
ThinkingISsues

Tony Clear
School of Computing and Mathematical Sciences

AUT University,
Private Bag 92006, Auckland 1142, New Zealand

Tony.Clear@aut.ac.nz
A ‘Potted Guide’ to Quality Assurance for Computing Capstone Projects

The topic of Quality Assurance (QA) is a key
assessment category for the capstone project
within our Bachelor of Computer and Information
Sciences. In the past this has not been too much
of a problem to explain to students, as they had
typically studied several software development
courses within which the concepts and practices
of software quality assurance had been covered.
More recently we find ourselves explaining the
concept of quality assurance to students from less
software intensive majors (e.g. IT security), and
finding it more of a challenge. Students are
required to produce an evidence portfolio and QA
is one of the categories under which they must
demonstrate how the quality of their work has
been “assured”.
The initial questions arise of: what is quality?
How can it be ensured? Then to start from
scratch with defining quality raises further
questions. In the literature for example, software
quality has been termed “the elusive target” [9],
which can be viewed from five different
perspectives:

+ The transcendental view sees quality as something that can be
recognized but not defined.

+ The user view sees quality as fitness for purpose.

+ The manufacturing view sees quality as conformance to
specification.

+ The product view sees quality as tied to inherent
characteristics of the product.

+ The value-based view sees quality as dependent on the
amount a customer is willing to pay for it.

Each of these perspectives brings accompanying
approaches to ensure that quality outcomes result
from the work performed. For instance
‘transcendental’ quality might result in product
solutions characterised by elegance of design,
simplicity and ease of use, a crisp, clean look and
feel, or a service marked by attention to detail and
true attentiveness to the customer’s needs. To
determine the requirements in such a model of
quality is challenging as they go beyond ‘fitness
for purpose’, to often latent and unstated needs
and wants. Iterative lifecycle models with regular
customer feedback loops may suit such projects.
By contrast the ‘conformance to specification’
model demands that a clear initial specification is
produced and agreed, and the lifecycle model is
normally typified by stage gates and customer
sign-offs. Finally while the ‘product view’ may
place considerable emphasis on the design aspects
of quality, the ‘value based view’ in turn may be
appropriate if a quick prototype is required for a
one-off solution.
From a different viewpoint again, if we build the
learning dimensions of the project into the
equation there are differing models for
educational quality. The one I prefer is that
espoused in [6] whereby learning is conceived as
a ‘transformative process’ for the student – and
therefore somewhat akin to the ‘transcendental
view’ of quality.
As is apparent from the above, there are differing
ways of producing quality outcomes depending
upon the goals. From a student perspective the
most useful way of framing this is to note the

mailto:Tony.Clear@aut.ac.nz

need for a quality process to ensure predictable
and high quality outcomes. This is where
selection of a methodology to fit the needs of the
project is necessary. That methodology might
involve: a software lifecycle model; a technology
or network design model (e.g. [12]); or a research
design model (e.g. 11]). This choice demands
making explicit whichever model of quality from
the above five implicit models underpins the
project.
A further important element of a quality process
will be the identification and allocation of roles
and responsibilities to appropriately skilled team
members to enable the requirements of the
methodology to be executed.
As an alternative to process, measurement is a
classic approach to quality, whether that addresses
process or product dimensions. For instance, the
ISO9126 standard specifies a set of software
quality attributes, including: functionality;
reliability; efficiency; usability; maintainability
and portability [5]. Of course a standard may not
be a high one (for instance I sometimes
provocatively make the point by proposing that
the food quality standard for a nameless global
burger chain, is that the food tastes at least as
good as the wrapper), but in the latter case it does
provide a global basis for measurement of
consistency. A set of metrics typically
accompany such standards, as a yardstick by
which conformance to the standard can be
demonstrated or a lack of conformance can be
highlighted. For students, standards for coding
and document formatting, or for recording
meeting minutes may be relevant examples,
where compliance with the quality standard can
be objectively demonstrated.
The typical notion that students begin with when
considering QA is the idea of testing. However
testing, while part of the QA armoury, is more
properly classified as a quality control activity
(QC) rather than QA. Rather than acting in an
overarching role to help ensure quality – it is
inherently part of the production function, but as a
control check added on at the end. Testing is not

adequate if used as the sole mechanism to assure
quality. The favourite mantra of a software
project manager with whom I worked many years
ago was “Quality is built in not bolted on!”
Having made that point, it is nonetheless true that
a well framed and multi layered testing strategy
(including unit tests, integration tests, usability
tests, performance and stress tests, acceptance
tests etc.) is a key element supporting a QA
framework for systems related projects.
In contrast to the rather defensive and backstop
position occupied by testing in supporting QA
activities, more in-line activities of quality review
have much to offer. For instance Robert Glass
when asked for the three best software
engineering practices came up with “inspections,
inspections, inspections” [9], arguing that they
“do a better job of error-removal than any
competing technology”. The notion of review of
work in progress, whether by peers, experts, or by
feedback from clients has much to commend it,
and can be applied to a wide range of project
types. Even simple practices such as mandating a
peer review cycle for any documentary artefact
produced by the team can play a significant role
in improving the quality of the end product.
Reviews in turn can be periodic and formalised
through mechanisms such as “a walkthrough and
a formal technical review” [3], “design and code
inspections” [7] or other forms of audit. But they
may also involve more continuous processes such
as pair programming, or the shared workshop
models of Joint Application Design (JAD) [4].
Likewise Test driven development (TDD) [13], in
which design of tests leads development work,
can also be thought of as a continuous review
process, whereby quality is “built in” from the
outset.
Further specific practices may be applied in
support of QA activities. For instance ongoing
practices of continuous integration, regular (e.g.
daily) code builds, refactoring etc. [8] may be
adopted. Then more control oriented practices
may be useful such as change control,
configuration and version management [2].

Finally at a meta-level there is the notion of
continual process improvement, sometimes
termed software process and practice
improvement (SPPI), which “aims to build an
infrastructure and culture that support effective
methods, practices, and procedures and integrate
into the ongoing way of doing business” [1].
These process improvement models are typically
supported by blueprints which provide guidance
to the meta-processes to be followed. In turn the
practice dimensions of these process improvement
models may be realised through “Recipes for
software practices…that blueprints specify” [1].
Few student projects will reach the meta-level of
reflection inherent in a process improvement
layer, but such a sophisticated level of quality
awareness remains a goal to aspire towards. For
meta-level thinking may be realised in part, as
students reflect upon the effectiveness of the
processes and practices they have applied in their
projects. Ideally they would adapt and refine
them as they proceed. At a minimum we would
expect students at the end of their projects to
reflect upon the processes and practices they have
applied during their projects and demonstrate
awareness of how they could have done things
differently and what those improvements might
look like in future.
Thus we can see not only the elusive nature of
quality, but the complexity of quality assurance
and the variety of techniques, processes and
practices outlined here that may serve to build
quality into a project.

[1] Aaen, I. Software process improvement:

Blueprints versus recipes, Software, IEEE,
vol.20, no.5, pp. 86- 93, Sept.-Oct. 2003.

[2] Allan, G. A critique of using grounded
theory as a research method. Electronic
Journal of Business Research Methods, 2
(1) 2003, 1-10.

[3] Aurum, A., Petersson, H. and Wohlin, C.
State-of-the-Art: Software Inspections
After 25 Years. Software - Testing,

Verification and Reliability, 12 (3) 2002,
133-154.

[4] Carmel, E., Whitaker, R. D., and George,
J. F. 1993. PD and joint application
design: a transatlantic comparison.
Commun. ACM 36, 6 (Jun. 1993), 40-48.

[5] Carroll, C. The Cost of Poor Testing: A
U.S. Government Study (Part 1). EDPACS
- The EDP Audit, Control, and Security
Newsletter, 31 (1) 2003, 1-17.

[6] Corder, M., Horsburgh, M. and Melrose,
M. Quality Monitoring, Innovation and
Transformative Learning. Journal of
Further & Higher Learning, 23 (1) 1999.

[7] Fagan, M. Design and code inspections to
reduce errors in program development.
IBM Systems Journal, 3 1976, 182-211.

[8] Fowler, M. Refactoring - Improving the
Design of Existing Code. Addison Wesley
Longman, Boston, 1999.

[9] Glass, R. Inspections - Some Surprising
Findings. Communications of the ACM, 42
(4) 1999, 17-19.

[10] Kitchenham, B. and Pfleeger, S. Software
quality: the elusive target IEEE Software,
13 (1) 1996, 12-21.

[11] Kitchenham, B. Procedures for performing
systematic reviews. Technical Report
Keele University TR/SE-0401 and NICTA
0400011T.1, Software Engineering Group,
Department of Computer Science, Keele
University, and Empirical Software
Engineering, National ICT Australia Ltd.,
July 2004.

[12] Lifecycle Services White Paper. (2005).
Retrieved March 18, 2010, from Cisco
Systems, Inc.:
http://www.cisco.com/warp/public/437/ser
vices/lifecycle/LifecycleServicesWhitePap
er.pdf

[13] Sanchez, J., Williams, L. and Maximilien,
E. On the Sustained Use of a Test-Driven
Development Practice at IBM Agile 2007
Conference, Washington, D.C 2007, 5-14.

