymBuilder model, as well as the SymUtility

class, a derived class for building algebraic steam utility models.

C.2.1 Solution Inspection

A common issue found as the models increased in size was that inspecting the

solution vector was became increasingly difficult to parse. This meant decoding

whether the solver had returned a feasible or even a realistic solution was a tedious

and error-prone task. Furthermore, often key system parameters such as the power

balance were the result of internal model calculations, and were complex to calculate

manually. Two tools were therefore written into SymBuilder to allow the easy

inspection of an optimization run, and are described below.

C.2.1.1 Text Report

Built into the SymBuilder object is the ability to designate expressions and variables

as ‘result expressions’ which can be automatically compiled into a optimization

summary. Following the dual-stage steam turbine example from Section C.2.2.9, a

common reported variable might be the total power generated by the unit

Wshaftwork = WS1 +WS2 (C.1)

For this example we simply enter the expression we want to calculate, together with

a name (BPT W) and group (D)

U.AddResultExp(‘D:BPT_W’,‘BPT_W1+BPT_W2’);

which will add the expression for result reporting purposes only. Note that in this

instance the result expression has been assigned to group D. This letter is arbitrary,

but the groups are used for separating out results into an easy to read format. To

name a group one simply calls the relevant method

U.AddResultGroup(‘D’,‘GTG & Turbo Generators Output [kW]’);
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which is again stored in the object. Once the optimization problem has been com-

pleted and solved, calling the following method generates a solution summary

Results(U)

where a snippet of an example report is shown below

A: Fuel Gas Consumption [ton/h]
- BLR1 = 0
- BLR2 = 0
- GTG = 10.312

B: Electricity Balance [kW]
- PWR = 0.00070187 [Buy]

C: Water Consumption [ton/h]
- Make Up = 5.3235

D: GTG & Turbo Generators Output [kW]
- GTG = 10844 [On]
- TG1 = 5047.8 [On]
- BPT_W = 4651.8

Most routines listed in Section 6.5.2 automatically add result expressions as part

of their routine. This means the report shown is virtually created automatically

from start to finish, with only custom models to be added to the result report. For

models with a binary variable associated with them, the report will also show the

state of the binary variable, which is useful when sanity checking the results.

C.2.1.2 JSteam Excel Export

When a JSteam Excel model is available in addition to the SymBuilder model, the

results can be automatically exported to the JSteam model. This functionality has

become highly useful in inspecting an optimized point, both in terms of inspecting

temperatures and mass flows around the model, and also in diagnosing where the

approximated model is deviating from the JSteam models. Exporting to Excel is a

simple one line

ExcelExport(U,‘C:\Models\Aguilar3HDR.xlsx’,AguilarExport)

which automatically propagate user selectable values into the Excel model. As this

method requires knowledge of how the user has built the JSteam Excel model, the

final argument is a function which defines where the model data is exported to

within Excel
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function ExData = AguilarExport()

ExData = {‘[bblr1,bblr2,bblr3]’,‘B3:D3’
‘[m29,m31,m33]’,‘B4:D4’
‘[BLR1_Eff,BLR2_Eff,BLR3_Eff]’,‘B5:D5’
‘[btg1,btg2]’,‘B8:C8’
‘[TG1_W,TG2_W]’,‘B9:C9’
‘[TG1_Eff,TG2_Eff]’,‘B10:C10’
‘[bt1,bt2]’,‘B13:C13’
‘[BT1_W,BT2_W]’,‘B14:C14’
‘[BT1_Eff,BT2_Eff]’,‘B15:C15’
‘[HPU_W,MPU_W]’,‘B18:C18’
‘[Cost_FG,Cost_BElec,Cost_SElec,Cost_Water]’,‘B21:E21’};

As shown, the user can specify array arguments (Excel ranges) of variables that

exist in the SymBuilder model which are then exported to the corresponding cells

in the ‘Control’ sheet within Excel, as shown in Figure C.1. From the Control

Figure C.1: JSteam Excel model control page with variables imported from MAT-
LAB.

sheet, normal Excel references can then be used to pass these specifications to the

JSteam Excel unit operations. The system is flexible and any number of values

can be exported to Excel and to any location, including diagnostic expressions if

required. The downside to this approach is that the user must exhaustively specify

which variables are exported to which cells, but this does allow flexibility within the

implementation.
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C.2.2 SymUtility

SymUtility derives (in an object-orientated sense) from SymBuilder, thus inheriting

functionality from the SymBuilder class. It then further customizes the functionality

to include a suite a methods for building steam utility unit operation models and

automatically adding them to the optimization problem. The subsections below

describe each of the methods developed, including how operational constraints are

added formulated within this framework.

Note models built within SymUtility assume duty is in kW, mass flow is in

tonne/hr, pressure is in bar and temperature is in ◦C, based on the common set of

units used in the iCON project.

C.2.2.1 Add Steam Boiler (AddBlrFrd)

A detailed steam boiler model (Section 5.5) is added to the current SymUtility

object. The user specifies the operating parameters of the boiler as well as the range

of steam production over which the boiler is to be modelled. From this information,

the method creates the following model

Mfuel = λbblr + γMsteam (C.2)

where λ and γ are regressed parameters and bblr indicates whether the boiler is

switched on. Note that this binary parameter is required so that the constant term

(λ) does not indicate fuel is required when the boiler is not generating any steam.

In addition, as described in Section 6.4.2, two linear constraints are required: One

for ensuring the mass flow of steam is zero when the boiler is switched off

Msteam −Mbigbblr ≤ 0 (C.3)

and the second for ensuring the steam mass flow is always above the minimum

steam flow (typically set as 10% of the maximum, if not specified) when the boiler

is switched on

−Msteam +Mbigbblr ≤ −Msteam(min) +Mbig (C.4)

Both constraints use the ‘big M’ strategy (in this work designated by Mbig), which

for this model is set as

Mbig = Msteam(max) + 10 tonne/hr (C.5)
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The method also bounds Msteam between 0 and Msteam(max), as well as declaring

bblr as a binary variable bounded between 0 and 1. Using the operational specifica-

tions from the example in Section 5.3.5.2, together with a range of steam production

from 5 to 50 tonne/hr, the following model is generated

Mfuel = 0.01316bblr + 0.063923Msteam

and the constraints are set as

Msteam − 60bblr ≤ 0

−Msteam + 60bblr ≤ 55

0 ≤ Msteam ≤ 50

bblr ∈ {0, 1}

C.2.2.2 Add Gas Turbine (AddGTG)

A detailed open cycle gas turbine model (Section 5.6) is added to the current

SymUtility object. The user specifies the operating parameters of the gas turbine

as well as the range of power production over which the turbine is to be modelled.

From this information, the method creates the following model

Mfuel =
Wgtg + αgtgbgtg

βgtg

(C.6)

where αgtg and βgtg are regressed parameters and bgtg indicates whether the gas

turbine is switched on. In addition, two linear constraints are required: One for

ensuring power generation is zero when the turbine is switched off

Wgtg −Mbigbgtg ≤ 0 (C.7)

and the second for ensuring the generated power is always above the minimum rated

output (typically set as 20% of the maximum, if not specified) when the gas turbine

is switched on

−Wgtg +Mbigbgtg ≤ −Wgtg(min) +Mbig (C.8)

where the ‘big M’ value is set as

Mbig = Wgtg(max) + 5000 kW (C.9)
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The method also bounds Wgtg between 0 and Wgtg(max), as well as declaring bgtg

as a binary variable bounded between 0 and 1. Using the operational specifications

from the example in Section 5.3.5.3, together with a range of power production from

5000 to 15000 kW, the following model is generated

Mfuel =
Wgtg + 2992.31037bgtg

5275.8795

and the constraints are set as

Wgtg − 20000bgtg ≤ 0

−Wgtg + 20000bgtg ≤ 15000

0 ≤ Wgtg ≤ 15000

bgtg ∈ {0, 1}

C.2.2.3 Add GTG + Unfired HRSG (AddGTGHRSG)

An approximated unfired HRSG model (Section 5.7) and gas turbine model (Section

5.6) are added to the current SymUtility object. The user specifies the operating

parameters of the HRSG and gas turbine as well as the range of power production

over which the turbine is to be modelled. From this information, the method creates

the fuel usage model from Section C.2.2.2 and the following steam expression

Msteam = αsteambgtg + βsteamWgtg (C.10)

which describes the production of steam as a function of gas turbine power output.

In addition to the gas turbine constraints from the last section, the model adds a

further linear constraint using the expression derived above

αsteambgtg + βsteamWgtg −Msteam = 0 (C.11)

which constrains the predicted steam generation to match the mass flow within the

respective decision variable. This is required so that the optimizer connects the gas

turbine output with the steam production. Using the operational specifications from

the example in Section 5.3.5.4, together with a range of power production from 5000

to 15000 kW, the following model is generated

Mfuel =
Wgtg + 2992.31037bgtg

5275.8795
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and the constraints are set as

Wgtg − 20000bgtg ≤ 0

−Wgtg + 20000bgtg ≤ 15000

6.17605bgtg + 0.001283Wgtg −Msteam = 0

0 ≤ Wgtg ≤ 15000

bgtg ∈ {0, 1}

C.2.2.4 Add GTG + Fired HRSG (AddGTGHRSG)

An approximated fired HRSG model (Section 5.7) and gas turbine model (Section

5.6) are added to the current SymUtility object. The user specifies the operating

parameters of the HRSG and gas turbine as well as the range of power production

over which the turbine is to be modelled. From this information, the method creates

the following fuel usage model

Mfuel = αhrsgbgtg + βhrsgWgtg + γhrsgMsteam (C.12)

where αhrsg, βhrsg, and γhrsg are regressed parameters. In addition to adding the

two gas turbine constraints, the method adds one linear constraint for the minimum

production of steam in order to meet the base load production

−Msteam +Mbigbgtg ≤ −αbasebgtg − βbaseWgtg +Mbig (C.13)

one constraint for the maximum production of steam

Msteam +Mbigbgtg ≤ αmaxbgtg + βmaxWgtg +Mbig (C.14)

and one constraint to ensure no steam is produced when unit is switched off

Msteam −Mbigbgtg ≤ 0 (C.15)

where αbase, βbase are the regressed base steam coefficients, and αmax, βmax are the

regressed maximum steam coefficients. The ‘big M’ value is set as

Mbig = Msteam(max) + 10 tonne/hr (C.16)

Using the operational specifications from the example in Section 5.3.5.4, together

with a range of power production from 5000 to 15000 kW, the following model is
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generated

Mfuel = 0.19629bgtg + 0.0001125Wgtg + 0.062407Msteam

and the constraints are set as

Wgtg − 20000bgtg ≤ 0

−Wgtg + 20000bgtg ≤ 15000

Msteam + 57.11885bgtg ≤ 46.1772bgtg + 0.00823Wgtg + 57.11885

−Msteam + 57.11885bgtg ≤ −5.9429bgtg − 0.00123Wgtg + 57.11885

Msteam + 57.11885bgtg ≤ 0

0 ≤ Wgtg ≤ 15000

bgtg ∈ {0, 1}

C.2.2.5 Add Back Pressure Turbine (AddBPT)

A simple steam turbine model (Section 5.3.3.3) with a specified (fixed) efficiency is

added to the current SymUtility object. The user specifies the input and output

pressures, rated output shaft work and specified isentropic efficiency, and the method

creates the following model

Wshaftwork = ηMsteam∆Hisen (C.17)

Hout = Hin − η∆Hisen (C.18)

∆Hisen = αh + βhHin (C.19)

where αh and βh are regressed parameters. This model is tasked with calculating the

required mass flow of steam to match a specified output load, where it is expected

both the load and the input conditions do not vary widely, so a part-load expression

is not required. In order for the optimizer to match the turbine output to the load

specification, the following constraint is implemented

Wshaftwork(rated)bbpt − ηMsteam∆Hisen = 0 (C.20)

noting the binary variable bbpt has been introduced to model the turbine switched

on/off. This bilinear constraint ensures that when the optimizer selects the turbine

to switch on, the required mass flow is calculated to produce the specified shaft

work.
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C.2.2.6 Add Steam Turbo Generator (AddTurboGen)

A detailed steam turbine model (Section 5.4) is added to the current SymUtility

object. The user specifies the operating parameters of the steam turbine as well as

the range of output shaft work over which the turbine is to be modelled. From this

information, the method creates the following model

Wshaftwork =
α−∆HisenMsteam(max)

5β
btgen +

6
(

∆Hisen − α
Msteam(max)

)

5β
Msteam (C.21)

Hout = Hin −
6∆Hisen

5β

(

1− α

∆HisenMsteam(max)

)(

1− Msteam(max)

6 (Msteam + (1− btgen))

)

(C.22)

∆Hisen = αh + βhHin (C.23)

where α, β, αh and βh are regressed parameters and btgen indicates whether the

steam turbine is switched on. Note this binary term also features in the expression

for outlet enthalpy, because without it as Msteam approaches zero, Hout approaches

infinity. This term biases the denominator to ensure that when the steam turbine is

not operating, a sensible enthalpy value is still calculated. Moreover, as this enthalpy

value is later multiplied by the mass flow in the energy balance, so long as the value

is a real number (not NaN or Inf), the model remains sensible. In addition, two

linear constraints are required: One for ensuring power generation is zero when the

turbine is switched off

Msteam −Mbigbtgen ≤ 0 (C.24)

and the second for ensuring the generated power is always above the minimum rated

output (typically set as 40% of the maximum, if not specified) when the steam

turbine is operating

−Msteam +Mbigbtgen ≤ −Msteam(min) +Mbig (C.25)

where the ‘big M’ value is set as

Mbig = Msteam(max) + 10 (C.26)

The method also bounds Msteam between 0 and Msteam(max), as well as declaring

btgen as a binary variable bounded between 0 and 1. Using the operational specifi-

cations from the example in Section 5.4.4, together with a maximum output power
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of 1500kW, the following model is generated

Wshaftwork = 536.656btgen − 155.379Msteam − 0.26155btgenHin + 0.0757HinMsteam

Hout = Hin − 0.878 (0.31Hin − 601.88)

(
202.23

1.787Hin − 3464.68
− 1

)

(
5.76

1.667Msteam − 1.667btgen + 1.667
− 1

)

and the constraints are set as

Msteam − 30.7231 ≤ 0

−Msteam + 30.7231 ≤ 22.4339

Wshaftwork ≤ 1500

btgen ∈ {0, 1}

C.2.2.7 Add Fixed Efficiency Pump (AddFixPump)

A simple steam turbine model (Section 5.3.3.8) with a fixed inlet enthalpy and fixed

efficiency is added to the current SymUtility object. The user specifies the input

and output pressures, inlet enthalpy and efficiency, and the method creates the

following model

Wpump = Msteam∆Hisen (C.27)

where ∆Hisen is calculated using the JSteam Pump function. This model is a simple

approximation of a boiler feed water pump that does not contain a part-load model.

The function assumes the inlet enthalpy is constant (which is realistic as it is typi-

cally very close to saturated water) and the efficiency remains constant, so that the

outlet enthalpy and ∆Hisen calculated by JSteam remains constant. The result is

an estimate of the power required to pump the specified mass flow of steam to the

required boiler feed water pressure.

C.2.2.8 Add Steam User (AddUser)

A duty-based steam user is added to the current SymUtility object, representing

the steam demand of a process user. A duty-based steam user is used due to header

enthalpies being allowed to ‘float’ as part of the optimization process, therefore the

mass flow of steam required would vary based on the temperature of the header.

Given a specified duty and condensate return enthalpy, the method creates the

416



following constraint

Quser

Hin −Hout
−Msteam = 0 (C.28)

which constrains the mass flow entering the user to match the duty required, given

the inlet enthalpy. For users which do not return all input steam as condensate

(which is typical), a further mass balance can be implemented

Msteam(out) = FretMsteam(in) (C.29)

where Fret is the condensate return fraction of the user.

C.2.2.9 Modelling Other Unit Operations

In order to model utility operations not included within the library developed so

far, SymBuilder contains functionality to enter expressions and constants in order

to calculate required optimization parameters. An example unit is a simple constant-

efficiency model of a dual-stage steam turbine

HoutS1
= Hin − ηS1∆HisenS1

WshaftworkS1
= (MsteamS1

+MsteamS2
) (Hin −HoutS1

)

HoutS2
= HoutS1

− ηS2∆HisenS2

WshaftworkS2
= MsteamS2

(HoutS1
−HoutS2

)

Wshaftwork = WshaftworkS1
+WshaftworkS2

(C.30)

where the subscript S1 indicates mass flow/shaftwork/enthalpy of stage 1, and S2

of stage 2. In order to implement the model in SymBuilder, we must be able to gen-

erate the required intermediate expressions and constants, in addition to standard

constraints. This functionality is provided using two methods, AddExpression and

AddConstant, as shown

% Stage 1 Expressions
U.AddExpression(‘BPT_H1 = h1 - BP1_Eff1*dH_HM’);
U.AddExpression(‘BPT_W1 = (m1+m2)*(1/3.6)*(h1 - BPT_H1)’);
% Stage 2 Expressions
U.AddExpression(‘BPT_H2 = BPT_H1 - BPT_Eff2*dH_ML’);
U.AddExpression(‘BPT_W2 = m2*(1/3.6)*(BPT_H1 - BPT_H2)’);

% Operational Constraint
U.AddCon(‘BPT_W1 + BPT_W2 <= BPTRW’);

% Unit Specifications
U.AddConstant(‘BPTRW’,5000,‘BPT_Eff1’,0.8,‘BPT_Eff2’,0.75);
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where dH HM and dH ML are isentropic enthalpy drop expressions for HP to MP and

MP to LP, respectively. These can similarly be entered as SymBuilder expressions

U.AddExpression(GenIsenHExp(JStm,‘dH_HM’,‘h1’,HP_P,MP_P,HP_H));
U.AddExpression(GenIsenHExp(JStm,‘dH_ML’,‘BPT_H1’,MP_P,LP_P,MP_H));

Using this workflow arbitrary models can be built up, with the framework auto-

matically substituting expressions and constants into the resulting model objective

and constraints, symbolically simplifying it then generating the required MATLAB

functions.

C.2.2.10 Power Balance Objective Term

The cost of buying and selling electricity will be different in the majority of electricity

markets. This is result of factors such as geographical location, market demands,

and transmission system constraints. This means the objective function used in

optimizing a utility system must use the correct price depending on whether the

system is generating or consuming power. Within this work, it is modeled as

Cpower = (Csell (1− bbal) + Cbuybbal)Wtotal (C.31)

where C represents cost, bbal is a binary variable indicating whether we are selling

or buying power, and Wtotal is the power balance of the site, defined similar to

Wtotal = Wgtg +Wtgen −Wpump −Wsite (C.32)

noting Wtotal is positive when generation exceeds demand (the site has power to

sell), and negative when the reverse is true and the site must buy power.

In order for the cost function to be correct, bbal must change value depending

on the sign of Wtotal. This is modelled as two linear constraints and using the ‘big

M’ strategy, as used in the last subsection. The first constraint ensures the binary

variable is off when generating power

Wtotal +Mbigbbal ≤ Mbig (C.33)

while the second ensures the variable is on when buying power

−Wtotal −Mbigbbal ≤ 0 (C.34)

The ‘big M’ value can be set to any value larger than the maximum demand and

generation potential of the site, typically 10kW larger the maximum absolute value.
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C.3 Steam Utility SymBuilder Models

The MATLAB models from Sections 6.6.1 and 6.6.2 are listed in the following sec-

tions. To run these models, the reader is referred to the Appendix DVD which

contains both the models and case studies included within this work.

C.3.1 Three Header Steam Model

The basic model is shown below, while the full simulation file supplied on the Ap-

pendix DVD under SymUtility Models.

U = SymUtility;
U.AddSteamGroups();

% Mass Balance Equations
U.AddCon(‘m1-m2-m3-m4-m5-m6-m7 = 0’); %HP Header
U.AddCon(‘m10+m3+m5-m11-m12-m13-m14 = 0’); %MP Header
U.AddCon(‘m9+m16-m18 = 0’); %User Mixer
U.AddCon(‘m17+m12+m4+m19-m20-m21 = 0’); %LP Header
U.AddCon(‘m24-m22-m23 = 0’); %Condensate Mixer
U.AddCon(‘m26-m15-m8-m27 = 0’); %BFW Splitter
U.AddCon(‘m27-m28-m30-m32 = 0’); %Boiler Splitter
U.AddCon(‘m1-m29-m31-m33 = 0’); %Steam Mixer
% Energy Balance Equations
U.AddCon(‘h1*m1 - h2*(m2+m3+m4+m5+m6+m7) = 0’); %HP Header
U.AddCon(‘h11*m10 + TG1_H*m3 + BT1_H*m5 - h11*(m11+m12+m13+m14) = 0’);
U.AddCon(‘HPU_H*m9 + MPU_H*m16 - h18*m18 = 0’); %User Mixer
U.AddCon(‘h20*m17 + BT2_H*m12 + TG2_H*m4 + FLSH_VH*m19 - h20*(m20+m21) = 0’);
U.AddCon(‘FLSH_LH*m22 + MU_H*m23 - h24*m24 = 0’); %Condensate Mixer
% General Bounds
U.AddBound(‘0 <= m <= 150’);
U.AddBound(‘100 <= h <= 3500’);

% Fired Boilers
U.AddBlrFrd(JNet,{‘BLR1’,‘m29’,‘m28’,‘h1’,‘bblr1’},Fuel,Air,BLR1_rangeM,

30,30,200,BFW_H,400,40,0.01,0.01);
U.AddBlrFrd(JNet,{‘BLR2’,‘m31’,‘m30’,‘h1’,‘bblr2’},Fuel,Air,BLR2_rangeM,

30,30,200,BFW_H,400,40,0.01,0.01);
U.AddBlrFrd(JNet,{‘BLR3’,‘m33’,‘m32’,‘h1’,‘bblr3’},Fuel,Air,BLR3_rangeM,

30,30,200,BFW_H,400,40,0.01,0.01);
% Turbo Generators
U.AddTurboGen(JStm,{‘TG1’,‘m3’,‘h2’,‘btg1’},HP_P,MP_P,TG1_QMax,HP_H);
U.AddTurboGen(JStm,{‘TG2’,‘m4’,‘h2’,‘btg2’},HP_P,LP_P,TG2_QMax,HP_H);
% Back Pressure Turbines
U.AddBPT(JStm,{‘BT1’,‘m5’,‘h2’,‘bt1’},HP_P,MP_P,BT1_Q,BT1_Eff,HP_H);
U.AddBPT(JStm,{‘BT2’,‘m12’,‘h11’,‘bt2’},MP_P,LP_P,BT2_Q,BT2_Eff,MP_H);
% Desuperheaters
U.AddDesuper({‘HPDsp’,‘m2’,‘m8’,‘m10’,‘h2’,‘BFW_H’,‘h11’});
U.AddDesuper({‘MPDsp’,‘m11’,‘m15’,‘m17’,‘h11’,‘BFW_H’,‘h20’});
% Deaerator
U.AddDeaerator(JStm,{‘DRTR’,‘m20’,‘m24’,‘m25’,‘m26’,‘h20’,‘h24’},DRTR_P,DRTR_VT);
% Steam Users
U.AddUser({‘HPU’,‘m6’,‘h2’,‘m9’},HPU_Q,HPU_H,HPU_F);
U.AddUser({‘MPU’,‘m13’,‘h11’,‘m16’},MPU_Q,MPU_H,MPU_F);
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% Flash Drum
U.AddFlash(JStm,{‘FLSH’,‘m18’,‘m19’,‘m22’,‘h18’},LP_P);
% Pump
U.AddFixPump(JStm,{‘PMP’,‘m26’,‘BFW_H’,},JStm.HPX(2,0),2,PMP_P,PMP_Eff);
% Make Up Water
U.AddWater({‘Make Up’,‘m23’,‘MU_H’},MU_H);
% Headers
U.AddHeader({‘HP’,‘h2’,‘m7’},JStm.HPT(HP_P,400));
U.AddHeader({‘MP’,‘h11’,‘m14’},JStm.HPX(MP_P,1));
U.AddHeader({‘LP’,‘h20’,‘m21’},JStm.HPX(LP_P,1));

% Costs
U.AddConstant(‘Cost_FG’,COST_FG,‘Cost_Water’,COST_WATER);
U.AddConstant(‘Cost_BElec’,COST_BELEC,‘Cost_SElec’,COST_SELEC);

% Power Balance
U.AddExpression(‘PWR = TG1_Q + TG2_Q - BT1RQ*(1-bt1) - BT2RQ*(1-bt2) - PMP_Q’);
U.AddPwrBal({‘PWR’,‘bp’},60e3);
% Objective
U.AddObj(‘Cost_FG*(BLR1_FuelM+BLR2_FuelM+BLR3_FuelM) + Cost_Water*m23 -

(Cost_SElec*(1-bp) + Cost_BElec*bp)*PWR’);

Build(U)

C.3.2 Four Header Steam Model

The basic model is shown below, while the full simulation file supplied on the Ap-

pendix DVD under SymUtility Models.

U = SymUtility;
U.AddSteamGroups();

% Mass Balance Equations
U.AddCon(‘m1+m2-m3-m4-m5-m6-m7-m8-m9-m10 = 0’); %HP Header
U.AddCon(‘m16+m12+m13+m14+m8-m17-m19-m20-m21-m22 = 0’); %MP Header
U.AddCon(‘m25+m4+m18+m19+m6-m26-m28-m29 = 0’); %LP Header
U.AddCon(‘m27+m20+m7-m32 = 0’); %VLP Header
U.AddCon(‘m15+m24+m30-m31 = 0’); %User Header
U.AddCon(‘m34-m33-m32-m31 = 0’); %Condensate Mixer
U.AddCon(‘m36-m23-m37-m38-m11-m39-m40 = 0’); %BFW Splitter
% Energy Balance Equations
U.AddCon(‘HBLR_H*m1 + HRSG_H*m2 - h3*(m3+m4+m5+m6+m7+m8+m9+m10) = 0’); %HP Header
U.AddCon(‘h17*m16 + MBLR_H*m12 + WHB_H*m13 + BT1_H1*m14 + BT4_H*m8 -

h17*(m17+m19+m20+m21+m22) = 0’); %MP Header
U.AddCon(‘h26*m25 + TG1_H*m4 + BT1_H2*m18 + BT2_H*m6 + BT5_H*m19 -

h26*(m26+m28+m29) = 0’); %LP Header
U.AddCon(‘m34*h34 - m33*MU_H - m32*VLP_H - m31*USER_H = 0’); %Condensate Mixer

% General Bounds
U.AddBound(‘0 <= m <= 350’);
U.AddBound(‘100 <= h <= 3500’);

% GTG + HRSG
U.AddGTGHRSG(JNet,{‘GTG’,‘GTG_Q’,‘m2’,‘m39’,‘HRSG_H’,‘bgtg1’},Fuel,Air,

30,30,500,[],GTG_rangeQ,Fuel,180,0.01,BFW_H,HRSG_T,HP_P,0.03);
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% Fired Boilers
U.AddBlrFrd(JNet,{‘BLRH’,‘m1’,‘m40’,‘HBLR_H’,‘bblrh’},Fuel,Air,HBLR_rangeM,

30,30,200,BFW_H,369,HP_P,0.03,0.01);
U.AddBlrFrd(JNet,{‘BLRM’,‘m12’,‘m38’,‘MBLR_H’,‘bblrm’},Fuel,Air,MBLR_rangeM,

30,30,200,BFW_H,264,MP_P,0.03,0.01);
% Waste Heat Boiler
U.AddWHB(JStm,{‘WHB’,‘m13’,‘m37’,‘WHB_H’},WHB_Q,BFW_H,WHB_T,MP_P,0.03,WHB_Eff);
% Turbo Generators
U.AddTurboGen(JStm,{‘TG1’,‘m4’,‘h3’,‘btg1’},HP_P,LP_P,TG1_QMax,HP_H);
% Back Pressure Turbines
U.AddBPT(JStm,{‘BT2’,‘m6’,‘h3’,‘bt2’},HP_P,LP_P,BT2_Q,BT2_Eff,HP_H);
U.AddBPT(JStm,{‘BT3’,‘m7’,‘h3’,‘bt3’},HP_P,VLP_P,BT3_Q,BT3_Eff,HP_H);
U.AddBPT(JStm,{‘BT4’,‘m8’,‘h3’,‘bt4’},HP_P,MP_P,BT4_Q,BT4_Eff,HP_H);
U.AddBPT(JStm,{‘BT5’,‘m19’,‘h17’,‘bt5’},MP_P,LP_P,BT5_Q,BT5_Eff,MP_H);
U.AddBPT(JStm,{‘BT6’,‘m20’,‘h17’,‘bt6’},MP_P,VLP_P,BT6_Q,BT6_Eff,MP_H);
U.AddBPT3(JStm,{‘BT1’,‘m5’,‘m14’,‘m18’,‘m27’,‘h3’,‘bt1’},HP_P,MP_P,LP_P,

VLP_P,BT1_Q,BT1_Eff1,BT1_Eff2,BT1_Eff3,HP_H);
% Desuperheaters
U.AddDesuper({‘HPDsp’,‘m3’,‘m11’,‘m16’,‘h3’,‘BFW_H’,‘h17’}); %HP Desuperheater
U.AddDesuper({‘MPDsp’,‘m17’,‘m23’,‘m25’,‘h17’,‘BFW_H’,‘h26’}); %MP Desuperheater
% Deaerator
U.AddDeaerator(JStm,{‘DRTR’,‘m26’,‘m34’,‘m35’,‘m36’,‘h26’,‘h34’},DRTR_P,DRTR_VT);

% Steam Users
U.AddUser({‘HPU’,‘m9’,‘h3’,‘m15’},HPU_Q,HPU_H,HPU_F);
U.AddUser({‘MPU’,‘m21’,‘h17’,‘m24’},MPU_Q,MPU_H,MPU_F);
U.AddUser({‘LPU’,‘m28’,‘h26’,‘m30’},LPU_Q,LPU_H,LPU_F);
% Pumps
U.AddFixPump(JStm,{‘PMP’,‘m36’,‘BFW_H’},JStm.HPX(DRTR_P,0),DRTR_P,PMP_P,PMP_Eff);
U.AddFixPump(JStm,{‘VACPMP’,‘m32’,‘VLP_H’},JStm.HPX(VLP_P,0),VLP_P,DRTR_P,PMP_Eff);
% Make Up Water
U.AddWater({‘Make Up’,‘m33’,‘MU_H’},MU_H);
% Headers
U.AddHeader({‘HP’,‘h3’,‘m10’},JStm.HPT(HP_P,350));
U.AddHeader({‘MP’,‘h17’,‘m22’},JStm.HPX(MP_P,1));
U.AddHeader({‘LP’,‘h26’,‘m29’},JStm.HPX(LP_P,1));

% Costs
U.AddConstant(‘Cost_FG’,COST_FG,‘Cost_Water’,COST_WATER);
U.AddConstant(‘Cost_BElec’,COST_BELEC,‘Cost_SElec’,COST_SELEC);
% Constants
U.AddConstant(‘USER_H’,UserH);
U.AddConstant(‘SITE_Q’,SITE_Q);

% Power Balance
U.AddExpression(‘PWR = GTG_Q + TG1_Q - SITE_Q - BT1RQ*(1-bt1) - BT2RQ*(1-bt2) -

BT3RQ*(1-bt3) - BT4RQ*(1-bt4) - BT5RQ*(1-bt5) - BT6RQ*(1-bt6) -
PMP_Q - VACPMP_Q’);

U.AddPwrBal({‘PWR’,‘bp’},60e3);
% Objective
U.AddObj(‘Cost_FG*(BLRH_FuelM+BLRM_FuelM+GTG_FuelM) + Cost_Water*m33 -

(Cost_SElec*(1-bp) + Cost_BElec*bp)*PWR’);

% Case Study based Fixed Constraints
switch(cstudy)

case 1
U.AddBound(‘0 <= bt1 <= 0’);
U.AddBound(‘0 <= bt3 <= 0’);
U.AddBound(‘0 <= bt5 <= 0’);
U.AddBound(‘0 <= bt6 <= 0’);
U.AddBound(‘0 <= bgtg1 <= 0’);
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case 11
U.AddBound(‘0 <= bt1 <= 0’);
U.AddBound(‘0 <= bt2 <= 0’);
U.AddBound(‘0 <= bt3 <= 0’);
U.AddBound(‘0 <= bt5 <= 0’);
U.AddBound(‘0 <= bgtg1 <= 0’);

case 2
U.AddBound(‘0 <= btg1 <= 0’);
U.AddBound(‘0 <= bt3 <= 0’);
U.AddBound(‘0 <= bt4 <= 0’);
U.AddBound(‘0 <= bt6 <= 0’);

case 3
U.AddBound(‘0 <= btg1 <= 0’);
U.AddBound(‘0 <= bt6 <= 0’);

end

Build(U)

C.4 Global Optimization Interfaces

Additional details of the MATLAB interfaces developed to BARON and SCIP, both

global white-box solvers.

C.4.1 Compatible BARON Interface MATLAB Functions

Table C.1 lists the MATLAB functions which have been overloaded with the BARON

Interface, thus enabling their use when modelling global optimization problems in

MATLAB.

C.4.2 BARON Interface Parsing Performance

As described in Section 7.2.1, the BARON Interface generates a text representation

of a MATLAB program suitable for parsing by BARON. Considering the amount

of overhead involved in generating and concatenating equation strings, the process

is remarkably quick, as shown by the MATLAB profiler in Figure C.2. To convert

and solve a 100 variable vectorized Rosenbrock problem into BARON format took

just over 140ms (2nd entry), with generating and writing the remainder of the

BARON problem taking 100ms (3rd and 5th entries). Solving the problem to global

optimality took 1.4s (1st entry), while parsing the results took just 50ms (4th entry).
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Table C.1: MATLAB - BARON Interface supported functions.

abs Absolute value
cumsum Cumulative sum
diag Extract diagonal of matrix, or convert vector to diagonal matrix
diff Difference of adjacent elements
dot Dot product
eval Evaluate the object using substituted numerical constants
exp Exponential function
fliplr Flip matrix left/right
flipud Flip matrix up/down
horzcat Horizontal cconcatenation
isscalar Check if object is a scalar
length Return length of the object
log Natural Logarithim
log10 Log Base 10
minus Element-wise subtraction
mpower Matrix raised to an integer power, or scalar raised to another scalar
mrdivide Element-wise divide (not matrix divide)
mtimes Matrix multiplication
norm 2-norm for vectors, Frobenius norm for matrices
plus Element-wise addition
power Element-wise power
prod Vector product, or matrix row/column product
rdivide Element-wise division
repmat Replicate Matrix
reshape Reshape object
rot90 Rotate matrix 90 degrees
size Return object size
sqrt Element-wise square root
subsasgn Assigning elements via an index
subsref Reading elements via an index
sum Vector sum, or matrix row/column sum
times Element-wise Multiplication
trace Trace of a matrix
transpose Transpose object dimensions
tril Extract lower triangular section
triu Extract upper triangular section
uminus Element-wise unary minus
vertcat Vertical concatenation
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Figure C.2: MATLAB - BARON Interface profile results for 100 variable Rosenbrock
NLP.

C.4.3 Compatible SCIP Interface MATLAB Functions

Table C.2 lists the MATLAB functions which have been overloaded with the SCIP

Interface, which as per the BARON Interface, allow them to be used to model global

optimization problems.

Table C.2: MATLAB - SCIP Interface currently supported functions.

abs Absolute value
dot Dot product
exp Exponential function
horzcat Horizontal cconcatenation
isscalar Check if object is a scalar
length Return length of the object
log Natural Logarithim
log10 Log Base 10
minus Element-wise subtraction
mpower Matrix raised to an integer power, or scalar raised to another scalar
mrdivide Element-wise divide (not matrix divide)
mtimes Matrix multiplication
norm 2-norm for vectors, Frobenius norm for matrices
plus Element-wise addition
power Element-wise power
prod Vector product, or matrix row/column product
rdivide Element-wise division
size Return object size
sqrt Element-wise square root
subsasgn Assigning elements via an index
subsref Reading elements via an index
sum Vector sum, or matrix row/column sum
times Element-wise Multiplication
transpose Transpose object dimensions
uminus Element-wise unary minus
vertcat Vertical concatenation
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C.4.4 Global Optimization Solver Interface Validation

To validate both of the interfaces developed, 16 small test problems have been

taken from GLOBALLib [103], a collection of global optimization problems, and

16 from MINLPLib [51], a collection of mixed integer nonlinear problems. For each

problem, a reference solution was obtained using the original problem within GAMS

and BARON, and then the problem was entered into MATLAB. The interfaces to

SCIP and BARON were then used to solve the problem, with the results shown in

Table C.3.

As shown, the BARON interface obtains the reference solution in all cases, indi-

cating the interface is correctly functioning. For SCIP, it fails to find a solution for

problem nvs09 within the allowable 10,000 nodes. Note that this problem however

occurred in the original GAMS model with SCIP as well, which would indicate this

is not an interface issue. For the remainder of the problems, both SCIP and BARON

have solved for the correct solution using the MATLAB interfaces developed. This

small test validates that both interfaces are functioning correctly, or at least for the

problems tested, noting that they are representative of the utility system models,

albeit smaller.
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Table C.3: Global optimization solver interface validation results.

SCIP Results BARON Results
Name Reference Fval Time[s] Nodes Fval Time[s] Nodes
st e01 -6.667 -6.667 0.017 1 -6.667 0.173 1
st e02 201.159 201.159 0.018 1 201.159 0.150 1
st e03 -1161.337 -1161.337 0.370 184 -1161.337 0.749 31
st e04 5194.866 5194.866 0.557 17 5194.866 0.635 3
st e05 7049.249 7049.249 0.263 164 7049.249 0.544 25
st e06 0.000 0.000 0.023 1 0.000 0.135 -1
st e07 -400.000 -400.000 0.188 31 -400.000 0.234 1
st e08 0.742 0.742 0.029 1 0.742 0.168 1
st e09 -0.500 -0.500 0.073 15 -0.500 0.206 3
st e10 -16.739 -16.739 0.026 1 -16.739 0.201 3
st fp1 -17.000 -17.000 0.051 5 -17.000 0.243 7
st fp2 -213.000 -213.000 0.020 1 -213.000 0.173 1
st fp3 -15.000 -15.000 0.023 1 -15.000 0.222 1
st fp4 -11.000 -11.000 0.055 3 -11.000 0.205 1
st fp5 -268.015 -268.015 0.055 3 -268.015 0.269 1
st fp6 -39.000 -39.000 0.071 5 -39.000 0.297 3
nvs01 12.470 12.4701 0.298 25 12.470 0.496 13
nvs02 5.964 5.964 0.018 1 5.964 0.360 5
nvs03 16.000 16.000 0.014 1 16.000 0.166 1
nvs04 0.720 0.720 0.048 3 0.720 0.282 1
nvs05 5.471 5.471 0.550 28 5.471 36.327 2610
nvs06 1.770 1.770 0.121 13 1.770 0.364 1
nvs07 4.000 4.000 0.015 1 4.000 0.154 -1
nvs08 23.450 23.450 0.043 1 23.450 1.060 8
nvs09 -43.134 -17.517 7.215 10000 -43.134 0.361 1
nvs10 -310.800 -310.800 0.022 1 -310.800 0.311 3
nvs11 -431.000 -431.000 0.025 3 -431.000 0.536 9
nvs12 -481.200 -481.200 0.075 9 -481.200 0.750 12
nvs13 -585.200 -585.200 0.090 8 -585.200 0.989 48
nvs14 -40358.155 -40358.155 0.019 1 -40358.155 0.340 5
nvs15 1.000 1.000 0.018 1 1.000 0.274 4
nvs16 0.703 0.703 0.083 4 0.703 0.295 3

1 Obtained with a tightened tolerance of 1× 10−9
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Appendix D

Appendix DVD Contents

Table D.1 below lists the software included on the attached DVD. This is provided

to support the examples presented in this work.

Table D.1: Software included on the Appendix DVD.

Folder Description
jMPC Toolbox The latest jMPC Toolbox version.

OPTI Toolbox The latest OPTI Toolbox version.

JSteam Toolbox The latest JSteam Toolbox version.

JSteam Excel Add In The latest version of the JSteam Excel Add-In.

MPC Models Dynamic models and associated model predictive con-
trollers used within this work.

SymUtility Models Both the three and four header hypothetical utility mod-
els, ready to run (require JSteam + OPTI Installed).
Also included are the Excel versions (requires the Excel
Add In).
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